FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Doorn, SK Araujo, PT Hata, K Jorio, A AF Doorn, Stephen K. Araujo, Paulo T. Hata, Kenji Jorio, Ado TI Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy SO PHYSICAL REVIEW B LA English DT Article AB The first four transitions (upper and lower branches of E(11)(M) and E(22)(M)) for a broad diameter range (0.7-4 nm) of metallic single-walled carbon nanotubes are studied in the 1.26-2.71 eV energy range using resonance Raman spectroscopy of their radial breathing modes (RBMs). A scaling-law analysis of transition energies from 77 spectral features suggests that the transitions are excitonic in nature and that relative scaling of electron self-energies and exciton binding energies in metallic nanotubes closely matches that found in semiconductors. The previously elusive upper-branch signatures are observed at large diameters (>1.3 nm) for several chiralities for both E(11)(M) and E(22)(M) excitation. These results are discussed as a consequence of the nodal behavior of exciton-phonon coupling. Additionally, while theoretical calculations for the (n,m)-dependent matrix elements predict that the RBM intensity should decrease with increasing diameter, the opposite behavior is observed experimentally. We show that this is a consequence of an increase in the resonance Raman broadening factor Gamma as diameter decreases. C1 [Doorn, Stephen K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Araujo, Paulo T.; Jorio, Ado] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. [Hata, Kenji] AIST, Res Ctr Adv Carbon Mat, Tsukuba, Ibaraki 3058565, Japan. [Jorio, Ado] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Div Metrol Mat, BR-25250020 Duque De Caxias, RJ, Brazil. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM skdoorn@lanl.gov RI hata, kenji/B-3262-2009; Jorio, Ado/F-2141-2010; Medicina Molecular, Inct/J-8737-2013 OI Jorio, Ado/0000-0002-5978-2735; FU CNPq; CNPq and Fapemig; MCT and CNPq; New Energy and Industrial Technology Development Organization (NEDO) FX We thank Kentaro Sato and Riichiro Saito for providing the ETB data from Ref. 28 and Andy Shreve for valuable discussions. S. K. D. acknowledges support from the LANL LDRD program. P. T. A. acknowledges CNPq for financial support. A. J. acknowledges financial support under Universal Grants (CNPq and Fapemig) and by Rede Nacional de Pesquisa em Nanotubos de Carbono (MCT and CNPq). Sample growth was supported by the New Energy and Industrial Technology Development Organization (NEDO) NanoCarbon Technology project. NR 37 TC 35 Z9 35 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 165408 DI 10.1103/PhysRevB.78.165408 PG 9 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500097 ER PT J AU Du, MH Zhang, SB Northrup, JE Erwin, SC AF Du, Mao-Hua Zhang, S. B. Northrup, J. E. Erwin, Steven C. TI Stabilization mechanisms of polar surfaces: ZnO surfaces SO PHYSICAL REVIEW B LA English DT Article ID OXIDE SURFACES; STABILITY; GAAS(001) AB First-principles calculations reveal two mechanisms that compete to determine the structure of ZnO polar surfaces. One is the electron-counting rule, which favors semiconducting surfaces. The other is the large ZnO cohesive energy, which favors unreconstructed metallic surfaces with 1x1 periodicity. Their close competition results in crossovers in the preferred surface structure as the oxygen chemical potential is varied, consistent with a variety of surface morphologies observed under different experimental conditions. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Du, Mao-Hua] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Northrup, J. E.] Palo Alto Res Ctr, Palo Alto, CA 94304 USA. [Erwin, Steven C.] USN, Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Erwin, Steven/B-1850-2009; Du, Mao-Hua/B-2108-2010; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Du, Mao-Hua/0000-0001-8796-167X; Zhang, Shengbai/0000-0003-0833-5860 FU Office of Naval Research; NRL-NRC; DOE Office of Nonproliferation Research and Development [NA 22]; DOE/BES and DOE/EERE [DE-AC36-99GO10337] FX We thank X. L. Du, J. F. Jia, and Q. K. Xue for sharing unpublished results. This work was supported by the Office of Naval Research, by the NRL-NRC program, by DOE Office of Nonproliferation Research and Development NA 22, and by DOE/BES and DOE/EERE under Contract No. DE-AC36-99GO10337. Computations were performed at NERSC and the DoD Major Shared Resource Center at ASC. NR 30 TC 22 Z9 23 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155424 DI 10.1103/PhysRevB.78.155424 PG 7 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400132 ER PT J AU Fishman, RS Ye, F Fernandez-Baca, JA Haraldsen, JT Kimura, T AF Fishman, R. S. Ye, F. Fernandez-Baca, J. A. Haraldsen, J. T. Kimura, T. TI Importance of stacking to the collinear magnetic phases of the geometrically frustrated antiferromagnet CuFeO2 SO PHYSICAL REVIEW B LA English DT Article ID TRIANGULAR LATTICE ANTIFERROMAGNET; NEUTRON-DIFFRACTION; FIELD AB The correct stacking of hexagonal layers is used to obtain accurate estimates for the exchange and anisotropy parameters of the geometrically frustrated antiferromagnet CuFeO2. Those parameters are highly constrained by the stability of a collinear metamagnetic phase between fields of 13.5 and 20 T. Constrained fits of the spin-wave frequencies of the collinear up arrow up arrow down arrow down arrow phase below 7 T are used to identify the magnetic unit cell of the metamagnetic up arrow up arrow up arrow down arrow down arrow phase, which contains two hexagonal layers and 10 Fe3+ spins. C1 [Fishman, R. S.; Haraldsen, J. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ye, F.; Fernandez-Baca, J. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Fernandez-Baca, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37831 USA. [Kimura, T.] Osaka Univ, Sch Engn Sci, Div Mat Phys, Osaka 5608531, Japan. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Haraldsen, Jason/B-9809-2012; Ye, Feng/B-3210-2010; Fishman, Randy/C-8639-2013; Fernandez-Baca, Jaime/C-3984-2014 OI Haraldsen, Jason/0000-0002-8641-5412; Ye, Feng/0000-0001-7477-4648; Fernandez-Baca, Jaime/0000-0001-9080-5096 FU Oak Ridge National Laboratory, managed by UT- Battelle [DEAC05-00OR22725]; Division of Materials Science; U.S. DOE FX We would like to acknowledge helpful conversations with Satoshi Okamoto. This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DEAC05-00OR22725, and by the Division of Materials Science and Engineering and the Division of Scientific User Facilities of the U.S. DOE. NR 21 TC 26 Z9 26 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 140407 DI 10.1103/PhysRevB.78.140407 PG 4 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300009 ER PT J AU Flege, JI Sutter, P AF Flege, J. I. Sutter, P. TI In situ structural imaging of CO oxidation catalysis on oxidized Rh(111) SO PHYSICAL REVIEW B LA English DT Article ID OXYGEN; OXIDE; SURFACES; LEED AB Metallic rhodium is an active catalyst for CO oxidation while the bulk Rh(2)O(3) oxide is inactive, but the detailed relation between oxidation stage and reactivity is not clear at present. Here, we study CO oxidation on oxidized Rh(111) surfaces using in situ intensity-voltage low-energy electron microscopy. By following the structural changes during the reaction we identify the range of catalytically active surface phases between the (2x2)-O structure and the O-Rh-O trilayer corresponding to oxygen coverages between 0.25 and 2.0 ML. Further surface oxidation results in the formation of a double trilayer structure, which induces the deactivation of the catalyst. C1 [Flege, J. I.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Flege, JI (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Flege, Jan Ingo/J-6354-2012 OI Flege, Jan Ingo/0000-0002-8346-6863 FU U. S. Department of Energy [DE-AC02-98CH1-886] FX We thank P. Zahl for technical support and J. Hrbek for fruitful discussions. This work was performed under the auspices of the U. S. Department of Energy under Contract No. DE-AC02-98CH1-886. NR 18 TC 26 Z9 26 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 153402 DI 10.1103/PhysRevB.78.153402 PG 3 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400029 ER PT J AU Flege, JI Hrbek, J Sutter, P AF Flege, J. I. Hrbek, J. Sutter, P. TI Structural imaging of surface oxidation and oxidation catalysis on Ru(0001) SO PHYSICAL REVIEW B LA English DT Article ID CO OXIDATION; SUBSURFACE OXYGEN; OXIDE FORMATION; METAL-SURFACES; RUTHENIUM; LEED; REACTIVITY; PHASE AB Using simultaneous imaging and structural fingerprinting under reaction conditions, we probe the initial oxidation pathway and CO oxidation catalysis on Ru(0001). Oxidation beyond an initial (1x1)-O adlayer phase produces a heterogeneous surface, comprising a disordered trilayerlike surface oxide and an ordered RuO2(110) thin-film oxide, which form independently and exhibit similar stability. The surface oxide and RuO2 phases both show high intrinsic catalytic activity. The oxygen adlayer is inactive in isolation but becomes active due to cooperative effects in close proximity to the surface oxide. C1 [Flege, J. I.; Hrbek, J.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Hrbek, J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Flege, JI (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RI Hrbek, Jan/I-1020-2013; Flege, Jan Ingo/J-6354-2012 OI Flege, Jan Ingo/0000-0002-8346-6863 FU U. S. Department of Energy [DE-AC02-98CH1-886] FX We acknowledge P. Zahl for technical support, and R. Q. Hwang and E. Sutter for stimulating discussions. Work performed under the auspices of the U. S. Department of Energy under Contract No. DE-AC02-98CH1-886. NR 20 TC 41 Z9 41 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 165407 DI 10.1103/PhysRevB.78.165407 PG 5 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500096 ER PT J AU Gupta, M Gupta, RP Singh, DJ AF Gupta, Michele Gupta, Raju P. Singh, D. J. TI Iron-induced hydride formation in ZrPd(2): First-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID DIFFRACTION; METALS; ENERGY AB We show via first-principles calculations that the electronic structure of ZrPd(2), which does not form a hydride, can be modified by partial substitution of Fe for Pd, leading to a material that forms a hydride. We also show that PdZr(2), which forms a very stable hydride, can also be modified by Fe addition to lower the enthalpy of hydride formation. These results are explained in terms of electronic structure, specifically electronegativity, charge transfer, and s-d bonding, and clearly have implications in the search of new materials for hydrogen storage. C1 [Gupta, Michele] Univ Paris 11, F-91405 Orsay, France. [Gupta, Raju P.] Ctr Etud Nucl Saclay, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37881 USA. RP Gupta, M (reprint author), Univ Paris 11, Batiment 415, F-91405 Orsay, France. NR 13 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 153104 DI 10.1103/PhysRevB.78.153104 PG 4 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400005 ER PT J AU Huang, JY Ding, F Yakobson, BI AF Huang, J. Y. Ding, F. Yakobson, B. I. TI Vacancy-hole and vacancy-tube migration in multiwall carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID ION IRRADIATION; ALPHA-BRASS; DEFECTS; GRAPHITE; CONDUCTANCE; DIFFUSION; ZINC AB Evidence is presented that vacancy-hole or vacancy-tube (similar to vacancy loops in crystalline materials) migration constitutes an important self-diffusion mechanism in multiwall carbon nanotubes (MWCNTs) when they were irradiated by an electron beam at about 2000 degrees C. Isolated vacancies agglomerated to form vacancy holes/tubes with lengths from 3 to 16 nm and widths from 1 to 4 basal planes in the intermediate layers of the MWCNTs. The formation of vacancy holes/tubes is attributed to the high mobility of vacancies at high temperatures and the confinement of the intermediate layers posed by the top and bottom layers. The vacancy holes/tubes were mobile and could migrate along the axial, radial, or circumferential directions of the nanotubes. Driven by the temperature gradient and the thermal fluctuation, the migration velocity of the holes varies from a few to 80 nm/s. The results demonstrate that a carbon nanotube is a perfect system for studying vacancy properties in a quasi-one-dimensional system. C1 [Huang, J. Y.] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. [Ding, F.; Yakobson, B. I.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Ding, F.; Yakobson, B. I.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. RP Huang, JY (reprint author), Sandia Natl Labs, CINT, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov RI Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Ding, Feng/0000-0001-9153-9279; FU Center for Integrated Nanotechnologies; U.S. Department of Energy (DOE); Office of Basic Energy Sciences (BES); DOE Office of BES; Division of Materials Science and Engineering FX This work was supported in part by the Center for Integrated Nanotechnologies, a U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) user facility, and in part by the DOE Office of BES, Division of Materials Science and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. J.Y.H. would like to thank Ju Li from the University of Pennsylvania for his comments and suggestions. NR 36 TC 15 Z9 15 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155436 DI 10.1103/PhysRevB.78.155436 PG 5 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400144 ER PT J AU Jelbert, GR Sasagawa, T Fletcher, JD Park, T Thompson, JD Panagopoulos, C AF Jelbert, G. R. Sasagawa, T. Fletcher, J. D. Park, T. Thompson, J. D. Panagopoulos, C. TI Measurement of low energy charge correlations in underdoped spin-glass La-based cuprates using impedance spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SINGLE-CRYSTALS; TRANSPORT; LA2-XSRXCUO4; TRANSITION; BEHAVIOR; ORDER AB We report on the charge kinetics of La2CuO4 lightly doped with Li and Sr. Impedance spectroscopy measurements down to 25 mK and from 20 Hz to 500 kHz reveal evidence for low energy charge dynamics, which slow down with decreasing temperature. Both systems are acutely sensitive to stoichiometry. In the case of Sr substitution, which at higher carrier concentration evolves to a high-temperature superconductor, the ground state in the pseudogap-doping regime is one of spatially segregated, dynamic charge domains. The charge carriers slow down at substantially lower temperatures than their spin counterparts and the dynamics are particularly sensitive to crystallographic direction. This is contrasted with the case of Li doping. C1 [Jelbert, G. R.; Panagopoulos, C.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Sasagawa, T.] Tokyo Inst Technol, Mat & Struct Lab, Kanagawa 2268503, Japan. [Fletcher, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Park, T.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, T.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Panagopoulos, C.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Panagopoulos, C.] FORTH, Iraklion 71003, Greece. RP Jelbert, GR (reprint author), Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RI Jelbert, Glenton/A-3604-2010; PANAGOPOULOS, CHRISTOS/G-8754-2011; Park, Tuson/A-1520-2012; Fletcher, Jonathan/J-9023-2012; Sasagawa, Takao/E-6666-2014 OI Fletcher, Jonathan/0000-0002-2386-9361; Sasagawa, Takao/0000-0003-0149-6696 FU EPSRC-GB; Royal Society; EURYI Scheme; MEXT [CT-2006039047] FX We thank A. Carrington, G. Catalan, D. Popovic, and J. Scott for discussions, and S. Goh for technical support. We acknowledge J. Sarrao for LLCO (X = 0.023) crystals used to replicate results. 26 G. R. J. is indebted to the Skye Foundation and the Ernest Oppenheimer Memorial Trust for scholarships, and I2CAM and Magdalene College for travel grants. This work is supported by the EPSRC-GB, The Royal Society, the EURYI Scheme, and MEXT Contract No. CT-2006039047. NR 30 TC 10 Z9 10 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 132513 DI 10.1103/PhysRevB.78.132513 PG 4 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200030 ER PT J AU Kim, JS Stewart, GR Bauer, ED Ronning, F AF Kim, J. S. Stewart, G. R. Bauer, E. D. Ronning, F. TI Unusual temperature dependence in the low-temperature specific heat of U(3)Ni(5)Al(19) SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON AB Specific heat has been measured down to 0.053 K on a single crystal of the heavy-fermion antiferromagnet U(3)Ni(5)Al(19) that orders at T(N)=23 K. As has been previously reported, these data can be fitted between 0.4 and 4 K by the spin-fluctuation model of Moriya and Takimoto, which describes the contribution of weakly interacting critical spin fluctuations to the specific heat, C, where, as T -> 0, C/T=gamma(0)-a root T. However, below 0.35 K a noticeable divergence in C/T similar to log T dependence, consistent with the existence of strongly interacting fluctuations, is observed. This increase in the divergence of C/T at the lowest temperatures-which is contrary to the self-consistent renormalization theory of Moriya and Takimoto, which predicts root T dependence for C/T as T -> 0 and log T dependence at higher temperatures-has been measured as a function of magnetic field to further understand its origin. The field data in the low-temperature regime, where C/T similar to log T exhibit scaling with Delta B/T(1.9), further evidence that there exist strongly interacting fluctuations below 0.35 K in U(3)Ni(5)Al(19). C1 [Kim, J. S.; Stewart, G. R.