FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Nazaretski, E Akhadov, EA Cha, KC Pelekhov, DV Martin, I Graham, KS Hammel, PC Movshovich, R AF Nazaretski, E. Akhadov, E. A. Cha, K. C. Pelekhov, D. V. Martin, I. Graham, K. S. Hammel, P. C. Movshovich, R. TI Ferromagnetic resonance force microscopy studies of a continuous permalloy-cobalt film SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 3rd Seeheim Conference on Magnetism (SCM2007) CY AUG 26-30, 2007 CL Frankfurt, GERMANY AB Magnetic resonance force microscopy (MRFM) offers a means of performing local ferromagnetic resonance. We have studied the evolution of the MRFM force spectra in a continuous 20 nm thick cobalt-permalloy film as a function of lateral position. We clearly observed localized resonance signals originating from cobalt and permalloy. The spatial resolution in our experiments was determined to be better than 5 pm thus opening up the possibility to perform localized spectroscopic studies in continuous ferromagnetic samples. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 [Nazaretski, E.; Akhadov, E. A.; Cha, K. C.; Martin, I.; Graham, K. S.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Nazaretski, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM evgnaz@lanl.gov; akhadov@lanl.gov RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 NR 17 TC 1 Z9 1 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD AUG PY 2008 VL 205 IS 8 BP 1758 EP 1761 DI 10.1002/pssa.200723465 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 343OP UT WOS:000258863700005 ER PT J AU Kim, WJ Brown-Hayes, M Dalvit, DAR Brownell, JH Onofrio, R AF Kim, W. J. Brown-Hayes, M. Dalvit, D. A. R. Brownell, J. H. Onofrio, R. TI Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry SO PHYSICAL REVIEW A LA English DT Article ID MU-M; MICROSCOPY; RANGE AB We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force. C1 [Kim, W. J.; Brown-Hayes, M.; Brownell, J. H.; Onofrio, R.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Onofrio, R.] Univ Padua, Dipartimento Fis Galileo Galilei, I-35131 Padua, Italy. RP Kim, WJ (reprint author), Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06520 USA. RI Kim, Woo-Joong/G-6876-2011 NR 28 TC 72 Z9 72 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2008 VL 78 IS 2 AR 020101 DI 10.1103/PhysRevA.78.020101 PN A PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 349EF UT WOS:000259263400001 ER PT J AU Owens, IJ Hughes, RJ Nordholt, JE AF Owens, I. J. Hughes, R. J. Nordholt, J. E. TI Entangled quantum-key-distribution randomness SO PHYSICAL REVIEW A LA English DT Article ID CRYPTOGRAPHY; PHOTONS AB Random number generators are important components of information security systems. In particular, cryptography standards require that the numbers generated by quantum key distribution applications meet a rigorous set of standardized randomness tests. To date, implementations of entangled quantum key distribution (EQKD) have not included any randomness assessment. We report on the results of randomness tests and highlight how typical EQKD system operation affects the successes and failures in meeting the fundamental test criteria. C1 [Owens, I. J.; Hughes, R. J.; Nordholt, J. E.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Owens, IJ (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM iowens@lanl.gov FU Intelligence Community (IC) FX The authors thank Jim W. Harrington, Danna Rosenberg, Charles G. Peterson, and Marco Fiorentino for helpful discussions and software assistance. Financial support from the Intelligence Community (IC) is gratefully acknowledged. NR 12 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2008 VL 78 IS 2 AR 022307 DI 10.1103/PhysRevA.78.022307 PN A PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 349EF UT WOS:000259263400043 ER PT J AU Sapirstein, J Cheng, KT AF Sapirstein, J. Cheng, K. T. TI Calculation of radiative corrections to hyperfine splitting in p(3/2) states SO PHYSICAL REVIEW A LA English DT Article ID MANY-BODY PROBLEM; IONS; HELIUM; CESIUM; ATOMS AB A recent calculation of the one-loop radiative correction to hyperfine splitting (hfs) of p(1/2) states that includes binding corrections to all orders is extended to p(3/2) states. Nuclear structure plays an essentially negligible role for such states, which is highly advantageous, as difficulties in controlling the Bohr-Weisskopf effect complicate the isolation of QED contributions for both s(1/2) and p(1/2) states. Three cases are studied. We first treat the hydrogen isoelectronic sequence, which is completely nonperturbative in Z alpha for high Z. Secondly the lowest lying p(3/2) states of the neutral alkali-metal atoms are treated, and finally lithiumlike bismuth, where extensive theoretical and experimental studies of the hfs of 2s and 2p(1/2) states have been made, is addressed. C1 [Sapirstein, J.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Cheng, K. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sapirstein, J (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM jsapirst@nd.edu; ktcheng@llnl.gov FU NSF [PHY-0451842, PHY-0757125]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work of J.S. was supported in part by NSF Grant Nos. PHY-0451842 and PHY-0757125. The work of K.T.C. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 32 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2008 VL 78 IS 2 AR 022515 DI 10.1103/PhysRevA.78.022515 PN A PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 349EF UT WOS:000259263400088 ER PT J AU Yip, FL McCurdy, CW Rescigno, TN AF Yip, F. L. McCurdy, C. W. Rescigno, T. N. TI Hybrid Gaussian-discrete-variable representation approach to molecular continuum processes: Application to photoionization of diatomic Li(2)(+) SO PHYSICAL REVIEW A LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; AB-INITIO CALCULATIONS; QUANTUM SCATTERING; CORE-POLARIZATION; ELECTRON-IMPACT; EXCITED-STATES; IONIZATION; H-2; INTERFERENCE; ENERGIES AB We describe an approach for studying molecular photoionization with a hybrid basis that combines the functionality of analytic basis sets to represent electronic coordinates near the nuclei of a molecule with numerically defined grid-based functions. We discuss the evaluation of the various classes of two-electron integrals that occur in a hybrid basis consisting of Gaussian-type orbitals and discrete-variable representation functions. This combined basis is applied to calculate single photoionization cross sections for molecular Li(2)(+), which has a large equilibrium bond distance (R=5.86a(0)). The highly nonspherical nature of Li(2)(+) molecules causes higher angular momentum components to contribute significantly to the cross section even at low photoelectron energies, resulting in angular distributions that appear to be f-wave dominated near the photoionization threshold. At higher energies, where the de Broglie wavelength of the photoelectron becomes comparable with the bond distance, interference effects appear in the photoionization cross section. These interference phenomena appear at much lower energies than would be expected for diatomic targets with shorter internuclear separations. C1 [Yip, F. L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yip, F. L.; McCurdy, C. W.; Rescigno, T. N.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Yip, FL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. FU U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences; NSF [PHY0604628] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences. C.W.M. acknowledges support from the NSF Grant No. (PHY0604628). NR 45 TC 10 Z9 10 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2008 VL 78 IS 2 AR 023405 DI 10.1103/PhysRevA.78.023405 PN B PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 349EG UT WOS:000259263500005 ER PT J AU Zhaunerchyk, V Vigren, E Geppert, WD Hamberg, M Danielsson, M Kaminska, M Larsson, M Thomas, RD Bahati, E Vane, CR AF Zhaunerchyk, V. Vigren, E. Geppert, W. D. Hamberg, M. Danielsson, M. Kaminska, M. Larsson, M. Thomas, R. D. Bahati, E. Vane, C. R. TI Dissociative recombination of BH2+: The dominance of two-body breakup and an understanding of the fragmentation SO PHYSICAL REVIEW A LA English DT Article ID ABSOLUTE CROSS-SECTIONS; ION STORAGE-RING; PRODUCT BRANCHING FRACTIONS; MOLECULAR-IONS; EXCITATION; RATIOS; DYNAMICS; H-3(+); NH4+; H2O+ AB The dissociative recombination of BH2+ has been studied at the storage ring CRYRING. The branching fraction analysis shows that dissociative recombination is dominated by the two-body BH+H channel constituting 56% of the total reactivity with the B+H+H and B+H-2 channels being 35 and 9%, respectively. Both the measured reaction rate and fragmentation behavior are different than for previously studied XH2+ ions, which react both faster and predominantly dissociate through the full fragmentation channel. Explanations for such observations are discussed. C1 [Zhaunerchyk, V.; Vigren, E.; Geppert, W. D.; Hamberg, M.; Danielsson, M.; Kaminska, M.; Larsson, M.; Thomas, R. D.] Stockholm Univ, Albanova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Kaminska, M.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, PL-25406 Kielce, Poland. [Bahati, E.; Vane, C. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Zhaunerchyk, V (reprint author), Stockholm Univ, Albanova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. EM vz@physto.se RI Zhaunerchyk, Vitali/E-9751-2016 NR 43 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2008 VL 78 IS 2 AR 024701 DI 10.1103/PhysRevA.78.024701 PN B PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 349EG UT WOS:000259263500092 ER PT J AU Alberi, K Yu, KM Stone, PR Dubon, OD Walukiewicz, W Wojtowicz, T Liu, X Furdyna, JK AF Alberi, K. Yu, K. M. Stone, P. R. Dubon, O. D. Walukiewicz, W. Wojtowicz, T. Liu, X. Furdyna, J. K. TI Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; MAGNETIC SEMICONDUCTORS; GAAS; FERROMAGNETISM; SCATTERING; GA1-XMNXAS AB While the support for the existence of a Mn-derived impurity band in the diluted magnetic semiconductor Ga1-xMnxAs has recently increased, a detailed quantitative analysis of its formation and properties is still incomplete. Here, we show that such an impurity band arises as the result of an anticrossing interaction between the extended states of the GaAs valence band and the strongly localized Mn states according to the valence band anticrossing model. The anticrossing interpretation is substantiated by optical measurements that reveal a shift in the band gap of GaAs upon the addition of Mn and it also explains the remarkably low hole mobility in this alloy. Furthermore, the presence of a Mn-derived impurity band correctly accounts for the metal-to-insulator transition experimentally observed in Ga1-xMnxAs1-y(N,P)(y) with y <= 0.02. C1 [Alberi, K.; Yu, K. M.; Stone, P. R.; Dubon, O. D.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alberi, K.; Stone, P. R.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wojtowicz, T.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Liu, X.; Furdyna, J. K.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM W_Walukiewicz@lbl.gov RI Yu, Kin Man/J-1399-2012; Wojtowicz, Tomasz/A-2887-2017 OI Yu, Kin Man/0000-0003-1350-9642; FU U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR06-03752]; NSF-IGERT; NDSEG; NSF FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Science Foundation Grant No. DMR06-03752. The authors thank K.S. Burch for fruitful discussions. K.A. acknowledges support from an NSF-IGERT traineeship, and P.R.S. acknowledges support from NDSEG and NSF. NR 37 TC 39 Z9 39 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075201 DI 10.1103/PhysRevB.78.075201 PG 7 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700048 ER PT J AU Anda, EV Chiappe, G Busser, CA Davidovich, MA Martins, GB Heidrich-Meisner, F Dagotto, E AF Anda, E. V. Chiappe, G. Busser, C. A. Davidovich, M. A. Martins, G. B. Heidrich-Meisner, F. Dagotto, E. TI Method to study highly correlated nanostructures: The logarithmic-discretization embedded-cluster approximation SO PHYSICAL REVIEW B LA English DT Article ID NUMERICAL RENORMALIZATION-GROUP; DENSITY-MATRIX RENORMALIZATION; HUBBARD-MODEL; QUANTUM-DOT; PERTURBATION-THEORY; ANDERSON MODEL; KONDO; TRANSPORT; SYSTEMS; OSCILLATIONS AB This work proposes an approach to study transport properties of highly correlated local structures. The method, dubbed the logarithmic discretization embedded cluster approximation (LDECA), consists of diagonalizing a finite cluster containing the many-body terms of the Hamiltonian and embedding it into the rest of the system, combined with Wilson's idea of a logarithmic discretization of the representation of the Hamiltonian. The physics associated with both one embedded dot and a double-dot side coupled to leads is discussed in detail. In the former case, the results perfectly agree with Bethe ansatz data, while in the latter, the physics obtained is framed in the conceptual background of a two-stage Kondo problem. A many-body formalism provides a solid theoretical foundation to the method. We argue that LDECA is well suited to study complicated problems such as transport through molecules or quantum dot structures with complex ground states. C1 [Busser, C. A.; Martins, G. B.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Anda, E. V.; Davidovich, M. A.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22453900 Rio De Janeiro, Brazil. [Chiappe, G.] Univ Alicante, Dept Fis Aplicada, Alicante 03690, Spain. [Chiappe, G.] Univ Buenos Aires, Fac Ciencias Exactas, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina. [Busser, C. A.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Heidrich-Meisner, F.] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. [Heidrich-Meisner, F.; Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Heidrich-Meisner, F.; Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Martins, GB (reprint author), Oakland Univ, Dept Phys, Rochester, MI 48309 USA. EM martins@oakland.edu RI Heidrich-Meisner, Fabian/B-6228-2009; Busser, Carlos/K-1017-2014; Chiappe, Guillermo/P-8460-2014; Martins, George/C-9756-2012 OI Busser, Carlos/0000-0002-0353-7490; Chiappe, Guillermo/0000-0001-8077-1873; Martins, George/0000-0001-7846-708X NR 64 TC 25 Z9 25 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085308 DI 10.1103/PhysRevB.78.085308 PG 16 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900067 ER PT J AU Baishya, K Idrobo, JC Ogut, S Yang, ML Jackson, K Jellinek, J AF Baishya, Kopinjol Idrobo, Juan C. Ogut, Serdar Yang, Mingli Jackson, Koblar Jellinek, Julius TI Optical absorption spectra of intermediate-size silver clusters from first principles SO PHYSICAL REVIEW B LA English DT Article ID EXCITATION-SPECTRA; AB-INITIO; FLUORESCENCE; RESONANCES; PARTICLES; MATRIX; ARGON; SHIFT; SHAPE; AR AB Optical absorption spectra of the three lowest-energy isomers of Ag(n) (n=10, 12-20) are investigated from first principles within the time-dependent local-density approximation (TDLDA). The computed spectra are found to be generally in good agreement with the available experimental data. The analyses of the spectra indicate that the d electrons of Ag(n) clusters in this size range have a significant (70%-80%) contribution to low-energy optical excitations. We show that most of the peak positions and the relative intensities in the TDLDA spectra of these subnanometer sized clusters can be explained remarkably well within the classical Mie-Gans theory, using the dielectric function of bulk Ag and taking into account the shapes of the isomers. C1 [Baishya, Kopinjol; Idrobo, Juan C.; Ogut, Serdar] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Yang, Mingli; Jackson, Koblar] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Jellinek, Julius] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Baishya, K (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RI Ogut, Serdar/B-1749-2012; Yang, Mingli/E-9983-2012; Idrobo, Juan/H-4896-2015; OI Yang, Mingli/0000-0001-8590-8840; Idrobo, Juan/0000-0001-7483-9034; Jackson, Koblar/0000-0002-5342-7978 FU U.S. Department of Energy Grants [DE-FG02-03ER15488, FG02-03ER15489]; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC-02-06CH11357]; Office of Science of the U.S. Department of Energy FX We would like to thank F. Conus and C. Felix for sharing with us their unpublished data on Ag12, Ag13, and Ag14, and sending us their recent work16 during the preparation of this manuscript. This work was supported by the U.S. Department of Energy Grants No. DE-FG02-03ER15488 (K.B., J.C.I., and S.O.), No. FG02-03ER15489 (M.Y. and K.J.), and the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC-02-06CH11357 (J.J.). This research used resources of NERSC, which is supported by the Office of Science of the U.S. Department of Energy. NR 56 TC 47 Z9 47 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075439 DI 10.1103/PhysRevB.78.075439 PG 9 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700120 ER PT J AU Barisic, N Li, Y Zhao, XD Cho, YC Chabot-Couture, G Yu, GC Greven, M AF Barisic, Neven Li, Yuan Zhao, Xudong Cho, Yong-Chan Chabot-Couture, Guillaume Yu, Guichuan Greven, Martin TI Demonstrating the model nature of the high-temperature superconductor HgBa(2)CuO(4+delta) SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTALS; ELECTRONIC SYSTEMS; STOICHIOMETRY; DIFFRACTION; GROWTH AB The compound HgBa(2)CuO(4+delta) (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T(c)) among all single Cu-O layer cuprates, with T(c)=97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (T(c)=47 K, hole concentration p approximate to 0.08) to overdoped (T(c)=64 K, p approximate to 0.22). We then present quantitative magnetic susceptibility and dc charge transport results that reveal the very high-quality nature of the studied crystals. Using x-ray photoemission spectroscopy on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor. C1 [Barisic, Neven; Zhao, Xudong; Cho, Yong-Chan; Greven, Martin] Stanford Univ, Stanford Synchrotron Radiat Lab, Palo Alto, CA 94305 USA. [Barisic, Neven] Inst Phys, HR-10000 Zagreb, Croatia. [Li, Yuan; Yu, Guichuan] Stanford Univ, Dept Phys, Palo Alto, CA 94305 USA. [Zhao, Xudong] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. [Cho, Yong-Chan] Team Nano Fus Technol BK21, Miryang 629706, South Korea. [Chabot-Couture, Guillaume; Greven, Martin] Stanford Univ, Dept Appl Phys, Palo Alto, CA 94305 USA. RP Barisic, N (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, Palo Alto, CA 94305 USA. RI Yu, Guichuan/K-4025-2014; Barisic, Neven/E-4246-2015; OI Cho, Yong Chan/0000-0003-3976-8343 FU U.S. Department of Energy [DE-AC02-76SF00515]; U.S. National Science Foundation [DMR0705086]; Croatian Ministry of Science, Education and Sport [MoSES 035-0352826-2848] FX We would like to thank T. H. Geballe for helpful comments. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515, by the U.S. National Science Foundation under Grant No. DMR0705086, and by the Croatian Ministry of Science, Education and Sport under Grant No. MoSES 035-0352826-2848. NR 42 TC 40 Z9 40 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054518 DI 10.1103/PhysRevB.78.054518 PG 7 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200122 ER PT J AU Bersch, E Rangan, S Bartynski, RA Garfunkel, E Vescovo, E AF Bersch, Eric Rangan, Sylvie Bartynski, Robert Allen Garfunkel, Eric Vescovo, Elio TI Band offsets of ultrathin high-kappa oxide films with Si SO PHYSICAL REVIEW B LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; THIN-FILMS; INVERSE-PHOTOEMISSION; ELECTRONIC-STRUCTURE; GATE STACK; DIELECTRICS; INTERFACE; ALIGNMENT; VALENCE; HFO2 AB Valence- and conduction-band edges of ultrathin oxides (SiO(2), HfO(2), Hf(0.7)Si(0.3)O(2), ZrO(2), and Al(2)O(3)) grown on a silicon substrate have been measured using ultraviolet photoemission and inverse photoemission spectroscopies in the same UHV chamber. The combination of these two techniques has enabled the direct determination of the oxide energy gaps as well as the offsets of the oxide valence- and conduction-band edges from those of the silicon substrate. These results are supplemented with synchrotron x-ray photoemission spectroscopy measurements allowing further characterization of the oxide composition and the evaluation of the silicon substrate contribution to the spectra. The electron affinity has also been systematically measured on the same samples. We find reasonably good agreement with earlier experiments where assumptions regarding energy-gap values were needed to establish the conduction-band offsets. The systematics of our photoemission and inverse photoemission results on different ultrathin films provide a comprehensive comparison of these related systems. C1 [Bersch, Eric; Rangan, Sylvie; Bartynski, Robert Allen] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Bersch, Eric; Rangan, Sylvie; Bartynski, Robert Allen; Garfunkel, Eric] Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA. [Garfunkel, Eric] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Vescovo, Elio] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bersch, E (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. RI Rangan, Sylvie/H-6522-2013 FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-98CH10886]; SRC; NSF FX We are grateful for the beam time allocation at the NSLS. The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We would like to thank Lyudmila Goncharova for MEIS measurements, and we acknowledge the generous support of the SRC and the NSF. NR 35 TC 116 Z9 117 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085114 DI 10.1103/PhysRevB.78.085114 PG 10 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900027 ER PT J AU Biswas, K Franceschetti, A Lany, S AF Biswas, Koushik Franceschetti, Alberto Lany, Stephan TI Generalized valence-force-field model of (Ga,In)(N,P) ternary alloys SO PHYSICAL REVIEW B LA English DT Article ID SPECIAL QUASIRANDOM STRUCTURES; SPINODAL DECOMPOSITION RANGE; RESONANT RAMAN-SCATTERING; AUGMENTED-WAVE METHOD; SEMICONDUCTOR ALLOYS; PHASE-SEPARATION; ELASTIC-CONSTANTS; ZINCBLENDE INGAN; EPITAXIAL LAYERS; SPECIAL POINTS AB We present a generalized valence-force-field (VFF) model for the ternary III-V alloys (III=Ga, In and V=N, P) to predict the formation energies and atomic structures of ordered and disordered alloy configurations. For each alloy (GaInN, GaInP, GaNP, and InNP) the VFF parameters, which include bond-angle/bond-length interactions, are fitted to the first-principles calculated formation energies of 30 ternary structures. Compared to standard approaches where the VFF parameters are transferred from the individual binary III-V compounds, our generalized VFF approach predicts alloy formation energies and atomic structures with considerably improved accuracy. Using this generalized approach and random realizations in large supercells (4096 atoms), we determine the temperature-composition phase diagram, i.e., the binodal and spinodal decomposition curves, of the (Ga, In) (N, P) ternary alloys. C1 [Biswas, Koushik; Franceschetti, Alberto; Lany, Stephan] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Biswas, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. OI Lany, Stephan/0000-0002-8127-8885 FU Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy [DE-AC36-99GO10337] FX We thank Mayeul d'Avezac (National Renewable Energy Laboratory) for the use of the valence-force-field code and for helpful discussions. This work was funded by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy under Contract No. DE-AC36-99GO10337 to NREL through NREL's Laboratory Directed Research and Development program. NR 69 TC 14 Z9 14 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085212 DI 10.1103/PhysRevB.78.085212 PG 10 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900056 ER PT J AU Cao, J Vergara, LI Musfeldt, JL Litvinchuk, AP Wang, YJ Park, S Cheong, SW AF Cao, J. Vergara, L. I. Musfeldt, J. L. Litvinchuk, A. P. Wang, Y. J. Park, S. Cheong, S. -W. TI Magnetoelastic coupling in DyMn(2)O(5) via infrared spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL; RAMAN; FIELD; MAGNETOSTRICTION; MANGANITE; STRICTION; PHONONS AB We investigated the infrared-active phonons in DyMn(2)O(5) as a function of temperature and magnetic field in order to elucidate the magnetic ordering-induced lattice distortions. Spin-lattice coupling in this geometrically frustrated multiferroic is evidenced by small frequency shifts of several phonon modes at various magnetic ordering temperatures, vibrational frequency shifts between 60 and 65 K from which we extract large coupling constants, and magnetic-field dependence of numerous phonons. We analyze these results in terms of local lattice distortions and discuss the consequences for the ferroelectric polarization and magnetodielectric effect. C1 [Cao, J.; Vergara, L. I.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Litvinchuk, A. P.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Litvinchuk, A. P.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Wang, Y. J.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Park, S.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Park, S.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Cao, J (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Cao, Jinbo/C-7537-2009; Litvinchuk, Alexander/K-6991-2012 OI Litvinchuk, Alexander/0000-0002-5128-5232 FU DOE [DE-FG02-01ER45885, NSF-DMR-0520471, NSF-DMR-0084173]; NHMFL FX This research is supported by the DOE Contract No. DE-FG02-01ER45885 (UT), Contract No. NSF-DMR-0520471 (Rutgers), the State of Texas (UH), and Contract No. NSF-DMR-0084173, DOE, and the State of Florida (NHMFL). We thank R. Valdes-Aguilar, C. J. Fennie, B. Lorenz, J. Lynn, and I. Sergienko for useful discussions. NR 40 TC 14 Z9 14 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064307 DI 10.1103/PhysRevB.78.064307 PG 6 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900047 ER PT J AU Chantis, AN Cardona, M Christensen, NE Smith, DL van Schilfgaarde, M Kotani, T Svane, A Albers, RC AF Chantis, Athanasios N. Cardona, Manuel Christensen, Niels E. Smith, Darryl L. van Schilfgaarde, Mark Kotani, Takao Svane, Axel Albers, Robert C. TI Strain-induced conduction-band spin splitting in GaAs from first-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID DEFORMATION POTENTIALS; SEMICONDUCTORS; ELECTRONS; POLARIZATION; ORIENTATION; PRECESSION; STRESS AB We use a recently developed self-consistent GW approximation to perform first-principles calculations of the conduction-band spin splitting in GaAs under [110] strain. The spin-orbit interaction is taken into account as a perturbation to the scalar relativistic Hamiltonian. These are the calculations of conduction-band spin splitting under deformation based on a quasiparticle approach and, because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also discuss the spin-relaxation time under [110] strain and show that it exhibits an in-plane anisotropy, which can be exploited to obtain the magnitude and sign of the conduction-band spin splitting experimentally. C1 [Chantis, Athanasios N.; Smith, Darryl L.; Albers, Robert C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cardona, Manuel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Christensen, Niels E.; Svane, Axel] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [van Schilfgaarde, Mark; Kotani, Takao] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Chantis, AN (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. RI Schaff, William/B-5839-2009; kotani, takao/G-4355-2011; OI kotani, takao/0000-0003-1693-7052; Chantis, Athanasios/0000-0001-7933-0579 FU DOE Office [08SCPE973]; ONR [N00014-07-1-0479] FX The work at Los Alamos was supported by DOE Office of Basic Energy Sciences Work Proposal No. 08SCPE973. MA. and T.K. gratefully acknowledge support by ONR contract No. N00014-07-1-0479. NR 34 TC 13 Z9 13 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075208 DI 10.1103/PhysRevB.78.075208 PG 7 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700055 ER PT J AU Chantis, AN Albers, RC Jones, MD van Schilfgaarde, M Kotani, T AF Chantis, Athanasios N. Albers, R. C. Jones, M. D. van Schilfgaarde, Mark Kotani, Takao TI Many-body electronic structure of metallic alpha-uranium SO PHYSICAL REVIEW B LA English DT Article ID GW APPROXIMATION; DELTA-PLUTONIUM; FERMIONS; VALENCE; PHYSICS; 5F AB We present results for the electronic structure of a-uranium using a recently developed quasiparticle self-consistent GW (QSGW) method. This is the first time that the f-orbital electron-electron interactions in an actinide have been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) or the local-density approximation (LDA) to the density-functional theory (DFT). We show that the QSGW approximation predicts an f-level shift upward of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. We predict a considerable QSGW enhancement of the linear coefficient of specific heat. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy are not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material. C1 [Chantis, Athanasios N.; Albers, R. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jones, M. D.] SUNY Buffalo, Buffalo, NY 14260 USA. [van Schilfgaarde, Mark; Kotani, Takao] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Chantis, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI kotani, takao/G-4355-2011; OI kotani, takao/0000-0003-1693-7052; Chantis, Athanasios/0000-0001-7933-0579 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; ONR [N00014-07-1-0479]; DOE [DE-FG02-06ER46302] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. M.v.S. and T.K. acknowledge support from ONR (Contract No. N00014-07-1-0479) and by DOE (Contract No. DE-FG02-06ER46302) and would like to thank the Fulton HPC for computational resources used in this project. A.N.C. would like to thank Axel Svane for informative discussions. NR 28 TC 27 Z9 27 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 081101 DI 10.1103/PhysRevB.78.081101 PG 4 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900001 ER PT J AU Chen, Y Lynn, JW Li, J Li, G Chen, GF Luo, JL Wang, NL Dai, PC dela Cruz, C Mook, HA AF Chen, Ying Lynn, J. W. Li, J. Li, G. Chen, G. F. Luo, J. L. Wang, N. L. Dai, Pengcheng dela Cruz, C. Mook, H. A. TI Magnetic order of the iron spins in NdFeAsO SO PHYSICAL REVIEW B LA English DT Article ID 43 K; SUPERCONDUCTIVITY; LAO1-XFXFEAS; COMPOUND AB Polarized and unpolarized neutron-diffraction measurements have been carried out to investigate the iron magnetic order in undoped NdFeAsO. Antiferromagnetic order is observed below [4](6) K, which is in close proximity to the structural distortion observed in this material. The magnetic structure consists of chains of parallel spins that are arranged antiparallel between chains, which is the same in-plane spin arrangement as observed in all the other iron oxypnictide materials. Nearest-neighbor spins along the c axis are antiparallel like LaFeAsO. The ordered moment is 0.25(7) mu(B), which is the smallest moment found so far in these systems. C1 [Chen, Ying; Lynn, J. W.; Li, J.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, Ying; Li, J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Li, G.; Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Dai, Pengcheng; dela Cruz, C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, Pengcheng; dela Cruz, C.; Mook, H. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Chen, Y (reprint author), Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RI Dai, Pengcheng /C-9171-2012; dela Cruz, Clarina/C-2747-2013; Li, Gang/E-3033-2015 OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz, Clarina/0000-0003-4233-2145; FU U.S. National Science Foundation [DMR-0756568]; U.S. Department of Energy [DE-FG02-05ER46202]; NSF of China; Chinese Academy of Sciences; Ministry of Science and Technology of China FX We thank Qingzhen Huang and Yasutomo Uemura for helpful discussions. This work is supported in part by the U.S. National Science Foundation through Contract No. DMR-0756568 and by the Division of Materials Science, Basic Energy Sciences, U.S. Department of Energy through Contract No. DE-FG02-05ER46202. The work at the Institute of Physics, Chinese Academy of Sciences is supported by the NSF of China, the Chinese Academy of Sciences, and the Ministry of Science and Technology of China. NR 51 TC 106 Z9 108 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064515 DI 10.1103/PhysRevB.78.064515 PG 5 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900094 ER PT J AU d'Avezac, M Zunger, A AF d'Avezac, Mayeul Zunger, Alex TI Identifying the minimum-energy atomic configuration on a lattice: Lamarckian twist on Darwinian evolution SO PHYSICAL REVIEW B LA English DT Article ID COMPUTATIONAL-COMPLEXITY; GEOMETRY OPTIMIZATION; GENETIC ALGORITHMS; SOLID-SOLUTIONS; PHASE-DIAGRAMS; MONTE-CARLO; III-V; STABILITY; SEMICONDUCTORS; NANOPARTICLES AB We examine how the two different mechanisms proposed historically for biological evolution compare for the determination of crystal structures from random initial lattice configurations. The Darwinian theory of evolution contends that the genetic makeup inherited at birth is the one passed on during mating to new offspring, in which case evolution is a product of environmental pressure and chance. In addition to this mechanism, Lamarck surmised that individuals can also pass on traits acquired during their lifetime. Here we show that the minimum-energy configurations of a binary A(1-x)B(x) alloy in the full 0 <= x <= 1 concentration range can be found much faster if the conventional Darwinian genetic progression-mating configurations and letting the lowest-energy (fittest) offspring survive-is allowed to experience Lamarckian-style fitness improvements during its lifetime. Such improvements consist of A <-> B transmutations of some atomic sites (not just atomic relaxations) guided by "virtual-atom" energy gradients. This hybrid evolution is shown to provide an efficient solution to a generalized Ising Hamiltonian, illustrated here by finding the ground states of face-centered-cubic Au(1-x)Pd(x) using a cluster-expansion functional fitted to first-principles total energies. The statistical rate of success of the search strategies and their practical applicability are rigorously documented in terms of average number of evaluations required to find the solution out of 400 independent evolutionary runs with different random seeds. We show that all exact ground states of a 12-atom supercell (2(12) configurations) can be found within 330 total-energy evaluations, whereas a 36-atom supercell (2(36) configurations) requires on average 39 000 evaluations. Thus, this problem cannot be currently addressed with confidence using costly energy functionals [e.g., density-functional theory (DFT) based] unless it is limited to <= 20 atoms. The computational cost can be reduced at the expense of accuracy: Searching for all approximate-minimum-energy configurations (within 3 meV) of a 12- or 36-atom supercell requires on average 30 or 580 total-energy evaluations, respectively. Thus it could be addressed even by costly energy functionals such as density-functional theory. C1 [d'Avezac, Mayeul; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP d'Avezac, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM mayeul_davezac@nrel.gov; alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013; OI d'Avezac, Mayeul/0000-0002-2615-8397 NR 59 TC 18 Z9 18 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064102 DI 10.1103/PhysRevB.78.064102 PG 15 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900017 ER PT J AU Dong, S Yu, R Yunoki, S Liu, JM Dagotto, E AF Dong, Shuai Yu, Rong Yunoki, Seiji Liu, J. -M. Dagotto, Elbio TI Ferromagnetic tendency at the surface of CE-type charge-ordered manganites SO PHYSICAL REVIEW B LA English DT Article ID DOUBLE-EXCHANGE MODEL; MAGNETIC-PROPERTIES; DOPED MANGANITES; PHASE-DIAGRAM; LOW-TEMPERATURE; STATES; LA2/3SR1/3MNO3; NANOPARTICLES AB Most previous investigations have shown that the surface of a ferromagnetic material may have antiferromagnetic tendencies. However, experimentally, the opposite effect has been recently observed-ferromagnetism appears in some nanosized manganites with a composition such that the antiferromagnetic charge-ordered CE state is observed in the bulk. A possible origin is the development of ferromagnetic correlations at the surface of these small systems. To clarify these puzzling experimental observations, we have studied the two-orbital double-exchange model near half doping, n = 0.5, using open boundary conditions to simulate the surface of either bulk or nanosized manganites. Considering the enhancement of surface charge density due to a possible AO termination (A = trivalent/divalent ion composite, O = oxygen), an unexpected surface phase-separated state emerges when the model is studied using Monte Carlo techniques on small clusters. This tendency suppresses the CE charge ordering and produces a weak ferromagnetic signal that could explain the experimental observations. C1 [Dong, Shuai; Yu, Rong; Yunoki, Seiji; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dong, Shuai; Yu, Rong; Yunoki, Seiji; Dagotto, Elbio] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Dong, Shuai; Liu, J. -M.] Nanjing Univ, Nanjing Natl Lab Microstruct, Nanjing 210093, Peoples R China. [Liu, J. -M.] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China. RP Dong, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI YU, RONG/C-1506-2012; Yunoki, Seiji/B-1831-2008; Yu, Rong/K-5854-2012; Dong (董), Shuai (帅)/A-5513-2008; Yu, Rong/H-3355-2016 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; FU NSF [DMR-0706020]; Division of Materials Science and Engineering; U.S. DOE; National Key Projects for Basic Research of China [2006CB921802]; Natural Science Foundation of China [50601013]; China Scholarship Council; Scientific Research Foundation FX We thank W. Plummer, M. J. Calderon, S. V. Bhat, and A. Biswas for useful comments. This work was supported by the NSF under Grant No. DMR-0706020 and by the Division of Materials Science and Engineering, U.S. DOE under contract with UT-Battelle, LLC. S.D. and J.M.L were supported by the National Key Projects for Basic Research of China (Grant No. 2006CB921802) and Natural Science Foundation of China (Grant No. 50601013). S.D. was also supported by the China Scholarship Council and the Scientific Research Foundation of the Graduate School of Nanjing University. NR 45 TC 96 Z9 96 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064414 DI 10.1103/PhysRevB.78.064414 PG 7 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900063 ER PT J AU Franceschetti, A AF Franceschetti, A. TI Structural and electronic properties of PbSe nanocrystals from first principles SO PHYSICAL REVIEW B LA English DT Article ID MULTIPLE EXCITON GENERATION; QUANTUM DOTS; CARRIER MULTIPLICATION; COLLOIDAL PBSE; SILICON NANOCRYSTALS; OPTICAL-PROPERTIES; SEMICONDUCTORS; SIZE; PBTE; RELAXATION AB This work reports density-functional calculations of the structural and electronic properties of PbSe nanocrystals ranging in radius from 8.4 to 14.8 angstrom. We considered nearly spherical, rocksalt-structure nanocrystals with 1:1 Pb:Se stoichiometry and no molecular species adsorbed at the surface. We found that: (i) The Pb-Se bond lengths and bond angles are significantly distorted compared to those in bulk PbSe, in an similar to 8-angstrom-thick shell near the surface of the nanocrystal. (ii) Even in the absence of surface passivants, there are no surface states in the band gap of the nanocrystals. (iii) The nanocrystal band gap undergoes a significant redshift (Franck-Condon shift) when an electron is promoted from the valence band to the conduction band. For nanocrystals of radius R=8.4 angstrom, the calculated Franck-Condon shift is similar to 0.18 eV. (iv) The calculated electronic density of states shows a significant asymmetry between valence and conduction states, suggesting that the postulated "mirror symmetry" between valence band and conduction band does not exist. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 57 TC 50 Z9 50 U1 1 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075418 DI 10.1103/PhysRevB.78.075418 PG 6 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700099 ER PT J AU Fritz, L Schmalian, J Muller, M Sachdev, S AF Fritz, Lars Schmalian, Joerg Mueller, Markus Sachdev, Subir TI Quantum critical transport in clean graphene SO PHYSICAL REVIEW B LA English DT Article ID NONZERO-TEMPERATURE TRANSPORT; FERMI-LIQUID BEHAVIOR; HALL CRITICAL-POINTS AB We describe electrical transport in ideal single-layer graphene at zero applied gate voltage. There is a crossover from collisionless transport at frequencies larger than k(B)T/(h) over bar (T is the temperature) to collision-dominated transport at lower frequencies. The dc conductivity is computed by the solution of a quantum Boltzmann equation. Due to a logarithmic singularity in the collinear scattering amplitude (a consequence of relativistic dispersion in two dimensions), quasiparticles and quasiholes moving in the same direction tend to an effective equilibrium distribution whose parameters depend on the direction of motion. This property allows us to find the nonequilibrium distribution functions and the quantum critical conductivity exactly to leading order in 1/vertical bar ln(alpha)vertical bar, where alpha is the coupling constant characterizing the Coulomb interactions. C1 [Fritz, Lars; Mueller, Markus; Sachdev, Subir] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Fritz, L (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RI Fritz, Lars/F-2934-2010; Schmalian, Joerg/H-2313-2011; Fritz, Lars/K-8722-2013; Muller, Markus/L-5058-2013; Sachdev, Subir/A-8781-2013 OI Muller, Markus/0000-0002-0299-952X; Sachdev, Subir/0000-0002-2432-7070 NR 24 TC 129 Z9 129 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085416 DI 10.1103/PhysRevB.78.085416 PG 12 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900098 ER PT J AU Fujita, K Grigorenko, I Lee, J Wang, W Zhu, JX Davis, JC Eisaki, H Uchida, S Balatsky, AV AF Fujita, K. Grigorenko, Ilya Lee, J. Wang, W. Zhu, Jian Xin Davis, J. C. Eisaki, H. Uchida, S. Balatsky, Alexander V. TI Bogoliubov angle and visualization of particle-hole mixture in superconductors SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-IMPURITIES; SUPERFLUID DENSITY; BI2SR2CACU2O8+DELTA; STATES; TEMPERATURE; INTERFERENCE; EXCITATIONS; WAVES; PROBE AB Superconducting excitations-Bogoliubov quasiparticles-are the quantum-mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). Depending on the applied voltage bias in scanning tunneling microscope (STM), one can sample the particle and hole contents of such a superconducting excitation. Recent STM experiments offer unique insight into the inner workings of the superconducting state of superconductors. We propose an observable quantity for STM studies that is a manifestation of the particle-hole dualism of the quasiparticles. We call it a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitudes in the superconducting (Bogoliubov) quasiparticle. We argue that this quantity can be measured locally by comparing the ratios of tunneling currents at positive and negative biases. This Bogoliubov angle allows one to measure directly the energy and position dependent particle-hole admixtures and therefore visualize robustness of superconducting state locally. It may also allow one to measure the particle-hole admixture of excitations in normal state above critical temperature and thus may be used to measure superconducting correlations in pseudogap state. C1 [Fujita, K.; Lee, J.; Wang, W.; Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Ctr Nonlinear Studies, Theoret Div T 11, Los Alamos, NM 87545 USA. [Zhu, Jian Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Davis, J. C.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Eisaki, H.] AIST, Nanoelect Res Inst, Tsukuba 3058568, Japan. [Uchida, S.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Fujita, K (reprint author), Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. RI Grigorenko, Ilya/B-5616-2009; OI Zhu, Jianxin/0000-0001-7991-3918 NR 35 TC 19 Z9 19 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054510 DI 10.1103/PhysRevB.78.054510 PG 13 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200114 ER PT J AU Giustino, F Pasquarello, A AF Giustino, Feliciano Pasquarello, Alfredo TI First-principles theory of infrared absorption spectra at surfaces and interfaces: Application to the Si(100): H(2)O surface SO PHYSICAL REVIEW B LA English DT Article ID FUNCTIONAL PERTURBATION-THEORY; SCANNING-TUNNELING-MICROSCOPY; MOLECULAR-DYNAMICS; WATER-ADSORPTION; ELECTRON SYSTEMS; H2O ADSORPTION; SILICON; PSEUDOPOTENTIALS; SPECTROSCOPY; CONSTANTS AB We calculate the transverse and the longitudinal infrared absorption spectra of the hydrated silicon surface using a first-principles approach. The absorption spectra are computed for two different configurations of water molecules dissociatively chemisorbed on the Si(100)-(2 X 1) surface at full coverage. Our calculations compare favorably with the experimental spectra for both the frequency and the intensity of the absorption peaks. Our results suggest the possibility of combining infrared spectroscopy and first-principles theoretical modeling to investigate the phase diagram of the Si(100): H(2)O surface and similar systems. We also provide a detailed discussion of the underlying formalism, already introduced by Giustino and Pasquarello [Phys. Rev. Lett. 95, 187402 (2005)]. The methods described here are of general validity and provide a basis for the theoretical modeling of infrared spectroscopy at surfaces and interfaces. C1 [Giustino, Feliciano] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Giustino, Feliciano] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Pasquarello, Alfredo] Inst Theoret Phys, CH-1015 Lausanne, Switzerland. [Pasquarello, Alfredo] Ecole Polytech Fed Lausanne, Inst Romand Rech Numer Phys Mat, IRRMA, CH-1015 Lausanne, Switzerland. RP Giustino, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Pasquarello, Alfredo/G-2883-2011; Giustino, Feliciano/F-6343-2013; OI Giustino, Feliciano/0000-0001-9293-1176 NR 51 TC 5 Z9 5 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075307 DI 10.1103/PhysRevB.78.075307 PG 11 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700065 ER PT J AU Goddard, PA Singleton, J Maitland, C Blundell, SJ Lancaster, T Baker, PJ McDonald, RD Cox, S Sengupta, P Manson, JL Funk, KA Schlueter, JA AF Goddard, P. A. Singleton, J. Maitland, C. Blundell, S. J. Lancaster, T. Baker, P. J. McDonald, R. D. Cox, S. Sengupta, P. Manson, J. L. Funk, K. A. Schlueter, J. A. TI Isotope effect in quasi-two-dimensional metal-organic antiferromagnets SO PHYSICAL REVIEW B LA English DT Article ID FLUCTUATION-INDUCED SUPERCONDUCTIVITY; ELECTRON-PHONON INTERACTION; MAGNETIC-BEHAVIOR; T-C; OXIDES; TEMPERATURE; 2D AB Although the isotope effect in superconducting materials is well documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) anti ferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the Neel temperature and critical magnetic fields (Delta T(N)/T(N)approximate to 4%; Delta B(c)/B(c)approximate to 4%) in a Q2D organic molecular antiferromagnet on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and interplane exchange energies evolve as the atoms of hydrogen on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds. C1 [Goddard, P. A.; Maitland, C.; Blundell, S. J.; Lancaster, T.; Baker, P. J.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Singleton, J.; McDonald, R. D.; Cox, S.; Sengupta, P.] Los Alamos Natl Lab, Nat High Magnet Field Lab, Los Alamos, NM 87545 USA. [Sengupta, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Funk, K. A.; Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Goddard, PA (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM p.goddard1@physics.ox.ax.uk RI Baker, Peter/E-4216-2010; McDonald, Ross/H-3783-2013; Goddard, Paul/A-8638-2015; Sengupta, Pinaki/B-6999-2011; OI Baker, Peter/0000-0002-2306-2648; McDonald, Ross/0000-0002-0188-1087; Goddard, Paul/0000-0002-0666-5236; Mcdonald, Ross/0000-0002-5819-4739 FU Office of Basic Energy Sciences, DoE [DE-AC02-06CH11357]; Research Corporation. T.L.; Royal Commission for the Exhibition of 1851; Glasstone Foundation; Seaborg Institute FX Work at NHMFL occurs under the auspices of the National Science Foundation, the State of Florida, and the U.S. Department of Energy (DoE) program "Science at 100 T." Work at ANL is supported by the Office of Basic Energy Sciences, DoE (Contract No. DE-AC02-06CH11357). Work at EWU was supported by the Research Corporation. T.L., P.A.G., and S.C. acknowledge support from the Royal Commission for the Exhibition of 1851, the Glasstone Foundation, and the Seaborg Institute, respectively. J.S. thanks the University of Oxford for the provision of a Visiting Professorship and P.A.G. thanks the Oxford Magnet Group for technical assistance. NR 30 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 052408 DI 10.1103/PhysRevB.78.052408 PG 4 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200015 ER PT J AU Hennig, RG Lenosky, TJ Trinkle, DR Rudin, SP Wilkins, JW AF Hennig, R. G. Lenosky, T. J. Trinkle, D. R. Rudin, S. P. Wilkins, J. W. TI Classical potential describes martensitic phase transformations between the alpha, beta, and omega titanium phases SO PHYSICAL REVIEW B LA English DT Article ID EMBEDDED-ATOM-METHOD; ATOMISTIC SIMULATION; ZIRCONIUM; SILICON; TI; PRESSURE; DYNAMICS; METALS; INSTABILITIES; DISLOCATIONS AB A description of the martensitic transformations between the alpha, beta, and omega phases of titanium that includes nucleation and growth requires an accurate classical potential. Optimization of the parameters of a modified embedded atom potential to a database of density-functional calculations yields an accurate and transferable potential as verified by comparison to experimental and density-functional data for phonons, surface and stacking fault energies, and energy barriers for homogeneous martensitic transformations. Molecular-dynamics simulations map out the pressure-temperature phase diagram of titanium. For this potential the martensitic phase transformation between a and 8 appears at ambient pressure and 1200 K, between alpha and omega at ambient conditions, between beta and omega at 1200 K and pressures above 8 GPa, and the triple point occurs at 8 GPa and 1200 K. Molecular-dynamics explorations of the kinetics of the martensitic alpha-omega transformation show a fast moving interface with a low interfacial energy of 30 meV/angstrom(2). The potential is applicable to the study of defects and phase transformations of Ti. C1 [Hennig, R. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Hennig, R. G.; Trinkle, D. R.; Wilkins, J. W.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lenosky, T. J.] C8 Medisensors, San Jose, CA 95124 USA. [Trinkle, D. R.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Rudin, S. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hennig, RG (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RI Trinkle, Dallas/E-6609-2010; Hennig, Richard/A-2978-2008 OI Hennig, Richard/0000-0003-4933-7686 FU DOE [DE-FG02-99ER45795, W-7405-ENG-36]; NSF [DMR-0706507]; Ohio Supercomputing Center; NCSA; NERSC; PNL FX This research was supported by DOE Grant No. DE-FG02-99ER45795 and under Contract No. W-7405-ENG-36 and by NSF Grant No. DMR-0706507. Computational resources were provided by the Ohio Supercomputing Center, NCSA, NERSC, and PNL. NR 60 TC 54 Z9 55 U1 4 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054121 DI 10.1103/PhysRevB.78.054121 PG 10 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200047 ER PT J AU Higuchi, T Liu, YS Yao, P Glans, PA Guo, JH Chang, CL Wu, ZY Sakamoto, W Itoh, N Shimura, T Yogo, T Hattori, T AF Higuchi, Tohru Liu, Yi-Sheng Yao, Peng Glans, Per-Anders Guo, Jinghua Chang, Chinglin Wu, Ziyu Sakamoto, Wataru Itoh, Naoyuki Shimura, Tetsuo Yogo, Toshinobu Hattori, Takeshi TI Electronic structure of multiferroic BiFeO(3) by resonant soft x-ray emission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; FERROELECTRIC POLARIZATION; FLUORESCENCE SPECTROSCOPY; ROOM-TEMPERATURE; CRYSTAL; EXCITATIONS; ABSORPTION; ENERGY AB The electronic structure of multiferroic BiFeO(3) has been studied using soft x-ray emission spectroscopy. The fluorescence spectra exhibit that the valence band is mainly composed of O 2p state hybridized with Fe 3d state. The band gap corresponding to the energy separation between the top of the 0 2p valence band and the bottom of the Fe 3d conduction band is 1.3 eV. The soft x-ray Raman scattering reflects the features due to the charge-transfer transition from O 2p valence band to Fe 3d conduction band. These findings are similar to the result of electronic structure calculation by density-functional theory within the local spin-density approximation that included the effect of Coulomb repulsion between localized d states. C1 [Higuchi, Tohru; Liu, Yi-Sheng; Yao, Peng; Glans, Per-Anders; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Higuchi, Tohru] Tokyo Univ Sci, Dept Appl Phys, Shinjuku Ku, Tokyo 1628601, Japan. [Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Wu, Ziyu] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China. [Sakamoto, Wataru; Itoh, Naoyuki; Shimura, Tetsuo; Yogo, Toshinobu] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan. RP Higuchi, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM higuchi@rs.kagu.tus.ac.jp RI Higuchi, Tohru/C-6544-2012; Glans, Per-Anders/G-8674-2016; OI Chang, Ching-Lin/0000-0001-8547-371X NR 37 TC 41 Z9 41 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085106 DI 10.1103/PhysRevB.78.085106 PG 5 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900019 ER PT J AU Hu, WZ Wang, GT Hu, RW Petrovic, C Morosan, E Cava, RJ Fang, Z Wang, NL AF Hu, W. Z. Wang, G. T. Hu, Rongwei Petrovic, C. Morosan, E. Cava, R. J. Fang, Z. Wang, N. L. TI Evidence for a band broadening across the ferromagnetic transition of Cr1/3NbSe2 SO PHYSICAL REVIEW B LA English DT Article ID TANTALUM DICHALCOGENIDES; TRANSPORT-PROPERTIES; MAGNETIC-PROPERTIES; NIOBIUM AB The electronic structure of Cr1/3NbSe2 is studied via optical spectroscopy. We observe two low-energy interband transitions in the paramagnetic phase, which split into four peaks as the compound enters the ferromagnetic state. The band structure calculation indicates the four peaks are interband transitions to the spin up Cr e(g) states. We show that the peak splitting below the Curie temperature is not due to the exchange splitting of spin-up and spin-down bands, but directly reflects a band broadening effect in Cr-derived states upon the spontaneous ferromagnetic ordering. C1 [Hu, W. Z.; Wang, G. T.; Fang, Z.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hu, Rongwei] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Morosan, E.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA. RP Hu, WZ (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. EM nlwang@aphy.iphy.ac.cn RI Petrovic, Cedomir/A-8789-2009; Hu, Rongwei/E-7128-2012; Fang, Zhong/D-4132-2009; Hu, Wanzheng/K-1171-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; FU National Science Foundation of China; Chinese Academy of Sciences; Ministry of Science and Technology of China; U.S. Department of Energy by Brookhaven Science Associates [DE-Ac02-98CH10886]; National Science Foundation of the USA FX This work is supported by the National Science Foundation of China, the Knowledge Innovation Project of the Chinese Academy of Sciences, and the 973 project of the Ministry of Science and Technology of China. The work at Brookhaven National Laboratory is operated for the U.S. Department of Energy by Brookhaven Science Associates (Grant No. DE-Ac02-98CH10886), and at Princeton by the National Science Foundation of the USA. NR 21 TC 9 Z9 9 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085120 DI 10.1103/PhysRevB.78.085120 PG 6 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900033 ER PT J AU Huang, Q Zhao, J Lynn, JW Chen, GF Luo, JL Wang, NL Dai, PC AF Huang, Q. Zhao, Jun Lynn, J. W. Chen, G. F. Luo, J. L. Wang, N. L. Dai, Pengcheng TI Doping evolution of antiferromagnetic order and structural distortion in LaFeAsO1-xFx SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO1-xFx as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distortion, changing the symmetry from tetragonal (space group P4/nmm) to orthorhombic (space group Cmma) at 155 K, and then followed by an AFM order at 137 K. Doping the system with F gradually decreases the structural distortion temperature, but suppresses the long range AFM order before the emergence of superconductivity. Therefore, while superconductivity in these Fe oxypnictides can survive in either the tetragonal or the orthorhombic crystal structure, it competes directly with static AFM order. C1 [Huang, Q.; Lynn, J. W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zhao, Jun; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Huang, Q (reprint author), Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM daip@ornl.gov RI Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170 FU U.S. NSF [DMR-0756568]; U.S. DOE, Division of Materials Science, Basic Energy Sciences [DE-FG02-05ER46202]; U.S. DOE, Division of Scientific User Facilities, Basic Energy Sciences; NSF of China; Chinese Academy of Sciences and the Ministry of Science and Technology of China FX This work is supported by the U.S. NSF through Grant No. DMR-0756568, by the U.S. DOE, Division of Materials Science, Basic Energy Sciences, through DOE Grant No. DE-FG02-05ER46202. This work is also supported in part by the U.S. DOE, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences, is supported by the NSF of China, the Chinese Academy of Sciences and the Ministry of Science and Technology of China. NR 22 TC 85 Z9 85 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054529 DI 10.1103/PhysRevB.78.054529 PG 6 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200133 ER PT J AU Jaroszynski, J Riggs, SC Hunte, F Gurevich, A Larbalestier, DC Boebinger, GS Balakirev, FF Migliori, A Ren, ZA Lu, W Yang, J Shen, XL Dong, XL Zhao, ZX Jin, R Sefat, AS McGuire, MA Sales, BC Christen, DK Mandrus, D AF Jaroszynski, J. Riggs, Scott C. Hunte, F. Gurevich, A. Larbalestier, D. C. Boebinger, G. S. Balakirev, F. F. Migliori, Albert Ren, Z. A. Lu, W. Yang, J. Shen, X. L. Dong, X. L. Zhao, Z. X. Jin, R. Sefat, A. S. McGuire, M. A. Sales, B. C. Christen, D. K. Mandrus, D. TI Comparative high-field magnetotransport of the oxypnictide superconductors RFeAsO1-xFx (R=La, Nd) and SmFeAsO1-delta SO PHYSICAL REVIEW B LA English DT Article ID LAYERED QUATERNARY COMPOUND; LAO1-XFXFEAS; ORDER AB We compare magnetotransport of the three iron-arsenide-based compounds ReFeAsO (Re=La, Sm, Nd) in very high DC and pulsed magnetic fields up to 45 and 54 T, respectively. Each sample studied exhibits a superconducting transition temperature near the maximum reported to date for that particular compound. While high magnetic fields do not suppress the superconducting state appreciably, the resistivity, Hall coefficient. and critical magnetic fields, taken together, suggest that the phenomenology and superconducting parameters of the oxypnictide superconductors bridges the gap between MgB2 and YBCO. C1 [Jaroszynski, J.; Riggs, Scott C.; Hunte, F.; Gurevich, A.; Larbalestier, D. C.; Boebinger, G. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Balakirev, F. F.; Migliori, Albert] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Ren, Z. A.; Lu, W.; Yang, J.; Shen, X. L.; Dong, X. L.; Zhao, Z. X.] Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100190, Peoples R China. [Ren, Z. A.; Lu, W.; Yang, J.; Shen, X. L.; Dong, X. L.; Zhao, Z. X.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci, Oak Ridge, TN 37831 USA. RP Jaroszynski, J (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RI Gurevich, Alex/A-4327-2008; McGuire, Michael/B-5453-2009; yang, jie/F-4389-2012; Ren, Zhi An/C-1421-2009; Mandrus, David/H-3090-2014; Larbalestier, David/B-2277-2008; Sefat, Athena/R-5457-2016 OI Gurevich, Alex/0000-0003-0759-8941; McGuire, Michael/0000-0003-1762-9406; yang, jie/0000-0002-5549-6926; Larbalestier, David/0000-0001-7098-7208; Sefat, Athena/0000-0002-5596-3504 FU NSF [DMR-0084173]; DOE; NHMFL IHRP program (FH); AFOSR [FA9550-06-1-0474]; Division of Materials Science and Engineering; Office of Basic Energy Sciences FX The work at NHMFL was supported by the NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, by the DOE, by the NHMFL IHRP program (FH), and by AFOSR Grant No. FA9550-06-1-0474 (AG and DCL). Work at ORNL was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. NR 37 TC 89 Z9 89 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064511 DI 10.1103/PhysRevB.78.064511 PG 5 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900090 ER PT J AU Jiang, C AF Jiang, C. TI Vacancy ordering in Co(3)AlC(x) alloys: A first-principles study SO PHYSICAL REVIEW B LA English DT Article ID HEAT-RESISTANT ALLOYS; TRANSITION-METAL; SYSTEMS AB Ordering of structural vacancies in nonstoichiometric Co(3)AlC(x) alloys has been studied using a combination of first-principles total-energy calculations, a cluster expansion technique, and Monte Carlo simulations. In the proximity of the experimentally observed composition of x similar to 0.59, our exhaustive ground-state search yields two stable vacancy-ordered structures: a cubic Co(3)AlC(0.5) phase and a trigonal Co(3)AlC(0.667) phase. By performing finite-temperature Monte Carlo simulations, the order-disorder transition temperatures of Co(3)AlC(0.5) and Co(3)AlC(0.667) are predicted to be similar to 1925 and similar to 1630 K, respectively. C1 Los Alamos Natl Lab, Struct Property Relat Grp MST 8, Los Alamos, NM 87545 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Struct Property Relat Grp MST 8, POB 1663, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 FU Los Alamos National Laboratory (LANL) FX The author wishes to thank Axel van de Walle for providing ATAT software package. This work is financially supported by Director's postdoctoral program at Los Alamos National Laboratory (LANL). All calculations were performed using the parallel computing facilities at LANL. NR 20 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064206 DI 10.1103/PhysRevB.78.064206 PG 6 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900038 ER PT J AU Kim, G Jhi, SH Park, N Louie, SG Cohen, ML AF Kim, Gyubong Jhi, Seung-Hoon Park, Noejung Louie, Steven G. Cohen, Marvin L. TI Optimization of metal dispersion in doped graphitic materials for hydrogen storage SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-HYDROGEN; GRAPHENES; BINDING; ENERGY AB The noncovalent hydrogen binding on transition-metal atoms dispersed on carbon clusters and graphene is studied with the use of the pseudopotential density-functional method. It is found that the presence of acceptorlike states in the absorbents is essential for enhancing the metal adsorption strength and for increasing the number of hydrogen molecules attached to the metal atoms. Particular configurations of boron substitutional doping are found to be very efficient for providing such states and thus enhancing storage capacity. Optimal doping conditions are suggested based on our calculations for the binding energy and ratio between metal and hydrogen molecules. C1 [Kim, Gyubong; Jhi, Seung-Hoon] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Park, Noejung] Dankook Univ, Dept Appl Phys, Yongin 448701, Gyeonggido, South Korea. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Jhi, SH (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. RI Park, Noejung/G-2017-2011 FU Korean Ministry of Science and Technology; NSF [DMR04-39768]; Office of Science, Office of Basic Energy Sciences; Division of Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-05CH11231] FX This research was performed for the Hydrogen Energy R&D Center, one of the 21st Century Frontier R&D Programs, funded by the Korean Ministry of Science and Technology, and was supported in part by NSF Grant No. DMR04-39768 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 90 Z9 90 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085408 DI 10.1103/PhysRevB.78.085408 PG 5 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900090 ER PT J AU Kocharian, AN Fernando, GW Palandage, K Davenport, JW AF Kocharian, A. N. Fernando, G. W. Palandage, K. Davenport, J. W. TI Coherent and incoherent pairing instabilities and spin-charge separation in bipartite and nonbipartite nanoclusters: Exact results SO PHYSICAL REVIEW B LA English DT Article ID HUBBARD-MODEL; THERMODYNAMICS; FERMIONS; LATTICE; BAND AB Electron pairing and formation of various types of magnetic correlations for ensembles of small clusters of different geometries are studied with emphasis on tetrahedrons and square pyramids under variation of interaction strength, electron doping and temperature. These exact calculations of charge and spin collective excitations and pseudogaps yield intriguing insights into level crossing degeneracies, phase separation and condensation. Obtained coherent and incoherent pairings provide a route for possible superconductivity different from the conventional BCS theory. Criteria for spin-charge separation, reconciliation and recombination driven by interaction strength, next-nearest coupling and temperature are found. Resulting phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen recently in high-T(c) cuprates, manganites and colossal magnetoresistive (CMR) nanomaterials. C1 [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. [Kocharian, A. N.] LACCD Pierce Coll, Dept Phys, Woodland Hills, CA 91371 USA. [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Davenport, J. W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kocharian, AN (reprint author), Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. FU U.S. Department of Energy [DE-AC02-98CH10886] FX We thank Daniil Khomskii and Valery Pokrovsky for helpful discussions and Tun Wang for valuable contributions. This research was supported in part by U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 27 TC 25 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075431 DI 10.1103/PhysRevB.78.075431 PG 7 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700112 ER PT J AU Kumar, RS Svane, A Vaitheeswaran, G Kanchana, V Bauer, ED Hu, M Nicol, MF Cornelius, AL AF Kumar, Ravhi S. Svane, Axel Vaitheeswaran, G. Kanchana, V. Bauer, Eric D. Hu, Michael Nicol, Malcolm F. Cornelius, Andrew L. TI Pressure-induced valence change in YbAl(3): A combined high-pressure inelastic x-ray scattering and theoretical investigation SO PHYSICAL REVIEW B LA English DT Article ID SPIN-DENSITY APPROXIMATION; ELECTRONIC-STRUCTURE; YB COMPOUNDS; TEMPERATURE-DEPENDENCE; PHOTOELECTRON-SPECTROSCOPY; SYSTEMS; INSTABILITIES; TRANSPORT; CERIUM; CE AB High-resolution x-ray-absorption (XAS) experiments in the partial fluorescence yield mode (PFY) and resonant inelastic x-ray emission (RXES) measurements were performed on the intermediate-valence compound YbAl(3) under pressure of up to 38 GPa. The results of the YbAl(3) PFY-XAS and RXES studies show that the valence of Yb increases smoothly from 2.75 at ambient pressure to 2.93 at 38 GPa. In situ angle-dispersive synchrotron high-pressure x-ray-diffraction experiments carried out using a diamond cell at room temperature show that the ambient pressure cubic phase is stable up to 40 GPa. The results obtained from self-interaction corrected local spin density-functional calculations to understand the pressure effect on the Yb valence and compressibility are in good agreement with the experimental results. C1 [Kumar, Ravhi S.; Nicol, Malcolm F.; Cornelius, Andrew L.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Kumar, Ravhi S.; Nicol, Malcolm F.; Cornelius, Andrew L.] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Svane, Axel] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Vaitheeswaran, G.; Kanchana, V.] Royal Inst Technol, Dept Mat Sci & Engn, Div Appl Mat Phys, S-10044 Stockholm, Sweden. [Bauer, Eric D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hu, Michael] Argonne Natl Lab, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. [Hu, Michael] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kumar, RS (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM ravhi@physics.unlv.edu RI Bauer, Eric/D-7212-2011; Kumar, Ravhi/B-8427-2012; OI Kumar, Ravhi/0000-0002-1967-1619; Bauer, Eric/0000-0003-0017-1937 FU DOE [DEFG36-05GO08502]; National Nuclear Security Administration [DE-FC08-01NV14049]; Office of Science; Office of Basic Energy Sciences [W-31-109-ENG-38]; Swedish Natural Science Foundation (VR); Swedish Foundation for Strategic Research (SSF) FX Work at HPCAT was supported by DOE Grant No. DEFG36-05GO08502. HPCAT is a collaboration among the UNLV High Pressure Science and Engineering Center, the Lawrence Livermore National Laboratory, the Geophysical Laboratory of the Carnegie Institution of Washington, and the University of Hawaii at Manoa. Work at Los Alamos was performed under the auspices of the U.S. DOE. The UNLV High Pressure Science and Engineering Center was supported by the U.S. Department of Energy, National Nuclear Security Administration, under Cooperative Agreement No. DE-FC08-01NV14049. The use of APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. G.V. and V.K. acknowledge the Swedish Natural Science Foundation (VR) and Swedish Foundation for Strategic Research (SSF) for financial support. NR 52 TC 11 Z9 11 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075117 DI 10.1103/PhysRevB.78.075117 PG 7 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700039 ER PT J AU Levashov, VA Egami, T Aga, RS Morris, JR AF Levashov, V. A. Egami, T. Aga, R. S. Morris, J. R. TI Equipartition theorem and the dynamics of liquids SO PHYSICAL REVIEW B LA English DT Article ID GLASS-TRANSITION; AMORPHOUS SOLIDS; STRUCTURAL DEFECTS; MOLECULAR-DYNAMICS; FLUCTUATIONS; METALS AB In liquids, phonons have a very short lifetime and the total potential energy does not depend linearly on temperature. Thus it may appear that atomic vibrations in liquids cannot be described by the harmonic-oscillator model and that the equipartition theorem for the potential energy is not upheld. In this paper we show that the description of the local atomic dynamics in terms of the atomic-level stresses provides such a description, satisfying the equipartition theorem. To prove this point we carried out molecular-dynamics simulations with several pairwise potentials, including the Lennard-Jones potential, the modified Johnson potential, and the repulsive part of the Johnson potential, at various particle number densities. In all cases studied the total self-energy of the atomic-level stresses followed the (3/2)k(B)T law. From these results we suggest that the concept of local atomic stresses can provide description of thermodynamic properties of glasses and liquids on the basis of harmonic atomistic excitations. An example of application of this approach to the description of the glass transition temperature in metallic glasses is discussed. C1 [Levashov, V. A.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.; Morris, J. R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Aga, R. S.; Morris, J. R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Levashov, VA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 23 TC 30 Z9 30 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064205 DI 10.1103/PhysRevB.78.064205 PG 8 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900037 ER PT J AU Lizarraga, R Nordstrom, L Eriksson, O Wills, J AF Lizarraga, Raquel Nordstroem, Lars Eriksson, Olle Wills, John TI Noncollinear magnetism in the high-pressure hcp phase of iron SO PHYSICAL REVIEW B LA English DT Article ID STATIC COMPRESSION; SUPERCONDUCTIVITY; FE; GAS AB The magnetic structure of iron in its high-pressure hcp phase has been investigated with the full-potential augmented plane wave with local orbitals method that allows for noncollinear magnetism. In our study we consider different spin spiral structures and, three antiferromagnetic configurations that have been previously discussed in the literature. We found that some of the magnetic structures are only metastable, and that a nonsymmetric incommensurate spin spiral state with wave vector q = (0.56, 0.22, 0)2 pi/a and two different antiferromagnetic structures are the most stable ones being almost degenerate around the equilibrium volume. These magnetic structures ought to exist in the pressure range where hcp iron becomes stable. C1 [Lizarraga, Raquel] Univ Austral Chile, Fac Ciencias, Inst Fis, Valdivia, Chile. [Lizarraga, Raquel; Wills, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nordstroem, Lars; Eriksson, Olle] Uppsala Univ, Dept Phys & Mat Sci, Angstrom Lab, S-75121 Uppsala, Sweden. RP Lizarraga, R (reprint author), Univ Austral Chile, Fac Ciencias, Inst Fis, Casilla 567, Valdivia, Chile. RI Eriksson, Olle/E-3265-2014 OI Eriksson, Olle/0000-0001-5111-1374 FU Swedish Research Council; Swedish Foundation for Strategic Research (SSF); Swedish National Allocation Committee (SNAC); DID-UACh [S-200851]; CONICYT (Chile) [ACT24/2006] FX Support from the Swedish Research Council (VR) and the Swedish Foundation for Strategic Research (SSF) are acknowledged. We are also thankful for the support from the Swedish National Allocation Committee (SNAC). R.L. would like to acknowledge support from DID-UACh: Project No. S-200851 and CONICYT (Chile) under Grant ACT24/2006. NR 28 TC 16 Z9 17 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064410 DI 10.1103/PhysRevB.78.064410 PG 4 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900059 ER PT J AU Mazin, II Johannes, MD Boeri, L Koepernik, K Singh, DJ AF Mazin, I. I. Johannes, M. D. Boeri, L. Koepernik, K. Singh, D. J. TI Problems with reconciling density functional theory calculations with experiment in ferropnictides SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; INSTABILITY; ORDER AB First-principles calculations of magnetic and, to a lesser extent, electronic properties of the LaFeAsO-based superconductors show substantial apparent controversy, as opposed to most weakly or strongly correlated materials. Not only do different reports disagree about quantitative values but there is also a schism in terms of interpreting the basic physics of the magnetic interactions in this system. In this paper, we present a systematic analysis using four different first-principles methods and show that while there is an unusual sensitivity to computational details, well-converged full-potential all-electron results are fully consistent among themselves. What makes results so sensitive and the system so different from simple local magnetic moments interacting via basic superexchange mechanisms is the itinerant character of the calculated magnetic ground state, where very soft magnetic moments and long-range interactions are characterized by a particular structure in the reciprocal (as opposed to real) space. Therefore, unravelling the magnetic interactions in their full richness remains a challenging but utterly important task. C1 [Mazin, I. I.; Johannes, M. D.] USN, Res Lab, Washington, DC 20375 USA. [Boeri, L.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Koepernik, K.] IFW Dresden, D-01171 Dresden, Germany. [Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mazin, II (reprint author), USN, Res Lab, Code 6693, Washington, DC 20375 USA. RI Singh, David/I-2416-2012; Mazin, Igor/B-6576-2008; Boeri, Lilia/B-6162-2015 OI Boeri, Lilia/0000-0003-1186-2207 FU Office of Naval Research; BES, Division of Materials Sciences and Engineering, Department of Energy FX Work at NRL was supported by the Office of Naval Research. Work at ORNL was supported by the BES, Division of Materials Sciences and Engineering, Department of Energy. We would like to thank S. Massida for alerting us to a crucial error in one of our figures. NR 40 TC 286 Z9 292 U1 3 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085104 DI 10.1103/PhysRevB.78.085104 PG 7 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900017 ER PT J AU Morozovska, AN Svechnikov, SV Eliseev, EA Rodriguez, BJ Jesse, S Kalinin, SV AF Morozovska, Anna N. Svechnikov, Sergei V. Eliseev, Eugene A. Rodriguez, Brian J. Jesse, Stephen Kalinin, Sergei V. TI Local polarization switching in the presence of surface-charged defects: Microscopic mechanisms and piezoresponse force spectroscopy observations SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRIC THIN-FILMS; DOMAINS; DISLOCATIONS; NUCLEATION; DYNAMICS AB Thermodynamic description of probe-induced polarization switching in ferroelectrics in the presence of well-localized surface field defects and their effect on local piezoresponse force spectroscopy measurements is analyzed. Corresponding analytical expressions for the free energy, activation energy, nucleation bias, and nucleus sizes are derived. Both numerical calculations and analytical expressions demonstrate that well-localized field defects significantly affect domain nucleation conditions. The signature of the defects in reproducible piezoresponse hysteresis loop fine structure are identified and compared to experimental observations. Deconvolution of piezoresponse force spectroscopy measurements to extract relevant defect parameters is demonstrated. Proposed approach can be extended to switching in other ferroics, establishing a pathway for the understanding of the thermodynamics and kinetics of phase transitions at a single-defect level. C1 [Morozovska, Anna N.; Svechnikov, Sergei V.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Rodriguez, Brian J.; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rodriguez, Brian J.; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 45 Prospekt Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 NR 56 TC 22 Z9 22 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054101 DI 10.1103/PhysRevB.78.054101 PG 17 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200027 ER PT J AU Moussa, JE Cohen, ML AF Moussa, Jonathan E. Cohen, Marvin L. TI Using molecular fragments to estimate electron-phonon coupling and possible superconductivity in covalent materials SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE; HYDROGEN AB We examine the electron-phonon coupling in a class of covalent materials by performing calculations on a set of molecular units from which they might be composed. By considering coupling to states at energies in the vicinity of the Fermi energy, we develop a picture of how couplings might be affected as these units are connected to form extended systems. Guided by this study of molecular fragments, we construct two examples of hypothetical covalent superconductors each with a transition temperature estimated to be similar to 380 K within Eliashberg theory. These hypothetical materials enter the regime of narrow-bandwidth metals where the superconducting state may be destabilized by one of several electronic instabilities and Eliashberg theory may no longer apply. C1 [Moussa, Jonathan E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moussa, JE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jmoussa@civet.berkeley.edu FU National Science Foundation [DMR07-05941]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Science Foundation under Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 12 Z9 12 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064502 DI 10.1103/PhysRevB.78.064502 PG 7 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900081 ER PT J AU Nakhmanson, SM AF Nakhmanson, S. M. TI Revealing latent structural instabilities in perovskite ferroelectrics by layering and epitaxial strain: A first-principles study of Ruddlesden-Popper superlattices SO PHYSICAL REVIEW B LA English DT Article ID POLARIZATION ENHANCEMENT; QUANTUM CRITICALITY; INVERSION SYMMETRY; RUTHENATE SR3RU2O7; THIN-FILMS; SUPERCONDUCTIVITY; CRYSTALS; TRIPLET; OXIDES; SPIN AB Utilizing first-principles computational techniques, we have mapped out structural instabilities in the Ruddlesden-Popper homologous oxide superlattice families with a general chemical formula A(n-1)A(2)'TinO3n+1, A = Sr, Ba, and Pb (perovskite-type slab) and A' = Sr (rocksalt-type insert) for n = 1-5. Our calculations show that each superlattice family has a unique set of "instability footprints," combining the ferroelectric, antiferroelectric, and antiferrodistortive types, and that the competition among the instabilities can be influenced by epitaxial strain and changing thickness of the perovskite-type slab, granting us wide flexibility to fine tune the properties of these materials for various device applications. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Nakhmanson, SM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Nakhmanson, Serge/A-6329-2014 FU [DE-AC02-06CH11357] FX This project was supported under Contract No. DE-AC02-06CH11357 between UChicago Argonne, LLC, and the Department of Energy. The author is grateful to Dillon Fong, Peter Zapol, Seungbum Hong, Amanda Petford-Long, and Orlando Auciello for many fruitful discussions. NR 46 TC 15 Z9 15 U1 6 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064107 DI 10.1103/PhysRevB.78.064107 PG 5 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900022 ER PT J AU Nandi, S Kreyssig, A Yan, JQ Vannette, MD Lang, JC Tan, L Kim, JW Prozorov, R Lograsso, TA McQueeney, RJ Goldman, AI AF Nandi, S. Kreyssig, A. Yan, J. Q. Vannette, M. D. Lang, J. C. Tan, L. Kim, J. W. Prozorov, R. Lograsso, T. A. McQueeney, R. J. Goldman, A. I. TI Magnetic structure of Dy(3+) in hexagonal multiferroic DyMnO(3) SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE SCATTERING; SINGLE-CRYSTALS; POLARIZATION; TRANSITIONS; HOMNO3 AB Element specific x-ray resonant magnetic scattering (XRMS) investigations were undertaken to determine the magnetic structure of the multiferroic compound, hexagonal DyMnO(3). In the temperature range from 68 K down to 8 K the Dy(3+) moments are aligned and antiferromagnetically correlated in the c direction according to the magnetic representation Gamma(3). The temperature dependence of the observed intensity can be modeled assuming the splitting of ground-state doublet crystal-field levels of Dy(3+) by the exchange field of Mn(3+). XRMS together with magnetization measurements indicate that the magnetic representation is Gamma(2) below 8 K. C1 [Nandi, S.; Kreyssig, A.; Yan, J. Q.; Vannette, M. D.; Tan, L.; Kim, J. W.; Prozorov, R.; Lograsso, T. A.; McQueeney, R. J.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Nandi, S.; Kreyssig, A.; Yan, J. Q.; Vannette, M. D.; Tan, L.; Kim, J. W.; Prozorov, R.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lang, J. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Nandi, S (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Prozorov, Ruslan/A-2487-2008; McQueeney, Robert/A-2864-2016 OI Prozorov, Ruslan/0000-0002-8088-6096; McQueeney, Robert/0000-0003-0718-5602 FU U.S. DOE [DE-AC02-07CH11358, DE-AC02-06CH11357] FX We appreciate the help of Daniel Haskel for additional measurements. We are indebted to D. S. Robinson for his help during the experiments. The work at the Ames Laboratory and at the MU-CAT sector was supported by the U.S. DOE under Contract No. DE-AC02-07CH11358. The use of the Advanced Photon Source was supported by U.S. DOE under Contract No. DE-AC02-06CH11357. NR 19 TC 25 Z9 25 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075118 DI 10.1103/PhysRevB.78.075118 PG 5 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700040 ER PT J AU Oeschler, N Fisher, RA Phillips, NE Gordon, JE Foo, ML Cava, RJ AF Oeschler, N. Fisher, R. A. Phillips, N. E. Gordon, J. E. Foo, M. -L. Cava, R. J. TI Specific heat of Na(0.3)CoO(2)center dot 1.3H(2)O: Two energy gaps, nonmagnetic pair breaking, strong fluctuations in the superconducting state, and effects of sample age SO PHYSICAL REVIEW B LA English DT Article ID D-WAVE SUPERCONDUCTORS; CU-O SYSTEM; ELECTRONIC-STRUCTURE; PHASE-DIAGRAM; CAPACITY; NAXCOO2; NAXCOO2-CENTER-DOT-YH(2)O; DEPENDENCE; CRYSTAL; MODEL AB The specific heat of three samples of Na(0.3)CoO(2) center dot 1.3H(2)O shows an evolution of the superconductivity and its eventual disappearance with increasing sample age. The specific heat of two superconducting samples is characteristic of a superconductor with two energy gaps, which implies contributions of two electron bands to the Fermi surface. The changes in the specific heat are associated with a nonmagnetic pair-breaking action that progresses with sample age and acts preferentially in the band with the smaller gap to produce an increasing "residual" electron density of states and a shift in the relative contributions of the bands to the superconducting condensate. For the nonsuperconducting sample the pair breaking has weakened the superconducting-state electron pairing to the point that it has given way to a competing order. The similarity of the time scale for these changes to that recently reported for the formation of 0 vacancies suggests a relation between the two effects and the identification of the 0 vacancies as the pair.-breaking scattering centers. Together, these effects provide an understanding, of the strong sample dependence of the properties of this material. They also suggest an unusual competition between two effects of the 0 vacancies: enhancement of the superconductivity at low concentrations by adjusting the carrier concentration and destruction of the superconductivity at high concentrations by pair breaking. Comparison of the coefficient of the normal-state conduction-electron specific heat, gamma(n) = 16.1 mJ K(-2) mol(-1), with band-structure calculations supports the existence of the controversial e'(g) hole pockets in the Fermi surface, in addition to the well established a(1g) surface. The onset of the transition to the vortex state is independent of magnetic field, suggesting the presence of unusually strong fluctuation effects. The specific-heat results and their implications for band structure and symmetry of the superconducting-state order parameter are compared with other experimental and theoretical results. C1 [Oeschler, N.; Fisher, R. A.; Phillips, N. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Oeschler, N.; Fisher, R. A.; Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Gordon, J. E.] Amherst Coll, Dept Phys, Amherst, MA 01002 USA. [Foo, M. -L.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Oeschler, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Foo, Maw Lin/H-9273-2012 FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-0213706]; DOE-BES [DE-FG02-98-ER45706]; DAAD FX We thank B. H. Brandow, D.-H. Lee, I. I. Mazin, D. J. Singh, P. Zhang, V. Kresin, and R. E. Walstedt for helpful comments and discussions and A. Bussman-Holder for communicating results of calculations of the specific heat of sample 3. The work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and that at Princeton by NSF under Grant No. DMR-0213706 and by DOE-BES under Grant No. DE-FG02-98-ER45706. N.O. was supported, in part, by the DAAD. NR 83 TC 21 Z9 21 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054528 DI 10.1103/PhysRevB.78.054528 PG 15 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200132 ER PT J AU Palczewski, AD Kondo, T Khasanov, R Kolesnikov, NN Timonina, AV Rotenberg, E Ohta, T Bendounan, A Sassa, Y Fedorov, A Pailhes, S Santander-Syro, AF Chang, J Shi, M Mesot, J Fretwell, HM Kaminski, A AF Palczewski, A. D. Kondo, T. Khasanov, R. Kolesnikov, N. N. Timonina, A. V. Rotenberg, E. Ohta, T. Bendounan, A. Sassa, Y. Fedorov, A. Pailhes, S. Santander-Syro, A. F. Chang, J. Shi, M. Mesot, J. Fretwell, H. M. Kaminski, A. TI Origins of large critical temperature variations in single-layer cuprates SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTING GAP; FERMI-SURFACE; CA2-XNAXCUO2CL2; BI2SR2CACU2O8; TL2BA2CUO6; ANISOTROPY; CRYSTALS; TC AB We study the electronic structures of two single-layer superconducting cuprates, Tl2Ba2CuO6+delta (T12201) and (Bi1.35Pb0.85) (Sr1.47La0.38) CuO6+delta (Bi2201) which have very different maximum critical temperatures (90 K and 35 K, respectively) using angular-resolved photoemission spectroscopy (ARPES). We are able to identify two main differences in their electronic properties. First, the shadow band that is present in double-layer and low T-c,T-max single-layer cuprates is absent in T12201. Recent studies have linked the shadow band to structural distortions in the lattice and the absence of these in T12201 may be a contributing factor in its T-c,T-max Second, T12201's Fermi surface (FS) contains long straight parallel regions near the antinode, while in Bi2201 the antinodal region is much more rounded. Since the size of the superconducting gap is largest in the antinodal region, differences in the band dispersion at the antinode may play a significant role in the pairing and therefore affect the maximum transition temperature. C1 [Palczewski, A. D.; Kondo, T.; Fretwell, H. M.; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Palczewski, A. D.; Kondo, T.; Fretwell, H. M.; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Khasanov, R.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Kolesnikov, N. N.; Timonina, A. V.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. [Rotenberg, E.; Ohta, T.] Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bendounan, A.; Sassa, Y.; Pailhes, S.; Chang, J.; Mesot, J.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Santander-Syro, A. F.] ESPCI, CNRS, Lab Photons & Matiere, UPR 5, F-75231 Paris 5, France. [Santander-Syro, A. F.] Univ Paris 11, CNRS, Phys Solides Lab, UMR 8502, F-91405 Orsay, France. [Shi, M.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Palczewski, AD (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Rotenberg, Eli/B-3700-2009; Santander-Syro, Andres/D-7017-2012; Chang, Johan/F-1506-2014; Kondo, Takeshi/H-2680-2016; Sassa, Yasmine/F-3362-2017; OI Rotenberg, Eli/0000-0002-3979-8844; Santander-Syro, Andres/0000-0003-3966-2485; Chang, Johan/0000-0002-4655-1516; Khasanov, Rustem/0000-0002-4768-5524 FU Department of Energy at Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy [DE-AC02-05CH11231]; European Commission; European Research Area, Research Infrastructures [RII3-CT-2004-506008] FX The work at the Ames Laboratory was supported by the Department of Energy at Iowa State University. Ames Laboratory was supported under Contract No. DE-AC02-07CH11358. The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research project was also supported by the European Commission under the 6th Framework Programme: Strengthening the European Research Area, Research Infrastructures Contract No. RII3-CT-2004-506008. NR 35 TC 7 Z9 7 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054523 DI 10.1103/PhysRevB.78.054523 PG 5 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200127 ER PT J AU Petkov, V Buscaglia, V Buscaglia, MT Zhao, Z Ren, Y AF Petkov, V. Buscaglia, V. Buscaglia, M. T. Zhao, Z. Ren, Y. TI Structural coherence and ferroelectricity decay in submicron- and nano-sized perovskites SO PHYSICAL REVIEW B LA English DT Article ID BARIUM-TITANATE CERAMICS; ATOMIC-SCALE STRUCTURE; X-RAY-DIFFRACTION; THIN-FILMS; GRAIN-SIZE; DIELECTRIC-PROPERTIES; BATIO3 CERAMICS; DEAD-LAYER; CAPACITORS; NANOSCALE AB Understanding the loss of ferroelectricity in submicron- and nano-sized perovskites is an issue that has been debated for decades. Here we report results from a high-energy x-ray diffraction (XRD) study on a prime example of the perovskite's family, BaTiO(3) ceramics with a grain size ranging from 1200 to 5 nm. We find that the loss of ferroelectricity in submicron- and nano-sized BaTiO(3) has an intrinsic origin related to the increased atomic positional disorder in spatially confined physical systems. Our results imply that no particular critical size at which ferroelectricity in BaTO(3), in particular, and perovskites, in general, is completely lost exists. Rather it weakens exponentially with the decreasing of their physical size. Smart technological solutions are needed to bring it back. C1 [Petkov, V.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Buscaglia, V.; Buscaglia, M. T.] CNR, Inst Energet & Interphases, I-16149 Genoa, Italy. [Zhao, Z.] Univ Stockholm, Inst Inorgan Chem, S-10691 Stockholm, Sweden. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu; v.buscaglia@ge.ieni.cnr.it RI Buscaglia, Vincenzo/E-8758-2011; Buscaglia, Maria Teresa/B-9504-2015; Zhao, Zhe/C-3951-2012 OI Buscaglia, Maria Teresa/0000-0003-1694-2441; Zhao, Zhe/0000-0003-3060-9987 FU CMU [REF C602281]; U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported in part by CMU through Grant No. REF C602281. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. One of the authors (V.P.) is thankful to S. Pradhan and M. Gateshki for help in the XRD data analysis and useful discussions. NR 45 TC 45 Z9 45 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054107 DI 10.1103/PhysRevB.78.054107 PG 7 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200033 ER PT J AU Pistolesi, F Blanter, YM Martin, I AF Pistolesi, F. Blanter, Ya. M. Martin, Ivar TI Self-consistent theory of molecular switching SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-NOISE; TRANSISTORS; ELECTRONICS; CONDUCTANCE; TRANSPORT; JUNCTIONS AB We study the model of a molecular switch comprised of a molecule with a soft vibrational degree of freedom coupled to metallic leads. In the presence of strong electron-ion interaction, different charge states of the molecule correspond to substantially different ionic configurations, which can lead to very slow switching between energetically close configurations (Franck-Condon blockade). Application of transport voltage, however, can drive the molecule far out of thermal equilibrium and thus dramatically accelerate the switching. The tunneling electrons play the role of a heat bath with an effective temperature dependent on the applied transport voltage. Including the transport-induced "heating" self-consistently, we determine the stationary current-voltage characteristics of the device and the switching dynamics for symmetric and asymmetric devices. We also study the effects of an extra dissipative environment and demonstrate that it can lead to enhanced nonlinearities in the transport properties of the device and dramatically suppress the switching dynamics. C1 [Pistolesi, F.] Univ Grenoble 1, Lab Phys & Modelisat Milieux Condenses, CNRS, F-38042 Grenoble, France. [Blanter, Ya. M.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Pistolesi, F (reprint author), Univ Grenoble 1, Lab Phys & Modelisat Milieux Condenses, CNRS, Boite Postale 166, F-38042 Grenoble, France. RI Pistolesi, Fabio/A-7537-2012 FU French Agence Nationale de la Recherche [ANR-06-JCJC-036]; NEMESIS; Netherlands Foundation for Fundamental Research on Matter (FOM); U.S. Department of Energy [DE-AC52-06NA25396]; LANL/LDRD Program FX We acknowledge useful discussions with A. Armour and M. Houzet. This work was supported by the French Agence Nationale de la Recherche under Contract No. ANR-06-JCJC-036, NEMESIS, and Netherlands Foundation for Fundamental Research on Matter (FOM). The work at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and supported by the LANL/LDRD Program. F.P. thanks A. Buzdin and his group for hospitality at the Centre de Physique Moleculaire Optique et Hertzienne of Bordeaux (France) where part of this work was completed. NR 53 TC 42 Z9 42 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085127 DI 10.1103/PhysRevB.78.085127 PG 12 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900040 ER PT J AU Qiu, Y Kofu, M Bao, W Lee, SH Huang, Q Yildirim, T Copley, JRD Lynn, JW Wu, T Wu, G Chen, XH AF Qiu, Y. Kofu, M. Bao, Wei Lee, S. -H. Huang, Q. Yildirim, T. Copley, J. R. D. Lynn, J. W. Wu, T. Wu, G. Chen, X. H. TI Neutron-scattering study of the oxypnictide superconductor LaFeAsO0.87F0.13 SO PHYSICAL REVIEW B LA English DT Article ID LAYERED QUATERNARY COMPOUND; ORDER AB The recently discovered superconductor LaO0.87F0.13FeAs (T-C approximate to 26 K) was investigated using the neutron-scattering technique. No spin-density-wave (SDW) order was observed in the normal state or in the superconducting state, both with and without an applied magnetic field of 9 T, consistent with the proposal that SDW and superconductivity are competing in the laminar materials. While our inelastic measurements offer no constraint on the spin dynamic response from a d-wave pairing, an upper limit for the magnetic-resonance peak predicted from an extended s-Wave pairing mechanism is provided. Our measurements also support the energy scale of the calculated phonon spectrum, which is used in the electron-phonon coupling theory and fails to produce the high observed T-C. C1 [Qiu, Y.; Huang, Q.; Yildirim, T.; Copley, J. R. D.; Lynn, J. W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Kofu, M.; Lee, S. -H.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Bao, Wei] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. RP Bao, W (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM wbao@lanl.gov RI yildirim, taner/A-1290-2009; Bao, Wei/E-9988-2011 OI Bao, Wei/0000-0002-2105-461X FU Natural Science Foundation of China, Ministry of Science and Technology of China [2006CB601001]; National Basic Research Program of China [2006CB922005]; U.S. DOE [DE-FG02-07ER45384]; NSF [DMR-0454672] FX We would like to thank D. J. Singh and M.-H. Du for their useful communications. Work at LANL is supported by U.S. DOE-OS-BES, at USTC by the Natural Science Foundation of China, Ministry of Science and Technology of China (973 Project No. 2006CB601001) and by the National Basic Research Program of China Contract No. 2006CB922005, at UVA by the U.S. DOE through Contract No. DE-FG02-07ER45384. The DCS at NIST is partially supported by NSF under Agreement No. DMR-0454672. NR 42 TC 43 Z9 44 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 052508 DI 10.1103/PhysRevB.78.052508 PG 4 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200025 ER PT J AU Rushforth, AW Farley, NRS Campion, RP Edmonds, KW Staddon, CR Foxon, CT Gallagher, BL Yu, KM AF Rushforth, A. W. Farley, N. R. S. Campion, R. P. Edmonds, K. W. Staddon, C. R. Foxon, C. T. Gallagher, B. L. Yu, K. M. TI Compositional dependence of ferromagnetism in (Al,Ga,Mn)As magnetic semiconductors SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT-PROPERTIES; GA1-XMNXAS; HETEROSTRUCTURES; (GA,MN)AS AB We report on a detailed study of the magnetic, electrical, and structural properties of the quaternary ferromagnetic semiconductor (Al,Ga,Mn)As. We investigate films with Al concentration y varying from 0.05 to 1, with a fixed total Mn density. The ferromagnetic transition temperature T, decreases with increasing Al concentration, with no ferromagnetism observed at y=0.5 and y=0.75 for as-grown and annealed films, respectively. Detailed measurements identify three mechanisms giving rise to a suppression of T, on alloying with Al: an increased tendency for Mn to occupy compensating interstitial sites, an increased stability of interstitials against annealing, and an increased localization of carriers. These studies serve as a test of the validity of theories of ferromagnetism in III-V semiconductors across different chemical compositions and represent a starting point for the development of new GaAs/(Al,Ga)As ferromagnetic heterostructures. C1 [Rushforth, A. W.; Farley, N. R. S.; Campion, R. P.; Edmonds, K. W.; Staddon, C. R.; Foxon, C. T.; Gallagher, B. L.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Yu, K. M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rushforth, AW (reprint author), Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. RI Yu, Kin Man/J-1399-2012; Gallagher, Bryan/B-8116-2013; OI Yu, Kin Man/0000-0003-1350-9642; Edmonds, Kevin/0000-0002-9793-4170; Gallagher, Bryan/0000-0001-8310-0899; Campion, Richard/0000-0001-8990-8987; Rushforth, Andrew/0000-0001-8774-6662 FU EU [IST-015728]; EPSRC-GB [GR/S81407/01, EP/D051487]; U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge discussions with Tomas Jungwirth, Josef Kudrnovsky, and Jan Masek and funding from EU Grant No. IST-015728 and EPSRC-GB Grants No. GR/S81407/01 and No. EP/D051487. The work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 10 Z9 10 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 8 AR 085209 DI 10.1103/PhysRevB.78.085209 PG 6 WC Physics, Condensed Matter SC Physics GA 351EI UT WOS:000259406900053 ER PT J AU Sha, H Ye, F Dai, PC Fernandez-Baca, JA Mesa, D Lynn, JW Tomioka, Y Tokura, Y Zhang, JD AF Sha, Hao Ye, F. Dai, Pengcheng Fernandez-Baca, J. A. Mesa, Dalgis Lynn, J. W. Tomioka, Y. Tokura, Y. Zhang, Jiandi TI Signature of magnetic phase separation in the ground state of Pr(1-x)Ca(x)MnO(3) SO PHYSICAL REVIEW B LA English DT Article ID MANGANITES AB Neutron scattering has been used to investigate the evolution of long- and short-range charge-ordered (CO), ferromagnetic, and antiferromagnetic (AF) correlations in single crystals of Pr(1-x)Ca(x)MnO(3). The existence and population of spin clusters as reflected by short-range correlations are found to drastically depend on the doping and temperature. Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in the x=0.3 while clusters do not appear in the x=0.4 crystal. In contrast, both CO and AF order parameters in the x=0.35 crystal show a precipitous decrease below similar to 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and demonstrate a critical doping x(c) (close to x=0.35) that divides the inhomogeneous from homogeneous CO ground state. C1 [Sha, Hao; Mesa, Dalgis; Zhang, Jiandi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Ye, F.; Dai, Pengcheng; Fernandez-Baca, J. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Dai, Pengcheng; Fernandez-Baca, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Tomioka, Y.; Tokura, Y.] Natl Inst Adv Ind Sci & Technol, CERC, Tsukuba, Ibaraki 3050046, Japan. [Tokura, Y.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. RP Sha, H (reprint author), Florida Int Univ, Dept Phys, Miami, FL 33199 USA. EM zhangj@fiu.edu RI Sha, Hao/D-8107-2011; Ye, Feng/B-3210-2010; Tokura, Yoshinori/C-7352-2009; Dai, Pengcheng /C-9171-2012; Fernandez-Baca, Jaime/C-3984-2014 OI Ye, Feng/0000-0001-7477-4648; Dai, Pengcheng /0000-0002-6088-3170; Fernandez-Baca, Jaime/0000-0001-9080-5096 FU U.S. DOE [FG02-04ER46125]; NSF [DMR-0346826]; U.S. NSF [DMR-0756568] FX This work was supported by the U.S. DOE FG02-04ER46125 and NSF DMR-0346826. P.D. was supported by U.S. NSF DMR-0756568. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE DE-AC05-00OR22725. NR 28 TC 9 Z9 9 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 052410 DI 10.1103/PhysRevB.78.052410 PG 4 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200017 ER PT J AU Shen, L Wu, RQ Pan, H Peng, GW Yang, M Sha, ZD Feng, YP AF Shen, L. Wu, R. Q. Pan, H. Peng, G. W. Yang, M. Sha, Z. D. Feng, Y. P. TI Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations SO PHYSICAL REVIEW B LA English DT Article ID P-TYPE ZNO; MAGNETIC SEMICONDUCTORS; THIN-FILMS AB Based on our first-principle calculations, ZnO doped by a nonmagnetic 2p light element (N) is predicted to be ferromagnetic. The local magnetic moments that are mainly localized on doped N atoms introduced total moments of 1.0 mu(B)/atom. The long-range magnetic coupling of N-doped ZnO can be attributed to a p-d exchange-like p-p coupling interaction involving holes, which is derived from the similar symmetry and wave function between the impurity (p-like t(2)) and valence (p) states. We also propose a codoping mechanism, using beryllium and nitrogen as dopants in ZnO, to enhance the ferromagnetic coupling and to increase the solubility and activity. C1 [Shen, L.; Wu, R. Q.; Peng, G. W.; Yang, M.; Sha, Z. D.; Feng, Y. P.] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. [Shen, L.] Inst High Performance Comp, Singapore 138632, Singapore. [Pan, H.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Shen, L (reprint author), Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. EM phyfyp@nus.edu.sg RI Pan, Hui/A-2702-2009; SHA, Zhendong/E-9463-2012; SHEN, LEI/G-1077-2012; Yang, Ming/G-1543-2012; Feng, Yuan Ping /A-4507-2012 OI Pan, Hui/0000-0002-6515-4970; SHEN, LEI/0000-0001-6198-5753; Yang, Ming/0000-0002-0876-1221; Feng, Yuan Ping /0000-0003-2190-2284 FU NUS Academic Research Fund [R144-000-182-112] FX We thank Yang Shuo-Wang for the helpful discussions. The authors acknowledge the financial support from the NUS Academic Research Fund under Grant No. R144-000-182-112. NR 31 TC 204 Z9 209 U1 4 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 073306 DI 10.1103/PhysRevB.78.073306 PG 4 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700015 ER PT J AU Smerdon, JA Parle, JK Wearing, LH Lograsso, TA Ross, AR McGrath, R AF Smerdon, J. A. Parle, J. K. Wearing, L. H. Lograsso, T. A. Ross, A. R. McGrath, R. TI Nucleation and growth of a quasicrystalline monolayer: Bi adsorption on the fivefold surface of i-Al(70)Pd(21)Mn(9) SO PHYSICAL REVIEW B LA English DT Article ID AL70PD21MN9 AB Scanning tunneling microscopy has been used to study the formation of a Bi monolayer deposited on the fivefold surface of i-Al(70)Pd(21)Mn(9). Upon deposition of low submonolayer coverages, the nucleation of pentagonal clusters of Bi adatoms of edge length 4.9 angstrom is observed. The clusters have a, common orientation leading to a film with fivefold symmetry. By inspection of images where both the underlying surface and the Bi atoms are resolved, the pentagonal clusters are proposed to nucleate on pseudo-Mackay clusters truncated such that a Mn atom lies centrally in the surface plane. The density of these sites is sufficient to form a quasiperiodic framework, and subsequent adsorption of Bi atoms ultimately leads to the formation of a quasicrystalline monolayer. The suggested nucleation site is different from that proposed on the basis of recent density-functional theory calculations. C1 [Smerdon, J. A.; Parle, J. K.; Wearing, L. H.; McGrath, R.] Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. [Smerdon, J. A.; Parle, J. K.; Wearing, L. H.; McGrath, R.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Lograsso, T. A.; Ross, A. R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Smerdon, JA (reprint author), Univ Liverpool, Surface Sci Res Ctr, POB 147, Liverpool L69 3BX, Merseyside, England. EM mcgrath@liv.ac.uk RI McGrath, Ronan/A-1568-2009 OI McGrath, Ronan/0000-0002-9880-5741 FU EPSRC [EP/D05253X/1] FX The EPSRC is acknowledged for funding this project under Grant No. EP/D05253X/1. Ed Boughton is acknowledged for assistance with data acquisition, and Kirsty Young is thanked for calculations of tile frequencies. Marian Krajci is thanked for providing the Al-Pd-Mn approximant surface structure models and for useful discussions. NR 27 TC 28 Z9 28 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075407 DI 10.1103/PhysRevB.78.075407 PG 6 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700088 ER PT J AU Subedi, A Singh, DJ Du, MH AF Subedi, Alaska Singh, David J. Du, Mao-Hua TI Electron-phonon superconductivity in LaNiPO SO PHYSICAL REVIEW B LA English DT Article ID EARTH; METAL AB We report first-principles calculations of the electronic structure, phonon dispersions, and electron-phonon coupling of LaNiPO. These calculations show that this material can be explained as a conventional electron-phonon superconductor in contrast to the FeAs based high-temperature superconductors. C1 [Subedi, Alaska] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Subedi, Alaska; Singh, David J.; Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Subedi, A (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU DOE; Division of Materials Sciences and Engineering FX We are grateful for discussions with I.I. Mazin, D.G. Mandrus, B.C. Sales, R. Jin, and M. Fornari and support from DOE, Division of Materials Sciences and Engineering. NR 27 TC 29 Z9 29 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 060506 DI 10.1103/PhysRevB.78.060506 PG 4 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900012 ER PT J AU Sun, Z Douglas, JF Wang, Q Dessau, DS Fedorov, AV Lin, H Sahrakorpi, S Barbiellini, B Markiewicz, RS Bansil, A Zheng, H Mitchell, JF AF Sun, Z. Douglas, J. F. Wang, Q. Dessau, D. S. Fedorov, A. V. Lin, H. Sahrakorpi, S. Barbiellini, B. Markiewicz, R. S. Bansil, A. Zheng, H. Mitchell, J. F. TI Electronic structure of the metallic ground state of La(2-2x)Sr(1+2x)Mn(2)O(7) for x approximate to 0.59 and comparison with x=0.36,0.38 compounds as revealed by angle-resolved photoemission SO PHYSICAL REVIEW B LA English DT Article ID COLOSSAL MAGNETORESISTIVE OXIDES; DOUBLE EXCHANGE; FERMI-SURFACE; LASR2MN2O7; MANGANITES; CHARGE AB Using angle-resolved photoemission spectroscopy, we present the electronic structure of the metallic ground state of La(2-2x)Sr(1+2x)Mn(2)O(7) (x approximate to 0.59) and interpret the results in terms of first-principles band-structure computations, of which the generalized gradient approximation yields the best agreement with the experimental data. No bilayer-split bands are found in this compound, indicating the near degeneracy of electronic states in the neighboring MnO(2) layers due to its A-type antiferromagnetic structure. The d(3z2-r2) states near the zone center were not observed, which is also consistent with its A-type antiferromagnetic structure. Near the Fermi level, a kink in the dispersion reveals an important electron-phonon many-body interaction. The electron-phonon coupling is similar to 1 near the zone boundary and similar to 2 near the zone diagonal, showing strong k dependence. C1 [Sun, Z.; Douglas, J. F.; Wang, Q.; Dessau, D. S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lin, H.; Sahrakorpi, S.; Barbiellini, B.; Markiewicz, R. S.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sun, Z (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM dessau@colorado.edu RI Wang, Qiang/K-3807-2012; Barbiellini, Bernardo/K-3619-2015; Lin, Hsin/F-9568-2012 OI Barbiellini, Bernardo/0000-0002-3309-1362; Lin, Hsin/0000-0002-4688-2315 FU U.S. National Science Foundation [DMR 0706657]; U.S. Department of Energy [DE-FG02-03ER46066, DE-AC02-05CH11231, DE-FG02-07ER46352, DE-AC03-76SF00098, DE-AC02-06CH11357] FX Primary support for this work was from the U.S. National Science Foundation under Grant No. DMR 0706657, with supplementary support from the U.S. Department of Energy under Grant No. DE-FG02-03ER46066. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The theoretical work was supported by the U.S. Department of Energy Contracts No. DE-FG02-07ER46352 and No. DE-AC03-76SF00098 and benefited from the allocation of supercomputer time at the NERSC and the Northeastern University's Advanced Scientific Computation Center (ASCC). Argonne National Laboratory, a U.S, Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 28 TC 14 Z9 14 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075101 DI 10.1103/PhysRevB.78.075101 PG 6 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700023 ER PT J AU Svitelskiy, O Suslov, AV Betts, JB Migliori, A Yong, G Boatner, LA AF Svitelskiy, O. Suslov, A. V. Betts, J. B. Migliori, A. Yong, G. Boatner, L. A. TI Resonant ultrasound spectroscopy of KTa(1-x)Nb(x)O(3) ferroelectric relaxor crystals SO PHYSICAL REVIEW B LA English DT Article ID DIFFUSE PHASE-TRANSITION; ELASTIC PROPERTIES; NB IONS; PBMG1/3NB2/3O3; TEMPERATURE; SCATTERING; VELOCITY; KTAO3; KTN AB The influence of the development of a ferroelectric state on the elastic properties of KTa(1-x)Nb(x)O(3) relaxor crystals is explored. The high sensitivity of the elastic stiffness tensor to the polar distortions and their reorientational dynamics is individual for each particular component: c(11) and c(44) are primarily influenced by the reorientational motion of the distortions between the nearest neighboring (111) directions; the c(12), however, depends primarily on the reorientations between the (111) directions neighboring along the cubic face diagonal. Consequently, the temperature behavior of c(12) demonstrates a different dependence on the Nb concentration than that of c(11) and c(44). In the 1.2% Nb crystal all three elastic coefficients clearly show a softening with the appearance of the dynamic polar distortions while, in the 16% Nb crystal this effect is strong for c(11) and c(44), but changes in c(12) occur only in the vicinity of the phase transition. Nevertheless, close to the transition the elastic properties become more isotropic for all three crystals. The curves of slowness and Young's modulus within the main crystallographic planes are presented and the linear compressibility modulus is estimated. The values of the Debye temperatures with an error of +/- 2 K are estimated to be approximately 594, 589, and 592 for the crystals containing 1.2, 8, and 16% of Nb, respectively. C1 [Svitelskiy, O.; Suslov, A. V.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Betts, J. B.; Migliori, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yong, G.] Towson Univ, Baltimore, MD 21252 USA. [Boatner, L. A.] Ctr Radiat Detect Mat & Syst, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Svitelskiy, O (reprint author), Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. RI CHEN, Jiangang/A-1549-2011; Suslov, Alexey/M-7511-2014; Boatner, Lynn/I-6428-2013 OI Suslov, Alexey/0000-0002-2224-153X; Boatner, Lynn/0000-0002-0235-7594 FU NSF [DMR-0084173]; In-House Research Program; U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX Authors are thankful to Scott Headley for helping with the experimental setup. The experiment has been performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-0084173 and the State of Florida; The ultrasonic research at the NHMFL is supported by the In-House Research Program. Research at ORNL is sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 34 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064113 DI 10.1103/PhysRevB.78.064113 PG 5 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900028 ER PT J AU Takenaka, H Singh, DJ AF Takenaka, H. Singh, D. J. TI Positron potential and wave function in LaFeAsO SO PHYSICAL REVIEW B LA English DT Article ID MOMENTUM DENSITY; FERMI-SURFACE; ANNIHILATION; METALS; STATES AB We report calculations of the positron potential and wave function in LaFeAsO. These calculations show that the positron wave function does sample the entire unit cell, although it is largest in the interstices of the La layer adjacent to As atoms. The implication is that annihilation correlation of annihilation radiation is a viable probe of the Fermi surfaces in this material. The results also apply to positive muons and indicate that these will be localized in the La layer adjacent to As. C1 [Takenaka, H.; Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Takenaka, H (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions with D. G. Mandrus and B. C. Sales. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 23 TC 8 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 052503 DI 10.1103/PhysRevB.78.052503 PG 4 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200020 ER PT J AU Tapp, JH Tang, ZJ Lv, B Sasmal, K Lorenz, B Chu, PCW Guloy, AM AF Tapp, Joshua H. Tang, Zhongjia Lv, Bing Sasmal, Kalyan Lorenz, Berrid Chu, Paul C. W. Guloy, Arnold M. TI LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K SO PHYSICAL REVIEW B LA English DT Article ID IRON; LAO1-XFXFEAS; PHOSPHIDES; ARSENIDES; COMPOUND AB The synthesis and properties of LiFeAs, a high-T(c) Fe-based superconducting stoichiometric compound, are reported. Single crystal x-ray studies reveal that it crystallizes in the tetragonal PbFCl type (P4/nmm) with a=3.7914(7) angstrom and c=6.364(2) angstrom. Unlike the known isoelectronic undoped intrinsic FeAs Compounds, LiFeAs does not show any spin-density wave behavior but exhibits superconductivity at ambient pressures without chemical doping. It exhibits a respectable transition temperature of T(c)=18 K with electronlike carriers and a very high critical field, H(c2)(0)>80 T. LiFeAs appears to be the chemical equivalent of the infinite layered compound of the high-T(c) cuprates. C1 [Tapp, Joshua H.; Tang, Zhongjia; Lv, Bing; Sasmal, Kalyan; Lorenz, Berrid; Chu, Paul C. W.; Guloy, Arnold M.] TCSUH, Houston, TX 77204 USA. [Tapp, Joshua H.; Tang, Zhongjia; Lv, Bing; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Sasmal, Kalyan; Lorenz, Berrid; Chu, Paul C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Chu, Paul C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, Paul C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Tapp, JH (reprint author), TCSUH, Houston, TX 77204 USA. RI Lv, Bing/E-3485-2010 FU National Science Foundation [CHE-0616805]; R. A. Welch Foundation,; United States Air Force Office of Scientific Research; Lawrence Berkeley National Laboratory through the United States Department of Energy, and the State of Texas; T. L. L. Temple Foundation; J. J. and R. Moores Endowment FX This work was supported by the National Science Foundation (Grant No. CHE-0616805), the R. A. Welch Foundation, the United States Air Force Office of Scientific Research, at Lawrence Berkeley National Laboratory through the United States Department of Energy, and the State of Texas through the Texas Center for Superconductivity. CW.C. also acknowledges support from the T. L. L. Temple Foundation, and the J. J. and R. Moores Endowment. NR 20 TC 510 Z9 520 U1 6 U2 112 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 060505 DI 10.1103/PhysRevB.78.060505 PG 4 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900011 ER PT J AU Tran, TB Beloborodov, IS Hu, JS Lin, XM Rosenbaum, TF Jaeger, HM AF Tran, T. B. Beloborodov, I. S. Hu, Jingshi Lin, X. M. Rosenbaum, T. F. Jaeger, H. M. TI Sequential tunneling and inelastic cotunneling in nanoparticle arrays SO PHYSICAL REVIEW B LA English DT Article ID CHARGE; TRANSITION; TRANSPORT; SYSTEMS; METAL; DOTS AB We investigate transport in weakly coupled metal nanoparticle arrays, focusing on the regime where tunneling is competing with strong single electron charging effects. This competition gives rise to an interplay between two types of charge transport. In sequential tunneling, transport is dominated by independent electron hops from a particle to its nearest neighbor along the current path. In inelastic cotunneling, transport is dominated by cooperative multielectron hops that each go to the nearest neighbor but are synchronized to move charge over distances of several particles. In order to test how the temperature-dependent cotunnel distance affects the current-voltage (I-V) characteristics, we perform a series of systematic experiments on highly ordered close-packed nanoparticle arrays. The arrays consist of similar to 5.5 nm diameter gold nanocrystals with tight size dispersion, spaced similar to 1.7 nm apart by interdigitating shells of dodecanethiol ligands. We present I-V data for monolayer, bilayer, trilayer, and tetralayer arrays. For stacks 2-4 layers thick we compare in-plane measurements with data for vertical transport perpendicular to the array plane. Our results support a picture whereby transport inside the Coulomb blockade regime occurs by inelastic cotunneling, while sequential tunneling takes over at large bias above the global Coulomb blockade threshold V(t)(T) and at high temperatures. For the smallest measurable voltages, our data was fitted well by recent predictions for the temperature dependence zero-bias conductance due to multiple cotunneling. At finite but small bias, the cotunnel distance is predicted to set the curvature of the nonlinear I-V characteristics, in good agreement with our data. The absence of significant magnetic-field dependence up to 10 T in the measured I-V characteristics further supports the picture of inelastic cotunneling events where individual electrons hop no further than the nearest neighbor. At large bias, above the global Coulomb blockade threshold, the I-V characteristics follow power-law behavior with temperature-independent exponent close to two, predicted for sequential tunneling along branching paths that optimize the overall charging energy cost. C1 [Tran, T. B.; Beloborodov, I. S.; Hu, Jingshi; Rosenbaum, T. F.; Jaeger, H. M.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Rosenbaum, T. F.; Jaeger, H. M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Beloborodov, I. S.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Lin, X. M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Tran, TB (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU National Science Foundation [ECS-070178]; U.S. Army Research Laboratory [W911NF-07-2-0065] FX Y.-J. Liu and Y.-P. Zhao acknowledge the support from National Science Foundation under Contract No. ECS-070178 and U.S. Army Research Laboratory under Grant No. W911NF-07-2-0065. The authors also acknowledge the fruitful discussions with Rich Dluhy. John Gibbs helped us to proofread the paper. NR 37 TC 59 Z9 59 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075437 DI 10.1103/PhysRevB.78.075437 PG 9 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700118 ER PT J AU Valvidares, SM Quiros, C Mirone, A Tonnerre, JM Stanescu, S Bencok, P Souche, Y Zarate, L Martin, JI Velez, M Brookes, NB Alameda, JM AF Valvidares, S. M. Quiros, C. Mirone, A. Tonnerre, J. -M. Stanescu, S. Bencok, P. Souche, Y. Zarate, L. Martin, J. I. Velez, M. Brookes, N. B. Alameda, J. M. TI Resolving antiferromagnetic states in magnetically coupled amorphous Co-Si-Si multilayers by soft x-ray resonant magnetic scattering SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE SCATTERING; FILMS; POLARIZATION; DIFFRACTION; FE AB Soft x-ray resonant magnetic scattering (SXRMS) has been used to probe the interlayer coupling in amorphous ferromagnetic/semiconductor multilayers. It is shown that the [Co(73)Si(27) (50 angstrom)/Si (30 angstrom)] system exhibits an antiferromagnetic (AF) coupling at low fields. Moreover, another aspect of SXRMS effect is reported. Using circularly polarized photons, a shift in the AF order Bragg peaks' position is observed and related to two opposite AF states with the spin direction longitudinally aligned. As a consequence, the sensitivity of SXRMS to AF domains having the same spin axis but opposite senses is shown. A physical explanation for the origin of this effect is provided in terms of magnetic-resonant-refraction corrections to Bragg's angle, taking into account the phase shifts between layers with opposite magnetization directions at different in-depth positions. Numerical simulations are performed that reproduced the experimental observations. C1 [Valvidares, S. M.; Mirone, A.; Stanescu, S.; Bencok, P.; Brookes, N. B.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Quiros, C.; Zarate, L.; Martin, J. I.; Velez, M.; Alameda, J. M.] Univ Oviedo, CINN, Dept Fis, Oviedo 33007, Spain. [Tonnerre, J. -M.; Souche, Y.] CNRS, Inst Neel, F-38042 Grenoble, France. [Tonnerre, J. -M.; Souche, Y.] Univ Oviedo, CINN, F-38042 Grenoble 9, France. RP Valvidares, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. EM smvalvidaressuarez@lbl.gov RI Velez, Maria/A-2734-2012; Martin, Jose/C-5250-2013; Quiros, Carlos/E-5669-2016; Valvidares, Secundino /M-4979-2016; OI Velez, Maria/0000-0003-0311-7434; Martin, Jose/0000-0003-2256-0909; Quiros, Carlos/0000-0002-0591-5563; Valvidares, Secundino /0000-0003-4895-8114; Stanescu, Stefan/0000-0002-4543-1774 NR 38 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064406 DI 10.1103/PhysRevB.78.064406 PG 7 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900055 ER PT J AU Walsh, A Da Silva, JLF Wei, SH AF Walsh, Aron Da Silva, Juarez L. F. Wei, Su-Huai TI Origins of band-gap renormalization in degenerately doped semiconductors SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; OPTICAL-PROPERTIES; IN2O3; STATE; SNO2 AB Degenerate n-type doping of semiconductors results in optical band-gap widening through occupation of the conduction band, which is partially offset by the so-called band-gap renormalization. From investigation of the magnitude and origin of these shifts through density-functional band-structure theory, we demonstrate that the key contribution to renormalization arises from the nonparabolic nature of the host conduction band but not the rigid shift of the band edges, as is the current paradigm. Furthermore, the carrier dependence of the band-gap widening is highly sensitive to the electronic states of the dopant ion, which can be involved in a significant reconstruction of the lower conduction band. C1 [Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Walsh, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Walsh, Aron/A-7843-2008; Da Silva, Juarez L. F./D-1779-2011 OI Walsh, Aron/0000-0001-5460-7033; Da Silva, Juarez L. F./0000-0003-0645-8760 FU U.S. Department of Energy (DOE) [DE-AC36-99GO10337, DE-AC02-05CH11231] FX We would like to thank R. G. Egdell for sharing his knowledge of doped semiconductors. The work at NREL is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-99GO10337. Computing resources of the National Energy Research Scientific Computing Center were employed, which is supported by DOE under Contract No. DE-AC02-05CH11231. NR 39 TC 132 Z9 132 U1 4 U2 52 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075211 DI 10.1103/PhysRevB.78.075211 PG 5 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700058 ER PT J AU Wu, YZ Zhao, Y Arenholz, E Young, AT Sinkovic, B Won, C Qiu, ZQ AF Wu, Y. Z. Zhao, Y. Arenholz, E. Young, A. T. Sinkovic, B. Won, C. Qiu, Z. Q. TI Analysis of x-ray linear dichroism spectra for NiO thin films grown on vicinal Ag(001) SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE BIAS; INELASTIC LIFETIMES; MAGNETIC DICHROISM; ANISOTROPY; ELECTRONS; MOMENTS; SURFACE; METALS; SILVER; FE AB Antiferromagnetic (AFM) NiO thin films are grown epitaxially on vicinal Ag(118) substrate and investigated by x-ray linear dichroism (XLD). We find that the NiO AFM spins exhibit an in-plane spin-reorientation transition from parallel to perpendicular to the step edge direction with increasing the NiO film thickness. In addition to the conventional L-2 absorption edge, XLD effect at the Ni L-3 absorption edge is also measured and analyzed. The results identify a small energy shift of the L-3 peak. Temperature-dependent measurement confirms that the observed XLD effect in this system at the normal incidence of the x rays originates entirely from the NiO magnetic ordering. C1 [Wu, Y. Z.] Fudan Univ, Dept Phys, Appl Surface Phys State Key Lab, Shanghai 200433, Peoples R China. [Wu, Y. Z.] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Wu, Y. Z.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhao, Y.; Sinkovic, B.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Arenholz, E.; Young, A. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. RP Wu, YZ (reprint author), Fudan Univ, Dept Phys, Appl Surface Phys State Key Lab, Shanghai 200433, Peoples R China. EM wuyizheng@fudan.edu.cn RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation [DMR-0405259]; U.S. Department of Energy [DE-AC03-76SF00098]; National Natural Science Foundation of China [2006CB921303]; Shanghai Education Development Foundation; Fok Ying Tong education foundation FX This work was supported by National Science Foundation under Grant No. DMR-0405259, by U.S. Department of Energy under Grant No. DE-AC03-76SF00098, by National Natural Science Foundation of China (973-project) under Grant No. 2006CB921303, by Shanghai Education Development Foundation, and by Fok Ying Tong education foundation. NR 29 TC 15 Z9 16 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 6 AR 064413 DI 10.1103/PhysRevB.78.064413 PG 6 WC Physics, Condensed Matter SC Physics GA 349EU UT WOS:000259264900062 ER PT J AU Yang, SY Zhang, LX Chen, H Wang, EG Zhang, ZY AF Yang, Shenyuan Zhang, Lixin Chen, Hua Wang, Enge Zhang, Zhenyu TI Generic guiding principle for the prediction of metal-induced reconstructions of compound semiconductor surfaces SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; GAAS(110) SURFACE; GAAS(001) SURFACES; INAS(110) SURFACE; SCHOTTKY-BARRIER; ATOMIC-STRUCTURE; INGAAS ALLOYS; CS AB We have performed extensive and systematic ab initio calculations to substantiate a recently proposed generalized electron counting (GEC) rule that governs the rich patterns of compound semiconductor reconstruction induced by metal adsorption. In this rule, the metal adsorbates serve as an electron bath, either donating or accepting the right number of electrons, with which the binary host system chooses a specific reconstruction under the classic electron counting rule and, meanwhile, the adsorbates stay in their optimal valency. The GEC rule is applied to different GaAs surfaces deposited by various classes of metal adsorbates, leading to a number of possible reconstructions, which can be further confirmed by first-principles calculations and/or experiments. The alkali-metal adsorption on the GaAs(110) surface up to the saturate coverage is a perfect example of the GEC rule. The application of the GEC rule to the prototype system of Mn/GaAs(001) not only predicts possible reconstruction patterns over a wide range of coverage but also provides an underlying link between the reconstruction Structures and the local magnetic moments of the metal adsorbates. For Au/GaAs(100), we demonstrate the application of the GEC rule to those systems where metal adsorbates form covalent bonds with the substrate. The GEC rule, as a generic principle, is expected to be! applicable to more metal-adsorbed compound semiconductor surfaces. C1 [Yang, Shenyuan; Zhang, Lixin; Wang, Enge] Chinese Acad Sci, Int Ctr Quantum Struct, Beijing 100190, Peoples R China. [Yang, Shenyuan; Zhang, Lixin; Wang, Enge] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yang, Shenyuan; Chen, Hua; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yang, SY (reprint author), Chinese Acad Sci, Int Ctr Quantum Struct, Beijing 100190, Peoples R China. RI Chen, Hua/H-3092-2013 OI Chen, Hua/0000-0003-0676-3079 FU NSFC; MOST; CAS in China; US DOE [DE-AC05-00OR22725]; NSF [DMR0606485] FX This work was supported by NSFC, MOST, and CAS in China, and partly supported by the US DOE (Contract No. DE-AC05-00OR22725) and US NSF (Grant No. DMR0606485). NR 68 TC 13 Z9 13 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 7 AR 075305 DI 10.1103/PhysRevB.78.075305 PG 12 WC Physics, Condensed Matter SC Physics GA 351EG UT WOS:000259406700063 ER PT J AU Zhang, JZ Zhao, Y Hixson, RS Gray, GT Wang, LP Utsumi, W Hiroyuki, S Takanori, H AF Zhang, Jianzhong Zhao, Yusheng Hixson, Robert S. Gray, George T., III Wang, Liping Utsumi, Wataru Hiroyuki, Saito Takanori, Hattori TI Thermal equations of state for titanium obtained by high pressure - temperature diffraction studies SO PHYSICAL REVIEW B LA English DT Article ID OF-STATE; STRUCTURAL STABILITY; CRYSTAL-STRUCTURE; PHASE; METAL; MOLYBDENUM; TRANSITION; ZIRCONIUM; HAFNIUM; SOLIDS AB We have conducted in situ high-pressure diffraction experiments on titanium metal at pressures up to 8.2 GPa and temperatures up to 900 K. From the pressure (P)-volume (V)-temperature (T) measurements, thermoelastic parameters were derived for alpha titanium based on a modified high-T Birch-Mumaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K(0)('), fixed at 4.0, we obtained: ambient bulk modulus K(0) = 114(3) GPa, temperature derivative of bulk modulus at constant pressure (partial derivative K/partial derivative T)(P) = -1.1(7) X 10(-2) GPa K(-1) and at constant volume (partial derivative K/partial derivative T)(V) = -9.0 X 10(-4) GPa K(-1), volumetric thermal expansivity alpha(T) = alpha+bT with a = 1.2(+/- 0.6) X 10(-5) K(-1) and b = 2.5(+/- 1.1) X 10(-8) K(-2), and the pressure derivative of thermal expansion (partial derivative alpha/partial derivative P)(T) = -8-5 X 10(-7) GPa(-1) K(-1). The ambient bulk modulus and volumetric thermal expansion derived from this work are in good agreement with previous experimental results, whereas all other thermoelastic parameters represent the first determinations for the alpha phase of titanium. For the omega-phase Ti, we obtained K(0) = 107(3) GPa and volumetric thermal expansivity at 8.1 GPa alpha(T) = a+bT with a = 6.5 (+/- 3.5) X 10(-6) K(-1) and b = 2.8(+/- 0.6) X 10(-8) K(-2), Within the experimental uncertainties, the c/a ratios for alpha-Ti at both room and high temperatures remain constant over the experimental pressures up to 7.8 GPa, presenting a case against the isotropic force potential used in some theoretical modeling for hcp metals under high pressures. C1 [Zhang, Jianzhong; Zhao, Yusheng; Hixson, Robert S.; Gray, George T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Utsumi, Wataru; Hiroyuki, Saito; Takanori, Hattori] Japan Atom Energy Res Inst, Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795148, Japan. RP Zhang, JZ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jzhang@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Zhang, Jianzhong/0000-0001-5508-1782 FU Los Alamos National Laboratory; NSF Cooperative Agreement [EAR 01-35554]; Synchrotron Radiation Research Center; Japan Atomic Energy Research Institute FX This research was supported by the Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. The experimental work was carried out at the beamline X17132 of National Synchrotron Light Source of Brookhaven National Laboratory, which was supported by the Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative Agreement EAR 01-35554, and at the beamline BL14B1 of SPring-8, which was supported by Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute. NR 33 TC 27 Z9 28 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2008 VL 78 IS 5 AR 054119 DI 10.1103/PhysRevB.78.054119 PG 7 WC Physics, Condensed Matter SC Physics GA 350QM UT WOS:000259368200045 ER PT J AU Bender, M Heenen, PH AF Bender, Michael Heenen, Paul-Henri TI Configuration mixing of angular-momentum and particle-number projected triaxial Hartree-Fock-Bogoliubov states using the Skyrme energy density functional SO PHYSICAL REVIEW C LA English DT Article ID GENERATOR-COORDINATE METHOD; HIGH-SPIN STATES; SELF-CONSISTENT; MEAN-FIELD; NUCLEAR-STRUCTURE; WAVE-FUNCTIONS; OCTUPOLE CORRELATIONS; QUADRUPOLE DYNAMICS; COLLECTIVE MOTION; ROTATIONAL STATES AB We present a method based on mean-field states generated by triaxial quadrupole constraints that are projected on particle number and angular momentum and mixed by the generator coordinate method on the quadrupole moment. This method is equivalent to a seven-dimensional GCM calculation, mixing all five degrees of freedom of the quadrupole operator and the gauge angles for protons and neutrons. A first application to (24)Mg pen-nits a detailed analysis of the effects of triaxial deformations and of K mixing. C1 [Bender, Michael; Heenen, Paul-Henri] Univ Libre Bruxelles, Serv Phys Nucl Theor, B-1050 Brussels, Belgium. [Bender, Michael] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Bender, Michael] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bender, Michael] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Bender, Michael] CEA Saclay, DAPNIA, SPhN, F-91191 Gif Sur Yvette, France. [Bender, Michael] Univ Bordeaux, CEN Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France. [Bender, Michael] CEN Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. RP Bender, M (reprint author), Univ Libre Bruxelles, Serv Phys Nucl Theor, CP 229, B-1050 Brussels, Belgium. RI Bender, Michael/B-9004-2009; OI Heenen, Paul Henri/0000-0003-2357-8465 NR 88 TC 126 Z9 127 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024309 DI 10.1103/PhysRevC.78.024309 PG 16 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700024 ER PT J AU Dragojevic, I Gregorich, KE Dullmann, CE Garcia, MA Gates, M Nelson, SL Stavsetra, L Sudowe, R Nitsche, H AF Dragojevic, I. Gregorich, K. E. Duellmann, Ch. E. Garcia, M. A. Gates, M. Nelson, S. L. Stavsetra, L. Sudowe, R. Nitsche, H. TI Influence of projectile neutron number in the Pb-208(Ti-48,n)(255)Rf and Pb-208(Ti-50,n)(257)Rf reactions SO PHYSICAL REVIEW C LA English DT Article ID DECAY PROPERTIES; ISOTOPES; ELEMENTS; FISSION; FUSION; MODEL AB Four isotopes of rutherfordium, (254-257)Rf, were produced by the Pb-208(Ti-48, xn)(256-x)Rf and Pb-208(Ti-50, xn)(258-x)Rf reactions (x = 1, 2) at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Excitation functions were measured for the 1n and 2n exit channels. A maximum likelihood technique, which correctly accounts for the changing cross section at all energies subtended by the targets, was used to fit the lit data to allow a more direct comparison between excitation functions obtained under different experimental conditions. The maximum 1n cross sections of the Ph-208(Ti-48, n)(255)Rf and Pb-208(Ti-50, n)(257)Rf reactions obtained from fits to the experimental data are 0.38 +/- 0.07 nb and 40 +/- 5 nb, respectively. Excitation functions for the 2n exit channel were also measured, with maximum cross sections of 0.40(-0.17)(+0.27) nb for the Ti-48 induced reaction. and 15.7 +/- 0.2 nb for the "Ti induced reaction. The impact of the two neutron difference in the projectile on the In cross section is discussed. The results are compared to the Fusion by Diffusion model developed by Swiatecki, Wilczynska, and Wilczynski. C1 [Dragojevic, I.; Duellmann, Ch. E.; Garcia, M. A.; Gates, M.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dragojevic, I.; Gregorich, K. E.; Duellmann, Ch. E.; Garcia, M. A.; Gates, M.; Nelson, S. L.; Stavsetra, L.; Sudowe, R.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Duellmann, Ch. E.] Gesell Schwerionenforsch mbH, Abt Kernchem, D-64291 Darmstadt, Germany. RP Dragojevic, I (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 37 TC 31 Z9 31 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024605 DI 10.1103/PhysRevC.78.024605 PG 7 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700035 ER PT J AU Durand, J Julia-Diaz, B Lee, TSH Saghai, B Sato, T AF Durand, J. Julia-Diaz, B. Lee, T. -S. H. Saghai, B. Sato, T. TI Coupled-channels study of the pi(-)p ->eta n process SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; CONSTITUENT QUARK-MODEL; REACTION NEAR-THRESHOLD; WAVE SCATTERING LENGTH; PI-N SCATTERING; MESON PRODUCTION; ETA-N; CROSS-SECTIONS; BARYON RESONANCES; PARTICLE PHYSICS AB The reaction pi(-)p ->eta n is investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region. The meson baryon channels included are phi N, eta N, pi A, sigma N, and rho N. The nonresonant meson-baryon interactions of the model tire derived from a set of Lagrangians by using a unitary transformation method. One or two excited nucleon states in each of S, P, D, and F partial waves are included to generate the resonant amplitudes. Data of the pi(-)p ->eta n. iln reaction from threshold up to a total center-of-mass energy of about 2 GeV are satisfactorily reproduced and the roles played by the following nine nucleon resonances are investigated: S-11(1535), S-11(1650), P-11(1440), P-11(1710), P-13(1720), D-13(1520), D-13(1700), D-15(1675), and F-15(1680). The reaction mechanism and the predicted eta N scattering length are discussed. C1 [Durand, J.; Saghai, B.] CEA Saclay, DSM IRFU, Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Julia-Diaz, B.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Julia-Diaz, B.] Univ Barcelona, Inst Ciencias Cosmos, E-08028 Barcelona, Spain. [Julia-Diaz, B.; Lee, T. -S. H.; Sato, T.] Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 22901 USA. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Sato, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. RP Durand, J (reprint author), CEA Saclay, DSM IRFU, Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. RI Julia-Diaz, Bruno/E-5825-2010; OI Julia-Diaz, Bruno/0000-0002-0145-6734; Saghai, Bijan/0000-0002-9406-4843 FU MEC (Spain) [FIS2005-03142]; FEDER; European Hadron Physics Project [RII3-CT-2004-506078]; U.S. Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH 11357, DE-AC05-060R23177]; Japan Society for the Promotion of Science [20540270]; Japanese Society for the Promotion of Science (JSPS) [PE 07021] FX We are grateful to Bill Briscoe and Ben Nefkens for enlightening discussions on the status of data. The authors thankfully acknowledge the computer resources, technical expertise, and assistance provided by the Barcelona Super-computing Center-Centro Nacional de Supercomputacion (Spain) and NERSC (USA). B.J.-D. thanks the members of the nuclear theory group at Osaka University for their warm hospitality. This work is partially supported by Grant No. FIS2005-03142 from MEC (Spain) and FEDER and the European Hadron Physics Project No. RII3-CT-2004-506078 by the U.S. Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH 11357 and Contract No. DE-AC05-060R23177, under which Jefferson Science Associates operates Jefferson Lab, and by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (c)20540270. B.J.-D. acknowledges the support of the Japanese Society for the Promotion of Science (JSPS). Grant No. PE 07021. NR 81 TC 46 Z9 46 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 025204 DI 10.1103/PhysRevC.78.025204 PG 12 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700057 ER PT J AU Esbensen, H AF Esbensen, H. TI Coulomb excitation at intermediate energies SO PHYSICAL REVIEW C LA English DT Article AB Straight line trajectories are commonly used in semiclassical calculations of the first-order Coulomb excitation cross section at intermediate energies, and simple corrections are often made for the distortion of the trajectories that is caused by the Coulomb field. These approximations are tested by comparing to numerical calculations that use exact Coulomb trajectories. In this paper a model is devised for including relativistic effects in the calculations. It converges at high energies toward the relativistic straight-line trajectory approximation and approaches the non-relativistic Coulomb trajectory calculation at low energies. The model is tested against a number of measurements and analyses that have been performed at beam energies between 30 and 70 MeV/nucleon, primarily of quadrupole excitations. Remarkably good agreement is achieved with the previous analyses, and good agreement is also achieved in the few cases, where the B(E lambda) value is known from other methods. The magnitudes of the relativistic and Coulomb distortion effects are discussed. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 18 TC 7 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024608 DI 10.1103/PhysRevC.78.024608 PG 11 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700038 ER PT J AU Fallis, J Clark, JA Sharma, KS Savard, G Buchinger, F Caldwell, S Crawford, JE Deibel, CM Fisker, JL Gulick, S Hecht, AA Lascar, D Lee, JKP Levand, AF Li, G Lundgren, BF Parikh, A Russell, S de Vorst, MSV Scielzo, ND Segel, RE Sharma, H Sinha, S Sternberg, M Sun, T Tanihata, I Van Schelt, J Wang, JC Wang, Y Wrede, C Zhou, Z AF Fallis, J. Clark, J. A. Sharma, K. S. Savard, G. Buchinger, F. Caldwell, S. Crawford, J. E. Deibel, C. M. Fisker, J. L. Gulick, S. Hecht, A. A. Lascar, D. Lee, J. K. P. Levand, A. F. Li, G. Lundgren, B. F. Parikh, A. Russell, S. de Vorst, M. Scholte-van Scielzo, N. D. Segel, R. E. Sharma, H. Sinha, S. Sternberg, M. Sun, T. Tanihata, I. Van Schelt, J. Wang, J. C. Wang, Y. Wrede, C. Zhou, Z. TI Determination of the proton separation energy of Rh-93 from mass measurements SO PHYSICAL REVIEW C LA English DT Article ID PENNING TRAP; NUCLEOSYNTHESIS AB The proposed vp process, which occurs in the early time proton-rich neutrino winds of core-collapse supernovae, has the potential to resolve the long-standing uncertainty in the production of the light p-nuclei Mo-92 and Mo-94. A recent study incorporating this vp process has indicated that the proton separation energy SP of Rh-93 is especially important in determining the relative production of these two isotopes. To reproduce the observed solar Mo-92/Mo-94 abundance ratio of 1.57 a S-p value for Rh-93 of 1.64 +/- 0.1 MeV is required. The previously unknown masses of Ru-92 and Rh-93 have been measured with the Canadian Penning Trap mass spectrometer resulting in an experimental value for S-p(Rh-93) of 2.007 +/- 0.009 MeV. This implies that with our current understanding of the conditions in core-collapse supernova explosions the vp process is not solely responsible for the observed solar Mo-92/(94) Mo abundance ratio. C1 [Fallis, J.; Clark, J. A.; Sharma, K. S.; Russell, S.; de Vorst, M. Scholte-van; Sharma, H.; Wang, J. C.; Wang, Y.] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada. [Fallis, J.; Clark, J. A.; Savard, G.; Caldwell, S.; Crawford, J. E.; Hecht, A. A.; Lascar, D.; Levand, A. F.; Li, G.; Lundgren, B. F.; Russell, S.; de Vorst, M. Scholte-van; Scielzo, N. D.; Sharma, H.; Sinha, S.; Sternberg, M.; Sun, T.; Tanihata, I.; Van Schelt, J.; Wang, J. C.; Wang, Y.; Zhou, Z.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Clark, J. A.; Deibel, C. M.; Wrede, C.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Savard, G.; Caldwell, S.; Sternberg, M.; Van Schelt, J.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Buchinger, F.; Crawford, J. E.; Gulick, S.; Lee, J. K. P.; Li, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Fisker, J. L.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. [Hecht, A. A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Lascar, D.; Segel, R. E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Parikh, A.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. RP Fallis, J (reprint author), Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada. RI Crawford, John/A-3771-2012 FU NSERC [216974]; U.S. Department of Energy [DE-AC02-06CH 11357]; Argonne National Laboratory [DE-FG02-91ER-40609, DE-FG02-98ER41086]; Northwestern University [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory FX This work was supported by NSERC, Canada, application number 216974, and the U.S. Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH 11357 (Argonne National Laboratory), DE-FG02-91ER-40609 (Yale University), DE-FG02-98ER41086 (Northwestern University), and DE-AC52-07NA27344 (Lawrence Livermore National Laboratory). AP acknowledges support from the DFG Cluster of Excellence "Origin and Structure of the Universe." We also thank John Greene for his target making expertise, as well as all the operators and technical staff of the ATLAS accelerator at Argonne National Laboratory. NR 22 TC 21 Z9 21 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 022801 DI 10.1103/PhysRevC.78.022801 PG 4 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700010 ER PT J AU Greenlees, PT Herzberg, RD Ketelhut, S Butler, PA Chowdhury, P Grahn, T Gray-Jones, C Jones, GD Jones, P Julin, R Juutinen, S Khoo, TL Leino, M Moon, S Nyman, M Pakarinen, J Rahkila, P Rostron, D Saren, J Scholey, C Sorri, J Tandel, SK Uusitalo, J Venhart, M AF Greenlees, P. T. Herzberg, R. -D. Ketelhut, S. Butler, P. A. Chowdhury, P. Grahn, T. Gray-Jones, C. Jones, G. D. Jones, P. Julin, R. Juutinen, S. Khoo, T. -L. Leino, M. Moon, S. Nyman, M. Pakarinen, J. Rahkila, P. Rostron, D. Saren, J. Scholey, C. Sorri, J. Tandel, S. K. Uusitalo, J. Venhart, M. TI High-K structure in (250)Fm and the deformed shell gaps at N=152 and Z=100 SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ELEMENTS; GREAT SPECTROMETER; HEAVIEST ELEMENTS; DECAY; SPECTROSCOPY; ISOMERS; STATES AB The structure of high-spin and nonyrast states of the transfermium nucleus (250)Fm has been studied in detail. The isomeric nature of a two-quasiparticle excitation has been exploited in order to obtain spectroscopic data of exceptional quality. The data allow the configuration of an isomer first discovered over 30 years ago to be deduced, and provide an unambiguous determination of the location of neutron single-particle states in a very heavy nucleus. A comparison to the known two-quasiparticle structure of (254.252)No confirms the existence of the deformed shell gaps at N = 152 and Z = 100. C1 [Greenlees, P. T.; Ketelhut, S.; Grahn, T.; Jones, P.; Julin, R.; Juutinen, S.; Leino, M.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Herzberg, R. -D.; Butler, P. A.; Gray-Jones, C.; Jones, G. D.; Moon, S.; Pakarinen, J.; Rostron, D.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Chowdhury, P.; Tandel, S. K.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Khoo, T. -L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Venhart, M.] Comenius Univ, Dept Nucl Phys & Biophys, Bratislava 84248, Slovakia. RP Greenlees, PT (reprint author), Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. EM ptg@phys.jyu.fi RI Pakarinen, Janne/F-6695-2010; Herzberg, Rolf-Dietmar/E-1558-2011; Scholey, Catherine/G-2720-2014 OI Pakarinen, Janne/0000-0001-8944-8757; Scholey, Catherine/0000-0002-8743-6071 FU Slovak Research and Development Agency [APVV-20-006205]; U.K./France [EPSRC/IN2P3] FX the Slovak Research and Development Agency (Contract No. APVV-20-006205). We also thank the U.K./France (EPSRC/IN2P3) detector Loan Pool, the gamma-pool network and GSI for the use of detectors. Enlightening discussions with P.-H. Heenen, A Bender, and J. Dobaczewski are gratefully acknowledged. NR 33 TC 55 Z9 56 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 021303 DI 10.1103/PhysRevC.78.021303 PG 5 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700004 ER PT J AU Guzey, V AF Guzey, V. TI Neutron contribution to nuclear deeply virtual Compton scattering asymmetries SO PHYSICAL REVIEW C LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; HARD EXCLUSIVE ELECTROPRODUCTION; ELASTIC ELECTRON-SCATTERING; MESONS; PIONS; DEUTERON; QCD AB Using a simple model for nuclear generalized parton distributions (GPDs), we study the role of the neutron contribution to nuclear deeply virtual Compton scattering (DVCS) observables. As an example, we use the beam-spin asymmetry A(LU)(A) measured in coherent and incoherent DVCS on a wide range of nuclear targets in the HERMES and JLab kinematics. We find that at small values of the momentum transfer t, A(LU)(A) is dominated by the coherent-entiched contribution, which enhances A(LU)(A) compared to the free proton asymmetry A(LU)(P) A(LU)(A) (phi)/A(LU)(p)(phi)= 1.8-2.2. At large values of t, the nuclear asymmetry is dominated by the incoherent contribution and A(LU)(A)/(phi)A(LU)(p)(phi) = 0.66-0.74. The deviation of A(LU)(A)(phi)/A(LU)(p)(phi) from unity at large t is a result of the neutron contribution, which gives a possibility to constrain neutron GPDs in incoherent nuclear DVCS. A similar trend is expected for other DVCS asymmetries. C1 Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Guzey, V (reprint author), Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. EM vguzey@jlab.org OI Guzey, Vadim/0000-0002-2393-8507 FU Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX We would like to thank H. Egiyan, F. X. Girod, H. Guler, K. Hafidi, D. Hash, M. Strikman, and H. Ye for useful and encouraging discussions. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 55 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 025211 DI 10.1103/PhysRevC.78.025211 PG 11 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700064 ER PT J AU Hayes, AC Friar, JL Moller, P AF Hayes, A. C. Friar, J. L. Moller, P. TI Splitting sensitivity of the ground and 7.6 eV isomeric states of (229)Th SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR; TRANSITION; MASSES AB The lowest-known excited state in nuclei is the 7.6 eV. isomer of (229)Th. This energy is within the range of laser-based investigations that could allow accurate measurements of possible temporal variation of this energy splitting. This in turn could probe temporal variation of the fine-structure constant or other parameters in the nuclear Hamiltonian. We investigate the sensitivity of this transition energy to these quantities. We find that the two states are predicted to have identical deformations and thus the same Coulomb energies within the accuracy of the model (viz., within roughly 30 keV). We therefore find no enhanced sensitivity to variation of the fine-structure constant. In the case of the strong interaction the energy splitting is found to have a complicated dependence on several parameters of the interaction, which makes an accurate prediction of sensitivity to temporal changes of fundamental constants problematical. Neither the strong- nor Coulomb-interaction contributions to the energy splitting of this doublet can be constrained within an accuracy better than a few tens of keV, so that only upper limits can be set on the possible sensitivity to temporal variations of the fundamental constants. C1 [Hayes, A. C.; Friar, J. L.; Moller, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hayes, AC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 10 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024311 DI 10.1103/PhysRevC.78.024311 PG 4 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700026 ER PT J AU Iwasa, N Motobayashi, T Bishop, S Elekes, Z Gibelin, J Hosoi, M Ieki, K Ishikawa, K Iwasaki, H Kawai, S Kubono, S Kurita, K Kurokawa, M Matsui, N Minemura, T Morikawa, H Nakamura, T Niikura, M Notani, M Ota, S Saito, A Sakurai, H Shimoura, S Sugawara, K Sugimoto, T Suzuki, H Suzuki, T Tanihata, I Takeshita, E Teranishi, T Togano, Y Yamada, K Yamaguchi, K Yanagisawa, Y AF Iwasa, N. Motobayashi, T. Bishop, S. Elekes, Z. Gibelin, J. Hosoi, M. Ieki, K. Ishikawa, K. Iwasaki, H. Kawai, S. Kubono, S. Kurita, K. Kurokawa, M. Matsui, N. Minemura, T. Morikawa, H. Nakamura, T. Niikura, M. Notani, M. Ota, S. Saito, A. Sakurai, H. Shimoura, S. Sugawara, K. Sugimoto, T. Suzuki, H. Suzuki, T. Tanihata, I. Takeshita, E. Teranishi, T. Togano, Y. Yamada, K. Yamaguchi, K. Yanagisawa, Y. TI Large proton contribution to the 2(+) excitation in Mg-20 studied by intermediate energy inelastic scattering SO PHYSICAL REVIEW C LA English DT Article ID RICH OXYGEN ISOTOPES; GIANT-RESONANCES; COULOMB-EXCITATION; NEUTRON; TRANSITION; NUCLEI; PB-208; DEFORMATION; RIKEN; MEV/U AB Coulomb excitation of the proton-rich nucleus Mg-20 was studied using a radioactive Mg-20 beam at 58A MeV impinging on a lead target. The reduced transition probability B(E2; 0(g.s.)(+) -> 2(1)(+)) was extracted to be 177(32) e(2) fm(4), which agrees with the theoretical predictions by a cluster model assuming O-16 + 2p + 2p structure, a mean-field approach based on the angular momentum projected generator coordinate method, and the USD shell model. The ratio of the neutron-to-proton multipole matrix elements M-n/M-P in the mirror nucleus O-20 was deduced to be 2.51(25) with the M-n value evaluated from the measured B(E2) value for Mg-20 with the help of isospin symmetry. The results confirm the large M-n/M-p value previously reported in O-20, leading to the dominant role of the four valence nucleons in the 2(1)(+) excitation and persistence of the O-16 core in O-20 and Mg-20. C1 [Iwasa, N.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Motobayashi, T.; Bishop, S.; Elekes, Z.; Kurokawa, M.; Minemura, T.; Sakurai, H.; Yamada, K.; Yanagisawa, Y.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Elekes, Z.] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary. [Gibelin, J.; Ieki, K.; Kawai, S.; Kurita, K.; Morikawa, H.; Takeshita, E.; Togano, Y.; Yamaguchi, K.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Gibelin, J.] CNRS, IN2P3, Inst Phys Nucl, F-91406 Orsay, France. [Hosoi, M.; Sugawara, K.; Suzuki, T.] Saitama Univ, Dept Phys, Saitama 3388570, Japan. [Ishikawa, K.; Matsui, N.; Nakamura, T.; Sugimoto, T.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Iwasaki, H.; Suzuki, H.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Kubono, S.; Niikura, M.; Ota, S.; Saito, A.; Shimoura, S.] Univ Tokyo, Ctr Nucl Study, Wako, Saitama 3510198, Japan. [Notani, M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Ota, S.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Tanihata, I.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Teranishi, T.] Kyushu Univ, Dept Phys, Fukuoka 8128581, Japan. RP Iwasa, N (reprint author), Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. RI Teranishi, Takashi/D-2166-2012; Shimoura, Susumu/E-8692-2012; Elekes, Zoltan/J-4531-2012; SAKURAI, HIROYOSHI/G-5085-2014; Nakamura, Takashi/N-5390-2015 OI Shimoura, Susumu/0000-0003-4741-2865; Nakamura, Takashi/0000-0002-1838-9363 FU Young Scientists of the Japan Ministry of Education, Science, Sports, and Culture [(B)14740149] FX We would like to thank the staff of the RIKEN Nishina Center for their help during the experiment. The present work was partly supported by the Grant-in-Aid for Young Scientists of the Japan Ministry of Education, Science, Sports, and Culture under the program no. (B)14740149. NR 26 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024306 DI 10.1103/PhysRevC.78.024306 PG 5 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700021 ER PT J AU Lin, T Elster, C Polyzou, WN Witala, H Glockle, W AF Lin, T. Elster, Ch. Polyzou, W. N. Witala, H. Gloeckle, W. TI Poincare invariant three-body scattering at intermediate energies SO PHYSICAL REVIEW C LA English DT Article ID ANGULAR-MOMENTUM DECOMPOSITION; BOUND-STATE; DEUTERON BREAKUP; PARTICLES; POTENTIALS; EQUATIONS AB The Faddeev equation for three-nucleon scattering, based on an exactly Poincare invariant formulation of quantum mechanics, is solved for projectile energies LIP to 2 GeV. As in the nonrelativistic three-body problem, the three-body dynamics is determined, up to three-body interactions, by the two-body dynamics and cluster properties. The two-body interactions are determined, up to a unitary scattering equivalence, by two-body scattering data, which in our application are generated by a nonrelativistic Malfliet-Tjon interaction. The Faddeev equation is directly solved in a kinematic momentum representation without employing a partial-wave decomposition. The solution of the Faddeev equation is generated using Pade summation, and the numerical feasibility and stability of the solution is demonstrated. Scattering observables for elastic and breakup scattering are calculated for projectile energies in the intermediate energy range up to 2 GeV, and compared with their nonrelativistic counterparts. The convergence of the multiple scattering series is investigated as a function of the projectile energy in different scattering observables and configurations. The complementary roles of kinematic and dynamical contributions to our Poincare invariant model are investigated. Approximations to the two-body interaction embedded in the three-particle space are compared with the exact treatment. C1 [Lin, T.; Elster, Ch.] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. [Lin, T.; Elster, Ch.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Elster, Ch.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Polyzou, W. N.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Witala, H.] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland. [Gloeckle, W.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. RP Lin, T (reprint author), Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. RI Elster, Charlotte/N-9845-2015 FU Ohio Supercomputer Center (OSC) [PHS206]; U.S. Department of Energy, Office of Nuclear Physics [DE-FG02-93ER40756]; Ohio University [DE-FG02-86ER40286]; University of Iowa [DE-AC02-06CH11357]; Argonne National Laboratory; Helmholtz Association [VH-VI-231] FX We thank the Ohio Supercomputer Center (OSC) for the use of their facilities under Grant No. PHS206. Part of the numerical calculations were performed on the IBM Regatta p690+ of the NIC in Julich, Germany. This work was performed in part under the auspices of the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-FG02-93ER40756 with Ohio University, Contract No. DE-FG02-86ER40286 with the University of Iowa, and Contract No. DE-AC02-06CH11357 with Argonne National Laboratory. It was also partially supported by the Helmholtz Association through funds provided to the virtual institute "Spin and Strong QCD" (VH-VI-231). NR 36 TC 23 Z9 23 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024002 DI 10.1103/PhysRevC.78.024002 PG 19 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700013 ER PT J AU Mocko, M Tsang, MB Lacroix, D Ono, A Danielewicz, P Lynch, WG Charity, RJ AF Mocko, M. Tsang, M. B. Lacroix, D. Ono, A. Danielewicz, P. Lynch, W. G. Charity, R. J. TI Transport model simulations of projectile fragmentation reactions at 140 MeV/nucleon SO PHYSICAL REVIEW C LA English DT Article ID ANTISYMMETRIZED MOLECULAR-DYNAMICS; HEAVY-ION COLLISIONS; NUCLEAR FRAGMENTATION; MULTIFRAGMENTATION AB The collisions in four different reaction systems using (40,48)Ca and (58,64)Ni isotope beams and a Be target have been simulated using the heavy ion phase space exploration and the anti symmetrized molecular dynamics models. The present study mainly focuses oil the model predictions for the excitation energies of the hot fragments and the cross sections of the final fragments produced in these reactions. The effects of various factors influencing the final fragment cross sections, such as the choice of the statistical decay code and its parameters. have been explored. The predicted fragment cross sections are compared to the projectile fragmentation cross sections measured with the A 1900 mass separator. At E/A = 140 MeV. reaction dynamics can significantly modify the detection efficiencies for the fragments and make them different from the efficiencies applied to the measured data reported in the previous work. The effects of efficiency corrections on the validation of event generator codes are discussed in the context of the two models. C1 [Mocko, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mocko, M.; Tsang, M. B.; Lacroix, D.; Danielewicz, P.; Lynch, W. G.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Mocko, M.; Tsang, M. B.; Lacroix, D.; Danielewicz, P.; Lynch, W. G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lacroix, D.] CNRS, IN2P3, CEA, GANIL, F-14021 Caen, France. [Ono, A.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Charity, R. J.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. RP Mocko, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lynch, William/I-1447-2013; Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012 OI Lynch, William/0000-0003-4503-176X; Mocko, Michael/0000-0003-0447-4687; FU National Science Foundation [PHY-01-10253, PHY-0606007, DE-FG02-04ER41313] FX A. Ono and D. Lacroix thank the National Superconducting Cyclotron Laboratory at Michigan State University for the support and hospitality during their sabbatical stays in 2005-2006 (A.O.) and 2006-2007 (D.L.). We would like to acknowledge the High Performance Computing Center [37] at Michigan State University for facilitating CPU-intensive calculations with the AMD code. This work is supported by the National Science Foundation under Grant Nos. PHY-01-10253, PHY-0606007, and DE-FG02-04ER41313. NR 33 TC 39 Z9 41 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024612 DI 10.1103/PhysRevC.78.024612 PG 12 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700042 ER PT J AU Nelson, SL Folden, CM Gregorich, KE Dragojevic, I Dullmann, CE Eichler, R Garcia, MA Gates, JM Sudowe, R Nitsche, H AF Nelson, S. L. Folden, C. M., III Gregorich, K. E. Dragojevic, I. Duellmann, Ch. E. Eichler, R. Garcia, M. A. Gates, J. M. Sudowe, R. Nitsche, H. TI Comparison of complementary reactions for the production of (261,262)Bh SO PHYSICAL REVIEW C LA English DT Article ID DECAY PROPERTIES; ELEMENT 107; NUCLEAR; FUSION AB Two heavy-ion induced fusion reactions producing (261,262)Bh were studied using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. An excitation function for the production of (262)Bh via the reaction (209)Bi ((54)Cr, n)(262)Bh was measured with a maximum cross section from a fit to the data of 430 +/- 110 pb observed at a compound nucleus excitation energy of 15.7 MeV. New data have been measured for the In exit channel of the (208)Pb((55)Mn, n)(262)Bh reaction. We present an updated excitation function with an observed maximum cross section of 530 100 pb at a compound nucleus excitation energy of 14.1 MeV. Events corresponding to the 2n exit channel for the (209)Bi ((54)Cr, 2n)(261)Bh and (208)Pb((261)Mn, 2n)(261)Bh reactions were also observed and are presented as partial excitation functions. The measured decay properties correspond well with existing experimental data. We compare these experimental results to cross section predictions from a model by Swiatecki et al. and discuss entrance channel effects on the magnitude of 1n cross sections. C1 [Nelson, S. L.; Folden, C. M., III; Gregorich, K. E.; Dragojevic, I.; Duellmann, Ch. E.; Garcia, M. A.; Gates, J. M.; Sudowe, R.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Nelson, S. L.; Folden, C. M., III; Dragojevic, I.; Duellmann, Ch. E.; Garcia, M. A.; Gates, J. M.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Duellmann, Ch. E.] Gesell Schwerionenforsch mbH, Bereich Kernchem, D-64291 Darmstadt, Germany. [Eichler, R.] Paul Scherrer Inst, Labor Radio & Umweltchem, CH-5232 Villigen, Switzerland. [Eichler, R.] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. RP Nelson, SL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RI Eichler, Robert/G-5130-2011; Folden, Charles/F-1033-2015 OI Folden, Charles/0000-0002-2814-3762 FU Office of High Energy and Nuclear Physics; U.S. Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation [PA002-104962] FX We would like to thank D. Leitner and the operations staff of the 88-Inch Cyclotron for providing intense, stable beams of 54Cr and 55Mn for these experiments. The authors also wish to express their thanks to W. J. Swiatecki for his theoretical predictions and stimulating discussion, and the target laboratory at the GSI for the targets used in these studies. This work was supported in part by the Director, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy, under contract DE-AC02-05CH11231. R.E. acknowledges the financial support of the Swiss National Science Foundation (PA002-104962). NR 34 TC 11 Z9 11 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024606 DI 10.1103/PhysRevC.78.024606 PG 8 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700036 ER PT J AU Pattabiraman, NS Jenkins, DG Bentley, MA Wadsworth, R Lister, CJ Carpenter, MP Janssens, RVF Khoo, TL Lauritsen, T Seweryniak, D Zhu, S Lotay, G Woods, PJ Krishichayan Van Isacker, P AF Pattabiraman, N. S. Jenkins, D. G. Bentley, M. A. Wadsworth, R. Lister, C. J. Carpenter, M. P. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Seweryniak, D. Zhu, S. Lotay, G. Woods, P. J. Krishichayan Van Isacker, P. TI Analog E1 transitions and isospin mixing SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; P-31 AB We investigate whether isospin mixing can be determined in a model-independent way from the relative strength of E1 transitions in mirror nuclei. The specific examples considered are the A = 31 and A = 35 mirror pairs, where a serious discrepancy between the strengths of 7/2(-) -> 5/2(+) transitions in the respective mirror nuclei has been observed. A theoretical analysis of the problem suggests that it ought to be possible to disentangle the isospin mixing in the initial and final states given sufficient information on experimental matrix elements. With this in mind, we obtain a lifetime for the relevant 7/2(-) state in S-31 using the Doppler-shift attenuation method. We then collate the available information on matrix elements to examine the level of isospin mixing for both A = 31 and A = 35 mirror pairs. C1 [Pattabiraman, N. S.; Jenkins, D. G.; Bentley, M. A.; Wadsworth, R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Lotay, G.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Krishichayan] UGC, DAE, CSR, Kolkata 700098, India. [Van Isacker, P.] CEA, DSM, CNRS,IN2P3, Grand Accelerateur Natl Ions Lourds, F-14076 Caen 5, France. RP Pattabiraman, NS (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RI Chayan, Krishi/B-4889-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH 11357] FX This work was supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH 11357, and by the UK EPSRC. NR 24 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 024301 DI 10.1103/PhysRevC.78.024301 PG 8 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700016 ER PT J AU Psaker, A Melnitchouk, W Christy, ME Keppel, C AF Psaker, A. Melnitchouk, W. Christy, M. E. Keppel, C. TI Quark-hadron duality and truncated moments of nucleon structure functions SO PHYSICAL REVIEW C LA English DT Article ID Q(2) EVOLUTION-EQUATIONS; INELASTIC EP SCATTERING; PARTON DISTRIBUTIONS; PERTURBATION-THEORY; FREEDOM AB We employ a novel new approach to study local quark-hadron duality using "truncated" moments, or integrals of structure functions over restricted regions of x, to determine the degree to which individual resonance regions are dominated by leading twist. Because truncated moments obey the same Q(2) evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD. C1 [Psaker, A.; Melnitchouk, W.; Keppel, C.] Jefferson Lab, Newport News, VA 23606 USA. [Psaker, A.; Christy, M. E.; Keppel, C.] Hampton Univ, Hampton, VA 23668 USA. [Psaker, A.] Amer Univ Nigeria, Yola, Nigeria. RP Psaker, A (reprint author), Jefferson Lab, Newport News, VA 23606 USA. FU U.S. Department of Energy [DE-AC05-06OR23177]; National Science Foundation [0400332] FX We thank I. Clout for helpful communications, and S. Kumano for providing the Q2 evolution code from Ref. [9]. This work was supported by the U.S. Department of Energy contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates the Thomas Jefferson National Accelerator Facility, and National Science Foundation grant 0400332. NR 32 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 025206 DI 10.1103/PhysRevC.78.025206 PG 9 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700059 ER PT J AU Santoro, JP Smith, ES Garcon, M Guidal, M Laget, JM Weiss, C Adams, G Amaryan, MJ Anghinolfi, M Asryan, G Audit, G Avakian, H Bagdasaryan, H Baillie, N Ball, J Ball, JP Baltzell, NA Barrow, S Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bonner, BE Bookwalter, C Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bueltmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Casey, L Cazes, A Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Cords, D Corvisiero, P Crabb, D Crannell, H Crede, V Cummings, JP Dale, D Dashyan, N De Masi, R De Sanctis, E De Vita, R Degtyarenko, PV Denizli, H Dennis, L Deur, A Dhamija, S Dharmawardane, KV Dhuga, KS Dickson, R Djalali, C Dodge, GE Doughty, D Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fatemi, R Fedotov, G Feuerbach, RJ Ficenec, J Forest, TA Fradi, A Funsten, H Gavalian, G Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Gordon, CIO Gothe, RW Graham, L Griffioen, KA Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Keller, D Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, V Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Lachniet, J Langheinrich, J Lawrence, D Li, J Livingston, K Lu, HY MacCormick, M Marchand, C Markov, N Mattione, P McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mehrabyan, S Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Morand, L Moreno, B Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Paterson, C Pereira, SA Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Popa, I Pozdniakov, S Preedom, BM Price, JW Procureur, S Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Sapunenko, V Schott, D Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Skabelin, AV Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S TaiUti, M Tedeschi, DJ Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yurov, M Zana, L Zhang, J Zhao, B Zhao, ZW AF Santoro, J. P. Smith, E. S. Garcon, M. Guidal, M. Laget, J. M. Weiss, C. Adams, G. Amaryan, M. J. Anghinolfi, M. Asryan, G. Audit, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. Ball, J. P. Baltzell, N. A. Barrow, S. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bonner, B. E. Bookwalter, C. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Cazes, A. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Cords, D. Corvisiero, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dale, D. Dashyan, N. De Masi, R. De Sanctis, E. De Vita, R. Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dhamija, S. Dharmawardane, K. V. Dhuga, K. S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fatemi, R. Fedotov, G. Feuerbach, R. J. Ficenec, J. Forest, T. A. Fradi, A. Funsten, H. Gavalian, G. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Gordon, C. I. O. Gothe, R. W. Graham, L. Griffioen, K. A. Guillo, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Keller, D. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Langheinrich, J. Lawrence, D. Li, Ji Livingston, K. Lu, H. Y. MacCormick, M. Marchand, C. Markov, N. Mattione, P. McAleer, S. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mehrabyan, S. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Morand, L. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. O'Rielly, G. V. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Philips, S. A. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Popa, I. Pozdniakov, S. Preedom, B. M. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Qin, L. M. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Sapunenko, V. Schott, D. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Skabelin, A. V. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. TaiUti, M. Tedeschi, D. J. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Yurov, M. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. TI Electroproduction of phi(1020) mesons at 1.4 <= Q(2) <= 3.8 GeV(2) measured with the CLAS spectrometer SO PHYSICAL REVIEW C LA English DT Article ID LARGE MOMENTUM-TRANSFER; VECTOR-MESONS; EXCLUSIVE ELECTROPRODUCTION; PHI-MESONS; HERA; PHOTOPRODUCTION; QCD; LEPTOPRODUCTION; SCATTERING; HYDROGEN AB Electroproduction of exclusive phi vector mesons has been studied with the CLAS detector in the kinematic range 1.4 <= Q(2) <= 3.8 GeV(2), 0.0 <= t' <= 3.6 GeV(2), and 2.0 <= W <= 3.0 GeV. The scaling exponent for the total cross section as 1/(Q(2) + M(phi)(2))(n) was determined to be n = 2.49 +/- 0.33. The slope of the four-momentum transfer t' distribution is b(phi) = 0.98 +/- 0.17 GeV(-2). Under the assumption of s-channel helicity conservation, we determine the ratio of longitudinal to transverse cross sections to be R = 0.86 +/- 0.24. A two-gluon exchange model is able to reproduce the main features of the data. C1 [Santoro, J. P.; Ficenec, J.; Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Santoro, J. P.; Casey, L.; Cheng, L.; Crannell, H.; Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Smith, E. S.; Laget, J. M.; Weiss, C.; Avakian, H.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Cords, D.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Hardie, J.; Heddle, D.; Ito, M. M.; Joo, K.; Kramer, L. H.; Kubarovsky, V.; Mokeev, V.; Nozar, M.; Raue, B. A.; Sapunenko, V.; Sharabian, Y. G.; Stepanyan, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Garcon, M.; Audit, G.; Ball, J.; De Masi, R.; Marchand, C.; Morand, L.; Morrow, S. A.; Procureur, S.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Guidal, M.; Bouchigny, S.; Fradi, A.; Hadjidakis, C.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Krahn, Z.; Kuhn, J.; Lachniet, J.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Doughty, D.; Hardie, J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Joo, K.; Markov, N.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Barrow, S.; Blaszczyk, L.; Bookwalter, C.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Riccardi, G.; Saini, M. S.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA. [Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; Paterson, C.; Protopopescu, D.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; TaiUti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Univ Bonn, Inst Strahlen & Kernphys, D-5300 Bonn, Germany. [Bedlinskiy, I.; Boiarinov, S.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Niculescu, G.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Skabelin, A. V.] MIT, Cambridge, MA 02139 USA. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Calarco, J. R.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Hleiqawi, I.; Keller, D.; Mibe, T.; Niculescu, G.; Niroula, M. R.; Niyazov, R. A.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Lachniet, J.; Qin, L. M.] Old Dominion Univ, Norfolk, VA 23529 USA. [Denizli, H.; Dytman, S.; Mueller, J.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Adams, G.; Biselli, A. S.; Cummings, J. P.; Kuhn, J.; Li, Ji; Niyazov, R. A.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Bonner, B. E.; Mestayer, M. D.; Mutchler, G. S.; Stoler, P.] Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. [Brooks, W. K.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Baltzell, N. A.; Cazes, A.; Djalali, C.; Dzyubak, O. P.; Graham, L.; Guillo, M.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Park, K.; Preedom, B. M.; Strauch, S.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. Union Coll, Schenectady, NY 12308 USA. [Crabb, D.; Fatemi, R.; Minehart, R.; Pierce, J.; Pocanic, D.; Prok, Y.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Butuceanu, C.; Egiyan, H.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, RU-119899 Moscow, Russia. RP Santoro, JP (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Hyde, Charles/0000-0001-7282-8120; Bellis, Matthew/0000-0002-6353-6043; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Ireland, David/0000-0001-7713-7011; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a I'Energie Atomique; Korean Science and Engineering Foundation; Southeastern Universities Research Association (SURA) [DE-AC05-84ER40150] FX We acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at JLab that made this experiment possible. This work was supported in part by the U.S. Department of Energy, the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a I'Energie Atomique, and the Korean Science and Engineering Foundation. The Southeastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150. NR 42 TC 26 Z9 26 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 025210 DI 10.1103/PhysRevC.78.025210 PG 14 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700063 ER PT J AU Visser, DW Wrede, C Caggiano, JA Clark, JA Deibel, CM Lewis, R Parikh, A Parker, PD AF Visser, D. W. Wrede, C. Caggiano, J. A. Clark, J. A. Deibel, C. M. Lewis, R. Parikh, A. Parker, P. D. TI Measurement of (23)Mg(p, gamma)(24)Al resonance energies (vol 76, 065803, 2007) SO PHYSICAL REVIEW C LA English DT Correction ID DRAGON FACILITY; ISAC AB Using recent data we reduce the systematic uncertainty in our measurement [Phys. Rev. C 76, 065803 (2007)] of the excitation energy of the second level above the proton threshold in (24)Al and find it to be 2523(3) keV, a factor of two improvement over our previously reported value of 2524(6) keV. C1 [Visser, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Wrede, C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Wrede, C.; Caggiano, J. A.; Clark, J. A.; Deibel, C. M.; Lewis, R.; Parikh, A.; Parker, P. D.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Visser, DW (reprint author), Microsoft Corp, Redmond, WA 98052 USA. EM wrede@u.washington.edu RI Visser, Dale/A-8117-2009 OI Visser, Dale/0000-0002-2891-4731 FU U.S. Department of Energy [DE-FG02-91ER40609, DE-FG02-97ER41020] FX This work was supported by the U.S. Department of Energy under grants DE-FG02-91ER40609 and DE-FG02-97ER41020. NR 14 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 028802 DI 10.1103/PhysRevC.78.028802 PG 2 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700084 ER PT J AU Wiringa, RB Schiavilla, R Pieper, SC Carlson, J AF Wiringa, R. B. Schiavilla, R. Pieper, Steven C. Carlson, J. TI Dependence of two-nucleon momentum densities on total pair momentum SO PHYSICAL REVIEW C LA English DT Article ID MONTE-CARLO CALCULATIONS; NUCLEI AB Two-nucleon momentum distributions are calculated for the ground states of 3 He and 4 He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range 300-500 MeV/c and vanishing total momentum. However, as the total momentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for (3)He and 1/4 for (4)He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A (e, e(1) pN). C1 [Wiringa, R. B.; Pieper, Steven C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schiavilla, R.] Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wiringa, RB (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Wiringa, Robert/M-4970-2015 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH 11357, DE-AC05-06OR23177, DE-AC52-06NA25396]; SciDAC [DE-FC02-07ER41457]; Argonne's Laboratory Computing Resource Center FX A stimulating conversation with L. Weinstein is gratefully acknowledged by one of the authors (R.S.). This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts DE-AC02-06CH 11357 (R.B.W. and S.C.P.), DE-AC05-06OR23177 (R.S.), DE-AC52-06NA25396 (J.C.), and SciDAC grant DE-FC02-07ER41457. The calculations were made at Argonne's Laboratory Computing Resource Center. NR 16 TC 21 Z9 21 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2008 VL 78 IS 2 AR 021001 DI 10.1103/PhysRevC.78.021001 PG 3 WC Physics, Nuclear SC Physics GA 350QR UT WOS:000259368700001 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Datta, M Davies, T De Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, J Lee, YJ Lee, SW Leone, S Levy, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, J Morlok, J Fernandez, PM MuLmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Rthwein, FW Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weter, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Datta, M. Davies, T. De Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Ruzza, B. Di Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, J. Lee, Y. J. Lee, S. W. Leone, S. Levy, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, J. Morlok, J. Fernandez, P. Movilla MuLmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. Remortel, N. Van Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Rthwein, F. Wu Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weter, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for standard model Higgs boson production in association with a W boson at CDF SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; UPGRADE; DETECTOR; TEV AB We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (p (p) over bar ->(WH)-H-+/-->center dot nu b (b) over bar) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector which correspond to an integrated luminosity of approximately 1 fb(-1). We select events consistent with a signature of a single lepton (e(+/-)/mu(+/-)), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method and a neural network filter technique. The observed number of events and the dijet mass distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching ratio ranging from 3.9 to 1.3 pb for Higgs boson masses from 110 to 150 GeV/c(2), respectively. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. Van] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. Van] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Rthwein, F. Wu; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Nucl Res Inst, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Weter, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; MuLmenstadt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Haber, C.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Ciobanu, C. I.; Di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3, LPNHE, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Chuang, S. H.; Dorigo, T.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Ruzza, B. Di; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Han, J. Y.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Cauz, D.; Ruzza, B. Di; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987 NR 30 TC 10 Z9 10 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 032008 DI 10.1103/PhysRevD.78.032008 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300012 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Geffert, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmensta, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patel, R Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Rthwein, FW Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Geffert, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Mulmensta, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patel, R. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Rthwein, F. Wu Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for heavy, long-lived neutralinos that decay to photons at CDF II using photon timing SO PHYSICAL REVIEW D LA English DT Article ID P(P)OVER-BAR COLLISIONS; E(+)E(-) COLLISIONS; HADRON COLLIDERS; ROOT-S=1.96 TEV; SUPERSYMMETRY; ENERGY; FERMILAB; BREAKING; PHYSICS; EVENTS AB We present the results of the first hadron collider search for heavy, long-lived neutralinos that decay via chi(0)(1)->gamma G in gauge-mediated supersymmetry breaking models. Using an integrated luminosity of 570 +/- 34 pb(-1) of p (p) over bar collisions at root s=1.96 TeV, we select gamma+jet+missing transverse energy candidate events based on the arrival time of a high-energy photon at the electromagnetic calorimeter as measured with a timing system that was recently installed on the CDF II detector. We find 2 events, consistent with the background estimate of 1.3 +/- 0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits and place the world-best 95% C.L. lower limit on the chi(0)(1) mass of 101 GeV/c(2) at tau(0)(chi 1)=5 ns. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Forrest, R.; Ivanov, A.; Johnson, W.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Rthwein, F. Wu; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Frisch, H.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Anastassov, A.; Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Mulmensta, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Ciobanu, C. I.; Di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3 CNRS, LPNHE, UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Univ Pisa, Univ Siena, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Geffert, P.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Patel, R.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Grinstein, Sebastian/N-3988-2014; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; NR 44 TC 17 Z9 17 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 032015 DI 10.1103/PhysRevD.78.032015 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300019 ER PT J AU Abouzaid, E Arenton, M Barker, AR Bellantoni, L Blucher, E Bock, GJ Cheu, E Coleman, R Corcoran, MD Corti, G Cox, B Erwin, AR Escobar, CO Glazov, A Golossanov, A Gomes, RA Gouffon, P Hsiung, YB Jensen, DA Kessler, R Kotera, K Ledovskoy, A McBride, PL Monnier, E Nguyen, H Niclasen, R Phillips, DG Ping, H Ramberg, EJ Ray, RE Ronquest, M Santos, E Shields, J Slater, W Smith, D Solomey, N Swallow, EC Toale, PA Tschirhart, R Velissaris, C Wah, YW Wang, J White, HB Whitmore, J Wilking, M Winston, R Worcester, ET Worcester, M Yamanaka, T Zimmerman, ED Zukanovich, RF AF Abouzaid, E. Arenton, M. Barker, A. R. Bellantoni, L. Blucher, E. Bock, G. J. Cheu, E. Coleman, R. Corcoran, M. D. Corti, G. Cox, B. Erwin, A. R. Escobar, C. O. Glazov, A. Golossanov, A. Gomes, R. A. Gouffon, P. Hsiung, Y. B. Jensen, D. A. Kessler, R. Kotera, K. Ledovskoy, A. McBride, P. L. Monnier, E. Nguyen, H. Niclasen, R. Phillips, D. G., II Ping, H. Ramberg, E. J. Ray, R. E. Ronquest, M. Santos, E. Shields, J. Slater, W. Smith, D. Solomey, N. Swallow, E. C. Toale, P. A. Tschirhart, R. Velissaris, C. Wah, Y. W. Wang, J. White, H. B. Whitmore, J. Wilking, M. Winston, R. Worcester, E. T. Worcester, M. Yamanaka, T. Zimmerman, E. D. Zukanovich, R. F. CA Ktev Collaboration TI Search for the rare decay K(L)->pi(0)pi(0)gamma SO PHYSICAL REVIEW D LA English DT Article ID CP VIOLATION AB The KTeV E799 experiment has conducted a search for the rare decay K(L)->pi(0)pi(0)gamma via the topology K(L)->pi(0)pi(0)(D)gamma (where pi(0)(D)->gamma e(+)e(-)). Because of Bose statistics of the pi(0) pair and the real nature of the photon, the K(L)->pi(0)pi(0)gamma decay is restricted to proceed at lowest order by the CP conserving direct emission (DE) of an E2 electric quadrupole photon. The rate of this decay is interesting theoretically since chiral perturbation theory predicts that this process vanishes at level O(p(4)). Therefore, this mode probes chiral perturbation theory at O(p(6)). In this paper we report a determination of an upper limit of 2.43x10(-7) (90% CL) for K(L)->pi(0)pi(0)gamma. This is approximately a factor of 20 lower than previous results. C1 [Arenton, M.; Corti, G.; Cox, B.; Golossanov, A.; Ledovskoy, A.; Phillips, D. G., II; Ronquest, M.; Shields, J.; Smith, D.] Univ Virginia, Charlottesville, VA 22901 USA. [Cheu, E.; Wang, J.; Ktev Collaboration] Univ Arizona, Tucson, AZ 85721 USA. [Slater, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Escobar, C. O.; Gomes, R. A.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Abouzaid, E.; Blucher, E.; Glazov, A.; Kessler, R.; Monnier, E.; Solomey, N.; Swallow, E. C.; Wah, Y. W.; Winston, R.; Worcester, E. T.; Worcester, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Barker, A. R.; Niclasen, R.; Toale, P. A.; Wilking, M.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Swallow, E. C.] Elmhurst Coll, Elmhurst, IL 60126 USA. [Bellantoni, L.; Bock, G. J.; Coleman, R.; Golossanov, A.; Hsiung, Y. B.; Jensen, D. A.; McBride, P. L.; Nguyen, H.; Ramberg, E. J.; Ray, R. E.; Tschirhart, R.; White, H. B.; Whitmore, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kotera, K.; Yamanaka, T.] Osaka Univ, Osaka 5600043, Japan. [Corcoran, M. D.] Rice Univ, Houston, TX 77005 USA. [Gouffon, P.] Univ Sao Paulo, BR-05315970 Sao Paulo, Brazil. [Ping, H.; Velissaris, C.] Univ Wisconsin, Madison, WI 53706 USA. [Monnier, E.] CNRS, CPP Marseille, F-75700 Paris, France. RP Smith, D (reprint author), Univ Virginia, Charlottesville, VA 22901 USA. EM poldybloom@yahoo.com RI Gomes, Ricardo/B-6899-2008; Zukanovich Funchal, Renata/C-5829-2013; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Gomes, Ricardo/0000-0003-0278-4876; Zukanovich Funchal, Renata/0000-0001-6749-0022; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; NR 13 TC 2 Z9 2 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 032014 DI 10.1103/PhysRevD.78.032014 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300018 ER PT J AU Abouzaid, E Arenton, M Barker, AR Bellantoni, L Blucher, E Bock, GJ Cheu, E Coleman, R Corcoran, MD Cox, B Erwin, AR Escobar, CO Glazov, A Golossanov, A Gomes, RA Gouffon, P Hsiung, YB Jensen, DA Kessler, R Kotera, K Ledovskoy, A McBride, PL Monnier, E Nguyen, H Niclasen, R Phillips, DG Ramberg, EJ Ray, RE Ronquest, M Santos, E Slater, W Smith, D Solomey, N Swallow, EC Toale, PA Tschirhart, R Wah, YW Wang, J White, HB Whitmore, J Wilking, MJ Winstein, B Winston, R Worcester, ET Yamanaka, T Zimmerman, ED Zukanovich, RF AF Abouzaid, E. Arenton, M. Barker, A. R. Bellantoni, L. Blucher, E. Bock, G. J. Cheu, E. Coleman, R. Corcoran, M. D. Cox, B. Erwin, A. R. Escobar, C. O. Glazov, A. Golossanov, A. Gomes, R. A. Gouffon, P. Hsiung, Y. B. Jensen, D. A. Kessler, R. Kotera, K. Ledovskoy, A. McBride, P. L. Monnier, E. Nguyen, H. Niclasen, R. Phillips, D. G., II Ramberg, E. J. Ray, R. E. Ronquest, M. Santos, E. Slater, W. Smith, D. Solomey, N. Swallow, E. C. Toale, P. A. Tschirhart, R. Wah, Y. W. Wang, J. White, H. B. Whitmore, J. Wilking, M. J. Winstein, B. Winston, R. Worcester, E. T. Yamanaka, T. Zimmerman, E. D. Zukanovich, R. F. CA KTeV Collaboration TI Detailed study of the K-L ->pi(0)pi(0)pi(0) Dalitz plot SO PHYSICAL REVIEW D LA English DT Article ID QUADRATIC SLOPE PARAMETER; PI-PI SCATTERING; DECAY; LENGTHS AB Using a sample of 68.3x10(6) K-L ->pi(0)pi(0)pi(0) decays collected in 1996-1999 by the KTeV (E832) experiment at Fermilab, we present a detailed study of the K-L ->pi(0)pi(0)pi(0) Dalitz plot density. We report the first observation of interference from K-L ->pi(+)pi(-)pi(0) decays in which pi(+)pi(-) rescatters to pi(0)pi(0) in a final-state interaction. This rescattering effect is described by the Cabibbo-Isidori model, and it depends on the difference in pion scattering lengths between the isospin I=0 and I=2 states, a(0)-a(2). Using the Cabibbo-Isidori model, and fixing (a(0)-a(2))m(pi)(+)=0.268 +/- 0.017 as measured by the CERN-NA48 collaboration, we present the first measurement of the K-L ->pi(0)pi(0)pi(0) quadratic slope parameter that accounts for the rescattering effect: h(000)=(+0.59 +/- 0.20(stat)+/- 0.48(syst)+/- 1.06(ext))x10(-3), where the uncertainties are from data statistics, KTeV systematic errors, and external systematic errors. Fitting for both h(000) and a(0)-a(2), we find h(000)=(-2.09 +/- 0.62(stat)+/- 0.72(syst)+/- 0.28(ext))x10(-3), and m(pi)(+)(a(0)-a(2))=0.215 +/- 0.014(stat)+/- 0.025(syst)+/- 0.006(ext); our value for a(0)-a(2) is consistent with that from NA48. C1 [Abouzaid, E.; Blucher, E.; Glazov, A.; Kessler, R.; Monnier, E.; Solomey, N.; Swallow, E. C.; Wah, Y. W.; Winstein, B.; Winston, R.; Worcester, E. T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cheu, E.; Wang, J.] Univ Arizona, Tucson, AZ 85721 USA. [Slater, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Escobar, C. O.; Gomes, R. A.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Barker, A. R.; Niclasen, R.; Toale, P. A.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Swallow, E. C.] Elmhurst Coll, Elmhurst, IL 60126 USA. [Bellantoni, L.; Bock, G. J.; Coleman, R.; Hsiung, Y. B.; Jensen, D. A.; McBride, P. L.; Nguyen, H.; Ramberg, E. J.; Ray, R. E.; Tschirhart, R.; White, H. B.; Whitmore, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kotera, K.; Yamanaka, T.] Osaka Univ, Osaka 5600043, Japan. [Corcoran, M. D.] Rice Univ, Houston, TX 77005 USA. [Gouffon, P.; Santos, E.; Zukanovich, R. F.] Univ Sao Paulo, BR-05315970 Sao Paulo, Brazil. [Arenton, M.; Cox, B.; Golossanov, A.; Ledovskoy, A.; Phillips, D. G., II; Ronquest, M.; Smith, D.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. [Arenton, M.; Cox, B.; Golossanov, A.; Ledovskoy, A.; Phillips, D. G., II; Ronquest, M.; Smith, D.] Univ Virginia, Inst Nucl & Particle Phys, Charlottesville, VA 22901 USA. [Erwin, A. R.] Univ Wisconsin, Madison, WI 53706 USA. [Monnier, E.] CNRS, CPP Marseille, F-75700 Paris, France. RP Abouzaid, E (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Gouffon, Philippe/I-4549-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017; Gomes, Ricardo/B-6899-2008; Zukanovich Funchal, Renata/C-5829-2013; Moura Santos, Edivaldo/K-5313-2016 OI Gouffon, Philippe/0000-0001-7511-4115; HSIUNG, YEE/0000-0003-4801-1238; Gomes, Ricardo/0000-0003-0278-4876; Zukanovich Funchal, Renata/0000-0001-6749-0022; Moura Santos, Edivaldo/0000-0002-2818-8813 FU U. S. Department of Energy; The National Science Foundation; The Ministry of Education and Science of Japan; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq; CAPES-Ministerio Educao FX We gratefully acknowledge the support and effort of the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported in part by the U. S. Department of Energy, The National Science Foundation, The Ministry of Education and Science of Japan, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq and CAPES-Ministerio Educao. We also wish to thank Gino Isidori for helpful discussions on implementing the CI3PI model for KL -> pi0pi0pi0 decays. NR 14 TC 16 Z9 16 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 032009 DI 10.1103/PhysRevD.78.032009 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300013 ER PT J AU Armoni, A Lucini, B Patella, A Pica, C AF Armoni, Adi Lucini, Biagio Patella, Agostino Pica, Claudio TI Lattice study of planar equivalence: The quark condensate SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL-SYMMETRY-BREAKING; WORLDLINE PATH-INTEGRALS; GAUGE-THEORIES; QCD; COUPLINGS; FERMIONS AB We study quenched SU(N) gauge theories with fermions in the two-index symmetric, antisymmetric and the adjoint representations. Our main motivation is to check whether at large number of colors those theories become nonperturbatively equivalent. We prove the equivalence assuming that the charge-conjugation symmetry is not broken in pure Yang-Mills theory. We then carry out a quenched lattice simulation of the quark condensate in the symmetric, anti symmetric and the adjoint representations for SU(2), SU(3), SU(4), SU(6), and SU(8). We show that the data support the equivalence and discuss the size of subleading corrections. C1 [Armoni, Adi; Lucini, Biagio; Patella, Agostino] Swansea Univ, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Pica, Claudio] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Armoni, A (reprint author), Swansea Univ, Dept Phys, Singleton Pk, Swansea SA2 8PP, W Glam, Wales. RI Lucini, Biagio/E-7491-2010; OI Lucini, Biagio/0000-0001-8974-8266; Pica, Claudio/0000-0002-0569-0376; Armoni, Adi/0000-0002-8105-0645 FU Royal Society; STFC; U.S. Department of Energy [DE-AC02-98CH10886] FX We thank L. Del Debbio and S. Hands for stimulating discussions, and M. Shifman and G. Veneziano for comments on the manuscript. Simulations have been performed on a computer cluster partially funded by the Royal Society and STFC. A. A. is supported by STFC. B. L. is supported by the Royal Society. A. P. is supported by an STFC special project grant and by the "Fondazione Angelo Della Riccia." The work of C. P. has been Supported by Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 33 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 4 AR 045019 DI 10.1103/PhysRevD.78.045019 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 350QP UT WOS:000259368500114 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Paar, HP Rahatlou, S Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Robertson, AI Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Gaz, A Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Kutter, PE Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Robertson, A. I. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of the spin of the Xi(1530) resonance SO PHYSICAL REVIEW D LA English DT Article ID MASS; PARITY; WIDTH AB The properties of the Xi(1530) resonance are investigated in the Lambda(+)(c)->Xi(-)pi(+)K(+) decay process. The data sample was collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) collider operating at center-of-mass energies 10.58 and 10.54 GeV. The corresponding integrated luminosity is approximately 230 fb(-1). The spin of the Xi(1530) is established to be 3/2. The existence of an S-wave amplitude in the Xi(-)pi(+) system is inferred, and its interference with the Xi(1530)(0) amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the Xi(1530). The P(1)(cos theta(-)(Xi)) Legendre polynomial moment indicates the presence of a significant S-wave amplitude for Xi(-)pi(+) mass values above 1.6 GeV/c(2), and a dip in the mass distribution at approximately 1.7 GeV/c(2) is interpreted as due to the coherent addition of a Xi(1690)(0) contribution to this amplitude. This would imply J(P)=1/2(-) for the Xi(1690). Attempts at fitting the Xi(1530)(0) line shape yield unsatisfactory results, and this failure is attributed to interference effects associated with the amplitudes describing the K(+)pi(+) and/or Xi(-)K(+) systems. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Robertson, A. I.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Phys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18057 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Blount, N. L.; Izen, J. M.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Corwin, Luke/0000-0001-7143-3821; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Salvatore, Fabrizio/0000-0002-3709-1554; Wilson, Robert/0000-0002-8184-4103; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 18 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 034008 DI 10.1103/PhysRevD.78.034008 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300042 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Suzuki, A Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PDA Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroeder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Suzuki, A. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. Sangro, R. De Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Vetere, M. Lo Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Da Costa, J. Firmino Grosdidier, G. Hocker, A. Lepeltier, V. Diberder, F. Le Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Lodovico, F. Di Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. Del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Buono, L. Del Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Ricca, G. Della Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of the branching fractions of the rare decays B-0 -> D-s((*)+)pi(-), B-0 -> D-s((*)+)rho(-), and B-0 -> Ds(*)-K(*)+ SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; B-MESONS AB We report the measurement of the branching fractions of the rare decays B-0 -> D-s((*)+)pi(-), B-0 -> D-s((*)+)rho(-), and B-0 -> Ds(*)-K(*)+ in a sample of 381x10(6)Upsilon(4S) decays into B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) storage ring. We present evidence for the decay B-0 -> Ds-K*+ and the vector-vector decays B-0 -> D-s(*+)rho(-) and B-0 -> Ds*-K*+, as well as the first measurement of the vector meson polarization in these decays. We also determine the ratios of the CKM-suppressed to CKM-favored amplitudes r(D-(*)pi) and r(D-(*)rho) in decays B-0 -> D-(*)+/-pi(-/+) and B-0 -> D-(*)+/-rho(-/+), and comment on the prospects for measuring the CP observable sin(2 beta+gamma). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] IN2P3, CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, IN2P3, Lab Leprince Ringuet, CNRS, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Sangro, R. De; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Vetere, M. Lo; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Vetere, M. Lo; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Da Costa, J. Firmino; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Diberder, F. Le; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] IN2P3, Lab Accelerateur Lineaire, CNRS, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Da Costa, J. Firmino; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Diberder, F. Le; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Salnikov, A. A.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Lodovico, F. Di; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Egham TW20 0EX, Surrey, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Sanchez, P. Del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Buono, L. Del; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, IN2P3, Lab Phys Nucl & Hautes Energies,CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; De Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Ricca, G. Della; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Ricca, G. Della; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), IN2P3, CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 NR 38 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 032005 DI 10.1103/PhysRevD.78.032005 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300009 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroeder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Improved measurement of the CKM angle gamma in B(-/+)-> D((*))K((*)-/+) decays with a Dalitz plot analysis of D decays to K(S)(0)pi(+)pi(-) and K(S)(0)K(+)K(-) SO PHYSICAL REVIEW D LA English DT Article ID K-MATRIX FORMALISM; CP-VIOLATION; NONLEPTONIC DECAYS; B-MESONS; PARTICLES; RESONANCES; COLLISIONS; TENSORS; PHYSICS; D-S(+) AB We report on an improved measurement of the Cabibbo-Kobayashi-Maskawa CP-violating phase gamma through a Dalitz plot analysis of neutral D meson decays to K(S)(0)pi(+)pi(-) and K(S)(0)K(+)K(-) produced in the processes B(-/+)-> DK(-/+), B(-/+)-> D(*)K(-/+) with D(*)-> D pi(0), D gamma, and B(-/+)-> DK(*-/+) with K(*-/+)-> K(S)(0)pi(-/+). Using a sample of 383x10(6) B (B) over bar pairs collected by the BABAR detector, we measure gamma=(76 +/- 22 +/- 5 +/- 5)degrees (mod 180 degrees), where the first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the uncertainty on the description of the Dalitz plot distributions. The corresponding 2-standard-deviation region is 29 degrees 1, in agreement with theoretical expectation in the Lambda CDM model. We combine the ISW likelihood function with weak lensing of CMB (hereafter Paper II [C. M. Hirata, S. Ho, N. Padmanabhan, U. Seljak, and N. A. Bahcall, arXiv: 0801.0644.]) and CMB power spectrum to constrain the equation of state of dark energy and the curvature of the Universe. While ISW does not significantly improve the constraints in the simplest six-parameter flat Lambda CDM model, it improves constraints on seven-parameter models with curvature by a factor of 3.2 (relative to WMAP alone) to Omega(K) = -0.004(-0.020)(+0.014), and with dark energy equation of state by 15% to w = -1.01(-0.40)(+0.30) [posterior median with "1 sigma" (16th-84th percentile) range]. A software package for calculating the ISW likelihood function can be downloaded at http://www.astro.princeton.edu/--shirley/ISWWL.html. C1 [Ho, Shirley; Bahcall, Neta] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hirata, Christopher] CALTECH, Pasadena, CA 91125 USA. [Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94704 USA. RP Ho, S (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM shirley@astro.princeton.edu RI Padmanabhan, Nikhil/A-2094-2012 FU Space Telescope Science Institute [NAS 5-26555]; U.S. Department of Energy [DE-AC02-05CH11231]; Packard Foundation; NSF [CAREER-0132953]; Alfred P Sloan Foundation; National Science Foundation; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We would like to thank Joanna Dunkley for her extensive help on the discussion of chain convergences, and Lucas Lombriser and Anze Slosar for bringing an error in an earlier version of this paper to our attention. We would also like to thank David Spergel, Kendrick Smith, and Jim Gunn for helpful conversations. N. P. is supported by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under Contract No. NAS 5-26555. Part of this work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. U.S. is supported by the Packard Foundation and NSF CAREER-0132953. Funding for the SDSS and SDSS-II has been provided by the Alfred P Sloan Foundation, the participating institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the participating institutions. The participating institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, the university of Basel, the Unversity of Cambridge, Case Western Reserve University, the University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State Unversity, the University of Posrtsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. The 2dF QSO Redshift Survery (2QZ) was compiled by the 2QZ survey team from observations made with the two-degree field on the Anglo-Australian Telescope. The 2dF-SDSS LRG and QSO (2SLAQ) Survey was compiled by the 2SLAQ team from SDSS data and observations made with the two-degree field on the Anglo-Australian Telescope. This publication makes use of data products from the Two Micron All Sky Survery, which is a joint project of the University of Massachusetts and the Infrared Processing the Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 94 TC 214 Z9 215 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 4 AR 043519 DI 10.1103/PhysRevD.78.043519 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 350QP UT WOS:000259368500031 ER PT J AU Nakamura, Y Aoki, S Taniguchi, Y Yoshie, T AF Nakamura, Yousuke Aoki, Sinya Taniguchi, Yusuke Yoshie, Tomoteru TI Precise determination of B-K and light quark masses in quenched domain-wall QCD SO PHYSICAL REVIEW D LA English DT Article ID WEAK MATRIX-ELEMENTS; LATTICE QCD; NONPERTURBATIVE DETERMINATION; AXIAL CURRENT; RENORMALIZATION; REGULARIZATION; IMPROVEMENT; PARAMETER; SYMMETRY; FERMIONS AB We calculate nonperturbative renormalization factors at hadronic scale for Delta S 2 four-quark operators in quenched domain-wall QCD using the Schrodinger functional method. Combining them with the nonperturbative renormalization group running by the Alpha Collaboration, our result yields the fully nonperturbative renormalization factor, which converts the lattice bare B-K to the renormalization group invariant (RGI) (B) over cap (K). Applying this to the bare B-K previously obtained by the CP-PACS Collaboration at a(-1) similar or equal to 2; 3; 4 GeV, we obtain (B) over cap (K) = 0.782(5)(7) [equivalent to B-K((MS)over bar) (NDR, 2 GeV) = 0.565(4)(5) by two-loop running] in the continuum limit, where the first error is statistical and the second is systematic due to the continuum extrapolation. Except the quenching error, the total error we have achieved is less than 2%, which is much smaller than the previous ones. Taking the same procedure, we obtain m(u,d)(RGI) = 5.613(66) MeV and m(s)(RGI) 147.1(17) MeV [equivalent to m(u,d)((MS) over) (bar)(2 GeV) = 4.026(48) MeV and m(s)((MS)) (over bar)(2 GeV) = 105.6(12) MeV by four-loop running] in the continuum limit. C1 [Nakamura, Yousuke; Aoki, Sinya; Taniguchi, Yusuke; Yoshie, Tomoteru] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Taniguchi, Yusuke; Yoshie, Tomoteru] Univ Tsukuba, Ctr Computat Phys, Tsukuba, Ibaraki 3058577, Japan. RP Nakamura, Y (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. NR 43 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 034502 DI 10.1103/PhysRevD.78.034502 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300077 ER PT J AU Schmidt, F Vallinotto, A Sefusatti, E Dodelson, S AF Schmidt, Fabian Vallinotto, Alberto Sefusatti, Emiliano Dodelson, Scott TI Weak lensing effects on the galaxy three-point correlation function SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; GAUSSIAN INITIAL CONDITIONS; PRIMORDIAL NON-GAUSSIANITY; PROBE WMAP OBSERVATIONS; LUMINOUS RED GALAXIES; REDSHIFT SURVEY; POWER-SPECTRUM; SDSS; BISPECTRUM AB We study the corrections to the galaxy three-point correlation function induced by weak lensing magnification clue to the matter distribution along the line of sight. We consistently derive all the correction terms arising up to second order in perturbation theory and provide analytic expressions as well as order-of-magnitude estimates for their relative importance. The magnification contributions depend on the geometry of the projected triangle on the sky plane and scale with different powers of the number count slope and redshift of the galaxy sample considered. We evaluate all terms numerically and show that, depending on the triangle configuration as well as the galaxy sample considered, weak lensing can in general significantly contribute to and alter the three-point correlation function observed through galaxy and quasar catalogs. C1 [Schmidt, Fabian; Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schmidt, Fabian; Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Vallinotto, Alberto] Univ Paris 06, UMR 7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Sefusatti, Emiliano; Dodelson, Scott] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Schmidt, F (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Schmidt, Fabian/0000-0002-6807-7464; Sefusatti, Emiliano/0000-0003-0473-1567 NR 60 TC 6 Z9 6 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 4 AR 043513 DI 10.1103/PhysRevD.78.043513 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 350QP UT WOS:000259368500025 ER PT J AU Sullivan, Z Berger, EL AF Sullivan, Zack Berger, Edmond L. TI Trilepton production at the CERN LHC: Standard model sources and beyond SO PHYSICAL REVIEW D LA English DT Article ID FERMILAB TEVATRON COLLIDER; CHARGINO-NEUTRALINO PRODUCTION; LARGE HADRON COLLIDER; MINIMAL SUPERGRAVITY; MULTILEPTON SIGNALS; PBARP COLLIDERS; SUPERSYMMETRY; DECAYS; GAUGINOS; PHYSICS AB Events with three or more isolated leptons in the final state are known to be signatures of new physics phenomena at high energy collider physics facilities. Standard model sources of isolated trilepton final states include gauge boson pair production such as WZ and W gamma*, and t (t) over bar production. We demonstrate that leptons from heavy flavor decays, such as b -> lX and c -> lX, provide sources of trileptons that can be orders of magnitude larger after cuts than other standard model backgrounds to new physics processes. We explain the physical reason heavy flavor backgrounds survive isolation cuts. We propose new cuts to control the backgrounds in the specific case of chargino plus neutralino pair production in supersymmetric models. After these cuts are imposed, we show that it should be possible to find at least a 4 sigma excess for supersymmetry parameter space point LM9 with 30 fb(-1) of integrated luminosity. C1 [Sullivan, Zack] So Methodist Univ, Dallas, TX 75275 USA. [Sullivan, Zack; Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Sullivan, Z (reprint author), So Methodist Univ, Dallas, TX 75275 USA. NR 61 TC 38 Z9 38 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 034030 DI 10.1103/PhysRevD.78.034030 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300064 ER PT J AU Velytsky, A AF Velytsky, Alexander TI Equilibrium criterion and effective spin models for finite temperature gauge theories SO PHYSICAL REVIEW D LA English DT Article ID CARLO RENORMALIZATION-GROUP; CONFINEMENT; QCD AB Using the example of the SU(2) gauge theory in 3+1 dimensions we consider the construction of a 3-dimensional effective model in terms of Polyakov loops. We demonstrate the application of an equilibrium self-consistency condition to the systematic analysis of the contribution of various [global Z(2) symmetric] terms in the effective model action. We apply this analysis to the construction of a simple effective action with the minimum necessary number of operators. Such an action is shown to be capable of reproducing relevant observables, e.g. the Polyakov loop ensemble average, within the desired accuracy. C1 [Velytsky, Alexander] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Velytsky, Alexander] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Velytsky, Alexander] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Velytsky, A (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM vel@theory.uchicago.edu FU U. S. Department of Energy, Division of High Energy Physics and Office of Nuclear Physics [DE-AC02-06CH11357]; Joint Theory Institute FX The author would like to thank T. Tomboulis for insightful discussions. The computations were performed on the cluster maintained by Academic Technology Services (UCLA). This work is supported in part by the U. S. Department of Energy, Division of High Energy Physics and Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, and in part under a Joint Theory Institute grant. NR 15 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2008 VL 78 IS 3 AR 034505 DI 10.1103/PhysRevD.78.034505 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 345DD UT WOS:000258975300080 ER PT J AU Determan, MD Guo, L Lo, CT Thiyagarajan, P Mallapragada, SK AF Determan, Michael D. Guo, Liang Lo, Chieh-Tsung Thiyagarajan, P. Mallapragada, Surya K. TI pH- and temperature-dependent phase behavior of a PEO-PPO-PEO-based pentablock copolymer in aqueous media SO PHYSICAL REVIEW E LA English DT Article ID AMPHIPHILIC BLOCK-COPOLYMERS; RAFT POLYMERIZATION; WATER; MICELLES; SCATTERING; DIBLOCK AB We investigated the structural features of micelles formed by the self-association of the pentablock copolymer poly[N,N-(diethyl amino)ethyl methacrylate]-block-poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethyleneoxide)-block-poly[N,N-(diethylamino)ethyl methacrylate] (PDEAEM-PEO-PPO-PEO-PDEAEM) in aqueous solutions by using small-angle neutron scattering SANS. The pentablock copolymer solutions exhibit micellar and get phases in response to changes in both the temperature and pH by virtue of (1) the lower critical solution temperature of the PPO blocks and (2) the polyelectrolyte character of the pendant PDEAEM blocks. Two modeling schemes were employed to describe the SANS data of semidilute copolymer solutions at higher temperature as they contain interacting charged micelles at pH < 7.5 and interacting neutral micelles at higher pH. We have elucidated the structures of the micelles in terms of size, shape, polydispersity, association number, number density, and surface charge. At low pH the charged spherical micelles are less packed with the copolymers presumably due to the electrostatic repulsion between the charged pendant groups. On the other hand, at higher pH the hydrophobic character of the neutral pendant groups enable them to sequester within the micelle core along with the PPO, thus increasing the number density and the core size of the spherical micelles. At higher copolymer concentration reversible thermoresponsive sol-gel transitions were observed at all pH conditions and the theological behavior of the gels nicely correlates with different organization of micelles with different shapes. C1 [Determan, Michael D.; Mallapragada, Surya K.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Lo, Chieh-Tsung] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan. [Guo, Liang] Argonne Natl Lab, BioCAT, Chicago, IL 60439 USA. [Guo, Liang] IIT, Chicago, IL 60439 USA. [Determan, Michael D.; Mallapragada, Surya K.] Ames Lab, Ames, IA 50011 USA. RP Determan, MD (reprint author), Iowa State Univ, Dept Chem & Biol Engn, 144 Spedding Hall, Ames, IA 50011 USA. EM thiyaga@anl.gov RI Mallapragada, Surya/F-9375-2012 FU U.S. DOE, BES [DE-AC02-06CH11357]; Iowa State University [DE-AC02-07CH11358] FX This work benefited from the use of the IPNS and APS, funded by the U.S. DOE, BES, under Contract No. DE-AC02-06CH11357 to the University of Chicago Argonne, LLC. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No DE-AC02-07CH11358. NR 26 TC 11 Z9 11 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2008 VL 78 IS 2 AR 021802 DI 10.1103/PhysRevE.78.021802 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 349EH UT WOS:000259263600088 PM 18850858 ER PT J AU Glosli, JN Graziani, FR More, RM Murillo, MS Streitz, FH Surh, MP Benedict, LX Hau-Riege, S Langdon, AB London, RA AF Glosli, J. N. Graziani, F. R. More, R. M. Murillo, M. S. Streitz, F. H. Surh, M. P. Benedict, L. X. Hau-Riege, S. Langdon, A. B. London, R. A. TI Molecular dynamics simulations of temperature equilibration in dense hydrogen SO PHYSICAL REVIEW E LA English DT Article ID STRONGLY COUPLED PLASMA; THERMAL EQUILIBRATION; KINETIC EQUATION; RELAXATION; SYSTEMS AB The temperature equilibration rate between electrons and protons in dense hydrogen has been calculated with molecular dynamics simulations for temperatures between 10 and 600 eV and densities between 1020 cm(-3) to 10(24) cm(-3). Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L >= 1, a model by Gericke-Murillo-Schlanges (GMS) [D. O. Gericke et al., Phys. Rev. E 65, 036418 (2002)] based on a T-matrix method and the approach by Brown-Preston-Singleton [L. S. Brown et al., Phys. Rep. 410, 237 (2005)] agrees with the simulation data to within the error bars of the simulation. For smaller Coulomb logarithms, the GMS model is consistent with the simulation results. Landau-Spitzer models are consistent with the simulation data for L >= 4. C1 [Glosli, J. N.; Graziani, F. R.; More, R. M.; Streitz, F. H.; Surh, M. P.; Benedict, L. X.; Hau-Riege, S.; Langdon, A. B.; London, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Murillo, M. S.] Los Alamos Natl Lab, Div Phys, MS D410, Los Alamos, NM 87545 USA. RP Glosli, JN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [07-ERD-044] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code No. 07-ERD-044. NR 23 TC 43 Z9 43 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2008 VL 78 IS 2 AR 025401 DI 10.1103/PhysRevE.78.025401 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 349EI UT WOS:000259263700011 PM 18850889 ER PT J AU Quan, HT Yang, S Sun, CP AF Quan, H. T. Yang, S. Sun, C. P. TI Microscopic work distribution of small systems in quantum isothermal processes and the minimal work principle SO PHYSICAL REVIEW E LA English DT Article ID FREE-ENERGY DIFFERENCES; NONEQUILIBRIUM MEASUREMENTS AB For a two-level quantum mechanical system, we derive microscopically the exact expression for the fluctuation of microscopic work in. a multistep nonequilibrium process, and we rigorously prove that in an isothermal process, the fluctuation is vanishingly small and the most probabilistic work is just equal to the difference of the free energy. Our study demonstrates that the convergence of the microscopic work in the isothermal process is due to the nature of the isothermal process rather than the usual thermodynamic limit condition. Our investigation justifies the validity of a "minimum work principle" formulation of the second law even for a small system far from the thermodynamic limit. C1 [Quan, H. T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Yang, S.; Sun, C. P.] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China. RP Quan, HT (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Sun, Chang-Pu/C-2344-2009; Yang, Shuo/D-1372-2011; Quan, Haitao/G-8521-2012 OI Yang, Shuo/0000-0001-9733-8566; Quan, Haitao/0000-0002-4130-2924 FU U.S. Department of Energy; NSFC [90203018, 10474104, 60433050, 10704023]; NFRPC [2006CB921205, 2005CB724508] FX The authors thank an anonymous referee for pointing out a mistake in our previous version of the manuscript. H.T.Q. thanks Rishi Sharma for stimulating discussions and gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program for this work; C.P.S. is supported by NSFC through Grants No. 90203018, No. 10474104, No. 60433050, and No. 10704023, and NFRPC through Grants No. 2006CB921205 and No. 2005CB724508. NR 23 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2008 VL 78 IS 2 AR 021116 DI 10.1103/PhysRevE.78.021116 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 349EH UT WOS:000259263600025 PM 18850795 ER PT J AU Thiele, R Bornath, T Fortmann, C Holl, A Redmer, R Reinholz, H Ropke, G Wierling, A Glenzer, SH Gregori, G AF Thiele, R. Bornath, T. Fortmann, C. Hoell, A. Redmer, R. Reinholz, H. Roepke, G. Wierling, A. Glenzer, S. H. Gregori, G. TI Plasmon resonance in warm dense matter SO PHYSICAL REVIEW E LA English DT Article ID X-RAY-SCATTERING; RELAXATION-TIME APPROXIMATION; LINDHARD DIELECTRIC FUNCTION; THOMSON SCATTERING; 2-COMPONENT PLASMA; LASER AB Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important. C1 [Thiele, R.; Bornath, T.; Fortmann, C.; Hoell, A.; Redmer, R.; Reinholz, H.; Roepke, G.; Wierling, A.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gregori, G.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Gregori, G.] Rutherford Appleton Lab, CLF, Didcot OX11 0QX, Oxon, England. RP Thiele, R (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. EM robert.thiele@uni-rostock.de RI Redmer, Ronald/F-3046-2013; OI Bornath, Thomas/0000-0003-2831-2586; Thiele, Robert/0000-0001-8350-9942 NR 37 TC 44 Z9 44 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2008 VL 78 IS 2 AR 026411 DI 10.1103/PhysRevE.78.026411 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 349EI UT WOS:000259263700072 PM 18850950 ER PT J AU Wang, G Blaskiewicz, M AF Wang, Gang Blaskiewicz, Michael TI Dynamics of ion shielding in an anisotropic electron plasma SO PHYSICAL REVIEW E LA English DT Article ID TEST PARTICLES; DEBYE AB We show that, for a test ion moving in a collisionless single-species electron plasma, exact analytical solutions can be obtained for certain anisotropic velocity distributions of the electron plasma. By comparing the analytical formula with the numerical results calculated for the more realistic Maxwellian plasma, we demonstrate that plasmas with three different velocity distributions behave similarly for ions moving with velocity smaller than the velocity spread of the electrons. Furthermore, we show that the response of the electron density to a rest ion decays exponentially with distance, provided the anisotropic velocity distribution exhibits elliptical symmetry. C1 [Wang, Gang; Blaskiewicz, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wang, Gang] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. RP Wang, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM gawang@bnl.gov NR 11 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2008 VL 78 IS 2 AR 026413 DI 10.1103/PhysRevE.78.026413 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 349EI UT WOS:000259263700074 PM 18850952 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Sman, BAO Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I On, MB Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cuiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Nendahl, SGR Newald, MWGR Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Ttig, PMR Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadi, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Sman, B. A. o Jesus, A. C. S. Assis Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. On, M. Besanc Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cuiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Nendahl, S. Gru R. Newald, M. W. Gru R. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Ttig, P. Ma R. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadi, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for decay of a fermiophobic Higgs boson h(f) -> gamma gamma with the D0 detector at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; EXTRA DIMENSIONS; HADRON COLLIDERS; STANDARD MODEL; PAIRS AB We report the results of a search for a narrow resonance decaying into two photons in 1.1 fb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 2002-2006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of m(hf) > 100 GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(h(f) -> gamma gamma) vs m(hf) which was not accessible at the CERN Large Electron-Positron Collider. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sanchez-Hernandez, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Ctr Particle Phys, Inst Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Univ Aix Marseille 2, CPPM, IN2P3 CNRS, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, IN2P3 CNRS, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, LPNHE, IN2P3 CNRS, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, LPNHE, IN2P3 CNRS, Paris, France. [Arthaud, M.; Bassler, U.; On, M. Besanc; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadi, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Ttig, P. Ma R.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cuiok, M.; Newald, M. W. Gru R.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Rodrigues, R. F.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bellavance, A.; Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Sman, B. A. o; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Sman, B. A. o; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Sman, B. A. o; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Sman, B. A. o; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Bargassa, P.; Bean, A.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Iashvili, I.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Hall, I.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulders, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begalli, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jain, S.; Rominsky, M.; Severini, H.; Strauss, M.; Stutte, L.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kau, D.; Li, J.; Sosebee, M.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.; Spurlock, B.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 NR 31 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 051801 DI 10.1103/PhysRevLett.101.051801 PG 7 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700011 ER PT J AU Barty, A Marchesini, S Chapman, HN Cui, C Howells, MR Shapiro, DA Minor, AM Spence, JCH Weierstall, U Ilavsky, J Noy, A Hau-Riege, SP Artyukhin, AB Baumann, T Willey, T Stolken, J van Buuren, T Kinney, JH AF Barty, A. Marchesini, S. Chapman, H. N. Cui, C. Howells, M. R. Shapiro, D. A. Minor, A. M. Spence, J. C. H. Weierstall, U. Ilavsky, J. Noy, A. Hau-Riege, S. P. Artyukhin, A. B. Baumann, T. Willey, T. Stolken, J. van Buuren, T. Kinney, J. H. TI Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRUCTURE-PROPERTY RELATIONSHIP; MICROSCOPY; AEROGELS; RESOLUTION; SPECIMENS; CLUSTERS AB Ultralow density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area, and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by x-ray diffractive imaging. Finite-element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion-limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory. C1 [Barty, A.; Marchesini, S.; Chapman, H. N.; Noy, A.; Hau-Riege, S. P.; Artyukhin, A. B.; Baumann, T.; Willey, T.; Stolken, J.; van Buuren, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Marchesini, S.; Cui, C.; Howells, M. R.; Shapiro, D. A.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Marchesini, S.; Chapman, H. N.] Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Spence, J. C. H.; Weierstall, U.] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA. [Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kinney, J. H.] Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA. RP Marchesini, S (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM smarchesini@lbl.gov RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Willey, Trevor/A-8778-2011; Weierstall, Uwe/B-3568-2011; Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013; Barty, Anton/K-5137-2014 OI Chapman, Henry/0000-0002-4655-1743; Willey, Trevor/0000-0002-9667-8830; Ilavsky, Jan/0000-0003-1982-8900; Barty, Anton/0000-0003-4751-2727 NR 27 TC 61 Z9 61 U1 4 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 055501 DI 10.1103/PhysRevLett.101.055501 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700031 PM 18764404 ER PT J AU Chen, GF Li, Z Li, G Zhou, J Wu, D Dong, J Hu, WZ Zheng, P Chen, ZJ Yuan, HQ Singleton, J Luo, JL Wang, NL AF Chen, G. F. Li, Z. Li, G. Zhou, J. Wu, D. Dong, J. Hu, W. Z. Zheng, P. Chen, Z. J. Yuan, H. Q. Singleton, J. Luo, J. L. Wang, N. L. TI Superconducting properties of the Fe-based layered superconductor LaFeAsO(0.9)F(0.1-delta) SO PHYSICAL REVIEW LETTERS LA English DT Article AB We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of over 50 T. A clear signature of superconducting gap opening below T(c) was observed in the far-infrared reflectance spectra, with 2 Delta/kT(c)approximate to 3.5-4.2. Furthermore, we show that the new superconductor has electron-type conducting carriers with a rather low-carrier density. C1 [Chen, G. F.; Li, Z.; Li, G.; Zhou, J.; Wu, D.; Dong, J.; Hu, W. Z.; Zheng, P.; Chen, Z. J.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yuan, H. Q.; Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Yuan, H. Q.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. RP Chen, GF (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RI li, zheng/F-5189-2012; Li, Gang/E-3033-2015; Hu, Wanzheng/K-1171-2016 NR 16 TC 130 Z9 141 U1 8 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 057007 DI 10.1103/PhysRevLett.101.057007 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700051 PM 18764424 ER PT J AU Chittenden, JP Jennings, CA AF Chittenden, J. P. Jennings, C. A. TI Development of instabilities in wire-array Z pinches SO PHYSICAL REVIEW LETTERS LA English DT Article AB 3D resistive MHD simulations are used to show how the properties of the "fundamental" mode of modulated ablation in wire-array Z pinches, are consistent with the growth of a modified m = 0-like instability. The modulation wavelength, structure, and evolution is found to be governed by the magnetic topology and is largely independent of the initial conditions. The perturbation amplitude as a function of wire number is shown to be consistent with experimental x-ray power scaling. Simulations of an array of helical wires show a substantial reduction in the amplitude of the instability. C1 [Chittenden, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Jennings, C. A.] Sandia Natl Labs, Albuquerque, NM USA. RP Chittenden, JP (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. NR 14 TC 43 Z9 43 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 055005 DI 10.1103/PhysRevLett.101.055005 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700029 PM 18764402 ER PT J AU Marianetti, CA Haule, K Kotliar, G Fluss, MJ AF Marianetti, C. A. Haule, K. Kotliar, G. Fluss, M. J. TI Electronic coherence in delta-Pu: A dynamical mean-field theory study SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLUTONIUM AB A combination of density functional theory and the dynamical mean-field theory (DMFT) is used to calculate the magnetic susceptibility, heat capacity, and the temperature dependence of the valence band photoemission spectra for delta-Pu. We predict that delta-Pu has a Pauli-like magnetic susceptibility near ambient temperature, as in experiment, indicating that electronic coherence causes the absence of local moments. Additionally, we show that volume expansion causes a crossover from incoherent to coherent electronic behavior at increasingly lower temperatures. C1 [Marianetti, C. A.; Fluss, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Haule, K.; Kotliar, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Haule, K.; Kotliar, G.] Rutgers State Univ, Ctr Condensed Matter Theory, Piscataway, NJ 08854 USA. RP Marianetti, CA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 24 TC 40 Z9 40 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 056403 DI 10.1103/PhysRevLett.101.056403 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700039 PM 18764412 ER PT J AU Mazin, II Singh, DJ Johannes, MD Du, MH AF Mazin, I. I. Singh, D. J. Johannes, M. D. Du, M. H. TI Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO(1-x)F(x) SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANTIFERROMAGNETIC SPIN-FLUCTUATION; YBA2CU3O7 AB We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. This resulting state is an example of extended s-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations. C1 [Mazin, I. I.; Johannes, M. D.] USN, Res Lab, Washington, DC 20375 USA. [Singh, D. J.; Du, M. H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mazin, II (reprint author), USN, Res Lab, Code 6393, Washington, DC 20375 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012; Mazin, Igor/B-6576-2008 OI Du, Mao-Hua/0000-0001-8796-167X; NR 14 TC 1750 Z9 1767 U1 20 U2 176 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 057003 DI 10.1103/PhysRevLett.101.057003 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700047 PM 18764420 ER PT J AU Muggli, P Blue, BE Clayton, CE Decker, FJ Hogan, MJ Huang, C Joshi, C Katsouleas, TC Lu, W Mori, WB O'Connell, CL Siemann, RH Walz, D Zhou, M AF Muggli, P. Blue, B. E. Clayton, C. E. Decker, F. J. Hogan, M. J. Huang, C. Joshi, C. Katsouleas, T. C. Lu, W. Mori, W. B. O'Connell, C. L. Siemann, R. H. Walz, D. Zhou, M. TI Halo formation and emittance growth of positron beams in plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID WAKEFIELD ACCELERATOR; SPACE-CHARGE; ELECTRONS AB An ultrarelativistic 28.5 GeV, 700-mu m-long positron bunch is focused near the entrance of a 1.4-m-long plasma with a density n(e) between approximate to 10(13) and approximate to 5 x 10(14) cm(-3). Partial neutralization of the bunch space charge by the mobile plasma electrons results in a reduction in transverse size by a factor of approximate to 3 in the high emittance plane of the beam approximate to 1 m downstream from the plasma exit. As n(e) increases, the formation of a beam halo containing approximate to 40% of the total charge is observed, indicating that the plasma focusing force is nonlinear. Numerical simulations confirm these observations. The bunch with an incoming transverse size ratio of approximate to 3 and emittance ratio of approximate to 5 suffers emittance growth and exits the plasma with approximately equal sizes and emittances. C1 [Muggli, P.; Katsouleas, T. C.] Univ So Calif, Los Angeles, CA 90089 USA. [Blue, B. E.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Mori, W. B.; Zhou, M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Decker, F. J.; Hogan, M. J.; O'Connell, C. L.; Siemann, R. H.; Walz, D.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Muggli, P (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. RI Lu, Wei/F-2504-2016 NR 27 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 055001 DI 10.1103/PhysRevLett.101.055001 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700025 PM 18764398 ER PT J AU Muggli, P Yakimenko, V Babzien, M Kallos, E Kusche, KP AF Muggli, P. Yakimenko, V. Babzien, M. Kallos, E. Kusche, K. P. TI Generation of trains of electron microbunches with adjustable subpicosecond spacing SO PHYSICAL REVIEW LETTERS LA English DT Article ID WAKE-FIELD ACCELERATION; INJECTOR; LINAC; GUN AB We demonstrate that trains of subpicosecond electron microbunches, with subpicosecond spacing, can be produced by placing a mask in a region of the beam line where the beam transverse size is dominated by the correlated energy spread. We show that the number, length, and spacing of the microbunches can be controlled through the parameters of the beam and the mask. Such microbunch trains can be further compressed and accelerated and have applications to free electron lasers and plasma wakefield accelerators. C1 [Muggli, P.; Kallos, E.] Univ So Calif, Los Angeles, CA 90089 USA. [Yakimenko, V.; Babzien, M.; Kusche, K. P.] Brookhaven Natl Lab, Long Isl City, NY 11973 USA. RP Muggli, P (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. NR 21 TC 91 Z9 91 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 054801 DI 10.1103/PhysRevLett.101.054801 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700024 PM 18764397 ER PT J AU Schollmeier, M Becker, S Geissel, M Flippo, KA Blazevic, A Gaillard, SA Gautier, DC Gruner, F Harres, K Kimmel, M Nurnberg, F Rambo, P Schramm, U Schreiber, J Schutrumpf, J Schwarz, J Tahir, NA Atherton, B Habs, D Hegelich, BM Roth, M AF Schollmeier, M. Becker, S. Geissel, M. Flippo, K. A. Blazevic, A. Gaillard, S. A. Gautier, D. C. Gruener, F. Harres, K. Kimmel, M. Nuernberg, F. Rambo, P. Schramm, U. Schreiber, J. Schuetrumpf, J. Schwarz, J. Tahir, N. A. Atherton, B. Habs, D. Hegelich, B. M. Roth, M. TI Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices SO PHYSICAL REVIEW LETTERS LA English DT Article ID ION-ACCELERATION; BEAMS; DRIVEN; IGNITION; SOLIDS; PLASMA AB This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) mu m full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems. C1 [Schollmeier, M.; Harres, K.; Schuetrumpf, J.; Roth, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Becker, S.; Gruener, F.; Schreiber, J.; Habs, D.; Hegelich, B. M.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Geissel, M.; Kimmel, M.; Rambo, P.; Schwarz, J.; Atherton, B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Flippo, K. A.; Gaillard, S. A.; Gautier, D. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Blazevic, A.; Tahir, N. A.] Gesell Schwerionenforsch mbH, Plasmaphys, D-64291 Darmstadt, Germany. [Gaillard, S. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Schramm, U.] Forschungszentrum, D-01328 Dresden, Germany. RP Schollmeier, M (reprint author), Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany. RI Flippo, Kirk/C-6872-2009; Schramm, Ulrich/C-9393-2012; Schollmeier, Marius/H-1056-2012; Hegelich, Bjorn/J-2689-2013; Gruner, Florian/M-1212-2016 OI Flippo, Kirk/0000-0002-4752-5141; Schramm, Ulrich/0000-0003-0390-7671; Schollmeier, Marius/0000-0002-0683-022X; Gruner, Florian/0000-0001-8382-9225 NR 29 TC 100 Z9 100 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 055004 DI 10.1103/PhysRevLett.101.055004 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700028 PM 18764401 ER PT J AU Torikachvili, MS Bud'ko, SL Ni, N Canfield, PC AF Torikachvili, Milton S. Bud'ko, Sergey L. Ni, Ni Canfield, Paul C. TI Pressure induced superconductivity in CaFe(2)As(2) SO PHYSICAL REVIEW LETTERS LA English DT Article AB CaFe(2)As(2) has been found to be exceptionally sensitive to the application of hydrostatic pressure and can be tuned to reveal all the salient features associated with FeAs superconductivity without introducing any disorder. The ambient pressure, 170 K, structural/magnetic, first-order phase transition is suppressed to 128 K by 3.5 kbar. At 5.5 kbar a new transition is detected at 104 K, increasing to above 300 K by 19 kbar. A low temperature, superconducting dome (T(c) similar to 12 K) is centered around 5 kbar, extending down to 2.3 kbar and up to 8.6 kbar. This superconducting phase appears to exist when the low pressure transition is suppressed sufficiently, but before the high pressure transition has reduced the resistivity too dramatically. C1 [Torikachvili, Milton S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Bud'ko, Sergey L.; Ni, Ni; Canfield, Paul C.] Iowa State Univ Sci & Technol, Ames Lab, US DOE, Ames, IA 50011 USA. [Bud'ko, Sergey L.; Ni, Ni; Canfield, Paul C.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. RP Torikachvili, MS (reprint author), San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RI Canfield, Paul/H-2698-2014 NR 11 TC 390 Z9 393 U1 3 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2008 VL 101 IS 5 AR 057006 DI 10.1103/PhysRevLett.101.057006 PG 4 WC Physics, Multidisciplinary SC Physics GA 336SK UT WOS:000258384700050 PM 18764423 ER PT J AU Ivanyan, M Laziev, E Tsakanov, V Vardanyan, A Heifets, S Tsakanian, A AF Ivanyan, M. Laziev, E. Tsakanov, V. Vardanyan, A. Heifets, S. Tsakanian, A. TI Multilayer tube impedance and external radiation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BEAM AB The paper describes a method for calculating the longitudinal and transverse impedances of the laminated round pipe with many layers of different materials. The charge is moving along the pipe axis with arbitrary constant velocity. The study is based on the field-matching technique applied for the arbitrary harmonic of the electromagnetic field. The matrix formalism has been developed to describe the field transitions through the subsequent layers that allow coupling the electromagnetic fields inside and outside the pipe. The number of equations to be solved is then reduced to four algebraic equations. The solutions and ultrarelativistic limits for the field harmonics in the inner and outer regions of the pipe are derived. C1 [Ivanyan, M.; Laziev, E.; Tsakanov, V.; Vardanyan, A.] Yerevan State Univ, CANDLE, Yerevan 0040, Armenia. [Heifets, S.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Tsakanian, A.] Yerevan Phys Inst, Yerevan 0036, Armenia. [Tsakanian, A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. RP Ivanyan, M (reprint author), Yerevan State Univ, CANDLE, Acharyan 31, Yerevan 0040, Armenia. NR 35 TC 6 Z9 6 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2008 VL 11 IS 8 AR 084001 DI 10.1103/PhysRevSTAB.11.084001 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LE UT WOS:000259353100006 ER PT J AU Li, YL Sun, YE Kim, KJ AF Li, Yuelin Sun, Yin-E Kim, Kwang-Je TI High-power beam-based coherently enhanced THz radiation source SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID GENERATION; AMPLIFICATION; PULSES; GUNS AB We propose a compact Smith-Purcell radiation device that can potentially generate high average power THz radiation with high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that, with a beam current of 1 mA, it is feasible to generate hundreds of watts of narrow-band THz radiation at a repetition rate of 1 MHz. C1 [Li, Yuelin; Sun, Yin-E; Kim, Kwang-Je] Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. [Li, Yuelin; Sun, Yin-E; Kim, Kwang-Je] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. [Sun, Yin-E] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Li, YL (reprint author), Argonne Natl Lab, Accelerator Syst Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank K. Harkay for support. This work is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 11 Z9 11 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2008 VL 11 IS 8 AR 080701 DI 10.1103/PhysRevSTAB.11.080701 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LE UT WOS:000259353100001 ER PT J AU Miyamoto, R Kopp, SE Jansson, A Syphers, MJ AF Miyamoto, R. Kopp, S. E. Jansson, A. Syphers, M. J. TI Parametrization of the driven betatron oscillation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam oscillations in a synchrotron. By observing this driven coherent oscillation, the linear optical parameters can be directly measured at locations of the beam position monitors. The driven oscillations induced by an AC dipole will generate a phase space ellipse which differs from that of free oscillations. If not properly accounted for, this difference can lead to misinterpretations of the actual optical parameters, for instance, 6% or more in the cases of the Tevatron, RHIC, or LHC. This paper shows that the effect of an AC dipole on the observed linear optics is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. The introduction of this new amplitude function also helps measurements of the normal Courant-Snyder parameters based on beam position data taken under the influence of an AC dipole. This new parametrization of driven oscillations is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole. C1 [Miyamoto, R.; Kopp, S. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jansson, A.; Syphers, M. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Miyamoto, R (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. NR 13 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2008 VL 11 IS 8 AR 084002 DI 10.1103/PhysRevSTAB.11.084002 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LE UT WOS:000259353100007 ER PT J AU Ranjbar, VH Ivanov, P AF Ranjbar, V. H. Ivanov, P. TI Chromaticity and wakefield effect on the transverse motion of longitudinal bunch slices in the Fermilab Tevatron SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The transverse turn-by-turn evolution of a bunch slice after an impulse kick is examined considering chromatic and impedance effects. It is found that by fitting the envelope of the beam slice motion to simulated data the strength of the resistive wall wakefield can be determined. C1 [Ranjbar, V. H.] Tech X Corp, Boulder, CO 80303 USA. [Ivanov, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ranjbar, VH (reprint author), Tech X Corp, 5621 Arapahoe Ave,Suite A, Boulder, CO 80303 USA. NR 8 TC 4 Z9 4 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2008 VL 11 IS 8 AR 084401 DI 10.1103/PhysRevSTAB.11.084401 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LE UT WOS:000259353100008 ER PT J AU Seo, PN Barron-Palos, L Bowman, JD Chupp, TE Crawford, C Dabaghyan, M Dawkins, M Freedman, SJ Gentile, T Gericke, MT Gillis, RC Greene, GL Hersman, FW Jones, GL Kandes, M Lamoreaux, S Lauss, B Leuschner, MB Mahurin, R Mason, M Mei, J Mitchell, GS Nann, H Page, SA Penttila, SI Ramsay, WD Bacci, AS Santra, S Sharma, M Smith, TB Snow, WM Wilburn, WS Zhu, H AF Seo, P. -N. Barron-Palos, L. Bowman, J. D. Chupp, T. E. Crawford, C. Dabaghyan, M. Dawkins, M. Freedman, S. J. Gentile, T. Gericke, M. T. Gillis, R. C. Greene, G. L. Hersman, F. W. Jones, G. L. Kandes, M. Lamoreaux, S. Lauss, B. Leuschner, M. B. Mahurin, R. Mason, M. Mei, J. Mitchell, G. S. Nann, H. Page, S. A. Penttila, S. I. Ramsay, W. D. Bacci, A. Salas Santra, S. Sharma, M. Smith, T. B. Snow, W. M. Wilburn, W. S. Zhu, H. TI High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID GAMMA-RAY ASYMMETRIES; FLIPPER; CAPTURE; FILTER; FIELDS; CL-35; ECHO; CL AB High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating gamma-ray asymmetry A(gamma) in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized (3)He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 +/- 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered. C1 [Seo, P. -N.; Bowman, J. D.; Lamoreaux, S.; Mitchell, G. S.; Penttila, S. I.; Bacci, A. Salas; Wilburn, W. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Barron-Palos, L.] Arizona State Univ, Tempe, AZ 85287 USA. [Chupp, T. E.; Kandes, M.; Sharma, M.] Univ Michigan, Ann Arbor, MI 48104 USA. [Crawford, C.; Mahurin, R.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Dabaghyan, M.; Hersman, F. W.; Mason, M.; Zhu, H.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Dawkins, M.; Leuschner, M. B.; Mei, J.; Nann, H.; Santra, S.; Snow, W. M.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Freedman, S. J.; Lauss, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gentile, T.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Gericke, M. T.; Gillis, R. C.; Page, S. A.; Ramsay, W. D.] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada. [Greene, G. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jones, G. L.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Ramsay, W. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Smith, T. B.] Univ Dayton, Dept Phys, Dayton, OH 45469 USA. RP Seo, PN (reprint author), Triangle Univ Nucl Lab, Durham, NC 27708 USA. EM pilneyo@tunl.duke.edu FU Department of Energy [W-7405-ENG-36]; National Science Foundation [PHY-0100348, PHY-0457219]; Natural Science and Engineering Research Council of Canada; Japanese Grant-in-Aid for Scientific Research [A12304014] FX The authors would like to thank Mr. G. Peralta for his technical contribution to the success of this work. The work was supported in part by the U. S. Department of Energy (Office of Energy Research, under Contract No. W-7405-ENG-36), the National Science Foundation (Grants No. PHY-0100348 and No. PHY-0457219), the Natural Science and Engineering Research Council of Canada, and the Japanese Grant-in-Aid for Scientific Research A12304014. M. Snow thanks the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. NR 32 TC 17 Z9 17 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2008 VL 11 IS 8 AR 084701 DI 10.1103/PhysRevSTAB.11.084701 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LE UT WOS:000259353100009 ER PT J AU Brizard, AJ Kaufman, AN Tracy, ER AF Brizard, A. J. Kaufman, A. N. Tracy, E. R. TI Recirculation in multiple wave conversions SO PHYSICS OF PLASMAS LA English DT Article ID MODE CONVERSION; LINEAR-CONVERSION AB A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave. (C) 2008 American Institute of Physics. C1 [Brizard, A. J.] St Michaels Coll, Dept Chem & Phys, Colchester, VT 05439 USA. [Kaufman, A. N.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kaufman, A. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tracy, E. R.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Brizard, AJ (reprint author), St Michaels Coll, Dept Chem & Phys, Colchester, VT 05439 USA. FU U.S. DoE [DE-AC03-76SFOO098, DE-FG02-96ER54344]; NSF-DoE [DE-FG02-06ER54885] FX This work was supported by U.S. DoE under Grant No. DE-AC03-76SFOO098. One of us (E.R.T.) also acknowledges support from U.S. DoE under Grant No. DE-FG02-96ER54344 and NSF-DoE under Contract No. DE-FG02-06ER54885. NR 15 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082116 DI 10.1063/1.2975215 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900021 ER PT J AU Cottrill, LA Langdon, AB Lasinski, BF Lund, SM Molvig, K Tabak, M Town, RPJ Williams, EA AF Cottrill, L. A. Langdon, A. B. Lasinski, B. F. Lund, S. M. Molvig, K. Tabak, M. Town, R. P. J. Williams, E. A. TI Kinetic and collisional effects on the linear evolution of fast ignition relevant beam instabilities SO PHYSICS OF PLASMAS LA English DT Article ID WEIBEL INSTABILITY; PLASMA; MODEL AB The fast ignition scheme will involve the generation and transport of a relativistic electron beam, which may be subject to a number of instabilities that act to inhibit energy transport. This study will address the effects of collisions and the initial electron beam distribution on the linear evolution of these instabilities for theoretical distributions including the relativistic waterbag, the relativistic Maxwellian (Juttner), and the saddle point (low temperature) approximation of the relativistic Maxwellian. It will then be shown that a more physical distribution obtained from a 2D explicit particle-in-cell simulation of the laser-plasma interaction can be best modeled with a Juttner distribution, but well-approximated with a relativistic waterbag distribution. In sum, for all distributions of interest, collisions were found to have the ability to both suppress and enhance growth for the filamentary instability, while they only suppress growth for the two-stream instability. (C) 2008 American Institute of Physics. C1 [Cottrill, L. A.; Langdon, A. B.; Lasinski, B. F.; Lund, S. M.; Tabak, M.; Town, R. P. J.; Williams, E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Cottrill, L. A.; Molvig, K.] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Cottrill, LA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 20 TC 26 Z9 26 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082108 DI 10.1063/1.2953816 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900013 ER PT J AU Hamp, WT Jarboe, TR Nelson, BA O'Neill, RG Raman, R Redd, AJ Stewart, BT Mueller, D AF Hamp, W. T. Jarboe, T. R. Nelson, B. A. O'Neill, R. G. Raman, R. Redd, A. J. Stewart, B. T. Mueller, D. TI Temperature and density characteristics of the Helicity Injected Torus-II spherical tokamak indicating closed flux sustainment using coaxial helicity injection SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT DRIVE EXPERIMENTS; MAGNETIC RECONNECTION; HIT-II; PLASMA; RELAXATION; SPHEROMAK; PROGRESS AB The electron temperature and density profiles of plasmas in the Helicity Injected Torus [HIT-II: T. R. Jarboe et al., Phys. Plasmas 5, 1807 (1998)] experiment are measured by multipoint Thomson scattering (MPTS). The HIT-II device is a small low-aspect-ratio tokamak (major radius 0.3 m, minor radius 0.2 m, toroidal field of up to 0.5 T), capable of inductive ohmic (OH) current drive, Coaxial Helicity Injection (CHI) current drive, or combinations of both. The temperature and density characteristics have been characterized by a ruby laser MPTS diagnostic at up to six locations within the plasma for a single diagnostic time per discharge. Observed hollow temperature profiles of CHI discharges are inconsistent with open flux only predictions for CHI and indicate a closed flux region during CHI current drive. 0 2008 American Institute of Physics. C1 [Hamp, W. T.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Redd, A. J.; Stewart, B. T.] Univ Washington, Seattle, WA 98195 USA. [Mueller, D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hamp, WT (reprint author), Univ Washington, Box 352250, Seattle, WA 98195 USA. EM willhamp@u.washington.edu NR 31 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082501 DI 10.1063/1.2968205 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900039 ER PT J AU Mynick, HE Boozer, AH AF Mynick, H. E. Boozer, A. H. TI Anisotropic pressure, transport, and shielding of magnetic perturbations SO PHYSICS OF PLASMAS LA English DT Article ID BANANA-DRIFT TRANSPORT; DIII-D; TOKAMAKS; FIELD; DIFFUSION; PLASMA; RIPPLE; EQUILIBRIUM; MODE AB The effect on a tokamak of applying a nonaxisymmetric magnetic perturbation delta B is computed. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection that exists between that radial current and the in-surface currents, which provide shielding or amplification of delta B. Here, the pressure anisotropy, p(parallel to),p(perpendicular to) not equal p, and from this, both the radial and in-surface currents, are analytically computed. The surface average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides. (C) 2008 American Institute of Physics. C1 [Mynick, H. E.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA. RP Mynick, HE (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-76-CH03073, DE-FG02-95ER54333] FX The authors are grateful to J.-K. Park for informative discussions related to this work. This work supported by U.S. Department of Energy Contract No. DE-AC02-76-CH03073. A.H.B. has support under U.S. Department of Energy Grant No. DE-FG02-95ER54333. NR 25 TC 5 Z9 5 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082502 DI 10.1063/1.2965139 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900040 ER PT J AU Ren, Y Yamada, M Ji, H Dorfman, S Gerhardt, SP Kulsrud, R AF Ren, Yang Yamada, Masaaki Ji, Hantao Dorfman, Seth Gerhardt, Stefan P. Kulsrud, Russel TI Experimental study of the Hall effect and electron diffusion region during magnetic reconnection in a laboratory plasma SO PHYSICS OF PLASMAS LA English DT Article ID SWEET-PARKER; COLLISIONLESS RECONNECTION; FIELD; CHALLENGE; SYSTEM; DISSIPATION; MAGNETOTAIL AB The Hall effect during magnetic reconnection without an external guide field has been extensively studied in the laboratory plasma of the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] by measuring its key signature, an out-of-plane quadrupole magnetic field, with magnetic probe arrays whose spatial resolution is on the order of the electron skin depth. The in-plane electron flow is deduced from out-of-plane magnetic field measurements. The measured in-plane electron flow and numerical results are in good agreement. The electron diffusion region is identified by measuring the electron outflow channel. The width of the electron diffusion region scales with the electron skin depth (similar to 5.5-7.5c/omega(pe)) and the peak electron outflow velocity scales with the electron Alfven velocity (similar to 0.12-0.16V(eA)), independent of ion mass. The measured width of the electron diffusion region is much wider and the observed electron outflow is much slower than those obtained in 2D numerical simulations. It is found that the classical and anomalous dissipation present in the experiment can broaden the electron diffusion region and slow the electron outflow. As a consequence, the electron outflow flux remains consistent with numerical simulations. The ions, as measured by a Mach probe, have a much wider outflow channel than the electrons, and their outflow is much slower than the electron outflow everywhere in the electron diffusion region. (C) 2008 American Institute of Physics. C1 [Ren, Yang; Yamada, Masaaki; Ji, Hantao; Dorfman, Seth; Gerhardt, Stefan P.; Kulsrud, Russel] Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasmas, Princeton, NJ 08543 USA. RP Ren, Y (reprint author), Univ Wisconsin, Madison, WI 53706 USA. RI Yamada, Masaaki/D-7824-2015 OI Yamada, Masaaki/0000-0003-4996-1649 FU DOE; NASA; NSF FX This work was jointly supported by DOE, NASA, and NSF. NR 65 TC 22 Z9 24 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082113 DI 10.1063/1.2936269 PG 20 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900018 ER PT J AU Roytershteyn, V Daughton, W AF Roytershteyn, V. Daughton, W. TI Collisionless instability of thin current sheets in the presence of sheared parallel flows SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; DYNAMICS AB The first results of an ongoing investigation of the influence of sheared parallel flows on the onset of collisionless magnetic reconnection in thin current sheets are reported. In particular, an exact kinetic equilibrium that incorporates flow with a symmetric profile into the well-known Harris model is proposed and its linear stability is described. The complete linearized Vlasov-Maxwell system is solved using a numerical approach that introduces no approximations regarding the shape of the particle orbits or relative magnitude of the different components of the electromagnetic potentials. Thus accurate results are obtained in a difficult, but practically important limit where the characteristic length scales for the variation of the equilibrium magnetic field and flow are comparable to the ion kinetic length scales. In particular, the dispersion relation for an instability that produces magnetic reconnection is traced as a function of the flow speed V(0) at the center of the sheet, starting with the collisionless tearing mode at V(0)=0. The effects of the sheared flow are shown to qualitatively depend on the thickness of the current sheet. In relatively thick sheets the characteristic features of the dispersion relation depend mostly on the value of the flow shear, In this regime there exist regions of the parameter space where the flow is destabilizing. However, the growth rate of the instability never significantly exceeds that of the collisionless tearing mode and the mode is always stabilized at high enough values of V(0). When the sheet is thinner than the ion gyroradius in the asymptotic magnetic field, the flow shear introduces strong non-Maxwellian features into the equilibrium distribution function. In this regime, the flow is purely stabilizing for the equilibrium considered. The instability produces magnetic reconnection in all the parameter regimes considered. Finally, the results of the linear analysis are verified using large-scale particle-in-cell simulations. (C) 2008 American Institute of Physics. C1 [Roytershteyn, V.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Roytershteyn, V (reprint author), Los Alamos Natl Lab, MS K717, Los Alamos, NM 87545 USA. RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NASA [14262600]; National Science Foundation [0447423] FX V.R. would like to acknowledge the hospitality of T-15 group at Los Alamos National Laboratory. This material is based on work supported by NASA under Grant No. 14262600 and by the National Science Foundation under Grant No. 0447423. Simulations were performed using the Institutional Computing resources at Los Alamos National Laboratory. NR 13 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082901 DI 10.1063/1.2968459 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900051 ER PT J AU Shaing, KC Cahyna, P Becoulet, M Park, JK Sabbagh, SA Chu, MS AF Shaing, K. C. Cahyna, P. Becoulet, M. Park, J. -K. Sabbagh, S. A. Chu, M. S. TI Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID MOMENTUM DISSIPATION; TRANSPORT; CONFINEMENT; REGIME; FLOW AB It is demonstrated that the pitch angle integrals in the transport fluxes in the nu regime calculated in K. C. Shang [Phys. Plasmas 10, 1443 (2003)] are divergent as the trapped-circulating boundary is approached. Here, nu is the collision frequency. The origin of this divergence results from the logarithmic dependence in the bounce averaged radial drift velocity. A collisional boundary layer analysis is developed to remove the singularity. The resultant pitch angle integrals now include not only the original physics of the nu regime but also the boundary layer physics. The transport fluxes, caused by the particles inside the boundary layer, scale as root nu. (C) 2008 American Institute of Physics. C1 [Shaing, K. C.] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. [Shaing, K. C.] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. [Cahyna, P.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Cahyna, P.] Assoc EURATOM IPP CR, Inst Plasma Phys AS CR, Prague, Czech Republic. [Becoulet, M.] CEA DSM IRFM, Assoc EURATOM, Ctr Cadarache, F-13108 St Paul Les Durance, France. [Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Chu, M. S.] Gen Atom Co, San Diego, CA 92185 USA. RP Shaing, KC (reprint author), Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. RI Sabbagh, Steven/C-7142-2011; Cahyna, Pavel/G-9116-2014 FU National Science Council, Republic of China; U.S. Department of Energy [DE-FG02-01ER54619]; European Communities [FU07-CT-2007-00060] FX This work was partly supported by the National Science Council, Republic of China (K.C.S.), by the U.S. Department of Energy under Grant No. DE-FG02-01ER54619 with the University of Wisconsin (K.C.S.), and by the European Communities under the contract of Association between EURATOM and IPP.CR No. FU07-CT-2007-00060 (P.C.). The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 15 TC 44 Z9 44 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082506 DI 10.1063/1.2969434 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900044 ER PT J AU Smith, SP Jardin, SC AF Smith, S. P. Jardin, S. C. TI Ideal magnetohydrodynamics stability spectrum with a resistive wall SO PHYSICS OF PLASMAS LA English DT Article ID NORMAL MODE ANALYSIS; PLASMA ROTATION; STABILIZATION; TOKAMAK; FEEDBACK AB The eigenvalue equations describing a cylindrical ideal magnetohydrodynamics plasma interacting with a thin resistive wall are presented in the standard mathematical form, A.x=lambda B.x, without discretizing the vacuum regions surrounding the plasma. This is accomplished by using a finite-element basis for the plasma perturbations, and by coupling the plasma surface perturbations to the perturbed electrical current in the wall using a Green's-function approach. The perturbed wall cur-rent introduces a single additional degree of freedom into the system, which, together with an auxiliary variable, u=omega xi, allows the system to take the standard linear form. The standard form allows the use of linear eigenvalue solvers, without additional iterations, to compute the complete spectrum of plasma modes in the presence of a surrounding resistive wall at arbitrary separation. Standard results are recovered in the limits of (i) an infinitely resistive wall (no wall), and (ii) a zero resistance wall (ideal wall). (C) 2008 American Institute of Physics. C1 [Smith, S. P.; Jardin, S. C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Smith, SP (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. EM spsmith@pppl.gov RI Smith, Sterling/A-9279-2009; Jardin, Stephen/E-9392-2010; OI Smith, Sterling/0000-0003-1526-380X FU United States Department of Energy (U.S. DOE) [DE-AC02-76CH0307]; Oak Ridge Associated Universities FX We wish to thank J. Freidberg and L. Guazzotto for bringing this problem to our attention and for many useful discussions. The work of S. P. Smith was performed under appointment to the Fusion Energy Sciences Fellowship Program administered, by Oak Ridge Institute for Science and Education under a contract between the United States Department of Energy (U.S. DOE) and the Oak Ridge Associated Universities. This work was also supported by U.S. DOE Contract No. DE-AC02-76CH0307. NR 12 TC 5 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 080701 DI 10.1063/1.2965499 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900002 ER PT J AU Wong, SK Chan, VS Solomon, WM AF Wong, S. K. Chan, V. S. Solomon, W. M. TI Poloidal velocity of impurity ions in neoclassical theory SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL ROTATION; TRANSPORT-THEORY; TOKAMAK PLASMAS; ASPECT-RATIO; REGIME AB A formula for the poloidal velocity of impurity ions in a two-species plasma is derived from neoclassical theory in the banana regime, with corrections from the boundary layer separating the trapped and transiting ions. The formula is applicable to plasmas with toroidal rotations that can approach the thermal speeds of the ions. Using the formula to determine the poloidal velocity of C(+6) ions in a recently reported experiment [W. M. Solomon et al., Phys. Plasmas 13, 056116 (2006)] leads to agreement in the direction of the central region when it is otherwise from theories without strong toroidal rotations. Comparisons among these theories are made, demonstrating the degree of uncertainty of theoretical predictions. (C) 2008 American Institute of Physics. C1 [Wong, S. K.; Chan, V. S.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wong, SK (reprint author), San Diego Mesa Coll, San Diego, CA USA. EM wongs@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-FG02-95ER54309, DE-AC02-76CH03073] FX We thank K. H. Burrell and J. S. deGrassie for useful discussions, L. L. Lao for providing plasma profile data, and R. E. Waltz for suggestions on improving the manuscript. This work was supported by the U.S. Department of Energy under Contract Nos. DE-FG02-95ER54309 and DE-AC02-76CH03073. NR 13 TC 7 Z9 7 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2008 VL 15 IS 8 AR 082503 DI 10.1063/1.2969438 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 351TN UT WOS:000259448900041 ER PT J AU Dean, DJ AF Dean, David J. TI More light on the structure of nuclei - Reply SO PHYSICS TODAY LA English DT Letter C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Dean, DJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM deandj@ornl.gov NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD AUG PY 2008 VL 61 IS 8 BP 13 EP 13 PG 1 WC Physics, Multidisciplinary SC Physics GA 334UZ UT WOS:000258248000009 ER PT J AU Moran, B AF Moran, Bill TI LED efficiencies: Apples and oranges SO PHYSICS TODAY LA English DT Letter C1 Lawrence Livermore Natl Lab, Livermore, CA USA. RP Moran, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM moran1@llnl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD AUG PY 2008 VL 61 IS 8 BP 15 EP 15 DI 10.1063/1.2970953 PG 1 WC Physics, Multidisciplinary SC Physics GA 334UZ UT WOS:000258248000013 ER PT J AU DePaolo, DJ Orr, FM AF DePaolo, Donald J. Orr, Franklin M., Jr. TI Geoscience research for our energy future SO PHYSICS TODAY LA English DT Article ID AQUIFER C1 [DePaolo, Donald J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Orr, Franklin M., Jr.] Stanford Univ, Global Climate & Energy Project, Stanford, CA 94305 USA. RP DePaolo, DJ (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 14 TC 8 Z9 8 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD AUG PY 2008 VL 61 IS 8 BP 46 EP 51 DI 10.1063/1.2970212 PG 6 WC Physics, Multidisciplinary SC Physics GA 334UZ UT WOS:000258248000026 ER PT J AU Yu, XH Chen, MH Liu, CJ AF Yu, Xiao-Hong Chen, Min-Huei Liu, Chang-Jun TI Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula SO PLANT JOURNAL LA English DT Article DE malonyltransferase; isoflavonoids; Medicago truncatula; nuclear localization ID CICER-ARIETINUM-L; COA-ANTHOCYANIN 5-O-GLUCOSIDE-6'''-O-MALONYLTRANSFERASE; SALVIA-SPLENDENS FLOWERS; CELL-SUSPENSION CULTURES; ARABIDOPSIS-THALIANA; CDNA CLONING; COENZYME-A; HETEROLOGOUS EXPRESSION; O-METHYLTRANSFERASE; BAHD SUPERFAMILY AB (Iso)flavonoids are commonly accumulated as malonylated or acetylated glycoconjugates in legumes. Sequence analysis on EST database of the model legume Medicago truncatula enabled us to identify nine cDNA sequences encoding BAHD super-family enzymes that are distinct from the most of the characterized anthocyanin/flavonol acyltransferase genes in other species. Functional characterization revealed that three of these corresponding enzymes, MtMaT1, 2 and 3, specifically recognize malonyl CoA as an acyl donor and catalyze the malonylation of a range of isoflavone 7-O-glucosides in vitro. These malonyltransferase genes displayed distinct tissue-specific expression patterns and responded differentially to biotic and abiotic stresses. Consistent with gene expression, the level of the accumulated malonyl isoflavone glucoside was altered in the roots of M. truncatula grown under normal and drought-stressed conditions. Overexpression of the MtMaT1 gene in a previously engineered Arabidopsis line that accumulates genistein glycosides (Proc. Natl Acad. Sci. USA, 99, 2002: 14578) led to a malonylated product. Confocal microscopy of the transiently expressed MtMaT1-GFP fusion revealed strong fluorescence in both the cytoplasm and nucleus of M. truncatula and tobacco leaf cells. A truncated MtMaT1 lacking the C-terminal polypeptide of 110 amino acid residues that include the DFGWG motif, the single conserved sequence signature of BAHD super-family members, retained considerable catalytic efficiency, but showed an altered optimum pH preference for maximum activity. Such C-terminal polypeptide deletion or deletion of the DFGWG motif alone led to improper folding of the transiently expressed GFP fusion protein in living cells, and impaired nuclear localization of the enzyme. C1 [Yu, Xiao-Hong; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Chen, Min-Huei] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov FU Department of Energy Office of Biological Environmental Research [130-135]; Brookhaven National Laboratory's Laboratory Directed Research and Development program, DOE FX We thank Dr Richard Dixon of the Samuel Roberts Noble Foundation for M. truncatula EST clones, Dr Vitaly Citovsky at the State University of New York, Stony Brook, for sharing the confocal microscope, and Michael Blewitt (Brookhaven National Laboratory, USA) for DNA sequencing. The work was supported by the Plant Feedstock Genomics Program from the Department of Energy Office of Biological Environmental Research (130-135), and by Brookhaven National Laboratory's Laboratory Directed Research and Development program, under contract with the DOE. NR 64 TC 32 Z9 34 U1 2 U2 16 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD AUG PY 2008 VL 55 IS 3 BP 382 EP 396 DI 10.1111/j.1365-313X.2008.03509.x PG 15 WC Plant Sciences SC Plant Sciences GA 396QD UT WOS:000262605300003 PM 18419782 ER PT J AU Kramer, GJ Fu, GY Nazikian, R Budny, RV Cheng, CZ Gorelenkov, NN Pinches, SD Sharapov, SE Zastrow, KD AF Kramer, G. J. Fu, G. Y. Nazikian, R. Budny, R. V. Cheng, C. Z. Gorelenkov, N. N. Pinches, S. D. Sharapov, S. E. Zastrow, K. -D CA JET-EFDA Contributors TI Reversed shear Alfven eigenmodes in the frequency range of the triangularity induced gap on JET SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID AXISYMMETRICAL TOROIDAL PLASMAS; DRIVEN AB Reversed shear Alfven eigenmodes in the non-circular triangularity induced Alfven eigenmode frequency range are observed during the current ramp-up phase in JET discharges. Ideal magnetohydrodynamical calculations are able to reproduce the observed Alfv en eigenmode spectra accurately. It was found that these modes come into existence because of the plasma elongation. C1 [Kramer, G. J.; Fu, G. Y.; Nazikian, R.; Budny, R. V.; Cheng, C. Z.; Gorelenkov, N. N.; Pinches, S. D.; Sharapov, S. E.; Zastrow, K. -D] Culham Lab, JET EFDA, Abingdon OX14 3DB, Oxon, England. [Kramer, G. J.; Fu, G. Y.; Nazikian, R.; Budny, R. V.; Gorelenkov, N. N.] Princeton Plasma Phys Labs, Princeton, NJ 08543 USA. [Cheng, C. Z.] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. [Pinches, S. D.; Sharapov, S. E.; Zastrow, K. -D] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Kramer, GJ (reprint author), Culham Lab, JET EFDA, Abingdon OX14 3DB, Oxon, England. EM gkramer@pppl.gov RI Cheng, Chio/K-1005-2014 NR 19 TC 5 Z9 5 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD AUG PY 2008 VL 50 IS 8 AR 082001 DI 10.1088/0741-3335/50/8/082001 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 321SG UT WOS:000257326200001 ER PT J AU Svidzinski, VA AF Svidzinski, Vladimir A. TI Stability analysis of plasma confinement by the radio frequency electromagnetic field in a toroidal device SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID MAGNETIC-FIELD; SUPERCONDUCTING CAVITIES; ACCELERATORS; PENETRATION; FILAMENT; PINCH AB Stability analysis of a recently proposed (Svidzinski 2007 Phys. Plasmas 14 102512) plasma confinement concept is performed. A separate calculation of the equilibrium profile of the plasma boundary supported by a circularly polarized electromagnetic field is made in collisionless two fluid and kinetic models in slab geometry. In this concept unmagnetized plasma is confined by electromagnetic pressure of the radio frequency (rf) field in toroidal geometry with the confining field frequency in the lower range such that the size of the device is much smaller than the vacuum wavelength. The confining magnetic field is generated by currents in the toroidal shell and by image currents on the plasma surface which are driven by ac voltages applied to toroidal and poloidal gaps in the shell. In the present stability analysis toroidal geometry is approximated by a periodic cylinder, it is assumed that plasma is a perfectly conducting fluid and that there is a vacuum layer between the plasma boundary and conducting shell. In this model a dispersion equation for plasma oscillations near equilibrium is derived. A general stability criterion is calculated when plasma is confined by an elliptically polarized rf field. For an elliptically polarized field stable plasma equilibria can be realized under nonrestrictive conditions for a wide range of ellipticity parameters. In particular, for circular polarization the equilibrium is stable when a greater than or similar to 0.6b, where a is the plasma radius and b is the radius of the cylinder. When plasma is confined by a linearly polarized field its equilibrium is in general unstable. Stable equilibria can also be realized when polarization of the confining field is a superposition of elliptical and linear polarizations. Conclusions about plasma stability under nonrestrictive conditions are expected to be valid in toroidal geometry from the physics consideration of the stabilizing mechanism. The up-to-date studies of the proposed plasma confinement concept indicate that this concept can result in a practical plasma confinement device. C1 [Svidzinski, Vladimir A.] Univ Wisconsin, Madison, WI 53706 USA. [Svidzinski, Vladimir A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Svidzinski, VA (reprint author), Univ Wisconsin, Madison, WI 53706 USA. NR 41 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD AUG PY 2008 VL 50 IS 8 AR 085017 DI 10.1088/0741-3335/50/8/085017 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 321SG UT WOS:000257326200018 ER PT J AU Wu, HC Anders, A AF Wu, Hongchen Anders, Andre TI Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID SOURCE ION-IMPLANTATION; MAGNETIC STORAGE TECHNOLOGY; AMORPHOUS-CARBON FILMS; CATHODIC ARC PLASMA; HIGH-ASPECT-RATIO; VACUUM-ARC; SURFACE MODIFICATION; MATRIX SHEATH; DEPOSITION; MODEL AB A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 mu s, 4 mu s, 10 mu s, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified. C1 [Wu, Hongchen] Dalian Univ Technol, Dept Phys, Dalian 116024, Peoples R China. [Wu, Hongchen] Beijing Aeronaut Mfg Technol Res Inst, Beijing 100024, Peoples R China. [Wu, Hongchen; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wu, HC (reprint author), Dalian Univ Technol, Dept Phys, Dalian 116024, Peoples R China. RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 47 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD AUG PY 2008 VL 17 IS 3 AR 035030 DI 10.1088/0963-0252/17/3/035030 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 333HV UT WOS:000258144500031 ER PT J AU Krishnan, VV Lau, EY Yamada, J Denning, DP Patel, SS Colvin, ME Rexach, MF AF Krishnan, V. V. Lau, Edmond Y. Yamada, Justin Denning, Daniel P. Patel, Samir S. Colvin, Michael E. Rexach, Michael F. TI Intramolecular Cohesion of Coils Mediated by Phenylalanine-Glycine Motifs in the Natively Unfolded Domain of a Nucleoporin SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID NUCLEAR-PORE COMPLEX; INTRINSICALLY UNSTRUCTURED PROTEINS; HYDROPHOBIC CLUSTER-ANALYSIS; RESIDUAL DIPOLAR COUPLINGS; STRUCTURE PREDICTION; PROTEOMIC ANALYSIS; NMR-SPECTROSCOPY; REPEAT REGIONS; TRANSPORT; MODEL AB The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and the cytoplasm of cells. Its diffusion conduit contains a size-selective gate formed by a family of NPC proteins that feature large, natively unfolded domains with phenylalanine-glycine repeats (FG domains). These domains of nucleoporins play key roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain from the yeast nucleoporin Nup116. The results showed that its FG motifs function as intramolecular cohesion elements that impart order to the FG domain and compact its ensemble of structures into native premolten globular configurations. At the NPC, the FG motifs of nucleoporins may exert this cohesive effect intermolecularly as well as intramolecularly to form a malleable yet cohesive quaternary structure composed of highly flexible polypeptide chains. Dynamic shifts in the equilibrium or competition between intra-and intermolecular FG motif interactions could facilitate the rapid and reversible structural transitions at the NPC conduit needed to accommodate passing karyopherin-cargo complexes of various shapes and sizes while simultaneously maintaining a size-selective gate against protein diffusion. C1 [Krishnan, V. V.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Krishnan, V. V.; Yamada, Justin; Patel, Samir S.; Rexach, Michael F.] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA. [Krishnan, V. V.] Calif State Univ Fresno, Dept Chem, Fresno, CA 93740 USA. [Lau, Edmond Y.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA USA. [Denning, Daniel P.] MIT, Dept Biol, Cambridge, MA USA. [Colvin, Michael E.] Univ Calif Merced, Sch Nat Sci, Ctr Computat Biol, Merced, CA USA. RP Krishnan, VV (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. EM rexach@biology.ucsc.edu RI Krishnan, Krish/A-6859-2010 FU NIH [GM061900, GM077520]; United States Department of Energy; University of California Lawrence Livermore National Laboratory [W-7405-ENG-48.]; U.S. Department of Energy, Office of Science, Offices of Advanced Scientific Computing Research, and Biological & Environmental Research; University of California Merced Center for Computational Biology FX This work was supported in part by NIH Grant #GM061900 and #GM077520 awarded to MR. This work was also performed in part under the auspices of the United States Department of Energy through the University of California Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. This work was also supported in part by the U.S. Department of Energy, Office of Science, Offices of Advanced Scientific Computing Research, and Biological & Environmental Research through the University of California Merced Center for Computational Biology. These sponsors or funders had no role in the design and conduct of this study, or in the collection, analysis, and interpretation of the data, or in the prepartaion, review, or approval of the manuscript. NR 64 TC 28 Z9 28 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD AUG PY 2008 VL 4 IS 8 AR e1000145 DI 10.1371/journal.pcbi.1000145 PG 13 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 360EX UT WOS:000260041300030 PM 18688269 ER PT J AU Taylor, RC Acquaah-Mensah, G Singhal, M Malhotra, D Biswal, S AF Taylor, Ronald C. Acquaah-Mensah, George Singhal, Mudita Malhotra, Deepti Biswal, Shyam TI Network Inference Algorithms Elucidate Nrf2 Regulation of Mouse Lung Oxidative Stress SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ANTIOXIDANT RESPONSE ELEMENT; GENE-EXPRESSION; MEDIATED EXPRESSION; PROTEIN; DJ-1; GLUTATHIONYLATION; ACTIVATION; DISEASES; ALS2; DEGENERATION AB A variety of cardiovascular, neurological, and neoplastic conditions have been associated with oxidative stress, i.e., conditions under which levels of reactive oxygen species (ROS) are elevated over significant periods. Nuclear factor erythroid 2-related factor (Nrf2) regulates the transcription of several gene products involved in the protective response to oxidative stress. The transcriptional regulatory and signaling relationships linking gene products involved in the response to oxidative stress are, currently, only partially resolved. Microarray data constitute RNA abundance measures representing gene expression patterns. In some cases, these patterns can identify the molecular interactions of gene products. They can be, in effect, proxies for protein-protein and protein-DNA interactions. Traditional techniques used for clustering coregulated genes on high-throughput gene arrays are rarely capable of distinguishing between direct transcriptional regulatory interactions and indirect ones. In this study, newly developed information-theoretic algorithms that employ the concept of mutual information were used: the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Context Likelihood of Relatedness (CLR). These algorithms captured dependencies in the gene expression profiles of the mouse lung, allowing the regulatory effect of Nrf2 in response to oxidative stress to be determined more precisely. In addition, a characterization of promoter sequences of Nrf2 regulatory targets was conducted using a Support Vector Machine classification algorithm to corroborate ARACNE and CLR predictions. Inferred networks were analyzed, compared, and integrated using the Collective Analysis of Biological Interaction Networks (CABIN) plug-in of Cytoscape. Using the two network inference algorithms and one machine learning algorithm, a number of both previously known and novel targets of Nrf2 transcriptional activation were identified. Genes predicted as novel Nrf2 targets include Atf1, Srxn1, Prnp, Sod2, Als2, Nfkbib, and Ppp1r15b. Furthermore, microarray and quantitative RT-PCR experiments following cigarette-smoke-induced oxidative stress in Nrf2(+/+) and Nrf2(-/-) mouse lung affirmed many of the predictions made. Several new potential feed-forward regulatory loops involving Nrf2, Nqo1, Srxn1, Prdx1, Als2, Atf1, Sod1, and Park7 were predicted. This work shows the promise of network inference algorithms operating on high-throughput gene expression data in identifying transcriptional regulatory and other signaling relationships implicated in mammalian disease. C1 [Taylor, Ronald C.; Singhal, Mudita] US DOE, Computat Biol & Bioinformat Grp, Pacific NW Natl Lab, Richland, WA USA. [Acquaah-Mensah, George] Massachusetts Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Worcester, MA USA. [Malhotra, Deepti; Biswal, Shyam] Johns Hopkins Univ, Dept Environm Hlth Sci, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA. RP Taylor, RC (reprint author), US DOE, Computat Biol & Bioinformat Grp, Pacific NW Natl Lab, Richland, WA USA. EM ronald.taylor24@gmail.com OI Acquaah-Mensah, George/0000-0003-3984-8327; Mensah, George/0000-0002-0387-5326; Taylor, Ronald/0000-0001-9777-9767 FU US Department of Energy (DOE) [DE-AC05-76RL01830]; EMSL Grand Challenge in Membrane Biology project; Oak Ridge National Laboratory/PNNL Microbial Protein-Protein Interactions [43930]; National Institutes of Health [HL081205, GM079239, P50HL084945]; Flight Attendant Medical Research Institute; National Institute of Environmental Health Sciences (NIEHS) Children Asthma Cente [50ES-06-001] FX The development of the SEBINI network inference software platform was supported by the US Department of Energy (DOE) through the Biomolecular Systems Initiative at the Pacific Northwest National Laboratory (PNNL), and also through the William R. Wiley Environmental Molecular Science Laboratory (EMSL) at PNNL, operated by Battelle for the US DOE under contract DE-AC05-76RL01830. Also, SEBINI development has been supported by the EMSL Grand Challenge in Membrane Biology project, via PNNL's Laboratory Directed Research and Development Program. Also, work for SEBINI and CABIN has been supported by the joint Oak Ridge National Laboratory/PNNL Microbial Protein-Protein Interactions project for the Genomes to Life Center for Molecular and Cellular Biology, project #43930, US DOE. SB is partly supported by National Institutes of Health grants HL081205, GM079239, and P50HL084945, National Institute of Environmental Health Sciences (NIEHS) Children Asthma Center Grant 50ES-06-001, and a research grant from the Flight Attendant Medical Research Institute. The microarray data was generated in the microarray core facility of NIEHS center P30 ES 03819. These studies have been facilitated by resources of the Massachusetts College of Pharmacy and Health Sciences. NR 60 TC 48 Z9 48 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD AUG PY 2008 VL 4 IS 8 AR e1000166 DI 10.1371/journal.pcbi.1000166 PG 15 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 360EX UT WOS:000260041300011 PM 18769717 ER PT J AU Blair, MW Muenchausen, RE Taylor, RD Labouriau, A Cooke, DW Stephens, TS AF Blair, M. W. Muenchausen, R. E. Taylor, R. D. Labouriau, A. Cooke, D. W. Stephens, T. S. TI EPR and Mossbauer characterization of RTV polysiloxane foams and their constituents SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE EPR; Mossbauer; RTV foams; aging mechanisms ID SILICONE FOAM; POLYDIMETHYLSILOXANE; LEPIDOCROCITE AB We have used electron paramagnetic resonance (EPR) and Fe-57 Mossbauer spectroscopies to investigate potential aging mechanisms in filled RTV polysiloxane foams, diatomaceous earth, and their other constituents. Intense, broad EPR resonances in the RTV foams were recorded at room temperature as a function of microwave power. These signals were shown to come from the diatomaceous earth filler (Celite (R) 350) in the RTV foams. Fe-57 Mossbauer measurements for neat Celite (R) 350 showed the presence of iron compounds in the form of lepidocrocite. Further EPR measurements showed that the intense, broad signals from Celite (R) 350 and the RTV foams were due to lepidocrocite that has been annealed to 175 degrees C and is in an excited state. EPR measurements of annealed samples of Celite (R) 350 also indicated that structural (chemisorbed) water is not easily released by the lepidocrocite. Therefore, the presence of intermediate forms of iron oxides in Celite (R) 350 and RTV foams indicates that water is not active in these materials. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Blair, M. W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Muenchausen, R. E.; Labouriau, A.; Cooke, D. W.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Taylor, R. D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Stephens, T. S.] Los Alamos Natl Lab, Weap Engn Technol Div, Los Alamos, NM 87545 USA. RP Blair, MW (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA. EM mblair@lanl.gov RI Stephens, Thomas/D-9512-2012; OI Labouriau, Andrea/0000-0001-8033-9132 NR 13 TC 9 Z9 9 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD AUG PY 2008 VL 93 IS 8 BP 1585 EP 1589 DI 10.1016/j.polymdegradstab.2008.04.014 PG 5 WC Polymer Science SC Polymer Science GA 350YD UT WOS:000259388900024 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm TI Solar cell efficiency tables (version 32) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID 20-PERCENT EFFICIENCY; LARGE-AREA; MULTICRYSTALLINE AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January 2008 are reviewed. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta RCPV, Tsukuba, Ibaraki, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. RP Green, MA (reprint author), Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au NR 49 TC 65 Z9 69 U1 3 U2 26 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2008 VL 16 IS 5 BP 435 EP 440 DI 10.1002/pip.842 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 339OH UT WOS:000258586400007 ER PT J AU Stevens, LL Velisavljevic, N Hooks, DE Dattelbaum, DM AF Stevens, Lewis L. Velisavljevic, Nenad Hooks, Daniel E. Dattelbaum, Dana M. TI Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder X-ray diffraction SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE equation of state; hydrostatic compression; insensitive high explosive; TATB; X-ray diffraction ID TRANSIENT HIGH-PRESSURE; SHOCK WAVE COMPRESSION; CRYSTAL-STRUCTURE; RAMAN-SCATTERING; 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE; STATE; TRIAMINOTRINITROBENZENE; ANTHRACENE; HUGONIOT; EQUATION AB Using powder X-ray diffraction in conjunction with a diamond anvil cell (DAC), the unit cell volume of triamino-trinitrobenzene (TATB) has been measured from ambient pressure to 13 GPa. The resultant isotherm is compared with previous theoretical (Byrd and Rice and Pastine and Bernecker) and experimental (Olinger and Cady) works. While all reports are consistent to approximately 2 GPa, our measurements reveal a slightly stiffer TATB material that reported by Olinger and Cady and an intermediate compressibility compared with the isotherms predicted by the two theroretical works. Analysis of the room temperature isotherm using the semi-empirical, Murnagham, Birch-Murnaghan, and Vinet equations of state (EOS) provided a determination of the isothermal bulk modulus (K-n) and its pressure-derivative (K-a') for TATB. From these fits to our P-V isotherm, from ambient pressure to 8 GPa, the average results for the zero-pressure bulk modulus and its pressure derivative were found to be 14.7 GPa and 10.1, respectively. For comparison to shock experiments on pressed TATB powder and its plastic-bonded formulation PBX 9502 (95% TATB, 5% Kel-F 800), the isotherm was transformed to the pseudo-velocity U-s - u(p) plane using the Rankie - Hugoniot jump conditions. This analysis provides an extrapolated bulk sound speed, c(o) = 1.70 km s(-1), for TATB and its agreement with a previous determination (c(o) = 1.43 km s(-1)) is discussed. Furthermore, our P-V and corresponding U-s - u(p) curves reveal a subtle cusp at approximately 8 GPa. This cusp is discussed in relation to similar observations made for the aromatic hydrocarbons anthracene, benzene and toluene, graphite, and trinitrotoluene (TNT). C1 [Stevens, Lewis L.; Velisavljevic, Nenad; Hooks, Daniel E.; Dattelbaum, Dana M.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Dattelbaum, DM (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM danadat@lanl.gov FU DOE/NNSA Science Campaign 2; DOE-BES; DOE-NNSA; NSF; DOD-TACOM; W. M. Keck Foundation FX Los Alamos National Laboratory is operated by Los Alamos National Security (LANS), LLC for the Department of Energy and the National Nuclear Safety Administration. Support for this research was provided by DOE/NNSA Science Campaign 2 under the HE Science Program. Use of the HCAT facility is supported by DOE-BES, DOE-NNSA, NSF, DOD-TACOM and the W. M. Keck Foundation. HPCAT is a collaboration among the Carnegie Institution, Lawrence Livermore National Laboratory, the University of Hawaii, the University of Nevada-Las Vegas, and the Carnegic/DOE Alliance Center (CDAC). We thank the HPCAT staff, and particularly Hans-Peter Liermann, Haozhe Lin, Paul Chow, and Maddury Somayazulu for technical assistance with our experiments. We also thank Rick Gustavsen for helpful discussions. Ernie Hartline for assistance in TATB crystal preparation, and Tariq Aslam for providing the motivation for this work. NR 33 TC 43 Z9 44 U1 1 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD AUG PY 2008 VL 33 IS 4 BP 286 EP 295 DI 10.1002/prep.200700270 PG 10 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 340XG UT WOS:000258677700007 ER PT J AU Rawat, R Ahmed, SA Swaminathan, S AF Rawat, Richa Ahmed, S. Ashraf Swaminathan, Subramanyam TI High level expression of the light chain of botulinum neurotoxin serotype C1 and an efficient HPLC assay to monitor its proteolytic activity SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE botulinum neurotoxin; cloning; catalytic activity; substrate peptide; type C1 ID SUBSTRATE-SPECIFICITY; STRUCTURAL-ANALYSIS; A NEUROTOXIN; SNARE MOTIF; SNAP-25; PROTEIN; CLEAVAGE; TETANUS; RELEASE; INTACT AB Botulinum neurotoxins (serotypes BoNT/A-BoNT/G) induce botulism, a disease leading to flaccid paralysis. These serotypes are highly specific in their proteolytic cleavage of SNAP-25 (synaptosomal-associated protein of 25 kDa), VAMP (vesicle associated membrane protein) or syntaxin. The catalytic domain (light chain, LC) of the neurotoxin has a Zn2+ dependent endopeptidase activity. In order to design drugs and inhibitors against these toxins, high level overexpression and characterization of LC of BoNTs along with the development of assays to monitor their proteolytic activity becomes important. Using the auto-induction method, we attained a high level expression of BoNT/C1(1-430) yielding more than 30 mg protein per 500 ml culture. We also developed an efficient assay to measure the activity of serotype C1 based on a HPLC method. SNAP-25 with varying peptide length has been reported in literature as substrates for BoNT/C1 proteolysis signifying the importance of remote exosites in BoNT/C1 required for activity. Here, we show that a 17-mer peptide corresponding to residues 187-203 of SNAP-25, which has earlier been shown to be a substrate for BoNT/A, can be used as a substrate for quantifying the activity of BoNT/C1 (1-430). There was no pH dependence for the proteolysis, however the presence of dithiothreitol is essential for the reaction. Although the 17-mer substrate bound 110-fold less tightly to BoNT/C1(1-430) than SNAP-25, the optimal assay conditions facilitated an increase in the catalytic efficiency of the enzyme by about 5-fold. (c) 2008 Elsevier Inc. All rights reserved. C1 [Rawat, Richa; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Ahmed, S. Ashraf] USA, Med Res Inst Infect Dis, Dept Mol Biol, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov NR 28 TC 8 Z9 8 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD AUG PY 2008 VL 60 IS 2 BP 165 EP 169 DI 10.1016/j.pep.2008.03.010 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 331MO UT WOS:000258016500011 PM 18482846 ER PT J AU Vuyisich, M Gnanakaran, S Lovchik, JA Lyons, CR Gupta, G AF Vuyisich, Momchilo Gnanakaran, S. Lovchik, Julie A. Lyons, C. Rick Gupta, Goutam TI A dual-purpose protein ligand for effective therapy and sensitive diagnosis of anthrax SO PROTEIN JOURNAL LA English DT Article DE anthrax; lethal toxins; bivalent protein chimera; therapy; detection ID PROTECTIVE ANTIGEN; BACILLUS-ANTHRACIS; LETHAL TOXIN; SUPERANTIGEN PATHOGENESIS; MONOCLONAL-ANTIBODIES; CELLULAR RECEPTOR; BINDING; CHALLENGE; BIOTERRORISM; MACROPHAGES AB This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame. Molecular modeling and binding measurements reveal that the VWA-Fc dimer binds to PA with high affinity (K-D = 0.2 nM). An in vitro bio-luminescence assay shows that VWA-Fc (at nanomolar concentration) protects mouse macrophages from lysis by PA/LF. In vivo studies demonstrate that VWA-Fc at low doses (similar to 50 mu g/animal) are able to rescue animals from lethal doses of PA/LF and B. anthracis spores. Finally, VWA-Fc is utilized as the capture molecule in the sensitive (down to 30 picomolar) detection of PA using surface plasmon resonance. C1 [Vuyisich, Momchilo; Gupta, Goutam] Los Alamos Natl Lab, Biosci Div, Grp B 7, Los Alamos, NM 87545 USA. [Gnanakaran, S.] Los Alamos Natl Lab, Div Theory, Grp T 10, Los Alamos, NM 87545 USA. [Lovchik, Julie A.; Lyons, C. Rick] Univ New Mexico, Hlth Sci Ctr, Ctr Infect Dis & Immun, Albuquerque, NM 87131 USA. RP Gupta, G (reprint author), Los Alamos Natl Lab, Biosci Div, Grp B 7, Los Alamos, NM 87545 USA. EM gxg@lanl.gov OI Gnanakaran, S/0000-0002-9368-3044 FU Department of Central Intelligence (DCI); DOE Laboratory Directed Research Development Programs; NIAID [N01-AI40095] FX We thank Rita Svensson for sequencing, Jim Freyer and Claire Sanders for cell culture facilities, Peter Pavlik for the use of FPLC, Elizabeth Hong-Geller for plate reader. We wish to thank Dr. Janet Dorigan (DCI) for her support. Grant Support: We acknowledge funding from the Department of Central Intelligence (DCI) and the DOE Laboratory Directed Research Development Programs. Animal studies were funded by NIAID, contract N01-AI40095. NR 38 TC 11 Z9 11 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1572-3887 J9 PROTEIN J JI Protein J. PD AUG PY 2008 VL 27 IS 5 BP 292 EP 302 DI 10.1007/s10930-008-9137-0 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 345PT UT WOS:000259009400004 PM 18649128 ER PT J AU Bergh, M Huldt, G Timneanu, N Maia, FRNC Hajdu, J AF Bergh, Magnus Huldt, Gosta Timneanu, Nicusor Maia, Filipe R. N. C. Hajdu, Janos TI Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction SO QUARTERLY REVIEWS OF BIOPHYSICS LA English DT Review ID UNIFORMLY REDUNDANT ARRAYS; FREE-ELECTRON LASERS; CRYSTALLOGRAPHY; WAVELENGTH; MICROSCOPY; HOLOGRAPHY; RADIATION; BEAMS AB Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis or the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed, The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0.75 and 1.5 nm and at fluences of 10(11)-10(12) photonS mu M (2) in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments. C1 [Bergh, Magnus; Huldt, Gosta; Timneanu, Nicusor; Maia, Filipe R. N. C.; Hajdu, Janos] Uppsala Univ, Inst Cell & Mol Biol, Lab Mol Biophys, S-75124 Uppsala, Sweden. [Hajdu, Janos] Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. RP Hajdu, J (reprint author), Uppsala Univ, Inst Cell & Mol Biol, Lab Mol Biophys, Box 596, S-75124 Uppsala, Sweden. EM janos@xray.bmc.uu.se RI Timneanu, Nicusor/C-7691-2012; Rocha Neves Couto Maia, Filipe/C-3146-2014 OI Timneanu, Nicusor/0000-0001-7328-0400; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X FU US Department of Energy; Swedish Research Council FX We are grateful to H. Scott (Lawrence Livermore National Laboratory) for his invaluable help with software development for plasma simulations. We thank M. Svenda (Uppsala), A. Szoke (Lawrence Livermore National Laboratory), R. A. London (Lawrence Livermore National Laboratory), and Keith A. Nugent (University of Melbourne) for discussions. This work was supported by the US Department of Energy through the Stanford Linear Accelerator Center by the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics (www.munich-photonics.de) and by the Swedish Research Council through the Centre of Excellence in FEL-Studies at Uppsala University. NR 32 TC 57 Z9 58 U1 5 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0033-5835 EI 1469-8994 J9 Q REV BIOPHYS JI Q. Rev. Biophys. PD AUG-NOV PY 2008 VL 41 IS 3-4 BP 181 EP 204 DI 10.1017/S003358350800471X PG 24 WC Biophysics SC Biophysics GA 389MX UT WOS:000262098500001 PM 19079804 ER PT J AU Seong, YB Owen, LA Bishop, MP Bush, A Clendon, P Copland, L Finkel, R Kamp, U Shroder, JF AF Seong, Yeong Bae Owen, Lewis A. Bishop, Michael P. Bush, Andrew Clendon, Penny Copland, Luke Finkel, Robert Kamp, Ulrich Shroder, John F. TI Quaternary glacier history of the Central Karakoram - Reply SO QUATERNARY SCIENCE REVIEWS LA English DT Letter ID EQUILIBRIUM-LINE ALTITUDES; MOUNT EVEREST; TIBETAN PLATEAU; HUNZA VALLEY; ICE-SHEET; GLACIATION; HIMALAYA; MORAINES; BE-10; SEDIMENTS C1 [Seong, Yeong Bae; Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Bishop, Michael P.; Shroder, John F.] Univ Nebraska, Dept Geog & Geol, Omaha, NE 68182 USA. [Bush, Andrew] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Clendon, Penny] Univ Canterbury, Dept Geog, Christchurch 1, New Zealand. [Copland, Luke] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. [Finkel, Robert] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Kamp, Ulrich] Univ Montana, Dept Geog, Missoula, MT 59812 USA. RP Seong, YB (reprint author), Korea Univ, Dept Earth & Environm Sci, Seoul 136704, South Korea. EM Lewis.Owen@uc.edu NR 32 TC 11 Z9 11 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD AUG PY 2008 VL 27 IS 15-16 BP 1656 EP 1658 DI 10.1016/j.quascirev.2008.04.016 PG 3 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 345SW UT WOS:000259017900014 ER PT J AU Kalinin, S Jesse, S Proksch, R AF Kalinin, Sergei Jesse, Stephen Proksch, Roger TI Information acquisition & processing in scanning probe microscopy SO R&D MAGAZINE LA English DT Article C1 [Kalinin, Sergei; Jesse, Stephen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kalinin, S (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Jesse, Stephen/D-3975-2016 OI Jesse, Stephen/0000-0002-1168-8483 NR 2 TC 2 Z9 2 U1 0 U2 2 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0746-9179 J9 R&D MAG JI R D Mag. PD AUG PY 2008 VL 50 IS 4 BP 20 EP + PG 3 WC Engineering, Industrial; Multidisciplinary Sciences SC Engineering; Science & Technology - Other Topics GA 337LL UT WOS:000258437500004 ER PT J AU Zeitlin, C Sihver, L La Tessa, C Mancusi, D Heilbronn, L Miller, J Guetersloh, SB AF Zeitlin, C. Sihver, L. La Tessa, C. Mancusi, D. Heilbronn, L. Miller, J. Guetersloh, S. B. TI Comparisons of fragmentation spectra using 1 GeV/amU Fe-56 data and the PHITS model SO RADIATION MEASUREMENTS LA English DT Article DE Galactic cosmic rays; Heavy ions; Shielding; Fragmentation; PHITS; Models; Monte Carlo ID ACCURATE UNIVERSAL PARAMETERIZATION; ABSORPTION CROSS-SECTIONS; MEV/NUCLEON FE-56; SPACE EXPLORATION; RADIATION; PARTICLE; TARGETS; CODE; IONS AB We present measurements and model calculations of fluence and linear energy transfer in water (LET infinity) obtained using Fe-56 beams with 1 GeV/amu kinetic energy incident on aluminum, polyethylene, PMMA, and lead targets. The measured spectra are compared to predictions of the PHITS model. The study is motivated by NASA's need to develop accurate heavy ion transport codes to assess radiation exposures in deep space, where galactic cosmic rays are important. The data were obtained at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. Distributions of charge and LET depend on the depth and composition of the target. Several of the targets studied are "thick", defined operationally as a depth that presents at least 50% of an interaction length to the beam ions. In a thick target, the probability of a secondary interaction is significant, tertiary interactions can also be important, and the target-exit fluence and charge distributions depend on unmeasured cross sections that can only be estimated by nuclear interaction models. Comparisons between calculated and measured spectra are therefore of considerable interest. Some targets used in the study are thin, so that secondary and higher interaction probabilities are negligible, allowing more stringent comparisons between the data and the model. We find that PHITS reproduces some aspects of the experimental data well, but fails to accurately reproduce many of the measured fragment fluences. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Zeitlin, C.; Heilbronn, L.; Miller, J.; Guetersloh, S. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sihver, L.; La Tessa, C.; Mancusi, D.] Chalmers, SE-41296 Gothenburg, Sweden. [Sihver, L.] Roanoke Coll, Salem, VA 24153 USA. RP Zeitlin, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM cjzeitlin@lbl.gov RI Heilbronn, Lawrence/J-6998-2013; OI Heilbronn, Lawrence/0000-0002-8226-1057; Mancusi, Davide/0000-0002-2518-8228 NR 29 TC 7 Z9 10 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD AUG PY 2008 VL 43 IS 7 BP 1242 EP 1253 DI 10.1016/j.radmeas.2008.02.013 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 345SV UT WOS:000259017800010 ER PT J AU Miller, G Melo, D Martz, H Bertelli, L AF Miller, G. Melo, D. Martz, H. Bertelli, L. TI AN EMPIRICAL MULTIVARIATE LOG-NORMAL DISTRIBUTION REPRESENTING UNCERTAINTY OF BIOKINETIC PARAMETERS FOR Cs-137 SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB A simplified biokinetic model for Cs-137 has six parameters representing transfer of material to and from various compartments. Using a Bayesian analysis, the joint probability distribution of these six parameters is determined empirically for two cases with quite a lot of bioassay data. The distribution is found to be a multivariate log-normal. Correlations between different parameters are obtained. The method utilises a fairly large number of pre-determined forward biokinetic calculations, whose results are stored in interpolation tables. Four different methods to sample the multidimensional parameter space with a limited number of samples are investigated: random, stratified, Latin Hypercube sampling with a uniform distribution of parameters and importance sampling using a lognormal distribution that approximates the posterior distribution. The importance sampling method gives much smaller sampling uncertainty. No sampling method-dependent differences are perceptible for the uniform distribution methods. C1 [Miller, G.; Martz, H.; Bertelli, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Melo, D.] NCI, Bethesda, MD 20892 USA. RP Miller, G (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM guthriemiller@gmail.com FU Los Alamos National Laboratory/US Department of Energy FX This work was funded in part by Los Alamos National Laboratory/US Department of Energy. NR 12 TC 4 Z9 4 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD AUG PY 2008 VL 131 IS 2 BP 198 EP 211 DI 10.1093/rpd/ncn131 PG 14 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 373PL UT WOS:000260984100006 PM 18420573 ER PT J AU Sallach, DL AF Sallach, David L. TI Modeling emotional dynamics: Currency versus field SO RATIONALITY AND SOCIETY LA English DT Article DE emotional energy; social field; collective orientation; cultural dynamics; discourse community ID SCIENCE AB Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels. C1 Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat, Argonne, IL 60439 USA. RP Sallach, DL (reprint author), Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat, 9700 S Cass Ave,Bldg 900, Argonne, IL 60439 USA. EM sallach@anl.gov NR 91 TC 2 Z9 2 U1 1 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1043-4631 J9 RATION SOC JI Ration. Soc. PD AUG PY 2008 VL 20 IS 3 BP 343 EP 365 DI 10.1177/1043463108092532 PG 23 WC Sociology SC Sociology GA 336LB UT WOS:000258364200004 ER PT J AU Smith, C Knudsen, J Kvarfordt, K Wood, T AF Smith, Curtis Knudsen, James Kvarfordt, Kellie Wood, Ted TI Key attributes of the SAPHIRE risk and reliability analysis software for risk-informed probabilistic applications SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE risk-informed; PRA; PSA; probability; risk assessment; safety; reliability; software; SAPHIRE; analysis AB The Idaho National Laboratory is a primary developer of probabilistic risk and reliability analysis (PRRA) tools, dating back over 35 years. Evolving from mainframe-based software, the current state-of-the-practice has led to the creation of the SAPHIRE software. Currently, agencies such as the Nuclear Regulatory Commission, the National Aeronautics and Aerospace Agency, the Department of Energy, and the Department of Defense use version 7 of the SAPHIRE software for many of their risk-informed activities. In order to better understand and appreciate the power of software as part of risk-informed applications, we need to recall that our current analysis methods and solution methods have built upon pioneering work done 30-40 years ago. We contrast this work with the current capabilities in the SAPHIRE analysis package. As part of this discussion, we provide information for both the typical features and special analysis capabilities, which are available. We also present the application and results typically found with state-of-the-practice PRRA models. By providing both a high-level and detailed look at the SAPHIRE software, we give a snapshot in time for the current use of software tools in a risk-informed decision arena. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Smith, Curtis; Knudsen, James; Kvarfordt, Kellie; Wood, Ted] EG&G Idaho Inc, Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Smith, C (reprint author), EG&G Idaho Inc, Idaho Natl Engn Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Curtis.Smith@inl.gov NR 13 TC 8 Z9 8 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD AUG PY 2008 VL 93 IS 8 BP 1151 EP 1164 DI 10.1016/j.ress.2007.08.005 PG 14 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 294SS UT WOS:000255426600006 ER PT J AU Graves, TL Hamada, MS Klamann, RM Koehler, AC Martz, HF AF Graves, T. L. Hamada, M. S. Klamann, R. M. Koehler, A. C. Martz, H. F. TI Using simultaneous higher-level and partial lower-level data in reliability assessments SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Bayesian methods; generalized cut sets; Markov chain Monte Carlo; simultaneous multi-level data; success/failure data ID BINOMIAL SUBSYSTEMS; COMPONENTS; SYSTEMS AB When a system is tested, besides system data, some lower-level data may become available such as a particular subsystem or component was successful or failed. Treating such simultaneous multi-level data as independent is a mistake because they are dependent. In this paper, we show how to handle simultaneous multi-level data correctly in a reliability assessment. We do this by determining what information the simultaneous data provides in terms of the component reliabilities using generalized cut sets. We illustrate this methodology with an example of a low-pressure coolant injection system using a Bayesian approach to make reliability assessments. Published by Elsevier Ltd. C1 [Graves, T. L.; Hamada, M. S.; Klamann, R. M.; Koehler, A. C.; Martz, H. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM haimada@lanl.gov NR 12 TC 21 Z9 22 U1 1 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD AUG PY 2008 VL 93 IS 8 BP 1273 EP 1279 DI 10.1016/j.ress.2007.07.002 PG 7 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 294SS UT WOS:000255426600016 ER PT J AU Tao, F Tang, D Salmeron, M Somorjai, GA AF Tao, Feng Tang, David Salmeron, Miquel Somorjai, Gabor A. TI A new scanning tunneling microscope reactor used for high-pressure and high-temperature catalysis studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SURFACE AB We present the design and performance of a homebuilt high-pressure and high-temperature reactor equipped with a high-resolution scanning tunneling microscope (STM) for catalytic studies. In this design, the STM body, sample, and tip are placed in a small high pressure reactor (similar to 19 cm(3)) located within an ultrahigh vacuum (UHV) chamber. A scalable port on the wall of the reactor separates the high pressure environment in the reactor from the vacuum environment of the STM chamber and permits sample transfer and tip change in UHV. A combination of a sample transfer arm, wobble stick, and sample load-lock system allows fast transfer of samples and tips between the preparation chamber, high pressure reactor, and ambient environment. This STM reactor can work as a batch or flowing reactor at a pressure range of 10-13 to several bars and a temperature range of 300-700 K. Experiments performed on two samples both in vacuum and in high pressure conditions demonstrate the capability of in situ investigations of heterogeneous catalysis and surface chemistry at atomic resolution at a wide pressure range from UHV to a pressure higher than 1 atm. (D) 2008 American Institute of Physics. C1 [Tao, Feng; Tang, David; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tao, Feng; Tang, David; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. [Tao, Feng; Tang, David; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Office of Science; Office of Advanced Scientific Computing Research; Office of Basic Energy Sciences; Materials Sciences and Engineering Division; of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was Supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 12 TC 44 Z9 44 U1 5 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2008 VL 79 IS 8 AR 084101 DI 10.1063/1.2960569 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 350SX UT WOS:000259374500033 PM 19044362 ER PT J AU Wang, J Toby, BH Lee, PL Ribaud, L Antao, SM Kurtz, C Ramanathan, M Von Dreele, RB Beno, MA AF Wang, Jun Toby, Brian H. Lee, Peter L. Ribaud, Lynn Antao, Sytle M. Kurtz, Charles Ramanathan, Mohan Von Dreele, Robert B. Beno, Mark A. TI A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION AB A new dedicated high-resolution high-throughput powder diffraction beamline has been built, fully commissioned, and opened to general users at the Advanced Photon Source. The optical design and commissioning results are presented. Beamline performance was examined using a mixture of the NIST Si and Al(2)O(3) standard reference materials, as well as the LaB6 line-shape standard. Instrumental resolution as high as 1.7 X 10(-4) (Delta Q/Q) was observed. (C) 2008 American Institute of Physics. C1 [Wang, Jun; Toby, Brian H.; Lee, Peter L.; Ribaud, Lynn; Antao, Sytle M.; Kurtz, Charles; Ramanathan, Mohan; Von Dreele, Robert B.; Beno, Mark A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, J (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM junwang@bnl.gov RI Kurtz, Chalres/G-1037-2011; Toby, Brian/F-3176-2013 OI Kurtz, Chalres/0000-0003-2606-0864; Toby, Brian/0000-0001-8793-8285 FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to acknowledge Dr. John F. Mitchell and the late Dr. James D. Jorgensen for cowriting the IIBM project proposal with several of us. The instrument construction project was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, as part of DOE-BES LAB-03 instrument construction program. Use of Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to thank Dr. Harriet Kung and Dr. Helen Kerch for the motivation provided by their interest in this project. NR 21 TC 152 Z9 152 U1 2 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2008 VL 79 IS 8 AR 085105 DI 10.1063/1.2969260 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 350SX UT WOS:000259374500049 PM 19044378 ER PT J AU Zheng, F Rassat, SD Helderandt, DJ Caldwell, DD Aardahl, CL Autrey, T Linehan, JC Rappe, KG AF Zheng, Feng Rassat, Scot D. Helderandt, David J. Caldwell, Dustin D. Aardahl, Christopher L. Autrey, Tom Linehan, John C. Rappe, Kenneth G. TI Automated gas burette system for evolved hydrogen measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SODIUM-BOROHYDRIDE SOLUTION; AQUEOUS AMMONIA-BORANE; CONSTANT-PRESSURE; THERMAL-DECOMPOSITION; GENERATION SYSTEM; CHEMICAL HYDRIDE; ROOM-TEMPERATURE; CO-B; HYDROLYSIS; CATALYST AB This paper reports a simple and efficient gas burette system that allows automated determination of evolved gas volume in real time using only temperature and pressure measurements. The system is reliable and has been used successfully to study the hydrogen release kinetics of ammonia borane thermolysis. The system is especially suitable for bench scale studies involving small batches and potentially rapid reaction kinetics. (C) 2008 American Institute of Physics. C1 [Zheng, Feng; Rassat, Scot D.; Helderandt, David J.; Caldwell, Dustin D.; Aardahl, Christopher L.; Autrey, Tom; Linehan, John C.; Rappe, Kenneth G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zheng, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM feng.zheng@pnl.gov RI Zheng, Feng/C-7678-2009 OI Zheng, Feng/0000-0002-5427-1303 FU the Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy as part of the Chemical Hydrogen Storage Center; the Pacific Northwest National Laboratory FX This work was funded by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy as part of the Chemical Hydrogen Storage Center and carried out at the Pacific Northwest National Laboratory (operated by Battelle for the U.S. DOE). NR 34 TC 18 Z9 18 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2008 VL 79 IS 8 AR 084103 DI 10.1063/1.2968715 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 350SX UT WOS:000259374500035 PM 19044364 ER PT J AU Sanquist, TF Mahy, H Morris, F AF Sanquist, Thomas F. Mahy, Heidi Morris, Frederic TI An exploratory risk perception study of attitudes toward homeland security systems SO RISK ANALYSIS LA English DT Article DE homeland security; risk perception; terrorism ID PRIVACY AB Understanding the issues surrounding public acceptance of homeland security systems is important for balancing security needs and potential civil liberties infringements. A psychometric survey was used in an exploratory study of attitudes regarding homeland security systems. Psychometric rating data were obtained from 182 respondents on psychological attributes associated with 12 distinct types of homeland security systems. An inverse relationship was observed for the overall rating attributes of acceptability and risk of civil liberties infringement. Principal components analysis (PCA) yielded a two-factor solution with the rating scale loading pattern suggesting factors of perceived effectiveness and perceived intrusiveness. These factors also showed an inverse relationship. The 12 different homeland security systems showed significantly different scores on the rating scales and PCA factors. Of the 12 systems studied, airport screening, canine detectors, and radiation monitoring at borders were found to be the most acceptable, while email monitoring, data mining, and global positioning satellite (GPS) tracking were found to be least acceptable. Students rated several systems as more effective than professionals, but the overall pattern of results for both types of subjects was similar. The data suggest that risk perception research and the psychometric paradigm are useful approaches for quantifying attitudes regarding homeland security systems and policies and can be used to anticipate potentially significant public acceptance issues. C1 [Sanquist, Thomas F.; Mahy, Heidi; Morris, Frederic] Pacific NW Natl Lab, Seattle, WA 98109 USA. RP Sanquist, TF (reprint author), Pacific NW Natl Lab, 1100 Dexter Ave N, Seattle, WA 98109 USA. EM sanquist@pnl.gov NR 19 TC 12 Z9 12 U1 3 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD AUG PY 2008 VL 28 IS 4 BP 1125 EP 1133 DI 10.1111/j.1539-6924.2008.01069.x PG 9 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 332JB UT WOS:000258078200024 PM 18627541 ER PT J AU Borovinskaya, MA Shoji, S Fredrick, K Cate, JHD AF Borovinskaya, Maria A. Shoji, Shinichiro Fredrick, Kurt Cate, Jamie H. D. TI Structural basis for hygromycin B inhibition of protein biosynthesis SO RNA-A PUBLICATION OF THE RNA SOCIETY LA English DT Article DE hygromycin B; aminoglycoside; ribosome; inhibition; translation; structure ID TRANSFER-RNA BINDING; 30S RIBOSOMAL-SUBUNIT; ESCHERICHIA-COLI RIBOSOMES; TRANSFER RIBONUCLEIC ACID; AMINOGLYCOSIDE ANTIBIOTICS; MESSENGER-RNA; ELONGATION-FACTOR; BACTERIAL RIBOSOME; CONFORMATIONAL-CHANGES; ANGSTROM RESOLUTION AB Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B. C1 [Borovinskaya, Maria A.; Cate, Jamie H. D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Shoji, Shinichiro; Fredrick, Kurt] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Fredrick, Kurt] Ohio State Univ, Ohio State Biochem Program, Columbus, OH 43210 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU NCI NIH HHS [CA92584, P01 CA092584]; NIGMS NIH HHS [GM072528, GM65050, R01 GM065050, R01 GM072528] NR 72 TC 49 Z9 50 U1 1 U2 7 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1355-8382 J9 RNA JI RNA-Publ. RNA Soc. PD AUG PY 2008 VL 14 IS 8 BP 1590 EP 1599 DI 10.1261/rna.1076908 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 328LU UT WOS:000257800700016 PM 18567815 ER PT J AU Garcia-Barriocanal, J Rivera-Calzada, A Varela, M Sefrioui, Z Iborra, E Leon, C Pennycook, SJ Santamaria, J AF Garcia-Barriocanal, J. Rivera-Calzada, A. Varela, M. Sefrioui, Z. Iborra, E. Leon, C. Pennycook, S. J. Santamaria, J. TI Colossal ionic conductivity at interfaces of epitaxial ZrO2 : Y2O3/SrTiO3 heterostructures SO SCIENCE LA English DT Article ID OXIDE FUEL-CELLS; ELECTRICAL-CONDUCTIVITY; THIN-FILMS; ELECTROLYTES; TEMPERATURE; GLASSES; CONDUCTORS; CRYSTALS; ZIRCONIA; ENERGY C1 [Garcia-Barriocanal, J.; Rivera-Calzada, A.; Sefrioui, Z.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Grp Fis Mat Complejos, E-28040 Madrid, Spain. [Varela, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Iborra, E.] Univ Politecn Madrid, Escuela Tecn Super Ingn Telecommun, E-28040 Madrid, Spain. RP Santamaria, J (reprint author), Univ Complutense Madrid, Grp Fis Mat Complejos, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI Leon, Carlos/A-5587-2008; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014; Albe, Karsten/F-1139-2011; Iborra, Enrique/A-4148-2016; Santamaria, Jacobo/N-8783-2016; Sefrioui, Zouhair/C-2728-2017 OI Leon, Carlos/0000-0002-3262-1843; Varela, Maria/0000-0002-6582-7004; Iborra, Enrique/0000-0002-1385-1379; Santamaria, Jacobo/0000-0003-4594-2686; Sefrioui, Zouhair/0000-0002-6703-3339 NR 34 TC 328 Z9 335 U1 18 U2 220 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 1 PY 2008 VL 321 IS 5889 BP 676 EP 680 DI 10.1126/science.1156393 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 332IW UT WOS:000258077700040 PM 18669859 ER PT J AU Djuric, PM Benveniste, H Wagshul, ME Henn, F Enikolopov, G Maletic-Savatic, M AF Djuric, Petar M. Benveniste, Helene Wagshul, Mark E. Henn, Fritz Enikolopov, Grigori Maletic-Savatic, Mirjana TI Response to comments on "magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain" SO SCIENCE LA English DT Editorial Material ID H-1-NMR SPECTROSCOPY; NMR-SPECTROSCOPY; HRMAS H-1-NMR; METABOLITES; EXTRACTION; TISSUE; PROFILES C1 [Djuric, Petar M.; Benveniste, Helene; Wagshul, Mark E.; Maletic-Savatic, Mirjana] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Benveniste, Helene; Henn, Fritz] Brookhaven Natl Lab, Brookhaven, NY 11719 USA. [Enikolopov, Grigori; Maletic-Savatic, Mirjana] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. RP Djuric, PM (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. EM djuric@ece.sunysb.edu; Mirjana.Maletic-Savatic@stonybrook.edu RI Enikolopov, Grigori/B-7771-2009 OI Enikolopov, Grigori/0000-0001-8178-8917 NR 24 TC 1 Z9 1 U1 0 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 1 PY 2008 VL 321 IS 5889 DI 10.1126/science.1156889 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 332IW UT WOS:000258077700024 ER PT J AU Mazumder, SK Pradhan, SK Hartvigsen, J Rancruel, D von Spakovsky, MR Khaleel, M AF Mazumder, Sudip K. Pradhan, Sanjaya K. Hartvigsen, Joseph Rancruel, Diego von Spakovsky, Michael R. Khaleel, Moe TI A Multidiscipline and Multi-rate Modeling Framework for Planar Solid-oxide-fuel-cell based Power-Conditioning System for Vehicular APU SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE Modeling; planar solid-oxide fuel cell (SOFC); auxiliary power unit (APU); power electronics; power conditioning; balance of plant (BOP) AB A numerical modeling framework for planar solid-oxide fuel cell (PSOFC) based vehicular auxiliary power unit (APU) is developed. The power-conditioning system (PCS) model comprises the comprehensive transient models of PSOFC, balance-of-plant and power-electronics subsystems (BOPS and PES, respectively) and application load (AL). It can be used for resolving the interactions among PSOFC, BOPS, PES and AL, control design and system optimization and studying fuel-cell durability. The PCS model has several key properties including: (i) it can simultaneously predict spatial as well as temporal dynamics; (ii) it has two levels of abstraction: comprehensive (for detailed dynamics) and reduced-order (for fast simulation); and (iii) the fast-simulation model can be implemented completely in Simulink/Matlab environment, thereby significantly reducing the cost as well as time and provides the avenue for real-time simulation and integration with vehicular power-train models employing the widely used ADVISOR. The computational overhead and accuracy of the fast-simulation and comprehensive models are compared. Significant savings in time compared to using the former were obtained, without compromising accuracy. C1 [Mazumder, Sudip K.] Univ Illinois, Dept Elect & Comp Engn, Lab Energy & Switching Elect Syst, Chicago, IL 60680 USA. [von Spakovsky, Michael R.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Energy Syst Res Ctr, Blacksburg, VA 24061 USA. [Khaleel, Moe] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Mazumder, SK (reprint author), Univ Illinois, Dept Elect & Comp Engn, Lab Energy & Switching Elect Syst, Chicago, IL 60680 USA. EM mazumder@ece.uic.edu; Sanjaya.K.pradhan@Philips.com; joe@h-hydro.com; rancruel@hotmail.com; vonspako@vt.edu; moe.Khaleel@pnl.gov RI von Spakovsky, Michael/F-2465-2014; OI von Spakovsky, Michael/0000-0002-3884-6904; khaleel, mohammad/0000-0001-7048-0749 FU US Environmental Protection Agency [RD-83158101-0]; Pacific Northwest National Laboratory [494828]; Department of Energy [DE-FC2602NT41574]; National Science Foundation [0239131]; Office of Naval Research Young Investigator [N000140510594] FX This paper is prepared with the support of the US Environmental Protection Agency (Award No. RD-83158101-0), Pacific Northwest National Laboratory (Award No. 494828), Department of Energy (Award No. DE-FC2602NT41574), National Science Foundation CAREER (Award No. 0239131) and Office of Naval Research Young Investigator (Award No. N000140510594) received by Prof. Mazumder. However, any opinions, findings, conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of these supporting organizations. NR 23 TC 1 Z9 1 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD AUG PY 2008 VL 84 IS 8-9 BP 413 EP 426 DI 10.1177/0037549708097713 PG 14 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 370CH UT WOS:000260739800003 ER PT J AU Perez-Bergquist, A Zhu, S Sun, K Xiang, X Zhang, Y Wang, LM AF Perez-Bergquist, Aleiandro Zhu, Sha Sun, Kai Xiang, Xia Zhang, Yanwen Wang, Lumin TI Embedded nanofibers induced by high-energy ion irradiation of bulk GaSb SO SMALL LA English DT Article DE embedded nanofibers; ion beams; nanoporous materials; semiconductors ID GALLIUM ANTIMONIDE; DAMAGE; BEAM; GERMANIUM; DEFECT; GE C1 [Perez-Bergquist, Aleiandro; Zhu, Sha; Sun, Kai; Xiang, Xia; Wang, Lumin] Univ Michigan, Dept Mat Sci & Engn, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Zhang, Yanwen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, LM (reprint author), Univ Michigan, Dept Mat Sci & Engn, Dept Nucl Engn & Radiol Sci, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA. EM lmwang@umich.edu FU U.S. DOE [DE-FG02-02ER46005, DE-AC05-76RL01830]; NSF [DMR-0320740, DMR-9871177] FX This study was supported by the U.S. DOE (DE-FG02-02ER46005 and DE-AC05-76RL01830). Ion implantations were conducted in the Environmental Molecular Sciences Laboratory at PNNL and analyses were completed at the University of Michigan's Electron Microbeam Analysis Laboratory using equipment supported in part by the NSF (DMR-0320740 and DMR-9871177). NR 21 TC 21 Z9 21 U1 3 U2 21 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1613-6810 J9 SMALL JI Small PD AUG PY 2008 VL 4 IS 8 BP 1119 EP 1124 DI 10.1002/smll.200701236 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 339GP UT WOS:000258566400017 PM 18651713 ER PT J AU Karakoti, AS Kuchibhatla, SVNT Baer, DR Thevuthasan, S Sayle, DC Seal, S AF Karakoti, Ajay S. Kuchibhatla, Satyanarayana V. N. T. Baer, Donald R. Thevuthasan, Suntharampillai Sayle, Dean C. Seal, Sudipta TI Self-assembly of cerium oxide nanostructures in ice molds SO SMALL LA English DT Article DE cerium oxide; ice; nanorods; self-assembly; templates ID NANOPARTICLES; SHAPE; SOLIDIFICATION; NANOCRYSTALS; ORIENTATION; ATTACHMENT; NANOWIRES; NANORODS; WATER AB The formation of nanorods driven by the physicochemical phenomena, during the freezing and after the aging of frozen ceria nanoparticle suspensions, is reported. During freezing of a dilute aqueous solution of CeO2 nanocrystals, some nuclei remain in solution while others are trapped inside micro- and nanometer voids formed within the growing ice front. Over time (2-3 weeks) the particles trapped within the nanometer-wide voids in the ice combine by an oriented attachment process to form ceria nanorods. The experimental observations are consistent with molecular dynamics simulations of particle aggregation in constrained environments. These observations suggest a possible strategy for the templated formation of nanostructures through self-assembly by exploiting natural phenomena, such as voids formed during freezing of water. This research suggests a very simple,, green chemical route to guide the formation of one- and three-dimensional self-assembled nanostructures. C1 [Karakoti, Ajay S.; Kuchibhatla, Satyanarayana V. N. T.; Seal, Sudipta] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Surface Engn & Nanotechnol Facil, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Seal, Sudipta] Univ Cent Florida, Nanosci & Technol Ctr, Orlando, FL 32816 USA. [Kuchibhatla, Satyanarayana V. N. T.; Baer, Donald R.; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. [Sayle, Dean C.] Def Acad United Kingdom, Def Coll Management & Technol, Dept Appl Sci Secur & Resilience, Swindon SN6 8LA, Wilts, England. RP Seal, S (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Surface Engn & Nanotechnol Facil, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM sseal@mail.ucf.edu RI Sayle, Dean/D-8555-2013; Baer, Donald/J-6191-2013 OI Sayle, Dean/0000-0001-7227-9010; Baer, Donald/0000-0003-0875-5961 FU NSF NIRT [CBET-0708172]; NSF CMMI [0629080]; Environmental and Molecular Sciences Laboratory; US Department of Energy (DOE); Cambridge-Cranfield HPC facility; MOTT2 [GR/S84415/01] FX The authors would like to acknowledge the partial funding support from the NSF under grants NSF NIRT CBET-0708172 and NSF CMMI 0629080. Portions of this work were conducted in the Environmental and Molecular Sciences Laboratory, a US Department of Energy (DOE) user facility operated by Pacific Northwest National Laboratory for the Office of Biological and Environmental Research of the DOE. We also thank J. Churchill for computational support. Computer resources were provided by the Cambridge-Cranfield HPC facility and MOTT2 (EPSRC Grant GR/S84415/01) run by the CCLRC e-Science Centre. NR 34 TC 26 Z9 26 U1 4 U2 39 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD AUG PY 2008 VL 4 IS 8 BP 1210 EP 1216 DI 10.1002/smll.200800219 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 339GP UT WOS:000258566400031 PM 18654994 ER PT J AU Ahrenkiel, RK Johnston, SW AF Ahrenkiel, R. K. Johnston, S. W. TI Lifetime analysis of silicon solar cells by microwave reflection SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE silicon; recombination; microwaves; photoelectron lifetime ID CHARGE-CARRIER KINETICS; CONDUCTIVITY MEASUREMENTS; SEMICONDUCTORS AB Microwave photoconductive decay (pPCD) has become a standard technique for measuring the carrier lifetime of silicon used in solar cells. Here, we have used pPCD to examine the carrier lifetimes at common doping levels used in the base region of silicon photovoltaic devices. For the conductivity range used in the p-type base of n(+)-p structures, the microwave penetration depth is less than the wafer thickness. In this case, the reflectance-conductivity relationship is very nonlinear. We will show that quasi-steady-state photoconductivity (QSSPC) and resonance-coupled photoconductive decay (RCPCD) lifetime measurements track over a wide range of injection level, and generally agree at higher injection levels. Our mu PCD data will be compared with the transient RCPCD data over the same range. The data from the latter agree at low-injection levels, but show serious disagreement at higher injection levels. The conclusion is that pPCD must be limited to low-injection levels in the doping range used for solar cells. Published by Elsevier B.V. C1 [Ahrenkiel, R. K.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Ahrenkiel, R. K.; Johnston, S. W.] Natl Renewable Energy Lab, Golden, CO USA. RP Ahrenkiel, RK (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St,Hill Hall, Golden, CO 80401 USA. EM richard_ahrenkiel@nrel.gov NR 12 TC 10 Z9 10 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD AUG PY 2008 VL 92 IS 8 BP 830 EP 835 DI 10.1016/j.solmat.2008.01.022 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 322DZ UT WOS:000257356700002 ER PT J AU Jian, LK Russell, CT Luhmann, JG Skoug, RM Steinberg, JT AF Jian, L. K. Russell, C. T. Luhmann, J. G. Skoug, R. M. Steinberg, J. T. TI Stream interactions and interplanetary coronal mass ejections at 5.3 AU near the solar ecliptic plane SO SOLAR PHYSICS LA English DT Article ID COROTATING INTERACTION REGIONS; MAGNETIC CLOUDS; SHOCK-WAVES; JUPITERS MAGNETOSPHERE; ULYSSES OBSERVATIONS; IMP-8 OBSERVATIONS; WIND; VOYAGER; DISTURBANCES; EVOLUTION AB We have performed a survey of the characteristics of two types of large spatial-scale solar-wind structures, stream interaction regions (SIRs),and interplanetary coronal mass ejections (ICMEs), near 5.3 AU, using solar-wind observations from Ulysses. Our study is confined to the three aphelion passes of Ulysses, and also within +/- 10 degrees of the solar ecliptic plane, covering a part of 1992, 1997-1998, and 2003-2005, representing three slices of different phases of the solar activity cycle. Overall, there are 54 SIRs and 60 ICMEs in the survey. Many are merged in hybrid events, suggesting that they have undergone multiple interactions prior to reaching Jovian orbit. About 91% of SIRs occur with shocks, with 47% of such shocks being forward-reverse shock pairs. The solar-wind velocity sometimes stays constant or even decreases within the interaction region near 5.3 AU, in contrast with the gradual velocity increase during SIRs at 1 AU. Shocks are driven by 58% of ICMEs, with 94% of them being forward shocks. Some ICMEs seem to have multiple small flux ropes with different scales and properties. We quantitatively compare various properties of SIRs and ICMEs at 5.3 AU, and study their statistical distributions and variations with solar activity. The width, maximum dynamic pressure, and peak perpendicular pressure of SIRs all become larger than ICMEs. Dynamic pressure (P-dyn) is expected to be important for Jovian magnetospheric activity. We have examined the distributions of P-dyn of SIRs, ICMEs, and general solar wind, but these cannot explain the observed bimodal distribution of the location of the Jovian magnetopause. By comparing the properties of SIRs and ICMEs at 0.72, 1, and 5.3 AU, we find that the ICME expansion slows down significantly between 1 and 5.3 AU. Some transient and small streams in the inner heliosphere have merged into a single interaction region. C1 [Jian, L. K.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Skoug, R. M.; Steinberg, J. T.] Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM 87545 USA. RP Jian, LK (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, 595 Charles E Young Dr E,6862 Slichter, Los Angeles, CA 90095 USA. EM jlan@igpp.ucla.edu; ctrussel@igpp.ucla.edu; jgluhman@ssl.berkeley.edu; rskoug@lanl.gov; jsteinberg@lanl.gov RI Jian, Lan/B-4053-2010 OI Jian, Lan/0000-0002-6849-5527 NR 81 TC 10 Z9 10 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD AUG PY 2008 VL 250 IS 2 BP 375 EP 402 DI 10.1007/s11207-008-9204-x PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 332OV UT WOS:000258093200010 ER PT J AU Prozorov, R AF Prozorov, Ruslan TI Superfluid density in a superconductor with an extended d-wave gap SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID PENETRATION DEPTH AB The superconducting gap and the superfluid density are calculated for the extended d-wave gap suggested by angle-resolved photoemission spectroscopy (ARPES) measurements in electron-doped superconductors as well as underdoped Bi(2)Sr(2)CaCu(2)O(8+x) (BSCCO2212). It is shown that experimental superfluid density may agree with such a gap, but full-temperature range analysis is required. With additional information on the Delta (0)/T(c) ratio, this opens up the possibility of deciding whether a non-monotonic or higher harmonic spectral gap, as seen by ARPES, is a superposition of a regular d-wave gap and an unrelated pseudogap that does not contribute to superconductivity or that the extended gap is a real superconducting gap. This paper is also an erratum to earlier calculations published in Prozorov and Giannetta (2006 Supercond. Sci. Technol. 19 R41-67) where the wrong sign was used for the non-monotonic gap, altering the conclusions rather drastically. C1 [Prozorov, Ruslan] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Prozorov, Ruslan] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 NR 9 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2008 VL 21 IS 8 AR 082003 DI 10.1088/0953-2048/21/8/082003 PG 3 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 314XC UT WOS:000256841500003 ER PT J AU Smentkowski, VS Ostrowski, SG Kollmer, F Schnieders, A Keenan, MR Ohlhausen, JA Kotula, PG AF Smentkowski, V. S. Ostrowski, S. G. Kollmer, F. Schnieders, A. Keenan, M. R. Ohlhausen, J. A. Kotula, P. G. TI Multivariate statistical analysis of non-mass-selected ToF-SIMS data SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE ToF-SIMS; multivariate statistical analysis; chemometrics; LMIG; cluster ID PRIMARY ION-BOMBARDMENT; ORGANIC MATERIALS; SPECTRAL IMAGES AB Cluster LMIGs are now regarded as the standard primary ion guns on time-of-flight secondary ion mass spectrometers (ToF-SIMS). The ToF-SIMS analyst typically selects a bombarding species (cluster size and charge) to be used for material analysis. Using standard data collection protocols where the analyst uses only a single primary bombarding species, only a fraction of the ion-beam current generated by the LMIG is used. In this work, we demonstrate for the first time that it is possible to perform ToF-SIMS analysis when all of the primary ion intensity (clusters) are used; we refer to this new data analysis mode as non-mass-selected (NMS) analysis. Since each of the bombarding species has a different mass-to-charge ratio, they strike the sample at different times, and as a result, each of the bombarding species generates a spectrum. The resulting NMS ToF-SIMS spectrum contains contributions from each of the bombarding species that are shifted in time. NMS spectra are incredibly complicated and would be difficult, if not impossible, to analyze using univariate methodology. We will demonstrate that automated multivariate statistical analysis (MVSA) tools are capable of rapidly converting the complicated NMS data sets into a handful of chemical components (represented by both spectra and images) that are easier to interpret since each component spectrum represents a unique and simpler chemistry. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Smentkowski, V. S.; Ostrowski, S. G.] Global Res, Gen Elect, Niskayuna, NY 12309 USA. [Kollmer, F.] ION TOF GmbH, Munster, Germany. [Schnieders, A.] TASCON USA Inc, Chestnut Ridge, NY 10977 USA. [Keenan, M. R.; Ohlhausen, J. A.; Kotula, P. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Smentkowski, VS (reprint author), Global Res, Gen Elect, Niskayuna, NY 12309 USA. EM smentkow@research.ge.com RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU CRADA [SC00/01609] FX The MVSA work was funded in part under CRADA agreement SC00/01609 PTS 1609.02. V.S.S. and S.G.O. would also like to thank E.L. Hall and T.K. Leib at General Electric Global Research for providing the CRADA funding. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National NuclearSecurity Administration under contract DE-AC04-94AL85000. NR 18 TC 10 Z9 10 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD AUG PY 2008 VL 40 IS 8 BP 1176 EP 1182 DI 10.1002/sia.2862 PG 7 WC Chemistry, Physical SC Chemistry GA 342FW UT WOS:000258771000007 ER PT J AU Vinod, KY Yalamanchili, R Thanos, PK Vadasz, C Cooper, TB Volkow, ND Hungund, BL AF Vinod, K. Yaragudri Yalamanchili, Ratnakumar Thanos, Panayotis K. Vadasz, Csaba Cooper, Thomas B. Volkow, Nora D. Hungund, Basalingappa L. TI Genetic and pharmacological manipulations of the CB(1) receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice SO SYNAPSE LA English DT Article DE alcohol; striatum; CB(1) receptor; G-protein; endocannabinoid; anandamide ID ACID AMIDE HYDROLASE; NUCLEUS-ACCUMBENS; KNOCKOUT MICE; ALCOHOL DEPENDENCE; DOPAMINE RELEASE; ANTAGONIST SR141716A; DBA/2 MICE; SP RATS; BRAIN; WITHDRAWAL AB Recent studies have indicated a role for the endocannabinoid system in ethanol-related behaviors. This study examined the effect of pharmacological activation, blockade, and genetic deletion of the CB, receptors on ethanol-drinking behavior in ethanol preferring C57BL/6J (136) and ethanol nonpreferring DBA/2J (D2) mice. The deletion of CB, receptor significantly reduced the ethanol preference. Although the stimulation of the CB(1) receptor by CP-55,940 markedly increased the ethanol preference, this effect was found to be greater in 136 than in D2 mice. The antagonism of CB(1) receptor function by SR141716A led to a significant reduction in voluntary ethanol preference in 136 than D2 mice. A significant lower hypothermic and greater sedative response to acute ethanol administration was observed in both the strains of CB(1) -/- mice than wild-type mice. Interestingly, genetic deletion and pharmacological blockade of the CB(1) receptor produced a marked reduction in severity of handling-induced convulsion in both the strains. The radioligand binding studies revealed significantly higher levels of CB(1) receptor-stimulated G-protein activation in the striatum of 136 compared to D2 mice. Innate differences in the CB(1) receptor function might be one of the contributing factors for higher ethanol drinking behavior. The antagonists of the CB(1) receptor may have therapeutic potential in the treatment of ethanol dependence. C1 [Vinod, K. Yaragudri; Yalamanchili, Ratnakumar; Cooper, Thomas B.; Hungund, Basalingappa L.] Nathan S Kline Inst Psychiat Res, Div Analyt Psychopharmacol, Orangeburg, NY 10962 USA. [Vinod, K. Yaragudri; Cooper, Thomas B.; Hungund, Basalingappa L.] New York State Psychiat Inst & Hosp, Div Analyt Psychopharmacol, New York, NY 10032 USA. [Vinod, K. Yaragudri] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY USA. [Thanos, Panayotis K.] Brookhaven Natl Lab, Dept Med, Behav Pharmacol & Neuroimaging Lab, Upton, NY 11973 USA. [Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, NIH, Bethesda, MD USA. [Vadasz, Csaba] Nathan S Kline Inst Psychiat Res, Lab Neurobehav Genet, Orangeburg, NY 10962 USA. [Vadasz, Csaba; Cooper, Thomas B.] NYU, Sch Med, Dept Psychiat, New York, NY USA. [Cooper, Thomas B.; Hungund, Basalingappa L.] Columbia Univ, Dept Psychiat, Coll Phys & Surg, New York, NY USA. RP Hungund, BL (reprint author), Nathan S Kline Inst Psychiat Res, Div Analyt Psychopharmacol, 140 Old Orangeburg Rd, Orangeburg, NY 10962 USA. EM hungund@nki.rfmh.org FU Intramural NIH HHS [Z01 AA000551-04]; NIAAA NIH HHS [AA13003, N01AA22008, R01 AA013003] NR 51 TC 35 Z9 35 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-4476 J9 SYNAPSE JI Synapse PD AUG PY 2008 VL 62 IS 8 BP 574 EP 581 DI 10.1002/syn.20533 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 323VT UT WOS:000257477200003 PM 18509854 ER PT J AU Somorjai, GA Park, JY AF Somorjai, Gabor A. Park, Jeong Y. TI Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and Their Influence on Activity and Selectivity SO TOPICS IN CATALYSIS LA English DT Article DE Platinum; Rhodium; Nanoparticle; Reaction selectivity; Multi-path reactions; Nanoscience; Metal-oxide interface; Catalytic nanodiode; Bimetallic nanoparticles; Enzyme; Homogeneous; Heterogeneous catalysis ID SCANNING-TUNNELING-MICROSCOPY; SUM-FREQUENCY GENERATION; BLODGETT MONOLAYER FORMATION; MESOPOROUS SBA-15 SILICA; SINGLE-CRYSTAL SURFACES; PLATINUM NANOPARTICLES; ELECTRON FLOW; GAS-PHASE; HETEROGENEOUS CATALYSIS; SUPPORT INTERACTIONS AB Recent breakthroughs in the synthesis of nanosciences have achieved the control of size and shape of nanoparticles that are relevant for catalyst design. In this article, we review advances in the synthesis of nanoparticles, fabrication of two- and three-dimensional model catalyst systems, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles 1-10 nm in size permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticles on chemical reactivity and selectivity. We review the importance of the size and shape of nanoparticles to determine reaction selectivity in multi-path reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nano-particle catalytic systems are also discussed. C1 [Somorjai, Gabor A.; Park, Jeong Y.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Park, Jeong Y.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Park, Jeong Y.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 49 TC 172 Z9 173 U1 16 U2 160 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD AUG PY 2008 VL 49 IS 3-4 BP 126 EP 135 DI 10.1007/s11244-008-9077-0 PG 10 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 386VE UT WOS:000261909900002 ER PT J AU Jang, B Helleson, M Shi, C Rondinone, A Schwartz, V Liang, CD Overbury, S AF Jang, Ben Helleson, Michael Shi, Chunkai Rondinone, Adam Schwartz, Viviane Liang, Chengdu Overbury, Steve TI Characterization of Al2O3 Supported Nickel Catalysts Derived from RF Non-thermal Plasma Technology SO TOPICS IN CATALYSIS LA English DT Article DE Non-thermal plasma; Benzene hydrogenation; Metal-support interaction; Supported Ni catalysts ID SELECTIVE HYDROGENATION; SMSI; CROTONALDEHYDE; ACETYLENE; PT/TIO2; AIR; PD AB Catalysts derived from non-thermal plasma techniques have previously shown unusual and highly advantageous catalytic properties including room temperature reduction, unusual metal particle structure and metal-support interactions, and enhanced selectivity and stability. This study focuses on the characterization of Al2O3 supported Ni catalysts derived from the RF non-thermal plasma technique with in-situ XRD, TPR-MS and STEM and on relating the results to the enhanced activity and stability of benzene hydrogenation. The results suggest that catalysts with plasma treatments before impregnation are relatively easier to be reduced and result in better activities under mild reduction conditions. These plasma treatments stabilize the nickel particle sizes of air( B) and H-2(B) catalysts at 600 degrees C by slowing down the sintering process. Plasma treatments after the impregnation of precursors, on the other hand, tend to delay the growth of nickel particles below 600 degrees C, forming smaller Ni particles, but with a sudden increase in particle size near 600 degrees C. It suggests that the structure of Ni nitrate and the metal-support interaction have been altered by the plasma treatments. The reduction patterns of plasma treated catalysts are, therefore, changed. The catalyst with a combination plasma treatment demonstrates that the effect of a combination plasma treatment is larger than either the plasma treatment before or after the impregnation alone. Both plasma treatments before and after the impregnation of metal precursor play important roles in modifying supported metal catalysts. C1 [Jang, Ben; Helleson, Michael; Shi, Chunkai] Texas A&M Univ, Dept Chem, Commerce, TX 75429 USA. [Rondinone, Adam; Schwartz, Viviane; Liang, Chengdu; Overbury, Steve] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Jang, B (reprint author), Texas A&M Univ, Dept Chem, Commerce, TX 75429 USA. EM ben_jang@tamu-commerce.edu RI Liang, Chengdu/G-5685-2013; Shi, Chunkai/C-2904-2014; Rondinone, Adam/F-6489-2013 OI Rondinone, Adam/0000-0003-0020-4612 FU ARP-THECB; Welch Foundation; Oak Ridge National Laboratory; U.S. DOE FX The financial support of ARP-THECB and Welch Foundation is acknowledged. A portion of this research was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory, by the Division of Scientific User Facilities, U.S. DOE. NR 23 TC 7 Z9 8 U1 1 U2 20 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD AUG PY 2008 VL 49 IS 3-4 BP 145 EP 152 DI 10.1007/s11244-008-9091-2 PG 8 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 386VE UT WOS:000261909900004 ER PT J AU Burton, PD Lavenson, D Johnson, M Gorm, D Karim, AM Conant, T Datye, AK Hernandez-Sanchez, BA Boyle, TJ AF Burton, Patrick D. Lavenson, David Johnson, Michael Gorm, David Karim, Ayman M. Conant, Travis Datye, Abhaya K. Hernandez-Sanchez, Bernadette A. Boyle, Timothy J. TI Synthesis and Activity of Heterogeneous Pd/Al(2)O(3) and Pd/ZnO Catalysts Prepared from Colloidal Palladium Nanoparticles SO TOPICS IN CATALYSIS LA English DT Article DE Palladium; Alumina; Zinc oxide; CO oxidation ID PDZN ALLOY FORMATION; METHANOL; PD(111) AB Heterogeneous catalysts composed of Pd nanoparticles on zinc oxide (ZnO) and aluminum oxide (Al(2)O(3), alumina) were synthesized and tested for catalytic activity. Palladium nanoparticles were synthesized via solution-precipitation methods and deposited on aluminum oxide and zinc oxide supports. The particles were synthesized by decomposing a palladium precursor (Pd(Mes)(2)) in a solution of trioctylphosphine [TOP route] or palladium acetate (Pd(OAc)(2)) in a solution of octylamine [amine route] at 300 degrees C. The particles were washed and suspended in hexane, whereupon they were deposited on an oxide powder. Supported nanoparticle powders were subjected to CO oxidation tests to determine catalytic activity. Particle sizes ranged from 2.4 +/- 0.4 nm average diameter when prepared using trioctylphosphine to 4 +/- 1 nm using the amine route. No significant size change was observed after removal of the surfactant and catalytic testing by CO oxidation. The highest conversion of CO to CO(2) occurred with a calcined sample, indicating that the removal of surfactant increases activity. C1 [Burton, Patrick D.; Lavenson, David; Johnson, Michael; Gorm, David; Karim, Ayman M.; Conant, Travis; Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.] Adv Mat Lab, Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Datye, AK (reprint author), Univ New Mexico, Ctr Microengineered Mat, MSC01 1120, Albuquerque, NM 87131 USA. EM datye@unm.edu RI Karim, Ayman/G-6176-2012; OI Karim, Ayman/0000-0001-7449-542X; Datye, Abhaya/0000-0002-7126-8659 FU United States Department of Energy, Office of Basic Energy Sciences [DE-FG02-05ER15712, DE-AC04-94AL85000] FX This work has been supported by the United States Department of Energy, Office of Basic Energy Sciences under contract number DE-FG02-05ER15712 through the University of New Mexico. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 10 TC 18 Z9 18 U1 4 U2 26 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD AUG PY 2008 VL 49 IS 3-4 BP 227 EP 232 DI 10.1007/s11244-008-9092-1 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 386VE UT WOS:000261909900014 ER PT J AU Herrera, JE Kwak, JH Hu, JZ Wang, Y Peden, CHF AF Herrera, Jose E. Kwak, Ja Hun Hu, Jian Zhi Wang, Yong Peden, Charles H. F. TI Effects of Novel Supports on the Physical and Catalytic Properties of Tungstophosphoric Acid for Alcohol Dehydration Reactions SO TOPICS IN CATALYSIS LA English DT Article DE Tungstophosphoric acid; Mesoporous silica; MCM-41; SBA-15 ID COMPRISING HETEROPOLY ACID; TUNGSTEN-OXIDE CATALYSTS; MESOPOROUS SILICA; 12-TUNGSTOPHOSPHORIC ACID; ISOBUTANE DEHYDROGENATION; MOLECULAR-SIEVE; MAS NMR; ALUMINA; MCM-41; IMMOBILIZATION AB The catalytic behavior of tungstophosphoric acid supported on modified mesoporous silica materials for the dehydration of 2-butanol and methanol was studied. Specifically, the supports evaluated here consisted of unmodified MCM-41 and SBA-15 mesoporous silicas, and these materials coated with sub-monolayer quantities of alumina, titania, and zirconia. UV-Vis DRS and (31)P-NMR spectroscopy showed that the tungstophosphoric acid species retained their chemical identity in the synthesized supported form, although the spectra were influenced by the specific support material used. In addition, their acidic properties were evaluated using temperature-programmed oxidation of isopropyl amine. The differences in reaction rates between the samples reflect both the diversity in the amount of Bronsted acidic sites available for catalysis and dissimilarities in coking resistance. These two characteristics depend, in turn, on the type of support modifier used to prepare the catalyst. C1 [Kwak, Ja Hun; Hu, Jian Zhi; Wang, Yong; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Herrera, Jose E.] Univ Western Ontario, Dept Chem & Biochem Engn, London, ON N6A 5B9, Canada. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, MS K8-98,POB 999, Richland, WA 99352 USA. EM chuck.peden@pnl.gov RI Wang, Yong/C-2344-2013; Kwak, Ja Hun/J-4894-2014; Hu, Jian Zhi/F-7126-2012; OI Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC06-76RLO-1830] FX This work was supported by U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences. The research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at the Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle Memorial Institute under Contract# DE-AC06-76RLO-1830. NR 48 TC 17 Z9 17 U1 0 U2 19 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD AUG PY 2008 VL 49 IS 3-4 BP 259 EP 267 DI 10.1007/s11244-008-9081-4 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 386VE UT WOS:000261909900018 ER PT J AU Taylor, LE Dai, ZY Decker, SR Brunecky, R Adney, WS Ding, SY Himmel, ME AF Taylor, Larry E., II Dai, Ziyu Decker, Stephen R. Brunecky, Roman Adney, William S. Ding, Shi-You Himmel, Michael E. TI Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID ACIDOTHERMUS-CELLULOLYTICUS ENDOGLUCANASE; SOLANUM-TUBEROSUM L.; GENE-EXPRESSION; TRANSGENE EXPRESSION; RECOMBINANT PROTEINS; MESSENGER-RNAS; HIGH-LEVEL; REGULATED EXPRESSION; CELLULOSIC ETHANOL; DEVELOPING GRAINS AB The concept of expressing non-plant glycosyl hydrolase genes in plant tissue is nearly two decades old, yet relatively little work in this field has been reported. However, resurgent interest in technologies aimed at enabling processes that convert biomass to sugars and fuels has turned attention toward this intuitive solution. There are several challenges facing researchers in this field, including the development of better and more specifically targeted delivery systems for hydrolytic genes, the successful folding and post-translational modification of heterologous proteins and the development of cost-effective process strategies utilizing these transformed plants. The integration of these concepts, from the improvement of biomass production and conversion characteristics to the heterologous production of glycosyl hydrolases in a high yielding bioenergy crop, holds considerable promise for improving the lignocellulosic conversion of biomass to ethanol and subsequently to fuels. C1 [Taylor, Larry E., II; Decker, Stephen R.; Brunecky, Roman; Adney, William S.; Ding, Shi-You; Himmel, Michael E.] Chem & Biosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dai, Ziyu] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. RP Himmel, ME (reprint author), Chem & Biosci Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Mike_Himmel@nrel.gov RI Ding, Shi-You/O-1209-2013 NR 107 TC 77 Z9 77 U1 0 U2 19 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD AUG PY 2008 VL 26 IS 8 BP 413 EP 424 DI 10.1016/j.tibtech.2008.05.002 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 336UW UT WOS:000258391100003 PM 18579242 ER PT J AU Yu, ZQ Wang, CM Du, Y Thevuthasan, S Lyubinetsky, I AF Yu, Z. Q. Wang, C. M. Du, Y. Thevuthasan, S. Lyubinetsky, I. TI Reproducible tip fabrication and cleaning for UHVSTM SO ULTRAMICROSCOPY LA English DT Article DE scanning tunneling microscopy (STM); tip scanning instrument design and characterization ID SCANNING-TUNNELING-MICROSCOPY; TUNGSTEN TIPS; W TIPS; STM AB Several technical modifications related to the fabrication and ultra-high vacuum (UHV) treatments of the scanning tunneling microscope (STM) tips have been implemented to improve a reliability of the tip preparation for high-resolution STM. Widely used electrochemical etching drop-off technique has been further refined to enable a reproducible fabrication of the tips with a radius <= 3 nm. For tip. cleaning by a controllable UHV annealing, simple and flexible setup has been developed. Proper W tip preparation has been demonstrated via an imaging of the TiO(2) (110) surface atomic structure. (c) 2008 Published by Elsevier B.V. C1 [Lyubinetsky, I.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Lyubinetsky, I (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM igor.lyubinetsky@pnl.gov FU US Department of Energy (DOE); Office of Basic Energy Sciences; Division of Chemical Sciences; W.R. Wiley Environmental Molecular Science Laboratory; Office of Biological and Environmental Research FX We would like to thank J.T. Yates, jr., Z. Dohnalek, S. Mezhenny, R.J. Muha, and O. Bondarchuk for a rewarding collaboration at different stages of the project. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences and performed at W.R. Wiley Environmental Molecular Science Laboratory, a DOE User Facility sponsored by Office of Biological and Environmental Research. NR 27 TC 30 Z9 32 U1 7 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD AUG PY 2008 VL 108 IS 9 BP 873 EP 877 DI 10.1016/j.ultramic.2008.02.010 PG 5 WC Microscopy SC Microscopy GA 341WZ UT WOS:000258747600010 PM 18439760 ER PT J AU Downing, KH Glaeser, RM AF Downing, Kenneth H. Glaeser, Robert M. TI Restoration of weak phase-contrast images recorded with a high degree of defocus: The "twin image" problem associated with CTF correction SO ULTRAMICROSCOPY LA English DT Article DE CTF correction; delocalization; twin image; phase-contrast EM ID ELECTRON-MICROSCOPY AB Relatively large values of objective-lens defocus must normally be used to produce detectable levels of image contrast for unstained biological specimens, which are generally weak phase objects. As a result, a subsequent restoration operation must be used to correct for oscillations in the contrast transfer function (CTF) at higher resolution. Currently used methods of CTF correction assume the ideal case in which Friedel mates in the scattered wave have contributed pairs of Fourier components that overlap with one another in the image plane. This "ideal" situation may be only poorly satisfied, or not satisfied at all, as the particle size gets smaller, the defocus value gets larger, and the resolution gets higher. We have therefore investigated whether currently used methods of CTF correction are also effective in restoring the single-sideband image information that becomes displaced (delocalized) by half (or more) the diameter of a particle of finite size. Computer simulations are used to show that restoration either by "phase flipping" or by multiplying by the CTF recovers only about half of the delocalized information. The other half of the delocalized information goes into a doubly defocused "twin" image of the type produced during optical reconstruction of an in-line hologram. Restoration with a Wiener filter is effective in recovering the delocalized information only when the signal-to-noise ratio (S/N) is orders of magnitude higher than that which exists in low-dose images of biological specimens, in which case the Wiener filter approaches division by the CTF (i.e. the formal inverse). For realistic values of the S/N, however, the "twin image" problem seen with a Wiener filter is very similar to that seen when either phase flipping or multiplying by the CTF is used for restoration. The results of these simulations suggest that CTF correction is a poor alternative to using a Zernike-type phase plate when imaging biological specimens, in which case the images can be recorded in a close-to-focus condition, and delocalization of high-resolution information is thus minimized. (c) 2008 Elsevier B.V. All rights reserved. C1 [Downing, Kenneth H.; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231]; NIH [GM51487, GM083039] FX This work has been supported in part by the U.S. Department of Energy under contract DE-AC02-05CH11231, and by NIH grants GM51487 and GM083039. NR 14 TC 11 Z9 11 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD AUG PY 2008 VL 108 IS 9 BP 921 EP 928 DI 10.1016/j.ultramic.2008.03.004 PG 8 WC Microscopy SC Microscopy GA 341WZ UT WOS:000258747600016 PM 18508199 ER PT J AU Schroth, MH Oostrom, M Dobson, R Zeyer, J AF Schroth, Martin H. Oostrom, Mart Dobson, Richard Zeyer, Josef TI Thermodynamic model for fluid-fluid interfacial areas in porous media for arbitrary drainage-imbibition sequences SO VADOSE ZONE JOURNAL LA English DT Article ID GOVERNING MULTIPHASE FLOW; RELATIVE PERMEABILITY; WATER; SATURATION; PRESSURE; LIQUID; PORE; DISSOLUTION; HYSTERESIS; SYSTEMS AB Fluid-fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We developed a modified thermodynamically based model (TBM) to predict fluid-fluid interfacial areas in porous media for arbitrary drainage-imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (i) no significant conversion of mechanical work into heat occurs, (ii) the wetting fluid completely wets the porous medium's solid surfaces, and (iii) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage-imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBM's predictions for interfacial area associated with free nonwetting fluid are identical to those of a previously published geometry-based model (GBM); however, predictions for interfacial area associated with entrapped nonwetting fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multi-fluid-flow simulations, the modified TBM may be easily incorporated in numerical codes. C1 [Schroth, Martin H.; Dobson, Richard; Zeyer, Josef] ETH, Inst Biogeochem & Pollutant Dynam, CH-8092 Zurich, Switzerland. [Oostrom, Mart] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schroth, MH (reprint author), ETH, Inst Biogeochem & Pollutant Dynam, CH-8092 Zurich, Switzerland. EM martin.schroth@env.ethz.ch NR 32 TC 3 Z9 3 U1 2 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2008 VL 7 IS 3 BP 966 EP 971 DI 10.2136/vzj2007.0185 PG 6 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 325WA UT WOS:000257618000011 ER PT J AU Demirkanli, DI Molz, FJ Kaplan, DI Fjeld, RA AF Demirkanli, Deniz I. Molz, Fred J. Kaplan, Daniel I. Fjeld, Robert A. TI A fully transient model for long-term plutonium transport in the Savannah River Site vadose zone: Root water uptake SO VADOSE ZONE JOURNAL LA English DT Article ID SOLUTE TRANSPORT; REDUCTION; ADSORPTION; OXIDATION; PLANTS; PU; LYSIMETERS; ACTINIDES; MIGRATION; GOETHITE AB Improved understanding of flow and radionuclide transport in vadose zone sediments is fundamental to future planning involving radioactive materials. To that end, long-term experiments were conducted at the Savannah River Site in South Carolina, where a series of lysimeters containing sources of plutonium (Pu) in different oxidation states was placed in the shallow subsurface and exposed to the environment for 2 to 11 yr. Then, sediment Pu activity concentrations were measured along vertical cores taken from the lysimeters. Results showed anomalous activity distributions below the source, with significant migration of Pu above the source. A previously developed reactive transport model with surface-mediated redox reactions successfully simulated the lysimeter results below the source, assuming a steady, net downward flow. To simulate more realistic field conditions, a transient variably saturated flow model with root water uptake is developed and coupled to the reactive transport model. Overall, the fully transient analysis shows results nearly identical to the much simpler steady flow analysis. Thus, the surface-mediated redox hypothesis remains consistent with the below-source experimental data, the most important variable affecting transport being the oxidation state of the source material. However, none of the models studied could produce the upward Pu transport observed in the data. The hydraulic and chemical mechanisms tested as potential causes for upward migration-a modified root distribution, hysteresis, and air-content dependent oxidation-yielded little or no enhancement of the upward Pu movement. This suggests another transport mechanism such as root Pu uptake and translocation in the transpiration stream. C1 [Demirkanli, Deniz I.; Molz, Fred J.; Fjeld, Robert A.] Clemson Univ, Dep Environm Engn & Earth Sci, LG Rich Environm Res Lab, Anderson, SC 29625 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dep Environm Engn & Earth Sci, LG Rich Environm Res Lab, 342 Comp Ct, Anderson, SC 29625 USA. EM fredi@clemson.edu FU U. S. Department of Energy [DE-FG02-07ER64401] FX This research was supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64401. NR 35 TC 14 Z9 14 U1 3 U2 12 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2008 VL 7 IS 3 BP 1099 EP 1109 DI 10.2136/vzj2007.0134 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 337OE UT WOS:000258444600015 ER PT J AU Newman, BD Graham, RC AF Newman, Brent D. Graham, Robert C. TI Species-level impacts on chaparral root zone hydrology SO VADOSE ZONE JOURNAL LA English DT Article ID WATER-MOVEMENT; DRY SOILS; 4 DECADES; ENVIRONMENTAL TRACERS; SOUTHERN CALIFORNIA; UNSATURATED ZONE; NEW-MEXICO; PINE; VEGETATION; DEUTERIUM AB A set of four unconfined (earthen-walled) lysimeters in the San Dimas Experimental Forest near Los Angeles, CA, provides a unique opportunity to examine the effect of species-level vegetation on root zone hydrology under highly controlled experimental conditions. The 28.1-m(2) by 2.1-m deep lysimeters were specifically designed to minimize variation of all environmental conditions except vegetation. Monocultures of buckwheat ( Eriogonum fasciculatum Benth. var. foliolosum Nutt.), chamise (Adenstomata fasciculatum Hooke & Arn.), scrub oak ( Quercus dumosa Nutt.), and Coulter pine ( Pinus coulteri D. Don.) were planted in 1946. In 1997 two sets of soil cores were sampled from each lysimeter to evaluate species level effects resulting from 50 yr of growth. The cores were analyzed for water content, soil water potential, and pore water chloride. The chloride mass balance approach was used to estimate long-term average fluxes and residence times of water in the lysimeters. One core from each lysimeter was also analyzed for pore water stable isotope ( delta H-2) composition. Only small dfferences were observed between the four species in terms of the shapes of the depth profiles and the absolute values of the hydrologic characteristics and fluxes. However, some differences were statistically significant. For example, differences in some characteristics were found between the chamise and the other species. We also observed differences between the lowest aboveground biomass group ( buckwheat and chamise) versus the highest aboveground biomass group ( oak and pine). These results suggest that although species-and biomass-level differences in root zone hydrologic behavior appear to be minor, there are detectible differences in how these vegetation types affect the water budget in chaparral ecosystems. C1 [Newman, Brent D.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Graham, Robert C.] Univ Calif Riverside, Dep Environm Sci, Soil & Water Sci Program, Riverside, CA 92521 USA. RP Newman, BD (reprint author), IAEA, Isotope Hydrol Sect, POB 100,Wagramer Str 5, A-1400 Vienna, Austria. EM b.newman@iaea.org FU California University/Los Alamos National Laboratory collaborative research program (CULAR) FX Funding for this project was provided through the California University/Los Alamos National Laboratory collaborative research program (CULAR). We would like to thank the USFS Pacific Southwest Research Station and Dave Larson, SDEF manager at the time of the study, for access to the sites. We also thank Jodi Johnson-Maynard, Kathy Rose, Jonathan Wald, and Tanja Williamson for their contributions and assistance. Finally, we appreciate the useful comments by two anonymous Vadose Zone Journal reviewers. NR 39 TC 2 Z9 2 U1 1 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2008 VL 7 IS 3 BP 1110 EP 1118 DI 10.2136/vzj2007.0105 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 337OE UT WOS:000258444600016 ER PT J AU Hardy, JS Weil, KS AF Hardy, J. S. Weil, K. S. TI Development of High-Temperature Air Braze Filler Metals for Use in Two-Step Joining and Sealing Processes SO WELDING JOURNAL LA English DT Article DE Air Brazing; Brazing; Electrochemical; Filler Metal; Fuel Cells; Palladium ID OXIDE FUEL-CELLS; AG; ADDITIONS; SYSTEM; SOFCS AB Air brazing is a new method of joining in which a predominantly metallic joint is formed directly in air without need of an inert cover gas or the use of a surface reactive flux. Prior work has shown that the resulting bond displays excellent strength, is inherently resistant to oxidation during high-temperature application (T similar to 750 degrees C), and offers long-term hermeticity at high temperatures when employed as a gas- or liquid-tight sealant. Because of these properties, air brazing is being considered for use in fabricating a variety of high-temperature devices, including planar solid oxide fuel cells (pSOFCs), oxygen and hydrogen gas separators, and boiling water pH sensors. However, many of these devices require a two-step sealing process. For example, in pSOFCs, the ceramic electrolyte membrane is first sealed to a metallic frame/separator plate to form a cell or repeat unit. These are then joined together in a second sealing step to build the final pSOFC stack. In order to preserve the integrity of the membrane-to-frame seals formed during cell fabrication, it is important that the corresponding sealing material does not melt or soften during stack sealing. The goal of the study presented here was to investigate the addition of palladium as a melt point elevator for a series of silver-copper oxide air braze filler metals and thereby produce a composition that could conceivably be used in the first part of a two-step air brazing process, with a lower melt point binary air braze composition employed in the second. C1 [Hardy, J. S.; Weil, K. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hardy, JS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Hardy, John/E-1938-2016 OI Hardy, John/0000-0002-1699-3196 FU U.S. Department of Energy, Office of Fossil Energy; Advanced Research and Technology Development Program FX The authors would like to thank Nat Saenz, Shelly Carlson, and Jim Coleman for their assistance in the preparation of metallographic samples and SEM analysis work. This workwas supported by the U.S. Department of Energy, Office of Fossil Energy, Advanced Research and Technology Development Program. NR 15 TC 0 Z9 0 U1 0 U2 11 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD AUG PY 2008 VL 87 IS 8 BP 195S EP 201S PG 7 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 494HR UT WOS:000269803000014 ER PT J AU Berhault, G De la Rosa, MP Mehta, A Yacaman, MJ Chianelli, RR AF Berhault, Gilles De la Rosa, Myriam Perez Mehta, Apurva Yacaman, Miguel Jose Chianelli, Russell R. TI The single-layered morphology of supported MoS2-based catalysts - The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE CoMo; hydrodesulfurization; cobalt promotion; hydrogenation; support interaction; selectivity ID TRANSITION-METAL SULFIDES; RESOLUTION ELECTRON-MICROSCOPY; CO-MO/AL2O3 HYDROPROCESSING CATALYSTS; HYDROTREATING CATALYSTS; CO-MO; CO-MO-AL2O3 CATALYSTS; REACTION PATHWAYS; ACTIVE-SITES; THIOPHENE; ALUMINA AB In order to completely resolve the morphology of supported hydrodesulfurization (HDS) catalysts, synchrotron X-ray scattering studies of silica- and alumina-supported MoS2 catalysts have been carried out and compared to results previously reported for their cobalt-promoted counterparts [J. Catal. 225 (2004) 288]. The present study is mainly centered on the structural role of cobalt and of support interactions and on their influence on the morphology and catalytic properties of these transition metal sulfide catalysts. Results showed that cobalt promoter strongly enhances the stacking height of MoS2 layers. However this effect is counterbalanced by hydrodesulfurization conditions that favor in an opposite way the formation of single slabs. Single slab morphology suggests that the vast majority of the sites on MoS2 layers are "rim" sites able to perform both hydrogenation and C-S bond cleavage steps. Moreover, the complete determination of the morphology of these catalysts allowed correlation of structural and catalytic properties for both supported MoS2 and CoMo catalysts. This approach led us to examine the respective influences of the MoS2 slab morphology and of support interactions on activity and selectivity properties of HDS MoS2-based catalysts. (C) 2008 Elsevier B.V. All rights reserved. C1 [Berhault, Gilles] Univ Lyon 2, Inst Rech Catalyse & Environm Lyon, CNRS, UMR 5256, F-69626 Villeurbanne, France. [De la Rosa, Myriam Perez; Chianelli, Russell R.] Univ Texas El Paso, Mat Res Technol Inst, El Paso, TX 79968 USA. [Mehta, Apurva] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Yacaman, Miguel Jose] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Yacaman, Miguel Jose] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA. RP Berhault, G (reprint author), Univ Lyon 2, Inst Rech Catalyse & Environm Lyon, CNRS, UMR 5256, Ave Albert Einstein, F-69626 Villeurbanne, France. EM Gilles.Berhault@ircelyon.univ-lyon1.fr RI jose yacaman, miguel/B-5622-2009 NR 68 TC 71 Z9 75 U1 5 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUL 31 PY 2008 VL 345 IS 1 BP 80 EP 88 DI 10.1016/j.apcata.2008.04.034 PG 9 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 330RU UT WOS:000257961300010 ER PT J AU Shekhawat, D Berry, DA Spivey, JJ AF Shekhawat, Dushyant Berry, David A. Spivey, James J. TI Reforming of liquid hydrocarbon fuels for fuel cell applications - Preface SO CATALYSIS TODAY LA English DT Editorial Material C1 [Shekhawat, Dushyant; Berry, David A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Spivey, James J.] Louisiana State Univ, Gordon A & Mary Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. RP Shekhawat, D (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Dushyant.shekhawat@netl.doe.gov; David.berry@netl.doe.gov; jjspivey@lsu.edu NR 0 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 31 PY 2008 VL 136 IS 3-4 BP 189 EP 189 DI 10.1016/j.cattod.2008.04.001 PG 1 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JE UT WOS:000257015200001 ER PT J AU Haynes, DJ Berry, DA Shekhawat, D Spivey, JJ AF Haynes, Daniel J. Berry, David A. Shekhawat, Dushyant Spivey, James J. TI Catalytic partial oxidation of n-tetradecane using pyrochlores: Effect of Rh and Sr substitution SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Symposium on Reforming of Liquid Hydrocarbon Fuels for Fuel Cell Applications held at the 234th ACS National Meeting CY AUG 19-23, 2007 CL Boston, MA SP Amer Chem Soc DE partial oxidation; rhodium; logistic fuel reforming; diesel; pyrochlore; catalyst deactivation ID THERMAL BARRIER COATINGS; CONTACT-TIME REACTORS; AUXILIARY POWER UNITS; OXIDE FUEL-CELL; SYNTHESIS GAS; HIGHER HYDROCARBONS; REFORMING CATALYSTS; LIGHT PARAFFINS; COKE FORMATION; COATED FOAMS AB The catalytic partial oxidation (CPOX) of transportation fuels into synthesis gas (H-2 + CO) for fuel cells is complicated by the large quantities of aromatics and sulfur-containing compounds commonly found in these fuels. Traditional supported metal catalysts are easily poisoned by these species which adsorb strongly onto the electron-rich metal clusters. The use of noble metal and/or oxide based catalyst systems may offer higher activity and stability, but only if the metal can be bound into a thermally stable structure. To that end, Rh metal was substituted into the structure of a lanthanum zirconate (LZ) pyrochlore to give La(2)RhyZr((2-y))O((7-xi)) (LRZ) to produce a strongly bound, well-dispersed metal which is active for CPOX. A second catalyst was prepared in which Sr was substituted for a portion of La in the LRZ structure, producing La(2-x)SrxRhyZr(2-y)O(7-xi) (LSRZ). Each of these pyrochlore catalysts, including the unsubstituted LZ, were characterized and screened for activity in the CPOX of n-tetradecane (TD), which is a surrogate for linear paraffins typical of diesel fuel. Results were compared to a commercial Rh/-gamma-Al2O3 catalyst. X-ray diffraction patterns of both the LZ and LRZ showed that each had the cubic unit-cell pyrochlore structure. However, substitution of Sr resulted in a binary perovskite-pyrochlore phase with a defect SrZrO3 phase. Hydrogen pulse chemisorption and temperature programmed reduction studies confirmed that Rh metal was substituted into the structure of the LRZ and LSRZ, and was reducible. Activity screening with the CPOX of TD showed that the Rh substituted in both LRZ and LSRZ is able to retain activity-producing essentially equilibrium synthesis gas yields, as was the Rh/-gamma-Al2O3. Temperature programmed oxidation experiments performed after the CPOX of TD demonstrated that the amount of carbon was quantitatively similar for each catalyst (roughly 0.3 g(carbon)/g(catalyst) after each run), with the exception of LSRZ, which had significantly less carbon (0.17 g(carbon)/g(catalyst)). It is speculated that improved oxygen ion mobility in the LSRZ material, which resulted from Sr substitution, was responsible for the reduction in carbon formation on the surface. Published by Elsevier B.V. C1 [Haynes, Daniel J.] Parsons, South Pk, PA 15129 USA. [Haynes, Daniel J.; Berry, David A.; Shekhawat, Dushyant] US DOE, Natl Energy Tehchnol Lab, Morgantown, WV 26507 USA. [Haynes, Daniel J.; Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. RP Haynes, DJ (reprint author), Parsons, POB 618, South Pk, PA 15129 USA. EM Daniel.Haynes@pp.netl.doe.gov; David.Berry@netl.doe.gov; Dushyant.Shekhawat@netl.doe.gov; jjspivey@lsu.edu NR 64 TC 52 Z9 52 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 31 PY 2008 VL 136 IS 3-4 BP 206 EP 213 DI 10.1016/j.cattod.2008.02.012 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JE UT WOS:000257015200003 ER PT J AU Huang, XW King, DA Zheng, F Stenkamp, VS TeGrotenhuis, WE Roberts, BQ King, DL AF Huang, Xiwen King, Dale A. Zheng, Feng Stenkamp, Victoria S. TeGrotenhuis, Ward E. Roberts, Benjamin Q. King, David L. TI Hydrodesulfurization of JP-8 fuel and its microchannel distillate using steam reformate SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Symposium on Reforming of Liquid Hydrocarbon Fuels for Fuel Cell Applications held at the 234th ACS National Meeting CY AUG 19-23, 2007 CL Boston, MA SP Amer Chem Soc DE hydrodesulfurization; microchannel distillation; steam reformate; JP-8 fuel ID SELECTIVE ADSORPTION; HYDROGEN GENERATION; DIESEL FUEL; SULFUR; DESULFURIZATION; CATALYSTS; CELLS; GAS; TEMPERATURE AB A field-deployable process for generation of clean desulfurized fuel from JP-8 feedstock is described. The process employs a compact hydrodesulfurization unit, operated in the vapor phase using steam reformate provided by an integrated steam reformer, as a replacement for hydrogen co-feed gas. The process includes a rnicrochannel distillation unit upstream of the hydrodesulfurizer unit, which allows use of a lighter feed fraction to be processed in place of the full JP-8. The novel microchannel distillation concept is described and performance data for the unit, operating as a rectifier, are provided. Since the generated light fraction fuel from rnicrochannel distillation contains fewer refractory sulfur components, the subsequent HDS process can readily achieve a significant sulfur reduction. The overall process can generate an ultra-clean JP-8 light fraction fuel with approximately 300 ppb sulfur residual. Hydrodesulfurization of full JP-8 fuel without the microchannel distillation unit was also studied. The effect of various operating parameters on the overall hydrodesulfurization performance, as well as the conversion of some individual sulfur components such as 2,3-dimethyl-benzothiophene, 2,3,5-trimethyl-benzothiophene and 2,3,7-trimethyl-benzothiophene, were investigated. Steam content in reformate at 30 mol% or less was, found to improve HDS performance compared with dry reformate, despite a decrease in hydrogen partial pressure. However, at even higher concentrations of steam, hydrodesulfurization performance decreased. (C) 2008 Elsevier B.V. All rights reserved. C1 [Huang, Xiwen; King, Dale A.; Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Roberts, Benjamin Q.; King, David L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP King, DL (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM david.king@pnl.gov RI Zheng, Feng/C-7678-2009 OI Zheng, Feng/0000-0002-5427-1303 NR 21 TC 10 Z9 10 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 31 PY 2008 VL 136 IS 3-4 BP 291 EP 300 DI 10.1016/j.cattod.2008.01.011 PG 10 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JE UT WOS:000257015200014 ER PT J AU Davis, AB AF Davis, A. B. TI Multiple-scattering lidar from both sides of the clouds: Addressing internal structure SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ANGLE IMAGING LIDAR; RADIATIVE-TRANSFER; GREEN-FUNCTION; OPTICAL DEPTH; THICKNESS; PARAMETERIZATION; STRATOCUMULUS; SIMULATIONS; RETRIEVALS; EXTINCTION AB [1] Multiple-scattering ( a. k. a. `` off- beam'') lidar is an emerging technology in cloud remote sensing. It delivers, as in classic lidar ceilometry, cloud base altitude but also the cloud's physical thickness H as well as its optical depth t ( averaged over horizontal scales on the order of H). The value of t in fact must lie beyond the range accessible by standard ( i. e., single- scattering/ on- beam) lidar profiling, namely, up to 3 - 4. A refined diffusion- theoretical model is presented here for signals from multiple- scattering lidar and applied, on the one hand, to retrieval algorithm development and, on the other hand, signal- to- noise ratio ( SNR) estimation. SNRs are computed for LANL's ground- based Wide- Angle Imaging Lidar ( WAIL) system and NASA's space- based Lidar- In- space Technology Experiment ( LITE). The refinements are threefold and all about internal structure. First, the laser source is modeled as a collimated anisotropic exponentially distributed internal source rather than an isotropic point source at the cloud boundary; this opens the possibility of using d- Eddington rescaling to capture the forward peaked phase function more effectively within the diffusion framework. Second, stratification of the scattering coefficient is modeled as an increasing function of distance to cloud base; this strongly differentiates the signals when observed from above or from below. Finally, Cairns' rescaling is applied to this conservative scattering problem to account for the systematic effects of random ( turbulence- driven) internal variability at scales up to a few mean free paths. C1 Los Alamos Natl Lab, Space & Remote Sensing Grp ISR2, Los Alamos, NM 87545 USA. RP Davis, AB (reprint author), Los Alamos Natl Lab, Space & Remote Sensing Grp ISR2, Mail Stop B-244, Los Alamos, NM 87545 USA. EM adavis@lanl.gov NR 43 TC 5 Z9 5 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 31 PY 2008 VL 113 IS D14 AR D14S10 DI 10.1029/2007JD009666 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 333KJ UT WOS:000258151100003 ER PT J AU Velappan, N Clements, J Kiss, C Valero-Aracama, R Pavlik, P Bradbury, ARM AF Velappan, N. Clements, J. Kiss, C. Valero-Aracama, R. Pavlik, P. Bradbury, A. R. M. TI Fluorescence linked immunosorbant assays using microtiter plates SO JOURNAL OF IMMUNOLOGICAL METHODS LA English DT Article DE ELISA; FLISA; screening; phage antibody; fluorescence; fluorescent proteins ID MYC ANTIBODY 9E10; PROTEIN; BINDING; IMMUNOASSAY; TECHNOLOGY; FRAGMENT; ANTIGEN AB Fluorescence methods are widely used in the detection of antibodies and other binding events. However, as a general screening and detection tool in microtiter plates, enzyme linked immunosorbant (ELISA) methods predominate. In this paper we explore all parameters for effective use of fluorescence as a plate based detection method, including which microtiter plates can be used, the most effective means of immobilization, and the use of different fluorescent dyes or fluorescent proteins. These studies indicate that fluorescent immunosorbant assays (FLISA) can be used as effectively as enzymatic method in microtiter plate based screening methods, including the screening of phage antibody selections. (C) 2008 Elsevier B.V. All rights reserved. C1 [Velappan, N.; Clements, J.; Kiss, C.; Valero-Aracama, R.; Pavlik, P.; Bradbury, A. R. M.] Los Alamos Natl Lab, B Div, Los Alamos, NM 87545 USA. RP Bradbury, ARM (reprint author), Los Alamos Natl Lab, B Div, TA-43,HRL 1,MS M888, Los Alamos, NM 87545 USA. EM amb@lanl.gov OI Velappan, Nileena/0000-0002-4488-9126; Bradbury, Andrew/0000-0002-5567-8172 NR 22 TC 7 Z9 7 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1759 J9 J IMMUNOL METHODS JI J. Immunol. Methods PD JUL 31 PY 2008 VL 336 IS 2 BP 135 EP 141 DI 10.1016/j.jim.2008.04.007 PG 7 WC Biochemical Research Methods; Immunology SC Biochemistry & Molecular Biology; Immunology GA 335RN UT WOS:000258307800007 PM 18514691 ER PT J AU Darling, SB AF Darling, Seth B. TI Isolating the effect of torsional defects on mobility and band gap in conjugated polymers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; DENSITY-FUNCTIONAL THEORY; ORGANIC SOLAR-CELLS; THIN-FILM; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); OPTOELECTRONIC DEVICES; AMBIPOLAR TRANSPORT; CHARGE-TRANSPORT; MOLECULAR-WEIGHT; BUILDING-BLOCKS AB Conjugated polymers represent a promising class of organic semiconductors with potential applications in a variety of molecular devices. Poly(3-alkylthiophene)s, in particular, are garnering interest due to their large charge carrier mobility and band gap in the visible region of the spectrum. Defects play a pivotal role in determining the performance of polymer electronics, and yet the function of specific types of defects is still largely unknown. Density functional theory calculations of alkyl-substituted oligothiophenes are used to isolate the effect of static inter-ring torsion defects on key parameters such as electronic coupling between rings and band gap. Results have potential implications both for the fundamental understanding of intramolecular charge transport and for improving processing in organic devices. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov NR 42 TC 58 Z9 58 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 31 PY 2008 VL 112 IS 30 BP 8891 EP 8895 DI 10.1021/jp8017919 PG 5 WC Chemistry, Physical SC Chemistry GA 330FW UT WOS:000257926800009 PM 18597518 ER PT J AU Wang, LJ Guan, XY Tang, RK Hoyer, JR Wierzbicki, A De Yoreo, JJ Nancollas, GH AF Wang, Lijun Guan, Xiangying Tang, Ruikang Hoyer, John R. Wierzbicki, Andrzej De Yoreo, James J. Nancollas, George H. TI Phosphorylation of osteopontin is required for inhibition of calcium oxalate crystallization SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID O-GLYCOSYLATION SITES; CRYSTAL-NUCLEATION; POSTTRANSLATIONAL MODIFICATIONS; MONOHYDRATE CRYSTALLIZATION; HYDROXYAPATITE FORMATION; KIDNEY-STONE; GROWTH; IDENTIFICATION; MODULATION; PREDICTION AB Under near-physiological pH, temperature, and ionic strength, a kinetics constant composition (CC) method was used to examine the roles of phosphorylation of a 14 amino acid segment (DDVDDTDDSHQSDE) corresponding to potential crystal binding domains within the osteopontin (OPN) sequence. The phosphorylated 14-mer OPN peptide segment significantly inhibits both the nucleation and growth of calcium oxalate monohydrate (COM), inhibiting nucleation by markedly increasing induction times and delaying subsequent growth by at least 50% at concentrations less than 44 nM. Molecular modeling predicts that the doubly phosphorylated peptide binds much more strongly to both (-101) and (010) faces of COM. The estimated binding energies are, in part, consistent with the CC experimental observations. Circular dichroism spectroscopy indicates that phosphorylation does not result in conformational changes in the secondary peptide structure, suggesting that the local binding of negatively charged phosphate side chains to crystal faces controls growth inhibition. These in vitro results reveal that the interactions between phosphorylated peptide and COM crystal faces are predominantly electrostatic, further supporting the importance of macromolecules rich in anionic side chains in the inhibition of kidney stone formation. In addition, the phosphorylation-deficient form of this segment fails to inhibit COM crystal growth up to concentrations of 1450 nM. However, at sufficiently high concentrations, this nonphosphorylated segment promotes COM nucleation. Dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) results confirm that aggregation of the nonphosphorylated peptide segment takes place in solution above 900 nM when the aggregated peptide particles may exceed a well-defined minimum size to be effective crystallization promoters. C1 [Wang, Lijun; Guan, Xiangying; Nancollas, George H.] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Tang, Ruikang] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. [Tang, Ruikang] Zhejiang Univ, Ctr Biomat & Biopathways, Hangzhou 310027, Peoples R China. [Hoyer, John R.] Univ Delaware, Dept Biol Sci, Newark, DE 19716 USA. [Wierzbicki, Andrzej] Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. [De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Nancollas, GH (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM ghn@buffalo.edu RI GUAN, XIANGYING/F-4646-2010 FU NIDCR NIH HHS [DE03223, R37 DE003223, R01 DE003223-36, R01 DE003223] NR 36 TC 37 Z9 43 U1 8 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 31 PY 2008 VL 112 IS 30 BP 9151 EP 9157 DI 10.1021/jp804282u PG 7 WC Chemistry, Physical SC Chemistry GA 330FW UT WOS:000257926800041 PM 18611047 ER PT J AU Arslan, I Talin, AA Wang, GT AF Arslan, Ilke Talin, A. Alec Wang, George T. TI Three-dimensional visualization of surface defects in core-shell nanowires SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LIGHT-EMITTING-DIODES; GAN NANOWIRES; HETEROSTRUCTURES; TOMOGRAPHY; ARRAYS AB The high surface to volume ratio of nanowires makes them attractive for exploiting exotic materials properties and nanoengineering new device structures. To realize these goals, a fundamental understanding of the morphology and growth of the nanowires must be attained in three dimensions, because a two-dimensional projection image of these complex three-dimensional nanomaterials is not sufficient to describe their properties. Scanning transmission electron tomography is used here to obtain three-dimensional tomograms of GaN/AlN core-shell nanowires. This technique reveals the overall morphology and triangular shape of the nanowires, as well as their relation to the catalyst particle, with a resolution of similar to 1 nm in all three spatial dimensions. Defects that appear to be in the core of the nanowires in two-dimensional images are shown to be surface defects induced during growth, demonstrating the importance of this three-dimensional technique in analyzing nanomaterials. C1 [Arslan, Ilke; Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94550 USA. [Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Arslan, I (reprint author), Sandia Natl Labs, 7011 E Ave, Livermore, CA 94550 USA. EM iarslan@sandia.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 NR 13 TC 22 Z9 22 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11093 EP 11097 DI 10.1021/jp804194s PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100006 ER PT J AU Schrier, J Wang, LW AF Schrier, Joshua Wang, Lin-Wang TI Shape dependence of resonant energy transfer between semiconductor nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID QUANTUM-DOT SOLIDS; CDSE; COUPLINGS; PIGMENTS AB We theoretically study the energy transfer between semiconductor nanocrystal dots and rods of CdSe using a semiempirical pseudopotential method (SEPM) description of the electronic structure of the nanocrystals, followed by evaluation of the Coulombic contribution to the energy transfer evaluated using the transition density cube (TDC) method. Our results are compared to the dipole-dipole theory of Forster to characterize the effects of nanocrystal shape, distance, and orientation. For the distances typical of nanorod solids, we find that the dipole-dipole theory underestimates the coupling between linearly oriented nanorods by as much as a factor of 2, and overestimates the coupling between parallel nanorods by as much as a factor of 3. C1 [Schrier, Joshua; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Schrier, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM jschrier@lbl.gov RI Schrier, Joshua/B-6838-2009 NR 26 TC 18 Z9 18 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11158 EP 11161 DI 10.1021/jp800489m PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100015 ER PT J AU Pan, H Poh, CK Zhu, Y Xing, G Chin, KC Feng, YP Lin, J Sow, CH Ji, W Wee, ATS AF Pan, Hui Poh, Chee Kok Zhu, Yanwu Xing, Guichuan Chin, Kok Chung Feng, Yuan Ping Lin, Jianyi Sow, Chorng Haur Ji, Wei Wee, Andrew T. S. TI Novel CdS nanostructures: Synthesis and field emission SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOWIRES; ELECTROLUMINESCENCE; DRIVEN; GROWTH AB Here, we reported the success in the synthesis of novel CdS nanostructures, nanotubes, core-sheath nanowires, and tube-wire nanojunctions, by thermal evaporation of US powder and purposed a model for the growth mechanism. The core-sheath nanowires consist of a crystalline core and amorphous sheath. The photoluminescence characterization indicated that the CdS nanostructures were crystalline and showed a narrow peak at 516.5 nm. In addition, the CdS nanostructures exhibited better field emission properties with a field enhancement factor of 1.5 x 10(4) and turn-on field of 1.4 V/mu m. C1 [Pan, Hui; Zhu, Yanwu; Xing, Guichuan; Chin, Kok Chung; Feng, Yuan Ping; Lin, Jianyi; Sow, Chorng Haur; Ji, Wei; Wee, Andrew T. S.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Poh, Chee Kok; Lin, Jianyi] Inst Chem & Engn Sci, Singapore 627833, Singapore. RP Pan, H (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM panh1@ornl.gov RI Zhu, Yanwu/C-4171-2008; Pan, Hui/A-2702-2009; Poh, Chee Kok/E-8965-2011; Wee, Andrew/B-6624-2009; Zhu, Yanwu/C-8979-2012; Sow, Chorng Haur/G-1685-2012; Feng, Yuan Ping /A-4507-2012; Xing, Guichuan/J-3355-2012; JI, WEI/H-5795-2015 OI Yang, Shuman/0000-0002-9638-0890; Pan, Hui/0000-0002-6515-4970; Poh, Chee Kok/0000-0002-3175-8493; Wee, Andrew/0000-0002-5828-4312; Feng, Yuan Ping /0000-0003-2190-2284; JI, WEI/0000-0003-0303-0830 NR 17 TC 39 Z9 40 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11227 EP 11230 DI 10.1021/jp8023843 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100025 ER PT J AU Chowdhury, MH Pond, J Gray, SK Lakowicz, JR AF Chowdhury, Mustafa H. Pond, James Gray, Stephen K. Lakowicz, Joseph R. TI Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DIFFERENCE TIME-DOMAIN; MAXWELLS EQUATIONS; NUMERICAL-SOLUTION; LIGHT-SCATTERING; ENERGY-TRANSFER; ICE CRYSTALS; FLUORESCENCE; FIELD AB We use the finite-difference time-domain method to predict how fluorescence is modified if the fluorophore is located between two silver nanoparticles of a dimer system. The fluorophore is modeled as a radiating point dipole with orientation defined by its polarization. When a fluorophore is oriented perpendicular to the metal surface, there is a large increase in total power radiated through a closed surface containing the dimer system, in comparison to the isolated fluorophore and the case of a fluorophore near a single nanoparticle. The increase in radiated power indicates increases in the relative radiative decay rates of the emission near the nanoparticles. The angle-resolved far-field distributions of the emission in a single plane are also computed. This is informative as many experimental conditions involve collection optics and detectors that collect the emission along a single plane. For fluorophores oriented perpendicular to the metal surfaces, the dimer systems lead to significant enhancements in the fluorescence emission intensity in the plane. In contrast, significant emission quenching occurs if the fluorophores are oriented parallel to the metal surfaces. We also examine the effect of the fluorophore on the near-field around the nanoparticles and correlate our results with surface plasmon excitations. C1 [Chowdhury, Mustafa H.; Lakowicz, Joseph R.] Univ Maryland, Sch Med, Ctr Med Biotechnol, Ctr Fluorescence Spect, Baltimore, MD 21201 USA. [Pond, James] Lumer Solut Inc, Vancouver, BC V6C 1H2, Canada. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Gray, Stephen K.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Lakowicz, JR (reprint author), Univ Maryland, Sch Med, Ctr Med Biotechnol, Ctr Fluorescence Spect, 725 W Lombard St, Baltimore, MD 21201 USA. EM lakowicz@cfs.umbi.umd.edu FU NHGRI NIH HHS [R01 HG002655-06, R01 HG002655, R01 HG002655-01, R01 HG002655-05, R01 HG002655-02, R01 HG002655-03, R01 HG002655-04A1]; NIBIB NIH HHS [R01 EB006521, R01 EB000682-01, R01 EB000682-03, R01 EB006521-03, R01 EB006521-02, R01 EB000682-02, R01 EB000682-05, R01 EB006521-01A1, R01 EB000682, R01 EB000682-04] NR 29 TC 52 Z9 52 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11236 EP 11249 DI 10.1021/jp802414k PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100027 PM 19777130 ER PT J AU Kliewer, CJ Bieri, M Somorjai, GA AF Kliewer, Christopher J. Bieri, Marco Somorjai, Gabor A. TI Pyrrole hydrogenation over Rh(111) and Pt(111) single-crystal surfaces and hydrogenation promotion mediated by 1-methylpyrrole: A kinetic and sum-frequency generation vibrational spectroscopy study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-CATALYSTS; GAS-PHASE; DERIVATIVES; BENZENE; SPECTRA; MOLECULES; PYRIDINE; ORIENTATION; BUTYLAMINE; NITROGEN AB Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(l 11) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H-2) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the a-aromatic system. A pyrroline surface reaction intermediate, which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing I-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Kliewer, Christopher/E-4070-2010 OI Kliewer, Christopher/0000-0002-2661-1753 NR 40 TC 23 Z9 23 U1 4 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11373 EP 11378 DI 10.1021/jp8019123 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100047 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Relationship of O-2 photodesorption in photooxidation of acetone on TiO2 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-OXYGEN; TIO2(110) SURFACE; TITANIUM-DIOXIDE; RUTILE TIO2(110); REDUCED TIO2(110); PHOTO-ADSORPTION; CARBOXYLIC-ACIDS; CHARGE-TRANSFER; DESORPTION AB Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O-2 photodesorption and acetone photodecomposition. Temperature programmed desorption and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface; however, the form of oxygen (molecular or dissociative) involved is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)(2)COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O-2 PSD is also observed during the latter process. The time scales for the two PSD events (CH3 and O-2) are quite different, with the former occurring at similar to 10 times faster than the latter. By varying the preheating conditions or performing preirradiation on an O-2-exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O-2 species responsible for 02 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O-2 On the surface. The CH3 and O-2 PSD events do not appear to be in competition with each other, suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, POB 999,MS K8-87, Richland, WA 99352 USA. NR 49 TC 38 Z9 38 U1 7 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11433 EP 11440 DI 10.1021/jp802551x PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100055 ER PT J AU Dabestani, R Kidder, M Buchanan, AC AF Dabestani, Reza Kidder, Michelle Buchanan, A. C., III TI Pore size effect on the dynamics of excimer formation for chemically attached pyrene on various silica surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MESOPOROUS SILICA; SINGLE-SITE; GEL/AIR INTERFACE; PHENYL ETHER; PHOTOCHEMISTRY; GEL; PYROLYSIS; CHEMISTRY; CATALYSTS; PHOTODECOMPOSITION AB Excimer formation by pyrene is a well-known process in solution and on solid surfaces. In solution, excimer formation is highly dependent on the concentration of pyrene. When adsorbed on solid surfaces (i.e., silica surfaces), pyrene has been shown to form ground-state pairs which lead to static excimer emission even at very low surface coverages as a result of a solvent pooling effect induced during solvent removal from the surface. Ground-state pairing on silica surfaces results from a pi-pi interaction between two adjacent pyrene molecules and can not be avoided even by slow evaporation of the solvent from the surface as the molecules diffuse toward one another during the process. One possible method to alleviate the pairing of pyrene molecules and hence the formation of excimer is to chemically attach pyrene molecules to the silica surface. Chemical attachment, however, does not allow effective control over the spacing between the pyrene molecules to avoid ground-state pairing. To circumvent this, spacer molecules can be incorporated onto the surface by chemical attachment to control the spacing between two adjacent pyrene molecules. Furthermore, by using surfaces that provide various pore sizes, it is possible to control the number of pyrene molecules that can be grafted onto and confined to the pore surface, as well as the steric environment in which the molecules can rotate. Cabosil (fumed silica with no pores) and mesoporous silica surfaces with various pore diameters (i.e., MCM-41) are ideal candidates to examine the feasibility of controlling the spacing between pyrene molecules on a flat surface and confined inside the pores using a cografted spacer molecule (i.e., biphenyl). We have now used such an approach to examine the extent of excimer formation as the ratio of spacer/pyrene molecules is varied on nonporous silica surfaces as well as mesoporous silica surfaces with various pore diameters. Our results show that a decrease in the ratio of spacer/pyrene is accompanied by an increase in the excimer emission on both nonporous and porous silicas. Furthermore, as the pore diameter is increased, an increase in the excimer emission is observed at similar spacer:pyrene grafting ratio. This suggests that a decrease in the separation of pyrene molecules on the surface, as the concentration of biphenyl spacer is decreased relative to pyrene, results in closer proximity of the neighboring pyrene molecules leading to the excimer emission. It is also observed that the alkyl side chain length (i.e., four carbon chain) bearing the pyrene fluorescent probe provides a more facile path for excimer formation by providing the flexibility needed for two pyrenes to reach and interact. When the alkyl side chain is removed and pyrene is directly attached to the surface, the contribution of excimer emission is diminished. C1 [Dabestani, Reza; Kidder, Michelle; Buchanan, A. C., III] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dabestani, R (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dabestanir@oml.gov NR 43 TC 18 Z9 18 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11468 EP 11475 DI 10.1021/jp803217p PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100060 ER PT J AU Lightstone, JM Patterson, MJ Liu, P Lofaro, JC White, MG AF Lightstone, James M. Patterson, Melissa J. Liu, Ping Lofaro, John C., Jr. White, Michael G. TI Characterization and reactivity of the Mo4S6+ cluster deposited on Au(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; MOLYBDENUM CARBIDE NANOPARTICLES; CHEMICAL-PROPERTIES; MOS2 NANOCLUSTERS; MOLECULAR-DYNAMICS; CO ADSORPTION; GAS-PHASE; CATALYSTS; GROWTH AB Mass-selected cluster deposition was used to investigate the chemical and thermal properties of the Mo4S6 cluster deposited onto a Au(111) substrate. Auger spectroscopy and (CO)-C-13 thermal desorption measurements demonstrate that the clusters behave independently up to coverages of similar to 0.15 ML, while at higher coverages, cluster crowding or island formation results in no net increase in Mo-atom adsorption sites. DFF calculations show that CO binding on the Mo-atom top site is strongly preferred over the side sites, with scaled binding energies in reasonable agreement with the experimentally derived binding energy of 0.7 eV. DFT calculations predict that the total adsorption energy for sequential addition of two CO molecules (top and side site) is nearly additive, whereas the addition of a third CO to another empty Mo side site is less stable. The latter is attributed to repulsive intercluster interactions and is consistent with the experimentally estimated sticking coefficient of 0.4 +/- 0.1. In contrast to CO, we were unable to detect any adsorption of NH3 onto the deposited cluster. The DFT calculations confirm these observations by predicting a very small NH3 adsorption energy to the Mo4S6/Au(111) supported cluster. The difference in adsorbate binding (CO, NH3) between the gas-phase and supported cluster highlights the role of the Au(111) substrate in modifying the electronic structure and chemical behavior of the supported cluster. Annealing of the Mo4S6/Au(111) surface above similar to 500 K was found to significantly reduce the CO uptake of the supported clusters. These data are consistent with diffusion of intact clusters along the Au surface and the formation of 2D islands. Because of the unique stoichiometry of the as-deposited Mo4S6 clusters, aggregates formed by cluster diffusion are expected to exhibit distinctly different chemical behavior compared to near-stoichiometric MoSx (x approximate to 2) platelet nanoclusters or amorphous thin films. C1 [Lightstone, James M.; Patterson, Melissa J.; Lofaro, John C., Jr.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Liu, Ping; White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov NR 51 TC 21 Z9 21 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 31 PY 2008 VL 112 IS 30 BP 11495 EP 11506 DI 10.1021/jp711938m PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 330FZ UT WOS:000257927100064 ER PT J AU Ma, BH Kwon, DK Narayanan, M Balachandran, U AF Ma, Beihai Kwon, Do-Kyun Narayanan, Manoj Balachandran, U. (Balu) TI Dielectric properties of PLZT film-on-foil capacitors SO MATERIALS LETTERS LA English DT Article DE dielectric property; PLZT film; ceramic capacitor; energy density; breakdown strength ID TITANATE THIN-FILMS; STATISTICS; BREAKDOWN; CERAMICS AB We have deposited Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films on nickel foils to create film-on-foil capacitor sheets. Measurements with PLZT films on LaNiO3-buffered Ni foils yielded the following: relative permittivity approximate to 1300 and dielectric loss (tan delta) approximate to 0.05, leakage current density of 6.6 x 10(-9) A/cm(2) (at 25 degrees C) and 1.4 x 10(-8) A/cm(2) (at 150 degrees C) and mean breakdown field strength >2.4 MV/cm. Based on the hysteresis loop measurement, an energy storage density of approximate to 17 J/cm(3) was obtained for such a capacitor at 50% of the mean breakdown field. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ma, Beihai; Kwon, Do-Kyun; Narayanan, Manoj; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 NR 13 TC 40 Z9 40 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JUL 31 PY 2008 VL 62 IS 20 BP 3573 EP 3575 DI 10.1016/j.matlet.2008.03.060 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 322MD UT WOS:000257378300033 ER PT J AU Yang, YF Fisk, Z Lee, HO Thompson, JD Pines, D AF Yang, Yi-feng Fisk, Zachary Lee, Han-Oh Thompson, J. D. Pines, David TI Scaling the Kondo lattice SO NATURE LA English DT Article ID HEAVY-FERMION BEHAVIOR; COMPOUND CERU2SI2; GROUND-STATE; SUPERCONDUCTIVITY; SYSTEM; MODEL; NMR AB The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin- density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between 'local- moment' magnetism and 'itinerant- electron' magnetism is reminiscent of the valence bond/ molecular orbital dichotomy present in studies of chemical bonding. The class of heavy- electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant- electron magnetic characteristics at low temperatures that grow out of a high-temperature local- moment state(1). Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy- electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons' response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well- known Doniach diagram(2). C1 [Yang, Yi-feng; Lee, Han-Oh; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yang, Yi-feng; Pines, David] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fisk, Zachary] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Yang, YF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yifengyyf@gmail.com NR 30 TC 110 Z9 111 U1 8 U2 54 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 31 PY 2008 VL 454 IS 7204 BP 611 EP 613 DI 10.1038/nature07157 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 331QC UT WOS:000258026500040 PM 18668102 ER PT J AU Walter, MJ Bulanova, GP Armstrong, LS Keshav, S Blundy, JD Gudfinnsson, G Lord, OT Lennie, AR Clark, SM Smith, CB Gobbo, L AF Walter, M. J. Bulanova, G. P. Armstrong, L. S. Keshav, S. Blundy, J. D. Gudfinnsson, G. Lord, O. T. Lennie, A. R. Clark, S. M. Smith, C. B. Gobbo, L. TI Primary carbonatite melt from deeply subducted oceanic crust SO NATURE LA English DT Article ID EARTHS LOWER MANTLE; HIGH-PRESSURE; TRANSITION ZONE; PHASE-RELATIONS; MATO-GROSSO; JUINA AREA; DIAMONDS; FLUIDS; METASOMATISM; SUBSOLIDUS AB Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface(1). Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes(2). Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes(3-8). Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium- silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition- zone depths. Further to perovskite, calcic- majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small- degree melts of subducted crust can be viewed as agents of chemical mass- transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years. C1 [Walter, M. J.; Bulanova, G. P.; Armstrong, L. S.; Blundy, J. D.; Lord, O. T.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Keshav, S.; Gudfinnsson, G.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Lennie, A. R.] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Smith, C. B.] Rio Tinto Min & Explorat Ltd, London W2 6LG, England. [Gobbo, L.] Rio Tinto Desinvolvimentos Min Ltda, BR-71200020 Brasilia, DF, Brazil. RP Walter, MJ (reprint author), Univ Bristol, Dept Earth Sci, Queens Rd, Bristol BS8 1RJ, Avon, England. EM m.j.walter@bris.ac.uk RI Lord, Oliver/D-4663-2014; Clark, Simon/B-2041-2013 OI Lord, Oliver/0000-0003-0563-1293; Clark, Simon/0000-0002-7488-3438 NR 35 TC 96 Z9 106 U1 7 U2 67 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 31 PY 2008 VL 454 IS 7204 BP 622 EP U30 DI 10.1038/nature07132 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 331QC UT WOS:000258026500043 PM 18668105 ER PT J AU Malinowski, SP Andrejczuk, M Grabowski, WW Korczyk, P Kowalewski, TA Smolarkiewicz, PK AF Malinowski, Szymon P. Andrejczuk, Miroslaw Grabowski, Wojciech W. Korczyk, Piotr Kowalewski, Tomasz A. Smolarkiewicz, Piotr K. TI Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling SO NEW JOURNAL OF PHYSICS LA English DT Article ID ENVIRONMENT INTERFACE; NUMERICAL-SIMULATION; SPATIAL DIMENSIONS; BUOYANCY REVERSAL; CENTIMETER SCALE; CUMULUS CLOUDS; ENTRAINMENT; INSTABILITY; FLOWS; STRATOCUMULUS AB Small-scale mixing between cloudy air and unsaturated clear air is investigated in numerical simulations and in a laboratory cloud chamber. Despite substantial differences in physical conditions and some differences in resolved scales of motion, results of both studies indicate that small-scale turbulence generated through cloud-clear air interfacial mixing is highly anisotropic. For velocity fluctuations, numerical simulations and cloud chamber observations demonstrate that the vertical velocity variance is up to a factor of two larger than the horizontal velocity variance. The Taylor microscales calculated separately for the horizontal and vertical directions also indicate anisotropy of turbulent eddies. This anisotropy is attributed to production of turbulent kinetic energy (TKE) by buoyancy forces due to evaporative cooling of cloud droplets at the cloud-clear air interface. Numerical simulations quantify the effects of buoyancy oscillations relative to the values expected from adiabatic and isobaric mixing, standardly assumed in cloud physics. The buoyancy oscillations result from microscale transport of liquid water due to the gravitational sedimentation of cloud droplets. In the particular modeling setup considered here, these oscillations contribute to about a fifth of the total TKE production. C1 [Malinowski, Szymon P.] Univ Warsaw, Inst Geophys, PL-02093 Warsaw, Poland. [Andrejczuk, Miroslaw] Los Alamos Natl Lab, Los Alamos, NM USA. [Grabowski, Wojciech W.; Smolarkiewicz, Piotr K.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Korczyk, Piotr; Kowalewski, Tomasz A.] Polish Acad Sci, Inst Fundamental Technol Res, Warsaw, Poland. RP Malinowski, SP (reprint author), Univ Warsaw, Inst Geophys, Pasteura 7, PL-02093 Warsaw, Poland. RI Korczyk, Piotr/D-8820-2011; Malinowski, Szymon/A-5237-2010; Kowalewski, Tomasz /F-2055-2011 OI Korczyk, Piotr/0000-0002-5445-7933; Malinowski, Szymon/0000-0003-4987-7017; Kowalewski, Tomasz /0000-0002-3664-9659 NR 38 TC 16 Z9 16 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 31 PY 2008 VL 10 AR 075020 DI 10.1088/1367-2630/10/7/075020 PG 15 WC Physics, Multidisciplinary SC Physics GA 333VP UT WOS:000258181200008 ER PT J AU Deur, A Burkert, V Chen, JP Korsch, W AF Deur, A. Burkert, V. Chen, J. P. Korsch, W. TI Determination of the effective strong coupling constant alpha(s.g1) (Q(2)) from CLAS spin structure function SO PHYSICS LETTERS B LA English DT Article ID QUANTUM CHROMODYNAMICS; EFFECTIVE CHARGES; SUM-RULE; QCD; NUCLEON; SCATTERING; BEHAVIOR; ALGEBRA; G(1)(N); PROTON AB We present a new extraction of the effective strong coupling constant alpha(s,g1) (Q(2)). The result agrees with a previous determination and extends the measurement of the low and high Q(2) behavior of alpha(s,g1) (Q(2)) that was previously deduced from sum rules. In particular, it experimentally verifies the lack of Q(2)- dependence of alpha(s,g1) (Q(2)) in the low Q(2) limit. This fact is necessary for application of the AdS/CFT correspondence to QCD calculations. We provide a parameterization of alpha(s,g1) (Q(2)) that can equivalently be used to parameterize the Q(2)-dependence of the generalized Gerasimov-Drell-Hearn and Bjorken sums. (c) 2008 Elsevier B.V. All rights reserved. C1 [Deur, A.; Burkert, V.; Chen, J. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Korsch, W.] Univ Kentucky, Lexington, KY 40506 USA. RP Deur, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM deurpam@jlab.org FU US Department of Energy (DOE); Jefferson Science Associates (JSA) [DE-AC05-84ER40150] FX We are would like to thanks to S. Brodsky, S. Gardner. W. Melnitchouk, C. Roberts and P. Tandy for helpful discussions. We acknowledge S. Furui and P. Bowman for sending us their lattice results.; This work was supported by the US Department of Energy (DOE). The Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the DOE under contract DE-AC05-84ER40150. NR 46 TC 62 Z9 62 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 31 PY 2008 VL 665 IS 5 BP 349 EP 351 DI 10.1016/j.physletb.2008.06.049 PG 3 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340LR UT WOS:000258647600006 ER PT J AU Rizzo, TG AF Rizzo, Thomas G. TI Identification of the origin of monojet signatures at the LHC SO PHYSICS LETTERS B LA English DT Article ID UNPARTICLE PHYSICS; EXTRA DIMENSIONS AB Several new physics scenarios can lead to monojet signatures at the LHC. If such events are observed above the Standard Model background it will be important to identify their origin. In this Letter we compare and contrast these signatures as produced in two very different pictures: vector or scalar unparticle production in the scale-invariant/conformal regime and graviton emission in the Arkani-Hamed, Dimopoulos and Dvali extra-dimensional model. We demonstrate that these two scenarios can be distinguished at the LHC for a reasonable range of model parameters through the shape of their respective monojet and/or missing E-T distributions. (c) 2008 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Rizzo, TG (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM rizzo@slac.stanford.edu NR 38 TC 17 Z9 17 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 31 PY 2008 VL 665 IS 5 BP 361 EP 368 DI 10.1016/j.physletb.2008.06.043 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340LR UT WOS:000258647600009 ER PT J AU Albright, CH Rodejohann, W AF Albright, Carl H. Rodejohann, Werner TI Model-independent analysis of tri-bimaximal mixing: A softly-broken hidden or an accidental symmetry? SO PHYSICS LETTERS B LA English DT Article ID A(4) FAMILY SYMMETRY; NEUTRINO MASS MATRIX; CP VIOLATION; FERMION MASSES; QUARK MASSES; GUT; DEVIATIONS AB To address the issue of whether tri-bimaximal mixing (TBM) is a softly-broken hidden or an accidental symmetry, we adopt a model-independent analysis in which we perturb a neutrino mass matrix leading to TBM in the most general way but leave the three texture zeros of the diagonal charged lepton mass matrix unperturbed. We compare predictions for the perturbed neutrino TBM parameters with those obtained from typical SO(10) grand unified theories with a variety of flavor symmetries. Whereas SO(10) GUTs almost always predict a normal mass hierarchy for the light neutrinos, TBM has a priori no preference for neutrino masses. We find, in particular for the latter, that the value of vertical bar U-e3 vertical bar is very sensitive to the neutrino mass scale and ordering. Observation of vertical bar U-e3 vertical bar(2) > 0.001 to 0.01 within the next few years would be incompatible with softly-broken TBM and a normal mass hierarchy and would suggest that the apparent TBM symmetry is an accidental symmetry instead. No such conclusions can be drawn for the inverted and quasi-degenerate hierarchy spectra. (c) 2008 Elsevier B.V. All rights reserved. C1 [Rodejohann, Werner] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Albright, Carl H.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Albright, Carl H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Rodejohann, W (reprint author), Max Planck Inst Kernphys, Postfach 103980, D-69029 Heidelberg, Germany. EM albright@fnal.gov; werner.rodejohann@mpi-hd.mpg.de OI Rodejohann, Werner/0000-0003-1688-1028; Albright, Carl/0000-0002-2252-6359 FU Deutsche Forschungsgemeinschaft FX One of the authors (C.H.A.) thanks Manfred Lindner and members of the Max-Planck-Institut ffir Kernphysik for their kind hospitality while the research reported here was carried out. The work of W.R. was supported in part by the Deutsche Forschungsgemeinschaft in the Transregio 27 "Neutrinos and beyond-weakly interacting particles in physics, astrophysics and cosmology". NR 72 TC 21 Z9 21 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 31 PY 2008 VL 665 IS 5 BP 378 EP 383 DI 10.1016/j.physletb.2008.06.044 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340LR UT WOS:000258647600012 ER PT J AU Bera, D Kuchibhatla, SVNT Azad, S Saraf, L Wang, CM Shutthanandan, V Nachimuthu, P McCready, DE Engelhard, MH Marina, OA Baer, DR Seal, S Thevuthasan, S AF Bera, Debasis Kuchibhatla, Satyanarayana V. N. T. Azad, S. Saraf, L. Wang, C. M. Shutthanandan, V. Nachimuthu, P. McCready, D. E. Engelhard, M. H. Marina, O. A. Baer, D. R. Seal, S. Thevuthasan, S. TI Growth and characterization of highly oriented gadolinia-doped ceria (111) thin films on zirconia (111)/sapphire (0001) substrates SO THIN SOLID FILMS LA English DT Article DE highly oriented gadolinia-doped ceria; ionic conductivity; solid oxide fuel cell; X-ray diffraction pole-figure analysis; transmission electron microscopy ID OXIDE FUEL-CELLS; ELECTROLYTES; CONDUCTIVITY AB Highly-oriented pure and gadolinia-doped ceria thin films have been grown on pure and zirconia (ZrO(2)) (111)-buffered sapphire (Al(2)O(3)) (0001) substrates using oxygen plasma-assisted molecular beam epitaxy to understand the oxygen ionic transport processes in ceria based oxide thin films. Gadolinia-doped ceria films grown on sapphire substrate show polycrystalline features due to structural deformations resulting from the large lattice mismatch between the Al(2)O(3) (0001) substrate and the ceria films. In contrast, the films, grown on a thin layer of ZrO(2) (111) buffered sapphire substrate, appear to be highly oriented in nature with predominant double domain (111) orientation. Oxygen ionic conductivity of these gadolinia-doped ceria films was measured as a function of gadolinium concentration and found to be efficient at relatively lower temperature operation compared to that of bulk polycrystalline, single crystalline yttria stabilized zirconia and gadolinia-doped polycrystalline ceria. Relative improvement in ionic conductivity of highly oriented gadolinia-doped ceria films (in the lower temperature regime) can be ascribed to the increased oxygen vacancies due to presence of Gd as well as high quality of the oriented thin films. (C) 2007 Elsevier B.V. All rights reserved. C1 [Bera, Debasis] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Bera, Debasis; Kuchibhatla, Satyanarayana V. N. T.; Seal, S.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Surface Engn & Nanotechnol Facil, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Bera, Debasis; Kuchibhatla, Satyanarayana V. N. T.; Azad, S.; Saraf, L.; Wang, C. M.; Shutthanandan, V.; Nachimuthu, P.; McCready, D. E.; Engelhard, M. H.; Baer, D. R.; Thevuthasan, S.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Bera, D (reprint author), Univ Florida, Dept Mat Sci & Engn, 202 Rhines Hall,PO 116400, Gainesville, FL 32611 USA. EM dbera@mse.ufl.edu; sseal@mail.ucf.edu; theva@pnl.gov RI Engelhard, Mark/F-1317-2010; Baer, Donald/J-6191-2013; OI Baer, Donald/0000-0003-0875-5961; Engelhard, Mark/0000-0002-5543-0812 NR 24 TC 11 Z9 11 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2008 VL 516 IS 18 BP 6088 EP 6094 DI 10.1016/j.tsf.2007.11.007 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 331UE UT WOS:000258037300027 ER PT J AU Varanasi, VG Besmann, TM Payzant, EA Starr, TL Anderson, TJ AF Varanasi, V. G. Besmann, T. M. Payzant, E. A. Starr, T. L. Anderson, T. J. TI Thermodynamic analysis and growth of ZrO(2) by chloride chemical vapor deposition SO THIN SOLID FILMS LA English DT Article DE chemical vapor deposition; zirconia; thermodynamic analysis ID ZRCL4-H2-CO2-AR GAS-MIXTURES; YTTRIA-STABILIZED ZIRCONIA; THERMAL BARRIER COATINGS; STAGNATION POINT FLOW; CVD REACTOR; KINETICS; DESIGN; DIOXIDE; MICROSTRUCTURE; SYSTEM AB Equilibrium calculations were used to optimize conditions for the chemical vapor deposition (CVD) of zirconia. The results showed zirconia formation would occur at high oxygen to zirconium atomic ratios (> 4), low hydrogen to carbon ratios (< 10), low pressures (< 105 Pa) and high temperatures (> 800 degrees C). Using these calculations as a guide, single-phase monoclinic zirconia coatings were deposited onto 2-cm diameter alpha-alumina substrates. The maximum growth rate achieved was 2.46 mg cm(-2) h(-1). (C) 2007 Elsevier B.V. All rights reserved. C1 [Varanasi, V. G.; Besmann, T. M.; Payzant, E. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Starr, T. L.] Univ Louisville, Louisville, KY 40292 USA. [Anderson, T. J.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. RP Varanasi, VG (reprint author), Univ Calif San Francisco, Sch Dent, Dept Prevent & Restorat Dent Sci, 707 Parnassus Ave,D2254, San Francisco, CA 94143 USA. EM venu.varanasi@ucsf.edu; besmanntm@oml.gov; payzanta@oml.gov; thomas.starr@louisville.edu; tim@nervm.nerdc.ufl.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 NR 36 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2008 VL 516 IS 18 BP 6133 EP 6139 DI 10.1016/j.tsf.2007.11.020 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 331UE UT WOS:000258037300034 ER PT J AU Libera, JA Elam, JW Pellin, MJ AF Libera, J. A. Elam, J. W. Pellin, M. J. TI Conformal ZnO coatings on high surface area silica gel using atomic layer deposition SO THIN SOLID FILMS LA English DT Article DE atomic layer deposition; ZnO; silica gel; catalysis ID CATALYTIC MEMBRANES; ZINC-OXIDE; GROWTH; EPITAXY; CHEMISTRY; ALUMINA; VAPOR; FILMS; ZRO2 AB Silica gel is a mesoporous form of silica with a high specific surface area that is widely used as a support material for heterogeneous catalysis. In this study, we use atomic layer deposition (ALD) methods to deposit ZnO layers onto silica gel supports. ZnO ALD was performed using alternating exposures of diethyl zinc (DEZ) and water to coat 1 g quantities of silica gel in a conventional viscous flow reactor. The coated materials were analyzed using weight gain, X-ray fluorescence, X-ray diffraction, energy dispersive X-ray analysis, and scanning and transmission electron microscopy. These measurements revealed that the silica gel support could be conformally coated using reactant exposure times of similar to 90 s. The ALD ZnO was amorphous for films deposited using < 5 ALD cycles, but became hexagonal, nanocrystalline ZnO for films deposited using > 5 ALD cycles. In addition to the ZnO films, we also discovered that metallic Zn was deposited in the silica gel using very large DEZ exposures and deposition temperatures > 150 degrees C. The metallic Zn phase begins to form as soon as the ZnO ALD surface reactions have saturated, indicating that the Zn growth is strongly dependent on the availability of excess DEZ precursor. Published by Elsevier B.V. C1 [Libera, J. A.; Elam, J. W.; Pellin, M. J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 30 TC 45 Z9 45 U1 3 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2008 VL 516 IS 18 BP 6158 EP 6166 DI 10.1016/j.tsf.2007.11.044 PG 9 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 331UE UT WOS:000258037300038 ER PT J AU Garcia, MA Ali, MN Parsons-Moss, T Ashby, PD Nitsche, H AF Garcia, Mitch Andre Ali, Mazhar Nawaz Parsons-Moss, Tashi Ashby, Paul David Nitsche, Heino TI Metal oxide films produced by polymer-assisted deposition (PAD) for nuclear science applications SO THIN SOLID FILMS LA English DT Article DE metal oxide; target preparation; transactinide; polymer-assisted deposition; atomic force microscopy ID TARGETS; ELECTRODEPOSITION AB The Polymer-assisted Deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. The reapplication of the PAD method (six times) with a 10% by weight hafhium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 min. (c) 2007 Elsevier B.V. All rights reserved. C1 [Garcia, Mitch Andre; Ali, Mazhar Nawaz; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Garcia, Mitch Andre; Ali, Mazhar Nawaz; Parsons-Moss, Tashi; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Ashby, Paul David] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Garcia, MA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mitch@berkeley.edu RI Garcia, Mitch/G-2413-2010; Ali, Mazhar/C-6473-2013 OI Ali, Mazhar/0000-0002-1129-6105 NR 9 TC 9 Z9 10 U1 1 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2008 VL 516 IS 18 BP 6261 EP 6265 DI 10.1016/j.tsf.2007.11.127 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 331UE UT WOS:000258037300053 ER PT J AU Liu, F Romero, MJ Jones, KM Norman, AG Al-Jassim, MM Inns, D Aberle, AG AF Liu, F. Romero, M. J. Jones, K. M. Norman, A. G. Al-Jassim, M. M. Inns, D. Aberle, A. G. TI Intragrain defects in polycrystalline silicon thin-film solar cells on glass by aluminum-induced crystallization and subsequent epitaxy SO THIN SOLID FILMS LA English DT Article DE thin film solar cells; polycrystalline silicon; renewable energy; intragrain defects ID ION-ASSISTED DEPOSITION; AMORPHOUS-SILICON; LAYER EXCHANGE; SI FILMS; TEMPERATURE; LUMINESCENCE AB The origin of intragrain defects in polycrystalline silicon films grown by ion-assisted deposition (IAD) on aluminum-induced crystallization seed layers on glass is investigated. The microstructure of these polycrystalline Si films is bimodal, with near defect-free regions of [001] orientation along the growth direction and highly defective regions containing smaller grains of [111] orientation. In the defective regions, the dominant structural defects are twins in the seed layer and stacking faults in the IAD-grown epitaxial layer, both lying on {111} planes. The stacking faults originate at the seed layer surface due to surface imperfections, indicating that the quality of the seed layer surface plays an important role for the quality of the epitaxial Si film. We find a clear correlation between the structural crystal quality and defect-related radiative transitions at sub-bandgap wavelengths. Two dominant defect levels (similar to 0.20 eV and similar to 0.29 eV below the conduction band edge) are observed and identified as impurity-related. Published by Elsevier B.V. C1 [Liu, F.; Romero, M. J.; Jones, K. M.; Norman, A. G.; Al-Jassim, M. M.] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Inns, D.; Aberle, A. G.] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. RP Liu, F (reprint author), Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA. EM fude_liu@nrel.gov RI Norman, Andrew/F-1859-2010; Liu, Fude/E-9873-2010 OI Norman, Andrew/0000-0001-6368-521X; NR 22 TC 15 Z9 15 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2008 VL 516 IS 18 BP 6409 EP 6412 DI 10.1016/j.tsf.2008.01.020 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 331UE UT WOS:000258037300077 ER PT J AU Roy, B Mahan, AH Wang, Q Reed, R Readey, DW Ginley, DS AF Roy, B. Mahan, A. H. Wang, Q. Reed, R. Readey, D. W. Ginley, D. S. TI Monitoring of crystallization and the effect of the deposition rate, hydrogen content and annealing process on the crystallization of hot wire chemical vapor deposited hydrogenated amorphous silicon (a-Si : H) films SO THIN SOLID FILMS LA English DT Article DE HWCVD; a-Si : H; hydrogen content of films; deposition rate; RTA; CTA ID SOLID-PHASE CRYSTALLIZATION; POLYCRYSTALLINE SILICON; TEMPERATURE; IMPLANTATION; KINETICS; GROWTH AB The crystallization behavior of the a-Si:H films grown by hot wire chemical vapor deposition has been studied using X-ray diffraction (XRD) and reflectance spectroscopy. The surface morphology of the films does not change during annealing. It has been observed that the different deposition rates, hydrogen contents, or annealing processes do not affect the nucleation mechanism or orientation of the films differently. The full width at half maxima of the XRD (111) peak of high deposition rate (similar to 100 angstrom/s) films is observed to decrease when the same completely crystallized films (at 650 degrees C) are treated at increased temperatures up to 900 degrees C. Furthermore, films with different hydrogen contents and grown at a lower deposition rate (similar to 5 angstrom/s) showed similar crystal growth activation energies upon rapid thermal annealing. (c) 2008 Elsevier B.V. All rights reserved. C1 [Roy, B.; Readey, D. W.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Mahan, A. H.; Wang, Q.; Reed, R.; Ginley, D. S.] NREL, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Roy, B (reprint author), POB 3698,801 Leroy Pl, Socorro, NM 87801 USA. EM pikuray@yahoo.com NR 25 TC 16 Z9 17 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2008 VL 516 IS 18 BP 6517 EP 6523 DI 10.1016/j.tsf.2008.03.003 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 331UE UT WOS:000258037300094 ER PT J AU Ohnuki, T Ozaki, T Kozai, N Nankawa, T Sakamoto, F Sakai, T Suzuki, Y Francis, AJ AF Ohnuki, T. Ozaki, T. Kozai, N. Nankawa, T. Sakamoto, F. Sakai, T. Suzuki, Y. Francis, A. J. TI Concurrent transformation of Ce(III) and formation of biogenic manganese oxides SO CHEMICAL GEOLOGY LA English DT Article DE cerium; biotransformation; Mn-oxidizing bacteria; oxidation; biogenic manganese-dioxide formation ID RARE-EARTH-ELEMENTS; OXIDATION; ADSORPTION; CERIUM; GROUNDWATERS; ENVIRONMENT; COMPLEXES; XANES; REDOX; JAPAN AB We examined the changes in the chemical states of Ce(III) during the formation of manganese oxide occasioned by Mn(II)-oxidizing bacteria, BY86 strain, isolated from the Yunotaki Mn mine, Hokkaido, Japan. The bacteria were incubated with (i) 0.1 mM Ce(III), (ii) I mM Mn(II), and, (iii) 0.1 mM Ce(III) and 1 mM Mn (II) for 288 h at 30 degrees C, and the oxidation states of Ce and Mn then were measured by X-ray Absorption Near Edge Structure (XANES). We also determined the elemental distributions in the bacteria and precipitates by Scanning-Proton Induced X-ray Emission (S-PIXE). In the absence of Mn(II), the concentration of Ce rapidly decreased to 0.03 mM, increased to 0.06 mM, and then remained there. In the presence of Mn(II), the concentration of Ce fell rapidly to approximately 0.015 mM, and then rose to 0.05 mM, and finally declined to 0.005; a black precipitate containing Mn was formed during this last phase. Mn-bearing precipitates also formed in the medium containing only Mn. XANES analysis of the precipitate revealed the presence of Mn(III) and (IV), and Ce (III) and (IV). Ce (III) was detected in solution, and with the bacteria. S-PIXE analyses of the precipitates showed that Ce was associated with Mn, and not with the bacteria. These results suggest that the precipitation of Ce is preceded by its accumulation by the bacterium, followed by its oxidization to Ce(IV) by the Mn(III, IV)-containing precipitates that the bacteria generate. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ohnuki, T.; Ozaki, T.; Kozai, N.; Nankawa, T.; Sakamoto, F.; Suzuki, Y.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Ibaraki 3191195, Japan. [Suzuki, Y.] Nagoya Univ, Grad Sch Engn, Dept Mat Phys & Energy Engn, Nagoya, Aichi 4648601, Japan. [Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Ohnuki, T (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, 2-4 Shirokata, Ibaraki 3191195, Japan. EM ohnuki.toshihiko@jdea.go.jp NR 28 TC 19 Z9 22 U1 4 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD JUL 30 PY 2008 VL 253 IS 1-2 BP 23 EP 29 DI 10.1016/j.chemgeo.2008.03.013 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 334JM UT WOS:000258218100002 ER PT J AU Tokushima, T Harada, Y Takahashi, O Senba, Y Ohashi, H Pettersson, LGM Nilsson, A Shin, S AF Tokushima, T. Harada, Y. Takahashi, O. Senba, Y. Ohashi, H. Pettersson, L. G. M. Nilsson, A. Shin, S. TI High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs SO CHEMICAL PHYSICS LETTERS LA English DT Review ID DENSITY-FUNCTIONAL THEORY; HYDROGEN-BOND NETWORK; RADIAL-DISTRIBUTION FUNCTIONS; PAIR CORRELATION-FUNCTIONS; ABSORPTION SPECTRA; MOLECULAR-DYNAMICS; CORE-HOLE; TEMPERATURE-DEPENDENCE; SCATTERING EXPERIMENTS; CHEMISORBED MOLECULES AB The structure of liquid water is presently under intense debate. We summarize the historical development of the present description of water and the controversy surrounding the X-ray absorption spectroscopy (XAS) study of Wernet et al. [Ph. Wernet et al., Science 304 ( 2004) 995]. In order to provide further insight into the connection between X-ray spectroscopy and the structure of the hydrogen bonding network, we report new data comprising high resolution oxygen K-edge X-ray emission spectra (XES) of liquid water. We observe two distinct narrow lone-pair derived peaks, assigned, respectively, to tetrahedral and strongly distorted hydrogen-bonded species; the assignment is based on comparison with ice and gas phase spectra, temperature dependent measurements, excitation energy dependence and theoretical simulations. We estimate a 2: 1 ratio between distorted and tetrahedral species at room temperature and discuss what this implies in connection to the previous XAS study and in terms of liquid water structure. (c) 2008 Published by Elsevier B. V. C1 [Nilsson, A.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Tokushima, T.; Harada, Y.; Shin, S.] RIKEN Spring 8, Sayo, Hyogo 6795148, Japan. [Takahashi, O.] Hiroshima Univ, Dept Chem, Higashihiroshima 7398526, Japan. [Senba, Y.; Ohashi, H.] JASRI Spring 8, Sayo, Hyogo 6795198, Japan. [Pettersson, L. G. M.; Nilsson, A.] Univ Stockholm, AlbaNova, FYSIKUM, S-10691 Stockholm, Sweden. [Shin, S.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. RP Nilsson, A (reprint author), Stanford Synchrotron Radiat Lab, POB 20450, Stanford, CA 94309 USA. EM nilsson@slac.stanford.edu; sshin@spring8.or.jp RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Pettersson, Lars/J-4925-2013; Tokushima, Takashi/B-9127-2009 OI Nilsson, Anders/0000-0003-1968-8696; Pettersson, Lars/0000-0003-1133-9934; Tokushima, Takashi/0000-0003-2586-0712 NR 113 TC 196 Z9 203 U1 11 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 30 PY 2008 VL 460 IS 4-6 BP 387 EP 400 DI 10.1016/j.cplett.2008.04.077 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 327YY UT WOS:000257765600001 ER PT J AU Jeong, HK Colakerol, L Jin, MH Glans, PA Smith, KE Lee, YH AF Jeong, Hae-Kyung Colakerol, Leyla Jin, Mei Hua Glans, Per-Anders Smith, Kevin E. Lee, Young Hee TI Unoccupied electronic states in graphite oxides SO CHEMICAL PHYSICS LETTERS LA English DT Article ID CARBON-FIBER SURFACES; FUNCTIONAL-GROUPS; SPECTROSCOPY; NANOPLATELETS; CHEMISTRY AB Unoccupied electronic states of graphite oxides with different oxidation times have been investigated using X-ray absorption spectroscopy (XAS) in total electron yield (TEY) and total fluorescence yield (TFY) modes. The graphite oxides exhibit graphite-like sp(2) states with additional electronic states originating from functional groups. The intensity of the pi* state decreases as the atomic ratio O:C increases. The intensity ratio of carboxyl to pi* states in XAS TEY mode corresponds to the area ratio of carboxyl to sp(2) carbon in X-ray photoelectron spectroscopy. In addition, the two modes in XAS can identify electronic states of functional groups originating from surface or bulk regions. (c) 2008 Elsevier B. V. All rights reserved. C1 [Jeong, Hae-Kyung; Jin, Mei Hua; Lee, Young Hee] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol, Ctr Nanotubes & Nanostructured Composites, BK Phys Div 21, Suwon 440746, South Korea. [Colakerol, Leyla; Smith, Kevin E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Glans, Per-Anders] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lee, YH (reprint author), Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol, Ctr Nanotubes & Nanostructured Composites, BK Phys Div 21, Suwon 440746, South Korea. EM leeyoung@skku.edu RI Lee, Young Hee/A-5424-2013; Glans, Per-Anders/G-8674-2016 NR 25 TC 64 Z9 65 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 30 PY 2008 VL 460 IS 4-6 BP 499 EP 502 DI 10.1016/j.cplett.2008.06.042 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 327YY UT WOS:000257765600022 ER PT J AU Jacobsen, B Yin, QZ Moynier, F Amelin, Y Krot, AN Nagashima, K Hutcheon, ID Palme, H AF Jacobsen, Benjamin Yin, Qing-zhu Moynier, Frederic Amelin, Yuri Krot, Alexander N. Nagashima, Kazuhide Hutcheon, Ian D. Palme, Herbert TI Al-26-Mg-26 and Pb-207-Pb-206 systematics of Allende CAIs: Canonical solar initial Al-26/Al-27 ratio reinstated SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE early Solar System chronology; short-lived radioactivity; Allende meteorite; Ca-Al rich inclusions; U-Pb age; Al-26/Al-27 ratio ID REFRACTORY INCLUSIONS; ISOTOPE FRACTIONATION; PLANET FORMATION; AL-26; METEORITES; CHONDRULES; URANIUM; ORIGIN; LEAD; MG AB The precise knowledge of the initial Al-26/Al-27 ratio [(Al-26/Al-27)(o)] is crucial if we are to use the very first solid objects formed in our Solar System, calcium-aluminum-rich inclusions (CAIs) as the "time zero" age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of Al-27/Mg-24 ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined Al-26-Mg-26 fossil isochron With an (Al-26/Al-27)(o) of (5.23 +/- 0.13)x10(-5). Internal mineral isochrons obtained for three of these CAIs (A44A. AJEF. and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with (Al-26/Al-27)(0)=(4.96 +/- 0.25) x 10(-5), anchored to our precisely determined absolute Pb-207-Pb-206 age of 4567.60 +/- 0.36 Ma for the same mineral separates, reinstate the "canonical, (Al-26/Al-27), of 5x10(-5) for the early Solar System. The uncertainty in (Al-26/Al-27)(o) corresponds to a maximum time span of 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the Al-26-Mg-26 and U-Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not Support the supra-canonical Al-26/Al-27 ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supracanonical Al-26/Al-27 ratio in the CV CAIs may have resulted from post-crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS. The radiogenic Pb-208*/Pb-206* ratio obtained as a by-product from the Pb-Pb age dating is used to estimate time-integrated Th-232/U-238 ratio (K value) of CAIs. Limited K variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the kappa value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jacobsen, Benjamin; Yin, Qing-zhu; Moynier, Frederic] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Amelin, Yuri] Geol Survey Canada, Ottawa, ON K1A 0E8, Canada. [Krot, Alexander N.; Nagashima, Kazuhide] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. [Palme, Herbert] Univ Cologne, Inst Geol & Mineral, D-50674 Cologne, Germany. RP Yin, QZ (reprint author), Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. EM yin@geology.ucdavis.edu RI Yin, Qing-Zhu/B-8198-2009; Moynier, Frederic/I-2785-2012 OI Yin, Qing-Zhu/0000-0002-4445-5096; FU LLNI [UEPP B556868]; NASA Cosmochemistry [NNG05GN22G]; Origins of Solar Systems [NNG05GN03G]; NASA [NNH04AB471]; NASA Origins of Solar Systems [NNX07A181 G] FX We would like to thank Jerry Wasserburg for "lively debates" and valuable advice on the subject over the past year. We thank Julie Perressini for her help with mineral separation by magnetic susceptibility at the GSC. Constructive reviews by Joel Baker and Noriko Kita, and efficient editorial handling by Rick Carlson are most appreciated. We acknowledge the Supports by UEPP B556868 grant from LLNI, NASA Cosmochemistry (NNG05GN22G) and Origins of Solar Systems (NNG05GN03G) grants to Q.Z.Y., and NASA grant NNH04AB471 to I.D. H., and NASA Origins of Solar Systems (NNX07A181 G) to A.N.K This work was performed in part under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract W-7405-Eng-48. This is UCD-ICP-MS Contribution #0021. NR 57 TC 200 Z9 202 U1 2 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 30 PY 2008 VL 272 IS 1-2 BP 353 EP 364 DI 10.1016/j.epsl.2008.05.003 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 347DD UT WOS:000259119900034 ER PT J AU Cody, GD Alexander, CMO Yabuta, H Kilcoyne, ALD Araki, T Ade, H Dera, R Fogel, M Militzer, B Mysen, BO AF Cody, G. D. Alexander, C. M. O'D. Yabuta, H. Kilcoyne, A. L. D. Araki, T. Ade, H. Dera, R. Fogel, M. Militzer, B. Mysen, B. O. TI Organic thermometry for chondritic parent bodies SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE chondrite; parent bodies; insoluble organic matter; thermal metamorphism; C-XANES; NMR; Raman ID X-RAY-ABSORPTION; CARBONACEOUS CHONDRITES; PRIMITIVE METEORITES; ALLENDE METEORITE; THERMAL HISTORY; CM CHONDRITES; CO CHONDRITES; MATTER; GRAPHITE; METAMORPHISM AB A unique spectroscopic feature has been identified in a Study of twenty-five different samples of meteoritic insoluble organic matter (IOM) spanning multiple chemical classes, groups, and petrologic types, using carbon X-ray Absorption Near Edge Structure (XANES) spectroscopy. The intensity of this feature, a 1s-sigma* exciton, appears to provide a precise measure of parent body metamorphism. The intensity of this exciton is also shown to correlate well with a large negative paramagnetic shift observed through solid state C-13 NMR. Experiments reveal that upon heating primitive IOM is transformed into material that is indistinguishable from that in thermally processed chondrites, including the development of the 1s-sigma* exciton. A thermo-kinetic expression is derived front the experimental data that allows the intensity of the 1s-sigma* exciton to be used to estimated the effective temperature integrated over time. A good correlation is observed between the intensity of the 1s-sigma* exciton and previously published microRaman spectral data. These data provide a self-consistent organic derived temperature scale for the purpose of calibrating Raman based thermometric expressions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cody, G. D.; Yabuta, H.; Dera, R.; Fogel, M.; Militzer, B.; Mysen, B. O.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Alexander, C. M. O'D.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Araki, T.; Ade, H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Cody, GD (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM g.cody@gl.ciw.edu RI Dera, Przemyslaw/F-6483-2013; Ade, Harald/E-7471-2011; Alexander, Conel/N-7533-2013; Yabuta, Hikaru/M-9041-2014; Kilcoyne, David/I-1465-2013 OI Alexander, Conel/0000-0002-8558-1427; Yabuta, Hikaru/0000-0002-4625-5362; FU NASA Astrobiology Institute; Origins of the Solar System Program; W. M. Keck Foundation; National Science Foundation; Carnegie Institution of Washington FX The authors gratefully acknowledge financial support through the NASA Astrobiology Institute and Origins of the Solar System Program. All NMR experiments were performed at the W. M. Keck Solid State NMR facility at the Geophysical Laboratory that received financial support through the W. M. Keck Foundation, the National Science Foundation, and the Carnegie Institution of Washington. The Advanced Light Source is a DOE supported facility. We are grateful for thoughtful reviews provided by Adrian Brearley and Michael Zolensky that helped improve the quality of this manuscript. NR 63 TC 100 Z9 100 U1 4 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 30 PY 2008 VL 272 IS 1-2 BP 446 EP 455 DI 10.1016/j.epsl.2008.05.008 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 347DD UT WOS:000259119900044 ER PT J AU Freifeld, BM Finsterle, S Onstott, TC Toole, P Pratt, LM AF Freifeld, B. M. Finsterle, S. Onstott, T. C. Toole, P. Pratt, L. M. TI Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BOREHOLE TEMPERATURES; PERMAFROST; INVERSION; CLIMATE; CANADA AB We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22'N, 110 degrees 50'W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 +/- 0.8 degrees C over the long-term average. C1 [Freifeld, B. M.; Finsterle, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Onstott, T. C.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Pratt, L. M.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Toole, P.] Zinifex Canada Inc, Thunder Bay, ON P7B 6M7, Canada. RP Freifeld, BM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Finsterle, Stefan/A-8360-2009; Freifeld, Barry/F-3173-2010 OI Finsterle, Stefan/0000-0002-4446-9906; NR 22 TC 38 Z9 38 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 30 PY 2008 VL 35 IS 14 AR L14309 DI 10.1029/2008GL034762 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 333JR UT WOS:000258149300005 ER PT J AU Brewer, M AF Brewer, M. TI Obtaining smooth mesh transitions using vertex optimization SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE smoothing; remesh; ALE; mesh; quadrilateral; hexahedral ID JACOBIAN MATRIX; QUALITY; QUANTITIES; FRAMEWORK; NORM AB Mesh optimization has proven to be an effective way to improve mesh quality for arbitrary Lagrangian Eulerian (ALE) simulations. To date, however, most of the focus has been on improving the geometric shape of individual elements, and these methods often do not result in smooth transitions in element size or aspect ratio across groups of elements. We present an extension to the mean ratio optimization that addresses this problem and yields smooth transitions within regions and across regions in the ALE simulation. While this method is presented in the context of ALE simulations, it is applicable to a wider set of applications that require mesh improvement, including the mesh generation process. Published in 2007 by John Wiley & Sons, Ltd. C1 Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Brewer, M (reprint author), Sandia Natl Labs, M-S 0376, Albuquerque, NM 87123 USA. EM mbrewer@sandia.gov NR 29 TC 3 Z9 3 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JUL 30 PY 2008 VL 75 IS 5 BP 555 EP 576 DI 10.1002/nme.2261 PG 22 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 329XE UT WOS:000257903100003 ER PT J AU Roberts, W Pervin, M AF Roberts, W. Pervin, Muslema TI Heavy baryons in a quark model SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE heavy baryon; quark model ID DOUBLY CHARMED BARYONS; SPECTRAL SUM-RULES; POTENTIAL MODELS; HYPERFINE INTERACTIONS; SEMILEPTONIC DECAYS; STATIC PROPERTIES; BOTTOM BARYONS; SPECTROSCOPY; MASSES; HADRONS AB A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon Xi(cc), the model prediction is too heavy. Mixing between the Xi(Q) and Xi(Q)' states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the Xi(bc) and Xi(bc)' states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets. We compare our predictions with those of a number of other authors. C1 [Roberts, W.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Pervin, Muslema] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Roberts, W (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. EM wroberts@fsu.edu; muslema@phy.anl.gov NR 112 TC 119 Z9 120 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD JUL 30 PY 2008 VL 23 IS 19 BP 2817 EP 2860 DI 10.1142/S0217751X08041219 PG 44 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 342IX UT WOS:000258778900001 ER PT J AU Denton, MH Borovsky, JE AF Denton, M. H. Borovsky, J. E. TI Superposed epoch analysis of high-speed-stream effects at geosynchronous orbit: Hot plasma, cold plasma, and the solar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GEOMAGNETIC STORMS; SHEET MATERIAL; REGION; ANALYZER; DENSITY; ORIGIN; ACCESS; TAIL AB Superposed epoch analyses of magnetospheric plasma analyzer ( MPA) data from Los Alamos National Laboratory (LANL) satellites are performed to reveal the density, temperature and flow velocity behavior of the hot ion plasma (0.1 - 45 keV), the hot electron plasma (0.03 - 45 keV) and the cold ion plasma (1 - 100 eV) at geosynchronous orbit following the arrival of high speed solar wind streams at the dayside magnetopause. The analyses reveal three striking features. (1) The arrival of a high density solar wind plasma at the leading edge of a high speed solar wind stream induces a sharp enhancement in magnetospheric convection which leads to the delivery of a hot, dense `` plug'' of fresh plasma sheet ions and electrons to the inner magnetosphere. On average, this superdense plasma is observed at geosynchronous orbit for similar to 20 h following convection onset. There follows an extended period when exceptionally hot plasma sheet ions and electrons of more usual density are continually convected to the inner magnetosphere - a environment that persists at geosynchronous orbit while the high speed stream prevails. (2) Flow velocities and convection speeds of eroded cold plasma moving toward the dayside magnetopause are calculated from MPA statistical analyses. Average convection speeds of 8 - 12 km s(-1) are typical in plume material moving sunwards following the arrival of high speed solar wind streams at the magnetopause. (3) The density of plume material convecting to the dayside magnetopause during high speed streams which follow very calm periods (Kp similar to 0) is around double that during high speed streams following periods when higher levels of convection persist (Kp similar to 2). C1 [Denton, M. H.] Univ Lancaster, Dept Commun Syst, InfoLab21, Lancaster LA1 4WA, England. [Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Denton, MH (reprint author), Univ Lancaster, Dept Commun Syst, InfoLab21, Lancaster LA1 4WA, England. EM m.denton@lancaster.ac.uk OI Denton, Michael/0000-0002-1748-3710 NR 54 TC 48 Z9 49 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 30 PY 2008 VL 113 IS A7 AR A07216 DI 10.1029/2007JA012998 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 333MK UT WOS:000258156400004 ER PT J AU Sherrington, D AF Sherrington, David TI A simple spin glass perspective on martensitic shape-memory alloys SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TWEED; TRANSFORMATIONS; SYSTEMS; MODEL; IONS AB A brief qualitative mapping is given between austenite, tweed and twinned phases of martensite alloys and corresponding paramagnetic, spin glass and periodic phases in spin glass alloys. C1 [Sherrington, David] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Sherrington, David] Santa Fe Inst, Santa Fe, NM 87501 USA. [Sherrington, David] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Sherrington, D (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. EM D.Sherrington1@physics.ox.ac.uk NR 33 TC 17 Z9 17 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 30 PY 2008 VL 20 IS 30 AR 304213 DI 10.1088/0953-8984/20/30/304213 PG 5 WC Physics, Condensed Matter SC Physics GA 324EL UT WOS:000257500400014 ER PT J AU Somorjai, GA Rous, PJ AF Somorjai, G. A. Rous, P. J. TI John Pendry: his contributions to the development of low energy electron diffraction surface crystallography SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MULTIPLE-SCATTERING THEORY; LEED CRYSTALLOGRAPHY; CARBON-MONOXIDE; SINGLE-CRYSTAL; DIFFUSE LEED; TENSOR LEED; PT(111); ADSORPTION; ETHYLIDYNE; BENZENE AB In this paper we discuss the pivotal role played by Sir John Pendry in the development of low energy electron diffraction (LEED) during the past three decades: the earliest understanding of the physics of LEED to the development of sophisticated methods for the structural solution of complex surfaces. C1 [Somorjai, G. A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, G. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Rous, P. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 46 TC 1 Z9 1 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 30 PY 2008 VL 20 IS 30 AR 304210 DI 10.1088/0953-8984/20/30/304210 PG 6 WC Physics, Condensed Matter SC Physics GA 324EL UT WOS:000257500400011 ER PT J AU Soukoulis, CM Zhou, JF Koschny, T Kafesaki, M Economou, EN AF Soukoulis, Costas M. Zhou, Jiangfeng Koschny, Thomas Kafesaki, Maria Economou, Eleftherios N. TI The science of negative index materials SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SPLIT-RING RESONATORS; LEFT-HANDED MATERIALS; MAGNETIC RESPONSE; COMPOSITE METAMATERIALS; OPTICAL METAMATERIALS; REFRACTIVE-INDEX; FREQUENCIES; TRANSMISSION; WAVELENGTHS; TERAHERTZ AB Metamaterials are designed to have structures that make available properties not found in Nature. Their unique properties (such as negative index of refraction, n) can be extended from GHz all the way to optical frequencies. We review the scaling properties of metamaterials that have been fabricated and give negative n and negative permeability, mu. It is found that most of the experimentally realized metamaterials have lambda/a between 2 (THz and optical region) and 12 (GHz region), where. is the operation wavelength and a is the size of the unit cell. The transmission losses for the experimental structures and the ratio lambda/a for the simulated structures are presented. Finally, a comparison of the different metamaterial designs (fishnet, cut and/or continuous wires, and split-ring resonators and wires) is given. C1 [Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.; Kafesaki, Maria] Univ Crete, Dept Mat Sci & Technol, Iraklion, Crete, Greece. [Soukoulis, Costas M.; Kafesaki, Maria; Economou, Eleftherios N.] Univ Crete, Inst Elect Struct & Laser, FORTH, Iraklion, Crete, Greece. [Economou, Eleftherios N.] Univ Crete, Dept Phys, Iraklion, Crete, Greece. RP Soukoulis, CM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Zhou, Jiangfeng/D-4292-2009; Economou, Eleftherios /E-6374-2010; Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008 OI Zhou, Jiangfeng/0000-0002-6958-3342; Kafesaki, Maria/0000-0002-9524-2576; NR 50 TC 35 Z9 36 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 30 PY 2008 VL 20 IS 30 AR 304217 DI 10.1088/0953-8984/20/30/304217 PG 7 WC Physics, Condensed Matter SC Physics GA 324EL UT WOS:000257500400018 ER PT J AU Luo, JH Xu, HW Liu, Y Zhao, YS Daemen, LL Brown, C Timofeeva, TV Ma, SQ Zhou, HC AF Luo, Junhua Xu, Hongwu Liu, Yun Zhao, Yusheng Daemen, Luke L. Brown, Craig Timofeeva, Tatiana V. Ma, Shengqian Zhou, Hong-Cai TI Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: Sorption properties and neutron diffraction studies SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBIDE-DERIVED CARBONS; PORE-SIZE; STORAGE AB A highly stable porous lanthanide metal-organic framework, Y(BTC)(H(2)O)4 center dot 3H(2)O (BTC =1,3,5-benzenetricarboxylate), with pore size of 5.8 angstrom has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt% at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D(2) sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 angstrom, twice the kinetic diameter of hydrogen) strengthens the interactions between H(2) molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H(2) loadings (5.5 H(2) molecules (3.7 wt%) per Y(BTC) formula), H(2) molecules form highly symmetric novel nanoclusters with relatively short H(2)-H(2) distances compared to solid H(2). These observations are important and hold the key to optimizing this new class of rare metal-organic framework (RMOF) materials for practical hydrogen storage applications. C1 [Luo, Junhua; Xu, Hongwu; Zhao, Yusheng; Daemen, Luke L.] Los Alamos Natl Lab, LANSCE 12, Los Alamos, NM 87545 USA. [Xu, Hongwu] Los Alamos Natl Lab, EES 6, Los Alamos, NM 87545 USA. [Liu, Yun; Brown, Craig] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Timofeeva, Tatiana V.] New Mexico Highlands Univ, Dept Nat Sci, Las Vegas, NM 87701 USA. [Ma, Shengqian; Zhou, Hong-Cai] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. RP Luo, JH (reprint author), Los Alamos Natl Lab, LANSCE 12, POB 1663, Los Alamos, NM 87545 USA. EM jhluo@lanl.gov; yzhao@lanl.gov RI Liu, Yun/A-2478-2010; Liu, Yun/F-6516-2012; Lujan Center, LANL/G-4896-2012; Zhou, Hong-Cai/A-3009-2011; Ma, Shengqian/B-4022-2012; Luo, Junhua/G-8928-2011; Brown, Craig/B-5430-2009 OI Xu, Hongwu/0000-0002-0793-6923; Liu, Yun/0000-0002-0944-3153; Liu, Yun/0000-0002-0944-3153; Zhou, Hong-Cai/0000-0002-9029-3788; Ma, Shengqian/0000-0002-1897-7069; Luo, Junhua/0000-0002-3179-7652; Brown, Craig/0000-0002-9637-9355 NR 21 TC 216 Z9 219 U1 17 U2 160 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 30 PY 2008 VL 130 IS 30 BP 9626 EP + DI 10.1021/ja801411f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 329WY UT WOS:000257902500003 PM 18611006 ER PT J AU Lee, JS Shevchenko, EV Talapin, DV AF Lee, Jong-Soo Shevchenko, Elena V. Talapin, Dmitri V. TI Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID QUANTUM DOTS; SIZE; PHOTODETECTORS; SUPERLATTICES; CONDUCTIVITY; BINARY; FILMS AB We present a comparative study of optical and electronic properties for PbS nanocrystals and Au-PbS core-shell nanostructures. In Au -PbS nanostructures, we observed two nontrivial synergistic effects: (i) extinction enhancement due to coupling of surface plasmon resonance in the Au core to the excitonic states in the Table of Contents Wournal Home PagelSearch the Journals semiconducting PbS shell, and (ii) strong p-type electronic doping of Au-PbS nanocrystal solids that we explained by the intraparticle charge transfer between the PbS shell and the Au core. C1 [Lee, Jong-Soo; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Lee, Jong-Soo; Shevchenko, Elena V.; Talapin, Dmitri V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Lee, Jong-Soo /F-7461-2010 OI Lee, Jong-Soo /0000-0002-3045-2206 NR 25 TC 219 Z9 222 U1 18 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 30 PY 2008 VL 130 IS 30 BP 9673 EP + DI 10.1021/ja802890f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 329WY UT WOS:000257902500026 PM 18597463 ER PT J AU Mehta, AK Lu, K Childers, WS Liang, Y Dublin, SN Dong, JJ Snyder, JP Pingali, SV Thiyagarajan, P Lynn, DG AF Mehta, Anil K. Lu, Kun Childers, W. Seth Liang, Yan Dublin, Steven N. Dong, Jijun Snyder, James P. Pingali, Sai Venkatesh Thiyagarajan, Pappannan Lynn, David G. TI Facial symmetry in protein self-assembly SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ECHO DOUBLE-RESONANCE; AMYLOID FIBRIL FORMATION; BETA-SHEET STRUCTURE; SOLID-STATE NMR; INTENSITY DISTRIBUTION; AB-INITIO; PRION; PEPTIDE; FRAGMENT; CONFORMATION AB Amyloids are self-assembled protein architectures implicated in dozens of misfolding diseases. These assemblies appear to emerge through a "selection" of specific conformational "strains" which nucleate and propagate within cells to cause disease. The short A beta(16-22) peptide, which includes the central core of the Alzheimer's disease A beta peptide, generates an amyloid fiber which is morphologically indistinguishable from the full-length peptide fiber, but it can also form other morphologies under distinct conditions. Here we combine spectroscopic and microscopy analyses that reveal the subtle atomic-level differences that dictate assembly of two conformationally pure A beta(16-22) assemblies, amyloid fibers and nanotubes, and define the minimal repeating unit for each assembly. C1 [Mehta, Anil K.; Lu, Kun; Childers, W. Seth; Liang, Yan; Dublin, Steven N.; Dong, Jijun; Snyder, James P.; Lynn, David G.] Emory Univ, Ctr Anal Supramol Self Assemblies, Dept Chem, Atlanta, GA 30322 USA. [Mehta, Anil K.; Lu, Kun; Childers, W. Seth; Liang, Yan; Dublin, Steven N.; Dong, Jijun; Snyder, James P.; Lynn, David G.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Pingali, Sai Venkatesh; Thiyagarajan, Pappannan] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Lu, K (reprint author), Emory Univ, Ctr Anal Supramol Self Assemblies, Dept Chem, Atlanta, GA 30322 USA. EM david.lynn@emory.edu OI Mehta, Anil/0000-0002-9867-151X; Pingali, Sai Venkatesh/0000-0001-7961-4176 NR 59 TC 101 Z9 102 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 30 PY 2008 VL 130 IS 30 BP 9829 EP 9835 DI 10.1021/ja801511n PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 329WY UT WOS:000257902500044 PM 18593163 ER PT J AU Olsen, BD Segalman, RA AF Olsen, Bradley D. Segalman, Rachel A. TI Self-assembly of rod-coil block copolymers SO MATERIALS SCIENCE & ENGINEERING R-REPORTS LA English DT Review DE block copolymers; rod-coil; semiflexible; seif-assembly; thin film; helix; organic electronics; phase behavior ID POLYPEPTIDE DIBLOCK COPOLYMERS; ACID-N-CARBOXYANHYDRIDES; TRANSFER RADICAL POLYMERIZATION; LIQUID-CRYSTALLINE ASSEMBLIES; STIMULI-RESPONSIVE VESICLES; AIR-WATER-INTERFACE; TRIBLOCK COPOLYMERS; THIN-FILMS; SUPRAMOLECULAR MATERIALS; POLY(ETHYLENE OXIDE) AB Rod-coil block copolymers are an increasingly important class of molecules for the self-assembly of functional polymer systems, many of which have rodlike chain conformations due to rigid secondary structures, extended pi-conjugation, or aromatic groups along the polymer backbone. Examples of these polymers are helical proteins, polyisocyanates, main-chain semiconducting polymers, and aromatic polyesters, polyamides, or polyimines. Many hindered or liquid crystalline systems self-assembled from block copolymers, including dendronized polymers and mesogen-jacketed liquid crystalline polymers, also form rod-coil block copolymers. In these cases, steric crowding of the bulky or mesogenic side chains causes the polymer backbone to become quasi-linear. The incorporation of rigid rod polymers into the block copolymers results in extremely rich self-assembly behavior that differs markedly from that of traditional block copolymers due to the interplay between microphase separation of the rod and coil components and liquid crystalline alignment. The combination of these effects results in novel structures both in solution and melts. This review discusses in detail the self-assembly and thermodynamics of rod-coil diblock and triblock copolymers. After summarizing the applications of these materials, their aggregation and gelation in solution is discussed. Our knowledge of their bulk phase behavior is thoroughly reviewed both from the experimental and theoretical perspectives, and the self-assembly of these materials in thin film geometries that are critical to many applications in organic electronics and functional surface patterning is treated. Finally, the outlook for the future of these systems is summarized along with current knowledge gaps and exciting areas for the advancement of the field. (c) 2008 Elsevier B.V. All rights reserved. C1 [Olsen, Bradley D.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Olsen, Bradley D.; Segalman, Rachel A.] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Olsen, Bradley/0000-0002-7272-7140 FU NSF-CAREER Award; Fannie and John Hertz Foundation FX We gratefully acknowledge financial support through an NSF-CAREER Award. BDO would like to acknowledge fellowship support for graduate study from the Fannie and John Hertz Foundation. NR 267 TC 222 Z9 227 U1 27 U2 308 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0927-796X J9 MAT SCI ENG R JI Mater. Sci. Eng. R-Rep. PD JUL 30 PY 2008 VL 62 IS 2 BP 37 EP 66 DI 10.1016/j.mser.2008.04.001 PG 30 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 339BM UT WOS:000258553100001 ER PT J AU Butko, VY Wang, HY Reagor, D AF Butko, Vladimir Y. Wang, Haiyan Reagor, David TI A magnetic field sensitive interfacial metallic state in a crystalline insulator SO NANOTECHNOLOGY LA English DT Article ID SEMICONDUCTING STRONTIUM-TITANATE; SRTIO3; OXIDE; MOBILITY; MAGNETORESISTANCE; POLARIZATION; DEFECTS; SURFACE AB We report strongly magnetic field dependent transport in crystalline strontium titanate at the interface with an ion beam treated nanolayer. Microscopy shows that this interface is atomically sharp. The results obtained suggest a chemical potential driven transfer of high mobility electrons through the interface into the crystal. This phenomenon provides a strategy for device fabrication without disorder in the conduction channel. We show, for nonmagnetic metals, magnetoresistance and plateau-like Hall magneto-dependence, possibly caused by electron cyclotron effects in a strongly correlated quasi-two-dimensional Fermi gas. C1 [Butko, Vladimir Y.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Reagor, David] Los Alamos Natl Lab, Superconductiv Technol Ctr, Los Alamos, NM 87545 USA. RP Butko, VY (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 30 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 30 PY 2008 VL 19 IS 30 AR 305401 DI 10.1088/0957-4484/19/30/305401 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 314VX UT WOS:000256838400008 PM 21828760 ER PT J AU Ham, TS Lee, SK Keasling, JD Arkin, AP AF Ham, Timothy S. Lee, Sung K. Keasling, Jay D. Arkin, Adam P. TI Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory SO PLOS ONE LA English DT Article AB Background: Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. Methodology/Principal Findings: In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and "remembers'' its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. Conclusions/Significance: We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable. C1 [Ham, Timothy S.; Keasling, Jay D.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Lee, Sung K.; Keasling, Jay D.; Arkin, Adam P.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Keasling, Jay D.] Univ Calif, Dept Chem Engn, Berkeley, CA USA. RP Ham, TS (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM aparkin@lbl.gov RI Lee, Sung/E-6525-2010; Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008 OI Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931 FU National Science Foundation; NIH [5R01-GM63525-03]; Howard Hughes Medical Institute FX This research was supported in part by the National Science Foundation supported Synthetic Biology Engineering Research Center. APA would like to acknowledge NIH grant # 5R01-GM63525-03 for allowing the initiation of this project and the Howard Hughes Medical Institute for partial support during its progress. We authors declare that no competing interests exist. NR 35 TC 69 Z9 69 U1 3 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 30 PY 2008 VL 3 IS 7 AR e2815 DI 10.1371/journal.pone.0002815 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 420QM UT WOS:000264304300034 PM 18665232 ER PT J AU Kirn, KH Norton, DP Christen, DK Budai, JD AF Kirn, K. H. Norton, D. P. Christen, D. K. Budai, J. D. TI Formation of oxidation-resistant Cu-Mg coatings on (001) Cu for oxide superconducting tapes SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE oxidation resistance; oxide superconductor; copper; copper alloy; sputtering; multilayer ID COATED CONDUCTOR APPLICATIONS; BIAXIALLY TEXTURED NI; CURRENT-DENSITY; COPPER-FILMS; YBA2CU3O7-DELTA FILMS; EPITAXIAL DEPOSITION; ION-IMPLANTATION; BUFFER LAYERS; YBCO FILMS; GROWTH AB The formation of oxidation-resistant buffer layers on (001) oriented Cu for coated high-temperature superconducting tape applications was investigated. The approach employed Cu/Mg multilayer precursor films that were subsequently annealed to form either Mg-doped fcc Cu or intermetallic Cu-2 Mg. The precursor consisted of an Mg/Cu multilayer stack with 5 each of 25 nm thick Mg and 25 nm thick Cu layers which were grown at room temperature by sputter deposition. At annealing temperature of 400 degrees C, formation of the intermetallic Cu-2 Mg was observed. X-ray diffraction showed that the Cu-2 Mg (100) oriented grains were epitaxial with respect to the underlying Cu film, possessing a cube-on-cube orientation. In order to test oxidation resistance, CeO2 films were deposited at elevated temperature on Ni/(Cu,Mg)/Cu/MgO structures. In case of the CeO2 film on Ni/Cu/MgO, significant surface roughness due to the metal oxidation is observed. In contrast, no surface roughness is observed in the SEM images for the CeO2/Ni/(Cu,Mg)/Cu/MgO structure. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kirn, K. H.; Norton, D. P.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kirn, K. H.; Christen, D. K.; Budai, J. D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Norton, DP (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM dnort@mse.ufl.edu RI Budai, John/R-9276-2016 OI Budai, John/0000-0002-7444-1306 FU National Science Foundation [CHE-0304810]; Air Force Office of Scientific Research; U.S. Department of Energy FX This work was partially supported by the National Science Foundation under grant CHE-0304810, and the Air Force Office of Scientific Research. The ORNL research was sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under contract with UT-Battelle, LLC. The authors thank the staff and facilities of the Major Analytical Instrumentation Center, Department of Materials Science and Engineering, University of Florida. NR 36 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUL 30 PY 2008 VL 202 IS 21 BP 5136 EP 5139 DI 10.1016/j.surfcoat.2008.05.026 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 339PB UT WOS:000258588400010 ER PT J AU Kindermann, G Obersteiner, M Sohngen, B Sathaye, J Andrasko, K Rametsteiner, E Schlamadinger, B Wunder, S Beach, R AF Kindermann, Georg Obersteiner, Michael Sohngen, Brent Sathaye, Jayant Andrasko, Kenneth Rametsteiner, Ewald Schlamadinger, Bernhard Wunder, Sven Beach, Robert TI Global cost estimates of reducing carbon emissions through avoided deforestation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbon sequestration; climate change; reducing emissions from deforestation and ecosystem degradation (REDD); marginal cost; tropical forest ID TROPICAL DEFORESTATION; ENVIRONMENTAL SERVICES; SEQUESTRATION; CONSERVATION; CLIMATE; PAYMENTS; LEAKAGE; AMAZON AB Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions. AD activities are found to be a competitive, low-cost abatement option. A program providing a 10% reduction in deforestation from 2005 to 2030 could provide 0.3-0.6 Gt (1 Gt = 1 x 10(5) g) CO(2)(.)yr(-1) in emission reductions and would require $0.4 billion to $1.7 billion(.)yr(-1) for 30 years. A 50% reduction in deforestation from 2005 to 2030 could provide 1.5-2.7 Gt CO(2)(.)yr(-1) in emission reductions and would require $17.2 billion to $28.0 billion(.)yr(-1). Finally, some caveats to the analysis that could increase costs of AD programs are described. C1 [Sohngen, Brent] Ohio State Univ, Dept Agr Environm & Dev Econ, Columbus, OH 43210 USA. [Kindermann, Georg; Obersteiner, Michael; Rametsteiner, Ewald] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Sathaye, Jayant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Andrasko, Kenneth] US EPA, Washington, DC 20460 USA. [Schlamadinger, Bernhard] TerraCarbon, A-8043 Graz, Austria. [Wunder, Sven] Ctr Int Forestry Res, BR-66095100 Belem, Para, Brazil. [Beach, Robert] RTI Int, Res Triangle Pk, NC 27709 USA. RP Sohngen, B (reprint author), Ohio State Univ, Dept Agr Environm & Dev Econ, Columbus, OH 43210 USA. EM sohngen.1@osu.edu OI Wunder, Sven/0000-0002-9422-0260 NR 37 TC 191 Z9 196 U1 8 U2 103 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 29 PY 2008 VL 105 IS 30 BP 10302 EP 10307 DI 10.1073/pnas.0710616105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 334GZ UT WOS:000258211600008 PM 18650377 ER PT J AU Chen, ZQ Speck, C Wendel, P Tang, CY Stillman, B Lill, HL AF Chen, Zhiqiang Speck, Christian Wendel, Patricia Tang, Chunyan Stillman, Bruce Lill, Huilin TI The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electron microscopy; structure; ATPase ID STRUCTURAL BASIS; ELECTRON-MICROSCOPY; CONFORMATIONAL-CHANGES; NUCLEOTIDE-BINDING; ATPASE ACTIVITY; PROTEIN; ORC; CDC6; VISUALIZATION; LOCALIZATION AB The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC-Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. in one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1-5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit-subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1-DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC. C1 [Speck, Christian; Wendel, Patricia; Stillman, Bruce] Cold Spring Harbor Lab, Holtsville, NY 11742 USA. [Chen, Zhiqiang; Tang, Chunyan; Lill, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Lill, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Stillman, B (reprint author), Cold Spring Harbor Lab, 1 Brungtown Rd, Holtsville, NY 11742 USA. EM stillman@cshi.edu; hli@bnl.gov RI Tang, Chunyan/E-8352-2010; Speck, Christian/G-2882-2011; OI Speck, Christian/0000-0001-6646-1692; Stillman, Bruce/0000-0002-9453-4091 FU Medical Research Council [MC_U120085811]; NCI NIH HHS [P01 CA013106, P01 CA013106-310025, P01 CA013106-38S10025]; NIGMS NIH HHS [GM45436, GM74985, R01 GM045436, R01 GM045436-20, R01 GM074985] NR 43 TC 45 Z9 46 U1 2 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 29 PY 2008 VL 105 IS 30 BP 10326 EP 10331 DI 10.1073/pnas.0803829105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 334GZ UT WOS:000258211600012 PM 18647841 ER PT J AU Santra, S Korber, BT Muldoon, M Barouch, DH Nabel, GJ Gao, F Hahn, BH Haynes, BF Letvin, NL AF Santra, Sampa Korber, Bette T. Muldoon, Mark Barouch, Dan H. Nabel, Gary J. Gao, Feng Hahn, Beatrice H. Haynes, Barton F. Letvin, Norman L. TI A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE consensus gene; cytotoxic T lymphocyte ID CONSENSUS ENVELOPE GLYCOPROTEIN; SUBTYPE-B ENVELOPE; NEUTRALIZING ANTIBODIES; IMMUNOGENICITY; ANTIGENICITY; SELECTION; PROTEIN; GP120; AIDS AB one of the major challenges that must be met in developing an HIV-1 vaccine is devising a strategy to generate cellular immunity with sufficient breadth to deal with the extraordinary genetic diversity of the virus. Amino acids in the envelopes of viruses from the same clade can differ by >15%, and those from different clades can differ by >30%. It has been proposed that creating immunogens using centralized HIV-1 gene sequences might provide a practical solution to this problem. Such centralized genes can be generated by employing a number of different strategies: consensus, ancestral, or center of tree sequences. These computer-generated sequences are a shorter genetic distance from any two contemporary virus sequences than those contemporary sequences are from each other. The present study was initiated to evaluate the breadth of cellular immunity generated through immunization of rhesus monkeys with vaccine constructs expressing either an HIV-1 global consensus envelope sequence (CON-S) or a single patient isolate clade B envelope sequence (clade B). We show that vaccine immunogens expressing the single centralized gene COWS generated cellular immune responses with significantly increased breadth compared with immunogens expressing a wild-type virus gene. In fact, COWS immunogens elicited cellular immune responses to 3- to 4-fold more discrete epitopes of the envelope proteins from clades A, C, and G than did clade B immunogens. These findings suggest that immunization with centralized genes is a promising vaccine strategy for developing a global vaccine for HIV-1 as well as vaccines for other genetically diverse viruses. C1 [Letvin, Norman L.] Harvard Univ, Sch Med, Div Viral Pathogenesis, Beth Israel Deaconess Med Ctr,Dept Med, Boston, MA 02215 USA. [Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Muldoon, Mark] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England. [Nabel, Gary J.] NIAID, Vaccine Res Ctr, Natl Inst Hlth, Bethesda, MD 20892 USA. [Hahn, Beatrice H.] Univ Alabama, Birmingham, AL 35294 USA. [Gao, Feng; Haynes, Barton F.] Duke Univ, Med Ctr, Durham, NC 27710 USA. RP Letvin, NL (reprint author), Harvard Univ, Sch Med, Div Viral Pathogenesis, Beth Israel Deaconess Med Ctr,Dept Med, RE113,POB 15732, Boston, MA 02215 USA. EM nietvin@bidmc.harvard.edu RI Muldoon, Mark/C-7505-2009; OI Muldoon, Mark/0000-0002-5004-7195; Korber, Bette/0000-0002-2026-5757 FU NIAID NIH HHS [N01AI30034, N01-AI30033, N01AI30033, N01-AI30034, P01 AI061734, N01AI60005, P01-AI61734] NR 24 TC 51 Z9 52 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 29 PY 2008 VL 105 IS 30 BP 10489 EP 10494 DI 10.1073/pnas.0803352105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 334GZ UT WOS:000258211600040 PM 18650391 ER PT J AU Nuno, M Reichert, TA Chowell, G Gumel, AB AF Nuno, M. Reichert, T. A. Chowell, G. Gumel, A. B. TI Protecting residential care facilities from pandemic influenza SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE nonpharmaceutical interventions; SEIR stochastic model; self-isolation periods; social distancing; visitor and staff restrictions ID MITIGATION STRATEGIES; UNITED-STATES; US CITIES; INTERVENTIONS AB it is widely believed that protecting health care facilities against outbreaks of pandemic influenza requires pharmaceutical resources such as antivirals and vaccines. However, early in a pandemic, vaccines will not likely be available and antivirals will probably be of limited supply. The containment of pandemic influenza within acute-care hospitals anywhere is problematic because of open connections with communities. However, other health care institutions, especially those providing care for the disabled, can potentially control community access. We modeled a residential care facility by using a stochastic compartmental model to address the question of whether conditions exist under which nonpharmaceutical interventions (NPIs) alone might prevent the introduction of a pandemic virus. The model projected that with currently recommended staff-visitor interactions and social distancing practices, virus introductions are inevitable in all pandemics, accompanied by rapid internal propagation. The model identified staff reentry as the critical pathway of contagion, and provided estimates of the reduction in risk required to minimize the probability of a virus introduction. By using information on latency for historical and candidate pandemic viruses, we developed NPIs that simulated notions of protective isolation for staff away from the facility that reduced the probability of bringing the pandemic infection back to the facility to levels providing protection over a large range of projected pandemic severities. the proposed form of protective isolation was evaluated for social plausibility by collaborators who operate residential facilities. It appears unavoidable that NPI combinations effective against pandemics more severe than mild imply social disruption that increases with severity. C1 [Nuno, M.] Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA. [Nuno, M.] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. [Reichert, T. A.] Entropy Res Inst, Lincoln, MA 01773 USA. [Chowell, G.] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85282 USA. [Chowell, G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chowell, G.] Los Alamos Natl Lab, Math Modelling & Anal Grp MS B284, Los Alamos, NM 87545 USA. [Gumel, A. B.] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada. RP Nuno, M (reprint author), Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA. EM miriamnuno@ucla.edu RI Chowell, Gerardo/A-4397-2008; Chowell, Gerardo/F-5038-2012 OI Chowell, Gerardo/0000-0003-2194-2251 FU NIAID NIH HHS [T32 AI007358, T32AI07358, AI28697, P30 AI028697]; NIBIB NIH HHS [R01EB006195, R01 EB006195] NR 18 TC 15 Z9 15 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 29 PY 2008 VL 105 IS 30 BP 10625 EP 10630 DI 10.1073/pnas.0712014105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 334GZ UT WOS:000258211600063 PM 18647829 ER PT J AU Hong, J Ye, XH Wang, YR Zhang, YHP AF Hong, Jiong Ye, Xinhao Wang, Yiran Zhang, Y-H. Percival TI Bioseparation of recombinant cellulose-bindning module-proteins by affinity adsorption on an ultra-high-capacity cellulosic adsorbent SO ANALYTICA CHIMICA ACTA LA English DT Article DE affinity adsorbent; bioseparation; cellulose-binding module; protein purification; regenerated amorphous cellulose ID CLOSTRIDIUM-THERMOCELLUM; ENZYMATIC-HYDROLYSIS; ESCHERICHIA-COLI; CELLOBIOSE PHOSPHORYLASE; TRICHODERMA-REESEI; BINDING DOMAIN; PURIFICATION; FUSION; LIGNOCELLULOSE; STRATEGIES AB Low-cost protein purification methods are in high demand for mass production of low-selling price enzymes that play an important role in the upcoming bioeconomy. A simple protein purification method was developed based on affinity adsorption of a cellulose-binding module-tagged protein on regenerated amorphous cellulose (RAC) followed by modest desorption. The biodegradable cellulosic adsorbent RAC had a very high protein-binding capacity of up to 365 mg of protein per gram of RAC. The specifically-bound CBM-protein on the external surface of RAC was eluted efficiently by ethyl glycol or glycerol. This protein separation method can be scaled up easily because it is based on simple solid/liquid unit operations. Five recombinant proteins (CBM-protein), regardless of intercellular or periplasmic form, were purified successfully for demonstration purpose. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hong, Jiong; Ye, Xinhao; Wang, Yiran; Zhang, Y-H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Hong, Jiong] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R China. [Zhang, Y-H. Percival] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y-H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI Wang, Yi-Ran/C-4643-2013; Ye, Xinhao/J-7591-2013; HONG, Jiong/N-1996-2013 OI Wang, Yi-Ran/0000-0002-4171-868X; HONG, Jiong/0000-0002-4592-7083 NR 41 TC 57 Z9 58 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 EI 1873-4324 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD JUL 28 PY 2008 VL 621 IS 2 BP 193 EP 199 DI 10.1016/j.aca.2008.05.041 PG 7 WC Chemistry, Analytical SC Chemistry GA 330KZ UT WOS:000257941300010 PM 18573384 ER PT J AU Hauet, T Gunther, CM Hovorka, O Berger, A Im, MY Fischer, P Eimuller, T Hellwig, O AF Hauet, T. Guenther, C. M. Hovorka, O. Berger, A. Im, M. -Y. Fischer, P. Eimueller, T. Hellwig, O. TI Field driven ferromagnetic phase nucleation and propagation in antiferromagnetically coupled multilayer films with perpendicular anisotropy SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY MICROSCOPY AB We investigate the reversal process in {[Co/Pt](X-1)Co/Ru} x 16/[Co/Pt](X) multilayer films by magnetometry and magnetic transmission x-ray microscopy. After demagnetization, a stable one-dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick sample (X = 7) is imaged, while metastable sharp antiferromagnetic domain walls are observed in the remanent state for a thinner stack sample (X = 6). When applying an external magnetic field the sharp domain walls of the thinner sample gradually transform into the FM phase via separate nucleation of many isolated FM domains all along the domain boundary. We present energy calculations that reveal the underlying energetics driving the overall reversal mechanism. (C) 2008 American Institute of Physics. C1 [Hauet, T.; Hellwig, O.] Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. [Guenther, C. M.] BESSY, D-12489 Berlin, Germany. [Hovorka, O.; Berger, A.] CIC nanoGUNE Consolider, E-20009 San Sebastian, Spain. [Im, M. -Y.; Fischer, P.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Eimueller, T.] Ruhr Univ Bochum, Jr Res Grp Magnet Microscopy, D-44780 Bochum, Germany. RP Hauet, T (reprint author), Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. EM thomas.hauet@hitachigst.com RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012; Berger, Andreas/D-3706-2015; nanoGUNE, CIC/A-2623-2015; OI Fischer, Peter/0000-0002-9824-9343; Berger, Andreas/0000-0001-5865-6609; Gunther, Christian Michael/0000-0002-3750-7556 NR 11 TC 8 Z9 8 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 28 PY 2008 VL 93 IS 4 AR 042505 DI 10.1063/1.2961001 PG 3 WC Physics, Applied SC Physics GA 333VC UT WOS:000258179800063 ER PT J AU Korstgens, V Hsu, CC Paneque, D Wiedersich, J Muller-Buschbaum, P AF Koerstgens, V. Hsu, C. -C. Paneque, D. Wiedersich, J. Mueller-Buschbaum, P. TI Improvement of quantum efficiency of photomultiplier tubes by humidity controlled coatings based on porous polymer structures SO APPLIED PHYSICS LETTERS LA English DT Article ID ORGANIZED HONEYCOMB MORPHOLOGY; AIR CHERENKOV TELESCOPES; PHASE-SEPARATION; BREATH FIGURES; FILMS; SENSITIVITY; ENHANCE AB Based on spin coating in humidity controlled environment an extremely simple deposition process is established which allows convenient and reproducible coating of photomultiplier tubes (PMTs) to achieve an improvement in photon sensitivity and thereby a higher quantum efficiency. The coatings consisting of a blend of polyacrylate based copolymer with p-terphenyl are obtained from dichloromethane solutions. On the curved PMTs structures due to crystallization of p-terphenyl superposed with pores in the copolymer matrix are present. On flat substrates coatings established under identical conditions exhibit the same porous structure. The origin of the obtained structures is discussed in context of breath figures. (C) 2008 American Institute of Physics. C1 [Koerstgens, V.; Wiedersich, J.; Mueller-Buschbaum, P.] Tech Univ Munich, Phys Dept E13, D-85757 Garching, Germany. [Hsu, C. -C.; Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Paneque, D.] Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Korstgens, V (reprint author), Tech Univ Munich, Phys Dept E13, James Franck Str 1, D-85757 Garching, Germany. EM muellerb@ph.tum.de RI Wiedersich, Johannes/C-6575-2014; Korstgens, Volker/N-8841-2014; Muller-Buschbaum, Peter/C-3397-2017; OI Wiedersich, Johannes/0000-0001-6855-0533; Korstgens, Volker/0000-0001-7178-5130; Muller-Buschbaum, Peter/0000-0002-9566-6088; Hsu, Ching-Cheng/0000-0001-9406-2023 NR 18 TC 7 Z9 7 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 28 PY 2008 VL 93 IS 4 AR 041916 DI 10.1063/1.2967195 PG 3 WC Physics, Applied SC Physics GA 333VC UT WOS:000258179800041 ER PT J AU Li, Q Wang, GT AF Li, Qiming Wang, George T. TI Improvement in aligned GaN nanowire growth using submonolayer Ni catalyst films SO APPLIED PHYSICS LETTERS LA English DT Article ID SURFACE MASS-TRANSPORT; PARAMETERS; SAPPHIRE; ARRAYS AB We report a route to ultrahigh-density and highly aligned single-crystalline GaN nanowires on sapphire by employing ultrathin Ni catalyst films with submonolayer thickness. The nanowire density and the degree of alignment were found to be highly sensitive to changes in the Ni catalyst film thickness below 1 nm, a regime rarely explored in catalyzed nanowire growth before. For submonolayer Ni films on sapphire, high activation energy for Ni diffusion on sapphire surface is attributed to the formation of high-density and ultrasmall Ni islands with a narrow size distribution, which in turn leads to high-density and highly aligned GaN nanowires. (C) 2008 American Institute of Physics. C1 [Li, Qiming; Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Li, Q (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 NR 16 TC 50 Z9 51 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 28 PY 2008 VL 93 IS 4 AR 043119 DI 10.1063/1.2965798 PG 3 WC Physics, Applied SC Physics GA 333VC UT WOS:000258179800100 ER PT J AU Seamons, JA Bielejec, E Carroll, MS Childs, KD AF Seamons, J. A. Bielejec, E. Carroll, M. S. Childs, K. D. TI Room temperature single ion detection with Geiger mode avalanche diode detectors SO APPLIED PHYSICS LETTERS LA English DT Article AB We report on the fabrication and performance of a novel single ion Geiger mode avalanche (SIGMA) diode detector that senses single ions with similar to 100% detection efficiency at room temperature for 250 keV protons. The SIGMA diode detector utilizes Geiger mode operation of avalanche photodiodes, which can be sensitive to single electron- hole (e-h) pairs induced by the ion stopping. The SIGMA diode detector takes advantage of a complementary metal oxide semiconductor foundry allowing for future integration with silicon nanostructures to build novel single atom modified devices. SIGMA diode detector offers potential improvement in current integrated ion detector approaches that have noise floors in the order of 103 e- h pairs. (c) 2008 American Institute of Physics. C1 [Seamons, J. A.; Bielejec, E.; Carroll, M. S.; Childs, K. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Seamons, JA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jaseamo@sandia.gov NR 9 TC 12 Z9 12 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 28 PY 2008 VL 93 IS 4 AR 043124 DI 10.1063/1.2967211 PG 3 WC Physics, Applied SC Physics GA 333VC UT WOS:000258179800105 ER PT J AU Shao, L Di, ZF Lin, Y Jia, QX Wang, YQ Nastasi, M Thompson, PE Theodore, ND Chu, PK AF Shao, Lin Di, Zengfeng Lin, Yuan Jia, Q. X. Wang, Y. Q. Nastasi, M. Thompson, Phillip E. Theodore, N. David Chu, Paul K. TI The role of strain in hydrogenation induced cracking in Si/Si(1-x)Ge(x)/Si structures SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON AB Hydrogenation induced cracking in molecular beam epitaxy grown Si/Si(1-x)Ge(x)/Si heterostructures is studied. The Si(1-x)Ge(x) layer buried between an similar to 200 nm thick Si capping layer and the Si substrate is similar to 5 nm thick. After plasma hydrogenation, long range H migration and H trapping at the Si(1-x)Ge(x) layer are observed. With increasing Ge concentrations, the amount of H trapping increases, cracking along the Si(1-x)Ge(x) layer is smoother, and fewer defects are formed in the Si capping layer. The study suggests maximizing the interfacial strain to achieve the smoothest cracking with minimized radiation damage for ultrathin silicon-on-insulator technology. (C) 2008 American Institute of Physics. C1 [Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Di, Zengfeng; Jia, Q. X.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lin, Yuan] Univ Elect Sci & Technol China, Sch Microelectron & Solid State Elect, Chengdu 610054, Peoples R China. [Thompson, Phillip E.] USN, Res Lab, Washington, DC 20375 USA. [Theodore, N. David] Freescale Semicond Inc, Analog & Mixed Signal Technol, Tempe, AZ 85284 USA. [Chu, Paul K.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM lshao@mailaps.org RI di, zengfeng/B-1684-2010; Jia, Q. X./C-5194-2008; Chu, Paul/B-5923-2013; lin, yuan/B-9955-2013 OI Chu, Paul/0000-0002-5581-4883; NR 11 TC 5 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 28 PY 2008 VL 93 IS 4 AR 041909 DI 10.1063/1.2963489 PG 3 WC Physics, Applied SC Physics GA 333VC UT WOS:000258179800034 ER PT J AU Thompson, JR Polat, O Christen, DK Kumar, D Martin, PM Sinclair, JW AF Thompson, J. R. Polat, O. Christen, D. K. Kumar, D. Martin, P. M. Sinclair, J. W. TI Wide-range characterization of current conduction in high-T(c) coated conductors SO APPLIED PHYSICS LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CURRENT-VOLTAGE CHARACTERISTICS; FIELD-SWEEP RATE; MAGNETIC-RELAXATION; RATE DEPENDENCE; CURRENT-DENSITY; ELECTRIC-FIELD; FLUX-CREEP; YBA2CU3O7-X; FILMS AB The conduction of supercurrents in a short-segment state-of-the-art coated conductor prototype has been studied over similar to 8 decades of dissipation. A combination of conventional transport methods, magnetometry in a swept magnetic field, and "flux creep" measurements was used to obtain current density J versus electric field E characteristics over a span E similar to 10(-5)-10(-13) V/cm. The inductive measurements allow facile exploration of current conduction over a wide range of temperatures, magnetic fields, and dissipation levels where future applications are envisioned. (C) 2008 American Institute of Physics. C1 [Thompson, J. R.; Polat, O.; Christen, D. K.; Kumar, D.; Martin, P. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sinclair, J. W.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Kumar, D.] NC A&T Univ, Dept Mech Engn, Greensboro, NC 27411 USA. RP Thompson, JR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM jrt@utk.edu RI Sinclair, John/E-7692-2011 NR 19 TC 12 Z9 12 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 28 PY 2008 VL 93 IS 4 AR 042506 DI 10.1063/1.2964195 PG 3 WC Physics, Applied SC Physics GA 333VC UT WOS:000258179800064 ER PT J AU Wu, MM Cheng, YZ Peng, J Xiao, XL Hu, ZB Kiyanagi, R Fieramosca, JS Short, S Jorgensen, J AF Wu, M. M. Cheng, Y. Z. Peng, J. Xiao, X. L. Hu, Z. B. Kiyanagi, R. Fieramosca, J. S. Short, S. Jorgensen, J. TI Studies on structural and thermal expansion properties of Ho(2-x)Ln(x)Mo(4)O(15) (Ln = Er, Sm and Ce) solid solutions SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE solid-state reaction; crystal structure; thermal expansion; X-ray diffraction ID NEUTRON POWDER DIFFRACTION; CRYSTAL-STRUCTURE; ZRW2O8; DY; ND; BEHAVIOR; TM; HO AB Three new series of Ho2-xErxMo4O15 (x = 0.0-2.0), Ho2-xSmxMo4O15 (x = 0.0-0.6) and Ho2-xCexMo4O15 (x = 0.0-0.25) solid solutions have been prepared successfully by solid-state reaction and studied by powder X-ray diffraction. All the XRD patterns of these molybdates can be indexed in monoclinic space group P2(1)/c. Lattice parameters a, b and c of Ho(2-x)Ln(x)Mo(4)O(15) decrease linearly with increasing erbium content and increase with increasing samarium or cerium content. Thermal expansion behaviors of Ho(2-x)Ln(x)Mo(4)O(15) have been investigated in the 25-500 degrees C temperature range with high-temperature X-ray diffraction. The temperature dependence of Mo(2)-O14 interaction looks like to be responsible for their thermal expansion behaviors. (C) 2007 Elsevier B.V. All rights reserved. C1 [Wu, M. M.; Cheng, Y. Z.; Peng, J.; Xiao, X. L.; Hu, Z. B.] Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. [Kiyanagi, R.; Fieramosca, J. S.; Short, S.; Jorgensen, J.] Argonne Natl Lab, IPNS MSD, Argonne, IL 60439 USA. RP Hu, ZB (reprint author), Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. EM huzq@gucas.ac.cn NR 25 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 28 PY 2008 VL 460 IS 1-2 BP 103 EP 107 DI 10.1016/j.jallcom.2007.06.083 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 320DA UT WOS:000257212700023 ER PT J AU Moyer, RO Antao, SM Toby, BH Morin, FG Gilson, DFR AF Moyer, Ralph O., Jr. Antao, Sytle M. Toby, Brian H. Morin, Frederick G. Gilson, Denis F. R. TI Neutron powder diffraction and solid-state deuterium NMR studies of Ca2RuD6 and the stability of transition metal hexahydride salts SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE ternary metal hydrides; neutron diffraction; deuterium NMR; stability ID RUTHENIUM HYDRIDE; TERNARY; COMPLEXES; CA2IRD5; RHODIUM; CALCIUM; IRIDIUM AB The crystal structure of Ca2RuD6 has been determined by neutron powder diffraction: space group Fm3m, K2PtCl6 Structure, as found for other hexahydride salts of group 8 metals with alkaline earth or lanthanide counter ions. No structural phase transition was observed between 340 K and 50 K. The deuterium nuclear quadrupole coupling constant, 54.7 kHz, leads to an ionic character of the Ru-D bond of 76%. The known trends in the behaviour of A(2)MH(6) salts are interpreted in terms of the ionization energies of the cation and the central metal atom. (C) 2007 Elsevier B.V. All rights reserved. C1 [Morin, Frederick G.; Gilson, Denis F. R.] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada. [Moyer, Ralph O., Jr.] Trinity Coll, Dept Chem, Hartford, CT 06106 USA. [Antao, Sytle M.; Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gilson, DFR (reprint author), McGill Univ, Dept Chem, 801 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. EM denis.gilson@mcgill.ca RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 NR 19 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 28 PY 2008 VL 460 IS 1-2 BP 138 EP 141 DI 10.1016/j.jallcom.2007.05.078 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 320DA UT WOS:000257212700029 ER PT J AU Stumphy, B Mudryk, Y Russell, A Herman, D Gschneidner, K AF Stumphy, B. Mudryk, Y. Russell, A. Herman, D. Gschneidner, K., Jr. TI Oxidation resistance of B2 rare earth-magnesium intermetallic compounds SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE intermetallics; rare earth alloys and compounds; crystal structure; kinetics; microstructure ID SINGLE-CRYSTAL; YTTRIUM; METALS AB The oxidation behaviors of YMg and CeMg were rneasured in flowing air using the thermal gravimetric analysis technique. Negligible oxidation is observed at room temperature in both compounds. At elevated temperatures, the rare earth metals oxidize preferentially, while the underlying materials transform into Mg-rich intermetallics before the Mg oxidizes to MgO. The oxidation resistance of YMg is several orders of magnitude greater than that of CeMg. The oxidation of YMg follows parabolic kinetics with an activation energy of 104 kJ/mol while that of CeMg obeys a linear law with an activation energy of 136 kJ/mol. (C) 2007 Elsevier B.V. All rights reserved. C1 [Stumphy, B.; Russell, A.; Herman, D.; Gschneidner, K., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Stumphy, B.; Mudryk, Y.; Russell, A.; Gschneidner, K., Jr.] US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Gschneidner, K (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM cagey@ameslab.gov OI Russell, Alan/0000-0001-5264-0104 NR 15 TC 11 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 28 PY 2008 VL 460 IS 1-2 BP 363 EP 367 DI 10.1016/j.jallcom.2007.06.067 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 320DA UT WOS:000257212700067 ER PT J AU Cang, H Montiel, D Xu, CS Yang, H AF Cang, Hu Montiel, Daniel Xu, C. Shan Yang, Haw TI Observation of spectral anisotropy of gold nanoparticles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SURFACE-PLASMON RESONANCE; METAL NANOPARTICLES; PARTICLE TRACKING; SINGLE; FLUORESCENCE; SPECTROSCOPY; MOLECULES; NANOSTRUCTURES; NANOCRYSTALS; MICROSCOPY AB Metallic nanoparticles synthesized by solution-phase chemistry usually exhibit various polygonal morphologies. The shape is known to have a great impact on a nanoparticle's optical properties, for instance, the surface plasmon resonance frequency. It remains unclear, however, whether the scattering spectrum of nanoparticles is generally anisotropic in the far field as a result. This simple question turns out to be extremely challenging to address because of the particle-to-particle shape inhomogeneity in a bulk sample, and the high sensitivity of surface plasmon resonance to local environments. We report the observation of scattering angle-dependent spectra using a newly developed single-particle tracking spectroscopy (SPS). Furthermore, we show that SPS has provided a way to directly visualize the rotational random walk of individual gold nanoparticles in water for the first time. (C) 2008 American Institute of Physics. C1 [Cang, Hu] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cang, H (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM hawyang@berkeley.edu OI Yang, Haw/0000-0003-0268-6352 NR 32 TC 13 Z9 13 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2008 VL 129 IS 4 AR 044503 DI 10.1063/1.2958912 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 333SB UT WOS:000258171500034 PM 18681656 ER PT J AU Fister, TT Seidler, GT Shirley, EL Vila, FD Rehr, JJ Nagle, KP Linehan, JC Cross, JO AF Fister, T. T. Seidler, G. T. Shirley, E. L. Vila, F. D. Rehr, J. J. Nagle, K. P. Linehan, J. C. Cross, J. O. TI The local electronic structure of alpha-Li3N SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RAY RAMAN-SCATTERING; TRANSITION-METAL NITRIDES; ABSORPTION FINE-STRUCTURE; NORM-CONSERVING PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS SIMULATION; HYDROGEN STORAGE MATERIALS; SUPERIONIC CONDUCTOR LI3N; LITHIUM NITRIDE; ION BATTERIES; HIGH-PRESSURE AB New theoretical and experimental investigations of the occupied and unoccupied local electronic densities of states (DOS) are reported for alpha-Li3N. Band-structure and density-functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS find less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering, RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is a good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s-and p-type components of the unoccupied local final DOS projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final DOS due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generally applicable for low atomic number compounds. (C) 2008 American Institute of Physics. C1 [Fister, T. T.; Seidler, G. T.; Vila, F. D.; Rehr, J. J.; Nagle, K. P.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Fister, T. T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Shirley, E. L.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Linehan, J. C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cross, J. O.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fister, TT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 NR 87 TC 17 Z9 17 U1 2 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2008 VL 129 IS 4 AR 044702 DI 10.1063/1.2949550 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 333SB UT WOS:000258171500043 PM 18681665 ER PT J AU Singh, J Baessler, H Kugler, S AF Singh, Jai Baessler, H. Kugler, S. TI A direct approach to study radiative emission from triplet excitations in molecular semiconductors and conjugated polymers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ENERGY-GAP; SINGLET; MONOMERS; EXCITONS; YNES AB Using the recently discovered time-dependent spin-orbit-photon interaction operator and first order perturbation theory, the rate of spontaneous emission from triplet excitations is derived within the two-level approximation for organic molecular solids and conjugated polymers. The calculated rates and corresponding radiative lifetimes agree very well with the known experimental results. Present results are compared with those obtained through the traditional approach of the second order perturbation theory in some molecular crystals and found to be in better agreement with experiments. (C) 2008 American Institute of Physics. C1 [Singh, Jai] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Singh, Jai] Hahn Meitner Inst Berlin GmbH, D-12489 Berlin, Germany. [Kugler, S.] Budapest Univ Technol & Econ, Dept Theoret Phys, H-1521 Budapest, Hungary. [Baessler, H.] Univ Marburg, Dept Chem, D-35032 Marburg, Germany. [Singh, Jai] Charles Darwin Univ, Sch Engn & IT, Darwin, NT 0909, Australia. RP Singh, J (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jai.singh@cdu.edu.au RI kugler, Sandor/A-3982-2009 NR 25 TC 15 Z9 15 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2008 VL 129 IS 4 AR 041103 DI 10.1063/1.2961010 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 333SB UT WOS:000258171500003 PM 18681625 ER PT J AU Vaknin, D Bu, W Travesset, A AF Vaknin, David Bu, Wei Travesset, Alex TI Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SCATTERING EXPERIMENTS; POTENTIAL FUNCTIONS; WATER-STRUCTURE; SPECTROSCOPY; ORIENTATION; INTERFACES; SIMULATION; NEUTRON AB We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed. (C) 2008 American Institute of Physics. C1 [Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 NR 39 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2008 VL 129 IS 4 AR 044504 DI 10.1063/1.2953572 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 333SB UT WOS:000258171500035 PM 18681657 ER PT J AU Stolte, WC Guillemin, R Yu, SW Lindle, DW AF Stolte, W. C. Guillemin, R. Yu, S-W Lindle, D. W. TI Photofragmentation of HCl near the chlorine L(2,3) ionization threshold: new evidence of a strong ultrafast dissociation channel SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CORE-EXCITED HCL; HIGH-RESOLUTION; AUGER DECAY; YIELD SPECTROSCOPY; ELECTRON-IMPACT; CROSS-SECTIONS; INNER-SHELL; K EDGE; EXCITATION; STATES AB We report a study using partial-ion-yield spectroscopy around the Cl 2p ionization threshold of HCl. All cation channels have been measured, while no evidence for anion production was obtained. The absence of any detectable H(-) can be related to the electronegativity difference between the two atoms and the observed low probability of directly creating Cl(++) and Cl(+++). In the photon-energy region around the Cl 2p(3/2,1/2) -> 6 sigma* excitation process, production of H(+) is almost completely suppressed, which indicates a dominant ultrafast dissociation process leading to neutral H. C1 [Stolte, W. C.; Lindle, D. W.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Guillemin, R.] Univ Paris 06, UMR 7614, Lab Chim Phys Matiere & Rayonnement, F-75005 Paris, France. [Guillemin, R.] CNRS, UMR 7614, Lab Chim Phys Mat & Rayonnement, F-75005 Paris, France. [Yu, S-W] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Stolte, WC (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. NR 23 TC 22 Z9 22 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 28 PY 2008 VL 41 IS 14 AR 145102 DI 10.1088/0953-4075/41/14/145102 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 322JE UT WOS:000257370200006 ER PT J AU Zeitlin, C Guetersloh, S Heilbronn, L Miller, J Elkhayari, N Empl, A LeBourgeois, M Mayes, BW Pinsky, L Christl, M Kuznetsov, E AF Zeitlin, C. Guetersloh, S. Heilbronn, L. Miller, J. Elkhayari, N. Empl, A. LeBourgeois, M. Mayes, B. W. Pinsky, L. Christl, M. Kuznetsov, E. TI Shielding experiments with high-energy heavy ions for spaceflight applications SO NEW JOURNAL OF PHYSICS LA English DT Article ID CROSS-SECTIONS; FRAGMENTATION; FE-56; MODEL AB Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon(-1) (56)Fe beam, and also reported results using a single polyethylene (CH(2)) target in a variety of beam ions and energies up to 1 GeV nucleon(-1). An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon(-1). Following up on that work, we report new results using beams of (12)C, (28)Si and (56)Fe, each at three energies, 3, 5 and 10 GeV nucleon(-1), on carbon, polyethylene, aluminium and iron targets. C1 [Zeitlin, C.; Guetersloh, S.; Heilbronn, L.; Miller, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Elkhayari, N.; Empl, A.; LeBourgeois, M.; Mayes, B. W.; Pinsky, L.] Univ Houston, Dept Phys, Houston, TX USA. [Christl, M.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Kuznetsov, E.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. RP Zeitlin, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM cjzeitlin@lbl.gov RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 NR 13 TC 5 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 28 PY 2008 VL 10 AR 075007 DI 10.1088/1367-2630/10/7/075007 PG 20 WC Physics, Multidisciplinary SC Physics GA 330TV UT WOS:000257966600005 ER PT J AU Graves, CR Scott, BL Morris, DE Kiplinger, JL AF Graves, Christopher R. Scott, Brian L. Morris, David E. Kiplinger, Jaqueline L. TI Tetravalent and pentavalent uranium acetylide complexes prepared by oxidative functionalization with CuC CPh SO ORGANOMETALLICS LA English DT Article ID ELECTRONIC-STRUCTURE; CARBON BOND; METALLOCENE; REACTIVITY AB Oxidation of(C(5)Me(5))(2)U(NPh(2))(THF) and(C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(THF) with CuC CPh yields the corresponding U(IV) and U(V) aceolide complexes (C(5)Me(5))(2)U(NPh(2))(C CPh) and (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(C CPh), respectively. The complexes were characterized using a combination of (1)H NMR, X-ray crystallography, UV-visible-near-IR spectroscopy, and cyclic voltammetry. C1 [Graves, Christopher R.; Scott, Brian L.; Morris, David E.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Morris, DE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 NR 18 TC 47 Z9 47 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUL 28 PY 2008 VL 27 IS 14 BP 3335 EP 3337 DI 10.1021/om800466m PG 3 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 329NJ UT WOS:000257874000005 ER PT J AU Nadiga, BT AF Nadiga, B. T. TI Orientation of eddy fluxes in geostrophic turbulence SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE geostrophic turbulence; subgrid model; eddy flux of potential vorticity; ocean circulation; nonlinear gradient model; upgradient-downgradient flux ID OCEAN CIRCULATION; MODEL; SIMULATION; EDDIES; FLOWS; PARAMETERIZATION; EQUATIONS AB Given its importance in parametrizing eddies, we consider the orientation of eddy flux of potential vorticity (PV) in geostrophic turbulence. We take two different points of view, a classical ensemble- or time-average point of view and a second scale decomposition point of view. A net alignment of the eddy flux of PV with the appropriate mean gradient or the large-scale gradient of PV is required. However, we find this alignment to be very weak. A key finding of our study is that in the scale decomposition approach, there is a strong correlation between the eddy flux and a nonlinear combination of resolved gradients. This strong correlation is absent in the classical decomposition. This finding points to a new model to parametrize the effects of eddies in global ocean circulation. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nadiga, BT (reprint author), Los Alamos Natl Lab, CCS-2, Los Alamos, NM 87545 USA. EM balu@lanl.gov NR 30 TC 14 Z9 14 U1 0 U2 0 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 28 PY 2008 VL 366 IS 1875 BP 2491 EP 2510 DI 10.1098/rsta.2008.0058 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 310PZ UT WOS:000256543700005 PM 18448416 ER PT J AU Weeks, ML Rahman, T Frymier, PD Islam, SK McKnight, TE AF Weeks, Martha L. Rahman, Touhidur Frymier, Paul D. Islam, Syed K. McKnight, Timothy E. TI A reagentless enzymatic amperometric biosensor using vertically aligned carbon nanofibers (VACNF) SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE carbon nanofiber; biosensor; reagentless ID NADH DETECTION; NANOTUBES; ELECTRODES AB A reagentless amperometric enzymatic biosensor is constructed on a carbon substrate for detection of ethanol. Yeast alcohol dehydrogenase (YADH), an oxidoreductase, and its cofactor nicotinamide adenine dinucleotide (NAD(+)) are immobilized by adsorption and covalent attachment to the carbon substrate. Carbon nanofibers grown by plasma enhanced chemical vapor deposition (PECVD) are chosen as the electrode material due to their excellent structural and electrical properties. Electrochemical techniques are employed to test the functionality and performance of the biosensor using reduced form of nicotinamide adenine dinucleotide (NADH) which also determines the oxidation peak potential of NADH. Subsequently, amperometric measurements are conducted for detection of ethanol to determine the electrical current response due to the increase in analyte concentration. The detection range, storage stability, reusability, and response time of the biosensor are also examined. (C) 2008 Elsevier B.V. All rights reserved. C1 [Rahman, Touhidur; Islam, Syed K.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Weeks, Martha L.; Frymier, Paul D.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [McKnight, Timothy E.] Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Oak Ridge, TN 37831 USA. RP Rahman, T (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, 141 Ferris Hall,1508 Middle Dr, Knoxville, TN 37996 USA. EM trahman@utk.edu RI McKnight, Tim/H-3087-2011 OI McKnight, Tim/0000-0003-4326-9117 NR 9 TC 17 Z9 17 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 28 PY 2008 VL 133 IS 1 BP 53 EP 59 DI 10.1016/j.snb.2008.01.060 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 331KL UT WOS:000258011000008 ER PT J AU Hicks, JC Dabestani, R Buchanan, AC Jones, CW AF Hicks, Jason C. Dabestani, Reza Buchanan, A. C., III Jones, Christopher W. TI Assessing site-isolation of amine groups on aminopropyl-functionalized SBA-15 silica materials via spectroscopic and reactivity probes SO INORGANICA CHIMICA ACTA LA English DT Article DE site-isolation; amine accessibility; aminosilica; olefin polymerization; constrained-geometry catalysts; SBA-15 ID ETHYLENE POLYMERIZATION CATALYSTS; SURFACE PHOTOCHEMISTRY; ENGINEERING NANOSPACES; MESOPOROUS SILICA; ALUMINA SURFACES; FLUORESCENCE SPECTROSCOPY; CONTROLLABLE CHEMISTRY; THERMOLYTIC SYNTHESIS; SINGLE-SITE; PYRENE AB The average degree of separation and the accessibility of aminopropyl groups on SBA-15 silica materials prepared using different silane grafting approaches are compared. Three specific synthetic approaches are used: (1) the traditional grafting of 3-aminopropyltri-methoxysilane in toluene, (2) a protection/deprotection method using benzyl- or trityl-spacer groups, and (3) a cooperative dilution method where 3-aminopropyltrimethoxysilane and methyltrimethoxysilane are co-condensed on the silica surface as a silane mixture. The site-isolation and accessibility of the amine groups are probed via three methods: (a) evaluation of pyrene groups adsorbed onto the solids using fluorescence spectroscopy, (b) the reactions of chlorodimethyl(2,3,4,5-tetramethyl-2,4-cyclopentadien-1-yl) silane (Cp'Si(Me) Cl-2) and chloro(cyclopenta-2,4-dienyl) dimethylsilane (CpSi( Me) 2Cl) with the tethered amine sites, and (c) comparison of the reactivity of zirconium constrained-geometry-inspired catalysts (CGCs) prepared using the Cp'Si(Me) 2-modified aminosilicas in the catalytic polymerization of ethylene to produce poly(ethylene). The spectroscopic probe of site-isolation suggests that both the protection/ deprotection method and the cooperative dilution method yield similarly isolated amine sites that are markedly more isolated than sites on traditional aminosilica. In contrast, both reactivity probes show that the protection/ deprotection strategy leads to more uniformly accessible amine groups. It is proposed that the reactivity probes are more sensitive tests for accessibility and site-isolation in this case. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hicks, Jason C.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Dabestani, Reza; Buchanan, A. C., III] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jones, CW (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr, Atlanta, GA 30332 USA. EM cjones@chbe.gatech.edu NR 57 TC 19 Z9 19 U1 1 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JUL 27 PY 2008 VL 361 IS 11 BP 3024 EP 3032 DI 10.1016/j.ica.2008.01.002 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 323VA UT WOS:000257475300006 ER PT J AU Birnbaum, ER Trout, AT Boland, KS Sauer, NN AF Birnbaum, Eva R. Trout, Andrew T. Boland, Kevin S. Sauer, Nancy N. TI Nitric acid dissolution of large mixed cellulose ester filters for beryllium determination SO INORGANICA CHIMICA ACTA LA English DT Article DE beryllium; air sampling; analytical; dissolution; laboratory safety ID MICROWAVE DIGESTION; PARTICULATE MATTER; AEROSOL SAMPLES; TRACE-ELEMENTS; SENSITIZATION; DISEASE; MATRIX; METALS AB Defense program use of beryllium has resulted in the need for a wide variety of sampling methods to assess the potential for airborne beryllium particulates. One technique employed in field sampling uses large (8 x 10 in.) mixed cellulose ester (MCE) filters in high volume air samplers. Standard methods for the acid digestion and analysis of the large MCE filters cannot be utilized as the increase in filter mass leads to an uncontrolled exothermic reaction (open flames). As this compromises data quality and presents a significant safety hazard, we propose here an alternative method for digesting these large filters to ensure a solution compatible with ICP-AES (inductively coupled plasma-atomic emission spectroscopy) analysis. The method is a modification of well accepted hot plate digestion methods, which avoids the use of the most hazardous acids such as perchloric or hydrofluoric. While only beryllium was investigated, it is likely that other metals on filters could be digested by this method Filter media were spiked with a variety of beryllium sources to test the digestion, including beryllium solution spikes, beryllium metal, beryllium oxide and beryllium in soil. Recovery of beryllium metal (103%), beryllium in soil (96%) and beryllium solution spikes (93%) were excellent. Published by Elsevier B.V. C1 [Birnbaum, Eva R.; Boland, Kevin S.; Sauer, Nancy N.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Birnbaum, ER (reprint author), Caldera Pharmaceut, 278 DP Rd,STE D, Los Alamos, NM 87544 USA. EM eva@cpsci.com OI Trout, Andrew/0000-0003-1431-4054 NR 29 TC 2 Z9 2 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JUL 27 PY 2008 VL 361 IS 11 BP 3069 EP 3074 DI 10.1016/j.ica.2008.01.039 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 323VA UT WOS:000257475300011 ER PT J AU Bauer, E Ehler, D Diyabalanage, H Sauer, NN McCleskey, TM AF Bauer, Eve Ehler, Deborah Diyabalanage, Himashinie Sauer, Nancy N. McCleskey, T. Mark TI Protein and ligand enhanced dissolution of BeO at pH 7 SO INORGANICA CHIMICA ACTA LA English DT Article DE beryllium; dissolution; protein; citric acid; transferrin ID CHRONIC BERYLLIUM DISEASE; COORDINATION CHEMISTRY; AQUEOUS-SOLUTION; COMPLEXES; OXIDE AB Be is a toxic metal used in both aerospace and defense industries. Lung exposure to Be can lead to a specific immune response called chronic beryllium disease (CBD). CBD has the unique characteristics that it can be triggered by very low level exposures, yet the onset of systems can be delayed from one to over 20 years. This variable delay in the onset of systems implies that a change in the local environment leads to dissolution and bio-availability of the particulate Be. We report here on the dissolution of the highly insoluble BeO in the presence of known Be ligands including the iron transport protein, transferrin, and the ubiquitous citric acid. The presence of ligands even at the 100 mu M level led to dissolution of Be to levels that have been shown to cause immune response in both the blood and the lung. Dissolution occurred at pH 7 and was significantly enhanced in a 10 mM phosphate buffer. (c) 2008 Elsevier B.V. All rights reserved. C1 [Bauer, Eve; Ehler, Deborah; Diyabalanage, Himashinie; Sauer, Nancy N.; McCleskey, T. Mark] Los Alamos Natl Lab, MPA MC, Los Alamos, NM 87545 USA. RP McCleskey, TM (reprint author), Los Alamos Natl Lab, MPA MC, Mail Stop J514, Los Alamos, NM 87545 USA. EM tmark@lanl.gov RI McCleskey, Thomas/J-4772-2012; OI Mccleskey, Thomas/0000-0003-3750-3245 NR 19 TC 3 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JUL 27 PY 2008 VL 361 IS 11 BP 3075 EP 3078 DI 10.1016/j.ica.2008.01.032 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 323VA UT WOS:000257475300012 ER PT J AU Vasbinder, MJ Bakac, A AF Vasbinder, Michael J. Bakac, Andreja TI Kinetics and mechanism of the reactions of ozone with superoxo, hydroperoxo, and hydrido complexes of rhodium(III) SO INORGANICA CHIMICA ACTA LA English DT Article DE ozone; hydroperoxo; superoxo; hydrido; rhodium; kinetics ID HYDROGEN-ATOM TRANSFER; AQUEOUS-SOLUTIONS; PEROXIDE; WATER; DECOMPOSITION; DERIVATIVES; REACTIVITY; OXIDATION; EXCHANGE; PRODUCT AB Oxidation of the title complexes with ozone takes place by hydrogen atom, hydride, and electron transfer mechanisms. The reaction with (NH(3))(4)(H(2)O)RhH(2+) is a two electron process, believed to involve hydride transfer with a rate constant k = (2.2 +/- 0.2) x 10(5) M(-1) s(-1) and an isotope effect k(H)/k(D) = 2. The oxidation of (NH(3))(4)(H(2)O)RhOOH(2+) to (NH(3))(4)(H(2)O)RhOO(2+) by an apparent hydrogen atom transfer is quantitative and fast, k = (6.9 +/- 0.3) x 10(3) M(-1) s(-1), and constitutes a useful route for the preparation of the superoxo complex. The latter is also oxidized by ozone, but more slowly, k = 480 +/- 50 M(-1) s(-1). (C) 2007 Elsevier B.V. All rights reserved. C1 [Vasbinder, Michael J.; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Bakac, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM bakac@ameslab.gov NR 24 TC 5 Z9 5 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JUL 27 PY 2008 VL 361 IS 11 BP 3193 EP 3198 DI 10.1016/j.ica.2007.11.022 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 323VA UT WOS:000257475300028 ER PT J AU Huang, KW Grills, DC Han, JH Szalda, DJ Fujita, E AF Huang, Kuo-Wei Grills, David C. Han, Joseph H. Szalda, David J. Fujita, Etsuko TI Selective decarbonylation by a pincer PCP-rhodium(I) complex SO INORGANICA CHIMICA ACTA LA English DT Article DE Selective decarbonylation; Steric effect; Pincer; Rhodium ID NOBLE METAL COMPOUNDS; EFFECTIVE CORE POTENTIALS; MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC SYNTHESES; RHODIUM COMPLEX; CATALYZED DECARBONYLATION; CARBON-DIOXIDE; ACYL HALIDES; ALDEHYDES AB Here we report a highly selective stoichiometric decarbonylation reaction for alkylformates and alkynyl aldehydes by a rhodium-dinitrogen complex (PCP-Rh-N-2) at room temperature. While electronic effects of the substrates cannot be completely ruled out, the selectivity is rationalized by a steric effect, consistent with the results of an X-ray crystallographic study and density functional theory (DFT) modeling. (C) 2008 Elsevier B.V. All rights reserved. C1 [Huang, Kuo-Wei; Grills, David C.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Han, Joseph H.] Penguin Computing, San Francisco, CA 94107 USA. [Szalda, David J.] Bard Coll, Dept Nat Sci, New York, NY 10010 USA. RP Huang, KW (reprint author), Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore. EM hkw@nus.edu.sg; fujita@bnl.gov RI Fujita, Etsuko/D-8814-2013; Huang, Kuo-Wei/H-2303-2011; Grills, David/F-7196-2016 OI Huang, Kuo-Wei/0000-0003-1900-2658; Grills, David/0000-0001-8349-9158 FU Division of Chemical Sciences; Division of Geosciences; Division of Biosciences; US Department of Energy [DE-AC02-98CH10886]; BNL; Office of Basic Energy Sciences FX This work was performed at Brookhaven National Laboratory (BNL) and funded under Contract DE-AC02-98CH10886 with the US Department of Energy, supported by its Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences. K.-W.H. is grateful for a Gertrude and Maurice Goldhaber Distinguished Fellowship from BNL. NR 27 TC 15 Z9 15 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JUL 27 PY 2008 VL 361 IS 11 BP 3327 EP 3331 DI 10.1016/j.ica.2008.01.045 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 323VA UT WOS:000257475300046 ER PT J AU Aziz, Z van Geen, A Stute, M Versteeg, R Horneman, A Zheng, Y Goodbred, S Steckler, M Weinman, B Gavrieli, I Hoque, MA Shamsudduha, M Ahmed, KM AF Aziz, Z. van Geen, A. Stute, M. Versteeg, R. Horneman, A. Zheng, Y. Goodbred, S. Steckler, M. Weinman, B. Gavrieli, I. Hoque, M. A. Shamsudduha, M. Ahmed, K. M. TI Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh SO WATER RESOURCES RESEARCH LA English DT Article ID GANGES-BRAHMAPUTRA DELTA; ELECTRICAL-CONDUCTIVITY; BENGAL BASIN; INDUCTION MEASUREMENTS; GROUNDWATER DYNAMICS; SPATIAL VARIABILITY; DEPTH RELATIONS; DRINKING-WATER; WEST-BENGAL; FIELD AB The high-degree of spatial variability of dissolved As levels in shallow aquifers of the Bengal Basin has been well documented but the underlying mechanisms remain poorly understood. We compare here As concentrations measured in groundwater pumped from 4700 wells < 22 m (75 ft) deep across a 25 km(2) area of Bangladesh with variations in the nature of surface soils inferred from 18,500 measurements of frequency domain electromagnetic induction. A set of 14 hand auger cores recovered from the same area indicate that a combination of grain size and the conductivity of soil water dominate the electromagnetic signal. The relationship between pairs of individual EM conductivity and dissolved As measurements within a distance of 50 m is significant but highly scattered (r(2) = 0.12; n = 614). Concentrations of As tend to be lower in shallow aquifers underlying sandy soils and higher below finer-grained and high conductivity soils. Variations in EM conductivity account for nearly half the variance of the rate of increase of As concentration with depth, however, when the data are averaged over a distance of 50 m (r(2) = 0.50; n = 145). The association is interpreted as an indication that groundwater recharge through permeable sandy soils prevents As concentrations from rising in shallow reducing groundwater. C1 [Aziz, Z.] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA. [Aziz, Z.; van Geen, A.; Stute, M.; Horneman, A.; Zheng, Y.; Steckler, M.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Stute, M.] Barnard Coll, Dept Environm Sci, New York, NY USA. [Versteeg, R.] Idaho Natl Lab, Idaho Falls, ID USA. [Zheng, Y.] CUNY Queens Coll, New York, NY USA. [Goodbred, S.; Weinman, B.] Vanderbilt Univ, Nashville, TN USA. [Gavrieli, I.] Geol Survey Israel, IL-95501 Jerusalem, Israel. [Hoque, M. A.; Shamsudduha, M.; Ahmed, K. M.] Univ Dhaka, Dept Geol, Dhaka 1000, Bangladesh. RP Aziz, Z (reprint author), Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA. RI Goodbred, Steven/A-1737-2011; Hoque, Mohammad/I-3800-2013; OI Goodbred, Steven/0000-0001-7626-9864; Hoque, Mohammad/0000-0002-8271-6760; Ahmed, Kazi Matin/0000-0001-5188-4385 NR 67 TC 34 Z9 36 U1 3 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUL 26 PY 2008 VL 44 IS 7 AR W07416 DI 10.1029/2007WR006000 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 331HP UT WOS:000258003600001 ER PT J AU Park, Y Nyblade, AA Rodgers, AJ Al-Amri, A AF Park, Yongcheol Nyblade, Andrew A. Rodgers, Arthur J. Al-Amri, Abdullah TI S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Arabian shield; mantle; mantle plume; Rayleigh wave; tomography; shear wave velocity ID WESTERN SAUDI-ARABIA; RED-SEA; LITHOSPHERIC STRUCTURE; RECEIVER FUNCTIONS; CRUSTAL STRUCTURE; BASALT PROVINCE; JOINT INVERSION; YEMEN PLATEAU; BENEATH; PROPAGATION AB The shear wave velocity structure of the shallow upper mantle beneath the Arabian Shield was modeled by inverting Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurements between 10 and 45 s. For measuring phase velocities, we applied a modified array method to data from several regional networks that minimizes the distortion of raypaths caused by lateral heterogeneity. The new shear wave velocity model shows a broad low-velocity region to depths of similar to 150 km in the mantle across the Shield and a narrower low-velocity region at depths similar to 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of similar to 250-330 K. These findings, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities, body wave tomographic models, a S wave polarization analysis, and SKS splitting results for the Arabian Peninsula, the anomalous upper mantle structure in our new velocity model can be attributed to an upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the mantle transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Arabian Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with the significantly higher elevations along the Red Sea coast possibly resulting also from lithospheric thinning and dynamic uplift. C1 [Park, Yongcheol; Nyblade, Andrew A.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Rodgers, Arthur J.] Lawrence Livermore Natl Lab, Geophys & Global Secur Div, Livermore, CA 94551 USA. [Al-Amri, Abdullah] King Saud Univ, Geophys Observ, Riyadh 11451, Saudi Arabia. RP Park, Y (reprint author), Natl Inst Meteorol Res, Global Environm Syst Res Lab, 45 Gisangcheong Gil, Seoul 156720, South Korea. EM ypark@kma.go.kr RI Rodgers, Arthur/E-2443-2011 NR 72 TC 29 Z9 29 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD JUL 25 PY 2008 VL 9 AR Q07020 DI 10.1029/2007GC001895 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 331EI UT WOS:000257995100001 ER PT J AU Nowak, M Helleboid-Chapman, A Jakel, H Moitrot, E Rommens, C Pennacchio, LA Fruchart-Najib, J Fruchart, JC AF Nowak, Maxime Helleboid-Chapman, Audrey Jakel, Heidelinde Moitrot, Emmanuelle Rommens, Corinne Pennacchio, Len A. Fruchart-Najib, Jamila Fruchart, Jean-Charles TI Glucose regulates the expression of the apolipoprotein A5 gene SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE apolipoprotein A5; gene regulation; glucose; USF; cardiovascular disease ID UPSTREAM STIMULATORY FACTOR; PLASMA TRIGLYCERIDE LEVELS; PYRUVATE-KINASE GENE; PENTOSE-PHOSPHATE PATHWAY; ACTIVATED RECEPTOR-ALPHA; ELEMENT-BINDING PROTEIN; FATTY-ACID SYNTHASE; RESPONSE ELEMENT; TRANSCRIPTIONAL REGULATION; BETA-CELLS AB The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-Glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogues and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USE Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates the APOA5 gene via a dephosphorylation mechanism, resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that the APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross-talk between glucose and lipid metabolism. (C) 2008 Published by Elsevier Ltd. C1 [Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Fruchart-Najib, Jamila; Fruchart, Jean-Charles] Univ Lille 2, F-59006 Lille, France. [Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Fruchart, Jean-Charles] Inst Pasteur, Dept Atherosclerose, F-59019 Lille, France. [Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Fruchart, Jean-Charles] INSERM, U545, F-59019 Lille, France. [Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint Genome Inst, Berkeley, CA 94720 USA. RP Fruchart-Najib, J (reprint author), Univ Lille 2, F-59006 Lille, France. EM jamila.fruchart@univ-lille2.fr NR 47 TC 13 Z9 15 U1 0 U2 0 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 25 PY 2008 VL 380 IS 5 BP 789 EP 798 DI 10.1016/j.jmb.2008.04.057 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 335DZ UT WOS:000258272300003 PM 18572192 ER PT J AU Chrencik, JE Brooun, A Zhang, H Mathews, II Hura, GL Foster, SA Perry, JJP Streiff, M Ramage, P Widmer, H Bokoch, GM Tainer, JA Weckbecker, G Kuhn, P AF Chrencik, Jill E. Brooun, Alexei Zhang, Hui Mathews, Irimpan I. Hura, Greg L. Foster, Scott A. Perry, J. Jefferson P. Streiff, Markus Ramage, Paul Widmer, Hans Bokoch, Gary M. Tainer, John A. Weckbecker, Gisbert Kuhn, Peter TI Structural basis of guanine nucleotide exchange mediated by the T-Cell essential Vav1 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE GTPase; guanine nucleotide exchange; protein-protein interaction; transplantation ID X-RAY SOLUTION; DBL HOMOLOGY DOMAIN; RHO-GTPASES; PLECKSTRIN HOMOLOGY; PH DOMAIN; MACROMOLECULAR STRUCTURES; SOLUTION SCATTERING; CRYSTAL-STRUCTURE; DIFFRACTION DATA; ACTIVATION AB The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GET superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 angstrom resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein hateraction network. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Chrencik, Jill E.; Brooun, Alexei; Foster, Scott A.; Kuhn, Peter] Scripps Res Inst, Dept Cellular Biol, La Jolla, CA 92037 USA. [Zhang, Hui; Bokoch, Gary M.] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA. [Mathews, Irimpan I.] Stanford Synchrotron Radiat Lab, Palo Alto, CA 94305 USA. [Hura, Greg L.; Perry, J. Jefferson P.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.] Amrita Vishwa Vidyapeetham, Sch Biotechnol, Kollam, Kerala, India. [Streiff, Markus; Weckbecker, Gisbert] Novartis Pharma AG, NIBR, CH-4002 Basel, Switzerland. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ramage, Paul; Widmer, Hans] NIBR, Prot Struct Unit, CH-4002 Basel, Switzerland. RP Brooun, A (reprint author), Pfizer Inc, 10646 Sci Ctr Dr CB2, San Diego, CA 92121 USA. EM Alexei.brooun@pfizer.com; pkuhn@scripps.edu FU NCI NIH HHS [Y1-CO-1020]; NHLBI NIH HHS [R01 HL048008]; NIGMS NIH HHS [GM074961, U54 GM074961, U54 GM074961-030001, Y1-GM-1104] NR 47 TC 27 Z9 27 U1 0 U2 2 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 25 PY 2008 VL 380 IS 5 BP 828 EP 843 DI 10.1016/j.jmb.2008.05.024 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 335DZ UT WOS:000258272300007 PM 18589439 ER PT J AU Arsene, I Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Dalsgaard, HH Debbe, R Fox, B Gaardhoje, JJ Hagel, K Jipa, A Johnson, EB Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Murray, M Nygaard, C Natowitz, J Nielsen, BS Pal, D Qviler, A Ristea, C Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Yang, H Wada, R AF Arsene, I. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Dalsgaard, H. H. Debbe, R. Fox, B. Gaardhoje, J. J. Hagel, K. Jipa, A. Johnson, E. B. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Murray, M. Nygaard, C. Natowitz, J. Nielsen, B. S. Pal, D. Qviler, A. Ristea, C. Rohrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Yang, H. Wada, R. CA BRAHMS Collaboration TI Single-transverse-spin asymmetries of identified charged hadrons in polarized pp collisions at root s=62.4 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID GEV-C; FRAGMENTATION; SCATTERING AB The first measurements of x(F)-dependent single- spin asymmetries of identified charged hadrons, pi(+/-), K(+/-), and protons, from transversely polarized proton- proton collisions at 62.4 GeV at RHIC are presented. Large asymmetries are seen in the pion and kaon channels. The asymmetries in inclusive pi(+/-) production, A(N)(pi(+)), increase with x(F) from 0 to similar to 0.25 and A(N)(pi(-)) decrease from 0 to similar to - 0.4. Observed asymmetries for K(-) unexpectedly show positive values similar to those for K(+), increasing with x(F), whereas proton asymmetries are consistent with zero over the measured kinematic range. Comparisons of the data with predictions of QCD- based models are presented. C1 [Arsene, I.; Lovhoiden, G.; Qviler, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway. [Beavis, D.; Chasman, C.; Debbe, R.; Fox, B.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Karabowicz, R.; Katrynska, N.; Majka, Z.; Staszel, P.] Jagiellonian Univ, Smoluchowski Inst Phys, Krakow, Poland. [Budick, B.] NYU, New York, NY 10003 USA. [Bearden, I. G.; Boggild, H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Larsen, T. M.; Nygaard, C.; Nielsen, B. S.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX 77843 USA. [Rohrich, D.; Yang, H.] Univ Bergen, Dept Phys, Bergen, Norway. [Besliu, C.; Jipa, A.] Univ Bucharest, Bucharest, Romania. [Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66049 USA. RP Arsene, I (reprint author), Univ Oslo, Dept Phys, Oslo, Norway. RI Christensen, Christian Holm/A-4901-2010; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014; Christensen, Christian/D-6461-2012 OI Christensen, Christian Holm/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094; Christensen, Christian/0000-0002-1850-0121 FU DoE (USA); NSRC (Denmark); RC (Norway); SCSR (Poland); MoR (Romania); Renaissance Technologies Corp FX We thank F. Yuan, U. D'Alesio and Y. Koike for providing us with their calculations. This work was supported by the office of NP in DoE (USA), NSRC (Denmark), RC (Norway), SCSR (Poland), MoR (Romania), and a sponsored research grant from Renaissance Technologies Corp. NR 30 TC 101 Z9 101 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 042001 DI 10.1103/PhysRevLett.101.042001 PG 4 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100012 PM 18764320 ER PT J AU Boixo, S Datta, A Davis, MJ Flammia, ST Shaji, A Caves, CM AF Boixo, Sergio Datta, Animesh Davis, Matthew J. Flammia, Steven T. Shaji, Anil Caves, Carlton M. TI Quantum metrology: Dynamics versus entanglement SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; CESIUM; GASES AB A parameter whose coupling to a quantum probe of n constituents includes all two-body interactions between the constituents can be measured with an uncertainty that scales as 1/n(3/2), even when the constituents are initially unentangled. We devise a protocol that achieves the 1/n(3/2) scaling without generating any entanglement among the constituents, and we suggest that the protocol might be implemented in a two-component Bose-Einstein condensate. C1 [Boixo, Sergio; Datta, Animesh; Shaji, Anil; Caves, Carlton M.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Boixo, Sergio] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Davis, Matthew J.; Caves, Carlton M.] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia. [Flammia, Steven T.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. RP Boixo, S (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM shaji@unm.edu RI Davis, Matthew/A-1464-2008; Datta, Animesh/E-8139-2011; Shaji, Anil/A-3443-2012; Caves, Carlton/K-8167-2014; Flammia, Steven/C-8637-2009 OI Davis, Matthew/0000-0001-8337-0784; Datta, Animesh/0000-0003-4021-4655; Caves, Carlton/0000-0001-8876-1186; Flammia, Steven/0000-0002-3975-0226 FU U. S. Office of Naval Research [N00014-07-1-0304]; Australian Research Council's Discovery Projects [DP0343094]; National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396]; Perimeter Institute for Theoretical Physics; Industry Canada; Ministry of Research Innovation FX The authors thank I. H. Deutsch and G. J. Milburn for advice on the theory and practice of atomic BECs. This work was supported in part by the U. S. Office of Naval Research (Grant No. N00014-07-1-0304), the Australian Research Council's Discovery Projects funding scheme (Project No. DP0343094), and the National Nuclear Security Administration of the U. S. Department of Energy (Contract No. DE-AC52-06NA25396). S. T. F. was supported by the Perimeter Institute for Theoretical Physics; research at Perimeter is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation. NR 19 TC 85 Z9 87 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 040403 DI 10.1103/PhysRevLett.101.040403 PG 4 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100003 PM 18764311 ER PT J AU Gregori, G Glenzer, SH Fournier, KB Campbell, KM Dewald, EL Jones, OS Hammer, JH Hansen, SB Wallace, RJ Landen, OL AF Gregori, G. Glenzer, S. H. Fournier, K. B. Campbell, K. M. Dewald, E. L. Jones, O. S. Hammer, J. H. Hansen, S. B. Wallace, R. J. Landen, O. L. TI X-ray scattering measurements of radiative heating and cooling dynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID THOMSON SCATTERING; LASER; WAVE; SPECTROSCOPY; PLASMAS; DRIVEN; MODEL AB Spectrally and time-resolved x-ray scattering is used to extract the temperature and charge state evolution in a near solid density carbon foam driven by a supersonic soft x-ray heat wave. The measurements show a rapid heating of the foam material (similar to 200 eV/ns) followed by a similarly fast decline in the electron temperature as the foam cools. The results are compared to an analytic power balance model and to results from radiation-hydrodynamics simulations. Finally, the combination of charge state and temperature extracted from this known density isochorically heated plasma is used to distinguish between dense plasma ionization balance models. C1 [Gregori, G.; Glenzer, S. H.; Fournier, K. B.; Campbell, K. M.; Dewald, E. L.; Jones, O. S.; Hammer, J. H.; Hansen, S. B.; Wallace, R. J.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gregori, G.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. RP Gregori, G (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 26 TC 39 Z9 40 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 045003 DI 10.1103/PhysRevLett.101.045003 PG 4 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100028 PM 18764336 ER PT J AU Huotari, S Hamalainen, K Diamant, R Sharon, R Kao, CC Deutsch, M AF Huotari, S. Hamalainen, K. Diamant, R. Sharon, R. Kao, C. C. Deutsch, M. TI Intrashell electron-interaction-mediated photoformation of hollow atoms near threshold SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE PHOTOIONIZATION; HYPERSATELLITE SPECTRA; CROSS-SECTION; BETA-DECAY; IONIZATION; HELIUM; TRANSITION; EXCITATION; ALPHA; ABSORPTION AB Double photoionization (DPI) of an atom by a single photon is a direct consequence of electron-electron interactions within the atom. We have measured the evolution of the K-shell DPI from threshold up in transition metals by high-resolution x-ray emission spectroscopy of the K(h)alpha hypersatellites, photoexcited by monochromatized synchrotron radiation. The measured evolution of the single-to-double photoionization cross-section ratio with excitation energy was found to be universal. Theoretical fits suggest that near threshold DPI is predominantly a semiclassical knockout effect, rather than the purely quantum-mechanical shake-off observed at the infinite photon energy limit. C1 [Huotari, S.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Hamalainen, K.] Univ Helsinki, Dept Phys, Div Mat Phys, FI-00014 Helsinki, Finland. [Diamant, R.; Sharon, R.; Deutsch, M.] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Kao, C. C.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Huotari, S (reprint author), European Synchrotron Radiat Facil, 6 Rue Jules Horowitz,BP 220, F-38043 Grenoble, France. EM deutsch@mail.biu.ac.il RI Hamalainen, Keijo/A-3986-2010; OI Hamalainen, Keijo/0000-0002-9234-9810; Huotari, Simo/0000-0003-4506-8722 FU NSLS; ESRF; Israel Science Foundation, Jerusalem; Academy of Finland [201291, 205967] FX An important discussion with M. Amusia (Hebrew University, Jerusalem), and advice and experimental support by Z. Yin, L. E. Berman (NSLS), J. P. Rueff, R. Verbeni, and G. Monaco (ESRF) are gratefully acknowledged. We thank The Israel Science Foundation, Jerusalem (M. D.) and the Academy of Finland (Contract Nos. 201291 and 205967 for K. H.) for support, and NSLS and ESRF for beam time. NR 33 TC 15 Z9 15 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 043001 DI 10.1103/PhysRevLett.101.043001 PG 4 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100014 PM 18764322 ER PT J AU Mikhaylushkin, AS Simak, SI Burakovsky, L Chen, SP Johansson, B Preston, DL Swift, DC Belonoshko, AB AF Mikhaylushkin, A. S. Simak, S. I. Burakovsky, L. Chen, S. P. Johansson, B. Preston, D. L. Swift, D. C. Belonoshko, A. B. TI Comment on "Molybdenum at high pressure and temperature: Melting from another solid phase'' - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID STABILITY C1 [Mikhaylushkin, A. S.; Simak, S. I.] Linkoping Univ, IFM, S-58183 Linkoping, Sweden. [Burakovsky, L.; Chen, S. P.; Swift, D. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Preston, D. L.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Johansson, B.] Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. [Johansson, B.; Belonoshko, A. B.] Royal Inst Technol, S-10044 Stockholm, Sweden. RP Mikhaylushkin, AS (reprint author), Linkoping Univ, IFM, S-58183 Linkoping, Sweden. RI Simak, Sergei/C-3030-2014 OI Simak, Sergei/0000-0002-1320-389X NR 7 TC 18 Z9 19 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 049602 DI 10.1103/PhysRevLett.101.049602 PG 1 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100063 ER PT J AU Shi, M Chang, J Pailhes, S Norman, MR Campuzano, JC Mansson, M Claesson, T Tjernberg, O Bendounan, A Patthey, L Momono, N Oda, M Ido, M Mudry, C Mesot, J AF Shi, M. Chang, J. Pailhes, S. Norman, M. R. Campuzano, J. C. Mansson, M. Claesson, T. Tjernberg, O. Bendounan, A. Patthey, L. Momono, N. Oda, M. Ido, M. Mudry, C. Mesot, J. TI Coherent d-wave superconducting gap in underdoped La(2-x)Sr(x)CuO(4) by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-T-C; NORMAL-STATE; PSEUDOGAP AB We present angle-resolved photoemission spectroscopy data on moderately underdoped La(1.855)Sr(0.145)CuO(4) at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple d-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La(1.895)Sr(0.105)CuO(4) also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV. C1 [Shi, M.; Chang, J.; Pailhes, S.; Bendounan, A.; Patthey, L.; Mudry, C.; Mesot, J.] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. [Chang, J.; Pailhes, S.; Bendounan, A.; Mesot, J.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Norman, M. R.; Campuzano, J. C.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Campuzano, J. C.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Mansson, M.; Claesson, T.; Tjernberg, O.] Royal Inst Technol KTH, S-16440 Kista, Sweden. [Momono, N.; Oda, M.; Ido, M.] Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan. RP Shi, M (reprint author), Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. RI Norman, Michael/C-3644-2013; Mansson, Martin/C-1134-2014; Chang, Johan/F-1506-2014; Mudry, Christopher/M-5587-2014; OI Mansson, Martin/0000-0002-3086-9642; Chang, Johan/0000-0002-4655-1516; Mudry, Christopher/0000-0003-4074-6758; Tjernberg, Oscar/0000-0001-8669-6886 NR 21 TC 62 Z9 63 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 047002 DI 10.1103/PhysRevLett.101.047002 PG 4 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100049 PM 18764357 ER PT J AU Tartakovsky, AM Tartakovsky, DM Meakin, P AF Tartakovsky, Alexandre M. Tartakovsky, Daniel M. Meakin, Paul TI Stochastic Langevin model for flow and transport in porous media SO PHYSICAL REVIEW LETTERS LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS; BIODEGRADATION; DISPERSION AB We present a new model for fluid flow and solute transport in porous media, which employs smoothed particle hydrodynamics to solve a Langevin equation for flow and dispersion in porous media. This allows for effective separation of the advective and diffusive mixing mechanisms, which is absent in the classical dispersion theory that lumps both types of mixing into dispersion coefficient. The classical dispersion theory overestimates both mixing-induced effective reaction rates and the effective fractal dimension of the mixing fronts associated with miscible fluid Rayleigh-Taylor instabilities. We demonstrate that the stochastic (Langevin equation) model overcomes these deficiencies. C1 [Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Tartakovsky, Daniel M.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Meakin, Paul] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov; dmt@ucsd.edu; paul.meakin@inl.gov RI Tartakovsky, Daniel/E-7694-2013 FU Advanced Scientific Computing Research Program; Envonmental Management Science Program of the U. S. Department of Energy Office of Science; U. S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Advanced Scientific Computing Research Program and the Envonmental Management Science Program of the U. S. Department of Energy Office of Science. The Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle under Contract No. DE-AC05-76RL01830. NR 12 TC 52 Z9 53 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2008 VL 101 IS 4 AR 044502 DI 10.1103/PhysRevLett.101.044502 PG 4 WC Physics, Multidisciplinary SC Physics GA 337HV UT WOS:000258427100025 PM 18764333 ER PT J AU Tokar, RL Wilson, RJ Johnson, RE Henderson, MG Thomsen, MF Cowee, MM Sittler, EC Young, DT Crary, FJ McAndrews, HJ Smith, HT AF Tokar, R. L. Wilson, R. J. Johnson, R. E. Henderson, M. G. Thomsen, M. F. Cowee, M. M. Sittler, E. C., Jr. Young, D. T. Crary, F. J. McAndrews, H. J. Smith, H. T. TI Cassini detection of water-group pick-up ions in the Enceladus torus SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETOSPHERE; PLASMA; ATMOSPHERE; SATURN AB This study reports direct detection by the Cassini plasma spectrometer of freshly-produced water-group pick-up ions within the proposed Enceladus torus, a radially narrow toroidal region surrounding Saturn that contains a high density of water-group neutrals. This torus is produced by the icy plumes observed near the south pole of Enceladus. The ions are created by charge exchange collisions between water-group neutrals in the Enceladus torus and thermal ions corotating with Saturn. They are identified in the Cassini data via their characteristic ring-like signatures in ion velocity distributions. In the radial distance range of 4.0 to 4.5 R-S, the density of these non-thermalized ions is estimated to be at least 5.2 cm(-3), about 8% of the total ion density. The estimated density together with ionization, charge exchange, and loss times, yield an ion thermalization time of at least 3150 s, in reasonable agreement with hybrid particle simulations. C1 [Tokar, R. L.; Wilson, R. J.; Henderson, M. G.; Thomsen, M. F.; Cowee, M. M.; McAndrews, H. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Young, D. T.; Crary, F. J.] SW Res Inst, San Antonio, TX USA. [Johnson, R. E.] Univ Virginia, Charlottesville, VA USA. [Sittler, E. C., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, H. T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Tokar, RL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rlt@lanl.gov RI Wilson, Rob/C-2689-2009; Smith, Howard/H-4662-2016; Henderson, Michael/A-3948-2011 OI Wilson, Rob/0000-0001-9276-2368; Smith, Howard/0000-0003-3537-3360; Henderson, Michael/0000-0003-4975-9029 NR 13 TC 37 Z9 37 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 24 PY 2008 VL 35 IS 14 AR L14202 DI 10.1029/2008GL034749 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 331ER UT WOS:000257996000002 ER PT J AU Piccoli, PMB Koetzle, TF Schultz, AJ Zhurova, EA Stare, J Pinkerton, AA Eckert, J Hadzi, D AF Piccoli, Paula M. B. Koetzle, Thomas F. Schultz, Arthur J. Zhurova, Elizabeth A. Stare, Jernej Pinkerton, A. Alan Eckert, Juergen Hadzi, Dusan TI Variable temperature neutron diffraction and X-ray charge density studies of tetraacetylethane SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID UREA-PHOSPHORIC ACID; SHORT HYDROGEN-BOND; PARRINELLO MOLECULAR-DYNAMICS; SCHRODINGER-EQUATION; ELECTRON-DENSITY; CRYSTAL; PROTON; SINGLE; BENZOYLACETONE; MIGRATION AB Single crystal neutron diffraction data have been collected on a sample of enolized 3,4-diacetyl-2,5-hexanedione (tetraacetylethane, TAE) at five temperatures between 20 and 298 K to characterize the temperature-dependent behavior of the short, strong, intramolecular hydrogen bond. Upon decreasing the temperature from 298 K to 20 K, the O2-H1 distance decreases from 1.171(11) to 1.081(2) angstrom and the O1 center dot center dot center dot H1 distance increases from 1.327(10) to 1.416(6) angstrom. The convergence of the C-O bond lengths from inequivalent distances at low temperature to identical values (1.285(4) angstrom) at 298 K is consistent with a resonance-assisted hydrogen bond. However, a rigid bond analysis indicates that the structure at 298 K is disordered. The disorder vanishes at lower temperatures. Short intermolecular C-H center dot center dot center dot O contacts may be responsible for the ordering at low temperature. The intramolecular O center dot center dot center dot O distance (2.432 +/- 0.006 angstrom) does not change with temperature. X-ray data at 20 K were measured to analyze the charge density and to gain additional insight into the nature of the strong hydrogen bond. Quantum mechanical calculations demonstrate that periodic boundary conditions provide significant enhancement over gas phase models in that superior agreement with the experimental structure is achieved when applying periodicity. One-dimensional potential energy calculations followed by quantum treatment of the proton reproduce the location of the proton nearer to the O2 site reasonably well, although they overestimate the O-H distance at low temperatures. The choice of the single-point energy calculation strategy for the proton potential is justified by the fact that the proton is preferably located nearer to O2 rather than being equally distant to O1 and O2 or evenly distributed (disordered) between them. C1 [Piccoli, Paula M. B.; Koetzle, Thomas F.; Schultz, Arthur J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhurova, Elizabeth A.; Pinkerton, A. Alan] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Stare, Jernej; Hadzi, Dusan] Natl Inst Chem KI, SI-1000 Ljubljana, Slovenia. [Eckert, Juergen] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. RP Piccoli, PMB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pmbpiccoli@hotmail.com OI pinkerton, alan/0000-0002-2239-1992 NR 58 TC 17 Z9 17 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 24 PY 2008 VL 112 IS 29 BP 6667 EP 6677 DI 10.1021/jp800204r PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 327IX UT WOS:000257723900021 PM 18593102 ER PT J AU Liu, SB Govind, N AF Liu, Shubin Govind, Niranjan TI Toward understanding the nature of internal rotation barriers with a new energy partition scheme: Ethane and n-butane SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; QUANTUM MOLECULAR-DYNAMICS; HUNDS MULTIPLICITY RULE; BOND ORBITAL ANALYSIS; ELECTRON-DENSITY; BASIS-SET; STAGGERED CONFORMATION; ELECTROPHILICITY INDEX; REACTIVITY INDEXES; FISHER INFORMATION AB On the basis of an alternative energy partition scheme where density-based quantification of the steric effect was proposed [Liu, S. B. J. Chem. Phys. 2007, 126, 2441031, the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane and n-butane is systematically investigated in this work. Within the new scheme, the total electronic energy is decomposed into three independent components, steric, electrostatic, and fermionic quantum. The steric energy defined in this way is repulsive, exclusive, and extensive and intrinsically linked to Bader's atoms in molecules approach. Two kinds of differences, adiabatic (with optimal structure) and vertical (with fixed geometry), are considered for the molecules in this work. We find that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer for both molecules, but in the vertical cases the staggered conformer retains a larger steric repulsion. For ethane, a linear relationship between the total energy difference and the fermionic quantum energy difference is discovered. This linear relationship, however, does not hold for n-butane, whose behaviors in energy component differences are found to be more complicated. The impact of basis set and density functional choices on energy components from the new energy partition scheme has been investigated, as has its comparison with another definition of the steric effect in the literature in terms of the natural bond orbital analysis through the Pauli Exclusion Principle. In addition, profiles of conceptual density functional theory reactivity indices as a function of dihedral angle changes have been examined. Put together, these results suggest that the new energy partition scheme provides insights from a different perspective of internal rotation barriers. C1 [Liu, Shubin] Univ N Carolina, Renaissance Comp Inst, Chapel Hill, NC 27599 USA. [Govind, Niranjan] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Liu, SB (reprint author), Univ N Carolina, Renaissance Comp Inst, Chapel Hill, NC 27599 USA. RI Liu, Shubin/B-1502-2009; Govind, Niranjan/D-1368-2011 OI Liu, Shubin/0000-0001-9331-0427; NR 82 TC 65 Z9 66 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 24 PY 2008 VL 112 IS 29 BP 6690 EP 6699 DI 10.1021/jp800376a PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 327IX UT WOS:000257723900023 PM 18563887 ER PT J AU Hou, CH Wang, XQ Liang, CD Yiacoumi, S Tsouris, C Dai, S AF Hou, Chia-Hung Wang, Xiqing Liang, Chengdu Yiacoumi, Sotira Tsouris, Costas Dai, Sheng TI Molecular-sieving capabilities of mesoporous carbon membranes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DOUBLE-LAYER CAPACITORS; GOLD NANOTUBULE MEMBRANES; ELECTRICAL DOUBLE-LAYER; ION SIZE; ELECTROSORPTION CAPACITANCE; ACTIVATED CARBONS; PORE STRUCTURE; ELECTRODES; NANOCOMPOSITE; PERFORMANCE AB The size-sieving properties of a mesoporous carbon membrane were studied via molecular permeation and cyclic voltammetry experiments. Two phenomena, simple diffusion and electrochemically aided diffusion, were investigated. Molecular diffusion through the membrane was caused by a concentration gradient across the membrane and was facilitated by electrosorption of ions under an externally applied electric field. The diffusion of molecules transported through the membrane was characterized by the values of permeability and apparent diffusion coefficient in the membrane. Because larger molecules are more restricted in terms of penetrating the pores, the size-based selectivity of the mesoporous carbon membrane could be readily observed. For example, in the two-component permeation experiment, a high selectivity (alpha = 56.9) of anilinium over Rhodamine B was found. It is inferred that the diffusive transport of the larger Rhodamine B molecules with a more extensive retardation comes from the competitive mechanism between the two kinds of molecules in accessing the pore. A series of voltammetric experiments involving a mesoporous carbon membrane immersed in various electrolytes with ions of different sizes allowed the observation of ion-exclusion phenomena. It was found that the size effect is significant for electrochemically aided diffusion and electrosorption processes. The number of cations inside the pores of the membrane decreases with increasing cation size. This phenomenon is due to the size-exclusion effect, which could be demonstrated by the values of electrical double-layer capacitance for sodium, magnesium, and tetrahexylammonium cations, at potentials ranging from negative values to the point of zero charge, corresponding to 86.7, 73.1, and 50.0 F/g, respectively. The findings of this work manifest that the relationship between the pore size and the dimensions of the molecules determines the transport and sorption behavior of nanoporous carbon materials. C1 [Hou, Chia-Hung; Wang, Xiqing; Liang, Chengdu; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Hou, Chia-Hung; Yiacoumi, Sotira] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Tsouris, Costas] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Wang, Xiqing/E-3062-2010; Liang, Chengdu/G-5685-2013; Hou, Chia-Hung/J-4350-2013; Tsouris, Costas/C-2544-2016; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Hou, Chia-Hung/0000-0001-5149-4096; Tsouris, Costas/0000-0002-0522-1027; Dai, Sheng/0000-0002-8046-3931 NR 47 TC 20 Z9 20 U1 4 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 24 PY 2008 VL 112 IS 29 BP 8563 EP 8570 DI 10.1021/jp8006427 PG 8 WC Chemistry, Physical SC Chemistry GA 327IY UT WOS:000257724000022 PM 18590324 ER PT J AU Epling, WS Peden, CHF Szanyi, J AF Epling, William S. Peden, Charles H. F. Szanyi, Janos TI Carbonate formation and stability on a Pt/BaO/(gamma)-Al2O3 NOX storage/reduction catalyst SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STORAGE-REDUCTION; FT-IR; 3-WAY CATALYST; STORED NOX; CO2; BAO/AL2O3; DIOXIDE; RELEASE; OXIDES; WATER AB There has been recent debate regarding the role or influence of BaCO3 species on the performance or operation of Pt/BaO/Al2O3 model NOX storage/reduction (NSR) catalysts. This influence is primarily regarded as negative, but the extent of its impact is not clear. For this reason, the formation and stability of barium carbonate species on a Pt/BaO/Al2O3 model NSR catalyst were characterized using Fourier transform infrared (FTIR) spectroscopy. The catalyst sample was exposed to CO2, CO, and CO + O-2 at various temperatures, from 300 to >500 K. Bidentate carbonate species readily form under all conditions, while at higher temperatures, unidentate species were also observed and likely formed from bidentate species as a result of a change in their coordination to the oxide surface. Reaction of COX species with residual hydroxide species on the catalyst led to the formation of bicarbonates, and when the sample was exposed to CO at low temperature, formate species were also formed. These formate species decomposed at elevated temperatures and contributed to the formation of carbonates. H2O exposure resulted in the agglomeration of various COX-containing phases to larger particles. C1 Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Epling, WS (reprint author), Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. EM wepling@chemengmail.waterloo.ca OI Peden, Charles/0000-0001-6754-9928 NR 43 TC 31 Z9 32 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 24 PY 2008 VL 112 IS 29 BP 10952 EP 10959 DI 10.1021/jp712180q PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 327IZ UT WOS:000257724100053 ER PT J AU Dupuis, M Karataglidis, S Bauge, E Delaroche, JP Gogny, D AF Dupuis, M. Karataglidis, S. Bauge, E. Delaroche, J. -P. Gogny, D. TI Challenging nuclear structure models through a microscopic description of proton inelastic scattering off Pb-208 SO PHYSICS LETTERS B LA English DT Article ID PARITY LEVELS; EXCITATION; STATES; STRENGTH AB Differential cross sections from fully microscopic calculations of inelastic proton scattering off Pb-208 are compared to experimental scattering data for incident proton energies between 65 and 201 MeV. The required nucleon-nucleus interactions were formed by folding nuclear structure information with a reliable nucleon-nucleon effective interaction that has no adjustable parameter. The absence of phenomenological normalisation in our approach offers the possibility to interpret with confidence the calculated results in terms of the quality of the underlying nuclear structure description: a feature that until recently, to the electron probe. We have used this method to investigate the had been reserved, effect of long range correlations embedded in excited states on calculated inelastic observables and demonstrate the sensitivity of nucleon scattering predictions to details of the nuclear structure. (C) 2008 Elsevier B.V. All rights reserved. C1 [Dupuis, M.; Karataglidis, S.; Bauge, E.; Delaroche, J. -P.] Commissariat Energie Atom, Ctr DAM Ile France, Serv Phys Nucl, F-91297 Bruyeres Le Chatel, Arpajon, France. [Gogny, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Bauge, E (reprint author), Commissariat Energie Atom, Ctr DAM Ile France, Serv Phys Nucl, F-91297 Bruyeres Le Chatel, Arpajon, France. EM eric.bauge@cea.fr NR 26 TC 11 Z9 11 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 24 PY 2008 VL 665 IS 4 BP 152 EP 156 DI 10.1016/j.phystetb.2008.05.061 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 334GR UT WOS:000258210800007 ER PT J AU Stetcu, I Liu, CP Friar, JL Hayes, AC Navratil, P AF Stetcu, I. Liu, C. -P. Friar, J. L. Hayes, A. C. Navratil, P. TI Nuclear electric dipole moment of He-3 SO PHYSICS LETTERS B LA English DT Article DE time-reversal and parity violation; nucleon-nucleon interactions; electric dipole moments ID EFFECTIVE-FIELD THEORY; ION STORAGE-RINGS; NEUTRON; FORCES AB A permanent electric dipole moment (EDM) of a physical system requires time-reversal (T) and parity (P) violation. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Here we calculate the magnitude of the P-, T-violating EDM of He-3 and the expected sensitivity of such a measurement to the underlying P, T-violating interactions. Assuming that the coupling constants are of comparable magnitude for pi-, rho-, and omega-exchanges, we find that the pion-exchange contribution dominates. Our results suggest that a measurement of the He-3 EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P-, T-violating interaction. (C) 2008 Elsevier B.V. All rights reserved. C1 [Stetcu, I.; Liu, C. -P.; Friar, J. L.; Hayes, A. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Liu, C. -P.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Liu, C. -P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Stetcu, I (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM istet@lanl.gov NR 46 TC 33 Z9 33 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 24 PY 2008 VL 665 IS 4 BP 168 EP 172 DI 10.1016/j.physletb.2008.06.019 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 334GR UT WOS:000258210800010 ER PT J AU Aoki, S Chiu, TW Fukaya, H Hashimoto, S Hsieh, TH Kaneko, T Matsufuru, H Noaki, J Ogawa, K Onogi, T Yamada, N AF Aoki, S. Chiu, T. W. Fukaya, H. Hashimoto, S. Hsieh, T. H. Kaneko, T. Matsufuru, H. Noaki, J. Ogawa, K. Onogi, T. Yamada, N. TI Topological susceptibility in two-flavor lattice QCD with exact chiral symmetry SO PHYSICS LETTERS B LA English DT Article AB We determine the topological susceptibility X(t) in two-flavor QCD using the lattice simulations at a fixed topological sector. The topological charge density is unambiguously defined on the lattice using the overlap-Dirac operator which possesses exact chiral symmetry. Simulations are performed on a 163 x 32 lattice at lattice spacing similar to 0.12 fm at six sea quark masses m(q) ranging in m(s)/6 - m(s) with m(s) the physical strange quark mass. The Xt is extracted from the constant behavior of the time-correlation of flavor-singlet pseudo-scalar meson two-point function at large distances, which arises from the finite size effect due to the fixed topology. In the Small m(q) regime, our result of Xt is proportional to m(q) as expected from chiral effective theory. Using the formula X(t) = m(q) Sigma/N(f) by Leutwyler-Smilga, we obtain the chiral condensate in N(f) = 2 QCD as Sigma(MS) over bar (2 GeV) = [252(5)(10) MeV](3), in good agreement with our previous result obtained in the c-regime. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chiu, T. W.; Ogawa, K.] Natl Taiwan Univ, Ctr Theoret Sci, Dept Phys, Taipei 10617, Taiwan. [Chiu, T. W.; Ogawa, K.] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Fukaya, H.] RIKEN, Theoret Phys Lab, Wako, Saitama 3510198, Japan. [Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Noaki, J.; Yamada, N.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Hsieh, T. H.] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan. [Onogi, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Chiu, TW (reprint author), Natl Taiwan Univ, Ctr Theoret Sci, Dept Phys, Taipei 10617, Taiwan. EM twchiu@phys.ntu.edu.tw RI Hsieh, Tung-Han/E-1740-2011; OI Chiu, Ting-Wai/0000-0002-7371-1132 NR 39 TC 31 Z9 31 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 24 PY 2008 VL 665 IS 4 BP 294 EP 297 DI 10.1016/j.physletb.2008.06.039 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 334GR UT WOS:000258210800033 ER PT J AU Sicard-Piet, A Bourdarie, S Boscher, D Friedel, RHW Thomsen, M Goka, T Matsumoto, H Koshiishi, H AF Sicard-Piet, A. Bourdarie, S. Boscher, D. Friedel, R. H. W. Thomsen, M. Goka, T. Matsumoto, H. Koshiishi, H. TI A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAGNETOSPHERIC PLASMA ANALYZER; GEOSYNCHRONOUS ORBIT AB Department Environnement Spatial, Office National d'Etudes et de Recherches Ae ' rospatiales (ONERA) has been developing a model for the geostationary electron environment since 2003. Until now, this model was called Particle ONERA- LANL Environment ( POLE), and it is valid from 30 keV up to 5.2MeV. POLE is based on the full complement of Los Alamos National Laboratory geostationary satellites, covers the period 1976-- 2005, and takes into account the solar cycle variation. Over the period 1976 to present, four different detectors were flown: charged particle analyzer ( CPA), synchronous orbit particle analyzer ( SOPA), energetic spectra for particles ( ESP), and magnetospheric plasma analyzer ( MPA). Only the first three were used to develop the POLE model. Here we extend the energy coverage of the model to low energies using MPA measurements. We further include the data from the Japanese geostationary spacecraft, Data Relay Test Satellite ( DRTS). These data are now combined into an extended geostationary electron model which we call IGE- 2006. C1 [Sicard-Piet, A.; Bourdarie, S.; Boscher, D.] Off Natl Etud & Rech Aerosp, Dept Environm Spatial, F-31400 Toulouse, France. [Friedel, R. H. W.; Thomsen, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goka, T.; Matsumoto, H.; Koshiishi, H.] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki 3058505, Japan. RP Sicard-Piet, A (reprint author), Off Natl Etud & Rech Aerosp, Dept Environm Spatial, F-31400 Toulouse, France. EM angelica.sicard@onera.fr; sebastien.bourdarie@onera.fr; daniel.boscher@onera.fr; friedel@lanl.gov; mthomsen@lanl.gov; goka.tateo@jaxa.jp; matsumoto.haruhisa@jaxa.jp; koshiishi.hideki@jaxa.jp RI Friedel, Reiner/D-1410-2012 OI Friedel, Reiner/0000-0002-5228-0281 NR 15 TC 17 Z9 18 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUL 24 PY 2008 VL 6 IS 7 AR S07003 DI 10.1029/2007SW000368 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 331HE UT WOS:000258002500001 ER PT J AU Pincus, R Batstone, CP Hofmann, RJP Taylor, KE Glecker, PJ AF Pincus, Robert Batstone, Crispian P. Hofmann, Robert J. Patrick Taylor, Karl E. Glecker, Peter J. TI Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NUMERICAL WEATHER PREDICTION AB This paper describes a set of metrics for evaluating the simulation of clouds, radiation, and precipitation in the present-day climate. As with the skill scores used to measure the accuracy of short-term weather forecasts, these metrics are low-order statistical measures of agreement with relevant, well-observed physical quantities. The metrics encompass five statistical summaries computed for five physical quantities (longwave, shortwave, and net cloud radiative effect, projected cloud fraction, and surface precipitation rate) over the global climatological annual cycle. Agreement is measured against two independent observational data sets. The metrics are computed for the models that participated in the Coupled Model Intercomparison Project phase 3, which formed the basis for the Fourth Assessment of the IPCC. Model skill does not depend strongly on the data set used for verification, indicating that observational uncertainty does not limit the ability to assess model simulations of these fields. No individual model excels in all scores though the "IPCC mean model,'' constructed by averaging the fields produced by all the CMIP models, performs particularly well across the board. This skill is due primarily to the individual model errors being distributed on both sides of the observations, and to a lesser degree to the models having greater skill at simulating largescale features than those near the grid scale. No measure of model skill considered here is a good predictor of the strength of cloud feedbacks under climate change. The model climatologies, observational data sets, and metric scores are available on-line. C1 [Pincus, Robert; Batstone, Crispian P.; Hofmann, Robert J. Patrick] Univ Colorado, NOAA, Earth System Res Lab, Cooperat Inst Res Environm Sci,Div Phys Sci, Boulder, CO 80305 USA. [Taylor, Karl E.; Glecker, Peter J.] PCMDI, Livermore, CA 94551 USA. [Taylor, Karl E.; Glecker, Peter J.] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. RP Pincus, R (reprint author), Univ Colorado, NOAA, Earth System Res Lab, Cooperat Inst Res Environm Sci,Div Phys Sci, 325 Broadway, Boulder, CO 80305 USA. EM robert.pincus@colorado.edu RI Taylor, Karl/F-7290-2011; Gleckler, Peter/H-4762-2012; Pincus, Robert/B-1723-2013; Batstone, Crispian/D-8180-2015 OI Taylor, Karl/0000-0002-6491-2135; Gleckler, Peter/0000-0003-2816-6224; Pincus, Robert/0000-0002-0016-3470; Batstone, Crispian/0000-0002-1056-5254 NR 16 TC 68 Z9 70 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 23 PY 2008 VL 113 IS D14 AR D14209 DI 10.1029/2007JD009334 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 331FE UT WOS:000257997300001 ER PT J AU Bernholc, J Hodak, M Lu, WC AF Bernholc, J. Hodak, Miroslav Lu, Wenchang TI Recent developments and applications of the real-space multigrid method SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT CECAM Workshop on Linear-Scaling AB Initio Calculation - Applications and Future Directions CY SEP 03-06, 2007 CL Lyon, FRANCE ID ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; SYSTEM-SIZE; AB-INITIO; SCALING ALGORITHM; 1ST PRINCIPLES; PRION PROTEIN; MATRIX METHOD; WATER AB The salient features of the real-space multigrid method and its recent applications are described. This method is suitable for very large scale, massively parallel calculations of atomic and electronic structure, as well as quantum molecular dynamics. Its nearly O(N) implementation provides a compact, variationally optimized basis that is also very useful for fully O(N) calculations of quantum transport. Recently, we also developed a hybrid method for simulating biomolecules in solution, in which most of the solvent is inexpensively treated using an approximate density-functional method, while the biomolecule and its first solvation shells are described at the full Kohn -Sham level. Our calculations show excellent parallel efficiency and scaling on massively parallel supercomputers. C1 [Bernholc, J.; Hodak, Miroslav; Lu, Wenchang] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Bernholc, J.; Hodak, Miroslav; Lu, Wenchang] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Bernholc, J.; Lu, Wenchang] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Bernholc, J (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. NR 61 TC 8 Z9 8 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 23 PY 2008 VL 20 IS 29 AR 294205 DI 10.1088/0953-8984/20/29/294205 PG 8 WC Physics, Condensed Matter SC Physics GA 321SD UT WOS:000257325900010 ER PT J AU Bowler, DR Fattebert, JL Gillan, MJ Haynes, PD Skylaris, CK AF Bowler, D. R. Fattebert, J-L Gillan, M. J. Haynes, P. D. Skylaris, C-K TI Introductory remarks: Linear scaling methods - Preface SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Editorial Material C1 [Bowler, D. R.; Gillan, M. J.] UCL, Mat Simulat Lab, London, England. [Fattebert, J-L] Lawrence Livermore Natl Lab, Livermore, CA USA. [Haynes, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Skylaris, C-K] Univ Southampton, Southampton SO9 5NH, Hants, England. RP Bowler, DR (reprint author), UCL, Mat Simulat Lab, London, England. RI Bowler, David/C-1515-2008 OI Bowler, David/0000-0001-7853-1520 NR 3 TC 21 Z9 21 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 23 PY 2008 VL 20 IS 29 AR 290301 DI 10.1088/0953-8984/20/29/290301 PG 3 WC Physics, Condensed Matter SC Physics GA 321SD UT WOS:000257325900001 ER PT J AU Fattebert, JL AF Fattebert, J-L TI Adaptive localization regions for O(N) density functional theory calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT CECAM Workshop on Linear-Scaling AB Initio Calculation - Applications and Future Directions CY SEP 03-06, 2007 CL Lyon, FRANCE ID ELECTRONIC-STRUCTURE CALCULATIONS; FINITE-ELEMENT-METHOD; WANNIER FUNCTIONS AB A linear scaling approach for general and accurate pseudopotential density functional theory calculations is presented. It is based on a finite difference discretization. Effective O(N) scaling is achieved by confining the orbitals in spherical localization regions. To improve accuracy and flexibility while computing the smallest possible number of orbitals, we propose an algorithm for adapting localization regions during computation. Numerical results for a polyacetylene chain and a magnesium oxide ring are presented. C1 Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Fattebert, JL (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM fattebert1@llnl.gov NR 21 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 23 PY 2008 VL 20 IS 29 AR 294210 DI 10.1088/0953-8984/20/29/294210 PG 6 WC Physics, Condensed Matter SC Physics GA 321SD UT WOS:000257325900015 ER PT J AU Subotnik, JE Head-Gordon, M AF Subotnik, Joseph E. Head-Gordon, Martin TI Exploring the accuracy of relative molecular energies with local correlation theory SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT CECAM Workshop on Linear-Scaling AB Initio Calculation - Applications and Future Directions CY SEP 03-06, 2007 CL Lyon, FRANCE ID ELECTRON CORRELATION METHODS; PLESSET PERTURBATION-THEORY; DENSITY FITTING APPROXIMATIONS; COUPLED-CLUSTER THEORY; DIELS-ALDER REACTIONS; TRIPLES CORRECTION T; FUNCTIONAL THEORY; CONFORMATIONAL ENERGIES; VIBRATIONAL FREQUENCIES; SYSTEMS AB Local coupled-cluster singles-doubles theory (LCCSD) is a theorist's attempt to capture electron-electron correlation in a fast amount of time and with chemical accuracy. Many of the difficult computational hurdles have been navigated over the last twenty years, including how to construct a linear scaling algorithm and how to produce smooth potential energy surfaces. Nevertheless, there remains the question of just how accurate a local correlation model can be, and what are the chemical limits within which local models are largely applicable. Here, we investigate how accurately can LCCSD approximate full CCSD for cases of atomization energies, isomerization energies, conformational energies, barrier heights and electron affinities. Our conclusion is that LCCSD computes relative energies that are correct to within 1-2 kcal mol(-1) of the CCSD energy using relatively aggressive cutoffs and over a broad range of different molecular environments -alkane isomers, dipeptide conformations, Diels-Alder transition states and electron attachment in charge delocalized systems. These findings should push the reach of local correlation applications into new research terrain, including molecules on metal cluster surfaces or perhaps even metal-molecule -metal clusters. C1 [Subotnik, Joseph E.] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel. [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Subotnik, JE (reprint author), Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel. EM subotnik@post.harvard.edu; mhg@bastille.cchem.berkeley.edu NR 52 TC 9 Z9 9 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 23 PY 2008 VL 20 IS 29 AR 294211 DI 10.1088/0953-8984/20/29/294211 PG 13 WC Physics, Condensed Matter SC Physics GA 321SD UT WOS:000257325900016 ER PT J AU Trimarchi, G Zunger, A AF Trimarchi, Giancarlo Zunger, Alex TI Finding the lowest-energy crystal structure starting from randomly selected lattice vectors and atomic positions: first-principles evolutionary study of the Au-Pd, Cd-Pt, Al-Sc, Cu-Pd, Pd-Ti, and Ir-N binary systems SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MOLECULAR-DYNAMICS; PHASE-DIAGRAMS; PREDICTION; PRESSURE; METALS AB Two types of global space-group optimization (GSGO) problems can be recognized in binary metallic alloys A(q)B(1-q): (i) configuration search problems, where the underlying crystal lattice is known and the aim is finding the most favorable decoration of the lattice by A and B atoms and (ii) lattice-type search problems, where neither the lattice type nor the decorations are given and the aim is finding energetically favorable lattice vectors and atomic occupations. Here, we address the second, lattice-type search problem in binary A(q)B(1-q) metallic alloys, where the constituent solids A and B have different lattice types. We tackle this GSGO problem using an evolutionary algorithm, where a set of crystal structures with randomly selected lattice vectors and site occupations is evolved through a sequence of generations in which a given number of structures of highest LDA energy are replaced by new ones obtained by the generational operations of mutation or mating. Each new structure is locally relaxed to the nearest total-energy minimum by using the ab initio atomic forces and stresses. We applied this first-principles evolutionary GSGO scheme to metallic alloy systems where the nature of the intermediate A-B compounds is difficult to guess either because pure A and pure B have different lattice types and the ( i) intermediate compound has the structure of one end-point (Al3Sc, AlSc3, CdPt3), or (ii) none of them (CuPd, AlSc), or (iii) when the intermediate compound has lattice sites belonging simultaneously to a few types (fcc, bcc) (PdTi3). The method found the correct structures, L1(2) type for Al3Sc, D0(19) type for AlSc3, 'CdPt3' type for CdPt3, B2 type for CuPd and AlSc, and A15 type for PdTi3. However, in such stochastic methods, success is not guaranteed, since many independently started evolutionary sequences produce at the end different final structures: one has to select the lowest-energy result from a set of such independently started sequences. Interestingly, we also predict a hitherto unknown (P2/m) structure of the hard compound IrN2 with energy lower than all previous predictions. C1 [Trimarchi, Giancarlo; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Trimarchi, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Alex_Zunger@nrel.gov RI Zunger, Alex/A-6733-2013; Trimarchi, Giancarlo/A-8225-2010 OI Trimarchi, Giancarlo/0000-0002-0365-3221 NR 46 TC 22 Z9 22 U1 0 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 23 PY 2008 VL 20 IS 29 AR 295212 DI 10.1088/0953-8984/20/29/295212 PG 11 WC Physics, Condensed Matter SC Physics GA 321SD UT WOS:000257325900032 ER PT J AU Zhao, ZJ Meza, J Wang, LW AF Zhao, Zhengji Meza, Juan Wang, Lin-Wang TI A divide-and-conquer linear scaling three-dimensional fragment method for large scale electronic structure calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT CECAM Workshop on Linear-Scaling AB Initio Calculation - Applications and Future Directions CY SEP 03-06, 2007 CL Lyon, FRANCE ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS AB We present a new linear scaling ab initio total energy electronic structure calculation method based on a divide-and-conquer strategy. This method is simple to implement, easy to parallelize, and produces accurate results when compared with direct ab initio methods. The new method has been tested on nanosystems with up to 15 000 atoms using up to 8000 processors. C1 Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM lwwang@lbl.gov OI Meza, Juan/0000-0003-4543-0349 NR 16 TC 18 Z9 18 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 23 PY 2008 VL 20 IS 29 AR 294203 DI 10.1088/0953-8984/20/29/294203 PG 8 WC Physics, Condensed Matter SC Physics GA 321SD UT WOS:000257325900008 ER PT J AU Garnett, EC Yang, PD AF Garnett, Erik C. Yang, Peidong TI Silicon nanowire radial p-n junction solar cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ARRAY PHOTOELECTROCHEMICAL CELLS; PERFORMANCE AB We have demonstrated a low-temperature wafer-scale etching and thin film deposition method for fabricating silicon n-p core-shell nanowire solar cells. Our devices showed efficiencies up to nearly 0.5%, limited primarily by interfacial recombination and high series resistance. Surface passivation and contact optimization will be critical to improve device performance in the future. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Garnett, Erik/A-6847-2009; lee, Sang hoon/J-7844-2012 OI Garnett, Erik/0000-0002-9158-8326; NR 20 TC 619 Z9 627 U1 33 U2 306 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 23 PY 2008 VL 130 IS 29 BP 9224 EP + DI 10.1021/ja8032907 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 328KE UT WOS:000257796500023 PM 18576622 ER PT J AU Calimano, E Tilley, TD AF Calimano, Elisa Tilley, T. Don TI Alkene hydrosilation by a cationic hydrogen-substituted iridium silylene complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXIDATIVE ADDITION; HYDROSILYLATION; REACTIVITY; ACTIVATION; LINKAGE; LIGAND; BOND AB A cationic hydrogen-substituted iridium silylene complex ((PNP)(H)Ir = Si(Mes)H][B(C(6)F(5))(4)] (2) was synthesized via hydride abstraction from the corresponding neutral iridium silyl hydride complex, DFT calculations for 2 indicate that the cationic charge is localized at the silicon center and depict a LUMO with predominant silicon p-orbital character. Notably, complex 2 reacts rapidly with unhindered alkenes at ambient temperatures to afford disubstituted silylene complexes via Si-C bond formation. Complex 2 is also the catalyst for alkene hydrosilation of primary silanes with a high degree of anti-Markovnikov selectivity. C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu NR 21 TC 56 Z9 56 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 23 PY 2008 VL 130 IS 29 BP 9226 EP + DI 10.1021/ja803332h PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 328KE UT WOS:000257796500024 PM 18582049 ER PT J AU Averkiev, BB Zubarev, DY Wang, LM Huang, W Wang, LS Boldyrev, AI AF Averkiev, Boris B. Zubarev, Dmitry Yu. Wang, Lei-Ming Huang, Wei Wang, Lai-Sheng Boldyrev, Alexander I. TI Carbon avoids hypercoordination in CB(6)(-), CB(6)(2-), and C(2)B(5)(-) planar carbon-boron clusters SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AB-INITIO; TETRACOORDINATE CARBON; PHOTOELECTRON-SPECTROSCOPY; HEXACOORDINATE CARBON; GENETIC-ALGORITHM; MOLECULES; PENTACOORDINATE; COMPLEXES; ATOM; CHEMISTRY AB The structures and bonding of GB(6)(-), C(2)B(5)(-), and CB(6)(2-) are investigated by photoelectron spectroscopy and ab initio calculations. It is shown that the global minimum structures for these systems are distorted heptacyclic structures. The previously reported hexacyclic structures with a hypercoordinate central carbon atom are found to be significantly higher in energy and were not populated under current experimental conditions. The reasons why carbon avoids hypercoordination in these planar carbon-boron clusters are explained through detailed chemical-bonding analyses. C1 [Averkiev, Boris B.; Zubarev, Dmitry Yu.; Boldyrev, Alexander I.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Wang, LS (reprint author), Utah State Univ, Dept Chem & Biochem, 0300 Old Main Hill, Logan, UT 84322 USA. EM ls.wang@pnl.gov; a.i.boldyrev@usu.edu RI Wang, Leiming/A-3937-2011; Boldyrev, Alexander/C-5940-2009 OI Boldyrev, Alexander/0000-0002-8277-3669 NR 39 TC 81 Z9 81 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 23 PY 2008 VL 130 IS 29 BP 9248 EP + DI 10.1021/ja801211p PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 328KE UT WOS:000257796500035 PM 18582042 ER PT J AU Lipton, AS Heck, RW Primak, S McNeill, DR Wilson, DM Ellis, PD AF Lipton, A. S. Heck, R. W. Primak, S. McNeill, D. R. Wilson, D. M., III Ellis, P. D. TI Characterization of Mg2+ binding to the DNA repair protein apurinic/apyrimidic endonuclease 1 via solid-state Mg-25 NMR spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HUMAN ABASIC ENDONUCLEASE; MAJOR HUMAN; CRYSTAL-STRUCTURE; EXONUCLEASE-III; APE1; SITE; SENSITIVITY; RESOLUTION; RELAXATION; SPECIFICITY AB Apurinic/apyrimidinic endonuclease 1 (APE1), a member of the divalent cation-dependent phosphoesterase superfamily of proteins that retain the conserved four-layered alpha/beta-sandwich structural core, is an essential protein that functions as part of base excision repair to remove mutagenic and cytotoxic abasic sites from DNA. Using low-temperature solid-state Mg-25 NMR spectroscopy and various mutants of APE1, we demonstrate that Mg2+ binds to APE1 and a functional APE1-substrate DNA complex with an overall stoichiometry of one Mg2+ per mole of APE1 as predicted by the X-ray work of Tainer and co-workers (Mol, C. D.; Kuo, C. F.; Thayer, M. M.; Cunningham, R. P.; Tainer, J. A. Nature 1995, 374, 381-386). However, the NMR spectra show that the single Mg2+ site is disordered. We discuss the probable reasons for the disorder at the Mg2+ binding site. The most likely source of this disorder is arrangement of the protein-ligands about the Mg2+ (cis and trans isomers). The existence of these isomers reinforces the notion of the plasticity of the metal binding site within APE1. C1 [Lipton, A. S.; Heck, R. W.; Primak, S.; Ellis, P. D.] Pacific NW Natl Lab, Biol Sci Directorate, Richland, WA 99352 USA. [McNeill, D. R.; Wilson, D. M., III] NIA, Lab Mol Gerontol, GRC, IRP,NIH, Baltimore, MD 21224 USA. RP Wilson, DM (reprint author), Pacific NW Natl Lab, Biol Sci Directorate, K8-98,902 Battelle Blvd, Richland, WA 99352 USA. EM paul.ellis@pnl.gov FU Intramural NIH HHS [Z01 AG000743-06]; NIBIB NIH HHS [R01 EB002050, R01 EB003893, EB 003893, EB002050] NR 49 TC 37 Z9 38 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 23 PY 2008 VL 130 IS 29 BP 9332 EP 9341 DI 10.1021/ja0776881 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 328KE UT WOS:000257796500045 PM 18576638 ER PT J AU Claridge, SA Mastroianni, AJ Au, YB Liang, HW Micheel, CM Frechet, JMJ Alivisatos, AP AF Claridge, Shelley A. Mastroianni, Alexander J. Au, Yeung B. Liang, Huiyang W. Micheel, Christine M. Frechet, Jean M. J. Alivisatos, A. Paul TI Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GOLD NANOPARTICLES; DNA; LIGASE; OLIGONUCLEOTIDES; AMPLIFICATION; HYBRIDIZATION; SYSTEMS AB Enzymatic ligation of discrete nanoparticle-DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than by double-stranded DNA as in previous experiments. Ligation was verified by agarose gel and small-angle X-ray scattering. This capability was utilized in two ways: first, to create a new class of multiparticle building blocks for nanoscale self-assembly and, second, to develop a system that can amplify a population of discrete nanoparticle assemblies. C1 [Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu; alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015; OI Alivisatos , Paul /0000-0001-6895-9048; Micheel, Christine/0000-0002-7744-9039; Frechet, Jean /0000-0001-6419-0163 NR 29 TC 67 Z9 68 U1 4 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 23 PY 2008 VL 130 IS 29 BP 9598 EP 9605 DI 10.1021/ja8026746 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 328KE UT WOS:000257796500076 PM 18588300 ER PT J AU Tatebayashi, J Liang, BL Laghumavarapu, RB Bussian, DA Htoon, H Klimov, V Balakrishnan, G Dawson, LR Huffaker, DL AF Tatebayashi, J. Liang, B. L. Laghumavarapu, R. B. Bussian, D. A. Htoon, H. Klimov, V. Balakrishnan, G. Dawson, L. R. Huffaker, D. L. TI Time-resolved photoluminescence of type-II Ga(As) Sb/GaAs quantum dots embedded in an InGaAs quantum well SO NANOTECHNOLOGY LA English DT Article ID RADIATIVE RECOMBINATION; RELAXATION AB Optical properties and carrier dynamics in type-II Ga(As) Sb/GaAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) are reported. A large blueshift of the photoluminescence (PL) peak is observed with increased excitation densities. This blueshift is due to the Coulomb interaction between physically separated electrons and holes characteristic of the type-II band alignment, along with a band-filling effect of electrons in the QW. Low-temperature ( 4 K) time-resolved PL measurements show a decay time of similar or equal to 40-70 ns from the transition between Ga( As)Sb QDs and InGaAs QW which is longer than that of the transition between Ga( As) Sb QDs and GaAs two-dimensional electron gas (similar or equal to 30 ns). C1 [Tatebayashi, J.; Liang, B. L.; Balakrishnan, G.; Huffaker, D. L.] Univ Calif Los Angeles, Elect Engn & Calif Nanosyst Inst, Los Angeles, CA 90095 USA. [Laghumavarapu, R. B.; Dawson, L. R.; Huffaker, D. L.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Bussian, D. A.; Htoon, H.; Klimov, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tatebayashi, J (reprint author), Univ Calif Los Angeles, Elect Engn & Calif Nanosyst Inst, 420 Westwood Plaza, Los Angeles, CA 90095 USA. EM tatebaya@ee.ucla.edu; huffaker@ee.ucla.edu RI balakrishnan, ganesh/F-7587-2011; OI Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 NR 22 TC 16 Z9 16 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 23 PY 2008 VL 19 IS 29 AR 295704 DI 10.1088/0957-4484/19/29/295704 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 314VW UT WOS:000256838300017 PM 21730609 ER PT J AU Kovalevsky, AY Katz, AK Carrell, HL Hanson, L Mustyakimov, M Fisher, SZ Coates, L Schoenborn, BP Bunick, GJ Glusker, JP Langan, P AF Kovalevsky, Andrey Y. Katz, Amy K. Carrell, H. L. Hanson, Leif Mustyakimov, Marat Fisher, S. Zoe Coates, Leighton Schoenborn, Benno P. Bunick, Gerard J. Glusker, Jenny P. Langan, Paul TI Hydrogen location in stages of an enzyme-catalyzed reaction: Time-of-flight neutron structure of D-xylose isomerase with bound D-xylulose SO BIOCHEMISTRY LA English DT Article ID ALDOSE-KETOSE INTERCONVERSION; PROTEIN CRYSTALLOGRAPHY; SPALLATION NEUTRONS; DIFFRACTION; RESOLUTION; MECHANISM; SHIFT AB The time-of-flight neutron Laue technique has been used to determine the location of hydrogen atoms in the enzyme D-xylose isomerase (XI). The neutron structure of crystalline XI with bound product, D-xylulose, shows, unexpectedly, that O5 Of D-xylulose is not protonated but is hydrogen-bonded to doubly protonated His54. Also, Lys289, which is neutral in native XI, is protonated (positively charged), while the catalytic water in native XI has become activated to a hydroxyl anion which is in the proximity of Cl and C2, the molecular site of isomerization of xylose. These findings impact our understanding of the reaction mechanism. C1 [Kovalevsky, Andrey Y.; Mustyakimov, Marat; Fisher, S. Zoe; Coates, Leighton; Schoenborn, Benno P.; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Katz, Amy K.; Carrell, H. L.; Glusker, Jenny P.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Hanson, Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Bunick, Gerard J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Langan, P (reprint author), Los Alamos Natl Lab, Biosci Div, M888, Los Alamos, NM 87545 USA. EM langan_paul@lanl.gov RI Hanson, Bryant Leif/F-8007-2010; Langan, Paul/N-5237-2015; OI Hanson, Bryant Leif/0000-0003-0345-3702; Langan, Paul/0000-0002-0247-3122; Coates, Leighton/0000-0003-2342-049X; Kovalevsky, Andrey/0000-0003-4459-9142 FU NCI NIH HHS [CA10925, CA06927, P30 CA006927, P30 CA006927-45, R01 CA010925-53]; NIGMS NIH HHS [GM071939, R01 GM071939, R01 GM071939-05] NR 18 TC 34 Z9 34 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 22 PY 2008 VL 47 IS 29 BP 7595 EP 7597 DI 10.1021/bi8005434 PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 326NB UT WOS:000257665100001 PM 18578508 ER PT J AU Criscenti, LJ Cygan, RT Kooser, AS Moffat, HK AF Criscenti, Louise J. Cygan, Randall T. Kooser, Ara S. Moffat, Harold K. TI Water and halide adsorption to corrosion surfaces: Molecular simulations of atmospheric interactions with aluminum oxyhydroxide and gold SO CHEMISTRY OF MATERIALS LA English DT Article ID X-RAY PHOTOELECTRON; ELECTRIC DOUBLE-LAYER; ACID-BASE PROPERTIES; NEAR-EDGE STRUCTURE; DYNAMICS SIMULATIONS; LIQUID WATER; COMPUTER-SIMULATIONS; STATICS CALCULATIONS; PITTING CORROSION; PROTON BINDING AB Atmospheric corrosion due to adsorption of water and solutes onto metal and metal oxide surfaces is a critical factor in the long term reliability of electronic devices. To investigate the atomistic mechanisms of corrosion, we used molecular dynamics (MD) simulations to study the structure of water adsorbed onto both boehmite (gamma-AlO(OH)) and gold (An) surfaces and electrolyte adsorption and surface speciation on the boehmite (010) surface. Boehmite forms a thin film on aluminum metal under oxidizing conditions, is hydrophilic, and readily adsorbs water from the atmosphere. In contrast, gold surfaces are hydrophobic, and condensed water does not readily bond with the surface. Our MD simulations were performed using the CLAYFF force field that maintains full flexibility of water and substrate and allows for full energy and momentum transfer among all atoms. The boehmite (010) and gold (111) surfaces were initially simulated with no water present and then with incremental additions of water molecules. The calculations indicate the boehmite (0 10) surface structure strongly controls the organization of the first monolayer of interfacial water. In contrast, the structure of water on the gold (111) surface is controlled by hydrogen bonding among the water molecules. To investigate Cl- adsorption to the boehmite surface, Na+ and Cl- ions were added to two boehmite-water simulation cells, one with 3.5 monolayers of water on the boehmite surface and the other representing water-saturated conditions. In both scenarios, the addition of NaCl solute disturbed the first monolayer of water adsorbed to the surface. Chloride ions displaced water molecules that were originally bound to the boehmite surface. In contrast, the Na+ ions do not disturb the arrangement of these water molecules. Na+-Cl- pairs were observed to occur on the surface. Both the near-surface water structure and the effects of ion adsorption were similar regardless of the number of monolayers of water present in the simulation cells. C1 [Criscenti, Louise J.; Cygan, Randall T.; Kooser, Ara S.; Moffat, Harold K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Criscenti, LJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ljcrisc@sandia.gov NR 47 TC 18 Z9 18 U1 7 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 22 PY 2008 VL 20 IS 14 BP 4682 EP 4693 DI 10.1021/cm70278lr PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 326NN UT WOS:000257666300024 ER PT J AU Bell, JL Sarin, P Provis, JL Haggerty, RP Driemeyer, PE Chupas, PJ van Deventer, JSJ Kriven, WM AF Bell, Jonathan L. Sarin, Pankaj Provis, John L. Haggerty, Ryan P. Driemeyer, Patrick E. Chupas, Peter J. van Deventer, Jannie S. J. Kriven, Waltraud M. TI Atomic structure of a cesium aluminosilicate geopolymer: A pair distribution function study SO CHEMISTRY OF MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; POWDER DIFFRACTION; INORGANIC POLYMERS; PHASE-TRANSITIONS; CRYSTAL-CHEMISTRY; HIGH-RESOLUTION; POLLUCITE; METAKAOLIN; MULLITE; GLASSES AB The atomic pair distribution function (PDF) method was used to study the structure of cesium aluminosilicate geopolymer (Cs2O center dot Al2O3 center dot 4SiO(2)center dot xH(2)O, with x similar to 11). The geopolymer was prepared by reacting metakaolin with cesium silicate solution followed by curing at 50 degrees C for 24 h in a sealed container. Heating of Cs-geopolymer above 1000 degrees C resulted in formation of crystalline pollucite (CsAlSi2O6). PDF refinement of the pollucite phase formed displayed an excellent fit over the 10-30 angstrom range when compared with a cubic pollucite model. A poorer fit was attained from 1-10 angstrom due to an additional amorphous phase present in the heated geopolymer. On the basis of PDF analysis, unheated Cs-geopolymer displayed structural ordering similar to pollucite up to a length scale of similar to 9 angstrom, despite some differences. Our results suggest that hydrated Cs+ ions were an integral part of the Cs-geopolymer structure and that most of the water present was not associated with Al-OH or Si-OH bonds. C1 [Bell, Jonathan L.; Sarin, Pankaj; Haggerty, Ryan P.; Driemeyer, Patrick E.; Kriven, Waltraud M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Chupas, Peter J.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Provis, John L.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. RP Kriven, WM (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM kriven@illinois.edu RI Provis, John/A-7631-2008 OI Provis, John/0000-0003-3372-8922 NR 49 TC 53 Z9 54 U1 7 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 22 PY 2008 VL 20 IS 14 BP 4768 EP 4776 DI 10.1021/cm703369s PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 326NN UT WOS:000257666300034 ER PT J AU Bala, G Rood, RB Bader, D Mirin, A Ivanova, D Drui, C AF Bala, G. Rood, R. B. Bader, D. Mirin, A. Ivanova, D. Drui, Cedric TI Simulated climate near steep topography: Sensitivity to numerical methods for atmospheric transport SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID VOLUME DYNAMICAL CORE; SYSTEM MODEL; RESOLUTION; CCSM3 AB We present the sensitivity of the simulated climate near steep topographical regions when the numerical method for atmospheric transport in the Community Climate System Model (CCSM3) is changed from spectral to a finite volume (FV) transport. Our analysis of the circulation and precipitation shows significant local improvement in three aspects: 1) The Gibbs oscillations present in the cloudiness and shortwave radiative forcing fields in the spectral simulation are absent in the FV simulation. 2) The along-shore component of wind stress in the western coastal regions of North and South America increases in the FV simulation. This tends to reduce the persistent biases in sea surface temperature through enhanced oceanic upwelling. 3) The FV simulation shows improvement in the wet-dry contrast of orographically forced precipitation. These local improvements have impact on continental and larger scales and are critical to the confident use of information from climate predictions in adaptation to climate change. C1 [Bala, G.; Bader, D.; Mirin, A.; Ivanova, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rood, R. B.; Drui, Cedric] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Bala, G (reprint author), Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. EM rbrood@umich.edu RI Bader, David/H-6189-2011; Rood, Richard/C-5611-2008 OI Bader, David/0000-0003-3210-339X; Rood, Richard/0000-0002-2310-4262 NR 20 TC 7 Z9 7 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 22 PY 2008 VL 35 IS 14 AR L14807 DI 10.1029/2008GL033204 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 331EM UT WOS:000257995500001 ER PT J AU Dove, PM Han, N Wallace, AF De Yoreo, JJ AF Dove, Patricia M. Han, Nizhou Wallace, Adam F. De Yoreo, James J. TI Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biogenic silica; demineralization; glass; nucleation; surface energy ID SOLUTION SATURATION STATE; ATOMIC-FORCE MICROSCOPY; PRECIPITATION KINETICS; SOUTHERN-OCEAN; PH 3; GROWTH; QUARTZ; 80-DEGREES-C; SOLUBILITY; DEPENDENCE AB The mechanisms by which amorphous silica dissolves have proven elusive because noncrystalline materials lack the structural order that allows them to be studied by the classical terrace, ledge, kink-based models applied to crystals. This would seem to imply amorphous phases have surfaces that are disordered at an atomic scale so that the transfer of SiO(4) tetrahedra to solution always leaves the surface free energy of the solid unchanged. As a consequence, dissolution rates of amorphous phases should simply scale linearly with increasing driving force (undersaturation) through the higher probability of detaching silica tetrahedra. By examining rate measurements for two amorphous SiO(2) glasses we find, instead, a paradox. In electrolyte solutions, these silicas show the same exponential dependence on driving force as their crystalline counterpart, quartz. We analyze this enigma by considering that amorphous silicas present two predominant types of surface-coordinated silica tetrahedra to solution. Electrolytes overcome the energy barrier to nucleated detachment of higher coordinated species to create a periphery of reactive, lesser coordinated groups that increase surface energy. The result is a plausible mechanism-based model that is formally identical with the classical polynuclear theory developed for crystal growth. The model also accounts for reported demineralization rates of natural biogenic and synthetic colloidal silicas. In principle, these insights should be applicable to materials with a wide variety of compositions and structural order when the reacting units are defined by the energies of their constituent species. C1 [Dove, Patricia M.; Han, Nizhou; Wallace, Adam F.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. [De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Dove, PM (reprint author), Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. EM dove@vt.edu; jjdeyoreo@lbl.gov RI Dove, Patricia/A-7911-2010; Wallace, Adam/A-9976-2012 NR 28 TC 69 Z9 71 U1 5 U2 78 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 22 PY 2008 VL 105 IS 29 BP 9903 EP 9908 DI 10.1073/pnas.0803798105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 330BB UT WOS:000257913200012 PM 18632576 ER PT J AU Xu, K Rajashankar, KR Chan, YP Himanen, JP Broder, CC Nikolov, DB AF Xu, Kai Rajashankar, Kanagalaghatta R. Chan, Yee-Peng Himanen, Juha P. Broder, Christopher C. Nikolov, Dimitar B. TI Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE crystallography; viral attachment ID EMERGENT DEADLY PARAMYXOVIRUS; HENDRA-VIRUS; HEMAGGLUTININ-NEURAMINIDASE; RECEPTOR-BINDING; EPH RECEPTORS; ECTODOMAIN; PROTEIN; FUSION; ANTAGONIST; MECHANISMS AB Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycoprotein that mediates membrane merger. The henipavirus G glycoproteins lack both hemagglutinating and neuraminidase activities and, instead, engage the highly conserved ephrin-B2 and ephrin-B3 cell surface proteins as their entry receptors. Here, we report the crystal structures of the NiV-G,both in its receptor-unbound state and in complex with ephrin-B3, providing, to our knowledge, the first view of a paramyxovirus attachment complex in which a cellular protein is used as the virus receptor. Complex formation generates an extensive protein-protein interface around a protruding ephrin loop, which is inserted in the central cavity of the NiV-G beta-propeller. Analysis of the structural data reveals the molecular basis for the highly specific interactions of the henipavirus G glycoproteins with only two members (ephrin-B2 and ephrin-B3) of the very large ephrin family and suggests how they mediate in a unique fashion both cell attachment and the initiation of membrane fusion during the virus infection processes. The structures further suggest that the NiV-G/ephrin interactions can be effectively targeted to disrupt viral entry and provide the foundation for structure-based antiviral drug design. C1 [Xu, Kai; Himanen, Juha P.; Nikolov, Dimitar B.] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10021 USA. [Rajashankar, Kanagalaghatta R.] Argonne Natl Lab, Adv Photon Source, NE Collaborat Access Team, Argonne, IL 60439 USA. [Chan, Yee-Peng; Broder, Christopher C.] Uniformed Serv Univ Hlth Sci, Dept Microbiol & Immunol, Bethesda, MD 20814 USA. RP Nikolov, DB (reprint author), Mem Sloan Kettering Canc Ctr, Struct Biol Program, 1275 York Ave, New York, NY 10021 USA. EM nikolovd@mskcc.org FU NCRR NIH HHS [RR-15301, P41 RR015301]; NIAID NIH HHS [U54 AI057168, U01 AI077995, R01 AI054715, AI057168, AI054715]; NINDS NIH HHS [NS38486, R01 NS038486] NR 42 TC 94 Z9 98 U1 2 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 22 PY 2008 VL 105 IS 29 BP 9953 EP 9958 DI 10.1073/pnas.0804797105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 330BB UT WOS:000257913200021 PM 18632560 ER PT J AU Chinnasamy, CN Huang, JY Lewis, LH Latha, B Vittoria, C Harris, VG AF Chinnasamy, C. N. Huang, J. Y. Lewis, L. H. Latha, B. Vittoria, C. Harris, V. G. TI Direct chemical synthesis of high coercivity air-stable SmCo nanoblades SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC-PROPERTIES; PERMANENT-MAGNETS; NANOPARTICLES AB Ferromagnetic air-stable SmCo nanoparticles have been produced directly using a one-step chemical synthesis method. X-ray diffraction studies confirmed the formation of hexagonal SmCo(5) as a dominant phase. High resolution transmission electron microscopy confirms the presence of uniform, anisotropic bladelike nanoparticles approximately 10 nm in width and 100 nm in length. Values of the intrinsic coercivity and the magnetization in the as-synthesized particles are 6.1 kOe and 40 emu/g at room temperature and 8.5 kOe and 44 emu/g at 10 K, respectively. This direct synthesis process is environmentally friendly and is readily scalable to large volume synthesis to meet the needs for the myriad of advanced permanent magnet applications. (C) 2008 American Institute of Physics. C1 [Chinnasamy, C. N.; Latha, B.; Vittoria, C.; Harris, V. G.] Northeastern Univ, Dept Elect & Comp Engn, Ctr Microwave Magnet Mat & Integrated Circuits, Boston, MA 02115 USA. [Huang, J. Y.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Lewis, L. H.] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. RP Chinnasamy, CN (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Ctr Microwave Magnet Mat & Integrated Circuits, Boston, MA 02115 USA. EM nchinnas@ece.neu.edu RI Harris, Vincent/A-8337-2009; Huang, Jianyu/C-5183-2008 NR 23 TC 35 Z9 35 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 21 PY 2008 VL 93 IS 3 AR 032505 DI 10.1063/1.2963034 PG 3 WC Physics, Applied SC Physics GA 330UQ UT WOS:000257968700055 ER PT J AU Chae, PS Wander, MJ Bowling, AP Laible, PD Gellman, SH AF Chae, Pil S. Wander, Marc J. Bowling, Aaron P. Laible, Philip D. Gellman, Samuel H. TI Glycotripod amphiphiles for solubilization and stabilization of a membrane-protein superassembly: Importance of branching in the hydrophilic portion SO CHEMBIOCHEM LA English DT Article DE amphiphiles; detergent design; membrane proteins; solubilization; stabilization ID PHOTOSYNTHETIC APPARATUS; RHODOBACTER-SPHAEROIDES; TRIPOD AMPHIPHILE; REACTION CENTERS; PURPLE BACTERIA; CORE COMPLEX; CRYSTALLIZATION; DETERGENTS; BIOCHEMISTRY; SURFACTANTS C1 [Wander, Marc J.; Bowling, Aaron P.; Laible, Philip D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Chae, Pil S.; Gellman, Samuel H.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. RP Laible, PD (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM laible@anl.gov; geliman@wisc.edu FU NIGMS NIH HHS [P01 GM75913, P01 GM075913] NR 33 TC 36 Z9 36 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4227 J9 CHEMBIOCHEM JI ChemBioChem PD JUL 21 PY 2008 VL 9 IS 11 BP 1706 EP 1709 DI 10.1002/cbic.200800169 PG 4 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA 332OM UT WOS:000258092300004 PM 18576450 ER PT J AU D'Aleo, A Xu, J Moore, EG Jocher, CJ Raymond, KN AF D'Aleo, Anthony Xu, Jide Moore, Evan G. Jocher, Christoph J. Raymond, Kenneth N. TI Aryl-bridged 1-hydroxypyridin-2-one: Sensitizer ligands for Eu(III) SO INORGANIC CHEMISTRY LA English DT Article ID LUMINESCENT LANTHANIDE COMPLEXES; TERBIUM COMPLEXES; HIGH-RELAXIVITY; IONS; EU3+; AGENTS; ND3+ AB The synthesis, crystal structure, solution stability, and photophysical properties of an aryl group bridging two 1-hydroxypyridin-2-one units complexed to Eu(III) are reported. The results show that this backbone unit increases the rigidity of the ensuing complex, and also the conjugation of the ligand. As a result of the latter, the singlet absorption energy is decreased, along with the energy of the lowest excited triplet state, The resulting efficiency of sensitization for the Eu(III) ion is influenced by these phenomena, yielding an overall quantum yield of 6.2% in aqueous solution. The kinetic parameters arising from the luminescence data reveal an enhanced nonradiative decay rate for this compound when compared to previously reported aliphatic bridges. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu FU NHLBI NIH HHS [HL69832, R01 HL069832, R01 HL069832-06] NR 17 TC 25 Z9 25 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 21 PY 2008 VL 47 IS 14 BP 6109 EP 6111 DI 10.1021/ic8003189 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 326FC UT WOS:000257642700002 PM 18553909 ER PT J AU Rodriguez, EE Poineau, F Llobet, A Czerwinski, K Seshadri, R Cheetham, AK AF Rodriguez, Efrain E. Poineau, Frederic Llobet, Anna Czerwinski, Ken Seshadri, Ram Cheetham, Anthony K. TI Preparation and crystal structures of bismuth technetates: A new metal oxide system SO INORGANIC CHEMISTRY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; X-RAY; ELECTRON LOCALIZATION; RUTHENIUM PYROCHLORES; NEUTRON-DIFFRACTION; BAND-STRUCTURE; TRANSITION; PB2RU2O6.5; DISORDER; BI2RU2O7 AB Two new oxides have been unambiguously identified as Bi2Tc2O7-delta with delta = 0.14(1) and Bi3TcO8 through X-ray absorption near-edge structure spectroscopy and neutron powder diffraction. The compound Bi2Tc2O7-delta has a cubic pyrochlore-type structure with a = 10,4746(1) angstrom, space group Fd3m (origin choice 2), and Z = 8. The compound Bi3Tc2O7-delta is also cubic, a = 11.5749(1) angstrom, space group P2(1)3, Z= 8, and has a fluorite-related crystal structure. In Bi2Tc2O7-delta the Tc(IV) cations are octahedrally coordinated, whereas in Bi3TcO8 the Tc(VII) cations are tetrahedrally coordinated. A third new phase, probably Bi3Tc3O11, could not be obtained pure, but preliminary X-ray powder diffraction data affords a primitive cubic lattice with a = 9.3433(1) angstrom. On the basis of structural similarities between Bi2Tc2O7-delta and closely related oxides, Bi2Tc2O7-delta is expected to be a metallic oxide with Pauli paramagnetism. Electronic structure calculations of both Bi2Tc2O7-delta and Bi3TcO8 further support metallic conductivity in the former and insulating behavior in the latter. The inert pair effect of the Bi cations on the crystal structures of Bi2Tc2O7-delta and Bi3TcO8 is also described. In addition, calculations of the valence electron localization function for Bi2TC2O7-delta and Bi3TcO8 provide further visualization of the Bi 6s(2) lone pair electrons in the real space of the crystal structures. C1 [Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Rodriguez, Efrain E.; Llobet, Anna] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Rodriguez, Efrain E.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Poineau, Frederic; Czerwinski, Ken] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. RP Cheetham, AK (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM akc30@cam.ac.uk RI Llobet, Anna/B-1672-2010; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; ID, MRCAT/G-7586-2011; Rodriguez, Efrain/N-1928-2013 OI Seshadri, Ram/0000-0001-5858-4027; Rodriguez, Efrain/0000-0001-6044-1543 NR 56 TC 20 Z9 20 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 21 PY 2008 VL 47 IS 14 BP 6281 EP 6288 DI 10.1021/ic8003273 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 326FC UT WOS:000257642700025 PM 18572909 ER PT J AU Tenderholt, AL Szilagyi, RK Holm, RH Hodgson, KO Hedman, B Solomon, EI AF Tenderholt, Adam L. Szilagyi, Robert K. Holm, Richard H. Hodgson, Keith O. Hedman, Britt Solomon, Edward I. TI Electronic control of the "Bailar Twist" in formally d(0)-d(2) molybdenum tris(dithiolene) complexes: A sulfur K-edge X-ray absorption spectroscopy and density functional theory study SO INORGANIC CHEMISTRY LA English DT Article ID EFFECTIVE CORE POTENTIALS; TRIGONAL-PRISMATIC COORDINATION; OXYGEN-ATOM TRANSFER; MOLECULAR-STRUCTURE; OCTAHEDRAL COORDINATION; TRIS(BENZENE-1,2-DITHIOLATO) COMPLEXES; METAL-COMPLEXES; TRANSFER SERIES; DMSO REDUCTASE; WAVE-FUNCTIONS AB Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of a series of Mo tris(dithiolene) complexes, [Mo(mdt)(3)](z) (where mdt = 1,2-dimethylethene-1,2-dithiolate(2-) and z = 2-, 1 -, 0), with near trigonal-prismatic geometries (D-3h symmetry). These results show that the formally Mo-IV, Mo-V, and Mo-VI complexes actually have a (dz(2))(2) configuration, that is, remain effectively Mo-IV despite oxidation, Comparisons with the XAS data of another set of Mo tris(dithiolene) complexes, [Mo(tbbdt)(3)](z) (where tbbdt = 3,5-ditert-butylbenzene-1,2-dithiolate(2-) and z = 1-, 0), show that both neutral complexes, [Mo(mdt)31 and [Mo(tbbdt)31, have similar electronic structures while the monoanions do not. Calculations reveal that the "Bailar twist" present in the crystal structure of [Mo(tbbdt)(3)](1-) (D-3 symmetry) but not [Mo(mdt)(3)](1-) (D-3h symmetry) is controlled by electronic factors which arise from bonding differences between the mdt and tbbdt ligands. In the former, configuration interaction between the Mo d(z)(2) and a deeper energy, occupied ligand orbital, which occurs in D-3 symmetry, destabilizes the Mo d(z)(2) to above another ligand orbital which is half-occupied in the D-3h [Mo(mdt)(3)](1-) complex. This leads to a metal d' configuration with no ligand holes (i.e., d(1)[L-3](0h)) for [Mo(tbbdt)(3)](1-) rather than the metal d(2) configuration with one ligand hole (i.e., d(2)[L-3](1h)) for [Mo(mdt)(3)](1-). Thus, the Bailar twist observed in some metal tris(dithiolene) complexes is the result of configuration interaction between metal and ligand orbitals and can be probed experimentally by S K-edge XAS. C1 [Holm, Richard H.] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02143 USA. [Tenderholt, Adam L.; Szilagyi, Robert K.; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hodgson, Keith O.; Hedman, Britt] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Holm, RH (reprint author), Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02143 USA. EM edward.solomon@stanford.edu RI Szilagyi, Robert/G-9268-2012 OI Szilagyi, Robert/0000-0002-9314-6222 FU NCRR NIH HHS [P41 RR001209, P41 RR001209-29, RR-001209] NR 46 TC 41 Z9 41 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 21 PY 2008 VL 47 IS 14 BP 6382 EP 6392 DI 10.1021/ic800494h PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 326FC UT WOS:000257642700037 PM 18517189 ER PT J AU Sekino, H Maeda, Y Yanai, T Harrison, RJ AF Sekino, Hideo Maeda, Yasuyuki Yanai, Takeshi Harrison, Robert J. TI Basis set limit Hartree-Fock and density functional theory response property evaluation by multiresolution multiwavelet basis SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; QUANTUM-CHEMISTRY; WAVELETS; BASES; ATOMS; REPRESENTATION; OPERATORS; SCHEMES AB We describe the evaluation of response properties using multiresolution multiwavelet (MRMW) basis sets. The algorithm uses direct projection of the perturbed density operator onto the zeroth order density operator on the real space spanned by the MRMW basis set and is applied for evaluating the polarizability of small molecules using Hartree-Fock and Kohn-Sham density functional theory. The computed polarizabilities can be considered to be converged to effectively complete space within the requested precision. The efficiency of the method against the ordinary Gaussian basis computation is discussed. (C) 2008 American Institute of Physics. C1 [Sekino, Hideo; Maeda, Yasuyuki] Toyohashi Univ Technol, Dept Knowledge Based Informat Engn, Toyohashi, Aichi 4418580, Japan. [Yanai, Takeshi] Natl Inst Nat Sci, Inst Mol Sci, Okazaki, Aichi 4448585, Japan. [Harrison, Robert J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Harrison, Robert J.] Univ Tennessee, Knoxville, TN 37996 USA. RP Sekino, H (reprint author), Toyohashi Univ Technol, Dept Knowledge Based Informat Engn, Toyohashi, Aichi 4418580, Japan. EM sekino@tutkie.tut.ac.jp NR 35 TC 24 Z9 24 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2008 VL 129 IS 3 AR 034111 DI 10.1063/1.2955730 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 329BA UT WOS:000257840700011 PM 18647020 ER PT J AU Shen, TY Hamelberg, D AF Shen, Tongye Hamelberg, Donald TI A statistical analysis of the precision of reweighting-based simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ACCELERATED MOLECULAR-DYNAMICS; PROTEIN-STRUCTURE PREDICTION; INFREQUENT EVENTS; EQUALITY; GLASSES; SYSTEMS; MODELS AB Various advanced simulation techniques, which are used to sample the statistical ensemble of systems with complex Hamiltonians, such as those displayed in condensed matters and biomolecular systems, rely heavily on successfully reweighting the sampled configurations. The sampled points of a system from an elevated thermal environment or on a modified Hamiltonian are reused with different statistical weights to evaluate its properties at the initial desired temperature or of the original Hamiltonian. Often, the decrease of accuracy induced by this procedure is ignored and the final results can be far from what is expected. We have addressed the reasons behind such a phenomenon and have provided a quantitative method to estimate the number of sampled points required in the crucial step of reweighting of these advanced simulation methods. We also provided examples from temperature histogram reweighting and accelerated molecular dynamics reweighting to illustrate this idea, which can be generalized to the dynamic reweighting as well. The study shows that this analysis may provide a priori guidance for the strategy of setting up the parameters of advanced simulations before a lengthy one is carried out. The method can therefore provide insights for optimizing the parameters for high accuracy simulations with finite amount of computational resources. (C) 2008 American Institute of Physics. C1 [Shen, Tongye] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Shen, Tongye] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hamelberg, Donald] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA. RP Shen, TY (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA. EM tshen@lanl.gov RI Shen, Tongye/A-9718-2008 OI Shen, Tongye/0000-0003-1495-3104 NR 37 TC 50 Z9 50 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2008 VL 129 IS 3 AR 034103 DI 10.1063/1.2944250 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 329BA UT WOS:000257840700003 PM 18647012 ER PT J AU Warshavsky, VB Song, XY AF Warshavsky, Vadim B. Song, Xueyu TI Fundamental measure density functional theory studies on the freezing of binary hard-sphere and Lennard-Jones mixtures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PERTURBATION-THEORY; FLUID MIXTURES; SIMPLE LIQUIDS; THERMODYNAMIC PROPERTIES; PHASE-EQUILIBRIUM; COEXISTENCE; SIMULATION; COMPONENT; DIAGRAMS; SYSTEMS AB Free energies and correlation functions of liquid and solid hard-sphere (HS) mixtures are calculated using the fundamental measure density functional theory. Using the thermodynamic perturbation theory the free energies of solid and liquid Lennard-Jones (LJ) mixtures are obtained from correlation functions of HS systems within a single theoretical approach. The resulting azeotrope- and spindle-type solid-liquid phase diagrams of HS and LJ binary mixtures are in good agreement with the corresponding ones from computer simulations. (C) 2008 American Institute of Physics. C1 [Warshavsky, Vadim B.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Warshavsky, VB (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM xsong@iastate.edu NR 41 TC 13 Z9 13 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2008 VL 129 IS 3 AR 034506 DI 10.1063/1.2953329 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 329BA UT WOS:000257840700021 PM 18647030 ER PT J AU Slater, M Adolphsen, C Arnold, R Boogert, S Boorman, G Gournaris, F Hildreth, M Hlaing, C Jackson, F Khainovski, O Kolomensky, YG Lyapin, A Maiheu, B McCormick, D Miller, DJ Orimoto, TJ Szalata, Z Thomson, M Ward, D Wing, M Woods, M AF Slater, M. Adolphsen, C. Arnold, R. Boogert, S. Boorman, G. Gournaris, F. Hildreth, M. Hlaing, C. Jackson, F. Khainovski, O. Kolomensky, Yu. G. Lyapin, A. Maiheu, B. McCormick, D. Miller, D. J. Orimoto, T. J. Szalata, Z. Thomson, M. Ward, D. Wing, M. Woods, M. TI Cavity BPM system tests for the ILC energy spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE cavity beam position monitor; BPM; end station A; ESA; international linear collider; ILC; energy spectrometer; beam orbit stability ID MONITOR AB The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10(-4) or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 h for a 1 m long BPM triplet. We find micron-level stability over 1 h for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hlaing, C.; Khainovski, O.; Kolomensky, Yu. G.; Orimoto, T. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Orimoto, T. J.] CALTECH, Pasadena, CA 91125 USA. [Slater, M.; Thomson, M.; Ward, D.] Univ Cambridge, HEP Grp, Cambridge CB3 0HE, England. [Jackson, F.] Daresbury Lab, Daresbury, Cheshire, England. [Gournaris, F.; Lyapin, A.; Maiheu, B.; Miller, D. J.; Wing, M.] UCL, London, England. [Hildreth, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Boogert, S.; Boorman, G.] Univ London, Egham, Surrey, England. [Adolphsen, C.; Arnold, R.; McCormick, D.; Szalata, Z.; Woods, M.] Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. RP Slater, M (reprint author), Univ Birmingham, Sch Phys & Astron, Particle Phys Grp, Birmingham B15 2TT, W Midlands, England. EM slater@hep.phy.cam.ac.uk RI Wing, Matthew/C-2169-2008; Kolomensky, Yury/I-3510-2015; OI Kolomensky, Yury/0000-0001-8496-9975; Thomson, Mark/0000-0002-2654-9005 NR 13 TC 8 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 201 EP 217 DI 10.1016/j.nima.2008.04.033 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500009 ER PT J AU Hakobyan, H Brooks, WK Bruhwel, K Burkert, VD Carstens, T Christo, S Egiyan, H Gevorgyan, N Gram, J Hafidi, K Hemler, P Insley, D Jacobs, G Kashy, D Mecking, BA Sharabian, Y Stepanyan, S Tilles, D Weinstein, L Zheng, X AF Hakobyan, H. Brooks, W. K. Bruhwel, K. Burkert, V. D. Carstens, T. Christo, S. Egiyan, H. Gevorgyan, N. Gram, J. Hafidi, K. Hemler, P. Insley, D. Jacobs, G. Kashy, D. Mecking, B. A. Sharabian, Y. Stepanyan, S. Tilles, D. Weinstein, L. Zheng, X. TI A double-target system for precision measurements of nuclear medium effects SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE nuclear target; precision experiments on nuclei; low-mass vacuum chambers; electron scattering AB A double-target system has been developed for precision measurements of nuclear medium effects in unpolarized electron scattering with 4-5 GeV electron beams. This system allows for a precise comparison of elementary targets such as deuterium and hydrogen to heavy solid targets to study subtle medium effects such as color transparency, transverse momentum broadening, and hadron attenuation. One cryo-target and one solid target were located in the beam simultaneously, separated by 4 cm to minimize acceptance correction differences in the large CLAS spectrometer while maintaining the ability to identify the target event-by-event. Because both targets were positioned in the beam simultaneously, time-dependent systematic effects such as drifting gains or inefficient detector channels cancel in ratios of observables, increasing the precision of the final results. Measurements were performed with hydrogen and deuterium in combination with 3 mm diameter targets of carbon, aluminum, iron, tin, and lead. The solid targets and deuterium target were comparable in thicknesses except for specialized diagnostic runs with ultra-thin aluminum. Switching of the solid targets was performed remotely and required only a few seconds to complete. An ultra-low mass vacuum chamber made from Rohacell(C) foam provided vacuum isolation of the cryotarget without adding significantly to multiple scattering of final-state particles. (C) 2008 Elsevier B.V. All rights reserved. C1 [Brooks, W. K.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Brooks, W. K.] Univ Tecn Federico Santa Maria, Ctr Estudios Subatom, Valparaiso, Chile. [Hakobyan, H.] Yerevan State Univ, Yerevan 375049, Armenia. [Hakobyan, H.; Gevorgyan, N.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Hakobyan, H.; Brooks, W. K.; Bruhwel, K.; Burkert, V. D.; Carstens, T.; Christo, S.; Egiyan, H.; Gevorgyan, N.; Gram, J.; Hemler, P.; Insley, D.; Jacobs, G.; Kashy, D.; Mecking, B. A.; Sharabian, Y.; Stepanyan, S.; Tilles, D.] Thomas Jefferson Natl Accelerator Lab, Newport News, VA USA. [Weinstein, L.] Old Dominion Univ, Norfolk, VA USA. [Hafidi, K.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Egiyan, H.] Univ New Hampshire, Durham, NH 03824 USA. Univ Virginia, Charlottesville, VA USA. RP Brooks, WK (reprint author), Univ Tecn Federico Santa Maria, Dept Fis, Av Espana 1680,Casilla 110-V, Valparaiso, Chile. EM brooksw@jlab.org RI Brooks, William/C-8636-2013 OI Brooks, William/0000-0001-6161-3570 NR 3 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 218 EP 223 DI 10.1016/j.nima.2008.04.055 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500010 ER PT J AU Brown, DN Ilic, J Mohanty, GB AF Brown, D. N. Ilic, J. Mohanty, G. B. TI Extracting longitudinal shower development information from crystal calorimetry plus tracking SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE particle identification; longitudinal shower depth; electromagnetic calorimetry; tracking ID DETECTOR AB We present an approach to derive longitudinal shower development information from the longitudinally unsegmented BABAR electromagnetic calorimeter by using tracking information. Our algorithm takes advantage of the good three-dimensional tracking resolution of BABAR, which provides an independent geometric constraint on the shower as measured in the BABAR crystal calorimeter. We show that adding the derived longitudinal shower development information to standard particle identification algorithms significantly improves the low momentum separation of pions from electrons and muons. We also verify that the energy dependence of the electromagnetic shower development we measure is consistent with the prediction of a standard electromagnetic shower model. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ilic, J.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Brown, D. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mohanty, GB (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM Dave_Brown@lbl.gov; J.Ilic@warwick.ac.uk; G.B.Mohanty@warwick.ac.uk NR 14 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 254 EP 260 DI 10.1016/j.nima.2008.04.029 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500014 ER PT J AU Fenker, H Baillie, N Bradshaw, P Bueltmann, S Burkert, V Christy, M Dodge, G Dutta, D Ent, R Evans, J Fersch, R Giovanetti, K Griffioen, K Ispiryan, M Jayalath, C Kalantarians, N Keppel, C Kuhn, S Niculescu, G Niculescu, I Tkachenko, S Tvaskis, V Zhang, J AF Fenker, H. Baillie, N. Bradshaw, P. Bueltmann, S. Burkert, V. Christy, M. Dodge, G. Dutta, D. Ent, R. Evans, J. Fersch, R. Giovanetti, K. Griffioen, K. Ispiryan, M. Jayalath, C. Kalantarians, N. Keppel, C. Kuhn, S. Niculescu, G. Niculescu, I. Tkachenko, S. Tvaskis, V. Zhang, J. TI BoNus: Development and use of a radial TPC using cylindrical GEMs SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE GEM; TPC; curved GEM; spectator tagging; neutron structure; JLab ID PROTON-NEUTRON INTERACTIONS; ELECTRON MULTIPLIER GEM; QUARK-HADRON DUALITY; GAS DETECTORS; SCATTERING; CHAMBER AB A specialized system of target and detector was developed at Jefferson Lab to provide new access to information about neutron structure from electron-neutron interactions. It allows identification and measurement of spectator protons produced in e(-)d --> e(-)p(s)X scattering events. The detector is a radial time-projection chamber optimized for the acceptance of low-momentum protons. Gas gain is provided by three cascaded curved Gas Electron Multipliers (GEMs), the first application of GEMs in any configuration other than flat. This article provides details about the development and construction of the detector, its performance, and the analysis of the data from the successful running of its first physics experiment. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fenker, H.; Burkert, V.; Ent, R.] Jefferson Lab, Thomas Jefferson Natl Accelerator Facil, Div Phys, Newport News, VA 23606 USA. [Baillie, N.; Evans, J.; Fersch, R.; Griffioen, K.] Coll William & Mary, Williamsburg, VA USA. [Bradshaw, P.; Bueltmann, S.; Dodge, G.; Kuhn, S.; Tkachenko, S.; Zhang, J.] Old Dominion Univ, Norfolk, VA USA. [Christy, M.; Jayalath, C.; Keppel, C.; Tvaskis, V.] Hampton Univ, Hampton, VA 23668 USA. [Dutta, D.] Tri Univ Nucl Lab, Durham, NH USA. [Giovanetti, K.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Ispiryan, M.; Kalantarians, N.] Univ Houston, Houston, TX USA. RP Fenker, H (reprint author), Jefferson Lab, Thomas Jefferson Natl Accelerator Facil, Div Phys, 12000 Jefferson Ave,Suite 6, Newport News, VA 23606 USA. EM hcf@jlab.org RI Zhang, Jixie/A-1461-2016 NR 40 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 273 EP 286 DI 10.1016/j.nima.2008.04.047 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500016 ER PT J AU Tremsin, AS Vallerga, JV McPhate, JB Siegmund, OHW Feller, WB Crow, L Cooper, RG AF Tremsin, A. S. Vallerga, J. V. McPhate, J. B. Siegmund, O. H. W. Feller, W. B. Crow, L. Cooper, R. G. TI On the possibility to image thermal and cold neutron with sub-15 mu m spatial resolution SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron imaging; high spatial resolution; detection efficiency ID MICROCHANNEL-PLATE DETECTORS; EFFICIENCY; MEDIPIX2; SQUARE; CHIP AB Due to the absence of efficient neutron focusing optics the spatial resolution needed for neutron imaging requires either a high-resolution detector, as in the case of direct projection radiography, or else a bright point source as in the case of magnification imaging geometry. The very limited neutron flux in the latter makes it unacceptably slow and thus puts more emphasis on improving the detector resolution. In this paper, we present the first experimental evidence of imaging both thermal and cold neutrons with a spatial accuracy better than 15 mu m FWHM. This resolution is possible due to some unique features of neutron sensitive microchannel plates (MCPs). The position of the neutron capture event can be determined with high accuracy because the event is contained within a single or two channels of the MCP. The products of neuron capture have ranges of only a few microns in the MCP glass. The channel has a typical diameter of 6-10 mu m and the inter-channel wall thickness averages 2-3 mu m. Once the neutron capture initiates an electron avalanche in the MCP, the event position encoding is identical with photon/charged particle detection, for which the MCP technology has been widely used for several decades. Images demonstrating single channel resolution were taken using cold neutrons incident on a Gd pinhole mask and one with 20-50 mu m B(4)C particles. The proof-of-principle images were obtained at a low count rate limited by the present version of the readout electronics. Development of a new fast readout schemes is an active area of research and the rate capability of this detector should benefit from these efforts. (c) 2008 Elsevier B.V. All rights reserved. C1 [Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Feller, W. B.] NOVA Sci Inc, Sturbridge, MA 01566 USA. [Crow, L.; Cooper, R. G.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Tremsin, AS (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM ast@ssl.berkeley.edu NR 29 TC 49 Z9 49 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 374 EP 384 DI 10.1016/j.nima.2008.03.116 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500027 ER PT J AU Berman, GP Gorshkov, VN Tsifrinovich, VI AF Berman, G. P. Gorshkov, V. N. Tsifrinovich, V. I. TI Optimization and new applications of a magnetic trap for ultra-cold neutrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE ultra-cold neutrons; magnetic trap; decoherence time ID LIFETIME; STORAGE AB We discuss some problems related to the physics and dynamic behavior of ultra-cold neutrons (UCNs) in a magnetic trap. First, we present the results of our computer simulations for the permanent-magnet neutron magnetic trap suggested by J.D. Bowman and P.L. Walstrom. We demonstrate how to optimize parameters in order to minimize the "cleaning time" in the trap. Next, we propose using a magnetic trap for UCNs as an ultrasensitive method, for measuring the neutron magnetic resonance. We also propose using this method to measure the decoherence time of the neutron spins and to measure more accurately the neutron gyromagnetic ratio. (c) 2008 Elsevier B.V. All rights reserved. C1 [Berman, G. P.; Gorshkov, V. N.] Los Alamos Natl Lab, Complex Syst Grp, Los Alamos, NM 87545 USA. [Berman, G. P.; Gorshkov, V. N.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Gorshkov, V. N.] Natl Acad Sci Ukraine, Inst Phys, UA-03650 Kiev, Ukraine. [Tsifrinovich, V. I.] Polytech Univ, Dept Phys, Metrotech Ctr 6, Brooklyn, NY 11201 USA. RP Berman, GP (reprint author), Los Alamos Natl Lab, Complex Syst Grp, T-13, Los Alamos, NM 87545 USA. EM gpb@lanl.gov RI Gorshkov, Vyacheslav/J-3329-2015 OI Gorshkov, Vyacheslav/0000-0002-7700-5649 NR 9 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 385 EP 392 DI 10.1016/j.nima.2008.04.024 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500028 ER PT J AU Bleuel, M Lang, E Gahler, R Lal, J AF Bleuel, M. Lang, E. Gaehler, R. Lal, J. TI CIM - Compact intensity modulation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron spin echo; quasi-elastic; adiabatic spin flipper; compact intensity modulation ID NEUTRON SPIN-ECHO; SCATTERING AB Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse. Published by Elsevier B.V. C1 [Bleuel, M.; Lang, E.; Lal, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gaehler, R.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. RP Bleuel, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mbleuel@anl.gov NR 7 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 400 EP 404 DI 10.1016/j.nima.2008.04.039 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500030 ER PT J AU Marrs, RE Norman, EB Burke, JT Macri, RA Shugart, HA Browne, E Smith, AR AF Marrs, R. E. Norman, E. B. Burke, J. T. Macri, R. A. Shugart, H. A. Browne, E. Smith, A. R. TI Fission-product gamma-ray line pairs sensitive to fissile material and neutron energy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE fission-product gamma-ray spectroscopy; nuclear forensics ID DEUTERONS; TARGETS; SPECTRA AB The beta-delayed gamma-ray spectra from the fission of U-235, U-238, and Pu-239 by thermal and near-14-MeV neutrons have been measured for delay times ranging from 1 min to 14 h. Spectra at all delay times contain sets of prominent gamma-ray lines with intensity ratios that identify the fissile material and distinguish between fission induced by low-energy or high-energy neutrons. (c) 2008 Elsevier B.V. All rights reserved. C1 [Marrs, R. E.; Norman, E. B.; Burke, J. T.; Macri, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Shugart, H. A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Browne, E.; Smith, A. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Marrs, RE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM marrs1@llnl.gov NR 8 TC 18 Z9 18 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 463 EP 471 DI 10.1016/j.nima.2008.04.032 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500038 ER PT J AU Garcia, MA Ali, MN Chang, NN Parsonsmoss, T Ashby, PD Gates, JM Stavsetra, L Gregorich, KE Nitsche, H AF Garcia, Mitch A. Ali, Mazhar N. Chang, Noel N. Parsonsmoss, Tashi Ashby, Paul D. Gates, Jacklyn M. Stavsetra, Liv Gregorich, Kenneth E. Nitsche, Heino TI Heavy-ion irradiation of thulium(III) oxide targets prepared by polymer-assisted deposition SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE target preparation; polymer-assisted deposition; thulium(III) oxide; atomic force microscopy ID THIN; ELECTRODEPOSITION; FILMS; FOILS AB Thulium(III) oxide (Tm2O3) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 mu g/cm(2)) and were irradiated with an Ar-40 beam at a laboratory frame energy of similar to 210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a similar to 250 nm (similar to 220 mu g/cm(2)) TM2O3 target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time. (c) 2008 Elsevier B.V. All rights reserved. C1 [Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsonsmoss, Tashi; Gates, Jacklyn M.