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Bauer, E. D.; Ronning, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kim, JS (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Bauer, Eric/D-7212-2011; OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U. S. Department of Energy [DE-FG02-86ER45268]; U. S. National Science Foundation FX Work in Florida was performed under the auspices of the U. S. Department of Energy under Contract No. DE-FG02-86ER45268. Work in Los Alamos was performed under the auspices of the U. S. Department of Energy. Work at the National High Magnetic Field Laboratory in Tallahassee was supported by the U. S. National Science Foundation. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 153108 DI 10.1103/PhysRevB.78.153108 PG 3 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400009 ER PT J AU Koski, KJ Kamp, NM Smith, RK Kunz, M Knight, JK Alivisatos, AP AF Koski, K. J. Kamp, N. M. Smith, R. K. Kunz, M. Knight, J. K. Alivisatos, A. P. TI Structural distortions in 5-10 nm silver nanoparticles under high pressure SO PHYSICAL REVIEW B LA English DT Article ID RIETVELD TEXTURE ANALYSIS; ELASTIC-CONSTANTS; ELECTRON-DIFFRACTION; CDSE NANOCRYSTALS; SMALL PARTICLES; GOLD; SIZE; PD; TRANSFORMATION; CALIBRATION AB We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions. C1 [Koski, K. J.; Kamp, N. M.; Alivisatos, A. P.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Smith, R. K.; Alivisatos, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kunz, M.; Knight, J. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Koski, KJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Koski, Kristie/A-6740-2009; Kunz, Martin/K-4491-2012; Alivisatos , Paul /N-8863-2015 OI Kunz, Martin/0000-0001-9769-9900; Alivisatos , Paul /0000-0001-6895-9048 FU Director of the Office of Science; Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC02-05CH11231] FX These high-pressure x-ray diffraction studies were performed at beamline 12.2.2 of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. We thank Sander Caldwell and Simon Clark for beamtime support. The authors would like to thank Bryan Reed for a critical reading of the manuscript. The authors would also like to acknowledge insightful discussions with Quinfen Gu on the behavior of silver nanoparticles under pressure. This work was supported by the Director of the Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 12 Z9 12 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 165410 DI 10.1103/PhysRevB.78.165410 PG 10 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500099 ER PT J AU Kozub, VI Galperin, YM Vinokur, V Burin, AL AF Kozub, V. I. Galperin, Y. M. Vinokur, V. Burin, A. L. TI Memory effects in transport through a hopping insulator: Understanding two-dip experiments SO PHYSICAL REVIEW B LA English DT Article ID GRANULAR ALUMINUM; ULTRATHIN FILMS; ELECTRON GLASS; RELAXATION; BEHAVIOR; DISORDER; SYSTEMS; METALS AB We discuss memory effects in the conductance of hopping insulators due to slow rearrangements of many-electron clusters leading to formation of polarons close to the electron hopping sites. An abrupt change in the gate voltage and corresponding shift of the chemical potential change populations of the hopping sites, which then slowly relax due to rearrangements of the clusters. As a result, the density of hopping states becomes time dependent on a scale relevant to rearrangement of the structural defects leading to the excess time-dependent conductivity. C1 [Kozub, V. I.; Galperin, Y. M.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Kozub, V. I.; Galperin, Y. M.; Vinokur, V.] Argonne Natl Lab, Argonne, IL 60439 USA. [Galperin, Y. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Burin, A. L.] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. RP Kozub, VI (reprint author), Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. RI Galperin, Yuri/A-1851-2008; Kozub, Veniamin/E-4017-2014 OI Galperin, Yuri/0000-0001-7281-9902; FU U. S. Department of Energy [DE-AC02-06CH11357]; Norwegian Research Council; USA-Norway Bilateral Program; Tulane University Research and Enhancement Program; International Center of Theoretical Sciences at the Hsing-Hua University, Taiwan FX The work was supported by the U. S. Department of Energy, Office of Science through Contract No. DE-AC02-06CH11357, by the Norwegian Research Council through the USA-Norway Bilateral Program, and by Tulane University Research and Enhancement Program. The authors acknowledge the scientists from the International Center of Theoretical Sciences at the Hsing-Hua University, Taiwan for their hospitality, partial support of our visit, and fruitful discussions. NR 23 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 132201 DI 10.1103/PhysRevB.78.132201 PG 4 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200006 ER PT J AU Kuntova, Z Tringides, MC Chvoj, Z AF Kuntova, Z. Tringides, M. C. Chvoj, Z. TI Height-dependent barriers and nucleation in quantum size effect growth SO PHYSICAL REVIEW B LA English DT Article AB An analytic model is developed to model the growth of the uniform height islands. The formation of bilayer rings on top of stable islands and the absence of nucleation on top of the third layer are particularly intriguing. The analysis is motivated from recent Monte Carlo simulations that have reproduced the bilayer morphology. The analytic model allows better transparency to the role of the different barriers. In particular the diffusion anisotropy (i.e., atoms diffuse faster azimuthally within the ring than toward the island center) explains why nucleation is only observed close to the island edge and not in the middle. Lower barriers to diffuse back to the wetting layer from unstable heights than the barriers from stable heights explain the absence of nucleation on the third layer. The model can have general use in other systems where quantum size effects play a role and the barriers become height dependent. C1 [Kuntova, Z.; Chvoj, Z.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Tringides, M. C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Kuntova, Z (reprint author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic. RI Chromcova, Zdenka/H-3101-2014 FU Department of Energy Basic Sciences [DE-AC02-07CH11358]; Director for Energy Research Office of Basic Energy Sciences; NSF of USA [INT-0308505]; Academy of Sciences of CR [IAA1010207]; MSMT of Czech Republic [ME 655]; Institutional Research Plan [AV0Z10100521] FX Work at the Ames Laboratory was supported by the Department of Energy Basic Sciences under Contract No. DE-AC02-07CH11358. This work was supported by the Director for Energy Research Office of Basic Energy Sciences (M.C.T.). Financial support for the collaboration was also provided by the NSF Grant (No. INT-0308505) of USA, a grant from the Grant Agency of Academy of Sciences of CR (Grant No. IAA1010207, a grant from MSMT of Czech Republic (Grant No. ME 655), and Institutional Research Plan (plan No. AV0Z10100521). NR 16 TC 2 Z9 2 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155431 DI 10.1103/PhysRevB.78.155431 PG 11 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400139 ER PT J AU Lahiri, J Senanayake, S Batzill, M AF Lahiri, Jayeeta Senanayake, Sanjaya Batzill, Matthias TI Soft x-ray photoemission of clean and sulfur-covered polar ZnO surfaces: A view of the stabilization of polar oxide surfaces SO PHYSICAL REVIEW B LA English DT Article ID CORE-LEVEL; INTERFACES; HYDROGEN; SPECTRA; SHIFTS AB The two polar surfaces of ZnO were investigated by soft x-ray photoemission spectroscopy. Surface components due to variation in the Madelung energy were identified in photoemission core-level spectra. Sulfur adsorption was used to passivate the surfaces in order to enable separation of the bulk from the surface components. For the ZnO(0001)-Zn surface the observed photoemission peaks were consistent with a Zn-deficient surface, exhibiting a high density of O-terminated step edges. The ZnO(000-1)-O surface is very reactive toward hydrogen adsorption and only above 650 K a hydrogen free surface was observed. For hydrogen-free and small hydrogen coverage an electrostatic shift of the Fermi-level toward the band-gap center was observed. This indicates an incomplete compensation of the internal electrostatic potential by surface oxygen vacancies or charged adsorbates. Coadsorption of sulfur lowered the desorption temperature for hydrogen indicating the possibility to tune the chemical properties of these polar surfaces by dopants. C1 [Lahiri, Jayeeta; Batzill, Matthias] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Senanayake, Sanjaya] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Lahiri, J (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. RI Senanayake, Sanjaya/D-4769-2009; Batzill, Matthias/J-4297-2014 OI Senanayake, Sanjaya/0000-0003-3991-4232; Batzill, Matthias/0000-0001-8984-8427 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; UT-Battelle, LLC; Brookhaven National Laboratory; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; American Chemical Society Petroleum Research Fund FX The U12a beamline is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. NR 24 TC 22 Z9 22 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155414 DI 10.1103/PhysRevB.78.155414 PG 10 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400122 ER PT J AU Lazicki, A Yoo, CW Evans, WJ Hu, MY Chow, P Pickett, WE AF Lazicki, A. Yoo, C. W. Evans, W. J. Hu, M. Y. Chow, P. Pickett, W. E. TI Pressure-induced loss of electronic interlayer state and metallization in the ionic solid Li3N: Experiment and theory SO PHYSICAL REVIEW B LA English DT Article ID HEXAGONAL BORON-NITRIDE; REVERSIBLE HYDROGEN-STORAGE; SUPERIONIC CONDUCTOR LI3N; X-RAY-DIFFRACTION; EQUATION-OF-STATE; LITHIUM NITRIDE; MOLECULAR-DYNAMICS; BAND-STRUCTURE; ENERGY-BAND; GRAPHITE AB Results of x-ray diffraction and nitrogen K-edge x-ray Raman scattering (XRS) investigations of the crystal and electronic structure of ionic compound Li3N across two high-pressure phase transitions [A. Lazicki , Phys. Rev. Lett. 95, 165503 (2005)] are interpreted using density-functional theory. A low-energy peak in the XRS spectrum which is observed in both low-pressure hexagonal phases of Li3N and absent in the high-pressure cubic phase is found to originate from an interlayer band similar to the important free-electron-like state present in the graphite and graphite intercalated systems, but not observed previously in ionic insulators. XRS detection of the interlayer state is made possible because of its strong hybridization with the nitrogen p bands. A pressure-induced increase in the band gap of the high-pressure cubic phase of Li3N is explained by the differing pressure dependencies of different quantum-number bands and is shown to be a feature of several low-Z closed-shell ionic materials. C1 [Lazicki, A.; Yoo, C. W.; Evans, W. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lazicki, A.; Pickett, W. E.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Hu, M. Y.; Chow, P.] Argonne Natl Lab, HPCAT APS, Argonne, IL 60439 USA. RP Lazicki, A (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. FU DOE-BES; DOE-NNSA (CDAC); NSF [ITR 031339]; DOD-TACOM; W. M. Keck Foundation; LDRD [04ERD020]; SEGRF [W7405-ENG-48]; SSAAP [DE-FG03-03NA00071] FX We acknowledge A. K. McMahan, B. J. Baer, J. Seidler, and A. Libal for advice and useful discussions during this investigation. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA (CDAC), NSF, DOD-TACOM, and the W. M. Keck Foundation. We thank HPCAT beamline scientist M. Somayazulu for technical assistance. This work has been supported by the LDRD (Contract No. 04ERD020) and SEGRF programs at the LLNL, University of California under DOE Contract No. W7405-ENG-48 and by the SSAAP (Contract No. DE-FG03-03NA00071) and NSF (Contract No. ITR 031339) at UCD. NR 48 TC 6 Z9 6 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155133 DI 10.1103/PhysRevB.78.155133 PG 7 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400072 ER PT J AU Liu, X Islam, Z Sinha, SK Moss, SC McQueeney, RJ Lang, JC Welp, U AF Liu, X. Islam, Z. Sinha, S. K. Moss, S. C. McQueeney, R. J. Lang, J. C. Welp, U. TI Fermi-surface-induced lattice modulation and charge-density wave in optimally doped YBa2Cu3O7-x SO PHYSICAL REVIEW B LA English DT Article ID INPLANE ANISOTROPY; CHAIN LAYER; GAP; SUPERCONDUCTORS; SCATTERING; MODEL AB We have observed a Fermi-surface (FS) induced lattice modulation in a YBa2Cu3O7-x superconductor with a wave vector along CuO chains; i.e., q(1)=(0,delta,0). The value of delta similar to 0.21 is twice the Fermi wave vector (2k(F)) along b(*) connecting nearly nested FS "ridges." The q(1) modulation exists only within O-vacancy-ordered islands [characterized by q(0)=(1/4,0,0)] and persists well above and below T-c. Our results are consistent with the presence of a FS-induced charge-density wave. C1 [Liu, X.; Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Islam, Z.; Lang, J. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Moss, S. C.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Moss, S. C.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Welp, U.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Liu, X (reprint author), Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 FU Department of Energy (DOE) [DE-FG02-03ER46084, DE-AC02-06CH11357]; State of Texas through the Texas Center for Superconductivity at the University of Houston FX Work at UCSD is supported by the Department of Energy (DOE) through Grant No. DE-FG02-03ER46084. Use of the APS is supported by the DOE Contract No. DE-AC02-06CH11357. Work at Houston is supported by the State of Texas through the Texas Center for Superconductivity at the University of Houston. NR 28 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 134526 DI 10.1103/PhysRevB.78.134526 PG 5 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200112 ER PT J AU Malone, BD Sau, JD Cohen, ML AF Malone, Brad D. Sau, Jay D. Cohen, Marvin L. TI Ab initio study of the optical properties of Si-XII SO PHYSICAL REVIEW B LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; SILICON SOLAR-CELLS; HIGH-DENSITY PHASES; COVALENT SEMICONDUCTORS; HOLE EXCITATIONS; INSULATORS; PRINCIPLES; SPECTRA AB We present a first-principles calculation of the optical excitation spectrum of Si-XII, a high-pressure, metastable phase of silicon in the R8 structure. Recent calculations of the quasiparticle spectrum have shown Si-XII to be semiconducting with a small, indirect band gap. In this paper we solve the Bethe-Salpeter equation to obtain the optical spectrum of this material. We then compare our calculated optical spectrum with experimental data for other forms of silicon commonly used in photovoltaic devices. These include cubic, polycrystalline, and amorphous forms of silicon. We find that the calculated values of the optical functions relevant to photovoltaic absorption in Si-XII show greater overlap with the incident solar spectrum than those found in these other silicon phases. C1 [Malone, Brad D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Malone, BD (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bmalone@civet.berkeley.edu FU National Science Foundation [DMR07-05941]; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division; U. S. Department of Energy [DE-AC02-05CH11231]; NERSC; NPACI FX The authors would like to thank Georgy Samsonidze for fruitful discussions and the use of one of his postprocessing codes. This work was supported by National Science Foundation under Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by NERSC and NPACI. NR 27 TC 30 Z9 30 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 161202 DI 10.1103/PhysRevB.78.161202 PG 4 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500005 ER PT J AU Maniadis, P Lookman, T Bishop, AR AF Maniadis, P. Lookman, T. Bishop, A. R. TI Elasticity driven self-organization of polarons SO PHYSICAL REVIEW B LA English DT Article ID MANGANITES AB We use a strain description to couple long-range elastic fields adiabatically to electronic density to describe the behavior of a quantum particle in an elastic medium. We show that in this generalization of the Holstein polaron problem, a bound polaronic state results with strong long-range angular dependence in the elastic fields, but a localized electronic core. The deformation of the elastic fields creates an anisotropic, indirect interaction between polarons extending to large distances. For a given density of polarons, this interaction favors the formation of strings of polarons in preferred directions. C1 [Maniadis, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Maniadis, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Maniadis, Panagiotis/A-7861-2012; OI Lookman, Turab/0000-0001-8122-5671 FU Los Alamos National Laboratory [DE-AC52-06NA25396] FX This research was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We are grateful to S. R. Shenoy and R. Groger for many stimulating discussions. NR 19 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 134304 DI 10.1103/PhysRevB.78.134304 PG 7 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200055 ER PT J AU Martin, C Vannette, MD Gordon, RT Prozorov, R Karpinski, J Zhigadlo, ND AF Martin, C. Vannette, M. D. Gordon, R. T. Prozorov, R. Karpinski, J. Zhigadlo, N. D. TI Effect of C and Li doping on the rf magnetic susceptibility in MgB2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID MAGNESIUM DIBORIDE; SUPERCONDUCTIVITY; TRANSITION AB We have measured small-amplitude rf penetration depth lambda(H,T) in pure, and C, Li, and (Li+C) doped single crystals of MgB2. The effect of doping on the critical temperature T-c and on the upper critical field H-c2 was found to be in good agreement with previous results. We report the presence of clear signatures of irreversibility in lambda(H,T), associated with the peak effect. Carbon doping enhances the observed feature and shifts its position on the H-T phase diagram to higher temperatures. In contrast, Li substitution suppresses the peak effect, moving it to lower temperatures. Analysis of both zero-field cooled and field cooled measurements suggests that the hysteresis associated with the peak effect is due to macroscopic supercurrents induced due to vortex pinning upon the magnetic-field ramp. C1 [Martin, C.; Vannette, M. D.; Gordon, R. T.; Prozorov, R.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Martin, C.; Vannette, M. D.; Gordon, R. T.; Prozorov, R.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Karpinski, J.; Zhigadlo, N. D.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. RP Prozorov, R (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; Swiss National Science Foundation through NCCR pool MaNEP; Alfred P. Sloan Foundation FX We would like to thank V. G. Kogan for very stimulating discussions and R. Khasanov for help with the samples. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Work at ETH was supported by the Swiss National Science Foundation through NCCR pool MaNEP. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 34 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 144512 DI 10.1103/PhysRevB.78.144512 PG 6 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300082 ER PT J AU Mazumdar, C Rotter, M Frontzek, M Michor, H Doerr, M Kreyssig, A Koza, M Hiess, A Voigt, J Behr, G Gupta, LC Prager, M Loewenhaupt, M AF Mazumdar, Chandan Rotter, M. Frontzek, M. Michor, H. Doerr, M. Kreyssig, A. Koza, M. Hiess, A. Voigt, J. Behr, G. Gupta, L. C. Prager, M. Loewenhaupt, M. TI Crystalline electric field effects in PrNi2B2C: Inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH BOROCARBIDES; QUATERNARY BOROCARBIDES; MAGNETIC ORDER; SUPERCONDUCTIVITY; BEHAVIOR; SUPPRESSION; VALENCE; NI; EXCITATIONS; IMPURITIES AB PrNi2B2C as a member of the borocarbide series is characterized by antiferromagnetic order below T-N=4 K and the absence of superconductivity (at least down to 100 mK). There are two effects responsible for the absence of superconductivity in PrNi2B2C. These are the strong conduction electron-Pr moment interaction and a comparatively lower density of states. We studied the crystalline electric field (CEF) excitations and excitons in this compound by inelastic neutron scattering. The CEF level scheme obtained from these data comprises a singlet ground state, a doublet at 1 meV, and further higher levels at 5.2, 24.3 (doublet), 25.1, 29.4, and 31.5 meV. Large dispersion was found for the 1 meV excitation and explained theoretically taking into account magnetic exchange interactions. The calculated crystal-field parameters explain satisfactorily the neutron spectra as well as the heat-capacity and magnetic-susceptibility data. This leads to the conclusion that PrNi2B2C can be described by the standard model of rare-earth magnetism. Thus the heavy-fermion concept, suggested by some groups earlier in literature, is not the cause of the suppression of superconductivity. Excitation spectra of the diluted series Pr1-xYxNi2B2C were also investigated. No drastic changes in the CEF level scheme have been observed in these compounds. Hence the CEF level scheme of the full compound, i.e., PrNi2B2C, is reasonably valid for these samples too. The superconducting-transition temperature T-C similar to 15.5 K for YNi2B2C decreases linearly with decreasing Y concentration x. Samples with x <= 0.65 do not exhibit superconductivity down to 2 K. C1 [Mazumdar, Chandan] Saha Inst Nucl Phys, Expt Condensed Matter Phys Div, Kolkata 700064, W Bengal, India. [Mazumdar, Chandan; Frontzek, M.; Doerr, M.; Kreyssig, A.; Loewenhaupt, M.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Rotter, M.] Univ Vienna, Inst Phys Chem, A-1090 Vienna, Austria. [Michor, H.] Univ Vienna, Inst Festkorperphys, A-1040 Vienna, Austria. [Kreyssig, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koza, M.; Hiess, A.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Voigt, J.; Prager, M.] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany. [Behr, G.] IFW Dresden, Inst Solid State Res, D-01171 Dresden, Germany. [Gupta, L. C.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Mazumdar, C (reprint author), Saha Inst Nucl Phys, Expt Condensed Matter Phys Div, 1-AF Bidhannagar, Kolkata 700064, W Bengal, India. RI Frontzek, Matthias/C-5146-2012; OI Frontzek, Matthias/0000-0001-8704-8928; Michor, Herwig/0000-0003-1642-5946 FU U. S. DOE [DE-AC0-207CH11358]; Deutsche Forschungsgemeinschaft (DFG); Austrian Science Foundation (FWF) [P17226, P16957, P16250, P16778]; Humboldt Foundation FX This work was performed within the program of the Sonderforschungsbereich (SFB) 463 and supported financially by the Deutsche Forschungsgemeinschaft (DFG). The authors thank O. Stockert for providing software for the analysis of the IN6 data. M. R. and H. M. acknowledge support by the Austrian Science Foundation (FWF) under Projects No. P17226, No. P16957, No. P16250, and No. P16778. L. C. G. thanks MPIPKS for providing support and hospitality during his several visits. He also thanks Humboldt Foundation for the support during some of his visits to MPIPKS. The work by A. K. at Ames Laboratory was supported by the U. S. DOE under Contract No. DE-AC0-207CH11358. The authors are thankful to P. Fulde for his comments and suggestions that helped improving the paper. NR 39 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 144422 DI 10.1103/PhysRevB.78.144422 PG 9 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300063 ER PT J AU Mei, Q Benmore, CJ Sen, S Sharma, R Yarger, JL AF Mei, Q. Benmore, C. J. Sen, S. Sharma, R. Yarger, J. L. TI Intermediate range order in vitreous silica from a partial structure factor analysis SO PHYSICAL REVIEW B LA English DT Article ID SHARP DIFFRACTION PEAK; INITIO MOLECULAR-DYNAMICS; BOND-ANGLE DISTRIBUTION; NEUTRON-SCATTERING; NETWORK GLASSES; BINARY-ALLOYS; SIO2; LIQUID; ORIGIN; RESISTIVITY AB By combining the methods of isotopic substitution in neutron diffraction and high-energy x-ray diffraction, we have determined partial structure factors of vitreous SiO2. A discussion of the effect of systematic and statistical errors is presented. The experimental results are found to be in good (but not exact) agreement with existing ab initio and classical molecular-dynamics simulations. No first sharp diffraction peak (FSDP) is observed in the concentration-concentration partial structure factor, ruling out the void-cluster-based model as a possible explanation for the origin of intermediate range order. However, the data are consistent with a model in which the intermediate range order arises from the periodicity of boundaries between a succession of small cages in the network, and the second diffraction peak is associated with chemical ordering of SiO4 tetrahedra within continuous regions of the network between cages. The cage model is used to explain compositional trends in the FSDP height for neutron and x-ray data on BeO-SiO2 glasses. C1 [Mei, Q.; Benmore, C. J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Sen, S.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Sharma, R.; Yarger, J. L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Mei, Q (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 FU Argonne National Laboratory; U.S. DOE [DE-AC0206CH11357]; NSF [DMR-0603933, CHE 0094202]; DOE [DEFG2-05ER46235]; Carnegie/DOE Alliance Center FX This work at Argonne National Laboratory was supported by the U. S. DOE, under Contract No. DE-AC0206CH11357. S. S. would like to acknowledge funding from NSF Grant No. DMR-0603933. J.L.Y. acknowledges the NSF (Grant No. CHE 0094202) the DOE (Grant No. DEFG2-05ER46235), and the Carnegie/DOE Alliance Center for support. NR 36 TC 44 Z9 44 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 144204 DI 10.1103/PhysRevB.78.144204 PG 7 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300037 ER PT J AU Mironets, O Meyerheim, HL Tusche, C Zschack, P Hong, H Jeutter, N Felici, R Kirschner, J AF Mironets, O. Meyerheim, H. L. Tusche, C. Zschack, P. Hong, H. Jeutter, N. Felici, R. Kirschner, J. TI Surface vibrations and relaxation effects in Cu(001) studied by x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article ID ENERGY ION-SCATTERING; THERMAL-EXPANSION; DYNAMICS; CU(100); NI(001) AB A highly precise surface x-ray-diffraction study of the uncovered Cu(001) surface kept at 160 K was carried out. Based on two independent experiments we find that the first (d(12)) and second (d(23)) interlayer spacings are contracted by 1.4 +/- 0.4% and expanded by 0.3 +/- 0.4% relative to the bulk value (d(b)=1.808 A), respectively. The root-mean-square (rms) isotropic vibrational amplitude of the top layer atoms (0.095 A) is enhanced by 80% over the bulk, rapidly decreasing to 20% and 5% for the second and third layers (average values). The rms amplitude top layer vibrations are isotropic within the experimental uncertainty of about 0.02 A. C1 [Mironets, O.; Meyerheim, H. L.; Tusche, C.; Kirschner, J.] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany. [Zschack, P.; Hong, H.] Argonne Natl Lab, APS, Argonne, IL 60439 USA. [Jeutter, N.; Felici, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Mironets, O (reprint author), Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Germany. EM hmeyerhm@mpi-halle.mpg.de OI Tusche, Christian/0000-0001-6587-1956 FU U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [W-31-109-Eng-38] FX We (H. L. M., C. T., and O. M.) are grateful to the ESRF and APS staff for their help and hospitality during our stay in Grenoble and Argonne. Use of the APS was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. NR 17 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 153401 DI 10.1103/PhysRevB.78.153401 PG 4 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400028 ER PT J AU Murphy, P Mukerjee, S Moore, J AF Murphy, Padraig Mukerjee, Subroto Moore, Joel TI Optimal thermoelectric figure of merit of a molecular junction SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-DOT; THERMAL CONDUCTANCE; COULOMB-BLOCKADE; THERMOPOWER AB We show that a molecular junction can give large values of the thermoelectric figure of merit ZT, and so it could be used as a solid-state energy-conversion device that operates close to the Carnot efficiency. The mechanism is similar to the Mahan-Sofo model for bulk thermoelectrics-the Lorenz number goes to zero violating the Wiedemann-Franz law while the thermopower remains nonzero. The molecular state through which charge is transported must be weakly coupled to the leads, and the energy level of the state must be of order k(B)T away from the Fermi energy of the leads. In practice, the figure of merit is limited by the phonon thermal conductance; we show that the largest possible ZT similar to(G(th)(ph))(-1/2), where G(th)(ph) is the phonon thermal conductance divided by the thermal conductance quantum. C1 [Murphy, Padraig; Mukerjee, Subroto; Moore, Joel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mukerjee, Subroto; Moore, Joel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Murphy, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU DOE BES; Western Institute of Nanoelectronics FX The authors thank A. Majumdar, P. Reddy, and R. Segalman for discussions, and they acknowledge support from DOE BES (S. M. and J.E.M.) and the Western Institute of Nanoelectronics (P.G.M.). NR 32 TC 125 Z9 125 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 161406 DI 10.1103/PhysRevB.78.161406 PG 4 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500018 ER PT J AU Ofer, R Keren, A Chmaissem, O Amato, A AF Ofer, Rinat Keren, Amit Chmaissem, Omar Amato, Alex TI Universal doping dependence of the ground-state staggered magnetization of cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM ANTIFERROMAGNET; TRANSITION-TEMPERATURE; (CAXLA1-X)(BA1.75-XLA0.25+X)CU3OY; HOLE AB Using muon spin rotation we determine the zero-temperature staggered antiferromagnetic order parameter M-0 versus hole doping measured from optimum Delta p(m), in the (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy system. In this system the maximum T-c and the superexchange J vary by 30% between families (x). M-0(x,Delta p(m)) is found to be x independent. Using neutron diffraction we also determine the lattice parameters variations for all x and doping. The oxygen buckling angle is found to change with x, implying a change in the holes kinetic energy. We discuss the surprising insensitivity of M-0(x,Delta p(m)) to the kinetic-energy variations in the framework of the t-J model. C1 [Ofer, Rinat; Keren, Amit] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Chmaissem, Omar] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chmaissem, Omar] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Amato, Alex] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Ofer, R (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RI Amato, Alex/H-7674-2013 OI Amato, Alex/0000-0001-9963-7498 FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; European Research Area, Research Infrastructures [RII3-CT2003-505925] FX We would like to thank D.-G. A. Sawatzky, M.-B. Lepetit, A. Auerbach, and E. Amit for very helpful discussions. We acknowledge financial support from the Israel Science Foundation, the European Commission under the 6th Framework Programme, and the Posnansky research fund in high-temperature superconductivity. We are also grateful to the PSI facilities for high quality muon beams and technical support. This work was partially supported by the Division of Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy Office of Science, under Contract No. DE-AC02-06CH11357, and through the Key Action: Strengthening the European Research Area, Research Infrastructures Contract No. RII3-CT2003-505925. NR 26 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 140508 DI 10.1103/PhysRevB.78.140508 PG 4 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300017 ER PT J AU Pau, GSH AF Pau, George S. H. TI Reduced basis method for simulation of nanodevices SO PHYSICAL REVIEW B LA English DT Article ID PARTIAL-DIFFERENTIAL-EQUATIONS; BASIS APPROXIMATIONS; ELECTRON-TRANSPORT; QUANTUM TRANSPORT; ERROR; TRANSISTORS; BOUNDS; REAL AB Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled Schrodinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the reduced basis method with the subband decomposition method to improve the overall efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to design an algorithm where the computational cost is reduced significantly. In addition, the computational cost only grows marginally with the number of grid points in the confined direction. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Pau, George Shu Heng/F-2363-2015 OI Pau, George Shu Heng/0000-0002-9198-6164 FU U. S. Department of Energy [DE-AC02-05CH11231] FX I would like to thank A. T. Patera, Y. Maday and C. Le Bris for their guidance, and J. B. Bell for useful discussions. This work was supported by the Director, Office of Science, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 2 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155425 DI 10.1103/PhysRevB.78.155425 PG 15 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400133 ER PT J AU Piper, LFJ Colakerol, L King, PDC Schleife, A Zuniga-Perez, J Glans, PA Learmonth, T Federov, A Veal, TD Fuchs, F Munoz-Sanjose, V Bechstedt, F McConville, CF Smith, KE AF Piper, L. F. J. Colakerol, Leyla King, P. D. C. Schleife, A. Zuniga-Perez, J. Glans, Per-Anders Learmonth, Tim Federov, A. Veal, T. D. Fuchs, F. Munoz-Sanjose, V. Bechstedt, F. McConville, C. F. Smith, Kevin E. TI Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID TRANSPARENT CONDUCTING OXIDE; BAND-STRUCTURE; LAYERS AB The electronic structure of well-ordered single-crystal thin films of CdO(100) has been studied using angle-resolved photoemission spectroscopy. Quantized electron subbands are observed above the valence-band maximum. The existence of these states provides evidence of an intrinsic electron accumulation space-charge layer near the CdO surface, an interpretation supported by coupled Poisson-Schrodinger calculations. The origin of the accumulation layer result is discussed in terms of the bulk band structure of CdO calculated using quasiparticle-corrected density-functional theory, which reveals that the conduction-band minimum at the Brillouin-zone center lies below the charge neutrality level. C1 [Zuniga-Perez, J.] CNRS, CRHEA, F-06560 Valbonne, France. [Piper, L. F. J.; Colakerol, Leyla; Glans, Per-Anders; Learmonth, Tim; Smith, Kevin E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [King, P. D. C.; Veal, T. D.; McConville, C. F.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Zuniga-Perez, J.; Munoz-Sanjose, V.] Univ Valencia, Dept Fis Aplicada & Electromagnetismo, E-46100 Burjassot, Spain. [Federov, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Schleife, A.; Fuchs, F.; Bechstedt, F.] Univ Jena, Inst Festkorpertheorie & Opt, D-07743 Jena, Germany. RP Piper, LFJ (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM ksmith@bu.edu RI Veal, Tim/A-3872-2010; Piper, Louis/C-2960-2011; King, Philip/D-3809-2014; Munoz-Sanjose, Vicente/L-6206-2014; Glans, Per-Anders/G-8674-2016 OI Veal, Tim/0000-0002-0610-5626; Piper, Louis/0000-0002-3421-3210; King, Philip/0000-0002-6523-9034; Munoz-Sanjose, Vicente/0000-0002-3482-6957; Zuniga-Perez, Jesus/0000-0002-7154-641X; FU Department of Energy [DE-FG02-98ER45680]; Donors of the American Chemical Society Petroleum Research Fund; Director, Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy [DE AC0205CH11231]; Engineering and Physical Sciences Research Council, U. K. [EP/E010210/1]; European Community [NMP4-CT-2004-500198]; Deutsche Forschungsgemeinschaft [BE1346/18-2]; Carl-Zeiss-Stifung; Spanish Government [MAT2004-06841] FX The Boston University program is supported in part by the Department of Energy under Contract No. DE-FG02-98ER45680 and by the Donors of the American Chemical Society Petroleum Research Fund. This work was also supported in part by the Department of Energy under Contract No. DE-FG02-98ER45680. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE AC0205CH11231. We also acknowledge financial support from the Engineering and Physical Sciences Research Council, U. K. (Grant No. EP/E010210/1), the European Community in the framework of the network of excellence NANOQUANTA (Contract No. NMP4-CT-2004-500198), the Deutsche Forschungsgemeinschaft (Project No. BE1346/18-2), the Carl-Zeiss-Stifung, and the Spanish Government (Project No. MAT2004-06841). NR 20 TC 43 Z9 43 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 165127 DI 10.1103/PhysRevB.78.165127 PG 5 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500048 ER PT J AU Piquini, P Zunger, A AF Piquini, Paulo Zunger, Alex TI Using superlattice ordering to reduce the band gap of random (In,Ga)As/InP alloys to a target value via the inverse band structure approach SO PHYSICAL REVIEW B LA English DT Article ID SILICON; ENERGY AB Thermophotovoltaic (TPV) devices are intended to absorb photons from hot blackbody radiating objects, often requiring semiconductor absorbers with band gap of similar or equal to 0.6 eV. The random In(x)Ga(1-x)As alloy lattice matched (x(In)=0.53) to a (001) InP substrate has a low-temperature band gap of 0.8 eV, about 0.2 eV too high for a TPV absorber. Bringing the band gap down by raising the In concentration induces strain with the substrate, leading to a two-dimensional (2D)-> three-dimensional (3D) morphological transition occurring before band gaps suitable for TPV applications are achieved. We use the inverse band structure approach, based on a genetic algorithm and empirical pseudopotential calculations, to search for lattice-matched InAs/GaAs multiple-repeat unit structures with individual layer thicknesses lower than the critical thickness for a 2D -> 3D transition. Despite the fact that quantum confinement usually increases band gaps, we find a quantum superlattice structure with the required reduced gap (and a significant optical transition) that matches all target requirements. This is explained by the predominance of (potential-energy) level anticrossing effects over (kinetic) quantum confinement effects. C1 [Piquini, Paulo; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Piquini, Paulo] Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil. RP Piquini, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Piquini, Paulo/A-3672-2009; Piquini, Paulo/G-3534-2012; Zunger, Alex/A-6733-2013 OI Piquini, Paulo/0000-0003-4340-2723; FU U. S. Department of Energy; Office of Science; Basic Energy Sciences; Materials Science and Engineering [DE-AC36-99GO10337]; DOE at the National Energy Resource Scientific Computing Center FX This work was funded by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering, under Contract No. DE-AC36-99GO10337 to NREL. Computational resources were provided by the DOE at the National Energy Resource Scientific Computing Center. We thank C. Geller for interest in the early stages of this work. NR 17 TC 3 Z9 4 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 161302 DI 10.1103/PhysRevB.78.161302 PG 4 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500008 ER PT J AU Schachinger, E Homes, CC Lobo, RPSM Carbotte, JP AF Schachinger, E. Homes, C. C. Lobo, R. P. S. M. Carbotte, J. P. TI Multiple bosonic mode coupling in the charge dynamics of the electron-doped superconductor (Pr(2-x)Ce(x))CuO(4) SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-TEMPERATURE SUPERCONDUCTOR; INFRARED PROPERTIES; SPIN FLUCTUATIONS; CONDUCTIVITY; PR2-XCEXCUO4; LA2-XSRXCUO4; RESONANCE; ENERGY; STATES AB We analyze optical spectroscopy data of the electron-doped superconductor (Pr(2-x)Ce(x))CuO(4) (PCCO) to investigate the coupling of the charge carriers to bosonic modes. The method of analysis is the inversion of the optical scattering rate tau(-1)(op)(omega,T) at different temperatures T by means of maximum entropy technique combined with Eliashberg theory. We find that in the superconducting state the charge carriers couple to two dominant modes, one at similar to 12 meV and a second one at similar to 45 meV as well as to a high energy background. The low energy mode shows a strong temperature dependence and disappears at or slightly above the critical temperature T(c). The high energy mode exists above T(c) and moves toward higher energies with increasing temperatures. It becomes less prominent at temperatures >100 K above which it evolves into a typical spin-fluctuation background. In contrast to the hole-doped high-T(c) superconductors PCCO proves to be a superconductor close to the dirty limit. C1 [Schachinger, E.] Graz Univ Technol, Inst Theoret & Computat Phys, A-8010 Graz, Austria. [Homes, C. C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Lobo, R. P. S. M.] Univ Paris 06, LPS ESPCI, Lab Photons & Mat, CNRS UPR 5, F-75231 Paris 5, France. [Carbotte, J. P.] McMaster Univ, Dept Phys & Astron, Hamilton, ON N1G 2W1, Canada. [Carbotte, J. P.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Schachinger, E (reprint author), Graz Univ Technol, Inst Theoret & Computat Phys, A-8010 Graz, Austria. OI Lobo, Ricardo/0000-0003-2355-6856 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institute for Advanced Research (CIFAR); Office of Science, U.S. Department of Energy [DE-AC02-98CH10886] FX This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Canadian Institute for Advanced Research (CIFAR). We thank N. Bontemps for valuable discussions and her keen interest. J.P.C. and E. S. want to thank T. Timusk for his interest and many discussions. E. S. enjoyed the hospitality and friendship of the members of the Department of Physics and Astronomy during his visit at McMaster University. The work at Brookhaven National Laboratory was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 40 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 134522 DI 10.1103/PhysRevB.78.134522 PG 10 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200108 ER PT J AU Seletskaia, T Osetsky, Y Stoller, RE Stocks, GM AF Seletskaia, Tatiana Osetsky, Yuri Stoller, R. E. Stocks, G. M. TI First-principles theory of the energetics of He defects in bcc transition metals SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MICROSTRUCTURAL EVOLUTION; BASIS-SET; HELIUM; IRON; MIGRATION; SURFACES; BEHAVIOR; STEEL AB Helium defect properties in V, Nb, Ta, Mo, and W were studied using first-principles electronic structure calculations. The most stable position for the He in all bcc metals is a substitutional site; the tetrahedral interstitial position is more favorable than the octahedral position. The formation energy of He substitutional defect is nearly the same for all the metals, while the formation energy of He interstitial defect strongly depends on the electronic structure of the host and insignificantly on its atomic size. The obtained He formation energies were used to calculate He binding energy to the vacancy. For V, Nb, and Ta He-vacancy binding energy is about one-half of the vacancy formation energy; for Mo and W it is about 40% higher than the vacancy formation energy. Both pair potentials and effective-medium theory fall to reproduce the preference order or the relationship between the formation energies. Calculated He formation energies and He-vacancy binding energies improve understanding of He behavior and diffusion mechanisms in metals. C1 [Seletskaia, Tatiana; Stoller, R. E.; Stocks, G. M.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. [Osetsky, Yuri] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Seletskaia, T (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RI Stoller, Roger/H-4454-2011; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Osetskiy, Yury/0000-0002-8109-0030 FU Division of Materials Sciences and Engineering; Office of Fusion Energy Sciences; U. S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U. S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 38 TC 60 Z9 62 U1 4 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 134103 DI 10.1103/PhysRevB.78.134103 PG 9 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200033 ER PT J AU Sharma, HR Fournee, V Shimoda, M Ross, AR Lograsso, TA Gille, P Tsai, AP AF Sharma, H. R. Fournee, V. Shimoda, M. Ross, A. R. Lograsso, T. A. Gille, P. Tsai, A. P. TI Growth of Bi thin films on quasicrystal surfaces SO PHYSICAL REVIEW B LA English DT Article ID AL-CU-FE; FIVEFOLD SURFACE; NUCLEATION; AG; PHOTOEMISSION; REFINEMENT; ENERGY AB We present a comprehensive study of Bi thin-film growth on quasicrystal surfaces. The substrates used for the growth are the fivefold surface of icosahedral (i)-Al-Cu-Fe and i-Al-Pd-Mn and the tenfold surface of decagonal (d)-Al-Ni-Co quasicrystals. The growth is investigated at 300 and 525 K substrate temperatures and at different coverage (theta) ranging from submonolayer to ten monolayers. The film is characterized by scanning tunneling microscopy, reflection high-energy electron diffraction, and x-ray photoelectron spectroscopy. At 300 K, the deposited Bi yields a quasicrystalline film for theta <= 1. For 1 form a temperature-dependent PLA-coupled nonlinear-map lattice, where t is the iteration "time." On cooling at a constant rate, the excess entropy shows a weak roll-off near a temperature T=T-g and a sharper elbow at a lower T-*, just above a Kauzmann-type T-K where the excess entropy would have become negative. The crossover temperatures T-g,T-* decrease logarithmically with cooling rate and mark stability changes in spatiotemporal attractors of the cooled PLA-coupled map. Three phases in < S(r,t)> are found, with textures of the martensitic-variant domain walls as "inherent structures." There is a high-temperature (T>T-g) fine scale phase of feathery domain walls and an intermediate temperature (T-g>T>T-*) phase of mazelike domain walls, with both showing square-wave oscillations as predominantly period-two attractors but with minority-frequency subharmonic clusters. Finally, there is a low-temperature freezing (T-*>T) to a static fixed point or period-one attractor of coarse, irregular bidiagonal twins, as in a strain glass. A Haar-wavelet analysis is used to identify the local attractor dynamics. A central result is that dynamically heterogeneous and mobile low-strain droplets act as catalysts, and can form correlated chains or transient "catalytic corrals" to incubate an emerging local texture. The hotspot lifetime vanishes linearly in T-T-K, suggesting that T-K is a dynamic spinodal limit for generating the "austenitic" catalyst, the disappearance of which drives a trapping into one of many bidiagonal glassy states. The model has relevance to martensitic or complex-oxide textures, coupled-map lattices, and configurational-glass transitions. C1 [Shenoy, S. R.] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. [Shenoy, S. R.] Abdus Salaam Int Ctr Theoret Phys, I-3414 Trieste, Italy. [Lookman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lookman, T.] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E, Canada. RP Shenoy, SR (reprint author), Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. OI Lookman, Turab/0000-0001-8122-5671 NR 70 TC 12 Z9 12 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 144103 DI 10.1103/PhysRevB.78.144103 PG 17 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300023 ER PT J AU Stewart, JR Gardner, JS Qiu, Y Ehlers, G AF Stewart, J. R. Gardner, J. S. Qiu, Y. Ehlers, G. TI Collective dynamics in the Heisenberg pyrochlore antiferromagnet Gd2Sn2O7 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-ICE; DIPOLAR INTERACTIONS; FRUSTRATED GD2SN2O7; PHASE; TEMPERATURE; GD2TI2O7; GARNET; ORDER; TRANSITION; GD3GA5O12 AB Gd2Sn2O7 is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. The system is known to enter a long-range ordered ground state (the "Palmer Chalker" state) below T-c=1 K with k(ord)=(000). However, persistent electronic spin fluctuations have been observed as T -> 0. Using inelastic neutron scattering, we have studied the buildup of short-range spin-spin correlations as the temperature is lowered, and the eventual formation of a gapped long-range ordered state that is able to sustain spin waves below T-c. As a magnetic field is applied, new magnetic phases develop and the gap widens. These measurements show that Gd2Sn2O7 completely relieves itself of frustration, but the self-selected ground state is very delicate. C1 [Stewart, J. R.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Gardner, J. S.] Indiana Univ, Bloomington, IN 47408 USA. [Gardner, J. S.; Qiu, Y.] NIST, NCNR, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, College Pk, MD 20742 USA. [Ehlers, G.] Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. RP Stewart, JR (reprint author), Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. EM jsg@nist.gov RI Stewart, Ross/C-4194-2008; Gardner, Jason/A-1532-2013; Ehlers, Georg/B-5412-2008 OI Stewart, Ross/0000-0003-0053-0178; Ehlers, Georg/0000-0003-3513-508X FU U. S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation under Agreement [DMR-0454672] FX We thank S. Bramwell, M. Gingras, and the staff at the NCNR for their contributions. ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 and the NCNR is in part funded by the National Science Foundation under Agreement No. DMR-0454672. NR 30 TC 17 Z9 17 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 132410 DI 10.1103/PhysRevB.78.132410 PG 4 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200016 ER PT J AU Subedi, A Singh, DJ AF Subedi, Alaska Singh, David J. TI Density functional study of BaNi(2)As(2): Electronic structure, phonons, and electron-phonon superconductivity SO PHYSICAL REVIEW B LA English DT Article ID LAYERED SUPERCONDUCTOR AB We investigate the properties of BaNi(2)As(2) using first-principles calculations. The band structure has a similar shape to that of BaFe(2)As(2), and in particular shows a pseudogap between a manifold of six heavy d electron bands and four lighter d bands, i.e., at an electron count of six d electrons per Ni. However, unlike BaFe(2)As(2), where the Fermi energy occurs at the bottom of the pseudogap, the two additional electrons per Ni in the Ni compound place the Fermi energy in the upper manifold. Thus BaNi(2)As(2) has large Fermi surfaces very distinct from BaFe(2)As(2). Results for the phonon spectrum and electron-phonon coupling are consistent with a classification of this material as a conventional phonon-mediated superconductor although spin fluctuations and nearness to magnetism may be anticipated based on the value of N(E(F)). C1 [Subedi, Alaska] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Subedi, Alaska; Singh, David J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Subedi, A (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions with M. H. Du and I. I. Mazin. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 30 TC 55 Z9 55 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 132511 DI 10.1103/PhysRevB.78.132511 PG 4 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200028 ER PT J AU Subedi, A Zhang, LJ Singh, DJ Du, MH AF Subedi, Alaska Zhang, Lijun Singh, D. J. Du, M. H. TI Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL-STRUCTURE AB We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum, magnetism, and electron-phonon coupling for the superconducting phase FeSe, as well as the related compounds FeS and FeTe. We find that the Fermi-surface structure of these compounds is very similar to that of the Fe-As based superconductors, with cylindrical electron sections at the zone corner, cylindrical hole surface sections, and depending on the compound, other small hole sections at the zone center. As in the Fe-As based materials, these surfaces are separated by a two-dimensional nesting vector at (pi,pi). The density of states, nesting, and Fermi-surface size increase, going from FeSe to FeTe. Both FeSe and FeTe show spin-density wave (SDW) ground states, while FeS is close to instability. In a scenario where superconductivity is mediated by spin fluctuations at the SDW nesting vector, the strongest superconductor in this series would be doped FeTe. C1 [Subedi, Alaska] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Subedi, Alaska; Zhang, Lijun; Singh, D. J.; Du, M. H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Subedi, A (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Zhang, Lijun/F-7710-2011; Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 40 TC 490 Z9 499 U1 41 U2 283 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 134514 DI 10.1103/PhysRevB.78.134514 PG 6 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200100 ER PT J AU Van Veenendaal, M AF van Veenendaal, Michel TI Anomalous ground states at the interface between two transition-metal compounds SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE; CIRCULAR-DICHROISM; BAND; NIO; RECONSTRUCTION; PHOTOEMISSION; INSULATORS; SYMMETRY; SPECTRA AB The effects of strong covalency across a strongly correlated interface between two transition-metal compounds are studied. Since the charge transfer is directional, the lowest electron-removal and -addition states are often not involved in the formation of covalent bonds across the interface. This paper shows that this can lead to the formation of unusual ground states not found in the bulk. For cuprates, the formation of "Zhang-Rice triplets" is observed. For nickelates, we demonstrate the possibility of in-plane or out-of-plane orbital switching, whereas cobaltates are prone to spin switching. For Co and Fe compounds, a change between antiferromagnetic superexchange and ferromagnetic double exchange is found. Calculations of x-ray magnetic dichroism are presented, which could provide insight into the presence of these unusual ground states. C1 [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Van Veenendaal, M (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM veenendaal@niu.edu NR 30 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 165415 DI 10.1103/PhysRevB.78.165415 PG 9 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500104 ER PT J AU Welp, U Xie, R Koshelev, AE Kwok, WK Cheng, P Fang, L Wen, HH AF Welp, U. Xie, R. Koshelev, A. E. Kwok, W. K. Cheng, P. Fang, L. Wen, H. -H. TI Calorimetric determination of the upper critical fields and anisotropy of NdFeAsO1-xFx single crystals SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-FIELD; UNTWINNED YBA2CU3O7-DELTA; LATENT-HEAT; SUPERCONDUCTIVITY; TRANSITION; LAO1-XFXFEAS; BEHAVIOR AB We present heat-capacity measurements of the upper critical fields of single-crystal NdFeAsO1-xFx. In zero-magnetic field a clear step in the heat capacity is observed at T-c approximate to 47 K. In fields applied perpendicular to the FeAs layers the step broadens significantly whereas for the in-plane orientation the field effects are small. This behavior is reminiscent of the CuO2-high-T-c superconductors and is a manifestation of pronounced fluctuation effects. Using an entropy conserving construction we determine the transition temperatures in applied fields and the upper critical-field slopes of partial derivative H-c2(c)/partial derivative T=-0.72 T/K and partial derivative H-c2(ab)/partial derivative T=-3.1 T/K. Zero-temperature coherence lengths of xi(ab)approximate to 3.7 nm and xi(c)approximate to 0.9 nm and a modest superconducting anisotropy of lambda similar to 4 can be deduced in a single-band model. C1 [Welp, U.; Xie, R.; Koshelev, A. E.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xie, R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Cheng, P.; Fang, L.; Wen, H. -H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Welp, U (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Fang, Lei /K-2017-2013; Koshelev, Alexei/K-3971-2013; CHENG, PENG/D-4679-2015; OI Koshelev, Alexei/0000-0002-1167-5906; Xie, Ruobing/0000-0003-0266-9122 FU U.S. Department of Energy-Basic Energy Science [DEAC02-06CH11357]; Ministry of Science and Technology of China [2006CB60100, 2006CB921802, 2006CB921107] FX This work was supported by the U.S. Department of Energy-Basic Energy Science-under Contract No. DEAC02-06CH11357, by the Natural Science Foundation of China, by the Ministry of Science and Technology of China (973 under Projects No. 2006CB60100, No. 2006CB921802 and No. 2006CB921107), and by the Chinese Academy of Sciences (Project ITSNEM). NR 38 TC 45 Z9 45 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 140510 DI 10.1103/PhysRevB.78.140510 PG 4 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300019 ER PT J AU Wen, JS Xu, GY Stock, C Gehring, PM Zhong, Z Boatner, LA Venturini, EL Samara, GA AF Wen, Jinsheng Xu, Guangyong Stock, C. Gehring, P. M. Zhong, Z. Boatner, L. A. Venturini, E. L. Samara, G. A. TI Effect of local dipole moments on the structure and lattice dynamics of K0.98Li0.02TaO3 SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC-NEUTRON-SCATTERING; RAMAN-SCATTERING; KTAO3; POLARIZATION; K1-XLIXTAO3; CRYSTALS; LI; TRANSITION; BEHAVIOR; IONS AB We present high-energy x-ray (67 keV) and neutron-scattering measurements on a single crystal of K1-xLixTaO3 for which the Li content (x=0.02) is less than x(c)=0.022, the critical value below which no structural phase transitions have been reported in zero field. While the crystal lattice does remain cubic down to T=10 K under both zero-field and field-cooled (E <= 4 kV/cm) conditions, the Bragg peak intensity changes significantly at T-C=63 K. A strong and frequency-dependent dielectric permittivity is observed at ambient pressure, a defining characteristic of relaxors. However an extensive search for static polar nanoregions, which is also widely associated with relaxor materials, detected no evidence of elastic neutron diffuse scattering between 300 and 10 K. Neutron inelastic scattering methods were used to characterize the transverse acoustic and optic phonons (TA and TO modes) near the (200) and (002) Bragg peaks. The zone-center TO mode softens monotonically with cooling but never reaches zero energy in either zero field or in external electric fields of up to 4 kV/cm. These results are consistent with the behavior expected for a dipolar glass in which the local polar moments are frozen and exhibit no long-range order at low temperatures. C1 [Wen, Jinsheng; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wen, Jinsheng] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Stock, C.] Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA. [Stock, C.; Gehring, P. M.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zhong, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Venturini, E. L.; Samara, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Stock, C.] Rutherford Appleton Lab, ISIS, Rutherford, NJ USA. RP Wen, JS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jwen@bnl.gov RI Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010; Boatner, Lynn/I-6428-2013; OI Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275; Boatner, Lynn/0000-0002-0235-7594; Gehring, Peter/0000-0002-9236-2046 FU U. S. Department of Energy (DOE) [DE-AC02-98CH10886]; Natural Sciences and Engineering Research Council of Canada; NSF [DMR-0306940]; ORNL; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. DOE [DE-AC05-00OR22725] FX We would like to acknowledge stimulating discussions with H. J. Kang, J. H. Chung, J. W. Lynn, and Y. Chen. The work at Brookhaven National Laboratory was supported by the U. S. Department of Energy (DOE) under Contract No. DE-AC02-98CH10886. C. S. was supported by Natural Sciences and Engineering Research Council of Canada and the NSF under Grant No. DMR-0306940. Research at ORNL was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. DOE, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 33 TC 9 Z9 9 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 144202 DI 10.1103/PhysRevB.78.144202 PG 7 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300035 ER PT J AU Yang, G Ramasse, Q Klie, RF AF Yang, G. Ramasse, Q. Klie, R. F. TI Direct measurement of charge transfer in thermoelectric Ca3Co4O9 SO PHYSICAL REVIEW B LA English DT Article ID MISFIT-LAYERED COBALTITE; X-RAY-ABSORPTION; TRANSMISSION ELECTRON-MICROSCOPE; GRAIN-BOUNDARIES; OXIDES; (CAOH)(1.14)COO2 AB The misfit-layered cobalt oxide Ca3Co4O9 exhibits outstanding physical properties including high thermoelectric power, low thermal conductivity, low resistivity, and high thermal stability. We utilize atomic-resolution Z-contrast imaging in conjunction with electron energy-loss spectroscopy (EELS) in an aberration-corrected scanning transmission electron microscope (STEM) to characterize the local atomic and electronic structure of Ca3Co4O9. We will show that the position of the O atoms in the CoO2 layers can be directly imaged, and that the CoO columns in the rocksalt layer exhibit a strong modulation in the (010) direction. Further, we measure the local Co valence and find significant hole transfer from the rocksalt CoO to the hexagonal CoO2 layers. Our results are confirmed by self-consistent multiple-scattering calculations and we conclude that this hole transfer increases the mobile hole concentration and breaks the electron-hole symmetry in the CoO2 layers, thereby enabling the high thermoelectric power in the strongly correlated CoO2 subsystem. C1 [Yang, G.; Klie, R. F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Ramasse, Q.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Yang, G (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RI Yang, Guang/C-9022-2011 OI Yang, Guang/0000-0003-1117-1238 FU U. S. Department of Energy [DE-AC02-05CH11231] FX We thank Q. Li of Brookhaven National Laboratory for the sample synthesis. The work at the National Center for Electron Microscopy is supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 48 Z9 48 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 153109 DI 10.1103/PhysRevB.78.153109 PG 4 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400010 ER PT J AU Yin, WJ Gong, XG Wei, SH AF Yin, Wan-Jian Gong, Xin-Gao Wei, Su-Huai TI Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; SEMICONDUCTOR ALLOYS; ELECTRONIC-PROPERTIES AB The unusual nonlinear behaviors of the band gaps in SnxGe1-x alloys are investigated using first-principles calculations. We show that the large bowing of the direct band gap is induced by the disordering effect. Moreover, we calculated individual contribution of the band-edge states and found that the bowing of the conduction band edge is much larger than the bowing of the valence band edge, although the natural valence-band offset between Ge and Sn is larger than the natural conduction-band offset. The breakdown of the band-edge distribution rule is explained by the large lattice mismatch between Ge and Sn and the large deformation potential of the band-edge states. C1 [Yin, Wan-Jian; Gong, Xin-Gao] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Yin, Wan-Jian; Gong, Xin-Gao] Fudan Univ, Surface Sci Lab, Shanghai 200433, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yin, WJ (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RI gong, xingao /B-1337-2010; Yin, Wanjian/F-6738-2013; gong, xingao/D-6532-2011 FU Special Funds for Major State Basic Research; National Science Foundation of China; U. S. Department of Energy [DE-AC36-99GO10337] FX The work in Fudan University was partially supported by the Special Funds for Major State Basic Research, National Science Foundation of China. The computation was performed in the Supercomputer Center of Shanghai, the Supercomputer Center of Fudan University, and CCS. The work at NREL was funded by the U. S. Department of Energy under Contract No. DE-AC36-99GO10337. NR 26 TC 93 Z9 93 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 161203 DI 10.1103/PhysRevB.78.161203 PG 4 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500006 ER PT J AU Zhao, J Huang, Q de la Cruz, C Lynn, JW Lumsden, MD Ren, ZA Yang, J Shen, XL Dong, XL Zhao, ZX Dai, PC AF Zhao, Jun Huang, Q. de la Cruz, Clarina Lynn, J. W. Lumsden, M. D. Ren, Z. A. Yang, Jie Shen, Xiaolin Dong, Xiaoli Zhao, Zhongxian Dai, Pengcheng TI Lattice and magnetic structures of PrFeAsO, PrFeAsO(0.85)F(0.15), and PrFeAsO(0.85) SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB We use powder neutron diffraction to study the spin and lattice structures of polycrystalline samples of nonsuperconducting PrFeAsO and superconducting PrFeAsO(0.85)F(0.15) and PrFeAsO(0.85). We find that PrFeAsO exhibits abrupt structural phase transitions at 153 K followed by static long-range antiferromagnetic order at 127 K. Both the structural distortion and magnetic order are similar to other rare-earth oxypnictides. Electron doping the system with either fluorine or oxygen deficiency suppresses the structural distortion and static long-range antiferromagnetic order, therefore placing these materials into the same class of FeAs-based superconductors. C1 [Zhao, Jun; de la Cruz, Clarina; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Huang, Q.; Lynn, J. W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [de la Cruz, Clarina; Lumsden, M. D.; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Ren, Z. A.; Yang, Jie; Shen, Xiaolin; Dong, Xiaoli; Zhao, Zhongxian] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. RP Zhao, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012; yang, jie/F-4389-2012; Ren, Zhi An/C-1421-2009; dela Cruz, Clarina/C-2747-2013; Lumsden, Mark/F-5366-2012 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170; yang, jie/0000-0002-5549-6926; dela Cruz, Clarina/0000-0003-4233-2145; Lumsden, Mark/0000-0002-5472-9660 FU U. S. National Science Foundation [DMR-0756568]; U. S. Department of Energy [DOE DE-FG02-05ER46202]; Division of Scientific User Facilities; Basic Energy Sciences; U. S. Department of Energy; Chinese Academy of Sciences; National Science Foundation of China; Ministry of Science and Technology of China; Chinese Academy of Science Projects ITSNEM [2006CB601000, 2006CB92180] FX This work was supported by the U. S. National Science Foundation through Grant No. DMR-0756568 and by the Division of Materials Science, Basic Energy Sciences, U. S. Department of Energy through Grant No. DOE DE-FG02-05ER46202. This work was also supported in part by the Division of Scientific User Facilities, Basic Energy Sciences, U. S. Department of Energy. The work at the Institute of Physics, Chinese Academy of Sciences was supported by the National Science Foundation of China, the Chinese Academy of Sciences, and the Ministry of Science and Technology of China. The work at the Institute of Physics was also supported in part by Chinese Academy of Science Projects ITSNEM No. 2006CB601000 and No. 2006CB92180. NR 21 TC 111 Z9 112 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 13 AR 132504 DI 10.1103/PhysRevB.78.132504 PG 4 WC Physics, Condensed Matter SC Physics GA 367SZ UT WOS:000260574200021 ER PT J AU Zhao, J Ratcliff, W Lynn, JW Chen, GF Luo, JL Wang, NL Hu, JP Dai, PC AF Zhao, Jun Ratcliff, W., II Lynn, J. W. Chen, G. F. Luo, J. L. Wang, N. L. Hu, Jiangping Dai, Pengcheng TI Spin and lattice structures of single-crystalline SrFe2As2 SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2, the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2. We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b. At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO (R=rare earth) families of materials and on BaFe2As2, and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors. C1 [Zhao, Jun; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ratcliff, W., II; Lynn, J. W.] Natl Inst Stand & Technol, NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012; Hu, Jiangping/A-9154-2010; hu, jiangping /C-3320-2014 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170; Hu, Jiangping/0000-0003-4480-1734; FU U.S. National Science Foundation [DMR-0756568]; DOE [DEFG02-05ER46202] FX This work is supported by the U.S. National Science Foundation through Contract No. DMR-0756568 and by the U.S. Department of Energy, Division of Materials Science, Basic Energy Sciences through DOE Contract No. DEFG02-05ER46202. This work is also supported in part by the U. S. Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences is supported by the National Science Foundation of China, the Chinese Academy of Sciences, and the Ministry of Science and Technology of China. NR 31 TC 157 Z9 158 U1 4 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 140504 DI 10.1103/PhysRevB.78.140504 PG 4 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300013 ER PT J AU Zhao, YF Kim, YH Simpson, LJ Dillon, AC Wei, SH Heben, MJ AF Zhao, Yufeng Kim, Yong-Hyun Simpson, Lin J. Dillon, Anne C. Wei, Su-Huai Heben, Michael J. TI Opening space for H-2 storage: Cointercalation of graphite with lithium and small organic molecules SO PHYSICAL REVIEW B LA English DT Article ID HYDROGEN STORAGE; INTERCALATION COMPOUNDS; NANOSTRUCTURES; TEMPERATURE; NANOTUBES; CAPACITY; SURFACE; MEDIA AB Cointercalation of graphite with lithium and organic molecules, such as benzene and tetrahydrofuran (THF), is studied using first-principles calculations. The molecules play an important role in expanding the interlayer graphene distance to similar to 7.7 A. The increased space permits multiple H-2 species to be bound to Li cations with a binding energy of 10-22 kJ/mol. Furthermore, in the interstitial area free of Li cations, the negative charge in the graphene sheets enhances the H-2 binding energy to similar to 9 kJ/mol through electrostatic attraction. In order to restrain nucleation of lithium hydrides, the densest Li array is determined to be a Li-4(THF)C-72 structure, which absorbs 3.4 wt % hydrogen molecules reversibly. Cointercalation offers an experimentally accessible approach to designing optimized hydrogen storage materials that have not been investigated previously. C1 [Zhao, Yufeng; Kim, Yong-Hyun; Simpson, Lin J.; Dillon, Anne C.; Wei, Su-Huai; Heben, Michael J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhao, YF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yufend_zhao@nrel.gov RI Kim, Yong-Hyun/C-2045-2011 OI Kim, Yong-Hyun/0000-0003-4255-2068 FU U.S. Department of Energy through the Hydrogen Sorption Center of Excellence [DE-AC36-99GO10337] FX This work was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science, the Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cell, and Infrastructure Technologies Program of the U.S. Department of Energy through the Hydrogen Sorption Center of Excellence under Grant No. DE-AC36-99GO10337. Computing time was provided by DOE's National Energy Research Scientific Computing Center. NR 35 TC 18 Z9 18 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 14 AR 144102 DI 10.1103/PhysRevB.78.144102 PG 5 WC Physics, Condensed Matter SC Physics GA 367TA UT WOS:000260574300022 ER PT J AU Zheng, H Li, Q Gray, KE Mitchell, JF AF Zheng, H. Li, Qing'An Gray, K. E. Mitchell, J. F. TI Charge and orbital ordered phases of La2-2xSr1+2xMn2O7-delta SO PHYSICAL REVIEW B LA English DT Article ID MANGANESE OXIDES; X-RAY; LASR2MN2O7; LA1.2SR1.8MN2O7; SPIN; MANGANITES; MAGNETORESISTANCE; INTERPLAY AB Our studies have significantly modified the conventionally held view of the phase diagram of La2-2xSr1+2xMn2O7-delta for two compositions exhibiting charge (and orbital) order (CO), i.e., at hole-doping levels, h=x-delta, of similar to 0.5 and similar to 0.6. These CO states are stable over very narrow doping ranges (Delta h similar to +/- 0.005) at the lowest temperatures, but those ranges increase at higher temperatures (to Delta h similar to +/- 0.02) in a manner consistent with simple entropy considerations. Such narrow ranges dictate the crucial need for crystal homogeneity. Attesting to such homogeneity is a conductivity ratio of >10(10) upon crossing the first-order phase boundary from CO at h=0.60 to A-type antiferromagnetic (AAFM) at h similar to 0.59 or h similar to 0.61 plus two findings that were missed in the existing literature: that these CO phases are the ground state at the lowest temperatures, and for h similar to 0.5, that coexistence of the CO and AAFM phase is absent at any temperature. C1 [Zheng, H.; Li, Qing'An; Gray, K. E.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Zheng, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Li, Qingan/L-3778-2013 FU U. S. Department of Energy; Basic Energy Sciences-Materials Sciences [DE-AC02-06CH11357] FX This research was supported by the U. S. Department of Energy, Basic Energy Sciences-Materials Sciences, under Contract No. DE-AC02-06CH11357. The authors wish to thank S. Rosenkranz and R. Osborn for ongoing, informative discussions and insights. NR 33 TC 14 Z9 14 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 15 AR 155103 DI 10.1103/PhysRevB.78.155103 PG 7 WC Physics, Condensed Matter SC Physics GA 367TB UT WOS:000260574400042 ER PT J AU Zhou, H Zhou, L Ozaydin, G Ludwig, KF Headrick, RL AF Zhou, Hua Zhou, Lan Ozaydin, Gozde Ludwig, Karl F., Jr. Headrick, Randall L. TI Mechanisms of pattern formation and smoothing induced by ion-beam erosion SO PHYSICAL REVIEW B LA English DT Article ID SURFACES; DIFFUSION; ENERGY AB We have investigated bombardment-induced pattern formation and smoothening during Ar(+) ion erosion of Al(2)O(3) surfaces. The experiments show that ion smoothening of a patterned surface is explained by a mechanism where collisions with near-surface atoms produce an effective downhill current. Quantitative agreement is obtained using ion-collision simulations to compute the magnitude of the surface current. The results lead to predictions for the surface morphology phase diagram as a function of ion energy and incidence angle that substantially agree with experimental results. C1 [Zhou, Hua; Zhou, Lan; Headrick, Randall L.] Univ Vermont, Dept Phys, Burlington, VT 05405 USA. [Zhou, Hua; Zhou, Lan; Headrick, Randall L.] Univ Vermont, Mat Sci Program, Burlington, VT 05405 USA. [Ozaydin, Gozde; Ludwig, Karl F., Jr.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Zhou, H (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM rheadrick@uvm.edu RI Ozaydin-Ince, Gozde/F-3780-2011 FU National Science Foundation [DMR-0348354]; Department of Energy [DEFG0203ER46032] FX The authors wish to acknowledge the experimental assistance of Lin Yang, Christie Nelson, D. Peter Siddons, and Jie Yang. This material is based on work supported by the National Science Foundation under Grant No. DMR-0348354 and by the Department of Energy under Grant No. DEFG0203ER46032. NR 20 TC 19 Z9 19 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2008 VL 78 IS 16 AR 165404 DI 10.1103/PhysRevB.78.165404 PG 6 WC Physics, Condensed Matter SC Physics GA 367TC UT WOS:000260574500093 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopdhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, C Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangaharan, DR Ganti, MS Garcia-Solis, ES Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Hepplemann, S Hippolyte, B Hirsch, A Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, MI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mishra, DK Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM deToledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M Molen, AMV Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xu, N Xu, QH Xu, Y Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopdhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangaharan, D. R. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Hepplemann, S. Hippolyte, B. Hirsch, A. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, M. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X-H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. deToledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. Molen, A. M. Vander Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Hadronic resonance production in d+Au collisions at root S-NN = 200 GeV measured at the BNL Relativistic Heavy Ion Collider SO PHYSICAL REVIEW C LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; ENERGY NUCLEAR COLLISIONS; TIME PROJECTION CHAMBER; FREEZE-OUT; INCLUSIVE PRODUCTION; PARTICLE-PRODUCTION; AU+AU COLLISIONS; GLUON PRODUCTION; MESON PRODUCTION; COLORED GLASS AB We present the first measurements of the rho(770)(0),K-*(892),Delta(1232)(++),Sigma(1385), and Lambda(1520) resonances in d+Au collisions at s(NN)=200 GeV, reconstructed via their hadronic decay channels using the STAR detector (the solenoidal tracker at the BNL Relativistic Heavy Ion Collider). The masses and widths of these resonances are studied as a function of transverse momentum p(T). We observe that the resonance spectra follow a generalized scaling law with the transverse mass m(T). The < p(T)> of resonances in minimum bias collisions are compared with the < p(T)> of pi,K, and p. The rho(0)/pi(-),K-*/K-,Delta(++)/p,Sigma(1385)/Lambda, and Lambda(1520)/Lambda ratios in d+Au collisions are compared with the measurements in minimum bias p+p interactions, where we observe that both measurements are comparable. The nuclear modification factors (R-dAu) of the rho(0),K-*, and Sigma(*) scale with the number of binary collisions (N-bin) for p(T)> 1.2 GeV/c. C1 [Abelev, B. I.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, M. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangaharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dash, S.; Mahapatra, D. P.; Mishra, D. K.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Djawotho, P.; He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Pandit, Y.; Rykov, V.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Hepplemann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; deToledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X-H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopdhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Lin, X.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] Hua Zhong Normal Univ, Inst Particle Phys, CCNU, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Lednicky, Richard/K-4164-2013; Mischke, Andre/D-3614-2011; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013 OI Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Bhasin, Anju/0000-0002-3687-8179; van Leeuwen, Marco/0000-0002-5222-4888; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943 FU RCF at BNL; NERSC Center at LBNL; HENP Divisions of the Office of Science; U. S. DOE; U. S. NSF; BMBF of Germany [IN2P3]; EPSRC of the United Kingdom; EMN of France; FAPESP of Brazil; Russian Ministry of Science and Technology; Ministry of Education and the NNSFC of China; IRP and GA of the Czech Republic; FOM of the Netherlands; DAE; DST; CSIR of the Government of India; Swiss NSF; Polish State Committee for Scientific Research; STAA of Slovakia; Korea Science & Engineering Foundation FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the HENP Divisions of the Office of Science of the U. S. DOE; the U. S. NSF; the BMBF of Germany; IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the Ministry of Education and the NNSFC of China; IRP and GA of the Czech Republic; FOM of the Netherlands; DAE, DST, and CSIR of the Government of India; Swiss NSF; the Polish State Committee for Scientific Research; STAA of Slovakia; and the Korea Science & Engineering Foundation. NR 68 TC 25 Z9 26 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044906 DI 10.1103/PhysRevC.78.044906 PG 20 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700071 ER PT J AU Adare, A Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Campbell, S Chai, JS Chand, P Chang, BS Chang, WC Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Cussonneau, JP Dahms, T Das, K David, G Deak, F Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fields, DE Finck, C Finger, M Finger, M Fleuret, F Fokin, SL Forestier, B Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Hansen, AG Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hidas, P Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Hoover, A Horaguchi, T Hornback, D Hur, MG Ichihara, T Ikonnikov, VV Imai, K Inaba, M Inoue, Y Inuzuka, M Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Katou, K Kawabata, T Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kim, GB Kim, HJ Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Kohara, R Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kuberg, CH Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Bornec, Y Leckey, S Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Lim, H Liska, T Litvinenko, A Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Martinez, G Masek, L Masui, H Matathias, F Matsumoto, T McCain, MC McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Muniruzzaman, M Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Otterlund, I Ouchida, M Oyama, K Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Penev, V Peng, JC Pereira, H Peresedov, V Peressounko, DY Pierson, A Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qualls, JM Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Uam, TJ Vale, C Valle, H van Hecke, HW Velkovska, J Velkovsky, M Vertesi, R Veszpremi, V Vinogradov, AA Virius, M Volkov, MA Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Wohn, FK Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L Zong, X AF Adare, A. Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Campbell, S. Chai, J. -S. Chand, P. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Cussonneau, J. P. Dahms, T. Das, K. David, G. Deak, F. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fields, D. E. Finck, C. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Forestier, B. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S. -Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Hansen, A. G. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hidas, P. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Hoover, A. Horaguchi, T. Hornback, D. Hur, M. G. Ichihara, T. Ikonnikov, V. V. Imai, K. Inaba, M. Inoue, Y. Inuzuka, M. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Katou, K. Kawabata, T. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kim, G. -B. Kim, H. J. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Kohara, R. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kuberg, C. H. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Lim, H. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Martinez, G. Masek, L. Masui, H. Matathias, F. Matsumoto, T. McCain, M. C. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Muniruzzaman, M. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ouchida, M. Oyama, K. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Penev, V. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pierson, A. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qualls, J. M. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjoe, H. Tyurin, N. Uam, T. J. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Velkovsky, M. Vertesi, R. Veszpremi, V. Vinogradov, A. A. Virius, M. Volkov, M. A. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Wohn, F. K. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. Zong, X. CA PHENIX Collaboration TI Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from root S-NN = 22.5 to 200 GeV SO PHYSICAL REVIEW C LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; PP COLLISIONS; DISTRIBUTIONS; ENERGY; DETECTORS; PHYSICS; MATTER AB A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at s(NN)=62.4 and 200 GeV, and Cu+Cu collisions at s(NN)=22.5,62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for nondynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. A comparison of the data with a model where hadrons are independently emitted from a number of hadron clusters suggests that the mean number of hadrons per cluster is small in heavy ion collisions. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Deaton, M. B.; Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Kuberg, C. H.; McCain, M. C.; Omiwade, O. O.; Qualls, J. M.