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsonsmoss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Garcia, MA (reprint author), Univ Calif Berkeley, Dept Chem, 1925 Delaware St Apt 3C, Berkeley, CA 94720 USA. EM mitch@berkeley.edu RI Ali, Mazhar/C-6473-2013 OI Ali, Mazhar/0000-0002-1129-6105 NR 9 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2008 VL 592 IS 3 BP 483 EP 485 DI 10.1016/j.nima.2008.04.077 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334WP UT WOS:000258252500041 ER PT J AU Zhou, JF Koschny, T Soukoulis, CM AF Zhou, Jiangfeng Koschny, Thomas Soukoulis, Costas M. TI An efficient way to reduce losses of left-handed metamaterials SO OPTICS EXPRESS LA English DT Article ID NEGATIVE-INDEX METAMATERIAL; OPTICAL METAMATERIALS; WAVELENGTHS; REFRACTION; LIGHT AB We propose a simple and effective way to reduce the losses in left-handed metamaterials by manipulating the values of the effective parameters R, L, and C. We investigate the role of losses of the short-wire pairs and the fishnet structures. Increasing the effective inductance to capacitance ratio, L/C, reduces the losses and the figure of merit can increase substantially, especially at THz frequencies and in the optical regime. (C) 2008 Optical Society of America. C1 [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhou, Jiangfeng] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. RP Zhou, JF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM jfengz@iastate.edu RI Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Zhou, Jiangfeng/0000-0002-6958-3342 NR 25 TC 59 Z9 59 U1 1 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 21 PY 2008 VL 16 IS 15 BP 11147 EP 11152 DI 10.1364/OE.16.011147 PG 6 WC Optics SC Optics GA 332FX UT WOS:000258069100031 PM 18648429 ER PT J AU Acosta, VM Auzinsh, M Gawlik, W Grisins, P Higbie, JM Kimball, DFJ Krzemien, L Ledbetter, MP Pustelny, S Rochester, SM Yashchuk, VV Budker, D AF Acosta, V. M. Auzinsh, M. Gawlik, W. Grisins, P. Higbie, J. M. Kimball, D. F. Jackson Krzemien, L. Ledbetter, M. P. Pustelny, S. Rochester, S. M. Yashchuk, V. V. Budker, D. TI Production and detection of atomic hexadecapole at Earth's magnetic field SO OPTICS EXPRESS LA English DT Article ID RESONANCE; STATE; LIGHT AB Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude. (C) 2008 Optical Society of America. C1 [Acosta, V. M.; Higbie, J. M.; Ledbetter, M. P.; Rochester, S. M.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Auzinsh, M.; Grisins, P.] Latvian State Univ, Dept Phys, LV-1586 Riga, Latvia. [Gawlik, W.; Krzemien, L.; Pustelny, S.] Jagiellonian Univ, Ctr Magnetoopt Res, Inst Phys, PL-30059 Krakow, Poland. [Kimball, D. F. Jackson] Calif State Univ Hayward, Dept Phys, Hayward, CA 94542 USA. [Yashchuk, V. V.] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Budker, D.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Budker, D (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM budker@berkeley.edu RI Acosta, Victor/G-8176-2011; Budker, Dmitry/F-7580-2016; OI Budker, Dmitry/0000-0002-7356-4814; Acosta, Victor/0000-0003-0058-9954 NR 32 TC 16 Z9 17 U1 3 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 21 PY 2008 VL 16 IS 15 BP 11423 EP 11430 DI 10.1364/OE.16.011423 PG 8 WC Optics SC Optics GA 332FX UT WOS:000258069100064 PM 18648462 ER PT J AU Naulleau, PP Gullikson, EM Aquila, A George, S Niakoula, D AF Naulleau, Patrick P. Gullikson, Eric M. Aquila, Andy George, Simi Niakoula, Dimitra TI Absolute sensitivity calibration of extreme ultraviolet photoresists SO OPTICS EXPRESS LA English DT Article ID EXPOSURE AB One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here we report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard. (C) 2008 Optical Society of America. C1 [Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andy; George, Simi; Niakoula, Dimitra] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Naulleau, PP (reprint author), Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM pnaulleau@lbl.gov NR 11 TC 9 Z9 9 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 21 PY 2008 VL 16 IS 15 BP 11519 EP 11524 DI 10.1364/OE.16.011519 PG 6 WC Optics SC Optics GA 332FX UT WOS:000258069100075 PM 18648473 ER PT J AU Whalen, D van Veelen, B O'Shea, BW Norman, ML AF Whalen, Daniel van Veelen, Bob O'Shea, Brian W. Norman, Michael L. TI The destruction of cosmological minihalos by primordial supernovae SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : theory; early universe; hydrodynamics; stars : early-type; supernovae : individual ID GLOBULAR STAR-CLUSTERS; RAY BURST AFTERGLOW; POPULATION-III; HII-REGIONS; EARLY UNIVERSE; 1ST STARS; INTERGALACTIC MEDIUM; INTERSTELLAR-MEDIUM; RADIATIVE FEEDBACK; IONIZATION FRONTS AB We present numerical simulations of primordial supernovae in cosmological minihalos at z similar to 20. We consider Type II supernovae, hypernovae, and pair instability supernovae ( PISN) in halos from 6: 9; 105 to 1: 2; 107 M-circle dot, those in which Population III stars are expected to form via H-2 cooling. Our simulations are the first to follow the evolution of the blast from a free expansion on spatial scales of 10(-4) pc until its approach to pressure equilibrium in the relic H II region of the progenitor, similar to 1000 pc. Supernovae in H II regions first expand adiabatically and then radiate strongly upon collision with baryons ejected from the halo during its photoevaporation by the progenitor. In contrast to previous findings, supernovae in neutral halos promptly emit most of their kinetic energy as X-rays, but retain enough momentum to seriously disrupt the halo. Explosions in H II regions escape into the IGM, but neutral halos confine the blast and its metals. InH II regions, a prompt second generation of stars may form in the remnant at radii of 100-200 pc. Explosions confined by massive halos instead recollapse, with infall rates in excess of 10(-2) M-circle dot yr(-1) that heavily contaminate their interior. This fallback may either fuel massive black hole growth at very high redshifts or create the first globular clusters with radii of 10-20 pc at the center of the halo. Our findings suggest that the first primitive galaxiesmay therefore have formed sooner, with greater numbers of stars and distinct chemical signatures, than in current models. C1 [Whalen, Daniel; O'Shea, Brian W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Whalen, Daniel; Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [van Veelen, Bob] Astron Inst, Utrecht, Netherlands. RP Whalen, D (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dwhalen@lanl.gov NR 81 TC 101 Z9 101 U1 0 U2 9 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2008 VL 682 IS 1 BP 49 EP 67 DI 10.1086/589643 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 328YL UT WOS:000257834000005 ER PT J AU Dilday, B Kessler, R Frieman, JA Holtzman, J Marriner, J Miknaitis, G Nichol, RC Romani, R Sako, M Bassett, B Becker, A Cinabro, D DeJongh, F Depoy, DL Doi, M Garnavich, PM Hogan, CJ Jha, S Konishi, K Lampeitl, H Marshall, JL McGinnis, D Prieto, JL Riess, AG Richmond, MW Schneider, DP Smith, M Takanashi, N Tokita, K van der Heyden, K Yasuda, N Zheng, C Barentine, J Brewington, H Choi, C Crotts, A Dembicky, J Harvanek, M Im, M Ketzeback, W Kleinman, SJ Krzesinski, J Long, DC Malanushenko, E Malanushenko, V McMillan, RJ Nitta, A Pan, K Saurage, G Snedden, SA Watters, S Wheeler, JC York, D AF Dilday, Benjamin Kessler, Richard Frieman, Joshua A. Holtzman, Jon Marriner, John Miknaitis, Gajus Nichol, Robert C. Romani, Roger Sako, Masao Bassett, Bruce Becker, Andrew Cinabro, David DeJongh, Fritz Depoy, Darren L. Doi, Mamoru Garnavich, Peter M. Hogan, Craig J. Jha, Saurabh Konishi, Kohki Lampeitl, Hubert Marshall, Jennifer L. McGinnis, David Prieto, Jose Luis Riess, Adam G. Richmond, Michael W. Schneider, Donald P. Smith, Mathew Takanashi, Naohiro Tokita, Kouichi van der Heyden, Kurt Yasuda, Naoki Zheng, Chen Barentine, John Brewington, Howard Choi, Changsu Crotts, Arlin Dembicky, Jack Harvanek, Michael Im, Myunshin Ketzeback, William Kleinman, Scott J. Krzesinski, Jurek Long, Daniel C. Malanushenko, Elena Malanushenko, Viktor McMillan, Russet J. Nitta, Atsuko Pan, Kaike Saurage, Gabrelle Snedden, Stephanie A. Watters, Shannon Wheeler, J. Craig York, Donald TI A measurement of the rate of Type Ia supernovae at redshift z approximate to 0.1 from the first season of the SDSS-II Supernova Survey SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae : general ID DIGITAL SKY SURVEY; SURVEY PHOTOMETRIC SYSTEM; STAR-FORMATION HISTORY; LIGHT-CURVE SHAPES; DATA RELEASE; DEEP FIELD; SEARCH; EXTINCTION; TELESCOPE; GALAXIES C1 [Dilday, Benjamin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Dilday, Benjamin; Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, Richard; York, Donald] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Frieman, Joshua A.; York, Donald] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus; DeJongh, Fritz; McGinnis, David] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Holtzman, Jon] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Nichol, Robert C.; Lampeitl, Hubert; Smith, Mathew] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Romani, Roger; Sako, Masao; Jha, Saurabh; Zheng, Chen] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bassett, Bruce] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Bassett, Bruce; van der Heyden, Kurt] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Becker, Andrew; Hogan, Craig J.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Cinabro, David] Wayne State Univ, Dept Phys, Detroit, MI 48202 USA. [Depoy, Darren L.; Marshall, Jennifer L.; Prieto, Jose Luis] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Doi, Mamoru; Takanashi, Naohiro; Tokita, Kouichi] Univ Tokyo, Inst Astron, Grad Sch Sci, Tokyo 1810015, Japan. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Jha, Saurabh] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Konishi, Kohki; Yasuda, Naoki] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Lampeitl, Hubert; Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [van der Heyden, Kurt] Univ Cape Town, Dept Astron, ZA-7700 Rondebosch, South Africa. [Barentine, John; Wheeler, J. Craig] Univ Texas Austin, McDonald Observ, Dept Astron, Austin, TX 78712 USA. [Barentine, John; Brewington, Howard; Dembicky, Jack; Harvanek, Michael; Ketzeback, William; Kleinman, Scott J.; Krzesinski, Jurek; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; McMillan, Russet J.; Nitta, Atsuko; Pan, Kaike; Saurage, Gabrelle; Snedden, Stephanie A.; Watters, Shannon] Apache Point Observ, Sunspot, NM 88349 USA. [Choi, Changsu; Im, Myunshin] Seoul Natl Univ, Dept Astron, Seoul, South Korea. [Crotts, Arlin] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Harvanek, Michael] Lowell Observ, Flagstaff, AZ 86001 USA. [Kleinman, Scott J.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Krzesinski, Jurek] Akad Pedagogicazna Krakowie, Obserwatorium Astron Suhorze, PL-30084 Krakow, Poland. [Nitta, Atsuko] Gemini Observ, Hilo, HI 96720 USA. RP Dilday, B (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. EM bdilday@uchicago.edu RI Yasuda, Naoki/A-4355-2011; Im, Myungshin/B-3436-2013 OI Im, Myungshin/0000-0002-8537-6714 NR 70 TC 69 Z9 69 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2008 VL 682 IS 1 BP 262 EP 282 DI 10.1086/587733 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 328YL UT WOS:000257834000022 ER PT J AU Belczynski, K Taam, RE Rantsiou, E van der Sluys, M AF Belczynski, Krzysztof Taam, Ronald E. Rantsiou, Emmanouela van der Sluys, Marc TI Black hole spin evolution: Implications for short-hard gamma-ray bursts and gravitational wave detection SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries : close; black hole physics; gamma rays : bursts; gravitational waves ID NEUTRON STAR BINARIES; 2 COMPACT OBJECTS; POPULATION SYNTHESIS; ORBIT MISALIGNMENT; ACCRETION DISKS; MERGERS; SIMULATIONS; MASS; PROGENITORS; UNIVERSE AB The evolution of the spin and tilt of black holes in compact black hole-neutron star and black hole-black hole binary systems is investigated within the framework of the coalescing compact star binary model for short gamma ray bursts via the population synthesis method. Based on recent results on accretion at super critical rates in slim disk models, estimates of natal kicks, and the results regarding fallback in supernova models, we obtain the black hole spin and misalignment. It is found that the spin parameter, a(spin), is less than 0.5 for initially nonrotating black holes and the tilt angle, i(tilt), is less than 45 degrees for 50% of the systems in black hole-neutron star binaries. On comparison with the results of black hole-neutron star merger calculations we estimate that only a small fraction (similar to 0.01) of these systems can lead to the formation of a torus surrounding the coalesced binary potentially producing a short-hard gamma ray burst. On the other hand, for high initial black hole spin parameters (a(spin) > 0.6) this fraction can be significant (similar to 0.4). It is found that the predicted gravitational radiation signal for our simulated population does not significantly differ from that for nonrotating black holes. Due to the (1) insensitivity of signal detection techniques to the black hole spin and the (2) predicted overall low contribution of black hole binaries to the signal we find that the detection of gravitational waves are not greatly inhibited by current searches with nonspinning templates. It is pointed out that the detection of a black hole-black hole binary inspiral system with LIGO or VIRGO may provide a direct measurement of the initial spin of a black hole. C1 [Belczynski, Krzysztof] Los Alamos Natl Lab, CCS2 ISR1 Grp, Los Alamos, NM 87545 USA. [Belczynski, Krzysztof] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Taam, Ronald E.; Rantsiou, Emmanouela; van der Sluys, Marc] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Taam, Ronald E.] Natl Tsing Hua Univ, TIARA, ASIAA, Hsinchu, Taiwan. RP Belczynski, K (reprint author), Los Alamos Natl Lab, CCS2 ISR1 Grp, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM kbelczyn@nmsu.edu; r-taam@northwestern.edu; emmanouela@northwestern.edu; sluys@northwestern.edu NR 64 TC 58 Z9 58 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2008 VL 682 IS 1 BP 474 EP 486 DI 10.1086/589609 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 328YL UT WOS:000257834000037 ER PT J AU Becker, AC Arraki, K Kaib, NA Wood-Vasey, WM Aguilera, C Blackman, JW Blondin, S Challis, P Clocchiatti, A Covarrubias, R Damke, G Davis, TM Filippenko, AV Foley, RJ Garg, A Garnavich, PM Hicken, M Jha, S Kirshner, RP Krisciunas, K Leibundgut, B Li, W Matheson, T Miceli, A Miknaitis, G Narayan, G Pignata, G Prieto, JL Rest, A Riess, AG Salvo, ME Schmidt, BP Smith, RC Sollerman, J Spyromilio, J Stubbs, CW Suntzeff, NB Tonry, JL Zenteno, A AF Becker, A. C. Arraki, K. Kaib, N. A. Wood-Vasey, W. M. Aguilera, C. Blackman, J. W. Blondin, S. Challis, P. Clocchiatti, A. Covarrubias, R. Damke, G. Davis, T. M. Filippenko, A. V. Foley, R. J. Garg, A. Garnavich, P. M. Hicken, M. Jha, S. Kirshner, R. P. Krisciunas, K. Leibundgut, B. Li, W. Matheson, T. Miceli, A. Miknaitis, G. Narayan, G. Pignata, G. Prieto, J. L. Rest, A. Riess, A. G. Salvo, M. E. Schmidt, B. P. Smith, R. C. Sollerman, J. Spyromilio, J. Stubbs, C. W. Suntzeff, N. B. Tonry, J. L. Zenteno, A. TI Exploring the outer solar system with the ESSENCE Supernova Survey SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE kuiper belt; methods : data analysis; surveys ID TRANS-NEPTUNIAN OBJECTS; COSMOLOGICAL CONSTANT; BELT; ORIGIN AB We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21 degrees < beta < -5 degrees), reaching limiting magnitudes per observation of I approximate to 23.1 R approximate to 23.7. We examine several of the newly detected objects in detail, including 2003 UC414, which orbits entirely 23.7 between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS422 and 2007 TA(418) have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the "extended" or "detached" scattered disk, 2004 VN112, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only similar to 2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system. C1 [Becker, A. C.; Arraki, K.; Kaib, N. A.; Miceli, A.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Wood-Vasey, W. M.; Blondin, S.; Challis, P.; Garg, A.; Hicken, M.; Kirshner, R. P.; Narayan, G.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Aguilera, C.; Damke, G.; Rest, A.; Smith, R. C.; Suntzeff, N. B.; Zenteno, A.] Natl Opt Astron Observ, CTIO, La Serena, Chile. [Blackman, J. W.; Salvo, M. E.; Schmidt, B. P.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo & Siding Spring Observ, Weston, Australia. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 22, Chile. [Covarrubias, R.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Davis, T. M.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Davis, T. M.] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia. [Filippenko, A. V.; Foley, R. J.; Li, W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Garg, A.; Hicken, M.; Jha, S.; Narayan, G.; Rest, A.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Garnavich, P. M.; Krisciunas, K.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Jha, S.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Krisciunas, K.; Suntzeff, N. B.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Leibundgut, B.; Spyromilio, J.] European So Observ, D-85748 Garching, Germany. [Matheson, T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Miknaitis, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Pignata, G.] Univ Chile, Dept Astron, Santiago, Chile. [Prieto, J. L.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Riess, A. G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Tonry, J. L.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Becker, AC (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. RI Stubbs, Christopher/C-2829-2012; Davis, Tamara/A-4280-2008; OI Stubbs, Christopher/0000-0003-0347-1724; Davis, Tamara/0000-0002-4213-8783; Schmidt, Brian/0000-0001-6589-1287; Sollerman, Jesper/0000-0003-1546-6615; Narayan, Gautham/0000-0001-6022-0484 NR 22 TC 6 Z9 7 U1 1 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2008 VL 682 IS 1 BP L53 EP L56 DI 10.1086/590429 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 326MF UT WOS:000257662700014 ER PT J AU Carlberg, RG Sullivan, M Le Borgne, D Conley, A Howell, DA Perrett, K Astier, P Balam, D Balland, C Basa, S Hardin, D Fouchez, D Guy, J Hook, I Pain, R Pritchet, CJ Regnault, N Rich, J Perlmutter, S AF Carlberg, R. G. Sullivan, M. Le Borgne, D. Conley, A. Howell, D. A. Perrett, K. Astier, P. Balam, D. Balland, C. Basa, S. Hardin, D. Fouchez, D. Guy, J. Hook, I. Pain, R. Pritchet, C. J. Regnault, N. Rich, J. Perlmutter, S. TI Clustering of supernova Ia host galaxies SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies : general; surveys ID EVOLUTIONARY SYNTHESIS; STAR-FORMATION; LEGACY SURVEY; FREQUENCY; RATES; REDSHIFT; PEGASE AB For the first time the cross-correlation between Type Ia supernova host galaxies and surrounding field galaxies is measured using the Supernova Legacy Survey sample. Over the redshift range we find that z = 0.2-0.9 supernova hosts are correlated an average of 60% more strongly than similarly selected field galaxies over the 3"-100" range and about a factor of 3 more strongly below 10". The correlation errors are empirically established 10 with a jackknife analysis of the four SNLS fields. The hosts are more correlated than the field at a significance of 99% in the fitted amplitude and slope, with the point-by-point difference of the two correlation functions having a reduced chi(2) for 8 degrees of freedom of 4.3, which has a probability of random occurrence of less than 3 x 10(-5). The correlation angle is 1.5" +/- 0.5", which deprojects to a fixed comoving correlation length of approximately 6.5 +/- 2 h(-1) Mpc. Weighting the field galaxies with the mass and star formation rate supernova frequencies of the simple model produces good agreement with the observed clustering. We conclude that A + B these supernova clustering differences are primarily the expected outcome of the dependence of supernova rates on galaxy masses and stellar populations with their clustering environment. C1 [Carlberg, R. G.; Sullivan, M.; Conley, A.; Howell, D. A.; Perrett, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Sullivan, M.; Hook, I.] Univ Oxford Astrophys, Oxford OX1 3RH, England. [Le Borgne, D.; Rich, J.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Astier, P.; Balland, C.; Hardin, D.; Fouchez, D.; Guy, J.; Pain, R.; Regnault, N.] Univ Paris 06, F-75005 Paris, France. [Astier, P.; Balland, C.; Hardin, D.; Fouchez, D.; Guy, J.; Pain, R.; Regnault, N.] Univ Paris 07, F-75005 Paris, France. [Astier, P.; Balland, C.; Hardin, D.; Fouchez, D.; Guy, J.; Pain, R.; Regnault, N.] CNRS, IN2P3, LPNHE, F-75005 Paris, France. [Balam, D.; Pritchet, C. J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Basa, S.] LAM CNRS, F-13376 Marseille 12, France. [Perlmutter, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Carlberg, RG (reprint author), Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. EM carlberg@astro.utoronto.ca RI Carlberg, Raymond/I-6947-2012; Perlmutter, Saul/I-3505-2015; OI Carlberg, Raymond/0000-0002-7667-0081; Perlmutter, Saul/0000-0002-4436-4661; Sullivan, Mark/0000-0001-9053-4820 NR 20 TC 5 Z9 5 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2008 VL 682 IS 1 BP L25 EP L28 DI 10.1086/590182 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 326MF UT WOS:000257662700007 ER PT J AU Disselkamp, RS Harris, BD Hart, TR AF Disselkamp, R. S. Harris, B. D. Hart, T. R. TI Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black SO CATALYSIS COMMUNICATIONS LA English DT Article DE propylene glycol; hydrogen peroxide; hydroxy acetone; lactic acid; enol-diol; Pd-black catalyst ID LIQUID-PHASE OXIDATION; SELECTIVE OXIDATION; SYSTEM; ALCOHOLS; WATER AB Here we report the reaction of propylene. glycol with hydrogen peroxide/air sparging on a Pd-black catalyst under reflux conditions at 368 K. Major products include hydroxy acetone (HA) and acetic acid (AA) compounds, whereas a lesser abundant compound formed was lactic acid (LA). Product conversion data at near neutral pH versus hydrogen peroxide equivalents added is presented. Experiments revealed that although the product distribution in air sparged versus non-air sparged chemistries is similar, the amount of reactive oxygen is greatly enhanced (similar to 8-fold) with co-addition of O-2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under mildly acidic conditions such that 26% of total product formation is LA. Published by Elsevier B.V. C1 [Disselkamp, R. S.; Harris, B. D.; Hart, T. R.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Disselkamp, RS (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 3335 Q Ave, Richland, WA 99352 USA. EM rdisselkamp@columbiabasin.edu OI Hart, Todd/0000-0001-8013-0689 NR 16 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-7367 J9 CATAL COMMUN JI Catal. Commun. PD JUL 20 PY 2008 VL 9 IS 13 BP 2250 EP 2252 DI 10.1016/j.catcom.2008.05.005 PG 3 WC Chemistry, Physical SC Chemistry GA 330WN UT WOS:000257973600024 ER PT J AU Nordlund, D Odelius, M Bluhm, H Ogasawara, H Pettersson, LGM Nilsson, A AF Nordlund, D. Odelius, M. Bluhm, H. Ogasawara, H. Pettersson, L. G. M. Nilsson, A. TI Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory SO CHEMICAL PHYSICS LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; INTERMOLECULAR INTERACTIONS; AQUEOUS-SOLUTIONS; HYDROGEN-BOND; CUBIC ICE; PHOTOEMISSION; PSEUDOPOTENTIALS; NONADDITIVITY; APPROXIMATION; CLUSTERS AB We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a(1) orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction. (C) 2008 Elsevier B. V. All rights reserved. C1 [Nordlund, D.; Ogasawara, H.; Nilsson, A.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Nordlund, D.; Odelius, M.; Pettersson, L. G. M.; Nilsson, A.] Stockholm Univ, AlbaNova Univ Ctr, FYSIKUM, S-10691 Stockholm, Sweden. [Bluhm, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Nordlund, D (reprint author), Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM work@dennisnordlund.com; nilsson@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Nordlund, Dennis/A-8902-2008; Pettersson, Lars/J-4925-2013; Odelius, Michael/A-7628-2014; Ogasawara, Hirohito/D-2105-2009 OI Nilsson, Anders/0000-0003-1968-8696; Nordlund, Dennis/0000-0001-9524-6908; Pettersson, Lars/0000-0003-1133-9934; Odelius, Michael/0000-0002-7023-2486; Ogasawara, Hirohito/0000-0001-5338-1079 NR 49 TC 43 Z9 44 U1 4 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 20 PY 2008 VL 460 IS 1-3 BP 86 EP 92 DI 10.1016/j.cplett.2008.04.096 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 325NT UT WOS:000257596300019 ER PT J AU Papoular, RJ Toby, BH Davydov, VA Rakhmanina, AV Dzyabchenko, A Allouchi, H Agafonov, V AF Papoular, R. J. Toby, B. H. Davydov, V. A. Rakhmanina, A. V. Dzyabchenko, A. Allouchi, H. Agafonov, V. TI Single-crystal and synchrotron X-ray powder diffraction study of the one-dimensional orthorhombic polymer phase of C(60) SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HIGH-PRESSURE; STRUCTURAL REFINEMENT; SOLID C-60; TRANSITIONS; CS; RB AB The 1D-orthorhombic polymer phase of C(60) was originally mentioned in 1995. The present work provides the first direct experimental quantitative evidences of the 1D-polymer chains, clearly seen by single-crystal diffraction. Geometrical details of the [2+2]-cycloaddition rings are compared with those of C(60) dimers and 2D-polymers. Another key structural parameter is the angle of rotation Psi of the 1D chains about the polymerization axis. Single-crystal diffraction yields Psi approximate to 78 degrees, whereas accurate synchrotron powder diffraction independently produces a similar Psi approximate to 73 degrees. These values are in qualitative agreement with a former theoretical prediction (Psi approximate to 61 degrees). (C) 2008 Elsevier B. V. All rights reserved. C1 [Papoular, R. J.] CEA, CEN Saclay, IRAMIS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France. [Toby, B. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Davydov, V. A.; Rakhmanina, A. V.] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Troitsk 142092, Russia. [Dzyabchenko, A.] LY Karpov Phys Chem Res Inst, Moscow 103064, Russia. [Allouchi, H.] Univ Tours, EA 3857, Lab Synth Physicochim & Therapeut, F-37200 Tours, France. [Agafonov, V.] Univ Tours, CNRS, UMR CEA 6157, Lab Electrodynam Mat Avances, F-37200 Tours, France. RP Papoular, RJ (reprint author), CEA, CEN Saclay, IRAMIS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France. EM papou@llb.saclay.cea.fr RI Toby, Brian/F-3176-2013; Davydov, Valery/P-5673-2015 OI Toby, Brian/0000-0001-8793-8285; Davydov, Valery/0000-0002-8702-0340 NR 29 TC 2 Z9 2 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 20 PY 2008 VL 460 IS 1-3 BP 93 EP 99 DI 10.1016/j.cplett.2008.05.046 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 325NT UT WOS:000257596300020 ER PT J AU Zhao, X Rignall, TR McCabe, C Adney, WS Himmel, ME AF Zhao, Xiongce Rignall, Tauna R. McCabe, Clare Adney, William S. Himmel, Michael E. TI Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization SO CHEMICAL PHYSICS LETTERS LA English DT Article ID CELLOBIOHYDROLASE-I; CRYSTAL-STRUCTURE; FORCE-FIELD; FREE-ENERGY; X-RAY; DYNAMICS; BIOFUELS; SYSTEM; LINKER; DOMAIN AB We present free energy calculations for the Trichoderma reesei Cel7A (cellobiohydrolase I) linker peptide from molecular dynamics simulations directed towards understanding the linker role in cellulose hydrolysis. The calculations predict an energy storage mechanism of the linker under stretching/compression that is consistent with processive depolymerization. The linker exhibits two stable states at lengths of 2.5 nm and 5.5 nm during extension/compression, with a free energy difference of 10.5 kcal/mol between the two states separated by an energy barrier. The switching between stable states supports the hypothesis that the linker peptide has the capacity to store energy in a manner similar to a spring. (C) 2008 Elsevier B.V. All rights reserved. C1 [Rignall, Tauna R.; McCabe, Clare] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Zhao, Xiongce] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Adney, William S.; Himmel, Michael E.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO USA. RP McCabe, C (reprint author), Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. EM c.mccabe@vanderbilt.edu RI McCabe, Clare/I-8017-2012 OI McCabe, Clare/0000-0002-8552-9135 NR 26 TC 21 Z9 21 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 20 PY 2008 VL 460 IS 1-3 BP 284 EP 288 DI 10.1016/j.cplett.2008.05.060 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 325NT UT WOS:000257596300058 ER PT J AU Colella, P Sekora, MD AF Colella, Phillip Sekora, Michael D. TI A limiter for PPM that preserves accuracy at smooth extrema SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE upwind methods; PPM; limiters ID ESSENTIALLY NONOSCILLATORY SCHEMES; FLUX-CORRECTED TRANSPORT; CONSERVATION-LAWS; ALGORITHMS AB We present a new limiter for the PPM method of Colella and Woodward [P. Colella, P.R. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics 54 (1984) 174-201] that preserves accuracy at smooth extrema. It is based on constraining the interpolated values at extrema (and only at extrema) using non-linear combinations of various difference approximations of the second derivatives. Otherwise, we use a standard geometric limiter to preserve monotonicity away from extrema. This leads to a method that has the same accuracy for smooth initial data as the underlying PPM method without limiting, while providing sharp, non-oscillatory representations of discontinuities. (c) 2008 Published by Elsevier Inc. C1 [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. [Sekora, Michael D.] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08540 USA. RP Colella, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pcolella@lbl.gov; sekora@math.princeton.edu NR 17 TC 52 Z9 53 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2008 VL 227 IS 15 BP 7069 EP 7076 DI 10.1016/j.jcp.2008.03.034 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 329MJ UT WOS:000257871400001 ER PT J AU Vomel, C Tomov, SZ Marques, OA Canning, A Wang, LW Dongarra, JJ AF Voemel, Christof Tomov, Stanimire Z. Marques, Osni A. Canning, A. Wang, Lin-Wang Dongarra, Jack J. TI State-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE computational nano-technology; electronic structure; preconditioned conjugate gradients; implicitly restarted Arnoldi; Davidson's method ID OPTIMAL PRECONDITIONED METHODS; EIGENVALUE PROBLEMS; CONVERGENCE ACCELERATION; HERMITIAN EIGENPROBLEMS; DAVIDSON METHOD; LIMITED MEMORY; ITERATION; MATRICES; EIGENVECTORS; SEEKING AB The band edge states determine optical and electronic properties of semiconductor nano-structures which can be computed from an interior eigenproblem. We study the reliability and performance of state-of-the-art iterative eigensolvers on large quantum dots and wires, focusing on variants of preconditioned CG, Lanczos, and Davidson methods. One Davidson variant, the GD + k (Olsen) method, is identified to be as reliable as the commonly used preconditioned CG while consistently being between two and three times faster. (c) Published by Elsevier Inc. C1 [Voemel, Christof; Marques, Osni A.; Canning, A.; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Tomov, Stanimire Z.; Dongarra, Jack J.] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. RP Vomel, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM cvoemel@lbl.gov; tomov@cs.utk.edu; OAMarques@lbl.gov; OAMarques@lbl.gov; LWWang@lbl.gov; dongarra@cs.utk.edu RI Dongarra, Jack/E-3987-2014 NR 47 TC 14 Z9 14 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2008 VL 227 IS 15 BP 7113 EP 7124 DI 10.1016/j.jcp.2008.01.018 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 329MJ UT WOS:000257871400005 ER PT J AU Xiong, Z Cohen, RH Rognlien, TD Xu, XQ AF Xiong, Z. Cohen, R. H. Rognlien, T. D. Xu, X. Q. TI A high-order finite-volume algorithm for Fokker-Planck collisions in magnetized plasmas SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Fokker-Planck collisions; high-order scheme; finite volume; constants-of-motion coordinates ID DIFFERENCE SCHEME; LANDAU EQUATION; IMPLICIT; OPERATOR AB A high-order finite-volume algorithm is developed for the Fokker-Planck Operator (FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm uses a generic fourth-order reconstruction scheme on an unstructured grid in the velocity space spanned by parallel velocity and magnetic moment. By analytically mapping between different coordinates, it produces an accurate and density-conserving numerical FPO for an arbitrary choice of velocity space coordinates. A linearized FPO in constants-of-motion coordinates is implemented as an example of the present algorithm combined with a cut-cell merging procedure. Numerical tests include the thermalization of a test distribution with a background Maxwellian at a different temperature, and the return to isotropy for a distribution initialized with a velocity space loss-cone. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Trubnikov-Rosenbluth potentials. (c) 2008 Elsevier Inc. All rights reserved. C1 [Xiong, Z.; Cohen, R. H.; Rognlien, T. D.; Xu, X. Q.] Lawrence Livermore Natl Lab, Fus Energy Program Livermore, Livermore, CA 94550 USA. RP Xiong, Z (reprint author), Schlumberger Sugar Land Technol Ctr, Sugar Land, TX 77478 USA. EM zxiong@gmail.com NR 16 TC 10 Z9 10 U1 3 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2008 VL 227 IS 15 BP 7192 EP 7205 DI 10.1016/j.jcp.2008.04.004 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 329MJ UT WOS:000257871400009 ER PT J AU Li, ST AF Li, Shengtai TI High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE central schemes; high order; non-oscillatory; constrained transport (CT); divergence-free reconstruction; overlapping cell; magneto-hydrodynamics (MHD) ID NONOSCILLATORY CENTRAL SCHEMES; HYPERBOLIC CONSERVATION-LAWS; FINITE-DIFFERENCE SCHEME; IDEAL MAGNETOHYDRODYNAMICS; MHD EQUATIONS; RECONSTRUCTION AB This paper extends the central finite-volume schemes of Liu et al. [Y. Liu, C.-W. Shu, E. Tadmor, M. Zhang, Non-oscillatory hierarchical reconstruction for central and finite-volume schemes, Commun. Comput. Phys. 2 (2007) 933-963] on overlapping cells to the magneto-hydrodynamic (MHD) equations. In particular, we propose a high order divergence-free reconstruction for the magnetic field that uses the face-centered values. We also advance the magnetic field with a high order constrained transport (CT) scheme to preserve the divergence-free condition to machine round-off error. The overlapping cells are natural to be used to calculate the electric field flux without an averaging procedure. We have developed a third-order scheme which is verified by the numerical experiments. Other higher order schemes can be constructed accordingly. Our central constrained transport schemes do not need characteristic decomposition, and are easy to code and combine with un-split discretization of the source and parabolic terms. The overlapping cell representation of the solution is also used to develop more compact reconstruction and less dissipative schemes. The high resolution is achieved by non-oscillatory hierarchical reconstruction, which does not require characteristic decomposition either. The numerical comparisons show that the central schemes with non-CT perform as well as with CT for most of problems. Numerical examples are given to demonstrate efficacy of the new schemes. (c) Published by Elsevier Inc. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, ST (reprint author), Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM sli@lani.gov OI Li, Shengtai/0000-0002-4142-3080 NR 32 TC 23 Z9 23 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2008 VL 227 IS 15 BP 7368 EP 7393 DI 10.1016/j.jcp.2008.04.022 PG 26 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 329MJ UT WOS:000257871400018 ER PT J AU Morgado, L Bruix, M Londer, YY Pokkuluri, PR Schiffer, M Salgueiro, CA AF Morgado, Leonor Bruix, Marta Londer, Yuri Y. Pokkuluri, P. Raj Schiffer, Marianne Salgueiro, Carlos A. TI Multiheme periplasmic cytochromes of Geobacter sulfurreducens: Optimized cellular devices to face extracellular electron acceptors? SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Meeting Abstract CT 15th European Bioenergetics Conference CY JUL 19-24, 2008 CL Trinity Coll, Dublin, IRELAND HO Trinity Coll C1 [Morgado, Leonor; Salgueiro, Carlos A.] Univ Nova Lisboa, Requimte CQFB, FCT, Caparica, 60439, Portugal. [Bruix, Marta] CSIC, IQFR, Dept Espectroscopia Estructura Mol, Madrid, Spain. [Londer, Yuri Y.; Pokkuluri, P. Raj; Schiffer, Marianne] Argonne Natl Lab, Biosci Div, Argonne, IL USA. EM mlmorgado@dq.fct.unl.pt RI Bruix, Marta/H-4161-2011; Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Bruix, Marta/0000-0002-0096-3558; Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; NR 0 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD JUL 19 PY 2008 VL 1777 SU S BP S91 EP S91 DI 10.1016/j.bbabio.2008.05.357 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 331UI UT WOS:000258037700347 ER PT J AU Woodruff, WH AF Woodruff, William H. TI Electrons, protons, and low-energy transitions in heme-copper oxidases SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Meeting Abstract CT 15th European Bioenergetic Conference CY JUL 19-24, 2008 CL Trinity Coll, Dublin, IRELAND HO Trinity Coll C1 [Woodruff, William H.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM woody@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD JUL 19 PY 2008 VL 1777 SU S BP S110 EP S110 DI 10.1016/j.bbabio.2008.05.430 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 331UI UT WOS:000258037700420 ER PT J AU Filley, TR Boutton, TW Liao, JD Jastrow, JD Gamblin, DE AF Filley, Timothy R. Boutton, Thomas W. Liao, Julia D. Jastrow, Julie D. Gamblin, David E. TI Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID WOODY PLANT INVASION; COASTAL MARINE-ENVIRONMENT; PARTICLE-SIZE FRACTIONS; CUO REACTION-PRODUCTS; FOREST SOILS; OXIDATION-PRODUCTS; EARLY DIAGENESIS; CONIFER NEEDLES; CARBON POOL; LIGNIN AB Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin- derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization. C1 [Filley, Timothy R.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA. [Boutton, Thomas W.; Liao, Julia D.] Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX USA. [Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Filley, TR (reprint author), Purdue Univ, Dept Earth & Atmospher Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM filley@purdue.edu RI Filley, Timothy/A-9862-2009; Boutton, Thomas/C-5821-2016 OI Boutton, Thomas/0000-0002-7522-5728 NR 60 TC 50 Z9 51 U1 4 U2 48 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUL 19 PY 2008 VL 113 IS G3 AR G03009 DI 10.1029/2007JG000564 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 328LG UT WOS:000257799300001 ER PT J AU Borovsky, JE Hesse, M Birn, J Kuznetsova, MM AF Borovsky, Joseph E. Hesse, Michael Birn, Joachim Kuznetsova, Maria M. TI What determines the reconnection rate at the dayside magnetosphere? SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; PILE-UP RECONNECTION; MAGNETOPAUSE RECONNECTION; ELECTRIC-FIELD; LARGE SYSTEMS; MHD; COLLISIONLESS; ENVIRONMENT; CHALLENGE; MAGNETOSHEATH AB Reconnection between the magnetosphere and magnetosheath at the dayside magnetopause is studied for southward IMF using high-resolution 3-D MHD simulations. The BATSRUS code is run at CCMC with a resistive spot added on the magnetopause to ensure that fast reconnection occurs and to control the reconnection physics. A large range of Mach numbers (1.9-15) are run. The reconnection rate at the nose of the magnetosphere is measured and compared with local plasma parameters and with upstream-solar wind parameters. It is found that the reconnection rate is controlled by four local plasma parameters: B(s) (the magnetic field strength in the magnetosheath), B(m) (the magnetic field strength in the magnetosphere), rho(s) (the plasma mass density in the magnetosheath), and rho(m) (the plasma mass density in the magnetosphere). The Cassak-Shay formula for fast reconnection was tested and found to successfully describe the reconnection rate on the dayside magnetopause. It was found that reconnection itself does not significantly modify the local plasma parameters that control dayside reconnection and argued that reconnection does not significantly alter the flow pattern of the magnetosheath. This means that dayside reconnection is not "driven'' in the sense that plasma pileup occurs to change the local parameters to adjust the reconnection rate to balance the driving. A "plasmasphere effect'' was observed in the simulations wherein high-density magnetospheric plasma flows into the magnetopause reconnection site and mass loads the reconnection: a spatially localized plume of plasma was observed to locally reduce the reconnection rate by about a factor of 2. C1 [Borovsky, Joseph E.; Birn, Joachim] Los Alamos Natl Lab, Space Sci & Applicat Grp ISR 1, Los Alamos, NM 87545 USA. [Hesse, Michael; Kuznetsova, Maria M.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp ISR 1, Mail Stop D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov RI Hesse, Michael/D-2031-2012; Kuznetsova, Maria/F-6840-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 70 TC 63 Z9 64 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 19 PY 2008 VL 113 IS A7 AR A07210 DI 10.1029/2007JA012645 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 328MD UT WOS:000257801600001 ER PT J AU Beloglazova, N Brown, G Zimmerman, MD Proudfoot, M Makarova, KS Kudritska, M Kochinyan, S Wang, S Chruszcz, M Minor, W Koonin, EV Edwards, AM Savchenko, A Yakunin, AF AF Beloglazova, Natalia Brown, Greg Zimmerman, Matthew D. Proudfoot, Michael Makarova, Kira S. Kudritska, Marina Kochinyan, Samvel Wang, Shuren Chruszcz, Maksymilian Minor, Wladek Koonin, Eugene V. Edwards, Aled M. Savchenko, Alexei Yakunin, Alexander F. TI A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PROVIDES ACQUIRED-RESISTANCE; MESSENGER-RNA INTERFERASES; ELECTRON-DENSITY MAPS; ESCHERICHIA-COLI; STREPTOCOCCUS-THERMOPHILUS; MYCOBACTERIUM-TUBERCULOSIS; DEFENSE-MECHANISM; CELL-DEATH; IDENTIFICATION; CRISPR AB Clustered regularly interspaced short palindromic repeats (CRISPRs) together with the associated CAS proteins protect microbial cells from invasion by foreign genetic elements using presently unknown molecular mechanisms. All CRISPR systems contain proteins of the CAS2 family, suggesting that these uncharacterized proteins play a central role in this process. Here we show that the CAS2 proteins represent a novel family of endoribonucleases. Six purified CAS2 proteins from diverse organisms cleaved single-stranded RNAs preferentially within U-rich regions. A representative CAS2 enzyme, SSO1404 from Sulfolobus solfataricus, cleaved the phosphodiester linkage on the 3'-side and generated 5'-phosphate- and 3'-hydroxyl-terminated oligonucleotides. The crystal structure of SSO1404 was solved at 1.6 angstrom resolution revealing the first ribonuclease with a ferredoxin-like fold. Mutagenesis of SSO1404 identified six residues (Tyr-9, Asp-10, Arg-17, Arg-19, Arg-31, and Phe-37) that are important for enzymatic activity and suggested that Asp-10 might be the principal catalytic residue. Thus, CAS2 proteins are sequence-specific endoribonucleases, and we propose that their role in the CRISPR-mediated anti-phage defense might involve degradation of phage or cellular mRNAs. C1 [Beloglazova, Natalia; Brown, Greg; Proudfoot, Michael; Kudritska, Marina; Kochinyan, Samvel; Edwards, Aled M.; Savchenko, Alexei; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada. [Beloglazova, Natalia; Brown, Greg; Proudfoot, Michael; Kudritska, Marina; Kochinyan, Samvel; Edwards, Aled M.; Savchenko, Alexei; Yakunin, Alexander F.] Max Bell Res Ctr 5R407, Ontario Canc Inst, Toronto, ON M5G 2C4, Canada. [Zimmerman, Matthew D.; Wang, Shuren; Chruszcz, Maksymilian; Minor, Wladek] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. [Zimmerman, Matthew D.; Kudritska, Marina; Wang, Shuren; Chruszcz, Maksymilian; Minor, Wladek; Edwards, Aled M.; Savchenko, Alexei] Argonne Natl Lab, Midwest Ctr Struct Gen, Biosci Div, Argonne, IL 60439 USA. [Makarova, Kira S.; Koonin, Eugene V.] Natl Inst Hlth, Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. RP Yakunin, AF (reprint author), Univ Toronto, Banting & Best Dept Med Res, 112 Coll St, Toronto, ON M5G 1L6, Canada. EM a.iakounine@utoronto.ca RI Chruszcz, Maksymilian/E-6407-2011; Minor, Wladek/F-3096-2014; Yakunin, Alexander/J-1519-2014; Zimmerman, Matthew/N-9489-2013; OI Zimmerman, Matthew/0000-0002-6274-9493; Chruszcz, Maksymilian/0000-0001-7521-5485; Yakunin, Alexander/0000-0003-0813-6490; Minor, Wladek/0000-0001-7075-7090 FU Intramural NIH HHS; NIGMS NIH HHS [GM 074942, GM 62414] NR 64 TC 107 Z9 120 U1 2 U2 26 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 18 PY 2008 VL 283 IS 29 BP 20361 EP 20371 DI 10.1074/jbc.M803225200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 325CH UT WOS:000257565300052 PM 18482976 ER PT J AU Levkin, PA Eeltink, S Stratton, TR Brennen, R Robotti, K Yin, H Killeen, K Svec, F Frechet, JMJ AF Levkin, Pavel A. Eeltink, Sebastiaan Stratton, Thomas R. Brennen, Reid Robotti, Karla Yin, Hongfeng Killeen, Kevin Svec, Frantisek Frechet, Jean M. J. TI Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article; Proceedings Paper CT 31st International Symposium on Capillary Chromatography CY NOV 28-30, 2007 CL Albuquerque, NM DE microfluidics; HPLC; chip; monoliths; stationary phase; protein separation; peptide separation; proteomics ID CO-ETHYLENE DIMETHACRYLATE); CYCLIC OLEFIN COPOLYMERS; MICROFLUIDIC DEVICES; CAPILLARY ELECTROCHROMATOGRAPHY; SURFACE-CHEMISTRY; MASS-SPECTROMETRY; HPLC-CHIP; COLUMNS; EXTRACTION; PROTEOMICS AB Poly(lauryl methacrylate-co-ethylene dimethacrylate) and poly(styrene-co-divinylbenzene) stationary phases in monolithic format have been prepared by thermally initiated free radical polymerization within polyimide chips featuring channels having a cross-section of 200 mu m x 200 mu m and a length of 6.8 cm. These chips were then used for the separation of a mixture of proteins including ribonuclease A, myoglobin, cytochrome c, and ovalbumin, as well as peptides. The separations were monitored by UV adsorption. Both the monolithic phases based on methacrylate and on styrene chemistries enabled the rapid baseline separation of most of the test mixtures. Best performance was achieved with the styrenic monolith leading to fast baseline separation of all four proteins in less than 2.5 min. The in situ monolith preparation process affords microfluidic devices exhibiting good batch-to-batch and injection-to-injection repeatability. (c) 2008 Elsevier B.V. All rights reserved. C1 [Levkin, Pavel A.; Eeltink, Sebastiaan; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Stratton, Thomas R.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Brennen, Reid; Robotti, Karla; Yin, Hongfeng; Killeen, Kevin] Mol Technol Lab, Agilent Labs, Santa Clara, CA USA. [Svec, Frantisek; Frechet, Jean M. J.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Stratton, Thomas/F-6359-2010; Levkin, Pavel/E-5804-2011; OI Levkin, Pavel/0000-0002-5975-948X; Frechet, Jean /0000-0001-6419-0163 FU NIBIB NIH HHS [EB-006133, R01 EB006133, R01 EB006133-03]; NIGMS NIH HHS [R01 GM048364-16] NR 47 TC 80 Z9 85 U1 4 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUL 18 PY 2008 VL 1200 IS 1 BP 55 EP 61 DI 10.1016/j.chroma.2008.03.025 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 325OM UT WOS:000257598200009 PM 18374934 ER PT J AU Nowak, D Vuilleumier, L Long, CN Ohmura, A AF Nowak, Daniela Vuilleumier, Laurent Long, Charles N. Ohmura, Atsumu TI Solar irradiance computations compared with observations at the Baseline Surface Radiation Network Payerne site SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLOUD; SKIES AB Radiative transfer model calculations of solar fluxes during cloud-free periods often show considerable discrepancies with surface radiation observations. Many efforts have been undertaken to explain the differences between modeled and observed shortwave downward radiation (SDR). In this study, MODTRAN4v3r1 (TM) (designed later simply as MODTRAN (TM)) was used for model simulations and compared with high-quality radiation observations of the Baseline Surface Radiation Network (BSRN) site at Payerne, Switzerland. Results are presented for cloud-free shortwave downward radiation calculations. The median differences of modeled minus observed global SDR are small (<1%) and within the instrumental error. The differences of modeled and observed direct and diffuse SDR show larger discrepancies of -1.8% and 5.2%, respectively. The diffuse SDR is generally overestimated by the model, and more important, the model to observation linear regression slope and zero intercept differ significantly from their ideal values of 1 and 0. Possible reasons for the discrepancies are presented and discussed, and some modifications are investigated for decreasing such differences between modeled and observed diffuse SDR. However, we could not resolve all the discrepancies. The best agreement is obtained when comparing model simulations whose 550-nm aerosol optical depth input is inferred from observations using nine spectral channels and using BSRN observations performed with a new and more precise shading disk and Sun-tracking system. In this case, the median bias between model simulations and observed diffuse SDR is -0.4 W m(-2) (<1%). C1 [Nowak, Daniela; Ohmura, Atsumu] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Vuilleumier, Laurent] MeteoSwiss, Fed Off Meteorol & Climatol, CH-1530 Payerne, Switzerland. [Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Nowak, D (reprint author), ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. EM daniela.nowak@env.ethz.ch NR 22 TC 8 Z9 9 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 18 PY 2008 VL 113 IS D14 AR D14206 DI 10.1029/2007JD009441 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 328KW UT WOS:000257798300004 ER PT J AU Calvo, I Sanchez, R AF Calvo, I. Sanchez, R. TI The path integral formulation of fractional Brownian motion for the general Hurst exponent SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article AB In 1995, Sebastian (1995 J. Phys. A: Math. Gen. 28 4305) gave a path integral computation of the propagator of subdiffusive fractional Brownian motion (fBm), i.e. fBm with a Hurst or self-similarity exponent H epsilon (0,1/2). The extension of Sebastian's calculation to superdiffusion, H epsilon (1/2, 1], becomes however quite involved due to the appearance of additional boundary conditions on fractional derivatives of the path. In this communication, we address the construction of the path integral representation in a different fashion, which allows us to treat both subdiffusion and superdiffusion on an equal footing. The derivation of the propagator of fBm for the general Hurst exponent is then performed in a neat and unified way. C1 [Calvo, I.] CIEMAT, Asociac EURATOM, Lab Nacl Fus, E-28040 Madrid, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Calvo, I (reprint author), CIEMAT, Asociac EURATOM, Lab Nacl Fus, E-28040 Madrid, Spain. EM ivan.calvo@ciemat.es; sanchezferlr@ornl.gov RI Sanchez, Raul/C-2328-2008; Calvo, Ivan/B-3444-2009 OI Calvo, Ivan/0000-0003-3118-3463 NR 15 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUL 18 PY 2008 VL 41 IS 28 AR 282002 DI 10.1088/1751-8113/41/28/282002 PG 5 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 319MG UT WOS:000257167100002 ER PT J AU Ethvignot, T Devlin, M Duarte, H Granier, T Haight, RC Morillon, B Nelson, RO O'Donnell, JM Rochman, D AF Ethvignot, T. Devlin, M. Duarte, H. Granier, T. Haight, R. C. Morillon, B. Nelson, R. O. O'Donnell, J. M. Rochman, D. TI Comment on "Neutron Multiplicity in the Fission of U-238 and U-231 with Neutrons up to 200 MeV" - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Ethvignot, T.; Duarte, H.; Granier, T.; Morillon, B.] CEA, DAM, F-91297 Bruyeres Le Chatel, Arpajon, France. [Devlin, M.; Haight, R. C.; Nelson, R. O.; O'Donnell, J. M.; Rochman, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ethvignot, T (reprint author), CEA, DAM, F-91297 Bruyeres Le Chatel, Arpajon, France. RI Devlin, Matthew/B-5089-2013; OI Devlin, Matthew/0000-0002-6948-2154; Rochman, Dimitri/0000-0002-5089-7034 NR 5 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 039202 DI 10.1103/PhysRevLett.101.039202 PG 1 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500067 ER PT J AU Kimura, H Barber, RP Ono, S Ando, Y Dynes, RC AF Kimura, Hikari Barber, R. P., Jr. Ono, S. Ando, Yoichi Dynes, R. C. TI Scanning Josephson tunneling microscopy of single-crystal Bi(2)Sr(2)CaCu(2)O(8+delta) with a conventional superconducting tip SO PHYSICAL REVIEW LETTERS LA English DT Article ID JUNCTIONS; DENSITY; GAP; PB AB We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson I(C)R(N) product. Corresponding energy gap measurements were also per-formed and a surprising inverse correlation was observed between the local I(C)R(N) product and the local energy gap. C1 [Kimura, Hikari; Dynes, R. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kimura, Hikari; Dynes, R. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Barber, R. P., Jr.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Ono, S.] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Ando, Yoichi] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. RP Kimura, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM rdynes@physics.berkeley.edu RI Kimura, Hikari/A-8181-2010; Ando, Yoichi/B-8163-2013; OI Ando, Yoichi/0000-0002-3553-3355; Barber, Richard/0000-0002-5830-5195 NR 22 TC 6 Z9 6 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 037002 DI 10.1103/PhysRevLett.101.037002 PG 4 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500045 PM 18764282 ER PT J AU McCalla, SG Lestone, JP AF McCalla, S. G. Lestone, J. P. TI Fission decay widths for heavy-ion fusion-fission reactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-EXCITATION ENERGIES; LEVEL DENSITY PARAMETER; NEUTRON EMISSION; NUCLEAR-FISSION; MODEL; MULTIPLICITIES; DYNAMICS; SPIN AB Cross-section and neutron-emission data from heavy-ion fusion-fission reactions are consistent with a Kramers-modified statistical model which takes into account the collective motion of the system about the ground state, the temperature dependence of the location of fission transition points, and the orientation degree of freedom. The strong increase in the nuclear viscosity above a temperature of similar to 1 MeV deduced by others is an artifact generated by an inadequate fission model. C1 [McCalla, S. G.; Lestone, J. P.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP McCalla, SG (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. NR 37 TC 42 Z9 42 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 032702 DI 10.1103/PhysRevLett.101.032702 PG 4 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500011 PM 18764248 ER PT J AU Ocko, BM Dhinojwala, A Daillant, J AF Ocko, Benjamin M. Dhinojwala, Ali Daillant, Jean TI Comment on "How water meets a hydrophobic surface" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID X-RAY; INTERFACE C1 [Ocko, Benjamin M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dhinojwala, Ali] Univ Akron, Akron, OH 44325 USA. [Daillant, Jean] CEA, IRAMIS, LIONS, F-91191 Gif Sur Yvette, France. RP Ocko, BM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 10 TC 37 Z9 37 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 039601 DI 10.1103/PhysRevLett.101.039601 PG 1 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500068 PM 18764305 ER PT J AU Poynor, A Hong, L Robinson, IK Granick, S Fenter, PA Zhang, Z AF Poynor, Adele Hong, Liang Robinson, Ian K. Granick, Steve Fenter, Paul A. Zhang, Zhan TI Comment on "How water meets a hydrophobic surface'' - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID X-RAY; INTERFACE C1 [Poynor, Adele; Hong, Liang; Robinson, Ian K.; Granick, Steve] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Zhang, Zhan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Poynor, A (reprint author), Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. RI Hong, Liang/D-5604-2009; Zhang, Zhan/A-9830-2008; OI Zhang, Zhan/0000-0002-7618-6134; Fenter, Paul/0000-0002-6672-9748 NR 9 TC 11 Z9 11 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 039602 DI 10.1103/PhysRevLett.101.039602 PG 1 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500069 ER PT J AU Tokiwa, Y Movshovich, R Ronning, F Bauer, ED Papin, P Bianchi, AD Rauscher, JF Kauzlarich, SM Fisk, Z AF Tokiwa, Y. Movshovich, R. Ronning, F. Bauer, E. D. Papin, P. Bianchi, A. D. Rauscher, J. F. Kauzlarich, S. M. Fisk, Z. TI Anisotropic effect of Cd and Hg doping on the Pauli limited superconductor CeCoIn(5) SO PHYSICAL REVIEW LETTERS LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; EXCHANGE FIELD; STATE; HEAT AB We studied the effect of impurity on the first order superconducting (SC) transition and the high field-low temperature (HFLT) SC state of CeCoIn(5) by measuring the specific heat of CeCo(In(1-x)Cd(x))(5) with x = 0.0011, 0.0022, and 0.0033 and CeCo(In(1-x)Hg(x))(5) with x = 0.00016, 0.000 32, and 0.00048 at temperatures down to 0.1 K and fields up to 14 T. Cd substitution rapidly suppresses the crossover temperature To, where the SC transition changes from second to first order, to T = 0 K with x = 0.0022 for H parallel to [100], while it remains roughly constant up to x = 0.0033 for H parallel to [001]. The associated anomaly of the proposed FFLO state in Hg-doped samples is washed out by x = 0.000 48, while remaining at the same temperature, indicating high sensitivity of that state to impurities. We interpret these results as supporting the nonmagnetic, possibly FFLO, origin of the HFLT state in CeCoIn(5). C1 [Tokiwa, Y.; Movshovich, R.; Ronning, F.; Bauer, E. D.; Papin, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bianchi, A. D.] Univ Montreal, Dept Phys Montreal, Montreal, PQ H3C 3J7, Canada. [Rauscher, J. F.; Kauzlarich, S. M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Tokiwa, Y (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Kauzlarich, Susan/H-1439-2011; Tokiwa, Yoshifumi/P-6593-2015; Bianchi, Andrea/E-9779-2010; OI Tokiwa, Yoshifumi/0000-0002-6294-7879; Bianchi, Andrea/0000-0001-9340-6971; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 NR 23 TC 29 Z9 29 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 037001 DI 10.1103/PhysRevLett.101.037001 PG 4 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500044 PM 18764281 ER PT J AU Xiang, HJ Wei, SH Whangbo, MH Da Silva, JLF AF Xiang, H. J. Wei, Su-Huai Whangbo, M. -H. Da Silva, Juarez L. F. TI Spin-orbit coupling and ion displacements in multiferroic TbMnO(3) SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; POLARIZATION AB The magnetic and ferroelectric (FE) properties of ThMnO(3) are investigated on the basis of relativistic density functional theory calculations. We show that, due to spin-orbit coupling, the spin-spiral plane of TbMnO(3) can be either the bc or ab plane, but not the ac plane. As for the mechanism of FE polarization, our work reveals that the "pure electronic" model by Katsura, Nagaosa, and Balatsky is inadequate in predicting the absolute direction of FE polarization. Our work indicates that to determine the magnitude and the absolute direction of FE polarization in spin-spiral states, it is crucial to consider the displacements of the ions from their centrosymmetric positions. C1 [Xiang, H. J.; Wei, Su-Huai; Da Silva, Juarez L. F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Xiang, Hongjun/A-4076-2008; Da Silva, Juarez L. F./D-1779-2011; Xiang, Hongjun/I-4305-2016 OI Da Silva, Juarez L. F./0000-0003-0645-8760; Xiang, Hongjun/0000-0002-9396-3214 NR 34 TC 105 Z9 109 U1 5 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 037209 DI 10.1103/PhysRevLett.101.037209 PG 4 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500054 PM 18764291 ER PT J AU Young, PE Rosen, MD Hammer, JH Hsing, WS Glendinning, SG Turner, RE Kirkwood, R Schein, J Sorce, C Satcher, JH Hamza, A Reibold, RA Hibbard, R Landen, O Reighard, A McAlpin, S Stevenson, M Thomas, B AF Young, P. E. Rosen, M. D. Hammer, J. H. Hsing, W. S. Glendinning, S. G. Turner, R. E. Kirkwood, R. Schein, J. Sorce, C. Satcher, J. H., Jr. Hamza, A. Reibold, R. A. Hibbard, R. Landen, O. Reighard, A. McAlpin, S. Stevenson, M. Thomas, B. TI Demonstration of the density dependence of x-ray flux in a laser-driven hohlraum SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIATION AB Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta(2)O(5) foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall. C1 [Young, P. E.; Rosen, M. D.; Hammer, J. H.; Hsing, W. S.; Glendinning, S. G.; Turner, R. E.; Kirkwood, R.; Schein, J.; Sorce, C.; Satcher, J. H., Jr.; Hamza, A.; Reibold, R. A.; Hibbard, R.; Landen, O.; Reighard, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McAlpin, S.; Stevenson, M.; Thomas, B.] Atom Weap Estab, Reading RG7 4PR, Berks, England. RP Young, PE (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. NR 9 TC 26 Z9 28 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 035001 DI 10.1103/PhysRevLett.101.035001 PG 4 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500021 PM 18764258 ER PT J AU Zhang, Y Mascarenhas, A Wang, LW AF Zhang, Yong Mascarenhas, A. Wang, L. -W. TI Non-bloch nature of alloy states in a conventional semiconductor alloy: Ga(x)In(1-x)P as an example SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; QUANTUM DOTS; PHOTOLUMINESCENCE; CRYSTALS; EXCITONS; ENERGY AB Using Ga(x)In(1-x)P as a prototype system, we present the first systematic examination of the alloy scattering effects on the global electronic structure of a semiconductor alloy for the whole composition range. Contrary to conventional wisdom, many electronic states in such a "well behaved" alloy are found to differ drastically from a Bloch state, including band edge states that are derived from degenerate critical points. This study offers a more comprehensive picture of the electronic structure of the alloy, and reveals new nontrivial but vital implications of the alloy scattering on transport and optical properties. C1 [Zhang, Yong; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wang, L. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM yong_zhang@nrel.gov NR 25 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2008 VL 101 IS 3 AR 036403 DI 10.1103/PhysRevLett.101.036403 PG 4 WC Physics, Multidisciplinary SC Physics GA 333WO UT WOS:000258184500033 PM 18764270 ER PT J AU Patton, HJ Taylor, SR AF Patton, Howard J. Taylor, Steven R. TI Effects of shock-induced tensile failure on m(b)-M-s discrimination: Contrasts between historic nuclear explosions and the North Korean test of 9 October 2006 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UNDERGROUND EXPLOSIONS; SURFACE-WAVES; PERIOD AB Rayleigh wave excitation is studied for an explosion source model consisting of a superposition of isotropic (monopole), tensile failure, and tectonic release point sources. The body-force representation for shock-induced, deep-seated tensile failure is a compensated linear vector dipole CLVD, where the relative strength of the CLVD is given by an index K. Rayleigh wave amplitudes are reduced owing to destructive interference between an explosive monopole and a CLVD source with vertical axis of symmetry in extension (K > 1). The effect of tensile failure on M-s is to enhance the explosion-like characteristics on a plot of m(b)-M-s. This model suggests that the success of the m(b)-M-s discriminant results from the fact that nuclear tests were conducted under containment practices for which tensile failure is ubiquitous, while the North Korean nuclear test of 9 October 2006 is a harbinger of poor m(b)-M-s performance when tensile failure is completely suppressed. C1 [Patton, Howard J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Taylor, Steven R.] Rocky Mt Geophys LLC, Los Alamos, NM 87544 USA. RP Patton, HJ (reprint author), Los Alamos Natl Lab, MS F659,POB 1663, Los Alamos, NM 87545 USA. EM patton@lanl.gov NR 22 TC 28 Z9 28 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 17 PY 2008 VL 35 IS 14 AR L14301 DI 10.1029/2008GL034211 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 328KJ UT WOS:000257797000004 ER PT J AU Liang, Q Stolarski, RS Douglass, AR Newman, PA Nielsen, JE AF Liang, Qing Stolarski, Richard S. Douglass, Anne R. Newman, Paul A. Nielsen, J. Eric TI Evaluation of emissions and transport of CFCs using surface observations and their seasonal cycles and the GEOS CCM simulation with emissions-based forcing SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-MONOXIDE; AIR-POLLUTION; MACE HEAD; OZONE; PACIFIC; TROPOSPHERE; EXCHANGE; STRATOSPHERE; TROPOPAUSE; ATMOSPHERE AB Levels of ozone depleting substances (ODSs) in our atmosphere are determined by production, emission, and loss processes. However, atmospheric models are forced by the specified mixing ratios of these ODSs rather than the more fundamental emissions-based forcing. To more accurately represent the physics and chemistry of climate change on atmospheric circulation and ODSs, and therefore future ozone recovery, it is desirable to switch from the current highly constrained mixing-ratio-based forcing to emissions-based forcing in general circulation models (GCMs). As a first step of this model transition, we have conducted a 45-year (1960-2005) emissions-based simulation of the three primary chlorofluorocarbons (CFC-11,-12,-113) using the GEOS coupled chemistry-climate model (CCM). The simulated CFC concentrations and their seasonal cycles are compared with AGAGE and NOAA-GMD observations to evaluate emissions and atmospheric transport. The simulated CFC-12 agrees well with the observations, indicating a good estimate of emission and atmospheric loss. The simulated CFC-11 and CFC-113 shows high biases due to overestimate of emissions. Using tagged CFC tracers to track recent surface emissions and aged air masses transported downward from the stratosphere separately, we quantify the relative contribution of stratosphere-troposphere exchange (STE) and tropospheric transport to the seasonal cycles of CFCs in the lower troposphere. The seasonal cycles of CFCs in the lower troposphere are dominated by tropospheric transport of recent emissions during 1985-1994. The 1995-1999 period marks the transition period when variations due to fresh emissions and STE become equally important. Seasonal cycles of CFCs at most surface sites in the 2000-2004 period are dominated by STE. Seasonal cycles of CFCs due to STE show a late winter/early spring maximum and a summer/fall minimum. Seasonality of the tropospheric transport component at individual stations is governed by seasonal transport variations of fresh emissions from the polluted regions. C1 [Liang, Qing; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Liang, Qing] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN 37831 USA. [Nielsen, J. Eric] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Nielsen, J. Eric] Sci Syst & Applicat Inc, Lanham, MD USA. RP Liang, Q (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Code 613-3, Greenbelt, MD 20771 USA. EM qing.liang-1@nasa.gov; richard.s.stolarski@nasa.gov; anne.r.douglass@nasa.gov; paul.a.newman@nasa.gov; nielsen@gmao.gsfc.nasa.gov RI Liang, Qing/B-1276-2011; Newman, Paul/D-6208-2012; Douglass, Anne/D-4655-2012; Stolarski, Richard/B-8499-2013 OI Newman, Paul/0000-0003-1139-2508; Stolarski, Richard/0000-0001-8722-4012 NR 46 TC 15 Z9 15 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 17 PY 2008 VL 113 IS D14 AR D14302 DI 10.1029/2007JD009617 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 328KV UT WOS:000257798200006 ER PT J AU Mincher, BJ Mezyk, SP Martin, LR AF Mincher, Bruce J. Mezyk, Stephen P. Martin, Leigh R. TI A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-LIQUID-CHROMATOGRAPHY; RATE CONSTANTS; HYDRATED ELECTRONS; HYDROXYL RADICALS; ORGANIC-COMPOUNDS; DILUENT SYSTEMS; HYDROGEN-ATOMS; SOLVENT; IDENTIFICATION; DEGRADATION AB Tributyl phosphate (TBP) is the most common organic compound used in liquid-liquid separations for the recovery of uranium, neptunium, and plutonium from acidic nuclear fuel dissolutions. The goal of these processes is to extract the actinides while leaving fission products in the acidic, aqueous phase. However, the radiolytic degradation of TBP has been shown to reduce separation factors of the actinides from fission products and to impede the back-extraction of the actinides during stripping. As most previous investigations of the radiation chemistry of TBP have focused on steady state radiolysis and stable product identification, with dibutylphosphoric acid (HDBP) invariably being the major product, here we have determined room temperature rate constants for the reactions of TBP and HDBP with the hydroxyl radical [(5.00 +/- 0.05) x 10(9), (4.40 +/- 0.13) x 10(9) M(-1) s(-1)], hydrogen atom,[(1.8 +/- 0.2) x 10(8), (1.1 +/- 0.1) x 10(8) M(-1) s(-1)], nitrate radical [(4.3 +/- 0.7) x 10(6), (2.9 +/- 0.2) x 10(6) M(-1) s(-1)], and nitrite radical (<2 x 10(5), <2 x 10(5) M(-1) s(-1)), respectively. These data are used to discuss the mechanism of TBP radical-induced degradation. C1 [Mincher, Bruce J.; Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. [Mezyk, Stephen P.] Calif State Univ Long Beach, Dept Chem & Biochem, Long Beach, CA 90840 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem Dept, POB 1625, Idaho Falls, ID 83415 USA. EM bruce.mincher@inl.gov; smezyk@csulb.edu RI Martin, Leigh/P-3167-2016; Mincher, Bruce/C-7758-2017 OI Martin, Leigh/0000-0001-7241-7110; NR 36 TC 21 Z9 21 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 17 PY 2008 VL 112 IS 28 BP 6275 EP 6280 DI 10.1021/jp802169v PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 324TN UT WOS:000257542400006 PM 18572898 ER PT J AU Park, TJ Sambasivan, S Fischer, DA Yoon, WS Misewich, JA Wong, SS AF Park, Tae-Jin Sambasivan, Sharadha Fischer, Daniel A. Yoon, Won-Sub Misewich, James A. Wong, Stanislaus S. TI Electronic structure and chemistry of iron-based metal oxide nanostructured materials: A NEXAFS investigation of BiFeO3, Bi2Fe4O9, alpha-Fe2O3, gamma-Fe2O3, and Fe/Fe3O4 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-ABSORPTION; 3D TRANSITION-METALS; ENERGY-LOSS-SPECTROSCOPY; MAGNETIC-PROPERTIES; OXIDATION-STATE; FINE-STRUCTURES; NANOPARTICLES; EDGES; NANOTUBES; CRYSTAL AB We present a systematic and detailed near edge X-ray absorption fine structure (NEXAFS) experimental investigation of the electronic structure and chemistry of iron-based metal oxide nanostructured (FeMONS) materials including BiFeO3, Bi2Fe4O9, alpha-Fe2O3, gamma-Fe2O3, and Fe/Fe3O4: Correlations of the electronic structure and structural chemistry of these intriguing nanomaterials are presented, ranging from the nano to the bulk scale. In this work, variations in the shape, position, and intensity of the O K-edge and Fe L-edge NEXAFS spectra have been analyzed in terms of electronic structure and surface chemistry of the FeMONS materials as compared with that of the bulk. We hypothesize that surface imperfection and surface strain anisotropies in nanoparticles induce distortion and site inequivalency of the oxygen O-h sites around the Fe ion located close to the surface, resulting in an increase in the degree of multiplicity as well as in nonstoichiometric effects in FeMONS materials. C1 [Sambasivan, Sharadha; Fischer, Daniel A.] Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20889 USA. [Park, Tae-Jin; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Sambasivan, Sharadha] Suffolk Community Coll, Dept Chem, Selden, NY 11784 USA. [Yoon, Won-Sub] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Misewich, James A.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Sambasivan, S (reprint author), Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20889 USA. EM sharadha@bnl.gov; dfischer@nist.gov; sswong@notes.cc.sunysb.edu RI Yoon, Won-Sub/H-2343-2011 NR 42 TC 47 Z9 47 U1 5 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 17 PY 2008 VL 112 IS 28 BP 10359 EP 10369 DI 10.1021/jp801449p PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 324TP UT WOS:000257542600005 ER PT J AU Luo, WQ Li, RF Liu, GK Antonio, MR Chen, XY AF Luo, Wenqin Li, Renfu Liu, Guokui Antonio, Mark R. Chen, Xueyuan TI Evidence of trivalent europium incorporated in anatase TiO2 nanocrystals with multiple sites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TITANIA THIN-FILMS; RARE-EARTH IONS; PHOTOLUMINESCENCE PROPERTIES; SEMICONDUCTOR NANOPARTICLES; OPTICAL-PROPERTIES; EU; LUMINESCENCE; FLUORESCENCE; SPECTROSCOPY; SPECTRA AB Trivalent europium ions have been successfully incorporated in anatase TiO2 nanocrystals via a sol-gel solvothermal synthesis, in spite of a large mismatch in ionic radius between Eu3+ and Ti4+. The photoluminescence intensity of Eu3+:TiO2 nanocrystals has been significantly improved, which is comparable to that of common red phosphors. Multiple sites of Eu3+ in TiO2 nanocrystals have been identified by the technique of site-selective spectroscopy. Eu3+ ions at two lattice sites exhibit sharp emission and excitation peaks with site symmetries descending from D-2d to approximate C-2v and D-2 as a result of the lattice distortion, whereas Eu3+ ions at disordered site near the surface are analogous to Eu3+ ions located in a glasslike environment. Extended X-ray absorption fine structure is utilized for identifying the local structure and Eu3+ coordination. The luminescence dynamics and crystal-field levels of Eu3+ at different sites have been analyzed. A growth mechanism for the incorporation of Eu3+ in the anatase lattice is also suggested. C1 [Luo, Wenqin; Li, Renfu; Chen, Xueyuan] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Fujian, Peoples R China. [Luo, Wenqin; Li, Renfu; Chen, Xueyuan] State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China. [Liu, Guokui; Antonio, Mark R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Chen, XY (reprint author), Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Fujian, Peoples R China. EM xchen@fjirsm.ac.cn RI Chen, Xueyuan/C-5613-2012; Li, Renfu/O-1949-2015 OI Chen, Xueyuan/0000-0003-0493-839X; Li, Renfu/0000-0003-1133-9109 NR 44 TC 72 Z9 74 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 17 PY 2008 VL 112 IS 28 BP 10370 EP 10377 DI 10.1021/jp801563k PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 324TP UT WOS:000257542600006 ER PT J AU Sorescu, DC AF Sorescu, Dan C. TI Plane-wave DFT investigations of the adsorption, diffusion, and activation of CO on kinked Fe(710) and Fe(310) surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GENERALIZED GRADIENT APPROXIMATION; FISCHER-TROPSCH SYNTHESIS; TOTAL-ENERGY CALCULATIONS; SULFUR MODIFIED FE(100); DISSOCIATIVE ADSORPTION; FE(111) SURFACE; METAL SURFACES; 1ST PRINCIPLES; IRON SURFACES AB The adsorption, diffusion, and dissociation properties of CO on kinked Fe(710) and Fe(310) surfaces have been analyzed using spin-polarized plane-wave density functional theory (DFT) calculations within the generalized gradient approximation (GGA). Several one-, two-, three- and 4-fold binding configurations have been identified among which the preferential adsorption takes place at a 4-fold hollow site near the top of the step while the one with the smallest activation energy for dissociation is located at a 4-fold site near the bottom of the step. In the case of the individual atomic species, the adsorption takes place preferentially at the hollow site for the C atom and at the pseudo 3-fold site on the step for the 0 atom. By the increase in coverage, there is an overall decrease of the adsorption energies for either molecular (CO) or atomic (C,O) species. The diffusion barriers among different local minima at the steps or on the terraces of both surfaces have been determined, and their values were found to be smaller than the barriers for CO dissociation. The most activated configuration at the bottom of the step can be populated by direct diffusion over the step, from the upper terrace, or by reorientation of the CO molecule within the same hollow site. This last process requires an activation energy of 6.5 kcal/mol on Fe(7 10) and 9.3 kcal/mol on the Fe(3 10) surface. The barrier heights for dissociation of CO molecules on Fe(710) (Fe(310)) were found to vary between 15.4 and 20.5 (16.7 and 20.9) kcal/mol depending on the specific location of the hollow site relative to the step edge and to the particular molecular orientation within a given hollow site. For the set of crystallographic Fe surfaces (110), (100), (211), (710), (310), and (111), we found that dissociation on Fe(710) and Fe(310) requires the smallest activation energies in the regime of low coverages. The analysis of the activation properties of CO on this six-member set of flat, stepped, and kinked surfaces indicates the existence of a direct correlation between the apparent activation energy and the rebonding energy of the noninteracting products of the reaction. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sorescu, DC (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 63 TC 29 Z9 29 U1 0 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 17 PY 2008 VL 112 IS 28 BP 10472 EP 10489 DI 10.1021/jp8008145 PG 18 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 324TP UT WOS:000257542600021 ER PT J AU Bernet, ML Miniati, F Lilly, SJ Kronberg, PP Dessauges-Zavadsky, M AF Bernet, Martin L. Miniati, Francesco Lilly, Simon J. Kronberg, Philipp P. Dessauges-Zavadsky, Miroslava TI Strong magnetic fields in normal galaxies at high redshift SO NATURE LA English DT Article ID ROTATION MEASURE DISTRIBUTION; FARADAY-ROTATION; ABSORPTION SYSTEMS; ALPHA SYSTEMS; TELESCOPE; DYNAMOS; SAMPLE; CLOUDS; LINES AB The origin and growth of magnetic fields in galaxies is still something of an enigma(1). It is generally assumed that seed fields are amplified over time through the dynamo effect(2-5), but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant ( and hence ancient) quasars are comparable to those seen today(6), but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high- resolution spectra that demonstrate that the quasars with strong Mg II absorption lines are unambiguously associated with larger rotation measures. Because Mg II absorption occurs in the haloes of normal galaxies(7-11) along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one- third of its present age. C1 [Bernet, Martin L.; Miniati, Francesco; Lilly, Simon J.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Kronberg, Philipp P.] Los Alamos Natl Lab, IGPP, Los Alamos, NM 87545 USA. [Kronberg, Philipp P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Dessauges-Zavadsky, Miroslava] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. RP Miniati, F (reprint author), ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. EM fm@phys.ethz.ch NR 27 TC 147 Z9 147 U1 1 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 17 PY 2008 VL 454 IS 7202 BP 302 EP 304 DI 10.1038/nature07105 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 326ND UT WOS:000257665300031 PM 18633410 ER PT J AU Meyer, JC Girit, CO Crommie, MF Zettl, A AF Meyer, Jannik C. Girit, C. O. Crommie, M. F. Zettl, A. TI Imaging and dynamics of light atoms and molecules on graphene SO NATURE LA English DT Article ID FIELD ELECTRON-MICROSCOPY; CARBON NANOTUBES; SINGLE ATOMS; DEFECTS; SURFACE; RESOLUTION; CLUSTERS; CRYSTALS; OXYGEN AB Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunnelling microscope(1) revolutionized experimental surface science in that atomic- scale features on a solid- state surface could finally be readily imaged. However, scanning tunnelling microscopy has limited applicability due to restrictions in, for example, sample conductivity, cleanliness, and data acquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM)(2,3), has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy ( high-atomic-number) atoms can now be detected by TEM(4-7) even when embedded within a semiconductor material(8,9). But detecting an individual low- atomic- number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM owing to the very low contrast of light elements(2,3,10) (-12). Here we demonstrate a means to observe, by conventional TEM, even the smallest atoms and molecules: on a clean single- layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic- scale structure of unknown adsorbates. In addition, the study of atomic- scale defects in graphene may provide insights for nanoelectronic applications of this interesting material. C1 [Meyer, Jannik C.; Girit, C. O.; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Meyer, Jannik C.; Girit, C. O.; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Meyer, JC (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM email@jannikmeyer.de; azettl@berkeley.edu RI Meyer, Jannik/H-8541-2012; Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016 OI Meyer, Jannik/0000-0003-4023-0778; Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X NR 30 TC 303 Z9 307 U1 23 U2 253 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 17 PY 2008 VL 454 IS 7202 BP 319 EP 322 DI 10.1038/nature07094 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 326ND UT WOS:000257665300035 PM 18633414 ER PT J AU Sletten, EM Bertozzi, CR AF Sletten, Ellen M. Bertozzi, Carolyn R. TI A hydrophilic azacyclooctyne for Cu-free click chemistry SO ORGANIC LETTERS LA English DT Article ID IN-VIVO; AZIDE-ALKYNE; AQUEOUS SOLUBILITY; CHEMICAL-COMPOUNDS; MAMMALIAN-CELLS; LIVING SYSTEMS; COPPER-FREE; PROBES; CYCLOADDITION; PROTEINS AB Biomolecules labeled with azides can be detected through Cu-free click chemistry with cyclooctyne probes, but their intrinsic hydrophobicity can compromise bioavailability. Here, we report the synthesis and evaluation of a novel azacyclooctyne, 6,7-dimethoxyazacyclooct-4-yne (DIMAC). Generated in nine steps from a glucose analogue, DIMAC reacted with azide-labeled proteins and cells similarly to cyclooctynes. However, its superior polarity and water solubility reduced nonspecific binding, thereby improving the sensitivity of azide detection. C1 [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu FU NIGMS NIH HHS [R37 GM058867, GM058867, R01 GM058867] NR 23 TC 148 Z9 149 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD JUL 17 PY 2008 VL 10 IS 14 BP 3097 EP 3099 DI 10.1021/ol801141k PG 3 WC Chemistry, Organic SC Chemistry GA 326AB UT WOS:000257629200046 PM 18549231 ER PT J AU Davoudiasl, H Perez, G Soni, A AF Davoudiasl, Hooman Perez, Gilad Soni, Amarjit TI The little Randall-Sundrum model at the large hadron collider SO PHYSICS LETTERS B LA English DT Article ID COMPOSITE HIGGS-MODEL; GAUGE; HIERARCHY; VIOLATION; SYMMETRY; GEOMETRY; MIXINGS; PHYSICS; MASSES; FIELDS AB We present a predictive warped model of flavor that is cut off at an ultraviolet scale O(10(3)) TeV. This "Little Randall-Sundrurn (LRS)" model is a volume-truncation, by a factor y approximate to 6, of the RS scenario and is holographically dual to dynamics with number of colors larger by y. The LRS couplings between Kaluza-Klein states and the Standard Model fields, including the proton constituents, are explicitly calculable without ad hoc assumptions. Assuming separate gauge and flavor dynamics, a number of unwanted contributions to precision electroweak, Zbb and flavor observables are suppressed in the LRS framework, compared with the corresponding RS case. An important consequence of the LRS truncation, independent of precise details, is a significant enhancement of the clean (golden) di-lepton LHC signals, by O(y(3)), due to a larger "rho-photon" mixing and a smaller inter-composite coupling. (c) 2008 Elsevier B.V. All rights reserved. C1 [Davoudiasl, Hooman; Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Perez, Gilad] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov NR 91 TC 53 Z9 53 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 17 PY 2008 VL 665 IS 2-3 BP 67 EP 71 DI 10.1016/j.physletb.2008.05.024 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 331OI UT WOS:000258021100002 ER PT J AU Shumaker, JL Crofcheck, C Tackett, SA Santillan-Jimenez, E Morgan, T Ji, Y Crocker, M Toops, TJ AF Shumaker, J. Link Crofcheck, Czarena Tackett, S. Adam Santillan-Jimenez, Eduardo Morgan, Tonya Ji, Yaying Crocker, Mark Toops, Todd J. TI Biodiesel synthesis using calcined layered double hydroxide catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE transesterification; triglyceride; layered double hydroxide; lithium; aluminum ID SOLID BASE CATALYSTS; SOYBEAN OIL; RAPESEED OIL; THERMAL-DECOMPOSITION; TRANSESTERIFICATION; SURFACE; MONOGLYCERIDES; HYDROTALCITES; DERIVATIVES; REACTIVITY AB The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol and the reaction of soybean oil with methanol. While the Li-All catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-All catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sites active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 degrees C was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases. (C) 2008 Elsevier B.V. All rights reserved. C1 [Shumaker, J. Link; Crofcheck, Czarena] Univ Kentucky, Lexington, KY 40546 USA. [Tackett, S. Adam; Santillan-Jimenez, Eduardo; Morgan, Tonya; Ji, Yaying; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Toops, Todd J.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Crofcheck, C (reprint author), Univ Kentucky, 128 CE Barnhart Bldg, Lexington, KY 40546 USA. EM crofcheck@uky.edu; crocker@caer.uky.edu RI Crocker, Mark/A-2704-2008; Ye, Peng/E-2742-2010; OI Santillan-Jimenez, Eduardo/0000-0002-1627-2719 NR 41 TC 93 Z9 93 U1 2 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JUL 16 PY 2008 VL 82 IS 1-2 BP 120 EP 130 DI 10.1016/j.apcatb.2008.01.010 PG 11 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 330LO UT WOS:000257943000013 ER PT J AU Appel, AM Lee, SJ Franz, JA DuBois, DL DuBois, MR Birnbaum, JC Twamleyt, B AF Appel, Aaron M. Lee, Suh-Jane Franz, James A. DuBois, Daniel L. DuBois, M. Rakowski Birnbaum, Jerome C. Twamleyt, Brendan TI Formation and reactivity of a persistent radical in a dinuclear molybdenum complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-CENTERED RADICALS; HYDROGEN-ATOM TRANSFER; SULFIDO LIGANDS; CHAIN TRANSFER; SULFUR; DIMERS; KINETICS; BOND; POLYMERIZATIONS; DISSOCIATION AB The reactivity of the S-H bond in Cp*Mo(mu-S)(2)(mu-SMe)(mu-SH)MoCp* (S4MeH) has been explored by determination of kinetics of hydrogen atom abstraction to form the radical CP*MO(mu-S)(3)(mu-SMe)MoCp* (S4Me.), as well as reaction of hydrogen with the radical-dimer equilibrium to reform the S-H complex. From the temperature dependent rate data for the abstraction of hydrogen atom by benzyl radical, Delta H-not equal and AS: were determined to be 1.54 +/- 0.25 kcal/mol and -25.5 +/- 0.8 cal/mol K, respectively, giving k(abs) = 1.3 x 10(6) M-1 s(-1) at 25 degrees C. In steady state abstraction kinetic experiments, the exclusive radical termination product of the Mo2S4 core was found to be the benzyl cross-termination product, Cp*Mo(mu-S)(2)(mu-SMe)(mu-SBz)MoCp* (S(4)MeBz), consistent with the Fischer-Ingold persistent radical effect. S4Me. was found to reversibly dimerize by formation of a weak bridging disulfide bond to form the tetranuclear complex (CP*Mo(mu-S)(2) mu-SMe)MoCP*)(2)(mu-S-2) ((S4Me)(2)). The radical-dimer equilibrium constant has been determined to be 5.7 x 10(4) +/- 2.1 x 10(4) M-1 from EPR data. The rate constant for dissociation of the dimer was found to be 1.1 x 10(3) s(-1) at 25 degrees C, based on variable temperature H-1 NMR data. The rate constant for dimerization of the radical has been estimated to be 6.5 x 10(7) M-1 S-1 in toluene at room temperature, based on the dimer dissociation rate constant and the equilibrium constant for dimerization. Structures are presented for (S4Me)(2), S(4)MeBz, and the cationic CP*Mo(mu-S-2)(mu-S)(mu-SMe)MoCp*(OTf) (S4Me+), a precursor of the radical and the alkylated derivatives. Evidence for a radical addition/elimination pathway at an Mo2S4 core is presented. C1 [Appel, Aaron M.; Lee, Suh-Jane; Franz, James A.; DuBois, Daniel L.; DuBois, M. Rakowski; Birnbaum, Jerome C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Twamleyt, Brendan] Univ Idaho, Dept Chem, Moscow, ID 83844 USA. RP Franz, JA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM james.franz@pnl.gov OI Appel, Aaron/0000-0002-5604-1253 NR 56 TC 7 Z9 7 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2008 VL 130 IS 28 BP 8940 EP 8951 DI 10.1021/ja078115r PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 324GY UT WOS:000257507400024 PM 18564842 ER PT J AU Li, SC Zhang, Z Sheppard, D Kay, BD White, JM Du, Y Lyubinetsky, I Henkelman, G Dohnalek, Z AF Li, Shao-Chun Zhang, Zhenrong Sheppard, Daniel Kay, Bruce D. White, J. M. Du, Yingge Lyubinetsky, Igor Henkelman, Graerne Dohnalek, Zdenek TI Intrinsic diffusion of hydrogen on rutile TiO2(110) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXIDIZED TIO2(110); OXYGEN VACANCIES; OH GROUPS; SURFACE; TIO2; WATER; H2O; O-2; DISSOCIATION; PSEUDOPOTENTIALS AB The combined experimental and theoretical study of intrinsic hydrogen diffusion on bridge-bonded oxygen (BBO) rows of TiO2(110) is presented. Sequences of isothermal scanning tunneling microscopy images demonstrate a complex behavior of hydrogen formed by water dissociation on BBO vacancies. Different diffusion rates are observed for the two hydrogens in the original geminate OH pair suggesting the presence of a long-lived polaronic state. For the case of separated hydroxyls, both theory and experiment yield comparable temperature-dependent diffusion rates. Density functional theory calculations show that there are two comparable low energy diffusion pathways for hydrogen motion along the BBO from one BBO to its neighbor, one by a direct hop and the other by an intermediate minimum at a terrace O. The values of kinetic parameters (prefactors and diffusion barriers) determined experimentally and theoretically are significantly different and indicate the presence of a more complex diffusion mechanism. We speculate that the hydrogen diffusion proceeds via a two-step mechanism: the initial diffusion of localized charge, followed by the diffusion of hydrogen. Both experiment and theory show the presence of repulsive OH-OH interactions. C1 [Li, Shao-Chun; Sheppard, Daniel; White, J. M.; Henkelman, Graerne; Dohnalek, Zdenek] Univ Texas Austin, Dept Chem & Biochem, Ctr Mat Chem, Austin, TX 78712 USA. [Zhang, Zhenrong; Kay, Bruce D.; White, J. M.; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Zhang, Zhenrong; Kay, Bruce D.; White, J. M.; Du, Yingge; Lyubinetsky, Igor; Dohnalek, Zdenek] Inst Interfacial Catalysis, Richland, WA 99352 USA. [Du, Yingge; Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Henkelman, G (reprint author), Univ Texas Austin, Dept Chem & Biochem, Ctr Mat Chem, Austin, TX 78712 USA. EM Henkelman@mail.utexas.edu; Zdenek.Dohnalek@pnl.gov RI Henkelman, Graeme/A-9301-2008; OI Henkelman, Graeme/0000-0002-0336-7153; Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 NR 42 TC 79 Z9 79 U1 5 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2008 VL 130 IS 28 BP 9080 EP 9088 DI 10.1021/ja8012825 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 324GY UT WOS:000257507400039 PM 18563900 ER PT J AU Zhai, HJ Burgel, C Bonacic-Koutecky, V Wang, LS AF Zhai, Hua-Jin Buergel, Christian Bonacic-Koutecky, Vlasta Wang, Lai-Sheng TI Probing the electronic structure and chemical bonding of gold oxides and sulfides in AuOn- and AuSn- (n=1, 2) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CATALYTIC CO OXIDATION; ANION PHOTOELECTRON-SPECTROSCOPY; MOLECULAR OXYGEN COMPLEXES; TRANSITION-METAL CLUSTERS; SUPPORTED GOLD; VIBRATIONAL SPECTROSCOPY; CARBON-MONOXIDE; SPIN-RESONANCE; O-2; SPECTRA AB The Au-O and Au-S interactions are essential in nanogold catalysis and nanotechnology, for which monogold oxide and sulfide clusters serve as the simplest molecular models. We report a combined photoelectron spectroscopy and ab initio study on AuO- and AuO2- and their valent isoelectronic AuS- and AuS2- species to probe their electronic structure and to elucidate the Au-O and Au-S chemical bonding. Vibrationally resolved spectra were obtained at different photon energies, providing a wealth of electronic structure information for each species. Similar spectra were observed for AuO- and AuS- and for the linear OAuO- and SAuS- species. A bent isomer was also observed as Au(S-2)(-) in the AuS2- spectra, whereas a similar Au(O-2)(-) complex was not observed in the case of AuO2-. High-level ab initio calculations were conducted to aid spectral assignments and provide insight into the chemical bonding in the AuX- and AuX2- molecules. Excellent agreement is achieved between the calculated electronic excitations and the observed spectra. Configuration interactions and spin-orbit couplings were shown to be important and were necessary to achieve good agreement between theory and experiment. Strong covalent bonding was found in both the AuX- and the XAuX- species with multiple bonding characters. While Au(S2)- was found to be a low-lying isomer with a significant binding energy, Au(O-2)(-) was shown to be unbound consistent with the experimental observation. The latter is understood in the context of the size-dependent reactivity of Au-n(-) clusters with O-2. C1 [Buergel, Christian; Bonacic-Koutecky, Vlasta] Humboldt Univ, Inst Chem, D-12489 Berlin, Germany. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Bonacic-Koutecky, V (reprint author), Humboldt Univ, Inst Chem, Brook Taylor Str 2, D-12489 Berlin, Germany. EM vbk@chemie.hu-berlin.de; ls.wang@pnl.gov NR 73 TC 52 Z9 52 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2008 VL 130 IS 28 BP 9156 EP 9167 DI 10.1021/ja802408b PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 324GY UT WOS:000257507400048 PM 18557613 ER PT J AU Fischer, NO Tok, JBH Tarasow, TM AF Fischer, Nicholas O. Tok, Jeffrey B. -H. Tarasow, Theodore M. TI Massively Parallel Interrogation of Aptamer Sequence, Structure and Function SO PLOS ONE LA English DT Article AB Background: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. Conclusion and Significance: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem: loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules. C1 [Fischer, Nicholas O.; Tok, Jeffrey B. -H.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. [Tarasow, Theodore M.] Tethys Biosci Inc, Emeryville, CA USA. RP Fischer, NO (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. EM ttarasow@tethysbio.com FU Biosecurity and Nanosciecnes Laboratory at Lawrence Livermore National Laboratory; Tethys Bioscience FX This work was supported by the Biosecurity and Nanosciecnes Laboratory at Lawrence Livermore National Laboratory and by Tethys Bioscience. Sponsors reviewed and approved manuscript. NR 20 TC 28 Z9 29 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 16 PY 2008 VL 3 IS 7 AR e2720 DI 10.1371/journal.pone.0002720 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 417DX UT WOS:000264057200058 PM 18628955 ER PT J AU Adams, KL Steele, PT Bogan, MJ Sadler, NM Martin, SI Martin, AN Frank, M AF Adams, Kristl L. Steele, Paul T. Bogan, Michael J. Sadler, Nicole M. Martin, Sue I. Martin, Audrey N. Frank, Matthias TI Reagentless detection of Mycobacteria tuberculosis H37Ra in respiratory effluents in minutes SO ANALYTICAL CHEMISTRY LA English DT Article ID BIOAEROSOL MASS-SPECTROMETRY; PULMONARY TUBERCULOSIS; SPECTRAL SIGNATURES; CLINICAL SPECIMENS; PARTICLES; BIOMARKERS; SPORES AB Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using single-particle aerosol mass spectrometry (SPAMS). M.. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis; M. smegmatis (MSm) is utilized as a near-neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa-containing particles from background matrix and MSm for > 50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening. C1 [Adams, Kristl L.; Steele, Paul T.; Bogan, Michael J.; Sadler, Nicole M.; Martin, Sue I.; Martin, Audrey N.; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sadler, Nicole M.] Univ Calif Davis, Davis, CA 95616 USA. [Martin, Audrey N.] Michigan State Univ, E Lansing, MI 48824 USA. RP Frank, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM frank1@llnl.gov RI Adams, Kristl/A-5748-2009; Bogan, Mike/I-6962-2012; Frank, Matthias/O-9055-2014; OI Bogan, Mike/0000-0001-9318-3333; Sadler, Nicole/0000-0003-2395-4467 NR 24 TC 7 Z9 7 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2008 VL 80 IS 14 BP 5350 EP 5357 DI 10.1021/ac8002825 PG 8 WC Chemistry, Analytical SC Chemistry GA 325OL UT WOS:000257598100011 PM 18558726 ER PT J AU Ibrahim, YM Belov, ME Liyu, AV Smith, RD AF Ibrahim, Yehia M. Belov, Mikhail E. Liyu, Andrei V. Smith, Richard D. TI Automated gain control ion funnel trap for orthogonal time-offlight mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID OF-FLIGHT; CYCLOTRON RESONANCE; INTERFACE; SENSITIVITY; MS; ACCUMULATION; BIOMOLECULES; THROUGHPUT; PROTEOMICS AB Time-of-flight mass spectrometry (TOF MS) is increasingly used in proteomics research. Herein, we report on the development and characterization of a TOF MS instrument with improved sensitivity equipped with an electrodynamic ion funnel trap (IFT) that employs an automated gain control (AGC) capability. The IFr-TOF MS was coupled to a reversed-phase capillary liquid chromatography (RPLC) separation and evaluated in experiments with complex proteolytic digests. When applied to a global tryptic digest of Shewanella oneidensis proteins, an order of-magnitude increase in sensitivity compared to that of the conventional continuous mode of operation was achieved due to efficient ion accumulation prior to TOF MS analysis. As a result of this sensitivity improvement and related improvement in mass measurement accuracy, the number of unique peptides identified in the AGC-IFT mode was 5-fold greater than that obtained in the continuous mode. C1 [Ibrahim, Yehia M.; Belov, Mikhail E.; Liyu, Andrei V.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Belov, ME (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM mikhail.belov@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-06, RR018522]; NIAID NIH HHS [Y1-AI-4894-01] NR 32 TC 18 Z9 18 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2008 VL 80 IS 14 BP 5367 EP 5376 DI 10.1021/ac8003488 PG 10 WC Chemistry, Analytical SC Chemistry GA 325OL UT WOS:000257598100013 PM 18512944 ER PT J AU Kelly, RT Page, JS Marginean, I Tang, KQ Smith, RD AF Kelly, Ryan T. Page, Jason S. Marginean, Ioan Tang, Keqi Smith, Richard D. TI Nanoelectrospray emitter arrays providing interemitter electric field uniformity SO ANALYTICAL CHEMISTRY LA English DT Article ID IONIZATION-MASS-SPECTROMETRY; TRANSMISSION EFFICIENCY; ELECTROSPRAY EMITTERS; THRUSTER APPLICATIONS; ION TRANSMISSION; SCALE-UP; SENSITIVITY; INTERFACE; ATOMIZATION; GENERATION AB Arrays of electrospray ionization (ESI) emitters have been reported Previously as a means of enhancing ionization efficiency or signal intensity. A key challenge when working with multiple, closely spaced ESI emitters is overcoming the deleterious effects caused by electrical interference among neighboring emitters. Individual. emitters can experience different electric fields depending on their relative position in the array, such that it becomes difficult to operate all of the emitters optimally for a given applied potential. In this work, we have developed multi-nanoESI emitters arranged with a circular pattern, which enable the constituent emitters to experience a uniform electric field. The performance of the circular emitter array was compared to a single emitter and to a previously developed linear emitter array, which verified that improved electric field uniformity was achieved with the circular arrangement. The circular arrays were also interfaced with a mass spectrometer via a matching multicapillary inlet, and the results were compared with those obtained using a single emitter. By minimizing interemitter electric field inhomogeneities, much larger arrays having closer emitter spacing should be feasible. C1 [Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Marginean, Ioan/A-4183-2008; Kelly, Ryan/B-2999-2008; Smith, Richard/J-3664-2012 OI Marginean, Ioan/0000-0002-6693-0361; Kelly, Ryan/0000-0002-3339-4443; Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-05] NR 21 TC 28 Z9 28 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2008 VL 80 IS 14 BP 5660 EP 5665 DI 10.1021/ac800508q PG 6 WC Chemistry, Analytical SC Chemistry GA 325OL UT WOS:000257598100052 PM 18553942 ER PT J AU Miller, CS Eisenberg, D AF Miller, Christopher S. Eisenberg, David TI Using inferred residue contacts to distinguish between correct and incorrect protein models SO BIOINFORMATICS LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENTS; STRUCTURE PREDICTION; EVOLUTIONARY INFORMATION; CORRELATED MUTATIONS; CONSERVATION; RESTRAINTS; NETWORKS; FAMILIES; VIRUS; CASP7 AB Motivation: The de novo prediction of 3D protein structure is enjoying a period of dramatic improvements. Often, a remaining difficulty is to select the model closest to the true structure from a group of low-energy candidates. To what extent can inter-residue contact predictions from multiple sequence alignments, information which is orthogonal to that used in most structure prediction algorithms, be used to identify those models most similar to the native protein structure Results: We present a Bayesian inference procedure to identify residue pairs that are spatially proximal in a protein structure. The method takes as input a multiple sequence alignment, and outputs an accurate posterior probability of proximity for each residue pair. We exploit a recent metagenomic sequencing project to create large, diverse and informative multiple sequence alignments for a test set of 1656 known protein structures. The method infers spatially proximal residue pairs in this test set with good accuracy: top-ranked predictions achieve an average accuracy of 38 (for an average 21-fold improvement over random predictions) in cross-validation tests. Notably, the accuracy of predicted 3D models generated by a range of structure prediction algorithms strongly correlates with how well the models satisfy probable residue contacts inferred via our method. This correlation allows for confident rejection of incorrect structural models. C1 [Miller, Christopher S.; Eisenberg, David] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA. [Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Biol Chem, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Box 951570, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu OI Miller, Christopher/0000-0002-9448-8144 FU Howard Hughes Medical Institute; NIGMS NIH HHS [GM07185] NR 47 TC 24 Z9 24 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 15 PY 2008 VL 24 IS 14 BP 1575 EP 1582 DI 10.1093/bioinformatics/btn248 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 325GC UT WOS:000257576000003 PM 18511466 ER PT J AU Thurmond, J Yoon, H Kuiken, C Yusim, K Perkins, S Theiler, J Bhattacharya, T Korber, B Fischer, W AF Thurmond, James Yoon, Hyejin Kuiken, Carla Yusim, Karina Perkins, Simon Theiler, James Bhattacharya, Tanmoy Korber, Bette Fischer, Will TI Web-based design and evaluation of T-cell vaccine candidates SO BIOINFORMATICS LA English DT Article AB We present a suite of on-line tools to design candidate vaccine proteins, and to assess antigen potential, using coverage of k-mers (as proxies for potential T-cell epitopes) as a metric. The vaccine design tool uses the recently published mosaic method to generate protein sequences optimized for coverage of high-frequency k-mers; the coverage-assessment tools facilitate coverage comparisons for any potential antigens. To demonstrate these tools, we designed mosaic protein sets for B-clade HIV-1 Gag, Pol and Nef, and compared them to antigens used in a recent human vaccine trial. C1 [Thurmond, James; Yoon, Hyejin; Kuiken, Carla; Yusim, Karina; Theiler, James; Bhattacharya, Tanmoy; Korber, Bette; Fischer, Will] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Perkins, Simon] UltraSpectral Inc, Albuquerque, NM 87113 USA. [Bhattacharya, Tanmoy; Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Fischer, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wfischer@lanl.go RI Fischer, Will/B-1323-2013; Bhattacharya, Tanmoy/J-8956-2013; OI Fischer, Will/0000-0003-4579-4062; Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU NIAID NIH HHS [P01 AI61734] NR 7 TC 25 Z9 26 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 15 PY 2008 VL 24 IS 14 BP 1639 EP 1640 DI 10.1093/bioinformatics/btn251 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 325GC UT WOS:000257576000012 PM 18515277 ER PT J AU Choi, CH Rapti, Z Gelev, V Hacker, MR Alexandrov, B Park, EJ Park, JS Horikoshi, N Smerzi, A Rasmussen, KO Bishop, AR Usheva, A AF Choi, Chu H. Rapti, Zoi Gelev, Vladimir Hacker, Michele R. Alexandrov, Boian Park, Evelyn J. Park, Jae Suk Horikoshi, Nobuo Smerzi, Augusto Rasmussen, Kim O. Bishop, Alan R. Usheva, Anny TI Profiling the thermodynamic softness of adenoviral promoters SO BIOPHYSICAL JOURNAL LA English DT Article ID MAJOR LATE PROMOTER; PROTEIN-DNA RECOGNITION; 2 TRANSCRIPTION FACTORS; CAMP RESPONSE ELEMENT; POLYPEPTIDE-IX GENE; TATA-LESS PROMOTER; RNA POLYMERASE-II; ELA-LIKE ACTIVITY; START SITES; STIMULATES TRANSCRIPTION AB We showed previously that anharmonic DNA dynamical features correlate with transcriptional activity in selected viral promoters, and hypothesized that areas of DNA softness may represent loci of functional significance. The nine known promoters from human adenovirus type 5 were analyzed for inherent DNA softness using the Peyrard-Bishop-Dauxois model and a statistical mechanics approach, using a transfer integral operator. We found a loosely defined pattern of softness peaks distributed both upstream and downstream of the transcriptional start sites, and that early transcriptional regions tended to be softer than late promoter regions. When reported transcription factor binding sites were superimposed on our calculated softness profiles, we observed a close correspondence in many cases, which suggests that DNA duplex breathing dynamics may play a role in protein recognition of specific nucleotide sequences and protein-DNA binding. These results suggest that genetic information is stored not only in explicit codon sequences, but also may be encoded into local dynamic and structural features, and that it may be possible to access this obscured information using DNA dynamics calculations. C1 [Choi, Chu H.; Rapti, Zoi; Gelev, Vladimir; Park, Evelyn J.; Park, Jae Suk; Usheva, Anny] Beth Israel Deaconess Med Ctr, Dept Med, Boston, MA 02215 USA. [Choi, Chu H.; Rapti, Zoi; Gelev, Vladimir; Hacker, Michele R.; Park, Evelyn J.; Park, Jae Suk; Usheva, Anny] Harvard Univ, Sch Med, Boston, MA USA. [Rapti, Zoi] Univ Illinois, Dept Math, Urbana, IL 61801 USA. [Hacker, Michele R.] Beth Israel Deaconess Med Ctr, Dept Obstet & Gynecol, Boston, MA 02215 USA. [Alexandrov, Boian; Smerzi, Augusto; Rasmussen, Kim O.; Bishop, Alan R.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Horikoshi, Nobuo] Washington Univ, Dept Radiat Oncol, Sch Med, St Louis, MO USA. RP Choi, CH (reprint author), Beth Israel Deaconess Med Ctr, Dept Med, Boston, MA 02215 USA. EM cchoi@bidmc.harvard.edu RI Rasmussen, Kim/B-5464-2009; Alexandrov, Boian/D-2488-2010; OI Rasmussen, Kim/0000-0002-4029-4723; Alexandrov, Boian/0000-0001-8636-4603; Hacker, Michele/0000-0003-0217-9991 FU NHLBI NIH HHS [R01 HL062458]; NIGMS NIH HHS [R01 GM073911] NR 71 TC 14 Z9 14 U1 0 U2 1 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2008 VL 95 IS 2 BP 597 EP 608 DI 10.1529/biophysj.107.123471 PG 12 WC Biophysics SC Biophysics GA 318WG UT WOS:000257122900015 PM 18390611 ER PT J AU Miller, CE Majewski, J Watkins, EB Kuhl, TL AF Miller, C. E. Majewski, J. Watkins, E. B. Kuhl, T. L. TI Part I: An x-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes SO BIOPHYSICAL JOURNAL LA English DT Article ID GRAZING-INCIDENCE DIFFRACTION; AIR-WATER-INTERFACE; CRYSTAL-STRUCTURE; PROTEIN-BINDING; ACID MONOLAYERS; GANGLIOSIDE GM1; INDUCED FUSION; PHOSPHATIDYLCHOLINE; CALCIUM; MODEL AB Cholera toxin is a highly efficient biotoxin, which is frequently used as a tool to investigate protein-membrane interactions and as a reporter for membrane rafts. Cholera toxin binds selectively to gangliosides with highest affinity to GM(1). However, the mechanism by which cholera toxin crosses the membrane remains unresolved. Using x-ray reflectivity and grazing incidence diffraction, we have been able to monitor the binding and penetration of cholera toxin into a model lipid monolayer containing the receptor GM1 at the air-water interface. Very high toxin coverage was obtained allowing precise measurements of how toxin binding alters lipid packing. Grazing incidence x-ray diffraction revealed the coexistence of two monolayer phases after toxin binding. The first was identical to the monolayer before toxin binding. In regions where toxin was bound, a second membrane phase exhibited a decrease in order as evidenced by a larger area per molecule and tilt angle with concomitant thinning of the monolayer. These results demonstrate that cholera toxin binding induces the formation of structurally distinct, less ordered domains in gel phases. Furthermore, the largest decrease in lateral order to the monolayer occurred at low pH, supporting a low endosomal pH in the infection pathway. Surprisingly, at pH 8 toxin penetration by the binding portion of the toxin, the B-5 pentamer, was also observed. C1 [Kuhl, T. L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Miller, C. E.; Majewski, J.; Watkins, E. B.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Watkins, E. B.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. RP Kuhl, TL (reprint author), Univ Calif Davis, Dept Chem Engn, 1 Shields Ave, Davis, CA 95616 USA. EM tlkuhl@ucdavis.edu RI Lujan Center, LANL/G-4896-2012 NR 35 TC 14 Z9 15 U1 1 U2 9 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2008 VL 95 IS 2 BP 629 EP 640 DI 10.1529/biophysj.107.120725 PG 12 WC Biophysics SC Biophysics GA 318WG UT WOS:000257122900018 PM 18359802 ER PT J AU Miller, CE Majewski, J Watkins, EB Weygand, M Kuhl, TL AF Miller, C. E. Majewski, J. Watkins, E. B. Weygand, M. Kuhl, T. L. TI Part II: Diffraction from two-dimensional cholera toxin crystals bound to their receptors in a lipid monolayer SO BIOPHYSICAL JOURNAL LA English DT Article ID GRAZING-INCIDENCE DIFFRACTION; AIR-WATER-INTERFACE; X-RAY-DIFFRACTION; AIR/WATER INTERFACE; PROJECTED STRUCTURE; LAYER; SCATTERING; COMPLEXES; MEMBRANE AB The structure of cholera toxin (CTAB(5)) bound to its putative ganglioside receptor, galactosyl-N-acetylgalactosaminyl (N-acetyl-neuraminyl) galactosylglucosylceramide (GM(1)), in a lipid monolayer at the air-water interface has been studied utilizing grazing incidence x-ray diffraction. Cholera toxin is one of very few proteins to be crystallized in two dimensions and characterized in a fully hydrated state. The observed grazing incidence x-ray diffraction Bragg peaks indicated cholera toxin was ordered in a hexagonal lattice and the order extended 600-800 angstrom. The pentameric binding portion of cholera toxin (CTB5) improved in-plane ordering over the full toxin (CTAB(5)) especially at low pH. Disulfide bond reduction (activation of the full toxin) also increased the protein layer ordering. These findings are consistent with A-subunit flexibility and motion, which cause packing inefficiencies and greater disorder of the protein layer. Corroborative out-of-plane diffraction (Bragg rod) analysis indicated that the scattering units in the cholera layerwith CTAB(5) shortened after disulfide bond reduction of the A subunit. These studies, together with Part I results, revealed key changes in the structure of the cholera toxin-lipid system under different pH conditions. C1 [Miller, C. E.; Majewski, J.; Watkins, E. B.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, LANSCE 12, Los Alamos, NM 87545 USA. [Weygand, M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Watkins, E. B.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, LANSCE 12, Los Alamos, NM 87545 USA. EM jarek@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 16 TC 6 Z9 7 U1 0 U2 7 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2008 VL 95 IS 2 BP 641 EP 647 DI 10.1529/biophysj.107.120808 PG 7 WC Biophysics SC Biophysics GA 318WG UT WOS:000257122900019 PM 18359801 ER PT J AU Deng, H Brewer, S Vu, DM Clinch, K Callender, R Dyer, RB AF Deng, Hua Brewer, Scott Vu, Dung M. Clinch, Keith Callender, Robert Dyer, R. Brian TI On the pathway of forming enzymatically productive ligand-protein complexes in lactate dehydrogenase SO BIOPHYSICAL JOURNAL LA English DT Article ID CATALYSIS; BINDING; SUBSTRATE; DYNAMICS; ENZYMES; STEREOSPECIFICITY; ACTIVATION; NADH AB We have carried out a series of studies on the binding of a substrate mimic to the enzyme lactate dehydrogenase (LDH) using advanced kinetic approaches, which begin to provide a molecular picture of the dynamics of ligand binding for this protein. Binding proceeds via a binding-competent subpopulation of the nonligated form of the protein (the LDH/NADH binary complex) to form a protein-ligand encounter complex. The work here describes the collapse of the encounter complex to form the catalytically competent Michaelis complex. Isotope-edited static Fourier transform infrared studies on the bound oxamate protein complex reveal two kinds of oxamate environments: 1), a major populated structure wherein all significant hydrogen-bonding patterns are formed at the active site between protein and bound ligand necessary for the catalytically productive Michaelis complex and 2), a minor structure in a configuration of the active site that is unfavorable to carry out catalyzed chemistry. This latter structure likely simulates a dead-end complex in the reaction mixture. Temperature jump isotope-edited transient infrared studies on the binding of oxamate with LDH/NADH suggest that the evolution of the encounter complex between LDH/NADH and oxamate collapses via a branched reaction pathway to form the major and minor bound species. The production of the catalytically competent protein-substrate complex has strong similarities to kinetic pathways found in two-state protein folding processes. Once the encounter complex is formed between LDH/NADH and substrate, the ternary protein-ligand complex appears to "fold'' to form a compact productive complex in an all or nothing like fashion with all the important molecular interactions coming together at the same time. C1 [Deng, Hua; Callender, Robert] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA. [Brewer, Scott; Vu, Dung M.; Dyer, R. Brian] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Clinch, Keith] Ind Res Inc, Lower Hutt, New Zealand. RP Callender, R (reprint author), Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA. EM call@aecom.yu.edu; bdyer@lanl.gov OI Vu, Dung/0000-0002-3707-4439 FU NIBIB NIH HHS [EB01958, R01 EB001958]; NIGMS NIH HHS [5P01GM068036, P01 GM068036] NR 23 TC 20 Z9 20 U1 2 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2008 VL 95 IS 2 BP 804 EP 813 DI 10.1529/biophysj.108.128884 PG 10 WC Biophysics SC Biophysics GA 318WG UT WOS:000257122900035 PM 18390601 ER PT J AU Read, EL Schlau-Cohen, GS Engel, GS Wen, JZ Blankenship, RE Fleming, GR AF Read, Elizabeth L. Schlau-Cohen, Gabriela S. Engel, Gregory S. Wen, Jianzhong Blankenship, Robert E. Fleming, Graham R. TI Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy SO BIOPHYSICAL JOURNAL LA English DT Article ID FOURIER-TRANSFORM SPECTROSCOPY; FMO-COMPLEX; PROSTHECOCHLORIS-AESTUARII; CHLOROBIUM-TEPIDUM; IR-SPECTROSCOPY; BACTERIOCHLOROPHYLL PROTEIN; FEMTOSECOND SPECTROSCOPY; ENERGY-TRANSFER; SPECTRA; SIMULATIONS AB Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Interchromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states, and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography, in combination with predictions of transition energies and couplings in the chromophore site basis. We demonstrate that coarsegrained, excitonic, structural information in the form of projection angles between transition dipole moments can be obtained from the polarization-dependent, two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal, rather than the photon echo signal, is considered. This method provides an experimental link between atomic and electronic structure, and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, the energy transfer connecting two particular exciton states in the protein was isolated as the primary contributor to a crosspeak in the nonrephasing two-dimensional spectrum at 400 femtoseconds under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored polarization sequences to separate and monitor individual relaxation pathways. C1 [Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Fleming, Graham R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Wen, Jianzhong; Blankenship, Robert E.] Washington Univ, Dept Chem, Dept Biol, St Louis, MO 63130 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Wen, Jianzhong/C-1468-2011; Engel, Gregory/C-1108-2012 OI Wen, Jianzhong/0000-0002-3057-721X; Engel, Gregory/0000-0002-6740-5243 NR 38 TC 77 Z9 77 U1 2 U2 21 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2008 VL 95 IS 2 BP 847 EP 856 DI 10.1529/biophysj.107.128199 PG 10 WC Biophysics SC Biophysics GA 318WG UT WOS:000257122900039 PM 18375502 ER PT J AU Epling, WS Nova, I Peden, CHF AF Epling, William S. Nova, Isabella Peden, Charles H. F. TI Catalytic control of emissions from diesel-powered vehicles - Preface SO CATALYSIS TODAY LA English DT Editorial Material C1 [Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Nova, Isabella] Politecn Milan, Dipartimento Chim Mat & Ingn Chim G Natta, I-20133 Milan, Italy. [Epling, William S.] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM Chuck.Peden@pnl.gov RI nova, isabella/I-2395-2015 OI nova, isabella/0000-0001-7239-2785 NR 4 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 1 EP 2 DI 10.1016/j.cattod.2008.03.008 PG 2 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300001 ER PT J AU Cheng, YS Hoard, J Lambert, C Kwak, JH Peden, CHF AF Cheng, Yisun Hoard, John Lambert, Christine Kwak, Ja Hun Peden, Charles H. F. TI NMR studies of Cu/zeolite SCR catalysts hydrothermally aged with urea SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE urea SCR; Cu/zeolite; hydrothermal aging; urea aging; NO(x) reduction ID REDUCTION; NH3; NO AB The effects of hydrothermal aging of Cu/zeolite urea-selective catalytic reduction (SCR) catalysts on their reactivity and material properties were assessed by performance tests and multiple characterization techniques that included (27)Al nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). Three aging protocols were used that consisted of varying temperature during hydrothermal aging with or without exposure to aqueous urea solution. Differences in behavior were even found for samples hydrothermally aged immediately following exposure to the urea solution or if the sample was dried overnight before hydrothermal aging. The combination of urea and high-temperature exposure increased the deactivation of Cu/zeolite SCR catalysts beyond that observed by hydrothermal aging alone, with an immediate high-temperature exposure following wetting of the catalyst core with aqueous urea causing the most significant deterioration in performance. The impact of urea on SCR catalyst durability was also found to increase with the aging temperature. NMR analysis suggested that aging with urea resulted in relatively more dealumination of the zeolite for the SCR catalysts in this study. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cheng, Yisun; Hoard, John; Lambert, Christine] Ford Motor Co, Ford Int Ctr, Dearborn, MI 48124 USA. [Kwak, Ja Hun; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interface Catalysis, Richland, WA 99352 USA. RP Cheng, YS (reprint author), Ford Motor Co, Ford Int Ctr, Dearborn, MI 48124 USA. EM ycheng1@ford.com RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 NR 8 TC 26 Z9 26 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 34 EP 39 DI 10.1016/j.cattod.2008.01.019 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300006 ER PT J AU Ozensoy, E Herling, D Szanyi, J AF Ozensoy, Emrah Herling, Darrel Szanyi, Janos TI NOx reduction on a transition metal-free gamma-Al2O3 catalyst using dimethylether (DME) SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE NOx reduction; SCR; Al2O3; NO2; nitrate; nitrite; formate; methoxy; FTIR; TPD; dimethylether (DME); methanol; solid acid catalyst ID TEMPERATURE-PROGRAMMED DESORPTION; SOLID-ACID CATALYSTS; GAMMA-ALUMINA; SURFACE-ACIDITY; ETA-ALUMINA; ETHER DME; FT-IR; SELECTIVE REDUCTION; ADSORPTION SITES; METHANOL AB NO2 and dimethylether (DME) adsorption as well as DME and NO2 co-adsorption on a transition metal-free gamma-alumina catalyst were investigated via in-situ transmission Fourier transform infrared spectroscopy (in-situ FTIR), residual gas analysis (RGA) and temperature programmed desorption (TPD) techniques. NO2 adsorption at room temperature leads to the formation of surface nitrates and nitrites. DME adsorption on the alumina surface at 300 K leads to molecularly adsorbed DME, molecularly adsorbed methanol and surface methoxides. Upon heating the DME-exposed alumina to 500-600 K the surface is dominated by methoxide groups. At higher temperatures methoxide groups are converted into formates. At T > 510 K, formate, decomposition takes place to form H2O(g) and CO(g). DME and NO2 co-adsorption at 423 K does not indicate a significant reaction between DME and NO2. However, in similar experiments at 573 K, fast reaction occurs and the methoxides present at 573 K before the NO2 adsorption are converted into formates, simultaneously with the formation of isocyanates. Under these conditions, NCO can further be hydrolyzed into isocyanic acid or ammonia with the help of water which is generated during the formate formation, decomposition and/or NCO formation steps. (C) 2008 Elsevier B.V. All rights reserved. C1 [Herling, Darrel; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Ozensoy, Emrah] Bilkent Univ, Dept Chem, TR-06800 Ankara, Turkey. [Ozensoy, Emrah] Bilkent Univ, Inst Mat Sci & Technol, TR-06800 Ankara, Turkey. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-80, Richland, WA 99352 USA. EM janos.szanyi@pnl.gov NR 48 TC 24 Z9 24 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 46 EP 54 DI 10.1016/j.cattod.2007.12.095 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300008 ER PT J AU Larson, RS Pihl, JA Chakravarthy, VK Toops, TJ Daw, CS AF Larson, Richard S. Pihl, Josh A. Chakravarthy, V. Kalyana Toops, Todd J. Daw, C. Stuart TI Microkinetic modeling of lean NOx trap chemistry under reducing conditions SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE lean NOx trap (LNT); NOx storage reduction (NSR); regeneration; ammonia formation ID SILICA-SUPPORTED RHODIUM; MONOLITH CATALYSTS; STORAGE/REDUCTION CATALYSTS; REDUCTION CATALYST; STORAGE-REDUCTION; MASS-TRANSFER; STORED NOX; FT-IR; H-2; PT/BAO/AL2O3 AB An elementary surface reaction mechanism describing the chemistry on the precious metal sites of a lean NOx trap is developed. Kinetic parameters for all of the reactions are found by fitting reactor simulations to an extensive experimental database. Each experiment involves the steady flow of a reactant mixture through a monolith core sample under conditions designed to minimize NOx storage; in each case, the temperature is slowly ramped over a wide range in order to provide a large amount of data. A reaction mechanism involving 28 elementary steps is able to reproduce the results for 21 separate experimental runs quite well. The thermodynamic consistency of the mechanism is assured through the imposition of constraints on a well-defined subset of the rate parameters. It is found that the mechanism can occasionally lead to multiple steadystate behavior due to the existence of parallel reduction pathways. DRIFTS experiments corroborate some of the key mechanistic steps. (C) 2007 Elsevier B.V. All rights reserved. C1 [Larson, Richard S.] Sandia Natl Labs, Livermore, CA 94551 USA. [Pihl, Josh A.; Chakravarthy, V. Kalyana; Toops, Todd J.; Daw, C. Stuart] Engines & Emiss Res Ctr, Oak Ridge Natl Lab, Knoxville, TN 37923 USA. RP Larson, RS (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM rslarso@sandia.gov NR 39 TC 25 Z9 25 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 104 EP 120 DI 10.1016/j.cattod.2007.12.117 PG 17 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300014 ER PT J AU Verrier, C Kwak, JH Kim, DH Peden, CHF Szanyi, J AF Verrier, Christelle Kwak, Ja Hun Kim, Do Heui Peden, Charles H. F. Szanyi, Janos TI NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on gamma-Al2O3 SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE NOx storage; basicity; BaO/gamma-Al2O3; MgO/gamma-Al2O3; SrO/gamma-Al2O3; CaO/gamma-Al2O3; NO2 TPD; FTIR; N-15 s.s. MAS NMR ID STORAGE-REDUCTION CATALYSTS; INDUCED MORPHOLOGY CHANGES; BAO/AL2O3; ADSORPTION; WATER; NITRATE; ENGINES; RELEASE; NITRITE; PHASES AB NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on gamma-alumina materials. Temperature programmed desorption (TPD) conducted in He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and N-15 solid-state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/gamma-Al2O3 material (Mg(NO3)(2)), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties very similar to that of the gamma-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/gamma-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials. Published by Elsevier B.V. C1 [Verrier, Christelle; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles H. F.; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-80, Richland, WA 99352 USA. EM janos.szanyi@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 26 TC 18 Z9 19 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 121 EP 127 DI 10.1016/j.cattod.2007.12.138 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300015 ER PT J AU Ji, YY Choi, JS Toops, TJ Crocker, M Naseri, M AF Ji, Yaying Choi, Jae-Soon Toops, Todd J. Crocker, Mark Naseri, Mojghan TI Influence of ceria on the NO(x) storage/reduction behavior of lean NO(x) trap catalysts SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE NO(x); storage; reduction; LNT; ceria ID STORAGE-REDUCTION CATALYST; WATER-GAS SHIFT; MODEL CATALYSTS; OXYGEN-STORAGE; REGENERATION; CEO2; BA; ADSORPTION; STABILITY; EVOLUTION AB The effect of La(2)O(3)-stabilized ceria incorporation on the functioning of fully formulated lean NO(x) trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO(2)/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce(0.7)Zr(0.3)O(2)). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NO(x) storage/reduction cycles. NO(x) storage efficiency in the temperature range 150350 degrees C was observed to increase with ceria loading, resulting in higher NO(x) conversion levels. At 150 degrees C, high rich phase NO(x) slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NO, reduction. Optimal NO(x) conversion was obtained in the range 250-350 degrees C for all the catalysts, while at 450 degrees C high rich phase NO(x) slip from the most highly loaded ceria-containing catalyst resulted in lower NO(x) conversion than for the ceria-free formulation. N(2)O was the major NO(x) reduction product at 150 degrees C over all of the catalysts, although low NO(x) conversion levels limited the N(2)O yield. At higher temperatures N(2) was the main product of NO(x) reduction, although NH(3) formation was also observed. Selectivity to NH(3) decreased with increasing ceria loading, indicating that NH(3) is consumed by reaction with stored oxygen in the rear of the catalyst. (C) 2007 Elsevier B.V. All rights reserved. C1 [Ji, Yaying; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Choi, Jae-Soon; Toops, Todd J.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Naseri, Mojghan] DCL Int Inc, Concord, ON L4K 1B2, Canada. RP Crocker, M (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM crocker@caer.uky.edu RI Crocker, Mark/A-2704-2008; OI Choi, Jae-Soon/0000-0002-8162-4207 NR 34 TC 46 Z9 46 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 146 EP 155 DI 10.1016/j.cattod.2007.11.059 PG 10 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300018 ER PT J AU Toops, TJ Pihl, JA AF Toops, Todd J. Pihl, Josh A. TI Sulfation of potassium-based lean NO(x) trap while cycling between lean and rich conditions - I. Microreactor study SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE lean NO(x) traps; NO(x) storage reduction; sulfur; potassium; NO(x) abatement; platinum; alumina ID STORAGE CATALYSTS; SULFUR DEACTIVATION; REDUCTION CATALYST; FT-IR; PT-BA/GAMMA-AL2O3 CATALYST; EXPOSURE CONDITIONS; ADSORBER CATALYSTS; 3-WAY CATALYST; NO(X) STORAGE; BARIUM OXIDE AB Exposure of Pt/K/Al(2)O(3) to 15 ppm SO(2) reduces the NO(x) activity at 200, 300, and 400 degrees C at significantly different rates-1.5, 8.5, and 18.0 mu mol NO(x)(h g(cat)), respectively. During the initial sulfation, NO(x) conversion is directly linked to lean phase storage capacity, and sulfation does not impact the reduction kinetics since the amount of unconverted NO(x) was constant or decreased with increasing sulfation time. A portion of sulfur stored at 200 degrees C desorbs upon mild heating to 400 degrees C while cycling between lean and rich conditions. This apparently is a result of sulfur being released from Al(2)O(3); however, performance is not significantly recovered as much of the sulfur is re-adsorbed on the K-phase. This is apparent from analysis of the NO, storage and release profiles. Additional analysis of these profiles suggests that SO(2) initially adsorbs near Pt before interacting with other sites further away from Pt at 300 degrees C. At 400 degrees C, it appears that SO(2) either preferentially adsorbs near Pt and then quickly diffuses along the surface to other less proximal sites, or it directly adsorbs on sites further away from Pt. De-sulfurization up to 800 degrees C using a temperature programmed reduction (TPR) procedure and rich conditions with both CO(2) and H(2)O restored 73-94% of the LNT performance at 300 and 400 degrees C. However, the recovered performance measured at 200 degrees C was only 34-49% of the original NO, reduction activity. H(2)S and SO(2) were the primary de-sulfurization products with H2S having a maximum release between 690 and 755 degrees C, while SO(2) had a peak release between 770 and 785 degrees C. The sulfation temperature does not have a significant impact on the recovered performance, the de-sulfurization products or the sulfur release temperature. (C) 2008 Elsevier B.V. All rights reserved. C1 [Toops, Todd J.; Pihl, Josh A.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Toops, TJ (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM toopstj@ornl.gov NR 54 TC 10 Z9 10 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 164 EP 172 DI 10.1016/j.cattod.2008.02.007 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300020 ER PT J AU Choi, JS Partridge, WP Pihl, JA Daw, CS AF Choi, Jae-Soon Partridge, William P. Pihl, Josh A. Daw, C. Stuart TI Sulfur and temperature effects on the spatial distribution of reactions inside a lean NOx trap and resulting changes in global performance SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE lean NOx trap; NOx storage/reduction; oxygen storage capacity; sulfation; temperature effect; ammonia; spatial distribution of reactions ID STORAGE-REDUCTION CATALYST; STORAGE/REDUCTION CATALYSTS; FUTURE CHALLENGES; REGENERATION; BREAKTHROUGH; PT/K/AL2O3; ADSORPTION; HYDROGEN; AMMONIA; RELEASE AB We experimentally studied the influence of temperature and sulfur loading on the axial distribution of reactions inside a commercial lean NOx trap (LNT) catalyst to better understand the global performance trends. Our measurements were made on a monolith core, bench-flow reactor under cycling conditions (60-s lean/5-s rich) at 200, 325, and 400 degrees C with intra-catalyst and reactor-outlet gas speciation. Postmortem elemental and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses of the catalyst also supplemented our gas species measurements. For the unsulfated catalyst, the NOx storage/reduction (NSR) reactions were localized in the front (upstream) portion of the monolith, whereas oxygen storage/reduction reactions were distributed more evenly along the entire catalyst length. As a result, two axially distinct reaction zones were developed inside the working catalyst: an upstream "NSR zone" where both NO, and oxygen storage/reduction took place and a downstream oxygen storage capacity (OSC)-only zone where the NSR reactions did not penetrate. The NSR zone involved less than half the LNT at 325 and 400 degrees C, but it included almost the entire length at 200 degrees C. Sulfation poisoned both the NSR and OSC reactions beginning at the catalyst upstream edge, with the NSR degradation occurring more rapidly and distinctly than the OSC. As sulfation proceeded, a third zone (the sulfated zone) developed and the NSR zone moved downstream, with a concomitant decrease in both the OSC-only zone and global NO, conversion. The sulfation impact on NO, conversion was greatest at 200 degrees C, when the NSR zone was largest. Ammonia selectivity increased with sulfation, which we attributed to a shortened OSC-only zone and resultantly reduced consumption of NH3, slipping from the NSR zone, by downstream OSC. Lower temperatures also increased NH3 selectivity. Nitrous oxide selectivity also increased with decreasing temperature but showed little dependence on sulfation. We proposed explanations for these trends in NH3 and N2O selectivity based on shifts in competing reaction rates in the three zones. Published by Elsevier B.V. C1 [Choi, Jae-Soon; Partridge, William P.; Pihl, Josh A.; Daw, C. Stuart] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. RP Choi, JS (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS-6472, Oak Ridge, TN 37831 USA. EM choijs@ornl.gov OI Choi, Jae-Soon/0000-0002-8162-4207 NR 38 TC 36 Z9 36 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 173 EP 182 DI 10.1016/j.cattod.2008.01.008 PG 10 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300021 ER PT J AU Kim, DH Kwak, JH Wang, XQ Szanyi, J Peden, CH AF Kim, Do Heui Kwak, Ja Hun Wang, Xianqin Szanyi, Janos Peden, Charles He TI Sequential high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 20th Meeting of the North-American-Catalysis-Society (NAM) CY JUN, 2007 CL Houston, TX SP N Amer Catalysis Soc DE NOx storage; Pt/BaO/Al2O3; desulfation; Pt sintering; H2O effect ID STORAGE; SO2 AB We describe a new method that minimizes irreversible Pt sintering during the desulfation of sulfated Pt/BaO/Al2O3 lean NOx trap (LNT) catalysts. While it is known that the addition of H2O to H-2 promotes desulfation, we find that the significant and irreversible Pt sintering arising from the presence of water is unavoidable. Control of precious metal sintering is considered to be one of the critical issues in the development of durable LNT catalysts. The new method described here is a sequential desulfation process: the first step is to reduce the sulfates with hydrogen only at higher temperatures to form BaS, followed by a treatment of the thus reduced sample with water at low to moderate temperatures to convert BaS to BaO and H,S. The data showed that Pt sintering was significantly inhibited due to the absence of H2O during the desulfation at high temperatures, and also demonstrates the similar NOx uptake with the desulfated sample cooperatively with H-2 and H2O. This study clearly revealed both positive and negative roles for water in desulfation processes and these factors must be considered when optimizing LNT operation. Published by Elsevier B.V. C1 [Kim, Do Heui; Kwak, Ja Hun; Wang, Xianqin; Szanyi, Janos; Peden, Charles He] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 902 Battelle Blvd, Richland, WA 99354 USA. EM do.kim@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 12 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2008 VL 136 IS 1-2 BP 183 EP 187 DI 10.1016/j.cattod.2007.12.134 PG 5 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 317JO UT WOS:000257016300022 ER PT J AU Meng, XH Wang, P AF Meng Xin-He Wang Peng TI Matter loops corrected modified gravity in Palatini formulation SO COMMUNICATIONS IN THEORETICAL PHYSICS LA English DT Article DE modified gravity; accelerated cosmic expansion; loop correction and dark energy ID COSMOLOGICAL CONSTANT; EQUATIONS; UNIVERSALITY; QUINTESSENCE; DIMENSIONS; QUANTUM; VACUUM; BRANE AB Recently, corrections to the standard Einstein-Hilbert action were proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such a term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and In R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory. On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications. C1 [Meng Xin-He] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. [Wang Peng] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Wang Peng] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Meng Xin-He] Hanyang Univ, Dept Phys, Div Adv Res & Educ Phys BK21, Seoul 133791, South Korea. RP Meng, XH (reprint author), Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. EM xhmeng@hanyang.ac.kr; pewang@eyou.com NR 49 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0253-6102 EI 1572-9494 J9 COMMUN THEOR PHYS JI Commun. Theor. Phys. PD JUL 15 PY 2008 VL 50 IS 1 BP 275 EP 278 PG 4 WC Physics, Multidisciplinary SC Physics GA 333AQ UT WOS:000258124800053 ER PT J AU Hoch, RV Visel, A Pennacchio, LA Rubenstein, JLR AF Hoch, Renee V. Visel, Axel Pennacchio, Len A. Rubenstein, John L. R. TI Identification and characterization of novel Fgf17 enhancers active in the rostral forebrain signaling center SO DEVELOPMENTAL BIOLOGY LA English DT Meeting Abstract CT 67th Annual Meeting of the Society-for-Developmental-Biology CY JUL 25-30, 2008 CL Univ Penn, Philadelphia, PA SP Soc Dev Biol HO Univ Penn C1 [Hoch, Renee V.; Rubenstein, John L. R.] UCSF, Dept Psychiat, San Francisco, CA USA. [Visel, Axel; Pennacchio, Len A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 NR 0 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0012-1606 J9 DEV BIOL JI Dev. Biol. PD JUL 15 PY 2008 VL 319 IS 2 MA 354 BP 573 EP 574 DI 10.1016/j.ydbio.2008.05.377 PG 2 WC Developmental Biology SC Developmental Biology GA 327NA UT WOS:000257734600375 ER PT J AU Rapp, RP Irifune, T Shimizu, N Nishiyama, N Norman, MD Inoue, J AF Rapp, Robert P. Irifune, Tetsuo Shimizu, Nobu Nishiyama, Norimasa Norman, Marc D. Inoue, Toru TI Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE subduction zones; ocean island basalts (OIB); K-hollandite; continental sediments; mantle transition zone; lamproite ID OXYGEN-ISOTOPE EVIDENCE; PITCAIRN-ISLAND LAVAS; EQUATION-OF-STATE; HIGH-PRESSURE; TRACE-ELEMENT; KALSI3O8 HOLLANDITE; TRANSITION ZONE; EARTHS MANTLE; EXPERIMENTAL CONSTRAINTS; WATER TRANSPORT AB Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived (similar to 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, R, 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ("enriched mantle") OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high Sr-87/Sr-86 ratios, low Nd-143/Nd-144 and Pb-206/Pb-204 ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C. W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as the product of melting of deeply recycled (subducted) Archean-age metasediments in the mantle transition zone [Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antartica: possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981-1001]. Here we report the results of phase equilibria experiments on two different natural sedimentary compositions (a high-grade metapelite with <1 wt.% H2O, and a marine "mud" with similar to 8 wt.% H2O) at 16-23 GPa. In both materials, the high-pressure mineral assemblages contain similar to 15-30 wt.% K-hollandite (KAISi(3)O(8)), in addition to stishovite, garnet, an Al-silicate phase (kyanite or phase egg), and a Fe-Ti spinel (corundum). Ion microprobe analyses of K-hollandite for a range of trace elements reveal that this phase controls a significant proportion of the whole-rock budget of incompatible, large-ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, K, Pb, La, Ce and Th). Comparisons between the abundances and ratios of these elements in K-hollandite with those in EM-1 type ocean-island basalts from Pitcairn Island and related seamounts, and with the Gaussberg lamproites, indicate the presence of deeply recycled, continent-derived sediments in these lavas' sources. Our results suggest that the incompatible trace-element signature of EM-1 OIB reservoirs in general and of the Gaussberg lamproites in particular can be attributed to recycling of K-hollandite-bearing continental sediments to transition zone depths. (C) 2008 Elsevier B.V. All righs reserved. C1 [Norman, Marc D.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. [Rapp, Robert P.; Irifune, Tetsuo; Inoue, Toru] Ehime Univ, Geodynam Res Ctr, Matsuyama, Ehime 7908577, Japan. [Shimizu, Nobu] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Nishiyama, Norimasa] Univ Chicago, Argonne Natl Lab, Consortium Adv Radiat Sources GSECARS, Argonne, IL 60439 USA. RP Rapp, RP (reprint author), Australian Natl Univ, Res Sch Earth Sci, GPO Box 4, Canberra, ACT 0200, Australia. EM robert.rapp@anu.edu.au RI Norman, Marc/A-2244-2008; Facility, NENIMF/B-8811-2015; Nishiyama, Norimasa/A-7627-2016 NR 56 TC 73 Z9 76 U1 9 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2008 VL 271 IS 1-4 BP 14 EP 23 DI 10.1016/j.epsl.2008.02.028 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 328ZB UT WOS:000257835600002 ER PT J AU Torres, ME Trehu, AM Cespedes, N Kastner, M Wortmann, UG Kim, JH Long, P Malinverno, A Pohlman, JW Riedel, M Collett, T AF Torres, M. E. Trehu, A. M. Cespedes, N. Kastner, M. Wortmann, U. G. Kim, J. -H. Long, P. Malinverno, A. Pohlman, J. W. Riedel, M. Collett, T. TI Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311 SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE methane hydrate; Cascadia margin; grain size; infrared scans ID GAS-HYDRATE; MARINE-SEDIMENTS; POROUS-MEDIA; RIDGE; DISSOCIATION; CONSTRAINTS; SUBSURFACE; ENRICHMENT; OREGON; RATES AB Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled similar to 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of similar to 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and >80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (>63 mu m) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf. (C) 2008 Elsevier B.V. All rights reserved. C1 [Torres, M. E.; Trehu, A. M.; Cespedes, N.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Kastner, M.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Wortmann, U. G.] Univ Toronto, Dept Geol, Toronto, ON M5S 3B1, Canada. [Kim, J. -H.] KIGAM, Petr & Marine Resources Res Div, Taejon 305350, South Korea. [Long, P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Malinverno, A.] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA. [Pohlman, J. W.] US Geol Survey, Woods Hole Sci Ctr, Woods Hole, MA 02543 USA. [Riedel, M.] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2A7, Canada. [Collett, T.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Torres, ME (reprint author), Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. EM mtorres@coas.oregonstate.edu OI Wortmann, Ulrich/0000-0001-7854-9173; Kim, Ji-Hoon/0000-0003-2430-3869 NR 37 TC 68 Z9 70 U1 3 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2008 VL 271 IS 1-4 BP 170 EP 180 DI 10.1016/j.epsl.2008.03.061 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 328ZB UT WOS:000257835600016 ER PT J AU Miot, J Morin, G Skouri-Panet, F Ferard, C Aubry, E Briand, J Wang, Y Ona-Nguema, G Guyot, F Brown, GE AF Miot, Jennyfer Morin, Guillaume Skouri-Panet, Feriel Ferard, Celine Aubry, Emmanuel Briand, Joel Wang, Yuheng Ona-Nguema, Georges Guyot, Francois Brown, Gordon E. TI XAS study of arsenic coordination in Euglena gracilis exposed to arsenite SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HEAVY-METAL DETOXIFICATION; NEAR-EDGE STRUCTURE; ACID-MINE DRAINAGE; SACCHAROMYCES-CEREVISIAE; PTERIS-VITTATA; CADMIUM; RESISTANCE; TOXICITY; PROTEIN; CELLS AB Among the few eukaryotes adapted to the extreme conditions prevailing in acid mine drainage, Euglenae are ubiquitous in these metal(loid)-impacted environments, where they can be exposed to As(III) concentrations up to a few hundreds of mg .L(-1). In order to evaluate their resistance to this toxic metalloid and to identify associated detoxification mechanisms, we investigated arsenic coordination in the model photosynthetic protozoan, Euglena, gracilis, cultured at pH 3.2 and exposed to As(III) at concentrations ranging from 10 to 500 mg.L(-1). E gracilis is shown to tolerate As(III) concentrations up to 200 mg.L(-1), without accumulating this metalloid. X-ray absorption spectroscopy at the As K-edge shows that, in the cells, arsenic mainly binds to sulfur ligands, likely in the form of arsenic-tris-glutathione (As-(GS)(3)) or arsenic-phytochelatin (As-PC) complexes, and to a much lesser extent, to carbon ligands, presumably in the form of methylated As(III)-compounds. The key role of the glutathione pathway in As(III) detoxification is confirmed by the lower growth rate of E. gracilis cultures exposed to arsenic, in the presence of buthionine sulfoximine, an inhibitor of glutathione synthesis. This study provides the first investigation at the molecular scale of intracellular arsenic speciation in E. gracilis and thus contributes to the understanding of arsenic detoxification mechanisms in a eukaryotic microorganism under extreme acid mine drainage conditions. C1 [Miot, Jennyfer; Morin, Guillaume; Skouri-Panet, Feriel; Ferard, Celine; Wang, Yuheng; Ona-Nguema, Georges; Guyot, Francois] Univ Paris 06, CNRS, UMR 7590, IMPMC, F-75015 Paris, France. [Miot, Jennyfer; Morin, Guillaume; Skouri-Panet, Feriel; Ferard, Celine; Wang, Yuheng; Ona-Nguema, Georges; Guyot, Francois] Univ Paris 07, F-75015 Paris, France. [Miot, Jennyfer; Morin, Guillaume; Skouri-Panet, Feriel; Ferard, Celine; Wang, Yuheng; Ona-Nguema, Georges; Guyot, Francois] IPGP, F-75015 Paris, France. [Aubry, Emmanuel] Univ Paris 06, UMR 7618, Bioemco, INRA,INAPG,CNRS,ENS,ENSCP, F-75252 Paris 05, France. [Briand, Joel] Univ Paris 07, EA 3514, Lab Electrophysiol Membranes, F-75252 Paris 05, France. [Brown, Gordon E.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Brown, Gordon E.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Miot, J (reprint author), Univ Paris 06, CNRS, UMR 7590, IMPMC, 140 Rue Lourmel, F-75015 Paris, France. EM miot@impmc.jussieu.fr RI Wang, Yuheng/K-3988-2012; GUYOT, Francois/C-3824-2016; IMPMC, Geobio/F-8819-2016 OI Wang, Yuheng/0000-0002-1786-5970; GUYOT, Francois/0000-0003-4622-2218; NR 44 TC 17 Z9 17 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2008 VL 42 IS 14 BP 5342 EP 5347 DI 10.1021/es703072d PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 325WS UT WOS:000257620000053 PM 18754391 ER PT J AU Houston, JR Herberg, JL Maxwell, RS Carroll, SA AF Houston, J. R. Herberg, J. L. Maxwell, R. S. Carroll, S. A. TI Association of dissolved aluminum with silica: Connecting molecular structure to surface reactivity using NMR SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; CROSS-POLARIZATION; BIOGENIC SILICA; CATION ADSORPTION; AMORPHOUS SILICA; SPECTROSCOPY; SORPTION; AL-27; WATER; DISSOLUTION AB We studied uptake mechanisms for dissolved Al on amorphous silica by combining bulk-solution chemistry experiments with solid-state Nuclear Magnetic Resonance techniques (Al-27 magic-angle spinning (MAS) NMR, Al-27{H-1} cross-polarization (CP) MAS NMR and 29Si{H-1} CP-MAS NMR). We find that reaction of Al (1 mM) with amorphous silica consists of at least three reaction pathways; (1) adsorption of Al to surface silanol sites, (2) surface-enhanced precipitation of an aluminum hydroxide, and (3) bulk precipitation of an aluminosilicate phase. From the NMR speciation and water chemistry data, we calculate that 0.20 (+/- 0.04) tetrahedral Al atoms nm(-2) sorb to the silica surface. Once the surface has sorbed roughly half of the total dissolved Al (similar to 8% site coverage), aluminum hydroxides and aluminosilicates precipitate from solution. These precipitation reactions are dependent upon solution pH and total dissolved silica concentration. We find that the Si:Al stoichiometry of the aluminosilicate precipitate is roughly 1:1 and suggest a chemical formula of NaAlSiO4 in which Na+ acts as the charge compensating cation. For the adsorption of Al, we propose a surface-controlled reaction mechanism where Al sorbs as an inner-sphere coordination complex at the silica surface. Analogous to the hydrolysis of Al(OH2)(6)(3+), we suggest that rapid deprotonation by surface hydroxyls followed by dehydration of ligated waters results in four-coordinate (> SiOH)(2)Al(OH)(2) sites at the surface of amorphous silica. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Houston, J. R.; Herberg, J. L.; Maxwell, R. S.; Carroll, S. A.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Houston, JR (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM houston23@llnl.gov; herberg1@llnl.gov; maxwell7@llnl.gov; carroll6@llnl.gov NR 40 TC 24 Z9 25 U1 5 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2008 VL 72 IS 14 BP 3326 EP 3337 DI 10.1016/j.gca.2008.04.028 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 326ZC UT WOS:000257697300003 ER PT J AU Boily, JF Felmy, AR AF Boily, Jean-Francois Felmy, Andrew R. TI On the protonation of oxo- and hydroxo-groups of the goethite (alpha-FeOOH) surface: A FTIR spectroscopic investigation of surface O-H stretching vibrations SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FREQUENCY GENERATION SPECTROSCOPY; MOLECULAR STATICS CALCULATIONS; SYNTHETIC GOETHITE; INFRARED-SPECTROSCOPY; PHOSPHATED GOETHITE; METAL (HYDR)OXIDES; CATALYTIC ALUMINAS; AQUEOUS-SOLUTIONS; FORCE MICROSCOPY; IR SPECTROSCOPY AB The O-H stretching region of goethite particles evaporated at different levels of acidity was investigated by Attenuated Total Reflectance (ATR)-Fourier Transform InfraRed (FTIR) spectroscopy. Two-dimensional IR Correlation Spectroscopy was used to identify correlations between different sets of discrete surface OH stretches and a Multivariate Curve Resolution analysis was used to resolve the predominant spectral components. Two dominant groups of hydroxyls were identified on the basis of their differences in proton affinity. Group I hydroxyls appear as two 3698/3541 and 3660/3490 cm(-1) band pairs. Group II hydroxyls are manifested through the 3648 and 3578 cm(-1) bands at greater levels of surface proton loading. There is consequently no correlation between O-H stretching frequencies and proton affinity. Groups I and II were assigned to mostly singly- (-OH) and doubly- (mu-OH) coordinated hydroxyls, respectively. Stretches arising from triply-coordinated (mu 3-OH) are proposed to be embedded within the dominant O-H band of bulk goethite. The possibility that these sites contribute to Group I and II hydroxyls should, however, not be entirely dismissed without further investigations. A reexamination of Temperature Programmed Desorption (TPD)-FTIR data of one goethite sample evaporated from alkaline conditions [Boily J.-F., Szanyi J., Felmy A. R. (2006) A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochim. Cosmochim. Acta 70, 3613-3624] provided further constraints to this band assignment by providing clues to the network of surface hydrogen bonds. Important cooperative effects between hydrogen-bonded surface hydroxyls are suggested to play a crucial role on the variations of the position and intensity of discrete O-H stretching bands as a function of protonation level and temperature. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Boily, Jean-Francois; Felmy, Andrew R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Boily, JF (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM boily@pnl.gov NR 69 TC 35 Z9 36 U1 4 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2008 VL 72 IS 14 BP 3338 EP 3357 DI 10.1016/j.gca.2008.04.022 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 326ZC UT WOS:000257697300004 ER PT J AU Duckworth, OW Bargar, JR Sposito, G AF Duckworth, Owen W. Bargar, John R. Sposito, Garrison TI Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SIDEROPHORE DESFERRIOXAMINE-B; METAL-EDTA COMPLEXES; RAY-ABSORPTION SPECTROSCOPY; FINE-STRUCTURE SPECTROSCOPY; EQUATORIAL PACIFIC-OCEAN; REDUCTIVE DISSOLUTION; SIDEROPHORE-MANGANESE(III) INTERACTIONS; ADSORPTION COMPLEXES; ORGANIC COMPLEXATION; STABILITY-CONSTANTS AB Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB(+), an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB(+) at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(Ill) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(111) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(Ill) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Duckworth, Owen W.] N Carolina State Univ, Dept Soil Sci, Raleigh, NC 27695 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Sposito, Garrison] Univ Calif Berkeley, Div Ecosyst Sci, Berkeley, CA 94720 USA. RP Duckworth, OW (reprint author), N Carolina State Univ, Dept Soil Sci, Raleigh, NC 27695 USA. EM owen_duckworth@ncsu.edu RI Grandjean, Agnes/H-3115-2011 NR 89 TC 28 Z9 29 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2008 VL 72 IS 14 BP 3371 EP 3380 DI 10.1016/j.gca.2008.04.026 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 326ZC UT WOS:000257697300006 ER PT J AU Watson, HC Watson, EB Fei, YW AF Watson, Heather C. Watson, E. Bruce Fei, Yingwei TI Diffusion of Au, Pd, Re, and P in FeNi alloys at high pressure SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CORE-MANTLE INTERACTION; SOLUTE IMPURITY DIFFUSION; PLATINUM-GROUP ELEMENTS; IVA IRON-METEORITES; MG TRACER DIFFUSION; EARTHS INNER-CORE; NI-P; COOLING RATES; STONY-IRON; 1 ATM AB Multi-anvil and piston cylinder experiments were performed to determine the effect of both pressure and temperature on the diffusivities of several siderophile elements in a Fe90Ni10 core-analog alloy. Activation energies were calculated to be between 244 and 257 kJ/mol for Re, Pd, and Au at 10 GPa, and 264 kJ/mol for P at I GPa. It was found that pressure has a marked negative effect on the diffusivities of Au, Re, and Pd, and activation volumes for these elements were calculated to be between 3 and 6 cm (3)/mol at 10 GPa. The effect of both temperature and pressure on P diffusion is noticeably less, and the absolute diffusivity of phosphorus is consistently higher than that of the other elements. It is inferred that the reason for this difference is because P is diffusing via an interstitial mechanism as opposed to Re, Pd, and Au which occupy regular lattice sites in the crystal. The effect of pressure and temperature together with depth in the Earth suggests that these elements may continue to exhibit different behavior at more extreme conditions. The significance of these new results lies in the ability to place constraints on many time-dependent processes that pertain to the formation and evolution of planetary cores, as well as the formation and cooling histories of other metal-rich bodies in the solar system, such as meteorites. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Watson, Heather C.; Watson, E. Bruce] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Watson, Heather C.; Fei, Yingwei] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Watson, HC (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-206, Livermore, CA 94550 USA. EM watson40@llnl.gov RI Fei, Yingwei/F-3709-2011; OI Fei, Yingwei/0000-0001-9955-5353; Watson, Heather/0000-0003-4307-6518 NR 67 TC 3 Z9 3 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2008 VL 72 IS 14 BP 3550 EP 3561 DI 10.1016/j.gca.2008.04.034 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 326ZC UT WOS:000257697300019 ER PT J AU Fu, LF Okamoto, NL Chi, MF Browning, ND Jung, HS Grein, CH AF Fu, L. F. Okamoto, N. L. Chi, M. F. Browning, N. D. Jung, H. S. Grein, C. H. TI Frank dislocation loops in HgTe/CdTe superlattices on CdTe/Si(211)B substrates SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; HGCDTE PHOTOVOLTAIC DETECTORS; WAVELENGTH INFRARED DETECTORS; STRUCTURAL-PROPERTIES; ELECTRON-MICROSCOPY; OPTICAL-PROPERTIES; CDTE; INTERDIFFUSION; HG1-XCDXTE; EPILAYERS AB The defect structures in HgTe/CdTe superlattices (SLs) on CdTe/Si(211)B substrates grown by molecular-beam epitaxy have been investigated using (scanning) transmission electron microscopy and electron energy loss spectroscopy. Straight Hg-rich defects perpendicular to the SLs have been observed near the substrate while Frank dislocation loops (FDLs) are seen far from the substrate. The Hg-rich defects exhibit only a compositional variation with no significant atomic shift, and can be considered to be a remnant of a FDL which has climbed by thermal diffusion during the growth. (C) 2008 American Institute of Physics. C1 [Fu, L. F.; Okamoto, N. L.; Chi, M. F.; Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Jung, H. S.; Grein, C. H.] EPIR Technol Inc, Bolingbrook, IL 60440 USA. [Browning, N. D.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Div Mat Sci & Technol, Livermore, CA 94550 USA. RP Fu, LF (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM lianfeng.fu@fei.com; nbrowning@ucdavis.edu RI Okamoto, Norihiko/A-7345-2010; Chi, Miaofang/Q-2489-2015; OI Okamoto, Norihiko/0000-0003-0199-7271; Chi, Miaofang/0000-0003-0764-1567; Browning, Nigel/0000-0003-0491-251X NR 27 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023104 DI 10.1063/1.2956687 PG 5 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800004 ER PT J AU Harris, JR Blackfield, D Caporaso, GJ Chen, YJ Hawkins, S Kendig, M Poole, B Sanders, DM Krogh, M Managan, JE AF Harris, J. R. Blackfield, D. Caporaso, G. J. Chen, Y. -J. Hawkins, S. Kendig, M. Poole, B. Sanders, D. M. Krogh, M. Managan, J. E. TI Vacuum insulator development for the dielectric wall accelerator SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE FLASHOVER AB At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a dielectric wall accelerator, in which compact pulse-forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we use "high-gradient insulators" composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including successful testing of a high-gradient insulator in a functioning dielectric wall accelerator cell. Our results indicate that proper high-voltage conditioning of the insulators can delay the onset of flashover, that the observed conditioning consists of both a permanent and a temporary part, and that the insulators' voltage-holding capability increases with increasing dielectric layer thickness. (C) 2008 American Institute of Physics. C1 [Harris, J. R.; Blackfield, D.; Caporaso, G. J.; Chen, Y. -J.; Hawkins, S.; Kendig, M.; Poole, B.; Sanders, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Krogh, M.] Complete Compact Aero Operation Syst Inc, Lees Summit, MO 64081 USA. [Managan, J. E.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Harris, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM harris89@llnl.gov NR 29 TC 8 Z9 11 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023301 DI 10.1063/1.2956702 PG 7 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800011 ER PT J AU Hsu, L Walukiewicz, W AF Hsu, L. Walukiewicz, W. TI Modeling of InGaN/Si tandem solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SILICON AB We investigate theoretically the characteristics of monolithic InGaN/Si two-junction series-connected solar cells using the air mass 1.5 global irradiance spectrum. The addition of an InGaN junction is found to produce significant increases in the energy conversion efficiency of the solar cell over that of one-junction Si cells. Even when Si is not of high quality, such two-junction cells could achieve efficiencies high enough to be practically feasible. We also show that further, though smaller, improvements of the efficiency can be achieved by adding another junction to form an InGaN/InGaN/Si three-junction cell. (c) 2008 American Institute of Physics. C1 [Hsu, L.] Univ Minnesota, Dept Postsecondary Teaching & Learning, Minneapolis, MN 55414 USA. [Walukiewicz, W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Elect Mat Program, Berkeley, CA 94720 USA. RP Hsu, L (reprint author), Univ Minnesota, Dept Postsecondary Teaching & Learning, Minneapolis, MN 55414 USA. EM w_walukiewicz@lbl.gov NR 12 TC 87 Z9 88 U1 1 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 024507 DI 10.1063/1.2952031 PG 7 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800121 ER PT J AU Huang, QJ Lilley, CM Bode, M Divan, R AF Huang, Qiaojian Lilley, Carmen M. Bode, Matthias Divan, Ralu TI Surface and size effects on the electrical properties of Cu nanowires SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TEMPERATURE-COEFFICIENT; THIN-FILMS; RESISTANCE; CONDUCTIVITY AB Copper nanowires were patterned with e-beam lithography and fabricated with a copper film deposited by e-beam evaporation. Various electrical properties of these nanowires (including resistivity, temperature coefficient of resistance, and failure current density) were characterized. It was experimentally found that surface and size have apparent effects on the electrical properties. Smaller values for the temperature coefficient of resistance and higher failure current density were found for Cu nanowires with decreasing wire width. The experimental finding of width dependent failure current density also agrees with finding for theoretical heat transfer of the nanowire and substrate system as calculated with the finite element method. (c) 2008 American Institute of Physics. C1 [Huang, Qiaojian; Lilley, Carmen M.] Univ Illinois, Dept Mech & Ind Engn, Engn Res Facil 3055, Chicago, IL 60607 USA. [Bode, Matthias; Divan, Ralu] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Lilley, CM (reprint author), Univ Illinois, Dept Mech & Ind Engn, Engn Res Facil 3055, 842 W Taylor St, Chicago, IL 60607 USA. EM clilley@uic.edu RI Huang, Qiaojian/A-4951-2010; Bode, Matthias/S-3249-2016 OI Bode, Matthias/0000-0001-7514-5560 NR 27 TC 50 Z9 52 U1 2 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023709 DI 10.1063/1.2956703 PG 6 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800060 ER PT J AU Steen, C Martinez-Limia, A Pichler, P Ryssel, H Paul, S Lerch, W Pei, L Duscher, G Severac, F Cristiano, F Windl, W AF Steen, C. Martinez-Limia, A. Pichler, P. Ryssel, H. Paul, S. Lerch, W. Pei, L. Duscher, G. Severac, F. Cristiano, F. Windl, W. TI Distribution and segregation of arsenic at the SiO2/Si interface SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RAY-FLUORESCENCE SPECTROMETRY; DOPED SILICON; SI; OXIDATION; ANTIMONY; MODEL AB The segregation and pile-up of arsenic atoms at the Si/SiO2 interface in steady state was investigated in detail by a combination of gracing incidence x-ray fluorescence spectroscopy (GI-XRF) measurements, electrical measurements, etching on the nanometer scale, and measurements of the step heights by interferometry. Using GI-XRF measurements and removal of the highly doped segregation layer by a sensitive etching process it was possible to distinguish clearly between the piled-up atoms and the arsenic atoms in the bulk over a large range of implantation doses, from 3x10(12) to 1x10(16) cm(-2). The samples were annealed at different temperatures from 900 degrees C to 1200 degrees C for time periods long enough to make sure that the segregation reflects an equilibrium state. With additional step height measurements at line-space structures, the thickness of the layer with the piled-up arsenic and the shape of the segregation profile was determined. Electrical measurements indicated that the segregated arsenic atoms are deep donors with an electrical activity that increases eventually to full electrical activation for high sheet concentrations of the segregated atoms. The measured data can be modeled as a steady state of neutral arsenic atoms in the segregation layer with positively charged substitutional arsenic atoms and free electrons. For the highest concentration, a saturation of the sheet concentration of segregated arsenic atoms was observed that correlates with the increase in electrical activation. For the use in process simulation programs, a three-phase segregation model was adapted and calibrated. (C) 2008 American Institute of Physics. C1 Univ Erlangen Nurnberg, Chair Electron Devices, D-91058 Erlangen, Germany. Fraunhofer Inst Integrated Syst & Device Technol, D-91058 Erlangen, Germany. Mattson Thermal Prod GmbH, D-89160 Dornstadt, Germany. N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Toulouse, LAAS, CNRS, F-31077 Toulouse, France. Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. RP Steen, C (reprint author), Univ Erlangen Nurnberg, Chair Electron Devices, Cauerstr 6, D-91058 Erlangen, Germany. EM peter.pichler@iisb.fraunhofer.de RI Windl, Wolfgang/C-7255-2012; Duscher, Gerd/G-1730-2014 OI Windl, Wolfgang/0000-0001-5892-0684; Duscher, Gerd/0000-0002-2039-548X NR 35 TC 18 Z9 18 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023518 DI 10.1063/1.2956700 PG 11 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800032 ER PT J AU Thompson, JDW Neal, JR Shen, TH Morton, SA Tobin, JG Waddill, GD Matthew, JAD Greig, D Hopkinson, M AF Thompson, Jamie D. W. Neal, James R. Shen, Tiehan H. Morton, Simon A. Tobin, James G. Waddill, G. Dan Matthew, Jim A. D. Greig, Denis Hopkinson, Mark TI The evolution of Ga and As core levels in the formation of Fe/GaAs(001): A high resolution soft x-ray photoelectron spectroscopic study SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EPITAXIAL FE FILMS; MOLECULAR-BEAM EPITAXY; SUBSTRATE SURFACE RECONSTRUCTION; DECAPPED GAAS(100) SURFACES; MAGNETIC-PROPERTIES; INTERFACE COMPOSITION; THIN-FILMS; GAAS(001); GROWTH; SPIN AB A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer-a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 angstrom results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments-also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system. (c) 2008 American Institute of Physics. C1 [Thompson, Jamie D. W.; Neal, James R.; Shen, Tiehan H.] Univ Salford, Inst Mat Res, Joule Phys Lab, Salford M5 4WT, Lancs, England. [Morton, Simon A.; Tobin, James G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Waddill, G. Dan] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Matthew, Jim A. D.] Univ York, Dept Phys, York YO1 5DD, N Yorkshire, England. [Greig, Denis] Univ Leeds, Dept Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Hopkinson, Mark] Univ Sheffield, EPSRC Natl Ctr Technol 3 4, Sheffield S1 3JD, S Yorkshire, England. RP Shen, TH (reprint author), Univ Salford, Inst Mat Res, Joule Phys Lab, Salford M5 4WT, Lancs, England. EM t.shen@salford.ac.uk RI Hopkinson, Mark/H-8239-2012; Tobin, James/O-6953-2015; OI Hopkinson, Mark/0000-0002-8097-6913 NR 52 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 024516 DI 10.1063/1.2942395 PG 12 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800130 ER PT J AU Torija, MA Sharma, M Fitzsimmons, MR Varela, M Leighton, C AF Torija, M. A. Sharma, M. Fitzsimmons, M. R. Varela, M. Leighton, C. TI Epitaxial La0.5Sr0.5CoO3 thin films: Structure, magnetism, and transport SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPIN-STATE-TRANSITION; ELECTRICAL-PROPERTIES; PHASE-SEPARATION; CLUSTER-GLASS; MAGNETORESISTANCE; LA1-XSRXCOO3; LACOO3; MANGANITES; ITINERANT; COBALTITE AB La1-xSrxCoO3 has received considerable attention in bulk form. This is due to interest in the fundamental magnetic properties (spin-state transitions and magnetic phase separation) as well as potential applications in ferroelectric memory and solid-oxide fuel cells. The structure and properties in thin film form are not well understood, and the influence of dimensional confinement on effects such as magnetic phase separation is unknown. Here, we report a comprehensive investigation of structure, magnetism, and transport in strained epitaxial La0.5Sr0.5CoO3 (001) films deposited on SrTiO3 (001) substrates by reactive dc magnetron sputtering. The crystalline quality, phase purity, strain state, oxygen stoichiometry, morphology, and magnetic and electronic properties of the epilayers are all probed and are found to be particularly sensitive to the total sputtering gas pressure and the ratio of reactive to inert gas (PO2/PAr). The various structure-property relationships are discussed in detail, particularly with respect to the degree of oxygenation and oxygen-induced resputtering. The films are strained and tetragonally distorted due to the 1.9% lattice mismatch with SrTiO3. Significant strain relaxation occurs at thicknesses around 200 angstrom, resulting in a crossover from two-dimensional-like to three-dimensional growth. Polarized neutron reflectometry was combined with x-ray reflectometry to obtain chemical and magnetic depth profiles, which are compared with cross-sectional scanning transmission electron microscopy. The results indicate a thin (similar to 10 angstrom) layer at the film/substrate interface with significantly different structural properties to the bulk of the film, as well as a strongly graded magnetic and chemical profile at the film surface due to the significant roughness. The Curie temperature was found to decrease very slowly as the thickness is reduced down to similar to 50 angstrom, at which point a rapid decrease occurs, almost coincident with a sharp decrease in saturation magnetization. At this point, the temperature dependence of the resistivity shows a crossover from metallic to insulating, accompanied by dramatic changes in the magnetoresistance. The magnetoresistance has a negative contribution peaking around the Curie point (similar to that seen in bulk), a second negative contribution occurring at low temperature (only for the thinnest samples), as well as a large anisotropic magnetoresistance, which vanishes at the Curie point. Remarkably, the low temperature contribution in the thinnest x=0.5 films bears a striking resemblance to that seen in the insulating phase (x < 0.17) in bulk, suggesting the formation of a nonmetallic phase at low thickness that is similar to the low doping bulk phase, i.e., magnetic phase separation near the interface with SrTiO3. (c) 2008 American Institute of Physics. C1 [Torija, M. A.; Sharma, M.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Varela, M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. EM leighton@umn.edu RI Lujan Center, LANL/G-4896-2012; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Varela, Maria/0000-0002-6582-7004 NR 96 TC 35 Z9 37 U1 8 U2 79 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023901 DI 10.1063/1.2955725 PG 17 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800067 ER PT J AU Yan, HF Kalenci, O Noyan, IC Maser, J AF Yan, Hanfei Kalenci, Oezguer Noyan, I. Cevdet Maser, Joerg TI Coherency effects in nanobeam x-ray diffraction analysis SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PENDELLOSUNG FRINGES; DYNAMICAL THEORY; SINGLE-CRYSTALS; MICRODIFFRACTION; MICROSCOPE; MICROBEAMS; GRADIENTS; WAVE AB We describe the evolution of the x-ray scattering pattern which forms on an area detector when a divergent, coherent nanobeam is diffracted from a perfect or weakly deformed single crystal. We show that the scattering can be considered as virtual diffraction from an angular aperture in reciprocal space; this is analogous to pinhole diffraction in real space. We define an angular Fresnel number, Y-A, which allows the categorization of the nanodiffraction image into near-field, intermediate-field, and far-field regimes. We provide equations for Y-A in simple geometries and show that dynamical scattering artifacts are eliminated through wave interference in the far-field image; this is the only regime where direct analysis of the charge coupled device image using geometrical formulae to transform distances to diffraction angles is possible. (C) 2008 American Institute of Physics. C1 [Yan, Hanfei] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Yan, Hanfei; Kalenci, Oezguer; Maser, Joerg] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kalenci, Oezguer; Noyan, I. Cevdet] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA. RP Yan, HF (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM hyan@bnl.gov RI Maser, Jorg/K-6817-2013; Yan, Hanfei/F-7993-2011 OI Yan, Hanfei/0000-0001-6824-0367 NR 32 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023506 DI 10.1063/1.2955714 PG 7 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800020 ER PT J AU Zuo, QH Dienes, JK Middleditch, J Meyer, HW AF Zuo, Q. H. Dienes, J. K. Middleditch, J. Meyer, H. W., Jr. TI Modeling anisotropic damage in an encapsulated ceramic under ballistic impact SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SILICON-CARBIDE; INELASTIC DEFORMATION; BRITTLE MATERIALS; SHOCK RESPONSE; BORON-CARBIDE; PENETRATION; BEHAVIOR; TITANIUM; TARGETS; CRACKS AB This paper presents a study of anisotropic damage and cracking in a hot isostatically pressed assembly of titanium alloy encapsulated AD-995 ceramic under ballistic impact using the statistical crack mechanics approach. Anisotropy of crack growth in the ceramic is illustrated numerically by examining the growth in crack sizes along three orientations. Comparisons with the experimental measurements of the predicted backsurface profile and the damage (cracking) in the ceramic suggest that the model predictions are consistent with the experimental data. Numerical simulation also indicates that a prestress of roughly 2 kbar (200 MPa) compensates for about 1% of initial porosity in the ceramic. A comparison is made to the Rajendran-Grove ceramic model in EPIC which assumes an isotropic crack distribution. (C) 2008 American Institute of Physics. C1 [Zuo, Q. H.] Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. [Dienes, J. K.; Middleditch, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Meyer, H. W., Jr.] USA, Res Lab, Impact Phys Branch, Aberdeen Proving Ground, MD 21005 USA. RP Zuo, QH (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. EM zuo@eng.uah.edu NR 33 TC 6 Z9 6 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2008 VL 104 IS 2 AR 023508 DI 10.1063/1.2956509 PG 10 WC Physics, Applied SC Physics GA 333TH UT WOS:000258174800022 ER PT J AU Voltz, K Trylska, J Tozzini, V Kurkal-Siebert, V Langowski, J Smith, J AF Voltz, Karine Trylska, Joanna Tozzini, Valentina Kurkal-Siebert, Vandana Langowski, Joerg Smith, Jeremy TI Coarse-grained force field for the nucleosome from self-consistent multiscaling SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE chromatin; molecular dynamics; mesoscopic models; radial distribution function; fluctuations ID MOLECULAR-DYNAMICS SIMULATION; RESONANCE ENERGY-TRANSFER; CORE PARTICLE; LONG-RANGE; BIOMOLECULAR SYSTEMS; HIV-1 PROTEASE; NUCLEIC-ACIDS; DNA; MODEL; POTENTIALS AB A coarse-grained simulation model for the nucleosome is developed, using a methodology modified from previous work on the ribosome. Protein residues and DNA nucleotides are represented as beads, interacting through harmonic (for neighboring) or Morse (for nonbonded) potentials. Force-field parameters were estimated by Boltzmann inversion of the corresponding radial distribution functions obtained from a 5-ns all-atom molecular dynamics (MD) simulation, and were refined to produce agreement with the all-atom MD simulation. This self-consistent multiscale approach yields a coarse-grained model that is capable of reproducing equilibrium structural properties calculated from a 50-ns all-atom MD simulation. This coarse-grained model speeds up nucleosome simulations by a factor of 10(3) and is expected to be useful in examining biologically relevant dynamical nucleosome phenomena on the microsecond timescale and beyond. (C) 2008 Wiley Periodicals, Inc. C1 [Voltz, Karine; Langowski, Joerg] German Canc Res Ctr, D-6900 Heidelberg, Germany. [Voltz, Karine; Kurkal-Siebert, Vandana; Smith, Jeremy] Univ Heidelberg, IWR, Heidelberg, Germany. [Trylska, Joanna] Univ Warsaw, Interdisciplinary Ctr Math & Computat Modelling, Warsaw, Poland. [Tozzini, Valentina] NEST CNR INFM Scuola Normale Super, Pisa, Italy. [Kurkal-Siebert, Vandana] BASF AG, Ludwigshafen, Germany. [Smith, Jeremy] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Langowski, J (reprint author), German Canc Res Ctr, D-6900 Heidelberg, Germany. EM jl@dkfz.de RI Tozzini, Valentina/E-8206-2011; Langowski, Jorg/A-1843-2011; OI Tozzini, Valentina/0000-0002-7586-5039; Langowski, Jorg/0000-0001-8600-0666; Smith, Jeremy/0000-0002-2978-3227 FU FIC NIH HHS [R03 TW07318] NR 44 TC 52 Z9 53 U1 1 U2 18 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD JUL 15 PY 2008 VL 29 IS 9 BP 1429 EP 1439 DI 10.1002/jcc.20902 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 305XU UT WOS:000256211900008 PM 18270964 ER PT J AU Cederberg, JG Blaich, JD Girard, GR Lee, SR Nelson, DP Murray, CS AF Cederberg, J. G. Blaich, J. D. Girard, G. R. Lee, S. R. Nelson, D. P. Murray, C. S. TI The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE metal-organic chemical vapor deposition; semiconducting III-V materials; infrared devices ID MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; ENERGY-CONVERSION; INASYP1-Y; PROGRESS; GROWTH AB We have investigated thermophotovoltaic monolithic interconnected modules fabricated from In0.68Ga0.32As on InP using In(PAs) buffer layers to mitigate the lattice mismatch. The growth of these devices presented several challenges. For example, the n-type dopant Te forms a persistent surface-segregation layer on In(PAs) and (InGa)As layers, which unintentionally distributes Te into subsequently deposited layers. To solve this problem, we identified growth conditions that promote Te desorption from the InGaAs surface, thereby enabling the formation of sharp doping profiles. Another significant challenge involved In-rich surface defects, which form during In0.68Ga0.32As growth and act as shunt paths that severely reduce cell performance. To address this problem, we implemented pre-growth 100 cm(-2) particle-control procedures that allow surface defect densities below to be obtained. Our progress allowed the demonstration of thermophotovoltaic cells producing 348 mV/junction open-circuit voltage with a fill factor exceeding 70%. (c) 2008 Elsevier B.V. All rights reserved. C1 [Cederberg, J. G.; Blaich, J. D.; Girard, G. R.; Lee, S. R.; Nelson, D. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Murray, C. S.] Gen Atom Corp, San Diego, CA 92121 USA. RP Cederberg, JG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jgceder@sandia.gov NR 20 TC 13 Z9 14 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUL 15 PY 2008 VL 310 IS 15 BP 3453 EP 3458 DI 10.1016/j.jcrysgro.2008.04.037 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 336GV UT WOS:000258353200011 ER PT J AU Babentsov, V Franc, J Fauler, A Fiederle, M James, RB AF Babentsov, V. Franc, J. Fauler, A. Fiederle, M. James, R. B. TI Distribution of zinc, resistivity, and photosensitivity in a vertical Bridgman grown Cd1-xZnxTe ingot SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE point defects; Bridgman technique; semiconducting II-VI materials ID CDTE; CRYSTALS; CDZNTE; TELLURIDE; IMPURITY; DEFECTS; NONSTOICHIOMETRY; DEPENDENCE; (CD,ZN)TE AB We present the results of a comprehensive study of distribution of zinc, resistivity, and photosensitivity in a Cd1-xZnxTe ingot grown by the vertical Bridgman method. We used several complementary methods, viz., glow discharge mass spectroscopy, photoluminescence, resistivity-, and photosensitivity-mapping, along with photo-induced current transient spectroscopy to characterize the material. We identified electronic levels in the bandgap responsible for compensation, recombination, and photosensitivity. (c) 2008 Elsevier B.V. All rights reserved. C1 [Franc, J.] Charles Univ Prague, Inst Phys, Fac Math & Phys, CZ-12116 Prague, Czech Republic. [Babentsov, V.] Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Fauler, A.; Fiederle, M.] Mat Forschungszentrum, D-79104 Freiburg, Germany. [James, R. B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. RP Franc, J (reprint author), Charles Univ Prague, Inst Phys, Fac Math & Phys, Ke Karlovu 5, CZ-12116 Prague, Czech Republic. EM franc@karlov.mff.cuni.cz RI Fiederle, Michael/B-9750-2013; Franc, Jan/C-3802-2017 OI Franc, Jan/0000-0002-9493-3973 NR 31 TC 16 Z9 17 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUL 15 PY 2008 VL 310 IS 15 BP 3482 EP 3487 DI 10.1016/j.jcrysgro.2008.05.017 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 336GV UT WOS:000258353200017 ER PT J AU Fornasiero, F Tang, D Boushehri, A Prausnitz, J Radke, CJ AF Fornasiero, Francesco Tang, Darren Boushehri, Ali Prausnitz, John Radke, C. J. TI Water diffusion through hydrogel membranes - A novel evaporation cell free of external mass-transfer resistance SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE evaporation cell; zero external mass-transfer resistance; water-diffusion coefficient; soft-contact-lens; extended Maxwell-Stefan theory ID SOFT-CONTACT-LENS; POLYMER-SOLVENT SYSTEMS; POSTLENS TEAR FILM; STATISTICAL-MECHANICS; PERMEABILITY; COEFFICIENTS; DEHYDRATION; DEPENDENCE; EYE AB A novel evaporative cell is used to measure steady-state gradient-driven diffusion rates of water through hydrogel membranes in the absence of external mass-transfer resistance. In this cell, the bottom surface of a hydrogel membrane is exposed to pure water vapor at known activity (a(w)) less than unity, while a sealed liquid-water reservoir bathes the upper membrane surface. induced by the chemical-potential gradient between the two surfaces, the water evaporation rate is monitored by the rate of weight loss of the water reservoir. Results at ambient temperature are compared with those from measured water flux through soft-contact-lens (SCL) materials and with other published experimental results. Concentration-dependent water diffusivities are obtained by interpreting measured water fluxes for 0.11 <= a(w) <= 0.93 with extended Maxwell-Stefan (EMS) diffusion theory. Thermodynamic non-ideality is taken into account through Flory-Rehner polymer-solution theory. Shrinking/swelling is modeled by conservation of the total polymer mass assuming volume additivity. In spite of correction for thermodynamic non-ideality, EMS-water-diffusion coefficients increase with the water volume fraction, especially strongly for those hydrogel materials with low liquid-saturated water contents. The evaporation cell described here provides a simple robust method to establish water transport rates through soft-contact-lenses and other hydrogel membranes without the need to correct for external mass-transfer resistance. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fornasiero, Francesco; Tang, Darren; Boushehri, Ali; Prausnitz, John; Radke, C. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Prausnitz, John] Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Radke, C. J.] Univ Calif Berkeley, Vision Sci Grp, Berkeley, CA 94720 USA. RP Radke, CJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, 101 E Gilman, Berkeley, CA 94720 USA. EM radke@berkeley.edu RI Fornasiero, Francesco/I-3802-2012 NR 38 TC 11 Z9 11 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JUL 15 PY 2008 VL 320 IS 1-2 BP 423 EP 430 DI 10.1016/j.memsci.2008.04.032 PG 8 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 328YS UT WOS:000257834700048 ER PT J AU Mansur, LK AF Mansur, Louis K. TI Professor Robert W. Cahn - Obituary SO JOURNAL OF NUCLEAR MATERIALS LA English DT Biographical-Item C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mansur, LK (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM mansurlk@ornl.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2008 VL 377 IS 3 BP III EP III DI 10.1016/j.jnucmat.2008.04.003 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 332AG UT WOS:000258053400001 ER PT J AU Li, ML Byun, TS Snead, LL Zinkle, SJ AF Li, Meimei Byun, T. S. Snead, L. L. Zinkle, S. J. TI Low-temperature thermally-activated deformation and irradiation softening in neutron-irradiated molybdenum SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BCC METALS; ELECTRON CONCENTRATION; TENSILE PROPERTIES; SINGLE-CRYSTALS; SOLID SOLUTIONS; FLOW-STRESS; ALLOYS; ENERGY AB The effect of neutron irradiation on low-temperature deformation of Mo in two heat treatments, i.e. annealed and stress-relieved, was investigated. Specimens were irradiated at reactor coolant temperature (_80 *Q to doses ranging from 7.2 x 10' to 0.28 dpa in the High Flux Isotope Reactor. Tensile tests were carried out between -50 and 100 IC at strain rates of 1 X 10-5_1 X 10-2 s-1. Thermal activation analysis based on tensile data was performed to understand the low-temperature deformation mechanism. Irradiation softening and reduced dependence on test temperature and strain rate of the yield stress was observed in the annealed Mo after low-dose neutron irradiation (<-0.003 dpa). Higher dose neutron irradiation caused athermal hardening only. The stress-relieved Mo showed a weaker dependence on test temperature and strain rate of the yield stress than the annealed Mo, and the dependence of the yield stress of the stress-relieved Mo was nearly unchanged after irradiation. Comparison of the experimental values of activation parameters with the theoretical predictions of dislocation models indicates that the Fleischer model of interactions of dislocations with tetTagonal strains gave a better description of the activation process than the double-kink model, which implies a scavenging effect. The reduced test temperature and strain rate dependence following irradiation may be explained by the decreased effective stress due to trapping of interstitial solute species by neutron-produced defects. (c) 2008 Elsevier B.V. All rights reserved. C1 [Li, Meimei; Byun, T. S.; Snead, L. L.; Zinkle, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Li, ML (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mli@anl.gov OI Zinkle, Steven/0000-0003-2890-6915 NR 37 TC 5 Z9 5 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2008 VL 377 IS 3 BP 409 EP 414 DI 10.1016/j.jnucmat.2008.03.017 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 332AG UT WOS:000258053400002 ER PT J AU Klueh, RL Shiba, K Sokolov, MA AF Klueh, R. L. Shiba, K. Sokolov, M. A. TI Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ACTIVATION FERRITIC ALLOYS; CR-MO STEELS; MARTENSITIC STEELS; TENSILE PROPERTIES; NEUTRON-IRRADIATION; FRACTURE-TOUGHNESS; IMPACT PROPERTIES; HEAT-TREATMENT; HFIR; 9CR-1MOVNB AB irradiation damage caused by neutron irradiation below 425-450 DC of 9-12% Cr ferritic/martensitic steels produces microstructural defects that cause an increase in yield stress. This irradiation hardening causes embrittlement observed in a Charpy impact test as an increase in the ductile-brittle transition temperature. Little or no change in strength is observed in steels irradiated above 425-450 oC. Therefore, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study, significant embrittlement was observed in F82H steel irradiated at 500 *C to 5 and 20 dpa without any change in strength. Earlier studies on several conventional steels also showed embrittlement effects above the irradiation-hardening temperature regime. indications are that this embrittlement is caused by irradiation-accelerated or irradiation-induced precipitation. Observations of embrittlement in the absence of irradiation hardening that were previously reported in the literature have been examined and analyzed with computational thermodynamics calculations to illuminate and understand the effect. (c) 2008 Elsevier B.V. All rights reserved. C1 [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shiba, K.] Japan Atom Energy Agcy, Ibaraki, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008 MS6138, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov NR 49 TC 18 Z9 18 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2008 VL 377 IS 3 BP 427 EP 437 DI 10.1016/j.jnucmat.2008.04.002 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 332AG UT WOS:000258053400005 ER PT J AU O'Brien, RC Ambrosi, RM Bannister, NP Howe, SD Atkinson, HV AF O'Brien, R. C. Ambrosi, R. M. Bannister, N. P. Howe, S. D. Atkinson, H. V. TI Safe radioisotope thermoelectric generators and heat sources for space applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID WC-CO POWDER; MICROSTRUCTURE; POWER AB Several isotopes are examined as alternatives to 238pU that is traditionally used in radioisotope thermoelectric generators (RTGs) and heating units (RHUs). The radioisotopes discussed include 21'Am, 208po, 2'oPo, and 90Sr. The aim of this study is to facilitate the design of an RTG with a minimal radiation dose rate and mass including any required shielding. Applications of interest are primarily space and planetary exploration. In order to evaluate the properties of the alternative radioisotopes a Monte Carlo model was developed to examine the radiation protection aspect of the study. The thermodynamics of the power generation process is examined and possible materials for the housing and encapsulation of the radioisoropes are proposed. In this study we also present a historical review of radioisotope thermoelectric generators (RTGs) and the thermoelectric conversion mechanism in order to provide a direct comparison with the performance of our proposed alternative isotope systems. (c) 2008 Elsevier B.V. All rights reserved. C1 [O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.] Univ Leicester, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Howe, S. D.] Idaho Natl Lab, Ctr Space Nucl Res, Idaho Falls, ID 83415 USA. [Atkinson, H. V.] Univ Leicester, Dept Engn, Leicester LE1 7RH, Leics, England. RP O'Brien, RC (reprint author), Univ Leicester, Space Res Ctr, Univ Rd, Leicester LE1 7RH, Leics, England. EM rco3@star.le.ac.uk RI O'Brien, Robert/C-3355-2017 OI O'Brien, Robert/0000-0002-7479-6764 NR 46 TC 42 Z9 42 U1 5 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2008 VL 377 IS 3 BP 506 EP 521 DI 10.1016/j.jnucmat.2008.04.009 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 332AG UT WOS:000258053400017 ER PT J AU Bose, AB Shaik, R Mawdsley, J AF Bose, Anima B. Shaik, Ruhulla Mawdsley, Jennifer TI Optimization of the performance of polymer electrolyte fuel cell membrane-electrode assemblies: Roles of curing parameters on the catalyst and ionomer structures and morphology SO JOURNAL OF POWER SOURCES LA English DT Article DE PEM fuel cells; membrane-electrode assembly fabrication; electrode morphology; lonomer dynamics; scanning electron microscopy ID GAS-DIFFUSION ELECTRODES; LOADING ELECTRODES; NAFION CONTENT; REACTION LAYER; PLATINUM; CATHODE; ALLOY; DURABILITY; STABILITY; HUMIDITY AB In order to understand the origin of performance variations in polymer electrolyte membrane fuel cells (PEMFCs), a series of membrane-electrode assemblies (MEAs) with identical electrode layer compositions were prepared using different electrode Curing conditions, their performances were evaluated, and their morphologies determined by scanning electron rnicroscopy (SEM). The polarization curves varied markedly primarily due to differences in morphologies of electrodes, which were dictated by the curing processes. The highest performing MEAs (1.46W cm(-2) peak power density at 3.2 A cm(-2) and 80 degrees C) were prepared using a slow curing process at a lower temperature, whereas those MEAs prepared using a faster curing process performed poorly (0.1948Wcm(-2) peak power density at 440mAcm(-2) and 80 degrees C). The slowly cured MEAs showed uniform electrode catalyst and ionomer distributions, as revealed in SEM images and elemental maps. The relatively faster cured materials exhibited uneven distribution of ionomer with significant catalyst clustering. Collectively, these results indicate that to achieve optimal performance, factors that affect the dynamics of the curing process, such as rate of solvent evaporation, must be carefully controlled to avoid solvent trapping, minimize catalyst coagulation, and promote even distribution of ionomer. (c) 2008 Published by Elsevier B.V. C1 [Bose, Anima B.; Shaik, Ruhulla] No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA. [Mawdsley, Jennifer] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Bose, AB (reprint author), No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA. EM bose@ceet.niu.edu NR 40 TC 14 Z9 14 U1 9 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 61 EP 65 DI 10.1016/j.jpowsour.2008.03.070 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500008 ER PT J AU Kim, DS Kim, YS Guiver, MD Ding, JF Pivovar, BS AF Kim, Dae Sik Kim, Yu Seung Guiver, Michael D. Ding, Jianfu Pivovar, Bryan S. TI Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance SO JOURNAL OF POWER SOURCES LA English DT Article DE comb-shaped copolymer; polyelectrolyte membrane; current density; MEA; proton conductivity; fuel cell ID NAFION MEMBRANES; METHANOL; ELECTROLYTES; TRANSPORT; SYSTEMS; DESIGN AB The fuel cell performance (DMFC and H-2/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm(-2) and 0.5 M methanol was 145 mW cm(-2), whereas the power densities of MEAs using BPSH-35 were 136 mW cm(-2). The power density of the MEA using Comb 22 copolymer at 350 mA cm(-2) and 2.0 M methanol was 144.5 mWcm(-2), whereas the power densities of MEAs using BPSH-35 were 143 mWcm(-2). (0 2008 Elsevier B.V. All rights reserved. C1 [Kim, Dae Sik; Guiver, Michael D.; Ding, Jianfu] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. [Kim, Yu Seung; Pivovar, Bryan S.] Los Alamos Natl Lab, Mat Phys & Applicat Sensors & Electrochem Devices, Los Alamos, NM 87545 USA. RP Guiver, MD (reprint author), Natl Res Council Canada, Inst Chem Proc & Environm Technol, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada. EM michael.guiver@nrc-cnrc.gc.ca RI Guiver, Michael/I-3248-2016 OI Guiver, Michael/0000-0003-2619-6809 NR 17 TC 28 Z9 29 U1 4 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 100 EP 105 DI 10.1016/j.jpowsour.2008.03.065 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500014 ER PT J AU Meinhardt, KD Kim, DS Chou, YS Weil, KS AF Meinhardt, K. D. Kim, D. -S. Chou, Y. -S. Weil, K. S. TI Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic sealant SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell (SOFC); glass-ceramic sealant; coefficient of thermal expansion ID CHEMICAL-STABILITY; CRYSTALLIZATION; INTERCONNECT; STACKS; SOFCS AB A series of barium aluminosilicate glasses modified with CaO and B2O3 were prepared and evaluated with respect to their suitability in sealing planar solid oxide fuel cells (SOFCs). At a target operating temperature of 750 degrees C, the long-term coefficient of thermal expansion (CTE) of one particular composition (35 mol% BaO, 15 mol% CaO, 10 mol% B2O3, 5 mol% Al2O3, and bal. SiO2) was found to be particularly stable, due to devitrification to a mixture of glass and ceramic phases. This sealant composition exhibits minimal chemical interaction with the yttria-stabilized zirconia electrolyte, yet forms a strong bond with this material. Interactions with metal components were found to be more extensive and depended on the composition of the metal oxide scale that formed during sealing. Generally alumina-scale formers exhibited a more compact reaction zone with the glass than chromia-scale forming alloys. Mechanical measurements conducted on the bulk glass-ceramic and on seals formed using these materials indicate that the sealant is anticipated to display adequate long-term strength for most conventional stationary SOFC applications. (C) 2008 Elsevier B.V. All rights reserved. C1 [Meinhardt, K. D.; Kim, D. -S.; Chou, Y. -S.; Weil, K. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, KS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Scott.Weil@pnl.gov NR 31 TC 96 Z9 99 U1 2 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 188 EP 196 DI 10.1016/j.jpowsour.2008.03.079 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500026 ER PT J AU Orlovskaya, N Lugovy, M Pathak, S Steinmetz, D Lloyd, J Fegely, L Radovic, M Payzant, EA Lara-Curzio, E Allard, LF Kuebler, J AF Orlovskaya, Nina Lugovy, Mykola Pathak, Siddhartha Steinmetz, David Lloyd, John Fegely, Laura Radovic, Miladin Payzant, E. Andrew Lara-Curzio, Edgar Allard, Larry F. Kuebler, Jakob TI Thermal and mechanical properties of LaCoO3 and La0.8Ca0.2CoO3 perovskites SO JOURNAL OF POWER SOURCES LA English DT Article DE perovskite; strength; fracture toughness; thermal expansion; Young's modulus ID STRESS-STRAIN BEHAVIOR; PHASE-TRANSITION; FERROELASTIC BEHAVIOR; FRACTURE-TOUGHNESS; SPIN-STATE; CERAMICS; EXPANSION; DIFFRACTION; COMPOSITES AB In this work, the thermal and mechanical properties such as coefficient of thermal expansion, strength, Young's modulus and fracture toughness of LaCoO3 and La0.8Ca0.2CoO3 perovskites have been studied, as well as slow crack growth of La0.8Ca0.2CoO3. The mechanical performance of the two cobaltites have been evaluated in terms of their ferroelastic hysteresis properties such as non-symmetry in bending of both stress and strain distributions, non-linear deformation upon applied load from the arbitrary low stresses, and ferroelastic toughening. (C) 2008 Elsevier B.V. All rights reserved. C1 [Orlovskaya, Nina; Lugovy, Mykola] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Pathak, Siddhartha; Steinmetz, David; Lloyd, John; Fegely, Laura] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Radovic, Miladin] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Payzant, E. Andrew; Lara-Curzio, Edgar; Allard, Larry F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Kuebler, Jakob] EMPA, Mat Sci & Technol, Lab High Performance Ceram, Dubendorf, Switzerland. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. EM norlovsk@mail.ucf.edu RI Payzant, Edward/B-5449-2009; OI Payzant, Edward/0000-0002-3447-2060; Kuebler, Jakob/0000-0003-1331-0721 NR 44 TC 29 Z9 29 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 230 EP 239 DI 10.1016/j.jpowsour.2008.03.072 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500029 ER PT J AU Belogolovsky, I Hou, PY Jacobson, CP Visco, SJ AF Belogolovsky, I. Hou, P. Y. Jacobson, C. P. Visco, S. J. TI Chromia scale adhesion on 430 stainless steel: Effect of different surface treatments SO JOURNAL OF POWER SOURCES LA English DT Article DE oxidation; reactive element; oxide-metal interface; porosity ID HIGH-TEMPERATURE OXIDATION; OXIDE FUEL-CELLS; METALLIC INTERCONNECTS; PORE FORMATION; ALLOYS; SEGREGATION; RESISTANCE; COATINGS; IMPURITY; MICROSTRUCTURE AB In the context of solid oxide fuel cell (SOFC) applications, the adhesion strength and failure location of chromia scale that developed on 430 stainless steel after various surface modifications prior to oxidations between 600 and 800 degrees C were evaluated. Results demonstrated that the tensile strength and nature of adhesion of the oxide/alloy interface on 430 stainless steel can be compromised by polishing, but can be improved by reducing surface impurities, increasing surface roughness and applying a coating that contains a reactive element, such as Y-nitrate. Optimally, a combination of firing in a reducing atmosphere and applying a thin yttrium nitrate coating was found to be especially effective. These findings identify surface modification techniques that improve scale adhesion for Cr(2)O(3)-forming metallic interconnects whether independently or beneath a protective coating. (C) 2008 Elsevier B.V. All rights reserved. C1 [Belogolovsky, I.; Hou, P. Y.; Jacobson, C. P.; Visco, S. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hou, PY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pyhou@lbl.gov NR 27 TC 17 Z9 17 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 259 EP 264 DI 10.1016/j.jpowsour.2008.03.080 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500032 ER PT J AU Hu, JZ Kwak, JH Yang, ZG Osborn, W Markmaitree, T Shaw, LL AF Hu, Jian Zhi Kwak, Ja Hun Yang, Zhenguo Osborn, William Markmaitree, Tippawan Shaw, Leon L. TI Investigation of mechanical activation on Li-N-H systems using Li-6 magic angle spinning nuclear magnetic resonance at ultra-high field SO JOURNAL OF POWER SOURCES LA English DT Article DE MAS NMR; Li-6; H-1; mechanical activation; hydrogen storage; dynamics ID HYDROGEN STORAGE PROPERTIES; LITHIUM HYDRIDE; H-2 STORAGE; AMIDE; NMR; LINH2; IMIDE AB The significantly enhanced spectral resolution in the Li-6 MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 T (corresponding to a proton Larmor frequency of 900 MHz) is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation (MA) of the Li-N-H system using high-energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ H-1 MAS NMR at 7.05T field. It is shown that the changes in the Li-6 MAS spectra of LiH and LiNH2 induced by MA can be separated from those of the LiOH and LiOH center dot H2O impurities in the samples, and a new Li-6 peak induced by MA, which has never been reported before, is identified with the aid of the ultra-high field. The formation of this new peak and its associated upfield shift are attributed to the increased lattice defects induced by ball milling, which in turn enhances hydrogen release of the LiH + LiNH2 mixture observed in the in situ study of the hydrogen discharge dynamics. The study also clearly indicates that ball milling at liquid nitrogen temperature produces more mechanical activation than ball milling at room temperature. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Osborn, William; Markmaitree, Tippawan; Shaw, Leon L.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Jianzhi.Hu@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Osborn, Will/G-4526-2012; Kwak, Ja Hun/J-4894-2014 NR 26 TC 14 Z9 14 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 278 EP 283 DI 10.1016/j.jpowsour.2008.04.007 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500035 ER PT J AU Hu, YY Chmielewski, DJ Papadias, D AF Hu, Yongyou Chmielewski, Donald J. Papadias, Dennis TI Autothermal reforming of gasoline for fuel cell applications: Controller design and analysis SO JOURNAL OF POWER SOURCES LA English DT Article DE fuel cells; autothermal reforming; feedback control; feed-forward control ID HYDROGEN GENERATION; MODEL; PROCESSOR AB In this work, we address the control system options available to an autothermal reforming (ATR) reactor. The targeted application is within an on-board fuel processor for a hydrogen-fed low-temperature fuel cell. The feedback controller employs air feed rate as the manipulated variable and a measurement of catalyst temperature as the control variable. Disturbances include significant fluctuations in the measured temperature as well as large throughput changes, owning to the on-board application. Our investigation includes an analysis of a simple feedback configuration as well as feed-forward control structure. It is concluded that the feedback only method is insufficient for the unique challenges associated with on-board operation, which include fast start-up and quick load changes. While the feed-forward configuration improves performance, we found a fair amount of sensitivity with respect to model mismatch. The general conclusion is that some form of advanced control will be needed to meet the stringent performance requirements of the on-board fuel processor application. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hu, Yongyou; Chmielewski, Donald J.] IIT, Dept Biol & Chem Engn, Ctr Electrochem Sci & Engn, Chicago, IL 60616 USA. [Papadias, Dennis] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Chmielewski, DJ (reprint author), IIT, Dept Biol & Chem Engn, Ctr Electrochem Sci & Engn, 10 W 33rd St,Suite 127, Chicago, IL 60616 USA. EM chmielewski@iit.edu NR 11 TC 11 Z9 11 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2008 VL 182 IS 1 BP 298 EP 306 DI 10.1016/j.jpowsour.2008.03.041 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 326FA UT WOS:000257642500038 ER PT J AU Spoerke, ED Bachand, GD Liu, J Sasaki, D Bunker, BC AF Spoerke, Erik D. Bachand, George D. Liu, Jun Sasaki, Darryl Bunker, Bruce C. TI Directing the polar organization of microtubules SO LANGMUIR LA English DT Article ID MICROFABRICATED CHAMBERS; SELF-ORGANIZATION; NANOMETER-SCALE; IN-VITRO; TRANSPORT; MOTORS; DRIVEN; ARRAYS; LITHOGRAPHY; CENTROSOMES AB Microtubules (MTs) are polar protein filaments that participate in critical biological functions ranging from motor protein direction to coordination of chromosome separation during cell division. The effective facilitation of these processes, however, requires careful regulation of the polar orientation and spatial organization of the assembled MTs. We describe here an artificial approach to polar MT assembly that enables us to create three-dimensional polar-oriented synthetic microtubule organizing centers (POSMOCs). Utilizing engineered MT polymerization in concert with functionalized micro- and nanoscale particles, we demonstrate the controllable polar assembly of MTs into asters and the variations in aster structure determined by the interactions between the MTs and the functionalized organizing particles. Inspired by the aster-like form of biological structures such as centrosomes, these POSMOCs represent a key step toward replicating biology's complex materials assembly machinery. C1 [Spoerke, Erik D.; Liu, Jun; Bunker, Bruce C.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87123 USA. [Bachand, George D.; Sasaki, Darryl] Sandia Natl Labs, Dept Biomol Interfaces & Syst, Albuquerque, NM 87123 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Dept Elect & Nanostruct Mat, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM edspoer@sandia.gov OI Bachand, George/0000-0002-3169-9980 NR 25 TC 9 Z9 9 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 15 PY 2008 VL 24 IS 14 BP 7039 EP 7043 DI 10.1021/la800500c PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 323SI UT WOS:000257468300001 PM 18564864 ER PT J AU Guan, XY Wang, LJ Dosen, A Tang, R Giese, RF Giocondi, JL Orme, CA Hoyer, JR Nancollas, GH AF Guan, Xiangying Wang, Lijun Dosen, Anja Tang, Ruikang Giese, Rossman F. Giocondi, Jennifer L. Orme, Christine A. Hoyer, John R. Nancollas, George H. TI An understanding of renal stone development in a mixed oxalate-phosphate system SO LANGMUIR LA English DT Article ID CALCIUM-OXALATE; URINARY CALCULI; DISSOLUTION; CRYSTALLIZATION; BRUSHITE; DIHYDRATE; KINETICS; HYDROXYAPATITE; PRECIPITATION; DIFFRACTION AB The in vivo formation of calcium oxalate concretions having calcium phosphate nidi is simulated in an in vitro (37 degrees C, pH 6.0) dual constant composition (DCC) system undersaturated (sigma(DCPD) = -0.330) with respect to brushite (DCPD, CaHPO(4)center dot 2H(2)O) and slightly supersaturated (sigma(COM) = 0.328) with respect to calcium oxalate monohydrate (COM, CaC(2)O(4)center dot H(2)O). The brushite dissolution provides calcium ions that raise the COM supersaturation, which is heterogeneously nucleated either on or near the surface of the dissolving calcium phosphate crystals. The COM crystallites may then aggregate, simulating kidney stone formation. Interestingly, two intermediate phases, anhydrous dicalcium phosphate (monetite, CaHPO(4)) and calcium oxalate trihydrate (COT), are also detected by X-ray diffraction during this brushite-COM transformation. In support of clinical observations, the results of these studies demonstrate the participation of calcium phosphate phases in COM crystallization providing a possible physical chemical mechanism for kidney stone formation. C1 [Guan, Xiangying; Wang, Lijun; Nancollas, George H.] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Guan, Xiangying] Drexel Univ, Coll Med, Dept Physiol & Pharmacol, Philadelphia, PA 19102 USA. [Dosen, Anja; Giese, Rossman F.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Tang, Ruikang] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China. [Giocondi, Jennifer L.; Orme, Christine A.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. [Hoyer, John R.] Univ Delaware, Dept Biol Sci, Newark, DE 19716 USA. RP Nancollas, GH (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM ghn@buffalo.edu RI Orme, Christine/A-4109-2009; GUAN, XIANGYING/F-4646-2010 FU NIDCR NIH HHS [R01 DE003223, R01 DE003223-36, DE03223, R37 DE003223] NR 32 TC 11 Z9 12 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 15 PY 2008 VL 24 IS 14 BP 7058 EP 7060 DI 10.1021/la8007987 PG 3 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 323SI UT WOS:000257468300005 PM 18557638 ER PT J AU Wang, XQ Liang, CD Dai, S AF Wang, Xiqing Liang, Chengdu Dai, Sheng TI Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions SO LANGMUIR LA English DT Article ID POLYMERS; TRANSFORMATION; NANOCOMPOSITE; FRAMEWORKS; TRIBLOCK AB The effect of phenols reactivity with formaldehyde on the formation of ordered mesoporous carbons has been investigated. A strategy to accelerate the polymerization of phenolic resins by using strongly acidic conditions is proposed. The self-assembly of resorcinol-formaldehyde and block copolymers (e.g., F127) under highly acidic concentrations (e.g., 1.5 M HCl) is probably driven by the I(+)X(-)S(+) mechanism and hydrogen bonding and affords a highly reproducible approach for synthesis of ordered mesoporous carbons. The synthesis can be readily scaled up with no change in sample quality. The carbon material obtained (denoted as C-ORNL-1) exhibits highly ordered hexagonal mesostructure, with a typical BET surface area of similar to 600 m(2)/g, pore size of 6.3 nm, and pore volume of similar to 0.60 cm(3)/g. One of the unique structural features of C-ORNL-1 is its high thermal stability; it can be graphitized at 2600 degrees C while considerable mesoporosity is maintained. C1 [Wang, Xiqing; Liang, Chengdu; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Wang, Xiqing/E-3062-2010; Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Dai, Sheng/0000-0002-8046-3931 NR 29 TC 199 Z9 204 U1 14 U2 174 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 15 PY 2008 VL 24 IS 14 BP 7500 EP 7505 DI 10.1021/la800529v PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 323SI UT WOS:000257468300063 PM 18547076 ER PT J AU Zhao, WJ Norman, A Phok, S Bhattacharya, R AF Zhao, Wenjun Norman, Andrew Phok, Sovannary Bhattacharya, Raghu TI Transmission electron microscope study on electrodeposited Gd2O3 and Gd2Zr2O7 buffer layers for YBa2Cu3O7-delta superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE electrodeposition; YBCO; TEM; coated conductor; Gd2Zr2O7; Gd2O3 ID YBCO-COATED CONDUCTORS; FILMS; PERFORMANCE; DEPOSITION; TAPES AB We have investigated the microstructures of electrodeposited Gd2O3 (GO) and Gd2Zr2O7 (GZO) buffer layers for YBa2Cu3O7-delta (YBCO) superconductors with conventional transmission electron microscopy (TEM). A high density of nanoscale voids was present in the GZO buffer layers. No voids were observed in Go buffer layers grown on GZO. YBCO superconductor grown on the GO/GZO buffer layer structure produced a critical current density (J(c)) of 3.3 x 10(6) A/c m(2) at 77 K in zero field. (c) 2008 Published by Elsevier B.V. C1 [Zhao, Wenjun; Norman, Andrew; Phok, Sovannary; Bhattacharya, Raghu] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhao, WJ (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,W100-15,Mailstop 3213, Golden, CO 80401 USA. EM wenjun_zhao@nrel.gov RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU Midwest Research Institute [DE-AC36-99GO10337]; US Department of Energy [DEAC36-99-GO10337] FX This work has been authored by an employee of the Midwest Research Institute under Contract No. DE-AC36-99GO10337 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purpose. This work was supported by the US Department of Energy under Contract No. DEAC36-99-GO10337. NR 14 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2008 VL 468 IS 14 BP 1092 EP 1096 DI 10.1016/j.physc.2008.05.282 PG 5 WC Physics, Applied SC Physics GA 342XR UT WOS:000258817400017 ER PT J AU Wu, JZ Prausnitz, JM AF Wu, Jianzhong Prausnitz, John M. TI Pairwise-additive hydrophobic effect for alkanes in water SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE thermodynamics; hydrophobicity; multibody potential; hydrogen-bonding network ID LIQUID WATER; MEAN FORCE; METHANE; SIMULATION; SOLVATION; HYDRATION; SOLUTES; ENTROPY AB Pairwise additivity of the hydrophobic effect is indicated by reliable experimental Henry's constants for a large number of linear and branched low-molecular-weight alkanes in water. Pairwise additivity suggests that the hydrophobic effect is primarily a local phenomenon and that the hydrophobic interaction may be represented by a semiempirical force field. By representing the hydrophobic potential between two methane molecules as a linear function of the overlap volume of the hydration layers, we find that the contact value of the hydrophobic potential (-0.72 kcal/mol) is smaller than that from quantum mechanics simulations (-2.8 kcal/mol) but is close to that from classical molecular dynamics (-0.5 similar to-0.9 kcal/mol). C1 [Wu, Jianzhong] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Prausnitz, John M.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Wu, JZ (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. EM jwu@engr.ucr.edu; prausnit@cchem.berkeley.edu RI Wu, Jianzhong/I-5164-2013; OI Wu, Jianzhong/0000-0002-4582-5941 NR 26 TC 29 Z9 29 U1 0 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 15 PY 2008 VL 105 IS 28 BP 9512 EP 9515 DI 10.1073/pnas.0802162105 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 328FV UT WOS:000257784700013 PM 18599448 ER PT J AU Pfeiffer, BD Jenett, A Hammonds, AS Ngo, TTB Misra, S Murphy, C Scully, A Carlson, JW Wan, KH Laverty, TR Mungall, C Svirskas, R Kadonaga, JT Doe, CQ Eisen, MB Celniker, SE Rubin, GM AF Pfeiffer, Barret D. Jenett, Arnim Hammonds, Ann S. Ngo, Teri-T B. Misra, Sima Murphy, Christine Scully, Audra Carlson, Joseph W. Wan, Kenneth H. Laverty, Todd R. Mungall, Chris Svirskas, Rob Kadonaga, James T. Doe, Chris Q. Eisen, Michael B. Celniker, Susan E. Rubin, Gerald M. TI Tools for neuroanatomy and neurogenetics in Drosophila SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE enhancer; gene expression; promoter; transcription; transgenic ID NEURONAL MORPHOGENESIS; CORE PROMOTER; GAL4 SYSTEM; EXPRESSION; ELEMENTS AB We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that > 80% drive expression patterns in the brain; the observed patterns were, on average, comprised of < 100 cells. Our results suggest that the D. melanogaster genome contains > 50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain. C1 [Pfeiffer, Barret D.; Jenett, Arnim; Ngo, Teri-T B.; Murphy, Christine; Laverty, Todd R.; Svirskas, Rob; Rubin, Gerald M.] Howard Hughes Med Inst, Ashburn, VA 20147 USA. [Hammonds, Ann S.; Carlson, Joseph W.; Wan, Kenneth H.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome & Computat Biol, Div Life Sci, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Sci, Genom Div, Berkeley, CA 94720 USA. [Hammonds, Ann S.; Misra, Sima; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. [Scully, Audra; Mungall, Chris; Rubin, Gerald M.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kadonaga, James T.] Univ Calif San Diego, Mol Biol Sect, La Jolla, CA 92093 USA. [Doe, Chris Q.] Univ Oregon, Howard Hughes Med Inst, Inst Neurosic & Mol Biol, Eugene, OR 97403 USA. RP Rubin, GM (reprint author), Howard Hughes Med Inst, Janelia Farm Res Campus, Ashburn, VA 20147 USA. EM rubing@janelia.hhmi.org OI Eisen, Michael/0000-0002-7528-738X; Rubin, Gerald/0000-0001-8762-8703; Jenett, Arnim/0000-0003-3039-2060 FU Howard Hughes Medical Institute; NHGRI NIH HHS [R01 HG002779-06]; NIGMS NIH HHS [GM041249, GM076655-01A1, R01 GM041249, R01 GM041249-18, R01 GM041249-19, R01 GM041249-19S1, R01 GM041249-20, R01 GM076655] NR 18 TC 325 Z9 324 U1 2 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 15 PY 2008 VL 105 IS 28 BP 9715 EP 9720 DI 10.1073/pnas.0803697105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 328FV UT WOS:000257784700048 PM 18621688 ER PT J AU Szili, EJ Kumar, S Smart, RSC Lowe, R Saiz, E Voelcker, NH AF Szili, Endre J. Kumar, Sunil Smart, Roger St. C. Lowe, Rachel Saiz, Eduardo Voelcker, Nicolas H. TI Plasma enhanced chemical vapour deposition of silica onto titanium: Analysis of surface chemistry, morphology and hydroxylation SO SURFACE SCIENCE LA English DT Article DE biomaterial; hydroxyl groups; plasma enhanced chemical vapour; deposition; silica films; titanium ID SIMULATED BODY-FLUID; GLASS; IMMOBILIZATION; SILANE; GROWTH AB We have been developing and characterising a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. The silica coatings were used for improving the corrosion resistance of metals and as bioactive coatings on biomedical metallic implants. We have improved the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-SiO2) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-SiO2 coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, the work presented and discussed in this paper was carried out to analyse the characteristic features of PECVD-SiO2 deposited on titanium (Ti) substrates (PECVDSiO2-Ti). We determined that the PECVD-SiO2 Coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-SiO2 surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10 degrees). Finally, we also showed that the PECVD-Si coatings contain surface hydroxyl groups. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kumar, Sunil] Univ S Australia, Ian Wark Res Inst, Mawson Lakes, SA 5095, Australia. [Szili, Endre J.; Lowe, Rachel; Voelcker, Nicolas H.] Flinders Univ S Australia, Sch Chem Phys & Earth Sci, Bedford Pk, SA 5042, Australia. [Smart, Roger St. C.] Univ S Australia, Appl Ctr Struct & Synchrotron Studies, Mawson Lakes, SA 5095, Australia. [Saiz, Eduardo] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kumar, S (reprint author), Univ S Australia, Ian Wark Res Inst, Mawson Lakes, SA 5095, Australia. EM sunil.kumar@unisa.edu.au; nico.voelcker@flinders.edu.au RI Voelcker, Nicolas/D-6199-2012; Smart, Roger/D-1786-2009 OI Voelcker, Nicolas/0000-0002-1536-7804; FU NIH/NIDCR [1R01 DE11289]; TGR BioSciences Pty Ltd; Australian Research Council FX This work was supported by TGR BioSciences Pty Ltd and the Australian Research Council. Eduardo Saiz acknowledges the support from NIH/NIDCR Grant No. 1R01 DE11289. NR 25 TC 10 Z9 10 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2008 VL 602 IS 14 BP 2402 EP 2411 DI 10.1016/j.susc.2008.05.027 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 346IN UT WOS:000259062200018 PM 19809536 ER PT J AU Smerdon, JA Leung, L Parle, JK Jenks, CJ McGrath, R Fournee, V Ledieu, J AF Smerdon, J. A. Leung, L. Parle, J. K. Jenks, C. J. McGrath, R. Fournee, V. Ledieu, J. TI Formation of a quasicrystalline Pb monolayer on the 10-fold surface of the decagonal Al-Ni-Co quasicrystal SO SURFACE SCIENCE LA English DT Article DE STM; LEED; epitaxy; quasicrystal; lead ID FIVEFOLD SURFACE; GROWTH; ATOMS; FILMS AB Lead has been deposited on the 10-fold surface of decagonal Al72Ni11Co17 at room temperature to form an epitaxial quasicrystalline single-element monolayer. The overlayer grows through nucleation of nanometer-sized irregular-shaped islands and the coverage saturates at 1 MLE. The overlayer is well-ordered quasiperiodically as evidenced by LEED and Fourier transforms of STM images. LEED measurements also indicate that annealing the film to 600 K improves the structural quality, but STM shows that this causes the film to develop pores. Adsorption of C-60 molecules on this surface showed that the pores are Pb-containing. Electronic structure measurements using X-ray photoemission spectroscopy indicate that the chemical interaction of the Pb atoms with the substrate is weak, and that Pb does not desorb from the surface upon annealing. (C) 2008 Elsevier B.V. All rights reserved. C1 [Smerdon, J. A.; Leung, L.; Parle, J. K.; McGrath, R.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Smerdon, J. A.; Leung, L.; Parle, J. K.; McGrath, R.] Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. [Jenks, C. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Fournee, V.; Ledieu, J.] Ecole Mines, LSGM2, CNRS, UMR 7584, F-54042 Nancy, France. RP McGrath, R (reprint author), Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. EM mcgrath@liv.ac.uk RI McGrath, Ronan/A-1568-2009; Ledieu, Julian/F-1430-2010 OI McGrath, Ronan/0000-0002-9880-5741; FU UK Engineering and Physical Sciences Research Council [EP/D05253X/1]; European Union Network of Excellence [NMP3-CT-2005-500145] FX The UK Engineering and Physical Sciences Research Council (Grant No. EP/D05253X/1) and the European Union Network of Excellence "Complex metallic alloys" Grant No. NMP3-CT-2005-500145 are thanked for financial support. Ian Fisher (Stanford University) is thanked for his help in growing the sample. We are grateful to Jim Evans (Ames Laboratory) for helpful discussions. NR 38 TC 16 Z9 16 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2008 VL 602 IS 14 BP 2496 EP 2501 DI 10.1016/j.susc.2008.05.029 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 346IN UT WOS:000259062200031 ER PT J AU Han, Y Evans, JW Liu, DJ AF Han, Yong Evans, J. W. Liu, Da-Jiang TI Quantum stabilities and growth modes of thin metal films: Unsupported and NiAl-supported Ag(110) and Ag(100) SO SURFACE SCIENCE LA English DT Article DE metal films; Ag films; NiAl; quantum size effect; surface energy; epitaxial growth; density functional theory; free-electron model ID SI(111)-(7X7) SURFACES; ELECTRON-DENSITY; AG ISLANDS; PB; ENERGY; OSCILLATIONS; HEIGHT; ALLOYS; AU AB We present density functional theory (DFT) analyses of the stability of Ag thin films versus film thicknesses for various surface orientations. We include benchmark results for freestanding films, but consider in detail Ag(1 1 0) films supported on a NiAl(1 1 0) substrate, and Ag(1 0 0) films supported on a NiAl(1 0 0) substrate. The supported films exhibit an almost perfect lattice-match between film and substrate surface unit cells, so one can assess film stability in the absence of significant lateral mismatch strain. We also provide a characterization of film growth modes for these NiAl-supported Ag films based on DFT results for the relevant energetics. (C) 2008 Elsevier B.V. All rights reserved. C1 [Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Evans, J. W.; Liu, Da-Jiang] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. RP Han, Y (reprint author), Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. EM octavian2009@gmail.com RI Han, Yong/F-5701-2012 OI Han, Yong/0000-0001-5404-0911 NR 54 TC 11 Z9 11 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2008 VL 602 IS 14 BP 2532 EP 2540 DI 10.1016/j.susc.2008.05.040 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 346IN UT WOS:000259062200036 ER PT J AU Demchenko, DO Sacha, GM Salmeron, M Wang, LW AF Demchenko, D. O. Sacha, G. M. Salmeron, M. Wang, L. -W. TI Interactions of oxygen and hydrogen on Pd(111) surface SO SURFACE SCIENCE LA English DT Article DE oxygen; hydrogen; palladium; density functional theory; ab initio calculations; scanning tunneling microscopy ID ORDER-DISORDER TRANSITIONS; SUBSURFACE OCCUPATION; WATER FORMATION; ADSORPTION; CHEMISORPTION; OVERLAYERS; OXIDATION; KINETICS; PT(111); GAS AB The coadsorption and interactions of oxygen and hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy and density functional theory calculations. In the absence of hydrogen oxygen forms a (2 x 2) ordered structure. Coadsorption of hydrogen leads to a structural transformation from (2 x 2) to a (root 3 x root 3)R30 degrees structure. In addition to this transformation, hydrogen enhances the mobility of oxygen. To explain these observations, the interaction of oxygen and hydrogen on Pd(111) was studied within the density functional theory. In agreement with the experiment the calculations find a total energy minimum for the oxygen (2 x 2) structure. The interaction between H and O atoms was found to be repulsive and short ranged, leading to a compression of the O islands from (2 x 2) to (root 3 x root 3)R30 degrees ordered structure at high H coverage. The computed energy barriers for the oxygen diffusion were found to be reduced due to the coadsorption of hydrogen, in agreement with the experimentally observed enhancement of oxygen mobility. The calculations also support the finding that at low temperatures the water formation reaction does not occur on Pd(1 1 1). 2008 Elsevier B.V. All rights reserved. C1 [Sacha, G. M.; Salmeron, M.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Demchenko, D. O.; Wang, L. -W.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd,MS 67-2206, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Gomez Monivas, Sacha/H-5611-2011 OI Gomez Monivas, Sacha/0000-0003-2280-5021 FU U.S. Department of Energy [DE-AC02-05CH11231]; National Energy Research Scientific Computing Center (NERSC) FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Energy Research Scientific Computing Center (NERSC). NR 34 TC 8 Z9 8 U1 2 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2008 VL 602 IS 14 BP 2552 EP 2557 DI 10.1016/j.susc.2008.06.004 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 346IN UT WOS:000259062200039 ER PT J AU Nikitin, A Naslund, LA Zhang, ZY Nilsson, A AF Nikitin, Anton Naeslund, Lars-Ake Zhang, Zhiyong Nilsson, Anders TI C-H bond formation at the graphite surface studied with core level spectroscopy SO SURFACE SCIENCE LA English DT Article DE graphite; hydrogenation; core level spectroscopy; hydrogen storage ID ATOMIC-HYDROGEN; CARBON NANOTUBES; ABSORPTION; ADSORPTION; STORAGE; METALS; PLANE AB We studied the formation of C-H bonds at the surface of graphite under atomic hydrogen treatment using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). We found that the amount of hydrogenation of the graphite surface at saturation coverage measured by C1s XPS coincides with the amount of hydrogen measured by temperature programmed desorption. This directly indicates that C1s XPS measurements provide reliable information about the amount of hydrogen stored in carboneous materials through the formation of C-H bonds. From angle resolved XAS measurements we found that the C-H bonds are not perpendicular to the surface of the graphite and that the hydrogenated carbon atoms are buckled up from the highly oriented pyrolitic graphite surface. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nilsson, Anders] Univ Stockholm, FYSIKUM, S-10691 Stockholm, Sweden. [Nikitin, Anton; Naeslund, Lars-Ake; Nilsson, Anders] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Zhang, Zhiyong] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP Nilsson, A (reprint author), Univ Stockholm, FYSIKUM, S-10691 Stockholm, Sweden. EM nilsson@slac.stanford.edu RI Nilsson, Anders/E-1943-2011 OI Nilsson, Anders/0000-0003-1968-8696 FU Stanford University; US Department of Energy, Office of Basic Energy Sciences FX This work was supported by the Global Climate and Energy Project operated by Stanford University and carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 29 TC 59 Z9 59 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2008 VL 602 IS 14 BP 2575 EP 2580 DI 10.1016/j.susc.2008.06.012 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 346IN UT WOS:000259062200042 ER PT J AU Carreira, RJ Rial-Otero, R Lopez-Ferrer, D Lodeiro, C Capelo, JL AF Carreira, R. J. Rial-Otero, R. Lopez-Ferrer, D. Lodeiro, C. Capelo, J. L. TI Ultrasonic energy as a new tool for fast isotopic O-18 labeling of proteins for mass spectrometry-based techniques: Preliminary results SO TALANTA LA English DT Article DE isotopic labeling; O-18; ultrasonic bath; protein quantitation ID QUANTITATIVE PROTEOMICS; STRATEGIES; DIGESTION; CHEMISTRY AB Preliminary results regarding fast isotopic labeling of proteins with O-18 in conjunction with matrix assisted laser desorption ionization time of flight mass spectrometry technique are presented. Similar O-16/O-18 isotopic labeling ratios were found for the overnight procedure (12 h) and the new fast ultrasonic one (30 min) for the BSA, ovalbumin and alpha-lactalbumin proteins. The procedure, however, failed to promote double O-18 isotopic labeling for the proteins, ovalbumin and alpha-lactalbumin. Two different sonication frequencies, 35 and 130 kHz, were studied at two different sonication times of 15 and 30 min, being best results obtained with the procedure at 130 kHz of sonication frequency and 30 min of sonication time. For comparative purposes the overnight isotopic O-18 labeling procedure was done. In addition, the new fast isotopic labeling procedure was also studied without ultrasonication, in a water bath at 60 degrees C. (C) 2008 Published by Elsevier B.V. C1 [Carreira, R. J.; Rial-Otero, R.; Lodeiro, C.; Capelo, J. L.] Univ Nova Lisboa, Fac Ciencias & Tecnol, REQUIMTE, Dept Quim, P-2829516 Monte De Caparica, Portugal. [Lopez-Ferrer, D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Capelo, JL (reprint author), Univ Nova Lisboa, Fac Ciencias & Tecnol, REQUIMTE, Dept Quim, P-2829516 Monte De Caparica, Portugal. EM jlcapelom@dq.fct.unl.pt RI Carreira, Ricardo/D-1089-2011; Rial, Raquel/A-6040-2012; Lodeiro, Carlos/B-4793-2013; Capelo, Jose Luis/C-7334-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, C4O/M-5599-2013; REQUIMTE, UCIBIO/N-9846-2013; OI Lodeiro, Carlos/0000-0001-5582-5446; Rial, Raquel/0000-0001-9364-1170; Capelo Martinez, Jose Luis/0000-0001-6276-8507 NR 20 TC 20 Z9 20 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD JUL 15 PY 2008 VL 76 IS 2 BP 400 EP 406 DI 10.1016/j.talanta.2008.03.013 PG 7 WC Chemistry, Analytical SC Chemistry GA 321CX UT WOS:000257283100028 PM 18585297 ER PT J AU Sharma, P Flury, M Mattson, ED AF Sharma, Prabhakar Flury, Markus Mattson, Earl D. TI Studying colloid transport in porous media using a geocentrifuge SO WATER RESOURCES RESEARCH LA English DT Article ID NONAQUEOUS PHASE LIQUID; FILTRATION THEORY; BED FILTRATION; FLOW; DEPOSITION; CENTRIFUGATION; FLUID; WATER; FIELD; SEDIMENTATION AB Movement of colloids in the subsurface is a concern because mobile colloids may enhance the transport of contaminants. The excessive time required to conduct flow and transport experiments in porous media led to the use of centrifuges to evaluate subsurface transport processes. The objective of this study was to determine the suitability of centrifuges to study colloid transport in saturated porous media. We used a geocentrifuge to run colloid transport experiments under different centrifugal accelerations up to 20 g. Colloids of different densities were used: polystyrene (1.05 g/cm(3)), silica (2 g/cm(3)), and hematite (5.26 g/cm(3)). Deposition coefficients were obtained from the colloid breakthrough curves. We used filtration theory and a theory based on sedimentation-diffusion to derive functional relationships between centrifugal acceleration and colloid and porous media properties, which allow us to predict the effect of acceleration on colloid transport. Comparison of experimental deposition coefficients with predictions based on filtration theory showed that filtration theory accurately predicted the behavior of polystyrene at higher accelerations but underpredicted colloid deposition for silica and hematite at accelerations higher than similar to 10 g. The sedimentation-diffusion theory allows us to determine whether a system is dominated by sedimentation or diffusion, or is in a transitional state. Theoretical predictions of colloid deposition in a porous medium agreed well with experiments, suggesting that the theory can be used to delineate when centrifugal acceleration will alter colloid transport in flow through column studies conducted in a centrifuge. Common subsurface colloids, such as iron oxides and aluminosilicates, can be affected at accelerations that are used in geocentrifuge transport studies (5 to 300 g). Even colloids with low specific densities, such as polystyrene, will be affected by centrifugal accelerations if their size is large. C1 [Mattson, Earl D.] Idaho Natl Lab, Energy Resource Recovery & Management Dept, Idaho Falls, ID 83415 USA. [Sharma, Prabhakar; Flury, Markus] Washington State Univ, Dept Crop & Soil Sci, Ctr Multiphase Environm Res, Pullman, WA 99164 USA. [Sharma, Prabhakar; Flury, Markus] Washington State Univ, Dept Biol Syst Engn, Ctr Multiphase Environm Res, Pullman, WA 99164 USA. RP Sharma, P (reprint author), Univ Aalborg, Sect Environm Engn, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark. EM ps@bio.aau.dk; flury@wsu.edu RI Sharma, Prabhakar/C-2133-2009; Flury, Markus/H-2983-2012; OI Sharma, Prabhakar/0000-0003-0894-0809; Flury, Markus/0000-0002-3344-3962; Mattson, Earl/0000-0002-2616-0008 NR 47 TC 5 Z9 5 U1 3 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUL 15 PY 2008 VL 44 IS 7 AR W07407 DI 10.1029/2007WR006456 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 328MW UT WOS:000257803500001 ER PT J AU Yantasee, W Charnhattakorn, B Fryxell, GE Lin, YH Timchalk, C Addleman, RS AF Yantasee, Wassana Charnhattakorn, Busarakum Fryxell, Glen E. Lin, Yuehe Timchalk, Charles Addleman, R. Shane TI Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes SO ANALYTICA CHIMICA ACTA LA English DT Article DE electrochemical sensor; self-assembled monolayers on mesoporous supports; Nafion; thiol; Cd; Pb; Cu; urine; natural water ID ANODIC-STRIPPING VOLTAMMETRY; SELF-ASSEMBLED MONOLAYERS; CARBON-PASTE ELECTRODE; SILVER ELECTRODE; HEAVY-METALS; NANOMOLAR CONCENTRATIONS; ACTINIDE SEQUESTRATION; LEAD PB; SUPPORTS; SYSTEM AB Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability; field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches typically suffer from binding competition for metal ions and fouling by organic substances and surfactants in natural waters, making sample pretreatments such as wet ashing necessary. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS (TM)) and Nafion on glassy-carbon electrodes. With the combined benefit of SH-SAMMS (TM) as an outstanding metal preconcentrator and Nafion as an antifouling binder, the sensors could detect 0.5 ppb of Pb and 2.5 ppb of Cd in river water, Hanford groundwater, and seawater with a minimal amount of preconcentration time (few minutes) and without any sample pretreatment. The sensor could also detect 2.5 ppb of Cd, Pb, and Cu simultaneously. The electrodes have long service times and excellent single and inter-electrode reproducibility (5% R.S.D. after 8 consecutive measurements). Unlike SAMMS (TM)-carbon paste electrodes, the SAMMS (TM)-Nafion electrodes were not fouled in samples containing albumin and successfully detected Cd in human urine. Other potentially confounding factors affecting metal detection at SAMMS (TM)-Nafion electrodes were studied, including pH effect, transport resistance of metal ions, and detection interference. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, SAMMS (TM)-Nafion composite sensors have the potential to become the next-generation metal analyzers for environmental and bio-monitoring of toxic metals. (c) 2008 Elsevier B.V. All rights reserved. C1 [Yantasee, Wassana; Charnhattakorn, Busarakum; Fryxell, Glen E.; Lin, Yuehe; Timchalk, Charles; Addleman, R. Shane] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yantasee, W (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wassana.yantasee@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU NIEHS NIH HHS [1R21ES015620-01A1, R21 ES015620, R21 ES015620-01A1]; NIOSH CDC HHS [5R21OH008900-02, R21 OH008900] NR 45 TC 63 Z9 63 U1 6 U2 85 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD JUL 14 PY 2008 VL 620 IS 1-2 BP 55 EP 63 DI 10.1016/j.aca.2008.05.029 PG 9 WC Chemistry, Analytical SC Chemistry GA 324XR UT WOS:000257553200007 PM 18558124 ER PT J AU Dolan, DH Ao, T AF Dolan, D. H. Ao, T. TI Cubic zirconia as a dynamic compression window SO APPLIED PHYSICS LETTERS LA English DT Article ID REFRACTIVE-INDEX; SHOCK COMPRESSION; SINGLE-CRYSTAL; YTTRIA AB Symmetric impact experiments were used to characterize the elastic response of < 100 > cubic zirconia crystals under shock wave compression. Elastic response was determined from the apparent velocity structure upon free surface release and the preservation of light passing through the compressed sample. The Hugoniot and window correction were determined below 9 GPa, and the estimated elastic limit was found to be near 10 GPa. These results indicate that cubic zirconia may serve as a useful alternate to sapphire in dynamic compression experiments. (C) 2008 American Institute of Physics. C1 [Dolan, D. H.; Ao, T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dolan, DH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dhdolan@sandia.gov NR 17 TC 2 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2008 VL 93 IS 2 AR 021908 DI 10.1063/1.2957996 PG 3 WC Physics, Applied SC Physics GA 328KA UT WOS:000257796100036 ER PT J AU Dwyer, C Erni, R Etheridge, J AF Dwyer, Christian Erni, Rolf Etheridge, Joanne TI Method to measure spatial coherence of subangstrom electron beams SO APPLIED PHYSICS LETTERS LA English DT Article ID STEM; DIFFRACTION AB A method is described for measuring the intensity distribution of the electron source in a scanning transmission electron microscope (STEM) fitted with an objective lens aberration corrector. The method is applied to a C(s)-corrected 300 kV field emission gun TEM/STEM, which is found to have an effective source size of 0.56 angstrom full width at half maximum (FWHM) under optical conditions suitable for high resolution STEM imaging. This corresponds to a probe intensity distribution at the specimen plane of 0.72 angstrom FWHM using a probe-forming aperture of 25 mrad and including the measured residual lens aberrations. (C) 2008 American Institute of Physics. C1 [Dwyer, Christian; Etheridge, Joanne] Monash Univ, Monash Ctr Elect Microscopy, Clayton, Vic 3800, Australia. [Dwyer, Christian] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. [Erni, Rolf] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Dwyer, C (reprint author), Monash Univ, Monash Ctr Elect Microscopy, Clayton, Vic 3800, Australia. EM christian.dwyer@mcem.monash.edu.au RI Dwyer, Christian/G-5678-2012; Erni, Rolf/P-7435-2014 OI Erni, Rolf/0000-0003-2391-5943 NR 14 TC 26 Z9 26 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2008 VL 93 IS 2 AR 021115 DI 10.1063/1.2957648 PG 3 WC Physics, Applied SC Physics GA 328KA UT WOS:000257796100015 ER PT J AU Metzger, WK Repins, IL Contreras, MA AF Metzger, Wyatt K. Repins, Ingrid L. Contreras, Miguel A. TI Long lifetimes in high-efficiency Cu(In,Ga)Se(2) solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; THIN-FILMS AB Time-resolved photoluminescence measurements on polycrystalline Cu(In,Ga)Se(2) (CIGS) thin films corresponding to high-efficiency solar cells indicate recombination lifetimes as long as 250 ns, far exceeding previous measurements for this material. The lifetime decreases by two orders of magnitude when exposed to air. Charge separation effects can be observed on CIGS/CdS/ZnO devices in low-intensity conditions. The ZnO layer forms a robust junction critical for charge separation, whereas the CdS layer alone forms a much weaker junction. Recombination at the CIGS/CdS interface is negligible. The results significantly adjust the previous picture of recombination in CIGS solar cells. (C) 2008 American Institute of Physics. C1 [Metzger, Wyatt K.; Repins, Ingrid L.; Contreras, Miguel A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Metzger, WK (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM wyatt_metzger@nrel.gov NR 16 TC 82 Z9 83 U1 3 U2 47 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2008 VL 93 IS 2 AR 022110 DI 10.1063/1.2957983 PG 3 WC Physics, Applied SC Physics GA 328KA UT WOS:000257796100059 ER PT J AU Park, JW Baek, SH Kang, TD Lee, H Kang, YS Lee, TY Suh, DS Kim, KJ Kim, CK Khang, YH Da Silva, JLF Wei, SH AF Park, Jun-Woo Baek, Seoung Ho Kang, Tae Dong Lee, Hosun Kang, Youn-Seon Lee, Tae-Yon Suh, Dong-Seok Kim, Ki Joon Kim, Cheol Kyu Khang, Yoon Ho Da Silva, Juarez L. F. Wei, Su-Huai TI Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-TRANSITIONS; GE2SB2TE5 FILMS AB The authors measure the dielectric functions of (GeTe, Sb2Te3) pseudobinary thin films by using spectroscopic ellipsometry. By using standard critical point model, they obtained the optical transition (critical point) energies of the amorphous (crystalline) thin films. The optical (indirect band) gap energies of the amorphous (crystalline) phase are estimated from the linear extrapolation of the absorption coefficients. The band structure calculations show that GeTe, Ge2Sb2Te5, and Ge1Sb2Te4 have indirect gap whereas Ge1Sb4Te7 and Sb2Te3 have direct gap. The measured indirect band gap energies match well with electronic band structure calculations. (C) 2008 American Institute of Physics. C1 [Park, Jun-Woo; Baek, Seoung Ho; Kang, Tae Dong; Lee, Hosun] Kyung Hee Univ, Dept Appl Phys, Suwon 446701, South Korea. [Kang, Youn-Seon; Lee, Tae-Yon; Suh, Dong-Seok; Kim, Ki Joon; Kim, Cheol Kyu; Khang, Yoon Ho] Samsung Adv Inst Technol, Semicond Device & Mat Lab, Suwon 440600, South Korea. [Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lee, H (reprint author), Kyung Hee Univ, Dept Appl Phys, Suwon 446701, South Korea. EM hlee@khu.ac.kr RI Suh, Dongseok/A-5447-2013; Da Silva, Juarez L. F./D-1779-2011; Park, Jun-Woo/N-5571-2015 OI Da Silva, Juarez L. F./0000-0003-0645-8760; NR 16 TC 22 Z9 22 U1 6 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2008 VL 93 IS 2 AR 021914 DI 10.1063/1.2959818 PG 3 WC Physics, Applied SC Physics GA 328KA UT WOS:000257796100042 ER PT J AU Zhong, J Chiou, JW Dong, CL Song, L Liu, C Xie, SS Cheng, HM Pong, WF Chang, CL Chen, YY Wu, ZY Guo, J AF Zhong, Jun Chiou, Jauwern Dong, Chungli Song, Li Liu, Chang Xie, Sishen Cheng, Huiming Pong, Way-Faung Chang, Chinglin Chen, Yangyuan Wu, Ziyu Guo, Jinghua TI Probing quantum confinement of single-walled carbon nanotubes by resonant soft-x-ray emission spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; SYNCHROTRON-RADIATION; ABSORPTION; GRAPHITE; FLUORESCENCE; SCATTERING AB We report the band-structure changes near Fermi level for single-walled carbon nanotubes (SWNTs) with diameters down to 1 nm from the study of soft-x-ray absorption and resonant emission spectroscopy. The observed quantum confinement of SWNTs affects both pi and sigma bands and bandgap through the rehybridization of pi and sigma orbitals. The significant changes of electronic structure are proved to be a measure for the mean diameter of the macroscopic amounts of SWNTs. (C) 2008 American Institute of Physics. C1 [Zhong, Jun; Wu, Ziyu] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Zhong, Jun; Chiou, Jauwern; Dong, Chungli; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Song, Li; Xie, Sishen] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Dong, Chungli; Liu, Chang; Cheng, Huiming] Chinese Acad Sci, Inst Met Res, Shenyang 110015, Peoples R China. [Chiou, Jauwern; Pong, Way-Faung; Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Chen, Yangyuan] Acad Sinica, Inst Phys, Taipei 115, Taiwan. RP Wu, ZY (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. EM wuzy@mail.ihep.ac.cn; jguo@lbl.gov RI Song, Li/B-1950-2010; Liu, Chang/G-4667-2012; OI Song, Li/0000-0003-0585-8519; Chang, Ching-Lin/0000-0001-8547-371X NR 22 TC 6 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2008 VL 93 IS 2 AR 023107 DI 10.1063/1.2959058 PG 3 WC Physics, Applied SC Physics GA 328KA UT WOS:000257796100084 ER PT J AU Konyk, M Kuzhel, B Stadnyk, Y Gorelenko, Y Mudryk, Y Waskiv, A AF Konyk, M. Kuzhel, B. Stadnyk, Yu. Gorelenko, Yu. Mudryk, Ya. Waskiv, A. TI Electric transport in R2MGe6 ternary compounds (R = La, Ce, Gd, Tb, Dy, Ho; M = Mn, Ni, Cu) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE intermetallic compounds; germanides; rare earth compounds; electric conductivity; thermopower ID RARE-EARTH; SYSTEMATICS; GE; ND AB Polycrystalline samples of the intermetallic compounds La2MnGe6, Ce2MnGe6, La2CuGe6, Ce2CuGe6, and R2NiGe6 (R=Gd, Tb, Dy, flo), which belong to the Ce2CuGe6 type of structure (Amm2 or Cm2m space group), were studied by means of the electrical resistivity and differential thermopower measurements. They exhibit the metallic-like behavior in the temperature range from 5 to 290 K. The peculiarities in both resistivity and thermopower temperature dependencies correlate with corresponding magnetic transition T-tr temperatures. (C) 2007 Elsevier B.V. All rights reserved. C1 [Konyk, M.; Stadnyk, Yu.; Gorelenko, Yu.] Lviv Natl Univ, Dept Inorgan Chem, UA-79005 Lvov, Ukraine. [Kuzhel, B.] Lviv Natl Univ, Sci Tech & Educ Ctr Low Temp Studies, UA-79005 Lvov, Ukraine. [Kuzhel, B.; Waskiv, A.] Lviv Natl Univ, Dept Met Phys, UA-79005 Lvov, Ukraine. [Mudryk, Ya.] Iowa State Univ Sci & Technol, US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Gorelenko, Y (reprint author), Lviv Natl Univ, Dept Inorgan Chem, Kyryl & Mephodiy St 6, UA-79005 Lvov, Ukraine. EM gorelenko_yuriy@franko.lviv.ua NR 11 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 14 PY 2008 VL 459 IS 1-2 BP 18 EP 21 DI 10.1016/j.jallcom.2007.04.286 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 317FV UT WOS:000257006300010 ER PT J AU Liu, Y Liu, CT Heatherly, L George, EP AF Liu, Y. Liu, C. T. Heatherly, L. George, E. P. TI Effects of alloying elements on dendritic segregation in iridium alloys SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE high temperature alloys; composition fluctuations; grain boundaries; photoelectron spectroscopy ID IR-RICH PORTION; MECHANICAL-PROPERTIES; GRAIN-BOUNDARIES; PHASE-EQUILIBRIA; TERNARY-SYSTEMS; W ALLOYS; THORIUM AB The effects of alloying elements on dendritic segregation in Ir alloys were studied by Auger Electron Spectroscopy (AES). The addition of 10 at.% Nb induces significant segregation of carbon and thorium to dendritic interfaces. The addition of 5 at.% Zr to the Ir alloy leads to the formation of an Ir(3)Zr intermetallic phase, which results in less dendritic segregation of carbon and thorium. This dendritic segregation appears to be linked to the severe cracking observed in the Ir-Nb alloy, but not in the Ir-Zr alloy, after casting and heat treatment. The mechanism for the dendritic segregation was discussed by consideration of the solidification process and the change of carbon solubility in Ir by Zr addition. (C) 2007 Elsevier B.V. All rights reserved. C1 [Liu, Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. [Liu, Y.; Liu, C. T.; George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Liu, C. T.; Heatherly, L.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Liu, Y (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. EM yonliu11@yahoo.com.cn RI George, Easo/L-5434-2014 NR 21 TC 3 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 14 PY 2008 VL 459 IS 1-2 BP 130 EP 134 DI 10.1016/j.jallcom.2007.04.252 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 317FV UT WOS:000257006300031 ER PT J AU Dyer, PJ Docherty, H Cummings, PT AF Dyer, Peter J. Docherty, Hugh Cummings, Peter T. TI The importance of polarizability in the modeling of solubility: Quantifying the effect of solute polarizability on the solubility of small nonpolar solutes in popular models of water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TEMPERATURE-DEPENDENCE; HYDROPHOBIC HYDRATION; LIQUID WATER; WOLF METHOD; METHANE; SYSTEMS; SIMULATION AB In recent work by Paschek [J. Chem. Phys. 120, 6674 (2004)] and others [see H. Docherty , J. Chem. Phys. 125, 074510 (2006) for a review] it has been suggested that, when coupled to a simple Lennard-Jones model for various small nonpolar solute molecules, the most common models of water (e.g., SPC/E and TIP4P) fail to reproduce quantitatively the solubility of small nonpolar solute molecules in water due in part to failing to account for polarization of the solute molecule. Given the importance of such systems as test-case prototype models of the solubility of proteins and biomolecules, in this work, we investigate the impact of using a polarizable solute model with the SPC/E, TIP3P, TIP4P, TIP4P-Ew, and TIP4P/2005 rigid water models. Specifically we consider Ne, Ar, Kr, Xe, and methane as solutes. In all cases we observe that the use of a polarizable solute improves agreement between experiment and simulations, with the best agreement seen for the largest solutes, Kr, CH(4), and Xe and the modern reparametrizations of the TIP4P model, i.e., the TIP4P-Ew and TIP4P/2005 models. (C) 2008 American Institute of Physics. C1 [Dyer, Peter J.; Docherty, Hugh; Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Nanomat Theory Inst, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Dyer, PJ (reprint author), Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. EM peter.j.dyer@vanderbilt.edu RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 31 TC 30 Z9 30 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2008 VL 129 IS 2 AR 024508 DI 10.1063/1.2953324 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 326AA UT WOS:000257629100031 PM 18624539 ER PT J AU Larue, JL White, JD Nahler, NH Liu, Z Sun, Y Pianetta, PA Auerbach, DJ Wodtke, AM AF LaRue, J. L. White, J. D. Nahler, N. H. Liu, Z. Sun, Y. Pianetta, P. A. Auerbach, D. J. Wodtke, A. M. TI The work function of submonolayer cesium-covered gold: A photoelectron spectroscopy study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ALKALI-METAL ADSORPTION; NA/AU(111) SYSTEM; ALLOY FORMATION; CS ADSORPTION; SURFACE; PHOTOEMISSION; EMISSION; DEPENDENCE; MOLECULES; DYNAMICS AB Using visible and x-ray photoelectron spectroscopy, we measured the work function of a Au(111) surface at a well-defined submonolayer coverage of Cs. For a Cs coverage producing a photoemission maximum with a He-Ne laser, the work function is 1.61 +/- 0.08 eV, consistent with previous assumptions used to analyze vibrationally promoted electron emission. A discussion of possible Cs layer structures is also presented. (C) 2008 American Institute of Physics. C1 [LaRue, J. L.; White, J. D.; Nahler, N. H.; Wodtke, A. M.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Liu, Z.; Sun, Y.; Pianetta, P. A.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Larue, JL (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. EM wodtke@chem.ucsb.edu RI Nahler, N Hendrik/H-9223-2012; Wodtke, Alec/I-4848-2012; Liu, Zhi/B-3642-2009; Auerbach, Daniel/J-7109-2014; OI Liu, Zhi/0000-0002-8973-6561; Auerbach, Daniel/0000-0001-9494-3066; Wodtke, Alec/0000-0002-6509-2183 NR 35 TC 18 Z9 18 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2008 VL 129 IS 2 AR 024709 DI 10.1063/1.2953712 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 326AA UT WOS:000257629100046 PM 18624554 ER PT J AU Lee, B Lee, GW AF Lee, Byeongchan Lee, Geun Woo TI Local structure of liquid Ti: Ab initio molecular dynamics study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SHORT-RANGE ORDER; TRANSITION-METALS; APPROXIMATION AB Local order of liquid Ti is studied by ab initio molecular dynamics to address the unique liquid structure factor in experiments reported recently. The present study reveals that the local order of liquid Ti is in the form of fragments of the distorted icosahedral short range order, where the distortion is induced by strong bond order effects. We show that the fragments in the short-bond rich region separated from the background liquid account for the pronounced feature in structure factor of liquid Ti. (C) 2008 American Institute of Physics. C1 [Lee, Byeongchan; Lee, Geun Woo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Lee, Byeongchan] Kyung Hee Univ, Dept Mech Engn, Yongin 446701, South Korea. [Lee, Geun Woo] Korea Res Inst Stand & Sci, Taejon 305340, South Korea. RP Lee, GW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM gwlee@kriss.re.kr NR 34 TC 9 Z9 9 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2008 VL 129 IS 2 AR 024711 DI 10.1063/1.2953458 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 326AA UT WOS:000257629100048 PM 18624556 ER PT J AU Maragakis, P Ritort, F Bustamante, C Karplus, M Crooks, GE AF Maragakis, Paul Ritort, Felix Bustamante, Carlos Karplus, Martin Crooks, Gavin E. TI Bayesian estimates of free energies from nonequilibrium work data in the presence of instrument noise SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GROWTH THERMODYNAMIC INTEGRATION; SINGLE-MOLECULE EXPERIMENTS; EQUILIBRIUM FREE-ENERGIES; FLUCTUATION THEOREM; STATISTICAL-MECHANICS; JARZYNSKIS EQUALITY; SYSTEMS; ERROR; BIAS AB The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to nonequilibrium measurements of the work. These relations extend to single-molecule experiments that have probed the finite-time thermodynamics of proteins and nucleic acids. The effects of experimental error and instrument noise have not been considered previously. Here, we present a Bayesian formalism for estimating free energy changes from nonequilibrium work measurements that compensates for instrument noise and combines data from multiple driving protocols. We reanalyze a recent set of experiments in which a single RNA hairpin is unfolded and refolded using optical tweezers at three different rates. Interestingly, the fastest and farthest-from-equilibrium measurements contain the least instrumental noise and, therefore, provide a more accurate estimate of the free energies than a few slow, more noisy, near-equilibrium measurements. The methods we propose here will extend the scope of single-molecule experiments; they can be used in the analysis of data from measurements with atomic force microscopy, optical, and magnetic tweezers. (c) 2008 American Institute of Physics. C1 [Maragakis, Paul; Karplus, Martin] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Ritort, Felix] Univ Barcelona, Networking Ctr Bioengn Biomat & Nanomed, CIBER BBN, Fac Fis,Dept Fis Fonamental, Barcelona, Spain. [Bustamante, Carlos] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Karplus, Martin] Univ Strasbourg 1, Lab Chim Biophys, Inst Sci Ingn Supramol, F-67083 Strasbourg, France. [Crooks, Gavin E.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Maragakis, P (reprint author), DE Shaw Res, New York, NY 10036 USA. EM paul.maragakis@deshaw.com; gecrooks@lbl.gov RI Maragakis, Paul/A-2360-2010; Crooks, Gavin/H-7111-2012 FU NIGMS NIH HHS [GM 32543, R01 GM032543, R37 GM032543] NR 57 TC 30 Z9 31 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2008 VL 129 IS 2 AR 024102 DI 10.1063/1.2937892 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 326AA UT WOS:000257629100003 PM 18624511 ER PT J AU Pan, LL Li, J Wang, LS AF Pan, Li-Li Li, Jun Wang, Lai-Sheng TI Low-lying isomers of the B(9)(-) boron cluster: The planar molecular wheel versus three-dimensional structures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; COLLISION-INDUCED DISSOCIATION; AB-INITIO; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; CORRELATION-ENERGY; IONS; STABILITY; CHEMISTRY; DYNAMICS AB The B(9)(-) cluster was found previously to be an unprecedented molecular wheel containing an octacoordinate planar boron with D(8h) symmetry in a combined photoelectron spectroscopy (PES) and theoretical study [H. J. Zhai , Angew. Chem., Int. Ed. 42, 6004 (2003)]. However, the PES spectra of B(9)(-) exhibit minor features that cannot be explained by the global minimum D(8h) structure, suggesting possible contributions from low-lying isomers at finite temperatures. Here we present Car-Parrinello molecular dynamics with simulated annealing simulations to fully explore the potential energy surface of B(9)(-) and search for low-lying isomers that may account for the minor PES features. We performed density functional theory (DFT) calculations with different exchange-correlation functionals and ab initio calculations at various levels of theory with different basis sets. Two three-dimensional low-lying isomers were found, both of C(s) symmetry, 6.29 (C(s)-2) and 10.23 (C(s)-1) kcal/mol higher in energy than the D(8h) structure at the highest CCSD(T) level of theory. Calculated detachment transitions from the C(s)-2 isomer are in excellent agreement with the minor features observed in the PES spectra of B(9)(-). The B(9)(-) cluster proves to be a challenge for most DFT methods and the calculated relative energies strongly depend on the exchange-correlation functionals, providing an excellent example for evaluating the accuracies of various DFT methods. (c) 2008 American Institute of Physics. C1 [Pan, Li-Li; Li, Jun] Tsinghua Univ, Dept Chem, Inst Theoret & Comp Chem, Beijing 100084, Peoples R China. [Li, Jun; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Li, Jun; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Pan, LL (reprint author), Tsinghua Univ, Dept Chem, Inst Theoret & Comp Chem, Beijing 100084, Peoples R China. EM junli@tsinghua.edu.cn; ls.wang@pnl.gov RI Li, Jun/E-5334-2011 OI Li, Jun/0000-0002-8456-3980 NR 60 TC 45 Z9 45 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2008 VL 129 IS 2 AR 024302 DI 10.1063/1.2948405 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 326AA UT WOS:000257629100020 PM 18624528 ER PT J AU Harris, AL Foster, M Ryan-Anderson, C Peacher, JL Madison, DH AF Harris, A. L. Foster, M. Ryan-Anderson, Ciaran Peacher, J. L. Madison, D. H. TI Projectile interactions in theoretical triple differential cross sections for simultaneous excitation-ionization of helium SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ELECTRON-IMPACT IONIZATION; ION; STATES AB The importance of projectile interactions in triple differential cross sections (TDCS) is explored for the problem of simultaneous excitation-ionization of helium by electron impact using a new approach that we call the four-body distorted wave model (4DW). The 4DW model includes all projectile interactions, namely initial- and final-state projectile-target interactions, and the post-collision interaction between the two continuum electrons. Results are presented for an incident electron energy of 500 eV and are compared to experimental data, as well as a second-order R-matrix theory and the first Born approximation. Results for absolute TDCS ratios of ionization without excitation to excitation-ionization are also presented. C1 [Harris, A. L.; Ryan-Anderson, Ciaran; Peacher, J. L.; Madison, D. H.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Foster, M.] Los Alamos Natl Lab, Theoret Div T 4 B 283, Los Alamos, NM 87575 USA. RP Harris, AL (reprint author), Missouri Univ Sci & Technol, Dept Phys, 1315 N Pine St, Rolla, MO 65409 USA. NR 25 TC 13 Z9 13 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2008 VL 41 IS 13 AR 135203 DI 10.1088/0953-4075/41/13/135203 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 319QF UT WOS:000257178100007 ER PT J AU Minami, T Lee, TG Pindzola, MS Schultz, DR AF Minami, T. Lee, T-G Pindzola, M. S. Schultz, D. R. TI Total and state-selective charge transfer in He(2+)+Hcollisions SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ION-ATOM COLLISIONS; OPTIMIZED DYNAMICAL REPRESENTATION; CLOSE-COUPLING CALCULATIONS; DEPENDENT QUANTUM PROBLEMS; ELECTRON-CAPTURE; MOLECULAR-HYDROGEN; CROSS-SECTIONS; H COLLISIONS; IONIZATION; HE-2+ AB Total and state-selective cross sections for charge transfer in similar to 1-1000 keV/u He(2+) + H collisions have been calculated using a variety of theoretical approaches, namely, the classical trajectory Monte Carlo, atomic-orbital close-coupling and lattice, time-dependent Schrodinger equation methods. Comparison of the results with available experimental measurements and other theoretical cross sections indicates the regimes in which each method is most reliable. The present cross sections, tabulated here, and their evaluation in light of existing data, provide a new benchmark for this inelastic channel in the fundamental collision system He(2+) + H over a wide range of collision energies and final quantum levels. C1 [Minami, T.; Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Minami, T.; Lee, T-G; Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lee, T-G] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Minami, T (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Lee, Teck Ghee/D-5037-2012 OI Lee, Teck Ghee/0000-0001-9472-3194 NR 36 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2008 VL 41 IS 13 AR 135201 DI 10.1088/0953-4075/41/13/135201 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 319QF UT WOS:000257178100005 ER PT J AU Walter, MD Sofield, CD Andersen, RA AF Walter, Marc D. Sofield, Chadwick D. Andersen, Richard A. TI Preparation and reactions of base-free bis(1,3-di-tert-butylcyclopentadienyl)titanium, Cp '(2) Ti, and related compounds SO ORGANOMETALLICS LA English DT Article ID LANTHANIDE COMPLEXES; MOLECULAR-STRUCTURE; SANDWICH COMPLEXES; FLUORINE EXCHANGE; CARBON-MONOXIDE; NITROUS-OXIDE; TITANIUM; TITANOCENE; CHEMISTRY; HYDROGEN AB The titanium(III) metallocene derivatives [1,3-(Me(3)C)(2)C(5)H(3)](2)TiX, Cp '(2)TiX, X = Cl, Me, H, OH, are prepared and shown to be monomeric with a d(1) electron configuration by solid state magnetic susceptibility studies over the temperature range 5-300 K. Reduction of the chloride by potassium amalgam in an argon atmosphere yields the base-free titanocene Cp '(2)Ti, which is a spin triplet over the temperature range 5-300 K. In contrast, reduction in a nitrogen atmosphere gives the dimetal metallocene Cp '(2)Ti(N(2))TiCp '(2), which shows a singlet-triplet equilibrium over the temperature range 5-300 K, which can be modeled by Heisenberg coupling with -2J = 210 cm(-1). The base-free titanocene reacts reversibly with H(2) or C(2)H(4) to give Cp '(2)TiH(2) and CP '(2)Ti(C(2)H(4)), respectively. Both adducts are characterized by X-ray crystallography. The base-free titanocene reacts irreversibly with PhC CPh or N(2)O to give Cp '(2)Ti(PhC CPh) and Cp '(4)Ti(2)(mu-O), which are characterized by X-ray crystallography. In contrast Cp '(2)Ti(C(2)H(4)) reacts with N(2)O to give the bisoxo-bridged dimetal derivative Cp '(4)Ti(2)(mu-O)(2). C1 [Walter, Marc D.; Sofield, Chadwick D.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem & Chem Sci, Berkeley, CA 94720 USA. RP Andersen, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem & Chem Sci, Berkeley, CA 94720 USA. EM raandersen@lbl.gov RI Walter, Marc/E-4479-2012 NR 62 TC 29 Z9 29 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUL 14 PY 2008 VL 27 IS 13 BP 2959 EP 2970 DI 10.1021/om7012315 PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 323LV UT WOS:000257448500016 ER PT J AU Ji, H Ren, Y Yamada, M Dorfman, S Daughton, W Gerhardt, SP AF Ji, H. Ren, Y. Yamada, M. Dorfman, S. Daughton, W. Gerhardt, S. P. TI New insights into dissipation in the electron layer during magnetic reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COLLISIONLESS RECONNECTION; LABORATORY PLASMA; SIMULATIONS; SEPARATOR AB Detailed comparisons are reported between laboratory observations of electron-scale dissipation layers near a reconnecting X-line and direct two-dimensional full-particle simulations. Many experimental features of the electron layers, such as insensitivity to the ion mass, are reproduced by the simulations; the layer thickness, however, is about 3-5 times larger than the predictions. Consequently, the leading candidate 2D mechanism based on collisionless electron nongyrotropic pressure is insufficient to explain the observed reconnection rates. These results suggest that, in addition to the residual collisions, 3D effects play an important role in electron-scale dissipation during fast reconnection. C1 [Ji, H.; Yamada, M.; Dorfman, S.; Gerhardt, S. P.] Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasmas, Princeton, NJ 08543 USA. [Daughton, W.] Los Alamos Natl Lab, Ctr Magnet Self Org Lab & Astrophys Plasmas, Los Alamos, NM 87545 USA. [Ren, Y.] Univ Wisconsin, Dept Phys, Ctr Magnet Self Org Lab & Astrophys Plasmas, Madison, WI 53706 USA. RP Ji, H (reprint author), Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasmas, POB 451, Princeton, NJ 08543 USA. EM hji@pppl.gov RI Yamada, Masaaki/D-7824-2015; Daughton, William/L-9661-2013 OI Yamada, Masaaki/0000-0003-4996-1649; NR 29 TC 43 Z9 43 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 12 PY 2008 VL 35 IS 13 AR L13106 DI 10.1029/2008GL034538 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 327OU UT WOS:000257739200005 ER PT J AU Levinson, NM Seeliger, MA Cole, PA Kuriyan, J AF Levinson, Nicholas M. Seeliger, Markus A. Cole, Philip A. Kuriyan, John TI Structural basis for the recognition of c-Src by its inactivator Csk SO CELL LA English DT Article ID PROTEIN-TYROSINE KINASE; CRYSTAL-STRUCTURE; SUBSTRATE RECOGNITION; V-SRC; DOMAIN; COMPLEX; ACTIVATION; PHOSPHORYLATION; RECEPTOR; ABL AB The catalytic activity of the Src family of tyrosine kinases is suppressed byphosphorylation on a tyrosine residue located near the C terminus (Tyr 527 in c- Src), which is catalyzed by C-terminal Src Kinase (Csk). Given the promiscuity of most tyrosine kinases, it is remarkable that the C-terminal tails of the Src family kinases are the only known targets of Csk. We have determined the crystal structure of a complex between the kinase domains of Csk and c-Src at 2.9 angstrom resolution, revealing that interactions between these kinases position the C-terminal tail of c-Src at the edge of the active site of Csk. Csk cannot phosphorylate substrates that lack this docking mechanism because the conventional substrate binding site used by most tyrosine kinases to recognize substrates is destabilized in Csk by a deletion in the activation loop. C1 [Levinson, Nicholas M.; Seeliger, Markus A.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Howard Hughes Med Inst, Dept Chem,Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cole, Philip A.] Johns Hopkins Univ, Sch Med, Dept Pharmacol & Mol Sci, Baltimore, MD 21205 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Howard Hughes Med Inst, Dept Chem,Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu RI Seeliger, Markus/D-6409-2013 FU Howard Hughes Medical Institute; NCI NIH HHS [R01 CA074305, R01 CA074305-07, R29 CA074305, R29 CA074305-04]; NIGMS NIH HHS [K99 GM080097] NR 66 TC 62 Z9 64 U1 0 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD JUL 11 PY 2008 VL 134 IS 1 BP 124 EP 134 DI 10.1016/j.cell.2008.05.051 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 324IU UT WOS:000257513100019 PM 18614016 ER PT J AU Mineev-Weinstein, M Putinar, M Teodorescu, R AF Mineev-Weinstein, Mark Putinar, Mihai Teodorescu, Razvan TI Random matrices in 2D, Laplacian growth and operator theory SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Review ID HELE-SHAW CELL; DIFFUSION-LIMITED AGGREGATION; SPONTANEOUS SYMMETRY-BREAKING; MOVING-BOUNDARY-PROBLEMS; 2-DIMENSIONAL L-PROBLEM; QUADRATURE DOMAINS; INTERFACE DYNAMICS; STATISTICAL THEORY; PATTERN-FORMATION; COMPLEX SYSTEMS AB Since it was first applied to the study of nuclear interactions by Wigner and Dyson, almost 60 years ago, random matrix theory (RMT) has developed into a field of its own within applied mathematics, and is now essential to many parts of theoretical physics, from condensed matter to high energy. The fundamental results obtained so far rely mostly on the theory of random matrices in one dimension (the dimensionality of the spectrum or equilibrium probability density). In the last few years, this theory has been extended to the case where the spectrum is two dimensional, or even fractal, with dimensions between 1 and 2. In this paper, we review these recent developments and indicate some physical problems where the theory can be applied. C1 [Mineev-Weinstein, Mark] Los Alamos Natl Lab, Los Alamos, NM 87505 USA. [Putinar, Mihai] UCSB, Dept Math, Santa Barbara, CA 93106 USA. [Teodorescu, Razvan] Div Theoret, Los Alamos, NM 87505 USA. [Teodorescu, Razvan] Ctr Nonlinear Studies, Los Alamos, NM 87505 USA. RP Mineev-Weinstein, M (reprint author), Los Alamos Natl Lab, MS P365, Los Alamos, NM 87505 USA. EM mariner@lanl.gov; mputinar@math.ucsb.edu; razvan@lanl.gov OI Teodorescu, Razvan/0000-0002-7202-1949 NR 156 TC 15 Z9 15 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUL 11 PY 2008 VL 41 IS 26 AR 263001 DI 10.1088/1751-8113/41/26/263001 PG 74 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 312TP UT WOS:000256694000003 ER PT J AU Sinitsyn, NA Ohkubo, J AF Sinitsyn, N. A. Ohkubo, J. TI Hannay angle and geometric phase shifts under adiabatic parameter changes in classical dissipative systems SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID LOW REYNOLDS-NUMBER; SELF-PROPULSION AB Kepler and Kagan (1991 Phys. Rev. Lett. 66 847) derived a geometric phase shift in dissipative limit cycle evolution. This effect was considered as an extension of the geometric phase in classical mechanics. We show that the opposite is also true, namely, this geometric phase can be identified with the classical mechanical Hannay angle in an extended phase space. Our results suggest that this phase can be generalized to a stochastic evolution with an additional noise term in evolution equations. C1 [Sinitsyn, N. A.] Los Alamos Natl Lab, Computat & Stat Sci Div, Ctr Nonlinear Studies & Comp, Los Alamos, NM 87545 USA. [Ohkubo, J.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. RP Sinitsyn, NA (reprint author), Los Alamos Natl Lab, Computat & Stat Sci Div, Ctr Nonlinear Studies & Comp, Los Alamos, NM 87545 USA. RI Sinitsyn, nikolai/B-5617-2009 NR 13 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUL 11 PY 2008 VL 41 IS 26 AR 262002 DI 10.1088/1751-8113/41/26/262002 PG 4 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 312TP UT WOS:000256694000002 ER PT J AU El Gabaly, F McCarty, KF Schmid, AK de la Figuera, J Munoz, MC Szunyogh, L Weinberger, P Gallego, S AF El Gabaly, Farid McCarty, Kevin F. Schmid, Andreas K. de la Figuera, Juan Carmen Munoz, M. Szunyogh, Laszlo Weinberger, Peter Gallego, Silvia TI Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001) SO NEW JOURNAL OF PHYSICS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; ENERGY-ELECTRON MICROSCOPY; PERPENDICULAR ANISOTROPY; THIN-FILMS; FERROMAGNETIC-RESONANCE; ULTRATHIN FILMS; COBALT FILMS; CO FILMS; SURFACE; SUPERLATTICES AB Thin films of Co/Ru(0001) are known to exhibit an unusual spin reorientation transition (SRT) coupled to the completion of Co atomic layers for Co thicknesses under four layers. By means of spin-polarized low-energy electron microscopy, we follow in real space the magnetization orientation during the growth of atomically thick capping layers on Co/Ru(0001). Capping with noble metal (Cu, Ag and Au) elements modifies the SRT depending on the Co and overlayer thickness and on the overlayer material, resulting in an expanded range of structures with high perpendicular magnetic anisotropy. The origin of the SRT can be explained in terms of ab initio calculations of the layer-resolved contributions to the magnetic anisotropy energy. Besides the changes in the SRT introduced by the capping, a quantitative enhancement of the magnetic anisotropy is identified. A detailed analysis of the interplay between strain and purely electronic effects allows us to identify the conditions that lead to a high perpendicular magnetic anisotropy in thin hcp Co films. C1 [El Gabaly, Farid; de la Figuera, Juan] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. [El Gabaly, Farid; Schmid, Andreas K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. [de la Figuera, Juan] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. [Carmen Munoz, M.; Gallego, Silvia] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. [Szunyogh, Laszlo] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, H-111 Budapest, Hungary. [Weinberger, Peter] Ctr Computat Nanosci, A-1010 Vienna, Austria. RP de la Figuera, J (reprint author), Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. EM juan.delafiguera@iqfr.csic.es RI Szunyogh, Laszlo/A-7956-2010; Munoz, Carmen/F-6970-2012; McCarty, Kevin/F-9368-2012; Gallego Queipo, Silvia/J-3411-2012; de la Figuera, Juan/E-7046-2010; OI Munoz, Carmen/0000-0003-1504-1692; McCarty, Kevin/0000-0002-8601-079X; de la Figuera, Juan/0000-0002-7014-4777; Gallego, Silvia/0000-0003-0915-3276 NR 56 TC 16 Z9 16 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 11 PY 2008 VL 10 AR 073024 DI 10.1088/1367-2630/10/7/073024 PG 22 WC Physics, Multidisciplinary SC Physics GA 324NE UT WOS:000257524500003 ER PT J AU Acosta, D Adam, A Andreev, V Apollinari, G Baek, Y Banicz, K Barashko, V Barberis, E Bartalini, P Bloch, I Boeriu, O Bondar, N Breedon, R Bujak, A Bylsma, B Chen, M Clare, R Cline, D Cousins, R Cox, PT Denisov, A Drozdetskiy, A Durkin, S Eartly, D Ershov, Y Ferguson, T Fortin, D Geurts, F Gilmore, J Golovtsov, V Golutvin, I Golyash, A Gu, J Gutay, L Hauser, J He, K Holbrook, B Holmes, D Ignatenko, M Ippolito, N Ivanov, Y Jiang, C Kao, SC Karjavin, V Khabarov, S Killewald, P Ko, W Kotov, K Korytov, A Kozhevnikov, Y Lanaro, A Levchenko, P Ling, TY Liu, J Loveless, R Lusin, S Madorsky, A Matveev, M Medved, S Mitselmakher, G Moisenz, P Padley, BP Pakhotin, Y Pal, I Perelygin, V Petrunin, A Pischalnikov, Y Pivarsky, J Prokofiev, O Rakness, G Roberts, J Roe, A Safonov, A Schetkovsky, A Schipunov, L Schmitt, M Scurlock, B Sknar, V Stoynev, S Sulimov, V Sun, H Sytnik, V Tchekhovski, V Terentyev, N Tripathi, M Tucker, J Tumanov, A Uvarov, L Valuev, V Vassillev, S Vavilov, S Velichko, G Volkov, S von der Mey, M Vorobiev, I Vorobyev, A Vorobyev, A Wang, D Williams, GL Yatsura, V Zarubin, A Zhao, W Zheng, Y Zhmakin, G Zhu, Z Zilizi, G AF Acosta, D. Adam, A. Andreev, V. Apollinari, G. Baek, Y. Banicz, K. Barashko, V. Barberis, E. Bartalini, P. Bloch, I. Boeriu, O. Bondar, N. Breedon, R. Bujak, A. Bylsma, B. Chen, M. Clare, R. Cline, D. Cousins, R. Cox, P. T. Denisov, A. Drozdetskiy, A. Durkin, S. Eartly, D. Ershov, Yu. Ferguson, T. Fortin, D. Geurts, F. Gilmore, J. Golovtsov, V. Golutvin, I. Golyash, A. Gu, J. Gutay, L. Hauser, J. He, K. Holbrook, B. Holmes, D. Ignatenko, M. Ippolito, N. Ivanov, Yu. Jiang, C. Kao, S. -C. Karjavin, V. Khabarov, S. Killewald, P. Ko, W. Kotov, K. Korytov, A. Kozhevnikov, Yu. Lanaro, A. Levchenko, P. Ling, T. Y. Liu, J. Loveless, R. Lusin, S. Madorsky, A. Matveev, M. Medved, S. Mitselmakher, G. Moisenz, P. Padley, B. P. Pakhotin, Yu. Pal, I. Perelygin, V. Petrunin, A. Pischalnikov, Yu. Pivarsky, J. Prokofiev, O. Rakness, G. Roberts, J. Roe, A. Safonov, A. Schetkovsky, A. Schipunov, L. Schmitt, M. Scurlock, B. Sknar, V. Stoynev, S. Sulimov, V. Sun, H. Sytnik, V. Tchekhovski, V. Terentyev, N. Tripathi, M. Tucker, J. Tumanov, A. Uvarov, L. Valuev, V. Vassillev, S. Vavilov, S. Velichko, G. Volkov, S. von der Mey, M. Vorobiev, I. Vorobyev, A. Vorobyev, An. Wang, D. Williams, G. L. Yatsura, V. Zarubin, A. Zhao, W. Zheng, Y. Zhmakin, G. Zhu, Z. Zilizi, G. TI Efficiency of finding muon track trigger primitives in CMS cathode strip chambers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE LHC; CMS; muon; cathode strip chamber; trigger; efficiency ID LEVEL AB In the Compact Muon Solenoid (CMS) experiment, muon detection in the forward direction is accomplished by cathode strip chambers (CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using 36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge (MTCC) exercise conducted by the CNIS experiment in 2006. In contrast to earlier studies that used muon beams to illuminate a very small chamber area (<0.01 m(2))(,) results presented in this paper were obtained by many installed CSCs operating in situ over an area of approximate to 23 m(2) as a part of the CMS experiment. The efficiency of finding two-dimensional trigger primitives within six-layer chambers was found to be 99.93 +/- 0.03%. These segments, found by the CSC electronics within 800 ns after the passing of a muon through the chambers, are the input information for the Level-1 muon trigger and, also, are a necessary condition for chambers to be read out by the Data Acquisition System. (C) 2008 Elsevier B.V. All rights reserved. C1 [Acosta, D.; Barashko, V.; Bartalini, P.; Drozdetskiy, A.; Holmes, D.; Kotov, K.; Korytov, A.; Mitselmakher, G.; Pakhotin, Yu.; Scurlock, B.; Wang, D.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Adam, A.; Banicz, K.; Bujak, A.; Gutay, L.; Ippolito, N.; Kozhevnikov, Yu.; Medved, S.; Pal, I.; Zilizi, G.] Purdue Univ, W Lafayette, IN 47907 USA. [Andreev, V.; Cline, D.; Cousins, R.; Hauser, J.; Ignatenko, M.; Rakness, G.; Tucker, J.; Valuev, V.; von der Mey, M.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Apollinari, G.; Bloch, I.; Eartly, D.; Geurts, F.; Lusin, S.; Pischalnikov, Yu.; Prokofiev, O.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Baek, Y.; Lanaro, A.; Loveless, R.] Univ Wisconsin, Madison, WI 53706 USA. [Barberis, E.; Boeriu, O.; Roe, A.] Northeastern Univ, Boston, MA 02115 USA. [Bondar, N.; Denisov, A.; Golovtsov, V.; Ivanov, Yu.; Petrunin, A.; Schetkovsky, A.; Schipunov, L.; Sknar, V.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Velichko, G.; Volkov, S.; Vorobyev, A.; Yatsura, V.; Zhmakin, G.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Breedon, R.; Cox, P. T.; Holbrook, B.; Ko, W.; Tripathi, M.] Univ Calif Davis, Davis, CA 95616 USA. [Bylsma, B.; Durkin, S.; Gilmore, J.; Gu, J.; Ling, T. Y.; Williams, G. L.] Ohio State Univ, Columbus, OH 43210 USA. [Chen, M.; He, K.; Jiang, C.; Sun, H.; Zhao, W.; Zhu, Z.] Inst High Energy Phys, Beijing, Peoples R China. [Clare, R.; Fortin, D.; Kao, S. -C.; Sytnik, V.] Univ Calif Riverside, Riverside, CA 92521 USA. [Ershov, Yu.; Golutvin, I.; Karjavin, V.; Khabarov, S.; Killewald, P.; Moisenz, P.; Perelygin, V.; Tchekhovski, V.; Vassillev, S.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Ferguson, T.; Terentyev, N.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Golyash, A.; Pivarsky, J.; Safonov, A.] Texas A&M Univ, College Stn, TX 77843 USA. [Liu, J.; Matveev, M.; Padley, B. P.; Roberts, J.; Tumanov, A.] Rice Univ, Houston, TX 77005 USA. [Schmitt, M.; Stoynev, S.] Northwestern Univ, Evanston, IL 60208 USA. RP Pakhotin, Y (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM pakhotin@ufl.edu RI Ferguson, Thomas/O-3444-2014; OI Ferguson, Thomas/0000-0001-5822-3731; Levchenko, Petr/0000-0003-4913-0538 NR 14 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2008 VL 592 IS 1-2 BP 26 EP 37 DI 10.1016/j.nima.2008.03.118 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334AC UT WOS:000258193700004 ER PT J AU Bleuel, M Fitzsimmons, MR Lal, J AF Bleuel, M. Fitzsimmons, M. R. Lal, J. TI Quasi-elastic measurements using neutron spin flippers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE polarized neutron reflectometry; quasi-elastic; neutron spin flipper; intensity modulation ID SCATTERING AB A method for low-resolution quasi-elastic measurements using commonly available components on a polarized neutron beam reflectometer is demonstrated. By amplitude modulation of the current in a neutron spin flipper placed between the neutron beam polarizer and polarization analyzer, the intensity of the neutron beam illuminating a sample is similarly modulated (or chopped). We show that the intensity contrast between subsequent chopped pulses is dramatically reduced by a sample that changes neutron velocity. Published by Elsevier B.V. C1 [Bleuel, M.; Lal, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bleuel, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mbleuel@anl.gov RI Lujan Center, LANL/G-4896-2012 NR 6 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2008 VL 592 IS 1-2 BP 100 EP 103 DI 10.1016/j.nima.2008.03.117 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 334AC UT WOS:000258193700012 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, J LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Evidence for CP violation in B-0 -> J/psi pi(0) decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-DECAYS; PHYSICS AB We present measurements of the branching fraction and time-dependent CP asymmetries in B-0 -> J/psi pi(0) decays based on 466x10(6) Gamma(4S)-> B (B) over bar events collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B factory. We measure the CP asymmetry parameters S=-1.23 +/- 0.21(stat) +/- 0.04(syst) and C=-0.20 +/- 0.19(stat)+/- 0.03(syst), where the measured value of (S, C) is 4.0 standard deviations from (0, 0) including systematic uncertainties. The branching fraction is determined to be B(B-0 -> J/psi pi(0))=[1.69 +/- 0.14(stat)+/- 0.07(syst)]x10(-5). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sundermann, J. E.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, San Diego, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Ulmer, K. A.; Wagner, S. R.; Smith, A. J. S.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Touramanis, C.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, IN2P3, CNRS,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aubert, B (reprint author), IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Patrignani, Claudia/C-5223-2009; Della Ricca, Giuseppe/B-6826-2013; Lista, Luca/C-5719-2008; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; Forti, Francesco/H-3035-2011; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012 OI Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Patrignani, Claudia/0000-0002-5882-1747; Della Ricca, Giuseppe/0000-0003-2831-6982; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; Forti, Francesco/0000-0001-6535-7965; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195 NR 23 TC 36 Z9 36 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 021801 DI 10.1103/PhysRevLett.101.021801 PG 7 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700008 ER PT J AU Bonatsos, D McCutchan, EA Casten, RF AF Bonatsos, Dennis McCutchan, E. A. Casten, R. F. TI Unified description of 0(+) states in a large class of nuclear collective models SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRITICAL-POINT SYMMETRY; INTERACTING-BOSON MODEL; DYNAMIC SYMMETRY; PHASE-TRANSITION AB A remarkably simple regularity in the energies of 0(+) states in a broad class of collective models is discussed. A single formula for all 0(+) states in flat-bottomed infinite potentials that depends only on the number of dimensions and a simpler expression applicable to all three interacting boson approximation symmetries in the large N-B limit are presented. Finally, a connection between the energy expression for 0(+) states given by the X(5) model and the predictions of the interacting boson approximation near the critical point of the first order phase transition is explored. C1 [Bonatsos, Dennis] NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Casten, R. F.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Bonatsos, D (reprint author), NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. NR 33 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 022501 DI 10.1103/PhysRevLett.101.022501 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700014 PM 18764176 ER PT J AU Chacon, L Simakov, AN Lukin, VS Zocco, A AF Chacon, L. Simakov, Andrei N. Lukin, V. S. Zocco, A. TI Fast reconnection in nonrelativistic 2D electron-positron plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID PAIR PLASMAS AB In this Letter, we put forth (and validate numerically) a fluid-based analytical theory, which predicts that fast reconnection in nonrelativistic, low-beta pair plasmas is possible in collisionless regimes. This novel theoretical result complements recent kinetic computational evidence and challenges the accepted understanding, which considers fast dispersive waves (not supported in pair plasmas) as the key enabling physics ingredient for fast reconnection. The implications of this theory for the understanding of fast reconnection in standard electron-proton plasmas are discussed. C1 [Chacon, L.; Simakov, Andrei N.; Zocco, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lukin, V. S.] Univ Washington, Seattle, WA 98195 USA. [Zocco, A.] Politecn Torino, Turin, Italy. RP Chacon, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153; Chacon, Luis/0000-0002-4566-8763 NR 12 TC 17 Z9 17 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 025003 DI 10.1103/PhysRevLett.101.025003 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700025 PM 18764187 ER PT J AU Kato, T Shibauchi, T Matsuda, Y Thompson, JR Krusin-Elbaum, L AF Kato, T. Shibauchi, T. Matsuda, Y. Thompson, J. R. Krusin-Elbaum, L. TI Entanglement of solid vortex matter: A boomerang-shaped reduction forced by disorder in interlayer phase coherence in Bi(2)Sr(2)CaCu(2)O(8+y) SO PHYSICAL REVIEW LETTERS LA English DT Article ID JOSEPHSON PLASMA RESONANCE; SPLAYED COLUMNAR DEFECTS; COUPLING TRANSITION; DIRECTED POLYMERS; LINEAR DEFECTS; SUPERCONDUCTORS; LIQUID; STATE; FREQUENCY; CRYSTALS AB We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi(2)Sr(2)CaCu(2)O(8+y) containing randomly splayed linear defects. The interlayer phase coherence-probed by the Josephson plasma resonance-is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low-field decrease in coherence, indicative of meandering vortices. We uncover a distinct temperature scaling between in-plane and out-of-plane critical currents with opposing dependencies on field and time, consistent with the theoretically proposed "splayed-glass" state. C1 [Kato, T.; Shibauchi, T.; Matsuda, Y.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Matsuda, Y.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Thompson, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Krusin-Elbaum, L.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Kato, T (reprint author), Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. RI Shibauchi, Takasada/B-9349-2008 OI Shibauchi, Takasada/0000-0001-5831-4924 NR 32 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 027003 DI 10.1103/PhysRevLett.101.027003 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700055 PM 18764217 ER PT J AU Raebiger, H Lany, S Zunger, A AF Raebiger, Hannes Lany, Stephan Zunger, Alex TI Control of ferromagnetism via electron doping in In(2)O(3): Cr SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE FERROMAGNETISM; MAGNETIC SEMICONDUCTORS; OXIDE; FILMS AB Carrier-induced ferromagnetism in wide-gap transparent conductive oxides has been widely discussed and debated, leading to confusion and skepticism regarding whether dilute magnetic oxides exist at all. We show from density-functional calculations within a band-gap corrected approach that ferromagnetic Cr-Cr coupling can be switched on and off via electron doping in the wide-gap transparent n-type conductive oxide In(2)O(3). We show that (i) Cr does not produce in In(2)O(3) any free electrons and renders the system an insulating paramagnet. (ii) Extrinsic n-type doping of In(2)O(3):Cr via Sn produces free electrons, whose concentration is controllable via the oxygen partial pressure. Such additional carriers stabilize a strong long-range Cr-Cr ferromagnetic coupling. C1 [Raebiger, Hannes; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Raebiger, H (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013; Raebiger, Hannes/D-1881-2013 OI Raebiger, Hannes/0000-0003-3969-9165 NR 30 TC 50 Z9 52 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 027203 DI 10.1103/PhysRevLett.101.027203 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700060 PM 18764222 ER PT J AU Romagnani, L Bulanov, SV Borghesi, M Audebert, P Gauthier, JC Loewenbrueck, K Mackinnon, AJ Patel, P Pretzler, G Toncian, T Willi, O AF Romagnani, L. Bulanov, S. V. Borghesi, M. Audebert, P. Gauthier, J. C. Loewenbrueck, K. Mackinnon, A. J. Patel, P. Pretzler, G. Toncian, T. Willi, O. TI Observation of collisionless shocks in laser-plasma experiments SO PHYSICAL REVIEW LETTERS LA English DT Article AB The propagation in a rarefied plasma (n(e)less than or similar to 10(15) cm(-3)) of collisionless shock waves and ion-acoustic solitons, excited following the interaction of a long (tau(L)similar to 470 ps) and intense (I similar to 10(15) W cm(-2)) laser pulse with solid targets, has been investigated via proton probing techniques. The shocks' structures and related electric field distributions were reconstructed with high spatial and temporal resolution. The experimental results were interpreted within the framework of the nonlinear wave description based on the Korteweg-de Vries-Burgers equation. C1 [Romagnani, L.; Borghesi, M.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Bulanov, S. V.] JAEA, APRC, Kyoto 6190215, Japan. [Bulanov, S. V.] Prokhorov Inst Gen Phys RAS, Moscow 119991, Russia. [Audebert, P.] Univ Paris 06, Ecole Polytech, CEA,CNRS,UMR 7605, LULI, F-91128 Palaiseau, France. [Gauthier, J. C.] Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses & Applicat, F-33405 Talence, France. [Loewenbrueck, K.; Pretzler, G.; Toncian, T.; Willi, O.] Univ Dusseldorf, Inst Laser & Plasmaphys, Dusseldorf, Germany. [Mackinnon, A. J.; Patel, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Romagnani, L (reprint author), Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. EM l.romagnani@qub.ac.uk RI Patel, Pravesh/E-1400-2011; Borghesi, Marco/K-2974-2012; MacKinnon, Andrew/P-7239-2014; Bulanov, Sergei/A-1721-2013 OI MacKinnon, Andrew/0000-0002-4380-2906; NR 17 TC 69 Z9 69 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 025004 DI 10.1103/PhysRevLett.101.025004 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700026 PM 18764188 ER PT J AU Sau, JD Neaton, JB Choi, HJ Louie, SG Cohen, ML AF Sau, Jay D. Neaton, J. B. Choi, Hyoung Joon Louie, Steven G. Cohen, Marvin L. TI Electronic energy levels of weakly coupled nanostructures: C-60-metal interfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; QUASI-PARTICLE ENERGIES; C-60; IONIZATION; INSULATORS; CLUSTERS; CELLS AB A new approach based on density functional theory and the Anderson impurity model is developed to calculate charging energies and quasiparticle energy gaps of molecular systems weakly coupled to an environment. The approach is applied to C-60 adsorbed on Au(111) and Ag(100) surfaces, resulting in electronic structures that are in excellent agreement with recent experiments. Image-charge screening effects on molecular orbital energies are found to be of similar magnitude for the two surfaces, but charge-transfer screening and spin fluctuations also affect the Ag case due to a partially occupied C-60 orbital. C1 [Sau, Jay D.; Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Sau, Jay D.; Louie, Steven G.; Cohen, Marvin L.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Neaton, J. B.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Sau, JD (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jay@civet.berkeley.edu RI Choi, Hyoung Joon/N-8933-2015; Neaton, Jeffrey/F-8578-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597; Neaton, Jeffrey/0000-0001-7585-6135 NR 38 TC 70 Z9 70 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 026804 DI 10.1103/PhysRevLett.101.026804 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700051 PM 18764213 ER PT J AU Slifer, K Amarian, M Auerbach, L Averett, T Berthot, J Bertin, P Bertozzi, B Black, T Brash, E Brown, D Burtin, E Calarco, J Cates, G Chai, Z Chen, JP Choi, S Chudakov, E Atti, CCD Cisbani, E de Jager, CW Deur, A DiSalvo, R Dieterich, S Djawotho, P Finn, M Fissum, K Fonvieille, H Frullani, S Gao, H Gao, J Garibaldi, F Gasparian, A Gilad, S Gilman, R Glamazdin, A Glashausser, C Glockle, W Golak, J Goldberg, E Gomez, J Gorbenko, V Hansen, JO Hersman, B Holmes, R Huber, GM Hughes, E Humensky, B Incerti, S Iodice, M Jensen, S Jiang, X Jones, C Jones, G Jones, M Jutier, C Kamada, H Ketikyan, A Kominis, I Korsch, W Kramer, K Kumar, K Kumbartzki, G Kuss, M Lakuriqi, E Laveissiere, G Lerose, JJ Liang, M Liyanage, N Lolos, G Malov, S Marroncle, J McCormick, K McKeown, RD Meziani, ZE Michaels, R Mitchell, J Nogga, A Pace, E Papandreou, Z Pavlin, T Petratos, GG Pripstein, D Prout, D Ransome, R Roblin, Y Rowntree, D Rvachev, M Sabatie, F Saha, A Salme, G Scopetta, S Skibinski, R Souder, P Saito, T Strauch, S Suleiman, R Takahashi, K Teijiro, S Todor, L Tsubota, H Ueno, H Urciuoli, G Van der Meer, R Vernin, P Voskanian, H Witala, H Wojtsekhowski, B Xiong, F Xu, W Yang, JC Zhang, B Zolnierczuk, P AF Slifer, K. Amarian, M. Auerbach, L. Averett, T. Berthot, J. Bertin, P. Bertozzi, B. Black, T. Brash, E. Brown, D. Burtin, E. Calarco, J. Cates, G. Chai, Z. Chen, J. -P. Choi, Seonho Chudakov, E. Atti, C. Ciofi degli Cisbani, E. de Jager, C. W. Deur, A. DiSalvo, R. Dieterich, S. Djawotho, P. Finn, M. Fissum, K. Fonvieille, H. Frullani, S. Gao, H. Gao, J. Garibaldi, F. Gasparian, A. Gilad, S. Gilman, R. Glamazdin, A. Glashausser, C. Gloeckle, W. Golak, J. Goldberg, E. Gomez, J. Gorbenko, V. Hansen, J. -O. Hersman, B. Holmes, R. Huber, G. M. Hughes, E. Humensky, B. Incerti, S. Iodice, M. Jensen, S. Jiang, X. Jones, C. Jones, G. Jones, M. Jutier, C. Kamada, H. Ketikyan, A. Kominis, I. Korsch, W. Kramer, K. Kumar, K. Kumbartzki, G. Kuss, M. Lakuriqi, E. Laveissiere, G. Lerose, J. J. Liang, M. Liyanage, N. Lolos, G. Malov, S. Marroncle, J. McCormick, K. McKeown, R. D. Meziani, Z. -E. Michaels, R. Mitchell, J. Nogga, A. Pace, E. Papandreou, Z. Pavlin, T. Petratos, G. G. Pripstein, D. Prout, D. Ransome, R. Roblin, Y. Rowntree, D. Rvachev, M. Sabatie, F. Saha, A. Salme, G. Scopetta, S. Skibinski, R. Souder, P. Saito, T. Strauch, S. Suleiman, R. Takahashi, K. Teijiro, S. Todor, L. Tsubota, H. Ueno, H. Urciuoli, G. Van der Meer, R. Vernin, P. Voskanian, H. Witala, H. Wojtsekhowski, B. Xiong, F. Xu, W. Yang, J. -C. Zhang, B. Zolnierczuk, P. TI He-3 spin-dependent cross sections and sum rules SO PHYSICAL REVIEW LETTERS LA English DT Article ID VIRTUAL COMPTON-SCATTERING; MAGNETIC MOMENTS; FORM-FACTORS; NUCLEON; NEUTRON; DEUTERON; PROTON; ELECTROPRODUCTION; Q(2)-DEPENDENCE; ELECTRON AB We present a measurement of the spin-dependent cross sections for the (3)(He) over right arrow((e) over right arrow ,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1 <= Q(2)<= 0.9 GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region. C1 [Gao, J.; Goldberg, E.; Hughes, E.; Jensen, S.; Jones, C.; McKeown, R. D.; Pavlin, T.; Pripstein, D.; Prout, D.] CALTECH, Pasadena, CA 91125 USA. [Yang, J. -C.] Chungnam Natl Univ, Taejon 305764, South Korea. [Gasparian, A.] Hampton Univ, Hampton, VA 23668 USA. [Berthot, J.; Bertin, P.; Deur, A.; DiSalvo, R.; Fonvieille, H.; Jutier, C.; Laveissiere, G.; Roblin, Y.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63170 Aubiere, France. [Gloeckle, W.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. [Scopetta, S.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Salme, G.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Iodice, M.; Urciuoli, G.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Pace, E.] Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy. [Averett, T.; de Jager, C. W.; Deur, A.; Gilman, R.; Gomez, J.; Hansen, J. -O.; Kuss, M.; Lerose, J. J.; Liang, M.; Liyanage, N.; Michaels, R.; Mitchell, J.; Saha, A.; Van der Meer, R.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Petratos, G. G.; Suleiman, R.] Kent State Univ, Kent, OH 44242 USA. [Jones, C.; Korsch, W.; Zolnierczuk, P.] Univ Kentucky, Lexington, KY 40506 USA. [Nogga, A.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Glamazdin, A.; Gorbenko, V.] Kharkov Inst Phys & Technol, UA-310108 Kharkov, Ukraine. [Kamada, H.] Kyushu Inst Technol, Fac Engn, Dept Phys, Kitakyushu, Fukuoka 8048550, Japan. [Golak, J.; Skibinski, R.; Witala, H.] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Brown, D.] Univ Maryland, College Pk, MD 20742 USA. [Bertozzi, B.; Black, T.; Chai, Z.; Fissum, K.; Gao, H.; Gilad, S.; Liyanage, N.; Rowntree, D.; Rvachev, M.; Xiong, F.; Xu, W.; Zhang, B.] MIT, Cambridge, MA 02139 USA. [Kumar, K.] Univ Massachusetts, Amherst, MA 01003 USA. [Calarco, J.; Hersman, B.] Univ New Hampshire, Durham, NH 03824 USA. [Jutier, C.; McCormick, K.; Sabatie, F.; Todor, L.] Old Dominion Univ, Norfolk, VA 23529 USA. [Atti, C. Ciofi degli; Scopetta, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Cates, G.; Humensky, B.; Kominis, I.; Kumar, K.] Princeton Univ, Princeton, NJ 08544 USA. [Brash, E.; Huber, G. M.; Lolos, G.; Van der Meer, R.] Univ Regina, Regina, SK S4S 0A2, Canada. [Pace, E.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Dieterich, S.; Glashausser, C.; Jiang, X.; Kumbartzki, G.; Malov, S.; Ransome, R.; Strauch, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Burtin, E.; Marroncle, J.; Vernin, P.] CEA Saclay, IRFU, SPhN, F-91191 Gif Sur Yvette, France. [Holmes, R.; Souder, P.] Syracuse Univ, Syracuse, NY 13244 USA. [Slifer, K.; Auerbach, L.; Choi, Seonho; Incerti, S.; Lakuriqi, E.; Meziani, Z. -E.] Temple Univ, Philadelphia, PA 19122 USA. [Takahashi, K.; Teijiro, S.; Tsubota, H.; Ueno, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Gao, H.] Duke Univ, Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Averett, T.; Djawotho, P.; Finn, M.; Jones, M.; Kramer, K.] Coll William & Mary, Williamsburg, VA 23187 USA. [Amarian, M.; Ketikyan, A.; Voskanian, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Slifer, K.; Cates, G.] Univ Virginia, Charlottesville, VA 22904 USA. RP Slifer, K (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. RI Nogga, Andreas/A-3354-2008; Kominis, Iannis/C-5515-2011; Averett, Todd/A-2969-2011; Gao, Haiyan/G-2589-2011; Kuss, Michael/H-8959-2012; Sabatie, Franck/K-9066-2015; Cisbani, Evaristo/C-9249-2011 OI Nogga, Andreas/0000-0003-2156-748X; Sabatie, Franck/0000-0001-7031-3975; Cisbani, Evaristo/0000-0002-6774-8473 NR 39 TC 17 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 022303 DI 10.1103/PhysRevLett.101.022303 PG 5 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700013 PM 18764175 ER PT J AU Tamai, A Allan, MP Mercure, JF Meevasana, W Dunkel, R Lu, DH Perry, RS Mackenzie, AP Singh, DJ Shen, ZX Baumberger, F AF Tamai, A. Allan, M. P. Mercure, J. F. Meevasana, W. Dunkel, R. Lu, D. H. Perry, R. S. Mackenzie, A. P. Singh, D. J. Shen, Z. -X. Baumberger, F. TI Fermi surface and van hove singularities in the itinerant metamagnet Sr3Ru2O7 SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUALITY SINGLE-CRYSTALS; QUANTUM CRITICALITY; RUTHENATE SR3RU2O7; STATES; INSTABILITY; ELECTRON; SR2RUO4; METALS AB The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle-resolved photoemission and density-functional calculations. We find well-defined quasiparticle bands with resolution-limited linewidths and Fermi velocities up to an order of magnitude lower than in single layer Sr2RuO4. The complete topography, the cyclotron masses, and the orbital character of the Fermi surface are determined, in agreement with bulk sensitive de Haas-van Alphen measurements. An analysis of the d(xy) band dispersion reveals a complex density of states with van Hove singularities near the Fermi level, a situation which is favorable for magnetic instabilities. C1 [Tamai, A.; Allan, M. P.; Mercure, J. F.; Mackenzie, A. P.; Baumberger, F.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, England. [Meevasana, W.; Dunkel, R.; Lu, D. H.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Meevasana, W.; Dunkel, R.; Lu, D. H.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Meevasana, W.; Dunkel, R.; Lu, D. H.; Shen, Z. -X.] Stanford Univ, SSRL, Stanford, CA 94305 USA. [Perry, R. S.] Univ Edinburgh, Sch Phys, Scottish Univ Phys Alliance, Edinburgh EH9 3LZ, Midlothian, Scotland. [Perry, R. S.] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3LZ, Midlothian, Scotland. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Tamai, A (reprint author), Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, England. EM anna.tamai@st-andrews.ac.uk RI Tamai, Anna/B-9219-2014; Mackenzie, Andrew/K-6742-2015; Tamai, Anna/A-5166-2008; Baumberger, Felix/A-5170-2008; Allan, Milan/D-7763-2012; Singh, David/I-2416-2012 OI Tamai, Anna/0000-0001-5239-6826; Mercure, Jean-Francois/0000-0003-2620-9200; Baumberger, Felix/0000-0001-7104-7541; Allan, Milan/0000-0002-5437-1945; NR 27 TC 61 Z9 61 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 026407 DI 10.1103/PhysRevLett.101.026407 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700046 PM 18764208 ER PT J AU Trigo, M Sheu, YM Arms, DA Chen, J Ghimire, S Goldman, RS Landahl, E Merlin, R Peterson, E Reason, M Reis, DA AF Trigo, M. Sheu, Y. M. Arms, D. A. Chen, J. Ghimire, S. Goldman, R. S. Landahl, E. Merlin, R. Peterson, E. Reason, M. Reis, D. A. TI Probing unfolded acoustic phonons with X rays SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFRACTION; CRYSTALS; PULSES AB Ultrafast laser excitation of an InGaAs/InAlAs superlattice (SL) creates coherent folded acoustic phonons that subsequently leak into the bulk (InP) substrate. Upon transmission, the phonons become "unfolded" into bulk modes and acquire a wave vector much larger than that of the light. We show that time-resolved x-ray diffraction is sensitive to this large-wave vector excitation in the substrate. Comparison with dynamical diffraction simulations of propagating strain supports our interpretation. C1 [Trigo, M.; Sheu, Y. M.; Chen, J.; Ghimire, S.; Merlin, R.; Peterson, E.; Reis, D. A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arms, D. A.; Landahl, E.] Adv Photon Source, Argonne, IL 60439 USA. [Goldman, R. S.; Reason, M.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Trigo, M (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM mtrigo@umich.edu RI Landahl, Eric/A-1742-2010; Goldman, Rachel/J-9091-2012; OI Merlin, Roberto/0000-0002-5584-0248 NR 17 TC 24 Z9 24 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2008 VL 101 IS 2 AR 025505 DI 10.1103/PhysRevLett.101.025505 PG 4 WC Physics, Multidisciplinary SC Physics GA 324XW UT WOS:000257553700035 PM 18764197 ER PT J AU Kline, KL Dale, VH AF Kline, Keith L. Dale, Virginia H. TI Biofuels: Effects on land and fire SO SCIENCE LA English DT Letter ID DEFORESTATION; DYNAMICS; AMAZON C1 [Kline, Keith L.; Dale, Virginia H.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Kline, KL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RI Dale, Virginia/B-6023-2009; OI Kline, Keith/0000-0003-2294-1170 NR 10 TC 24 Z9 25 U1 1 U2 20 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 11 PY 2008 VL 321 IS 5886 BP 199 EP 199 DI 10.1126/science.321.5886.199 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 324IS UT WOS:000257512900011 PM 18621653 ER PT J AU Mackelprang, R Rubin, EM AF Mackelprang, Rachel Rubin, Edward M. TI Paleontology - New tricks with old bones SO SCIENCE LA English DT Editorial Material ID NEANDERTHAL GENOMIC DNA; MODERN HUMANS; SELECTION; AMPLIFICATION; SEQUENCES; GENE C1 [Mackelprang, Rachel; Rubin, Edward M.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Mackelprang, Rachel; Rubin, Edward M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Mackelprang, R (reprint author), Dept Energy Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM emrubin@lbl.gov NR 16 TC 2 Z9 2 U1 1 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 11 PY 2008 VL 321 IS 5886 BP 211 EP 212 DI 10.1126/science.1161890 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 324IS UT WOS:000257512900028 PM 18621660 ER PT J AU Dreger, DS Ford, SR Walter, WR AF Dreger, Douglas S. Ford, Sean R. Walter, William R. TI Source analysis of the Crandall Canyon, Utah, mine collapse SO SCIENCE LA English DT Article C1 [Dreger, Douglas S.; Ford, Sean R.] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Dreger, DS (reprint author), Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. EM dreger@seismo.berkeley.edu RI Walter, William/C-2351-2013; Ford, Sean/F-9191-2011 OI Walter, William/0000-0002-0331-0616; Ford, Sean/0000-0002-0376-5792 NR 5 TC 9 Z9 9 U1 1 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 11 PY 2008 VL 321 IS 5886 BP 217 EP 217 DI 10.1126/science.1157392 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 324IS UT WOS:000257512900030 PM 18621662 ER PT J AU Seo, HJ Eisenstein, DJ Zehavi, I AF Seo, Hee-Jong Eisenstein, Daniel J. Zehavi, Idit TI Passive evolution of galaxy clustering SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : clusters : general; methods : n-body simulations ID HALO OCCUPATION DISTRIBUTION; LUMINOUS RED GALAXIES; DARK-MATTER HALOES; DIGITAL SKY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; LARGE-SCALE STRUCTURE; SATELLITE GALAXIES; POWER SPECTRUM; SUBHALO POPULATIONS; RADIAL-DISTRIBUTION AB We present a numerical study of the evolution of galaxy clustering when galaxies flow passively from high redshift, respecting the continuity equation throughout. While passive flow is a special case of galaxy evolution, it allows a well-defined study of galaxy ancestry and serves as an interesting limit to be compared to nonpassive cases. We use dissipationless N-body simulations, assign galaxies to massive halos at z = 1 and 2 using various halo occupation distribution (HOD) models, and trace these galaxy particles to lower redshift while conserving their number. We find that passive flow results in an asymptotic convergence at low redshift in the HOD and in galaxy clustering on scales above similar to 3 h(-1) Mpc for a wide range of initial HODs. As galaxies become less biased with respect to mass asymptotically with time, the HOD parameters evolve such that M-1/M-min decreases while alpha converges toward unity, where < N-g(M)> = exp(-M-min/M)[1 + (M/M-1)(alpha)]. The satellite populations converge toward the Poisson distribution at low redshift. The convergence is robust for different number densities and is enhanced when galaxies evolve from higher redshift. We compare our results with the observed luminous red galaxy (LRG) sample from SDSS that has the same number density. We claim that if LRGs have experienced a strict passive flow, their < N-g(M)> should be close to a power law with an index of unity in halo mass. Discrepancies could be due to dry galaxy merging or new members arising between the initial and the final redshifts. The spatial distribution of passively flowing galaxies within halos appears on average more concentrated than the halo mass profile at low redshift. The evolution of bias for passively flowing galaxies is consistent with linear bias evolution on quasi-linear as well as large scales. C1 [Seo, Hee-Jong; Eisenstein, Daniel J.] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [Seo, Hee-Jong] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Zehavi, Idit] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Seo, HJ (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. EM sheejong@fnal.gov; deisenstein@as.arizona.edu; izehavi@abacus.astr.cwru.edu NR 78 TC 13 Z9 13 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2008 VL 681 IS 2 BP 998 EP 1016 DI 10.1086/527553 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 324JX UT WOS:000257516000019 ER PT J AU Jordan, GC Fisher, RT Townsley, DM Calder, AC Graziani, C Asida, S Lamb, DQ Truran, JW AF Jordan, G. C. Fisher, R. T. Townsley, D. M. Calder, A. C. Graziani, C. Asida, S. Lamb, D. Q. Truran, J. W. TI Three-dimensional simulations of the deflagration phase of the gravitationally confined detonation model of Type Ia supernovae SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; nuclear reactions; nucleosynthesis; abundances; supernovae : general; white dwarfs ID FLUID DYNAMICAL SIMULATIONS; SUBGRID SCALE-MODEL; OFF-CENTER IGNITION; DELAYED-DETONATION; THERMONUCLEAR SUPERNOVAE; WHITE-DWARFS; FLAMES; EXPLOSION; EVOLUTION; ASTROPHYSICS AB We report the results of a series of three-dimensional ( 3D) simulations of the deflagration phase of the gravitationally confined detonation mechanism for Type Ia supernovae. In this mechanism, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point opposite the breakout on the stellar surface. We find that detonation conditions are robustly reached in our 3D simulations for a range of initial conditions and resolutions. Detonation conditions are achieved as the result of an inwardly directed jet that is produced by the compression of unburnt surface material when the surface flow collides with itself. A high-velocity outwardly directed jet is also produced. The initial conditions explored in this paper lead to conditions at detonation that can be expected to produce large amounts of (56)Ni and small amounts of intermediate-mass elements. These particular simulations are therefore relevant only to high-luminosity Type Ia supernovae. Recent observations of Type Ia supernovae imply a compositional structure that is qualitatively consistent with that expected from these simulations. C1 [Jordan, G. C.; Fisher, R. T.; Calder, A. C.; Graziani, C.; Lamb, D. Q.; Truran, J. W.] Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. [Jordan, G. C.; Fisher, R. T.; Townsley, D. M.; Calder, A. C.; Graziani, C.; Lamb, D. Q.; Truran, J. W.] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. [Townsley, D. M.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Asida, S.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Lamb, D. Q.; Truran, J. W.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Truran, J. W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Jordan, GC (reprint author), Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. RI Calder, Alan/E-5348-2011; Fisher, Robert/J-8667-2014 OI Fisher, Robert/0000-0001-8077-7255 NR 39 TC 69 Z9 69 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2008 VL 681 IS 2 BP 1448 EP 1457 DI 10.1086/588269 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 324JX UT WOS:000257516000054 ER PT J AU Lai, DK Bolte, M Johnson, JA Lucatello, S Heger, A Woosley, SE AF Lai, David K. Bolte, Michael Johnson, Jennifer A. Lucatello, Sara Heger, Alexander Woosley, S. E. TI Detailed abundances for 28 metal-poor stars: Stellar relics in the milky way SO ASTROPHYSICAL JOURNAL LA English DT Review DE nuclear reactions, nucleosynthesis, abundances; stars : abundances; stars : Population II; supernovae : general ID EXPERIMENTAL OSCILLATOR-STRENGTHS; NEUTRON-CAPTURE ELEMENTS; HIGH-DISPERSION-SPECTROGRAPH; EFFECTIVE TEMPERATURE SCALE; KECK PILOT PROGRAM; R-PROCESS; 1ST STARS; EARLY GALAXY; TRANSITION-PROBABILITIES; GIANT STARS AB We present the results of an abundance analysis for a sample of stars with -4 < [Fe/H] < -2. The data were obtained with the HIRES spectrograph at Keck Observatory. The set includes 28 stars, with effective temperature ranging from 4800 to 6600 K. For 13 stars with [Fe/H] < -2.6, including nine with [Fe/H] < -3.0 and one with [Fe/H] = -4.0, these are the first reported detailed abundances. For the most metal-poor star in our sample, CS 30336-049, we measure an abundance pattern that is very similar to stars in the range [Fe/H] similar to -3.5, including a normal C + N abundance. We also find that it has very low but measurable Sr and Ba, indicating some neutron-capture activity even at this low of a metallicity. We explore this issue further by examining other very neutron capture-deficient stars and find that, at the lowest levels, [Ba/Sr] exhibits the ratio of the main r-process. We also report on a new r-process-enhanced star, CS 31078-018. This star has [Fe/H] = -2.85, [Eu/Fe] = 1.23, and [Ba/Eu] - -0.51. CS 31078-018 exhibits an "actinide boost,'' i. e., much higher [Th/Eu] than expected and at a similar level to CS 31082 001. Our spectra allow us to further constrain the abundance scatter at low metallicities, which we then use to fit to the zero-metallicity Type II supernova yields of Heger & Woosley (2008). We find that supernovae with progenitor masses between 10 and 20 M-circle dot provide the best matches to our abundances. C1 [Lai, David K.; Bolte, Michael; Heger, Alexander; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Lucatello, Sara] Osserv Astron Padova, I-35122 Padua, Italy. [Lucatello, Sara] Tech Univ Munich, D-85748 Garching, Germany. [Heger, Alexander] Los Alamos Natl Lab, Theoret Astrophys Grp, Los Alamos, NM 87545 USA. RP Lai, DK (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM david@ucolick.org; bolte@ucolick.org; jaj@astronomy.ohio-state.edu; sara.lucatello@oapd.inaf.it; alex@ucolick.org; woosley@ucolick.org NR 107 TC 168 Z9 168 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2008 VL 681 IS 2 BP 1524 EP 1556 DI 10.1086/588811 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 324JX UT WOS:000257516000060 ER PT J AU Moskalenko, IV Porter, TA Digel, SW Michelson, PF AF Moskalenko, Igor V. Porter, Troy A. Digel, Seth W. Michelson, Peter F. TI A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic-ray spectrum SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; elementary particles; Galaxy : bulge; gamma rays : theory; Kuiper Belt; minor planets, asteroids ID MAIN-BELT ASTEROIDS; SIZE DISTRIBUTION; KUIPER-BELT; TROJAN ASTEROIDS; ANNIHILATION EMISSION; EGRET OBSERVATIONS; SKY DISTRIBUTION; MILKY-WAY; OBJECTS; MODEL AB We calculate the gamma-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids (MBAs), Jovian and Neptunian Trojan asteroids, and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the gamma-ray albedo for the MainBelt, Trojans, and Kuiper Belt strongly depends on the small-body size distribution of each system. Based on an analysis of the Energetic Gamma-Ray Experiment Telescope (EGRET) data we infer that the diffuse emission from the MBAs, Trojans, and KBOs has an integrated flux of less than similar to 6 x 10(-6) cm(-2) s(-1) (100-500 MeV), which corresponds to similar to 12 times the lunar albedo, and may be detectable by the forthcoming Gamma-Ray Large Area Space Telescope (GLAST). If detected by GLAST, it can provide unique direct information about the number of small bodies in each system that is difficult to assess by any other method. In addition, the KBO albedo flux can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of MBAs, Trojans, and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the asteroid gamma-ray albedo has to be taken into account when analyzing weak gamma-ray sources close to the ecliptic, especially near the Galactic center, and signals at high Galactic latitudes, such as the extragalactic gamma-ray emission. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. C1 [Moskalenko, Igor V.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Porter, Troy A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Digel, Seth W.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Michelson, Peter F.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Moskalenko, IV (reprint author), Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM imos@stanford.edu; tporter@scipp.ucsc.edu; digel@stanford.edu; peterm@stanford.edu RI Moskalenko, Igor/A-1301-2007 OI Moskalenko, Igor/0000-0001-6141-458X NR 60 TC 8 Z9 8 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2008 VL 681 IS 2 BP 1708 EP 1716 DI 10.1086/588425 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 324JX UT WOS:000257516000078 ER PT J AU Nakagawa, YE Sakamoto, T Sato, G Gehrels, N Hurley, K Palmer, DM AF Nakagawa, Y. E. Sakamoto, T. Sato, G. Gehrels, N. Hurley, K. Palmer, D. M. TI The swift discovery of X-ray afterglows accompanying short bursts from SGR 1900+14 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars : individual (SGR 1900+14); stars : neutron ID SGR 1900+14; GIANT FLARE; EMISSION; SGR-1806-20; GALAXY; GRB-050709; TELESCOPE; MAGNETARS; OUTBURST; MISSION AB The discovery of X-ray afterglows accompanying two short bursts from SGR 1900+ 14 is presented. The afterglow luminosities at the end of each observation are lower by 30%-50% than their initial luminosities, and decay with power-law indices p similar to 0.2-0.4. Their initial bolometric luminosities are L similar to 10(34)-10(35) erg s(-1). We discuss analogies and differences between the X-ray afterglows of SGR short bursts and short gamma-ray bursts. C1 [Nakagawa, Y. E.] Aoyama Gakuin Univ, Grad Sch Sci & Engn, Kanagawa 2298558, Japan. [Nakagawa, Y. E.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Sakamoto, T.; Sato, G.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sakamoto, T.] Univ Maryland, Baltimore, MD 21250 USA. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nakagawa, YE (reprint author), Aoyama Gakuin Univ, Grad Sch Sci & Engn, Kanagawa 2298558, Japan. RI Gehrels, Neil/D-2971-2012 NR 37 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2008 VL 681 IS 2 BP L89 EP L92 DI 10.1086/590428 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 326LY UT WOS:000257661900010 ER PT J AU Rest, A Welch, DL Suntzeff, NB Oaster, L Lanning, H Olsen, K Smith, RC Becker, AC Bergmann, M Challis, P Clocchiatti, A Cook, KH Damke, G Garg, A Huber, ME Matheson, T Minniti, D Prieto, JL Wood-Vasey, WM AF Rest, A. Welch, D. L. Suntzeff, N. B. Oaster, L. Lanning, H. Olsen, K. Smith, R. C. Becker, A. C. Bergmann, M. Challis, P. Clocchiatti, A. Cook, K. H. Damke, G. Garg, A. Huber, M. E. Matheson, T. Minniti, D. Prieto, J. L. Wood-Vasey, W. M. TI Scattered-light echoes from the historical galactic supernovae Cassiopeia A and Tycho (SN 1572) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM : individual (Cassiopeia A, Tycho); supernova remnants; supernovae : general ID LARGE-MAGELLANIC-CLOUD; X-RAY-SPECTRUM; IA SUPERNOVAE; REMNANT AB We report the discovery of an extensive system of scattered-light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core-collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. Ongoing surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane. C1 [Rest, A.; Smith, R. C.; Damke, G.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Rest, A.; Garg, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Welch, D. L.; Oaster, L.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Suntzeff, N. B.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Lanning, H.; Olsen, K.; Matheson, T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Becker, A. C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Bergmann, M.] Gemini Observ, La Serena, Chile. [Challis, P.; Wood-Vasey, W. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Clocchiatti, A.; Minniti, D.] Pontificia Univ Catolica Chile, Dept Astron, Santiago 22, Chile. [Cook, K. H.; Huber, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Huber, M. E.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Prieto, J. L.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. RP Rest, A (reprint author), Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Colina El Pino S-N, La Serena, Chile. NR 23 TC 43 Z9 44 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2008 VL 681 IS 2 BP L81 EP L84 DI 10.1086/590427 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 326LY UT WOS:000257661900008 ER PT J AU Xu, H Li, H Collins, D Li, S Norman, ML AF Xu, H. Li, H. Collins, D. Li, S. Norman, M. L. TI Formation of X-ray cavities by the magnetically dominated jet-lobe system in a galaxy cluster SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies : active; galaxies : clusters : general; galaxies : jets; methods : numerical; MHD ID ACTIVE GALACTIC NUCLEI; DOUBLE RADIO-SOURCES; COOLING FLOWS; INTRACLUSTER MEDIUM; CHANDRA OBSERVATION; PERSEUS CLUSTER; HYDRA-A; BUBBLES; ATMOSPHERES; FEEDBACK AB We present cosmological magnetohydrodynamic simulations of the formation of a galaxy cluster with magnetic energy feedback from an active galactic nuclei (AGNs). We demonstrate that X-ray cavities can be produced by the magnetically dominated jet-lobe system that is supported by a central axial current. The cavities are magnetically dominated, and their morphology is determined jointly by the magnetic fields and the background cluster pressure profile. The expansion and motion of the cavities are driven initially by the Lorentz force of the magnetic fields, and the cavities only become buoyant at late stages (>500 Myr). We find that up to 80%-90% of the injected magnetic energy goes into doing work against the hot cluster medium, heating it, and lifting it in the cluster potential. C1 [Xu, H.; Collins, D.; Norman, M. L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Xu, H.; Li, H.; Li, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Xu, H (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Xu, Hao/B-8734-2014 OI Xu, Hao/0000-0003-4084-9925 NR 30 TC 13 Z9 13 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2008 VL 681 IS 2 BP L61 EP L64 DI 10.1086/590407 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 326LY UT WOS:000257661900003 ER PT J AU Luo, WF Cowgill, D Causey, R Stewart, K AF Luo, Weifang Cowgill, Don Causey, Rion Stewart, Ken TI Equilibrium isotope effects in the preparation and isothermal decomposition of ternary hydrides Pd(H(x)D(1-x))(y) (0 < x < 1 and y > 0.6) SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SLOPING PLATEAUS; INTERMETALLIC HYDRIDES; PALLADIUM; HYDROGEN; SYSTEMS; ALLOYS AB A Sieverts' apparatus coupled with a residual gas analysis is used to measure the concentration variations of hydrogen isotopes in the gas and solid phases during exchange and isothermal decomposition of mixed hydrides. beta-phase palladium hydrides with known ratios of H:D, Pd(H(x)D(1-x))(y), (0 < x < 1, y > 0.6), are prepared by H(2) with PdD(y) or D(2) with PdH(y) exchange, and their desorption isotherms are reported here at 323 K. A higher equilibrium pressure in isothermal desorption of mixed hydrides is associated with a higher ratio of D/H in the initial mixed hydrides in beta-phase. The composition of the gas desorbed from a mixed hydride varies; i.e., the ratio of D/H in gas decreases with the sum of (H + D) in Pd. The values of the separation factor alpha during desorption at 323 K and during H-D exchange at 248 K are discussed and compared with those in the literature. Desorption isotherms of mixed isotope hydrides are between those of the single isotope hydrides of H-Pd and D-Pd, however, plateaus slope more than those of pure isotope hydrides. The origin of the plateau sloping in the mixed hydrides can be attributed to the compositional variations during desorption, i.e., the equilibrium pressure is greater when D/H ratio in solid is greater. A simple model is proposed in this study that agrees well with experimental results. C1 [Luo, Weifang; Cowgill, Don; Causey, Rion; Stewart, Ken] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94551 USA. RP Luo, WF (reprint author), Sandia Natl Labs, Dept Hydrogen & Met Sci, 7011 E Ave, Livermore, CA 94551 USA. EM wluo@sandia.gov NR 18 TC 10 Z9 10 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 10 PY 2008 VL 112 IS 27 BP 8099 EP 8105 DI 10.1021/jp801487n PG 7 WC Chemistry, Physical SC Chemistry GA 321VS UT WOS:000257335200018 PM 18553963 ER PT J AU Chapman, KW Chupas, PJ Winans, RE Pugmire, RJ AF Chapman, Karena W. Chupas, Peter J. Winans, Randall E. Pugmire, Ronald J. TI High pressure pair distribution function studies of Green River oil shale SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-SCATTERING; HIGH-TEMPERATURE; REFINEMENT; MUSCOVITE; EQUATION; ALBITE; STATE AB The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances (similar to 6-20 angstrom) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale. components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R similar to 30.7%). Indeed the features in the PDF beyond similar to 6 angstrom, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component. The factors influencing the observed compression behavior are discussed. C1 [Chapman, Karena W.; Chupas, Peter J.; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Pugmire, Ronald J.] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA. [Pugmire, Ronald J.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. RP Chapman, KW (reprint author), Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chapmank@aps.anl.gov RI Chapman, Karena/G-5424-2012 NR 29 TC 1 Z9 1 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 10 PY 2008 VL 112 IS 27 BP 9980 EP 9982 DI 10.1021/jp803900s PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 321VT UT WOS:000257335300005 ER PT J AU Lorenz, CD Crozier, PS Anderson, JA Travesset, A AF Lorenz, Christian D. Crozier, Paul S. Anderson, Joshua A. Travesset, Alex TI Molecular dynamics of ionic transport and electrokinetic effects in realistic silica channels SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WATER INTERFACE; FORCE-FIELD; ELECTROLYTE-SOLUTIONS; POISEUILLE FLOW; CRYSTAL VIOLET; SILANOL GROUPS; CHARGE; SURFACES; ADSORPTION; SIMULATION AB Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and strean-tin- currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl (2)) salts. Our results allow a detailed investigation of zeta-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We con clude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices. C1 [Lorenz, Christian D.] Kings Coll London, Mat Res Grp, Dept Mech Engn, London WC2R 2LS, England. [Crozier, Paul S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Lorenz, CD (reprint author), Kings Coll London, Mat Res Grp, Dept Mech Engn, London WC2R 2LS, England. EM chris.lorenz@kcl.ac.uk RI Anderson, Joshua/H-4262-2011; Lorenz, Christian/A-6996-2017 OI Lorenz, Christian/0000-0003-1028-4804 NR 52 TC 59 Z9 59 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 10 PY 2008 VL 112 IS 27 BP 10222 EP 10232 DI 10.1021/jp711510k PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 321VT UT WOS:000257335300041 ER PT J AU Singal, J AF Singal, Jack TI The CMB and galactic microwave absolute spectrum: Science and measuren ARCADE 2 SO MODERN PHYSICS LETTERS A LA English DT Review DE astrophysics; cosmology; cosmic microwave background; microwave instrumentation; radiometers ID EMISSION; GHZ; TEMPERATURE; UNIVERSE; SKY AB Beyond spatial anisotropy and polarization, a third type of structure in the Cosmic Microwave Background radiation, that of deviations in the overall absolute intensity versus frequency spectrum from a blackbody form, encodes additional important cosmological and astrophysical information, and remains inconclusively studied. This article discusses the ARCADE 2 project, the current balloon-based experimental effort to measure the absolute radiometric temperature of the CMB and Galactic microwave emission in the range from 3 to 90 GHz. C1 Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Singal, J (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford Linear Accelerator Ctr, 2757 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jsingal@stanford.edu NR 26 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD JUL 10 PY 2008 VL 23 IS 21 BP 1719 EP 1733 DI 10.1142/S0217732308027485 PG 15 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 335LN UT WOS:000258292200001 ER PT J AU Sebastian, SE Harrison, N Palm, E Murphy, TP Mielke, CH Liang, RX Bonn, DA Hardy, WN Lonzarich, GG AF Sebastian, Suchitra E. Harrison, N. Palm, E. Murphy, T. P. Mielke, C. H. Liang, Ruixing Bonn, D. A. Hardy, W. N. Lonzarich, G. G. TI A multi-component Fermi surface in the vortex state of an underdoped high-T-c superconductor SO NATURE LA English DT Article ID QUANTUM OSCILLATIONS; PHASE AB To understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing(1-6). Recent quantum oscillation experiments on high- transition- temperature ( high- T-c) copper oxide superconductors(7-10) have revealed the existence of a Fermi surface akin to that in normal metals, comprising fermionic carriers that undergo orbital quantization(11). The unexpectedly small size of the observed carrier pocket, however, leaves open a variety of possibilities for the existence or form of any underlying magnetic order, and its relation to d- wave superconductivity(12-15). Here we report experiments on quantum oscillations in the magnetization ( the de Haas- van Alphen effect) in superconducting YBa2Cu3O6.51 that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole- doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density- wave model with spiral or related modulated magnetic order, consistent with experimental observations. C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Harrison, N.; Mielke, C. H.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Palm, E.; Murphy, T. P.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM suchitra@phy.cam.ac.uk RI Mielke, Charles/S-6827-2016; OI Mielke, Charles/0000-0002-2096-5411; Harrison, Neil/0000-0001-5456-7756 NR 31 TC 176 Z9 179 U1 4 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 10 PY 2008 VL 454 IS 7201 BP 200 EP 203 DI 10.1038/nature07095 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 323RU UT WOS:000257466900040 PM 18615081 ER PT J AU Niu, FL Silver, PG Daley, TM Cheng, X Majer, EL AF Niu, Fenglin Silver, Paul G. Daley, Thomas M. Cheng, Xin Majer, Ernest L. TI Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site SO NATURE LA English DT Article ID SAN-ANDREAS FAULT; COMPRESSIONAL WAVES; SEISMIC VELOCITY; ECHO SIGNALS; TRAVEL-TIME; ROCKS; STRESS; CALIFORNIA; CRACKS AB Measuring stress changes within seismically active fault zones has been a long- sought goal of seismology. One approach is to exploit the stress dependence of seismic wave velocity, and we have investigated this in an active source cross- well experiment at the San Andreas Fault Observatory at Depth ( SAFOD) drill site. Here we show that stress changes are indeed measurable using this technique. Over a two- month period, we observed an excellent anti-correlation between changes in the time required for a shear wave to travel through the rock along a fixed pathway ( a few microseconds) and variations in barometric pressure. We also observed two large excursions in the travel- time data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. The two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre- rupture stress induced changes in crack properties, as observed in early laboratory studies(1,2). C1 [Niu, Fenglin; Cheng, Xin] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Silver, Paul G.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Daley, Thomas M.; Majer, Ernest L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Niu, FL (reprint author), Rice Univ, Dept Earth Sci, MS-126,6100 Main St, Houston, TX 77005 USA. EM niu@rice.edu RI Niu, Fenglin/A-2548-2011; Cheng, Xin/C-2973-2011; Daley, Thomas/G-3274-2015 OI Daley, Thomas/0000-0001-9445-0843 NR 20 TC 63 Z9 95 U1 2 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 10 PY 2008 VL 454 IS 7201 BP 204 EP U44 DI 10.1038/nature07111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 323RU UT WOS:000257466900041 PM 18615082 ER PT J AU Gorton, I Liu, Y Trivedi, N AF Gorton, Ian Liu, Yan Trivedi, Nihar TI An extensible and lightweight architecture for adaptive server applications SO SOFTWARE-PRACTICE & EXPERIENCE LA English DT Article DE adaptive; server applications; autonomic computing; components; performance AB Server applications augmented with behavioral adaptation logic can react to environmental changes, creating self-managing server applications with improved quality of service at runtime. However, developing adaptive server applications is challenging due to the complexity of the underlying server technologies and highly dynamic application environments. This paper presents an architecture framework, the Adaptive Server Framework (ASF), to facilitate the development of adaptive behavior for legacy server applications. ASF provides a clear separation between the implementation of adaptive behavior and the business logic of the server application. This means a server application can be extended with programmable adaptive features through the definition and implementation of control components defined in ASE Furthermore, ASF is a lightweight architecture in that it incurs low CPU overhead and memory usage. We demonstrate the effectiveness of ASF through a case study, in which a server application dynamically determines the resolution and quality to scale an image based on the load of the server and network connection speed. The experimental evaluation demonstrates the performance gains possible by adaptive behavior and the low overhead introduced by ASE Copyright (c) 2007 John Wiley & Sons, Ltd. C1 [Liu, Yan] Natl ICT Australia Ltd, Alexandria, NSW, Australia. [Gorton, Ian] Pacific NW Natl Lab, Richland, WA 99352 USA. [Trivedi, Nihar] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia. RP Liu, Y (reprint author), Natl ICT Australia Ltd, Australian Technol Pk,Garden St, Alexandria, NSW, Australia. EM jenny.liu@nicta.com.au RI Gorton, Ian/A-8247-2009 NR 18 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0038-0644 EI 1097-024X J9 SOFTWARE PRACT EXPER JI Softw.-Pract. Exp. PD JUL 10 PY 2008 VL 38 IS 8 BP 853 EP 883 DI 10.1002/spe.857 PG 31 WC Computer Science, Software Engineering SC Computer Science GA 321YA UT WOS:000257341200004 ER PT J AU Rodriguez, S Kunde, YA McCleskey, TM Hong-Geller, E AF Rodriguez, Shannan Kunde, Yuliya A. McCleskey, T. Mark Hong-Geller, Elizabeth TI Upregulation of I-CAM1 in response to beryllium exposure in small airway epithelial cells SO TOXICOLOGY LETTERS LA English DT Article DE beryllium; Chronic Beryllium Disease; I-CAM; lung epithelial cells; immune response ID INTERCELLULAR-ADHESION MOLECULE-1; NECROSIS-FACTOR-ALPHA; DIESEL EXHAUST PARTICLES; NF-KAPPA-B; GENE-EXPRESSION; SOLUBLE ICAM-1; T-CELLS; INTERFERON-GAMMA; NATURAL-HISTORY; IMMUNE-RESPONSE AB Chronic Beryllium Disease (CBD) is a delayed-type hypersensitivity immune reaction that leads to granuloma formation in the lungs and potentially severe loss of pulmonary function. Although the molecular mechanisms that mediate beryllium (Be)-stimulated granuloma formation are not well understood, cell adhesion molecules are likely to play a key role in the migration of immune cells to sites of inflammation. In this study, we examined the role of the cell adhesion molecule I-CAM1 in Be-stimulated small airway epithelial cells (SAECs). These epithelial cells line the airway and represent the first point of contact for inhaled foreign substances. We find that Be exposure specifically induced I-CAM1 expression on the cell surface of SAEC and release of soluble I-CAM1 into the extracellular medium. Furthermore, anti-I-CAM1 antibodies inhibited Be-stimulated adhesion of SAEC to the macrophage cell-line THP1, indicating that the Be-induced adhesive properties of SAEC are at least partly due to I-CAM1 expression. These studies support a model in which I-CAM1 cell adhesion functions may play a role in directing immune cells to the lung and activating a Be-specific immune response in Be hypersensitivity disease. Published by Elsevier Ireland Ltd. C1 [Rodriguez, Shannan; Kunde, Yuliya A.; Hong-Geller, Elizabeth] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [McCleskey, T. Mark] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Rodriguez, Shannan] No New Mexico Coll, Espanola, NM USA. RP Hong-Geller, E (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM ehong@lanl.gov RI McCleskey, Thomas/J-4772-2012; OI Mccleskey, Thomas/0000-0003-3750-3245 NR 45 TC 2 Z9 4 U1 0 U2 4 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD JUL 10 PY 2008 VL 179 IS 3 BP 140 EP 147 DI 10.1016/j.toxlet.2008.04.014 PG 8 WC Toxicology SC Toxicology GA 331VZ UT WOS:000258042000005 PM 18539414 ER PT J AU Antonov, VE Kolesnikov, AI Markushkin, YE Palnichenko, AV Ren, Y Sakharov, MK AF Antonov, V. E. Kolesnikov, A. I. Markushkin, Yu E. Palnichenko, A. V. Ren, Y. Sakharov, M. K. TI Heat capacity of alpha-AlH(3) and alpha-AlD(3) at temperatures up to 1000 K SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ALUMINUM-HYDRIDE; CRYSTAL-STRUCTURE; PRESSURE; EQUATION; STATE; ALH3; ALD3 AB The densest a modification of AlH(3) and AlD(3) is thermodynamically stable at high hydrogen pressures. At ambient pressure, alpha-AlH(3) and alpha-AlD(3) rapidly and irreversibly decompose to Al and H(2) or D(2) gas when heated to about 420 and 520 K, respectively. In the present paper, the heat capacities at constant volume (CV) and at constant pressure (CP) are calculated for alpha-AlH(3) and alpha-AlD(3) at a pressure of 1 atm and temperatures 0-1000 K using the phonon densities of states determined earlier by inelastic neutron scattering at helium temperatures (Kolesnikov et al 2007 Phys. Rev. B 76 064302). The C(P) ( T) dependence of AlH3 is also measured at temperatures 6-30 K and 130-320 K and that of AlD3 at 130-320 K in order to compensate for the scatter in the literature data and to improve the accuracy of the calculated C(V) and C(P) dependences at low temperatures. C1 [Antonov, V. E.; Palnichenko, A. V.; Sakharov, M. K.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. [Kolesnikov, A. I.; Ren, Y.] Argonne Natl Lab, Argonne, IL 60439 USA. [Markushkin, Yu E.] Bochvar All Russian Sci Res Inst Inorgan Mat, Moscow 123060, Russia. RP Antonov, VE (reprint author), Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. EM antonov@issp.ac.ru RI Sakharov, Mikhail/A-2570-2010; Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 17 TC 5 Z9 5 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 9 PY 2008 VL 20 IS 27 AR 275204 DI 10.1088/0953-8984/20/27/275204 PG 10 WC Physics, Condensed Matter SC Physics GA 319QH UT WOS:000257178300006 PM 21694366 ER PT J AU Farha, OK Mulfort, KL Thorsness, AM Hupp, JT AF Farha, Omar K. Mulfort, Karen L. Thorsness, Alison M. Hupp, Joseph T. TI Separating solids: Purification of metal-organic framework materials SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN STORAGE; SORPTION PROPERTIES; COORDINATION; ADSORPTION; DESIGN; BINDING; SITES C1 [Farha, Omar K.; Mulfort, Karen L.; Hupp, Joseph T.] NW Univ, Dept Chem, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Mulfort, Karen L.] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. [Thorsness, Alison M.] St Johns Univ, Coll St Benedict, St Joseph, MN 56374 USA. RP Hupp, JT (reprint author), NW Univ, Dept Chem, Int Inst Nanotechnol, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu RI Hupp, Joseph/K-8844-2012; Farha, Omar/B-5512-2014 OI Hupp, Joseph/0000-0003-3982-9812; Farha, Omar/0000-0002-9904-9845 NR 20 TC 57 Z9 57 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 9 PY 2008 VL 130 IS 27 BP 8598 EP 8599 DI 10.1021/ja803097e PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 322EP UT WOS:000257358300016 PM 18549210 ER PT J AU Lee, BC Chu, TK Dill, KA Zuckermann, RN AF Lee, Byoung-Chul Chu, Tammy K. Dill, Ken A. Zuckermann, Ronald N. TI Biomimetic nanostructures: Creating a high-affinity zinc-binding site in a folded nonbiological polymer SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHASE SUBMONOMER SYNTHESIS; PEPTOID-PEPTIDE HYBRIDS; N-SUBSTITUTED GLYCINES; CHIRAL SIDE-CHAINS; PROTEIN DESIGN; OLIGOMERS; LOOP; STABILITY; LIGANDS; POLYPEPTOIDS AB One of the long-term goals in developing advanced biomaterials is to generate protein-like nanostructures and functions from a completely nonnatural polymer. Toward that end, we introduced a high-affinity zinc-binding function into a peptoid (N-substituted glycine polymer) two-helix bundle. Borrowing from well-understood zinc-binding motifs in proteins, thiol and imidazole moieties were positioned within the peptoid such that both helices must align in close proximity to form a binding site. We used fluorescence resonance energy transfer (FRET) reporter groups to measure the change of the distance between the two helical segments and to probe the binding of zinc. We systematically varied the position and number of zinc-binding residues, as well as the sequence and size of the loop that connects the two helical segments. We found that certain peptoid two-helix bundles bind zinc with nanomolar affinities and high selectivity compared to other divalent metal ions. Our work is a significant step toward generating biomimetic nanostructures with enzyme-like functions. C1 [Lee, Byoung-Chul; Dill, Ken A.] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94143 USA. [Lee, Byoung-Chul; Dill, Ken A.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Lee, Byoung-Chul; Chu, Tammy K.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. RP Dill, KA (reprint author), Univ Calif San Francisco, Grad Grp Biophys, 600 16th St, San Francisco, CA 94143 USA. EM dill@maxwell.compbio.ucsf.edu; rnzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014 OI Zuckermann, Ronald/0000-0002-3055-8860 FU NIGMS NIH HHS [GM34993, R01 GM034993-21, R01 GM034993] NR 53 TC 87 Z9 87 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 9 PY 2008 VL 130 IS 27 BP 8847 EP 8855 DI 10.1021/ja802125x PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 322EP UT WOS:000257358300050 PM 18597438 ER PT J AU Hooper, SD Raes, J Foerstner, KU Harrington, ED Dalevi, D Bork, P AF Hooper, Sean D. Raes, Jeroen Foerstner, Konrad U. Harrington, Eoghan D. Dalevi, Daniel Bork, Peer TI A Molecular Study of Microbe Transfer between Distant Environments SO PLOS ONE LA English DT Article AB Background: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. Methodology: By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. Conclusions: Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer. C1 [Hooper, Sean D.] DOE JGI, Walnut Creek, CA USA. [Raes, Jeroen; Foerstner, Konrad U.; Harrington, Eoghan D.; Bork, Peer] EMBL, Heidelberg, Germany. [Dalevi, Daniel] Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA USA. RP Hooper, SD (reprint author), DOE JGI, Walnut Creek, CA USA. EM bork@embl.de RI Bork, Peer/F-1813-2013; OI Bork, Peer/0000-0002-2627-833X; Forstner, Konrad U./0000-0002-1481-2996 FU EU 6th Framework Programme [LSHG-CT-2004-503567, LSHG-CT-2003-503265] FX This work was supported by the EU 6th Framework Programme, Contract Nrs LSHG-CT-2004-503567 (GeneFun) and LSHG-CT-2003-503265 (BioSapiens). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 32 TC 13 Z9 14 U1 3 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 9 PY 2008 VL 3 IS 7 AR e2607 DI 10.1371/journal.pone.0002607 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 417GZ UT WOS:000264065800013 PM 18612393 ER PT J AU Paulick, MG Bertozzi, CR AF Paulick, Margot G. Bertozzi, Carolyn R. TI The glycosylphosphatidylinositol anchor: A complex membrane-anchoring structure for proteins SO BIOCHEMISTRY LA English DT Article ID GLYCOSYL-PHOSPHATIDYLINOSITOL ANCHOR; VARIANT SURFACE GLYCOPROTEIN; SUPPORTED LIPID-BILAYERS; FORMING TOXIN AEROLYSIN; PRION PROTEIN; CELL-SURFACE; SIGNAL-TRANSDUCTION; CHEMICAL-SYNTHESIS; SYNTHETIC GPI; BIOSYNTHESIS AB Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification. C1 [Paulick, Margot G.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu FU Howard Hughes Medical Institute; NIGMS NIH HHS [GM59907, R01 GM059907] NR 74 TC 224 Z9 230 U1 5 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 8 PY 2008 VL 47 IS 27 BP 6991 EP 7000 DI 10.1021/bi8006324 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 320TE UT WOS:000257257100003 PM 18557633 ER PT J AU Chao, LY Marletta, MA Rine, J AF Chao, Lily Y. Marletta, Michael A. Rine, Jasper TI Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum SO BIOCHEMISTRY LA English DT Article ID TRANSCRIPTION FACTOR GATA-1; YEAST SCHIZOSACCHAROMYCES-POMBE; NEUROSPORA-CRASSA; USTILAGO-MAYDIS; SIDEROPHORE BIOSYNTHESIS; ESCHERICHIA-COLI; TRANSPORT; EXPRESSION; URBS1; FEP1 AB The pathogenic fungus Histoplasma capsulatum requires iron for its survival during macrophage infection. Because iron is toxic at high levels, iron acquisition in pathogenic organisms, including H. capsulatum, is a highly regulated process. In response to excess iron, H. capsulatum represses transcription of genes involved in iron uptake. We report here that SRE1, a gene encoding a GATA-type protein, bound to promoter sequences of genes involved in siderophore biosynthesis. Sre1 had sequence similarity to the fungal negative regulators of siderophore biosynthesis. Expression of SRE1 was reduced under iron-starving conditions, underscoring its role as a negative regulator of genes involved in iron uptake. Sre1p specifically bound DNA containing the 5'-(G/A)ATC(T/A)GATAA-3' sequence, and that binding was both iron- and zinc-dependent. Metal analysis indicated that a substoichiometric amount of iron, predominately Fe3+, was bound to the purified protein. About 0.5-1 equiv of Fe3+ per monomer was necessary for full DNA-binding activity. Mutations in the conserved cysteine residues in the cysteine-rich region led to a decrease in bound iron. The loss of iron led to a similar to 2.5-fold decrease in DNA-binding affinity, indicating that iron was directly involved in SRE1 regulation of iron-uptake genes. C1 [Marletta, Michael A.; Rine, Jasper] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Marletta, Michael A.; Rine, Jasper] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Chao, Lily Y.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, 570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu; jrine@berkeley.edu FU NIGMS NIH HHS [GM35827, GM31105, R01 GM035827] NR 42 TC 40 Z9 40 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 8 PY 2008 VL 47 IS 27 BP 7274 EP 7283 DI 10.1021/bi800066s PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 320TE UT WOS:000257257100032 PM 18549241 ER PT J AU Xing, HZ Li, JY Yan, WF Chen, P Jin, Z Yu, JH Dai, S Xu, RR AF Xing, Hongzhu Li, Jiyang Yan, Wenfu Chen, Peng Jin, Zhao Yu, Jihong Dai, Sheng Xu, Ruren TI Cotemplating ionothermal synthesis of a new open-framework aluminophosphate with unique Al/P ratio of 6/7 SO CHEMISTRY OF MATERIALS LA English DT Article ID STRUCTURE-DIRECTING ROLE; MOLECULAR-SIEVES; ZEOLITE; TEMPLATE C1 [Xing, Hongzhu; Li, Jiyang; Yan, Wenfu; Chen, Peng; Jin, Zhao; Yu, Jihong; Xu, Ruren] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. [Dai, Sheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yu, JH (reprint author), Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. EM jihong@jlu.edu.cn RI yu, jihong/C-1381-2011; Li, Jiyang/O-3056-2013; Dai, Sheng/K-8411-2015 OI yu, jihong/0000-0003-1991-2942; Dai, Sheng/0000-0002-8046-3931 NR 18 TC 72 Z9 74 U1 5 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 8 PY 2008 VL 20 IS 13 BP 4179 EP 4181 DI 10.1021/cm800701x PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 321BM UT WOS:000257279200005 ER PT J AU Abakumov, AM Rossell, MD Gutnikova, OY Drozhzhin, OA Leonova, LS Dobrovolsky, YA Istomin, SY Van Tendeloo, G Antipovt, EV AF Abakumov, Artem M. Rossell, Marta D. Gutnikova, Olga Yu. Drozhzhin, Oleg A. Leonova, Ludmila S. Dobrovolsky, Yuri A. Istomin, Sergey Ya. Van Tendeloo, Gustaaf Antipovt, Evgeny V. TI Superspace description, crystal structures, and electric conductivity of the Ba4In6-xMgxO13-x/2 solid solutions SO CHEMISTRY OF MATERIALS LA English DT Article ID MODULATED STRUCTURE; SR4FE6O13+/-DELTA; BA2IN2O5; MICROSTRUCTURE; PEROVSKITE; TRANSPORT; MECHANISM; SR2FE2O5; DEFECTS; OXIDES AB Ba3In6-xMgxO13-x/2 solid solutions have been prepar for 0 <= x <= 0.4 and their crystal structures have been studied by transmission electron microscopy and X-ray powder diffraction. The compounds adopt a modulated structure with a face-centered orthorhombic average unit cell with a(0)approximate to a(p) root 2, b(0)approximate to 20.5 angstrom, c(0)approximate to a(p) root 2 (a(p) - parameter of the perovskite subcell) and modulation vector.q=alpha a(0)* , which is compositionally dependent according to the Ba4In4+4 alpha Mg2-4 alpha O12+2 alpha formula.The -superspace group Xmms(alpha 00)0s0 Xrnrn2(a00)0s0 with centering vectors (0,1/2,1/2,1/2), (1/2,0,1/2,0.(1/2,1/2,0 1/2) was propose ed from electron diffraction and structural considerations. A unified suoersoace model is" construtted'to describe the atomic arrangements and the variable oxygen content in the modulated (In, Mg)2Q2+a layers with rock-salt type structure. This model was used to refine the crystai structures of two x= 0 (R-I 0.040, R-p = 0.042) and x = 0.4 (R-I = 0.062, R-p = 0.040) limiting points of the solid solu tions. The cations in these layers adopt a five-fold coordination that can be virtually classified as strongly distorted trigonal bipyramids and tetragonal pyramids. The close similarity of the structural organization of the Ba4In6-xMgxO13-x/2 solid solutions, Sr4Fe6O13 and its anion-deficient derivatives is discussed. Electric conductivity of the Ba4In6-xMgxO13-x/2 was studied by impedance spectroscopy indicating mixed ionicelectronic type of conductivity. Electronic conductivity at different P(O-2) was compared for Ba4In6-xMgxO13-x/2 and Ba2In2O5 and discussed taking into account the peculiarities of their crystal structures. C1 [Abakumov, Artem M.; Gutnikova, Olga Yu.; Drozhzhin, Oleg A.; Istomin, Sergey Ya.; Antipovt, Evgeny V.] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia. [Rossell, Marta D.; Van Tendeloo, Gustaaf] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium. [Drozhzhin, Oleg A.; Leonova, Ludmila S.; Dobrovolsky, Yuri A.] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia. [Rossell, Marta D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Abakumov, AM (reprint author), Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia. EM abakumov@icr.chem.msu.ru RI Dobrovolsky, Yury/D-9634-2014; Leonova, Lyudmila/A-8405-2014; Istomin, Sergey Ya./E-2548-2016; Rossell, Marta/E-9785-2017; OI Dobrovolsky, Yury/0000-0002-2163-6863; Istomin, Sergey Ya./0000-0002-9748-072X; Drozhzhin, Oleg/0000-0001-9588-6630 NR 29 TC 14 Z9 14 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 8 PY 2008 VL 20 IS 13 BP 4457 EP 4467 DI 10.1021/cm8004216 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 321BM UT WOS:000257279200041 ER PT J AU Cheng, G Hua, F Melnichenko, YB Hong, K Mays, JW Hammouda, B Wignall, GD AF Cheng, Gang Hua, Fengjun Melnichenko, Yuri B. Hong, Kunlun Mays, Jimmy W. Hammouda, Boualem Wignall, George D. TI Association and structure of thermosensitive comblike block copolymers in aqueous solutions SO MACROMOLECULES LA English DT Article ID ANGLE NEUTRON-SCATTERING; MICELLAR STRUCTURE; TEMPERATURE; TRANSITIONS; POLYMERS; SOLVENTS; BEHAVIOR AB The structures and association properties of thermosensitive block copolymers of poly(methoxyoligo(ethylene glycol) norbornenyl esters) in D(2)O were investigated by small angle neutron scattering (SANS). Each block is a comblike polymer with a polynorbornene (PNB) backbone and oligo ethylene glycol (OEG) side chains (one side chain per NB repeat unit). The chemical formula of the block copolymer is (OEG(3)NB)(79)-(OEG(6.6)NB)(67), where subscripts represent the degree of polymerization (DP) of OEG and NB in each block. The polymer concentration was fixed at 2.0 wt % and the structural changes were investigated over a temperature range between 25 and 68 degrees C. It was found that at room temperature polymers associate to form micelles with a spherical core formed by the block (OEG(3)NB)(79) and corona formed by the block (OEG(6.6)NB)(67) and that the shape of the polymer in the corona could be described by the form factor of rigid cylinders. At elevated temperatures, the aggregation number increased and the micelles became more compact. At temperatures around the cloud point temperature (CPT) T = 60 degrees C a correlation peak started to appear and became pronounced at 68 degrees C due to the formation of a partially ordered structure with a correlation length similar to 349 angstrom. C1 [Cheng, Gang; Melnichenko, Yuri B.; Wignall, George D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hua, Fengjun; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hammouda, Boualem] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Cheng, G (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Hong, Kunlun/E-9787-2015; OI Hong, Kunlun/0000-0002-2852-5111; Wignall, George/0000-0002-3876-3244 NR 26 TC 16 Z9 17 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 8 PY 2008 VL 41 IS 13 BP 4824 EP 4827 DI 10.1021/ma702580v PG 4 WC Polymer Science SC Polymer Science GA 322HQ UT WOS:000257366200041 ER PT J AU Svaneborg, C Everaers, R Grest, GS Curro, JG AF Svaneborg, Carsten Everaers, Ralf Grest, Gary S. Curro, John G. TI Connectivity and entanglement stress contributions in strained polymer networks SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CROSS-LINKING NETWORKS; STATISTICAL-MECHANICS; RUBBER ELASTICITY; PERMANENT SET; RELAXATION; MELTS; PATH; ELASTOMERS; TOPOLOGY AB Using molecular dynamics simulations and a variant of our primitive path analysis algorithm, we have measured the total stress as well as the connectivity stress contribution for a large variety of generic bead-spring model polymer networks. For randomly cross- and end-linked networks the inferred entanglement stress contribution is excellent agreement with the predictions of the Rubinstein-Panyukov slip-tube model (Macromolecules 2002, 35, 6670). For networks undergoing further cross-linking and bond-breaking in the strained state (chemical aging), the observed stress-strain behavior can be described by a generalization of the slip-tube model in the spirit of Tobolsky's independent network hypothesis. The stress-transfer between independent networks during postcuring appears to obey unexpectedly simple relations. C1 [Svaneborg, Carsten] Univ Aarhus, Dept Chem, DK-8000 Aarhus, Denmark. [Svaneborg, Carsten] Univ Aarhus, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark. [Everaers, Ralf] Univ Lyon 1, Ecole Normale Super Lyon, CNRS, Phys Lab,UMR 5672, F-69364 Lyon, France. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Curro, John G.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Svaneborg, C (reprint author), Univ Aarhus, Dept Chem, Langelandsgade 140, DK-8000 Aarhus, Denmark. RI M & C, Matter & Complexity/B-9044-2011; Everaers, Ralf/K-2228-2013 OI Everaers, Ralf/0000-0002-6843-2753 NR 38 TC 27 Z9 27 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 8 PY 2008 VL 41 IS 13 BP 4920 EP 4928 DI 10.1021/ma800018f PG 9 WC Polymer Science SC Polymer Science GA 322HQ UT WOS:000257366200055 ER PT J AU Han, R Zhang, YW Dong, XL Gai, HW Yeung, ES AF Han, Rui Zhang, YeWang Dong, Xiuling Gai, Hongwei Yeung, Edward S. TI Spectral imaging of single molecules by transmission grating-based epi-fluorescence microscopy SO ANALYTICA CHIMICA ACTA LA English DT Article DE single protein molecule; first-order spectrum; transmission grating; fluorescence microscopy ID PROTEIN MOLECULES; CAPILLARY-ELECTROPHORESIS; DISPERSED FLUORESCENCE; SPECTROSCOPY; INTERFACE; FIELD; DYNAMICS; DNA; ADSORPTION; DIFFUSION AB A spectral imaging method of single protein molecules labeled with a single fluorophore is presented. The method is based on a transmission grating and a routine fluorescence microscope. The bovine serum albumin (BSA) and antiBSA molecules labeled with Alexa Fluor 488 and Alexa Fluor 594, respectively, are used as the model proteins. The fluorescence of single molecules is dispersed into zeroth-order spectrum and first-order spectrum by the transmission grating. Results show that the fluorescence emission spectrum of single molecule converted from the first-order spectral imaging is in good agreement with the bulk fluorescence spectrum. The spectral resolution of 2.4 nm/pixel is obtained, which is sufficient for identifying the molecular species in a multicomponent system. (C) 2008 Elsevier B.V. All rights reserved. C1 [Han, Rui; Gai, Hongwei; Yeung, Edward S.] Hunan Univ, Ctr Biomed Engn, Changsha 410082, Hunan, Peoples R China. [Zhang, YeWang] Jiangsu Univ, Sch Pharmaceut, Zhenjiang 212013, Peoples R China. [Dong, Xiuling] Dalian Third Municipal Hosp, Dalian 116033, Peoples R China. [Gai, Hongwei] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. [Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Yeung, Edward S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Gai, HW (reprint author), Hunan Univ, Ctr Biomed Engn, A202, Changsha 410082, Hunan, Peoples R China. EM gaihw@hnu.cn RI Zhang, Yewang/A-7260-2008; Zhang, Ye-Wang/E-6119-2015 OI Zhang, Yewang/0000-0002-2292-615X; NR 34 TC 18 Z9 18 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD JUL 7 PY 2008 VL 619 IS 2 BP 209 EP 214 DI 10.1016/j.aca.2008.05.017 PG 6 WC Chemistry, Analytical SC Chemistry GA 326FO UT WOS:000257644100008 PM 18558114 ER PT J AU Pao, CW Srolovitz, DJ AF Pao, Chun-Wei Srolovitz, David J. TI Compressive film stress in a thin, tensile heteroepitaxial film SO APPLIED PHYSICS LETTERS LA English DT Article ID SURFACE; EPITAXY; GROWTH; SOLIDS AB We performed atomistic scale simulations to simulate the heteroepitaxial growth of a film with a 0.62% tensile misfit strain and monitored the stress evolution. The calculated sigma-(f)t(f) is initially compressive but increases after the first monolayer is completed. We provide theoretical and simulation evidence that this effect is associated with surface stresses. These results demonstrate that wafer curvature measurements lead to unreliable predictions of film stresses when the film is very thin. (c) 2008 American Institute of Physics. C1 [Pao, Chun-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Srolovitz, David J.] Yeshiva Univ, Dept Phys, New York, NY 10033 USA. RP Pao, CW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cwpao@lanl.gov RI Pao, Chun-Wei/D-3307-2009 OI Pao, Chun-Wei/0000-0003-0821-7856 NR 17 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 7 PY 2008 VL 93 IS 1 AR 011903 DI 10.1063/1.2955833 PG 3 WC Physics, Applied SC Physics GA 333WP UT WOS:000258184600018 ER PT J AU Chen, BL Ji, YY Xue, M Fronczek, FR Hurtado, EJ Mondal, JU Liang, CD Dai, S AF Chen, Banglin Ji, Yanyan Xue, Ming Fronczek, Frank R. Hurtado, Eric J. Mondal, Jalal U. Liang, Chengdu Dai, Sheng TI Metal-organic framework with rationally tuned micropores for selective adsorption of water over methanol SO INORGANIC CHEMISTRY LA English DT Article ID SECONDARY BUILDING UNITS; FIXED-BED ADSORPTION; HIGH H-2 ADSORPTION; GAS-SORPTION; COORDINATION-FRAMEWORK; SEPARATION; HYDROGEN; CRYSTAL; MOLECULES; POLYMERS AB A microporous metal-organic framework 1, Cu(R-GLA-Me)(4,4'-Bipy)(0.5)center dot 0.55H(2)O (R-GLA-Me = R-2-methylglutarate, 4,4'-Bipy = 4,4'-bipyridine), with a primitive cubic net was synthesized and characterized. With pores of about 2.8 x 3.6 angstrom, the activated 1a exhibits exclusive adsorption of water over methanol in a binary water-methanol (1:1) liquid mixture. C1 [Chen, Banglin; Xue, Ming; Hurtado, Eric J.; Mondal, Jalal U.] Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78539 USA. [Ji, Yanyan; Xue, Ming] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130023, Peoples R China. [Fronczek, Frank R.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Liang, Chengdu; Dai, Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Liang, Chengdu; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Chen, BL (reprint author), Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78539 USA. EM banglin@utpa.edu RI Chen, Banglin/F-5461-2010; Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015 OI Chen, Banglin/0000-0001-8707-8115; Dai, Sheng/0000-0002-8046-3931 NR 46 TC 63 Z9 63 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2008 VL 47 IS 13 BP 5543 EP 5545 DI 10.1021/ic8004008 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 321BB UT WOS:000257278000008 PM 18512902 ER PT J AU Veauthier, JM Schelter, EJ Carlson, CN Scott, BL Da Re, RE Thompson, JD Kiplinger, JL Morris, DE John, KD AF Veauthier, Jacqueline M. Schelter, Eric J. Carlson, Christin N. Scott, Brian L. Da Re, Ryan E. Thompson, J. D. Kiplinger, Jaqueline L. Morris, David E. John, Kevin D. TI Direct comparison of the magnetic and electronic properties of samarocene and ytterbocene terpyridine complexes SO INORGANIC CHEMISTRY LA English DT Article ID CHARGE-TRANSFER; IMPROVED ELECTROCHEMISTRY; LANTHANIDE COMPLEXES; GROUND-STATE; COORDINATION; LIGANDS; DECAMETHYLYTTERBOCENE; (C5ME5)2SM(THF)2; BIPYRIDINES; EXAMPLES AB A new complex, Cp*Sm-2(tpy) (1, where Cp* = C5Me5, tpy = 2,2':6',2 ''-terpyridine) and its one-electron oxidized congener [Cp*Sm-2(tpy)]PF6 ([1](+)) have been synthesized and characterized with the aim of comparing their electronic and magnetic behavior to the known ytterbium analogues: Cp*Yb-2(tpy) (2) and [Cp*Yb-2(tpy)]OTf ([2](+)). These new samarium complexes have been characterized using single-crystal X-ray diffraction, H-1 NMR spectroscopy, cyclic voltammetry, optical spectroscopy, and bulk magnetic susceptibility measurements. All data for 1 indicate a Sm(III)-tpy center dot (-)[(4f)(5)-(pi*)(1)] ground-state electronic configuration similar to that found previously for 2 [(4f)(13)-(pi*)(1)]. Structural comparisons reveal that there are no significant changes in the overall geometries associated with the neutral and cationic samarium and ytterbium congeners aside from those anticipated based upon the lanthanide contraction. The redox potentials for the divalent. Cp*(2)Ln(THF)(n) precursors (E-1/2 (Sm2+) = -2.12 V, E-1/2(Yb2+) = -1.48 V) are consistent with established trends, the redox potentials (metal-based reduction and ligand-based oxidation) for 1 are nearly identical to those for 2. The correlation in the optical spectra of 1 and 2 is excellent, as expected for this ligand-radical based electronic structural assignment, but there does appear to be a red-shift (similar to 400 cm(-1)) in all of the bands of 1 relative to those of 2 that suggests a slightly greater stabilization of the pi* level(s) in the samarium(III) complex compared to that in the ytterbium(III) complex. Similar spectroscopic overlap is observed for the monocationic complexes [1](+) and [2](+). Bulk magnetic susceptibility measurements for 1 reveal significantly different behavior than that of 2 due to differences in the electronic-state structure of the two metal ions. The implications of these differences in magnetic behavior are discussed. C1 [Veauthier, Jacqueline M.; Schelter, Eric J.; Carlson, Christin N.; Scott, Brian L.; Da Re, Ryan E.; Thompson, J. D.; Kiplinger, Jaqueline L.; Morris, David E.; John, Kevin D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP John, KD (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM kjohn@lani.gov RI Schelter, Eric/E-2962-2013; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Veauthier, Jacqueline/0000-0003-2206-7786; John, Kevin/0000-0002-6181-9330 NR 41 TC 39 Z9 39 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2008 VL 47 IS 13 BP 5841 EP 5849 DI 10.1021/ic8001465 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 321BB UT WOS:000257278000047 PM 18540594 ER PT J AU Barrios, LA Aromi, G Frontera, A Quinonero, D Deya, PM Gamez, P Roubeau, O Shotton, EJ Teat, SJ AF Barrios, Leoni A. Aromi, Guillem Frontera, Antonio Quinonero, David Deya, Pere M. Gamez, Patrick Roubeau, Olivier Shotton, Elizabeth J. Teat, Simon J. TI Coordination complexes exhibiting anion center dot center dot center dot pi interactions: Synthesis, structure, and theoretical studies SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTALLOGRAPHIC EVIDENCE; HETEROAROMATIC RINGS; DONOR LIGANDS; S-TRIAZINE; CATION-PI; RECEPTORS; BINDING; RECOGNITION; RADII; COPPER(II) AB The polydentate ligand 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (dpyatriz) in combination with the Cu(ClO(4))(2)/CuX(2) salt mixtures (X(-) = Cl(-), Br(-), or (-)(3)) leads to the formation of molecular coordination aggregates with formulas [Cu(3)Cl(3)(dpyatriz)(2)](ClO(4))(3) (2), [Cu(3)Br(3)(dpyatriz)(2)](ClO(4))(3) (3), and [Cu(4)(N(3))(4)(dpyatriz)(2)(DMF)(4)(ClO(4))(2)](ClO(4))(2) (4). These complexes consist of two dpyatriz ligands bridged via coordination to Cull and disposed either face-to-face in an eclipsed manner (2 and 3) or parallel and mutually shifted in one direction. The copper ions complete their coordination positions with Cl(-) (2), Br(-) (3), or N(3)(-), ClO(4)(-), and N,N-dimethylformamide (DMF) (4) ligands. All complexes crystallize together with noncoordinate ClO(4)(-) groups that display anion center dot center dot center dot pi interactions with the triazine rings. These interactions have been studied by means of high level ab initio calculations and the MIPp partition scheme. These calculations have proven the ClO(4)(-) center dot center dot center dot [C(3)N(3)] interactions to be favorable and have revealed a synergistic effect from the combined occurrence of pi-pi stacking of triazine rings and the interaction of these moieties with perchlorate ions, as observed in the experimental systems. C1 [Barrios, Leoni A.; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Frontera, Antonio; Quinonero, David; Deya, Pere M.] Univ Illes Balears, Dept Chem, Palma de Mallorca 07122, Spain. [Gamez, Patrick] Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, NL-2300 RA Leiden, Netherlands. [Roubeau, Olivier] Univ Bordeaux 1, Ctr Rech Paul Pascal, CNRS, F-33600 Pessac, France. [Shotton, Elizabeth J.; Teat, Simon J.] CCLRC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Aromi, G (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 647, E-08028 Barcelona, Spain. EM toni.frontera@uib.es RI Roubeau, Olivier/A-6839-2010; Gamez, Patrick/B-3610-2012; Frontera, Antonio/G-4517-2010; Shotton, Elizabeth/C-3486-2014; Deya, Pere/K-4215-2014; Aromi, Guillem/I-2483-2015; BARRIOS MORENO, LEONI ALEJANDRA/E-5413-2017 OI Roubeau, Olivier/0000-0003-2095-5843; Gamez, Patrick/0000-0003-2602-9525; Frontera, Antonio/0000-0001-7840-2139; Deya, Pere/0000-0002-9825-7693; Aromi, Guillem/0000-0002-0997-9484; BARRIOS MORENO, LEONI ALEJANDRA/0000-0001-7075-9950 NR 53 TC 56 Z9 56 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2008 VL 47 IS 13 BP 5873 EP 5881 DI 10.1021/ic800215r PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 321BB UT WOS:000257278000051 PM 18510284 ER PT J AU Ginovska, B Camaioni, DM Dupuis, M AF Ginovska, Bojana Camaioni, Donald M. Dupuis, Michel TI The H2O2+OH -> HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HYDROGEN ABSTRACTION REACTION; RATE CONSTANTS; FREE-ENERGIES; AB-INITIO; BASIS-SET; HYDROXYL RADICALS; 1ST-ROW ELEMENTS; PEROXIDE; WATER; KINETICS AB We applied our recently developed protocol of the conductorlike continuum model of solvation to describe the title reaction in aqueous solution. The model has the unique feature of the molecular cavity being dependent on the atomic charges in the solute and can be extended naturally to transition states and reaction pathways. It was used to calculate the reaction energetics and reaction rate in solution for the title reaction. The rate of reaction calculated using canonical variational transition state theory in the context of the equilibrium solvation path approximation, and including correction for tunneling through the small curvature approximation, was found to be 3.6x10(6) M-1 s(-1), significantly slower than in the gas phase in accord with experiment. These results suggest that the present protocol of the conductorlike continuum model of solvation with the charge-dependent cavity definition captures qualitatively and quantitatively the solvation effects at transition states and allows for quantitative estimates of reaction rates in solutions. (c) 2008 American Institute of Physics. C1 [Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Ginovska, B (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM donald.camaioni@pnl.gov NR 58 TC 8 Z9 8 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2008 VL 129 IS 1 AR 014506 DI 10.1063/1.2943315 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 323SG UT WOS:000257468100024 PM 18624482 ER PT J AU Kohara, S Takata, M Matsumoto, K Hagiwara, R Suzuya, K Morita, H Siewenie, JE Benmore, CJ AF Kohara, Shinji Takata, Masaki Matsumoto, Kazuhiko Hagiwara, Rika Suzuya, Kentaro Morita, Hidetoshi Siewenie, Joan E. Benmore, Chris J. TI Very strong hydrogen bonds in a bent chain structure of fluorohydrogenate anions in liquid Cs(FH)(2.3)F SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; CRYSTAL-STRUCTURES; NEUTRON-DIFFRACTION; MOLTEN-SALTS; FLUORIDE; SCATTERING AB The structure of liquid Cs(FH)(2.3)F was revealed using a combination of high-energy x-ray and neutron diffraction measurements. We found that the strongest intermolecular H-F hydrogen bonds at an average distance of 1.36 A are accompanied by the formation of a high degree of bending of the oligomer chain in the melt, with angle FHF=150 degrees. A reverse Monte Carlo simulation showed that the average number of atoms per chain is 4.4. A detailed chain analysis of the atomic configuration revealed that (FH)(2)F(-) oligomer chains are the major entities in the liquid, and asymmetrical FHF(-) are formed owing to the strong H-F hydrogen bonds. The results suggest that an average of one or two HF molecules bond to each of the 11 fluorine atoms surrounding a cesium ion. (C) 2008 American Institute of Physics. C1 [Kohara, Shinji; Takata, Masaki] Japan Synchrotron Radiat Res Inst, Res & Utilizat Div, Sayo Cho, Hyogo 6795198, Japan. [Matsumoto, Kazuhiko; Hagiwara, Rika] Kyoto Univ, Grad Sch Energy Sci, Sakyo Ku, Kyoto 6068501, Japan. [Suzuya, Kentaro] Japan Atom Energy Agcy, J PARC Ctr, Tokai, Ibaraki 3191195, Japan. [Morita, Hidetoshi] Yamagata Univ, Grad Sch Sci & Engn, Yamagata 9908560, Japan. [Siewenie, Joan E.; Benmore, Chris J.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Kohara, S (reprint author), Japan Synchrotron Radiat Res Inst, Res & Utilizat Div, 1-1-1 Kouto, Sayo Cho, Hyogo 6795198, Japan. EM kohara@spring8.or.jp OI Benmore, Chris/0000-0001-7007-7749 NR 31 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2008 VL 129 IS 1 AR 014512 DI 10.1063/1.2944269 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 323SG UT WOS:000257468100030 PM 18624488 ER PT J AU Sun, J Lu, WC Li, ZS Wang, CZ Ho, KM AF Sun, Jiao Lu, Wen-Cai Li, Ze-Sheng Wang, C. Z. Ho, K. M. TI Appearance of the bulk motif in Al clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ALUMINUM CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-PROPERTIES; APPROXIMATION; IODIDE; AL-13; IONS AB We have performed an unbiased search for the lowest-energy structures of medium-sized aluminum clusters Al(n) (n=19-26) using a genetic algorithm (GA) coupled with a tight-binding interatomic potential. Structural candidates obtained from our GA search were further optimized using density functional theory. It is found that the double icosahedron is not the most stable structure for Al(19) but serves as the core for Al(20) and Al(21). The lowest-energy structures of Al(n) are found to undergo a transition to an aluminum bulk motif above Al(23). In particular, the lowest-energy structure of Al(26) is almost a fragment of the bulk face-centered-cubic crystal except for the stacking fault at the bottom layer. Anion clusters were also studied. (C) 2008 American Institute of Physics. C1 [Sun, Jiao; Lu, Wen-Cai; Li, Ze-Sheng] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Dept Phys, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Dept Chem, Qingdao 266071, Shandong, Peoples R China. [Wang, C. Z.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Sun, J (reprint author), Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@yahoo.com NR 34 TC 21 Z9 22 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2008 VL 129 IS 1 AR 014707 DI 10.1063/1.2946695 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 323SG UT WOS:000257468100038 PM 18624496 ER PT J AU Xu, ZJ Meakin, P AF Xu, Zhijie Meakin, Paul TI Phase-field modeling of solute precipitation and dissolution SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ARBITRARY VISCOSITY CONTRAST; HELE-SHAW FLOWS; SPINODAL DECOMPOSITION; SOLIDIFICATION; DIMENSIONS; CONVECTION; GROWTH; MOTION AB A phase-field approach to the dynamics of liquid-solid interfaces that evolve due to precipitation and/or dissolution is presented. For the purpose of illustration and comparison with other methods, phase-field simulations were carried out assuming first order reaction (dissolution/precipitation) kinetics. In contrast to solidification processes controlled by a temperature field that is continuous across the solid/liquid interface (with a discontinuous temperature gradient), precipitation/dissolution is controlled by a solute concentration field that is discontinuous at the solid/liquid interface. The sharp-interface asymptotic analysis of the phase-field equations for solidification [A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998)] has been modified for precipitation/dissolution processes to demonstrate that the phase-field equations converge to the proper sharp-interface limit. The mathematical model has been validated for a one-dimensional precipitation/dissolution problem by comparison with the analytical solution. (C) 2008 American Institute of Physics. C1 [Xu, Zhijie; Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, N-0316 Oslo, Norway. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2027 Kjeller, Norway. RP Xu, ZJ (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM zhijie.xu@inl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 20 TC 35 Z9 35 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2008 VL 129 IS 1 AR 014705 DI 10.1063/1.2948949 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 323SG UT WOS:000257468100036 PM 18624494 ER PT J AU Horwat, D Anders, A AF Horwat, David Anders, Andre TI Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID THIN-FILMS; DENSITIES; DISCHARGE AB The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced. The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (dc) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities to the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions. C1 [Horwat, David; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Horwat, David] Nancy Univ, CNRS, Laboratoire Sci & G enie Surfaces, F-54042 Nancy, France. RP Horwat, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM David.Horwat@mines.inpl-nancy.fr RI Horwat, David/I-8740-2012; Anders, Andre/B-8580-2009; OI Anders, Andre/0000-0002-5313-6505; Horwat, David/0000-0001-7938-7647 NR 18 TC 22 Z9 23 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2008 VL 41 IS 13 AR 135210 DI 10.1088/0022-3727/41/13/135210 PG 6 WC Physics, Applied SC Physics GA 316DC UT WOS:000256928100069 ER PT J AU Shinar, J Shinar, R AF Shinar, Joseph Shinar, Ruth TI Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID DETECTED MAGNETIC-RESONANCE; POLY(PARA-PHENYLENE)-TYPE LADDER-POLYMERS; PI-CONJUGATED POLYMERS; METHYLOSINUS-TRICHOSPORIUM OB3B; CURRENT-VOLTAGE CHARACTERISTICS; TRIPLET-TRIPLET ANNIHILATION; ENHANCED ELECTRON INJECTION; CHARGE-LIMITED CONDUCTION; OXYGEN SENSING MATERIAL; ANTHRAX LETHAL FACTOR AB The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of similar to 2 x 10(5) h (similar to 23 yr) at similar to 150 Cdm(-2) ( the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e. g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons ( to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (> 1000 Cdm(-2)). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor ( micro) arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen ( DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. C1 [Shinar, Joseph] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Shinar, Ruth] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. RP Shinar, J (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. NR 250 TC 128 Z9 128 U1 6 U2 113 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2008 VL 41 IS 13 AR 133001 DI 10.1088/0022-3727/41/13/133001 PG 26 WC Physics, Applied SC Physics GA 316DC UT WOS:000256928100008 ER PT J AU Kumaran, D Rawat, R Ludivico, ML Ahmed, SA Swaminathan, S AF Kumaran, Desigan Rawat, Richa Ludivico, Matthew L. Ahmed, S. Ashraf Swaminathan, Subramanyam TI Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID AMINO-ACID-COMPOSITION; ELECTRON-DENSITY MAPS; ACTIVE-SITE RESIDUES; LIGHT-CHAIN; MOLECULAR-GRAPHICS; CRYSTAL-STRUCTURE; PROTEASE ACTIVITY; TETANUS TOXIN; CLEAVAGE; SYNAPTOBREVIN AB The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins cleave specific soluble N-ethylmaleimidesensitive factor attachment protein receptor complex proteins and block the release of neurotransmitters that cause flaccid paralysis and are considered potential bioweapons. Botulinum neurotoxin type A is the most potent among the clostridial neurotoxins, and to date there is no post-exposure therapeutic intervention available. To develop inhibitors leading to drug design, it is imperative that critical interactions between the enzyme and the substrate near the active site are known. Although enzyme-substrate interactions at exosites away from the active site are mapped in detail for botulinum neurotoxin type A, information about the active site interactions is lacking. Here, we present the crystal structures of botulinum neurotoxin type A catalytic domain in complex with four inhibitory substrate analog tetrapeptides, viz. RRGC, RRGL, RRGI, andRRGM at resolutions of 1.6-1.8 A. These structures show for the first time the interactions between the substrate and enzyme at the active site and delineate residues important for substrate stabilization and catalytic activity. We show that OH of Tyr(366) and NH(2) of Arg(363) are hydrogen-bonded to carbonyl oxygens of P1 and P1' of the substrate analog and position it for catalytic activity. Most importantly, the nucleophilic water is replaced by the amino group of the N-terminal residue of the tetrapeptide. Furthermore, the S1' site is formed by Phe(194), Thr(215), Thr(220), Asp(370), and Arg(363). The K(i) of the best inhibitory tetrapeptide is 157 nM. C1 [Kumaran, Desigan; Rawat, Richa; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Ludivico, Matthew L.; Ahmed, S. Ashraf] USA, Med Res Inst Infect Dis, Dept Mol Biol, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov NR 50 TC 43 Z9 43 U1 1 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 4 PY 2008 VL 283 IS 27 BP 18883 EP 18891 DI 10.1074/jbc.M801240200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 319LR UT WOS:000257165600045 PM 18434312 ER PT J AU Martin, RG Bartlett, ES Rosner, JL Wall, ME AF Martin, Robert G. Bartlett, Emily S. Rosner, Judah L. Wall, Michael E. TI Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE gene regulation; AraC protein family; stress response ID ANTIBIOTIC-RESISTANCE OPERON; SOXS BINDING-SITES; LON PROTEASE; PROMOTERS; MARA; MARRAB; DEGRADATION; ORIENTATION; MECHANISM; BACTERIA AB The paralogous transcriptional activators MarA, SoxS, and Rob activate a common set of promoters, the marA/soxS/rob regulon of Escherichia coli, by binding a cognate site (marbox) upstream of each promoter. The extent of activation varies from one promoter to another and is only poorly correlated with the in vitro affinity of the activator for the specific marbox. Here, we examine the dependence of promoter activation on the level of activator in vivo by manipulating the steady-state concentrations of MarA and SoxS in Lon protease mutants and by measuring promoter activation using lacZ transcriptional fusions. We found that: (i) the MarA concentrations needed for half-maximal stimulation varied by at least 19-fold among the 10 promoters tested; (ii) most marboxes were not saturated when there were 24,000 molecules of MarA per cell; (iii) the correlation between the MarA concentration needed for half-maximal promoter activity in vivo and marbox binding affinity in vitro was poor; and (iv) the two activators differed in their promoter activation profiles. The marRAB and sodA promoters could both be saturated by MarA and SoxS in vivo. However, saturation by MarA resulted in greater marRAB and lesser sodA transcription than did saturation by SoxS, implying that the two activators interact with RNA polymerase in different ways at the different promoters. Thus, the concentration and nature of activator determine which regulon promoters are activated, as well as the extent of their activation. Published by Elsevier Ltd. C1 [Martin, Robert G.; Bartlett, Emily S.; Rosner, Judah L.] NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA. [Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Biosci Div, Los Alamos, NM 87545 USA. [Wall, Michael E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Martin, RG (reprint author), NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA. EM rgmartin@helix.nih.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 FU Intramural NIH HHS [Z01 DK036116-16] NR 28 TC 36 Z9 36 U1 0 U2 4 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 4 PY 2008 VL 380 IS 2 BP 278 EP 284 DI 10.1016/j.jmb.2008.05.015 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 326AJ UT WOS:000257630000002 PM 18514222 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Observation of the B-c meson in the exclusive decay B-c -> J/psi pi SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEARCH; SPECTROSCOPY; PHYSICS AB A fully reconstructed B-c -> J/psi pi signal is observed with the D0 detector at the Fermilab Tevatron p (p) over bar collider using 1.3 fb(-1) of integrated luminosity. The signal consists of 54 +/- 12 candidates with a significance that exceeds 5 standard deviations, and confirms earlier observations of this decay. The measured mass of the B-c meson is 6300 +/- 14(stat)+/- 5(syst) MeV/c(2). C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kappler, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Inst NIKHEF, FOM, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ Sci & Technol, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Mundim, Luiz/A-1291-2012; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Fisher, Wade/N-4491-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; NR 20 TC 58 Z9 58 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 4 PY 2008 VL 101 IS 1 AR 012001 DI 10.1103/PhysRevLett.101.012001 PG 6 WC Physics, Multidisciplinary SC Physics GA 323DR UT WOS:000257424700015 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for large extra dimensions via single photon plus missing energy final states at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We report on a search for large extra dimensions in a data sample of approximately 1 fb(-1) of p (p) over bar collisions at root s=1.96 TeV. We investigate Kaluza-Klein graviton production with a photon and missing transverse energy in the final state. At the 95% C.L. we set limits on the fundamental mass scale M(D) from 884 to 778 GeV for two to eight extra dimensions. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Alton, A.; Beale, S.; Chandra, A.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Y.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA Saclay, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kappler, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Inst NIKHEF, FOM, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] State Atom Energy Commiss, Inst Theoret & Expt Phys, Moscow, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, S-10044 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ Sci & Technol, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Bargassa, Pedrame/O-2417-2016; Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012 OI Carrera, Edgar/0000-0002-0857-8507; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Belanger-Champagne, Camille/0000-0003-2368-2617; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; NR 21 TC 33 Z9 33 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 4 PY 2008 VL 101 IS 1 AR 011601 DI 10.1103/PhysRevLett.101.011601 PG 7 WC Physics, Multidisciplinary SC Physics GA 323DR UT WOS:000257424700012 PM 18764100 ER PT J AU Batista, CD Gubernatis, JE Durakiewicz, T Joyce, JJ AF Batista, C. D. Gubernatis, J. E. Durakiewicz, T. Joyce, J. J. TI Strong coupling approach to actinide metals SO PHYSICAL REVIEW LETTERS LA English DT Article ID F-ELECTRON SYSTEMS; DELTA-PLUTONIUM; CE COMPOUNDS; PHOTOEMISSION; MODEL AB We present a strongly correlated approach to the electronic structure of actinide metals by deriving a low-energy Hamiltonian H under the assumption that kinetic energy is small compared to Coulomb and spin-orbit interactions. The H(Pu) for Pu metal is similar to the models used for Ce and other lanthanides but qualitatively different from the H presented for the rest of the actinides. With H(Pu), we computed the photoemission spectrum and specific heat for alpha and delta-Pu and found good agreement with experiment. C1 [Batista, C. D.; Gubernatis, J. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Durakiewicz, T.; Joyce, J. J.] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87545 USA. RP Batista, CD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016; OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 24 TC 4 Z9 4 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 4 PY 2008 VL 101 IS 1 AR 016403 DI 10.1103/PhysRevLett.101.016403 PG 4 WC Physics, Multidisciplinary SC Physics GA 323DR UT WOS:000257424700042 PM 18764130 ER EF