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Ojha, I. D.; Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Chand, P.; Choudhury, R. K.; Dutta, D.; Mohanty, A. K.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Adler, S. S.; Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chujo, T.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; Velkovska, J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Fung, S. -Y.; Hester, T.; Kotchetkov, D.; Li, X. H.; Morreale, A.; Muniruzzaman, M.; Seto, R.; Xie, W.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CZ-11636 Prague, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Inuzuka, M.; Isobe, T.; Kajihara, F.; Kametani, S.; Kawabata, T.; Kurihara, N.; Oda, S. X.; Oyama, K.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kelly, S.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Nagle, J. L.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, CZ-16636 Prague 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Cobigo, Y.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.; Veszpremi, V.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Deak, F.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.; Wang, X. R.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kohara, R.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Belikov, S.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Fed, IHEP Protvino, RU-142281 Protvino, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.; Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.; Wohn, F. K.; Zong, X.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Penev, V.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea. [Akiba, Y.; Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Hidas, P.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Ikonnikov, V. V.; Kazantsev, A. V.; Lebedev, A.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Volkov, M. A.; Yushmanov, I. E.] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Torii, H.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Kim, G. -B.; Rakotozafindrabe, A.; Romana, A.; Tram, V. -N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burward-Hoy, J. M.; Enokizono, A.; Hartouni, E. P.; Heffner, M.; Johnson, S. C.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Butsyk, S.; Constantin, P.; Hansen, A. G.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Silvermyr, D.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjoe, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Bathe, S.; Bucher, D.; Buesching, H.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Santo, R.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.; Kim, D. H.; Uam, T. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kelly, S.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Nagle, J. L.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. [Bassalleck, B.; Bruner, N.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Pierson, A.; Rak, J.; Sanfratello, L.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Hoover, A.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, RU-188300 Gatchina, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Inoue, Y.; Ishihara, M.; Jinnouchi, O.; Kajihara, F.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Okada, K.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bazilevsky, A.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Fox, B. D.; Fukao, Y.; Goto, Y.; Perdekamp, M. Grosse; Horaguchi, T.; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Kawall, D.; Kobayashi, H.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Torii, H.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Devismes, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Jia, J.; Kamin, J.; Leckey, S.; Matathias, F.; McCumber, M.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.; Toia, A.; Velkovsky, M.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Camard, X.; Cussonneau, J. P.; Delagrange, H.; Finck, C.; Gastineau, F.; Germain, M.; Henni, A. Hadj; Martinez, G.; Schutz, Y.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, F-44307 Nantes, France. [Dzhordzhadze, V.; Garishvili, I.; Glenn, A.; Hornback, D.; Kwon, Y.; Newby, J.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Kanou, H.; Nakano, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Oka, M.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Katou, K.; Kikuchi, J.; Matsumoto, T.; Sakaguchi, T.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Khachaturov, B.; Kozlov, A.; Mukhopadhyay, D.; Naglis, M.; Pal, D.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, H. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012 OI Campbell, Sarah/0000-0001-6717-9744; Csorgo, Tamas/0000-0002-9110-9663; Newby, Robert/0000-0003-3571-1067; Skutnik, Steve/0000-0001-6441-135X; Hartouni, Edward/0000-0001-9869-4351; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; NR 49 TC 48 Z9 48 U1 6 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044902 DI 10.1103/PhysRevC.78.044902 PG 15 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700067 ER PT J AU Aznauryan, IG Burkert, VD Kim, W Park, K Adams, G Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Batourine, V Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bonner, BE Bookwalter, C Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Butuceanu, C Calarco, JR Careccia, SL Carman, DS Casey, L Cazes, A Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Cords, D Corvisiero, P Crabb, D Crede, V Cummings, JP Dale, D Dashyan, N De Masi, R De Vita, R De Sanctis, E Degtyarenko, PV Denizli, H Dennis, L Deur, A Dhamija, S Dharmawardane, KV Dhuga, KS Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Forest, TA Fradi, A Funsten, H Gabrielyan, MY Garcon, M Gavalian, G Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gonenc, A Gordon, CIO Gothe, RW Graham, L Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hafnaoui, K Hakobyan, H Hakobyan, RS Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Keller, D Kellie, JD Khandaker, M Kim, KY Klein, A Klein, FJ Klimenko, AV Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Li, J Lima, ACS Livingston, K Lu, HY Lukashin, K MacCormick, M Markov, N Mattione, P McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mehrabyan, S Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Morand, L Moreno, B Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, S Pasyuk, E Paterson, C Pereira, SA Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Popa, I Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Saini, MS Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schott, D Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shaw, J Shvedunov, NV Skabelin, AV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Suleiman, R Taiuti, M Takeuchi, T Tedeschi, DJ Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Yurov, M Zana, L Zhang, B Zhang, J Zhao, B Zhao, ZW AF Aznauryan, I. G. Burkert, V. D. Kim, W. Park, K. Adams, G. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Barrow, S. Batourine, V. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bonner, B. E. Bookwalter, C. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Cazes, A. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Cords, D. Corvisiero, P. Crabb, D. Crede, V. Cummings, J. P. Dale, D. Dashyan, N. Masi, R. De Vita, R. De Sanctis, E. De Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dhamija, S. Dharmawardane, K. V. Dhuga, K. S. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. Fassi, L. El 05 Elouadrhiri, L. Eugenio, P. Fatemi, R. Fedotov, G. Feldman, G. Feuerbach, R. J. Forest, T. A. Fradi, A. Funsten, H. Gabrielyan, M. Y. Garcon, M. Gavalian, G. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gonenc, A. Gordon, C. I. O. Gothe, R. W. Graham, L. Griffioen, K. A. Guidal, M. Guillo, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hafnaoui, K. Hakobyan, H. Hakobyan, R. S. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Keller, D. Kellie, J. D. Khandaker, M. Kim, K. Y. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Lee, T. Li, Ji Lima, A. C. S. Livingston, K. Lu, H. Y. Lukashin, K. MacCormick, M. Markov, N. Mattione, P. McAleer, S. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mehrabyan, S. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Morand, L. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. O'Rielly, G. V. Osipenko, M. Ostrovidov, A. I. Park, S. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Philips, S. A. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Polli, E. Popa, I. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Qin, L. M. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Rowntree, D. Rubin, P. D. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schott, D. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shaw, J. Shvedunov, N. V. Skabelin, A. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Suleiman, R. Taiuti, M. Takeuchi, T. Tedeschi, D. J. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Yun, J. Yurov, M. Zana, L. Zhang, B. Zhang, J. Zhao, B. Zhao, Z. W. TI Electroexcitation of the Roper resonance for 1.7 < Q(2)< 4.5 GeV(2) in ep -> en pi(+) SO PHYSICAL REVIEW C LA English DT Article ID CONSTITUENT QUARK-MODEL; PION FORM-FACTOR; ELECTROPRODUCTION; BARYONS AB The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for 1.7 < Q(2)< 4.5 GeV(2) from recent high precision JLab-CLAS cross section and longitudinally polarized beam asymmetry data for pi(+) electroproduction on protons at W=1.15-1.69 GeV. The analysis is made using two approaches, dispersion relations and a unitary isobar model, which give consistent Q(2) behavior of the helicity amplitudes for the gamma(*)p -> N(1440)P(11) transition. It is found that the transverse helicity amplitude A(1/2), which is large and negative at Q(2)=0, becomes large and positive at Q(2)similar or equal to 2 GeV(2), and then drops slowly with Q(2). The longitudinal helicity amplitude S(1/2), which was previously found from CLAS ep -> ep pi(0),en pi(+) data to be large and positive at Q(2)=0.4,0.65 GeV(2), drops with Q(2). Available model predictions for gamma(*)p -> N(1440)P(11) allow us to conclude that these results provide strong evidence in favor of N(1440)P(11) as a first radial excitation of the 3q ground state. The results of the present paper also confirm the conclusion of our previous analysis for Q(2)< 1 GeV(2) that the presentation of N(1440)P(11) as a q(3)G hybrid state is ruled out. C1 [Aznauryan, I. G.; Burkert, V. D.; Avakian, H.; Boiarinov, S.; Brooks, W. K.; Carman, D. S.; Cole, P. L.; Cords, D.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Girod, F. X.; Guler, N.; Guo, L.; Hanretty, C.; Hassall, N.; Ito, M. M.; Kramer, L. H.; Kubarovsky, V.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Prok, Y.; Raue, B. A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Aznauryan, I. G.; Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Egiyan, K. S.; Gevorgyan, N.; Hafnaoui, K.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Park, K.; Baltzell, N. A.; Cazes, A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Graham, L.; Hyde, C. E.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Preedom, B. M.; Tedeschi, D. J.; Tur, C.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Kim, W.; Park, K.; Batourine, V.; Kuznetsov, V.; Stepanyan, S. S.; Yurov, M.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Fassi, L. El 05; Hadjidakis, C.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Biselli, A. S.; Bradford, R.; Dickson, R.; Eugenio, P.; Feuerbach, R. J.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Cheng, L.; Cole, P. L.; Hakobyan, H.; Klein, F. J.; Lukashin, K.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Masi, R. De; Garcon, M.; Girod, F. X.; Laget, J. M.; Morand, L.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Hanretty, C.; Prok, Y.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Brooks, W. K.] Univ Tecn Feder Santa Maria, Valparaiso, Chile. [Branford, D.; Sokhan, D.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Dhamija, S.; Gabrielyan, M. Y.; Gonenc, A.; Klein, F. J.; Kramer, L. H.; Moteabbed, M.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Barrow, S.; Blaszczyk, L.; Bookwalter, C.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Eugenio, P.; Hakobyan, R. S.; McAleer, S.; Ostrovidov, A. I.; Park, S.; Riccardi, G.; Saini, M. S.; Stokes, B. E.; Takeuchi, T.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Feldman, G.; Hyde, C. E.; Juengst, H. G.; Lima, A. C. S.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Strakovsky, I. I.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Donnelly, J.; Gordon, C. I. O.; Hardie, J.; Ilieva, Y.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Melone, J. J.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Sanctis, E. De; Mirazita, M.; Pereira, S. Anefalos; Polli, E.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; Vita, R. De; Golovatch, E.; Osipenko, M.; Ricco, G.; Ripani, M.; Sapunenko, V.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bouchigny, S.; Masi, R. De; Fradi, A.; Guidal, M.; Gyurjyan, V.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Boiarinov, S.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Prok, Y.; Rowntree, D.; Skabelin, A. V.; Suleiman, R.; Zhang, B.] MIT, Cambridge, MA 02139 USA. [Lawrence, D.; Miskimen, R.; Shaw, J.; Wood, M. H.] Univ Massachusetts, Amherst, MA 01003 USA. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, RU-119899 Moscow, Russia. [Calarco, J. R.; Egiyan, H.; Gavalian, G.; Heddle, D.; Hleiqawi, I.; Lee, T.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hersman, F. W.; Hicks, K.; Keller, D.; Mibe, T.; Niculescu, G.; Tkabladze, A.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Forest, T. A.; Gavalian, G.; Guillo, M.; Holtrop, M.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Niyazov, R. A.; Qin, L. M.; Sabatie, F.; Tkachenko, S.; Weinstein, L. B.; Yun, J.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Denizli, H.; Dytman, S.; Kim, K. Y.; Mehrabyan, S.; Mueller, J.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Adams, G.; Biselli, A. S.; Cummings, J. P.; Kubarovsky, V.; Kuhn, J.; Li, Ji; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Bonner, B. E.; Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.; Rubin, P. D.; Todor, L.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Nozar, M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Fatemi, R.; Joo, K.; Minehart, R.; Pierce, J.; Pocanic, D.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Butuceanu, C.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Aznauryan, IG (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; OI Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Sapunenko, Vladimir/0000-0003-1877-9043 FU U. S. Department of Energy [DE-AC05-060R23177]; National Science Foundation; Korea Research Foundation; French Commissariat a l'Energie Atomique; Italian Instituto Nazionale di Fisica Nucleare FX This work was supported in part by the U. S. Department of Energy and the National Science Foundation, the Korea Research Foundation, the French Commissariat a l'Energie Atomique, and the Italian Instituto Nazionale di Fisica Nucleare. Jefferson Science Associates, LLC, operates Jefferson Lab under U. S. DOE contract DE-AC05-060R23177. NR 40 TC 51 Z9 51 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 045209 DI 10.1103/PhysRevC.78.045209 PG 7 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700083 ER PT J AU Bertozzi, W Caggiano, JA Hensley, WK Johnson, MS Korbly, SE Ledoux, RJ McNabb, DP Norman, EB Park, WH Warren, GA AF Bertozzi, W. Caggiano, J. A. Hensley, W. K. Johnson, M. S. Korbly, S. E. Ledoux, R. J. McNabb, D. P. Norman, E. B. Park, W. H. Warren, G. A. TI Nuclear resonance fluorescence excitations near 2 MeV in (235)U and (239)Pu SO PHYSICAL REVIEW C LA English DT Article ID SCATTERING AB A search for nuclear resonance fluorescence excitations in (235)U and (239)Pu within the energy range of 1.0- to 2.5-MeV was performed using a 4-MeV continuous bremsstrahlung source at the High Voltage Research Laboratory at the Massachusetts Institute of Technology. Measurements utilizing high purity Ge detectors at backward angles identified nine photopeaks in (235)U and 12 photopeaks in (239)Pu in this energy range. These resonances provide unique signatures that allow the materials to be nonintrusively detected in a variety of environments including fuel cells, waste drums, vehicles, and containers. The presence and properties of these states may prove useful in understanding the mechanisms for mixing low-lying collective dipole excitations with other states at low excitations in heavy nuclei. C1 [Bertozzi, W.; Korbly, S. E.; Ledoux, R. J.; Park, W. H.] Passport Syst Inc, Acton, MA 01720 USA. [Caggiano, J. A.; Hensley, W. K.; Warren, G. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Johnson, M. S.; McNabb, D. P.; Norman, E. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bertozzi, W (reprint author), Passport Syst Inc, Acton, MA 01720 USA. FU Battelle Memorial Institute [DE-AC06-76RLO 1830]; U.S. DOE Office of Defense Nuclear Nonproliferation [DE-AC52-07NA27344]; U.S. Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO); SPAWAR [N66001-05-D-6011/0002, N66001-07-D-0025/0001] FX PNNL is operated for the U. S. Department of Energy (DOE) by Battelle Memorial Institute under Contract DE-AC0676-RLO 1830. PNNL's contribution to this project was funded by the U.S. DOE Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development. LLNL's contributions were funded by the U.S. Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO). This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Passport supported in part by DHS/DNDO, SPAWAR contract N66001-05-D-6011/0002 and N66001-07-D-0025/0001. NR 17 TC 54 Z9 54 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 041601 DI 10.1103/PhysRevC.78.041601 PG 5 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700009 ER PT J AU Biselli, AS Burkert, VD Amaryan, MJ Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Battaglieri, M Bedlinskiy, I Bellis, M Benmouna, N Berman, BL Blaszczyk, L Bookwalter, C Boiarinov, S Bosted, P Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Butuceanu, C Calarco, JR Careccia, SL Carman, DS Casey, L Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Crabb, D Crede, V Dale, D Dashyan, N Masi, R Vita, R Sanctis, E Degtyarenko, PV Deur, A Dhamija, S Dickson, R Djalali, C Dodge, GE Doughty, D Dugger, M Dzyubak, OP Egiyan, H Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Feuerbach, R Fersch, R Forest, TA Fradi, A Garcon, M Gavaliann, G Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Gothe, RW Graham, L Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hafidi, K Hakobyan, H Hanretty, C Hassall, N Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Keller, D Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Kossov, M Krahn, Z Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Lachniet, J Laget, JM Langheinrich, J Lawrence, D Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Mirazita, M Mokeev, V Moreno, B Moriya, K Morrow, SA Moteabbed, M Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Paterson, C Pereira, SA Pierce, J Pivnyuk, N Pogorelko, O Pozdniakov, S Price, JW Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schott, D Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Smith, ES Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Tkabladze, A Tkachenko, S Todor, L Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yurov, M Zana, L Zhang, J Zhao, B Zhao, ZW AF Biselli, A. S. Burkert, V. D. Amaryan, M. J. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Battaglieri, M. Bedlinskiy, I. Bellis, M. Benmouna, N. Berman, B. L. Blaszczyk, L. Bookwalter, C. Boiarinov, S. Bosted, P. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crede, V. Dale, D. Dashyan, N. De Masi, R. De Vita, R. De Sanctis, E. Degtyarenko, P. V. Deur, A. Dhamija, S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dugger, M. Dzyubak, O. P. Egiyan, H. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Feuerbach, R. Fersch, R. Forest, T. A. Fradi, A. Garcon, M. Gavaliann, G. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Gothe, R. W. Graham, L. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Keller, D. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Kossov, M. Krahn, Z. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Pierce, J. Pivnyuk, N. Pogorelko, O. Pozdniakov, S. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schott, D. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Smith, E. S. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkabladze, A. Tkachenko, S. Todor, L. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Yurov, M. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. TI First measurement of target and double spin asymmetries for ep -> ep pi(0) in the nucleon resonance region above the Delta(1232) SO PHYSICAL REVIEW C LA English DT Article ID ELECTROPRODUCTION; PHOTOPRODUCTION; SCATTERING; THRESHOLD; GAMMA; MODEL AB The exclusive channel p(e,e(')p)pi(0) was studied in the first and second nucleon resonance regions in the Q(2) range from 0.187 to 0.770 GeV(2) at Jefferson Lab using the CEBAF Large Acceptance Spectrometer. Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi(0) and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A(1/2) and S(1/2) for the Roper resonance N(1400)P(11) and the N(1535)S(11) and N(1520)D(13) states. C1 [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R.; Krahn, Z.; Kuhn, J.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Cheng, L.; Klein, F. J.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; Garcon, M.; Girod, F. X.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Brooks, W. K.] Univ Tecn Feder Santa Maria, Valparaiso, Chile. [Dhamija, S.; Moteabbed, M.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Blaszczyk, L.; Bookwalter, C.; Chen, S.; Coltharp, P.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Strakovsky, I. I.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Fradi, A.; Guidal, M.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Stepanyan, S. S.; Yurov, M.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Lawrence, D.] Univ Massachusetts, Amherst, MA 01003 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, RU-119899 Moscow, Russia. [Calarco, J. R.; Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Hleiqawi, I.; Keller, D.; Mibe, T.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bueltmann, S.; Careccia, S. L.; Dodge, G. E.; Gavaliann, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Niyazov, R. A.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [Baltzell, N. A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Graham, L.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Burkert, V. D.; Avakian, H.; Boiarinov, S.; Bosted, P.; Carman, D. S.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Ito, M. M.; Kubarovsky, V.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niczyporuk, B. B.; Nozar, M.; Raue, B. A.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Pierce, J.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Butuceanu, C.; Fersch, R.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Dashyan, N.; Gevorgyan, N.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Biselli, AS (reprint author), Fairfield Univ, Fairfield, CT 06824 USA. EM biselli@jlab.org RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012 OI Osipenko, Mikhail/0000-0001-9618-3013; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335 FU U. S. Department of Energy [DE-AC05-84ER40150]; National Science Foundation; French Commissariat a Energie Atomique; Italian Istituto Nazionale di Fisica Nucleare; Korean Science and Engineering Foundation FX We thank the staff of the Accelerator and Physics Divisions at the Jefferson Laboratory for their outstanding efforts to provide us with the high-quality beam and the facilities for the data analysis. This work was supported by the U. S. Department of Energy and the National Science Foundation, the French Commissariat a Energie Atomique, the Italian Istituto Nazionale di Fisica Nucleare, and the Korean Science and Engineering Foundation. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-84ER40150. NR 37 TC 14 Z9 14 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 045204 DI 10.1103/PhysRevC.78.045204 PG 11 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700078 ER PT J AU Blok, HP Horn, T Huber, GM Beise, EJ Gaskell, D Mack, DJ Tadevosyan, V Volmer, J Abbott, D Aniol, K Anklin, H Armstrong, C Arrington, J Assamagan, K Avery, S Baker, OK Barrett, B Bochna, C Boeglin, W Brash, EJ Breuer, H Chang, CC Chant, N Christy, ME Dunne, J Eden, T Ent, R Fenker, H Gibson, E Gilman, R Gustafsson, K Hinton, W Holt, RJ Jackson, H Jin, S Jones, MK Keppel, CE Kim, PH Kim, W King, PM Klein, A Koltenuk, D Kovaltchouk, V Liang, M Liu, J Lolos, GJ Lung, A Margaziotis, DJ Markowitz, P Matsumura, A Mckee, D Meekins, D Mitchell, J Miyoshi, T Mkrtchyan, H Mueller, B Niculescu, G Niculescu, I Okayasu, Y Pentchev, L Perdrisat, C Pitz, D Potterveld, D Punjabi, V Qin, LM Reimer, P Reinhold, J Roche, J Roos, PG Sarty, A Shin, IK Smith, GR Stepanyan, S Tang, LG Tvaskis, V Meer, RLJD Vansyoc, K Van Westrum, D Vidakovic, S Vulcan, W Warren, G Wood, SA Xu, C Yan, C Zhao, WX Zheng, X Zihlmann, B AF Blok, H. P. Horn, T. Huber, G. M. Beise, E. J. Gaskell, D. Mack, D. J. Tadevosyan, V. Volmer, J. Abbott, D. Aniol, K. Anklin, H. Armstrong, C. Arrington, J. Assamagan, K. Avery, S. Baker, O. K. Barrett, B. Bochna, C. Boeglin, W. Brash, E. J. Breuer, H. Chang, C. C. Chant, N. Christy, M. E. Dunne, J. Eden, T. Ent, R. Fenker, H. Gibson, E. Gilman, R. Gustafsson, K. Hinton, W. Holt, R. J. Jackson, H. Jin, S. Jones, M. K. Keppel, C. E. Kim, P. H. Kim, W. King, P. M. Klein, A. Koltenuk, D. Kovaltchouk, V. Liang, M. Liu, J. Lolos, G. J. Lung, A. Margaziotis, D. J. Markowitz, P. Matsumura, A. McKee, D. Meekins, D. Mitchell, J. Miyoshi, T. Mkrtchyan, H. Mueller, B. Niculescu, G. Niculescu, I. Okayasu, Y. Pentchev, L. Perdrisat, C. Pitz, D. Potterveld, D. Punjabi, V. Qin, L. M. Reimer, P. Reinhold, J. Roche, J. Roos, P. G. Sarty, A. Shin, I. K. Smith, G. R. Stepanyan, S. Tang, L. G. Tvaskis, V. van der Meer, R. L. J. Vansyoc, K. Westrum, D. Van Vidakovic, S. Vulcan, W. Warren, G. Wood, S. A. Xu, C. Yan, C. Zhao, W. -X. Zheng, X. Zihlmann, B. TI Charged pion form factor between Q(2)=0.60 and 2.45 GeV2. I. Measurements of the cross section for the H-1(e,e(')pi(+))n reaction SO PHYSICAL REVIEW C LA English DT Article ID HIGH MOMENTUM SPECTROMETER; RESONANCE REGION; ELECTRON-SCATTERING; HALL-C; ELECTROPRODUCTION; NUCLEON; CEBAF; PHOTOPRODUCTION; MESONS; RADIUS AB Cross sections for the reaction H-1(e,e(')pi(+))n were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the high-intensity Continuous Electron Beam Accelerator Facility (CEBAF) to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from Q(2)=0.60 to 2.45 GeV2 at an invariant mass of the virtual photon-nucleon system of W=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions sigma(L),sigma(T),sigma(LT), and sigma(TT). The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high-precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable t at the different values of Q(2) are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction H-1(e,e(')pi(+))n. C1 [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands. [Blok, H. P.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Horn, T.; Beise, E. J.; Breuer, H.; Chang, C. C.; Chant, N.; Gustafsson, K.; King, P. M.; Liu, J.; Roos, P. G.] Univ Maryland, College Pk, MD 20742 USA. [Horn, T.; Gaskell, D.; Mack, D. J.; Abbott, D.; Anklin, H.; Baker, O. K.; Dunne, J.; Eden, T.; Ent, R.; Fenker, H.; Gilman, R.; Keppel, C. E.; Liang, M.; Lung, A.; Meekins, D.; Mitchell, J.; Roche, J.; Smith, G. R.; Tang, L. G.; Vulcan, W.; Warren, G.; Wood, S. A.; Yan, C.; Zihlmann, B.] TJNAF, Div Phys, Newport News, VA 23606 USA. [Huber, G. M.; Brash, E. J.; Kovaltchouk, V.; Lolos, G. J.; van der Meer, R. L. J.; Vidakovic, S.; Xu, C.] Univ Regina, Regina, SK S4S 0A2, Canada. [Tadevosyan, V.; Mkrtchyan, H.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Volmer, J.; Tvaskis, V.] Vrije Univ Amsterdam, Fac Nat Sterrenkunde, NL-1081 HV Amsterdam, Netherlands. [Volmer, J.] DESY, D-2000 Hamburg, Germany. [Aniol, K.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Anklin, H.; Boeglin, W.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33119 USA. [Armstrong, C.; Jones, M. K.; Pentchev, L.; Perdrisat, C.] Coll William & Mary, Williamsburg, VA 23187 USA. [Arrington, J.; Holt, R. J.; Jackson, H.; Mueller, B.; Potterveld, D.; Reimer, P.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Assamagan, K.; Avery, S.; Baker, O. K.; Christy, M. E.; Hinton, W.; Keppel, C. E.; Tang, L. G.] Hampton Univ, Hampton, VA 23668 USA. [Barrett, B.; Sarty, A.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Bochna, C.] Univ Illinois, Champaign, IL 61801 USA. [Eden, T.; Punjabi, V.] Norfolk State Univ, Norfolk, VA 23504 USA. [Gibson, E.] Calif State Univ Sacramento, Sacramento, CA 95819 USA. [Gilman, R.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Jin, S.; Kim, P. H.; Kim, W.; Shin, I. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Klein, A.; Qin, L. M.; Vansyoc, K.] Old Dominion Univ, Norfolk, VA 23529 USA. [Koltenuk, D.] Univ Penn, Philadelphia, PA 19104 USA. [Matsumura, A.; Miyoshi, T.; Okayasu, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan. [McKee, D.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Pitz, D.] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Westrum, D. Van] Univ Colorado, Boulder, CO 76543 USA. [Zhao, W. -X.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Zhao, W. -X.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Zihlmann, B.] Univ Virginia, Charlottesville, VA 22901 USA. RP Blok, HP (reprint author), Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands. RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Reimer, Paul/E-2223-2013; Sarty, Adam/G-2948-2014; OI Arrington, John/0000-0002-0702-1328; King, Paul/0000-0002-3448-2306 FU U. S. Department of Energy [DE-AC05-84150]; U. S. National Science Foundation; Natural Sciences and Engineering Research Council of Canada (NSERC); NATO, FOM (Netherlands); KOSEF (South Korea) FX The authors would like to thank Drs. Guidal, Laget, and Vanderhaeghen for stimulating discussions and for modifying their computer program for our needs. We would also like to thank Dr. Obukhovsky for supplying the result of his model calculations and for many informative discussions. This work was supported in part by the U. S. Department of Energy. The Southeastern Universities Research Association ( SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84150. We acknowledge additional research grants from the U. S. National Science Foundation, the Natural Sciences and Engineering Research Council of Canada (NSERC), NATO, FOM (Netherlands), and KOSEF (South Korea). NR 66 TC 66 Z9 66 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 045202 DI 10.1103/PhysRevC.78.045202 PG 25 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700076 ER PT J AU Gericke, MT Bowman, JD Johnson, MB AF Gericke, M. T. Bowman, J. D. Johnson, M. B. TI Mott-Schwinger scattering of polarized low energy neutrons up to thermal energies SO PHYSICAL REVIEW C LA English DT Article ID PARITY-VIOLATING ASYMMETRY; ORBIT INTERACTION; SLOW NEUTRONS; CAPTURE AB The availability of new, high-intensity, cold and thermal neutron sources has opened the possibility of performing high-precision fundamental neutron physics experiments, including measurements that study the hadronic weak interaction and standard model test measurements, using neutron beta decay. The observables in these experiments are usually correlated with the direction of neutron polarization and are often very small (10(-8) -> 10(-6)). Mott-Schwinger scattering of polarized neutrons can produce spin-dependent shifts in beam centroids, which has the potential to produce significant systematic effects for these types of experiments. An accurate calculation of this process for neutral atoms and basic molecules has not been carried out for low neutron energies. In this work, we derive a general expression for the electromagnetic (Mott-Schwinger) contributions to the analyzing power for low-energy neutron scattering. We obtain numerical results for 11 nuclei in the range of A = 1 to A = 208 and provide a series of graphs for easy reference and interpolation between A values. We also estimate the contribution of spin-dependent nucleon-nucleon forces and apply our results to determine the analyzing power of parahydrogen. Numerical calculations are performed to determine the analyzing power for the parahydrogen molecule and are compared to results obtained using analytical expressions. C1 [Gericke, M. T.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Bowman, J. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Johnson, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gericke, MT (reprint author), Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. EM mgericke@physics.umanitoba.ca FU U.S. Department of Energy [W-7405ENG-36]; National Science Foundation [PHY0100348]; Natural Sciences and Engineering Research Council of Canada FX This work was supported in part by the U.S. Department of Energy (Office of Energy Research, under Contract W-7405ENG-36), the National Science Foundation (Grant No. PHY0100348), and the Natural Sciences and Engineering Research Council of Canada. NR 29 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044003 DI 10.1103/PhysRevC.78.044003 PG 15 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700015 ER PT J AU Goodin, C Stone, NJ Ramayya, AV Daniel, AV Stone, JR Hamilton, JH Li, K Hwang, JK Luo, YX Rasmussen, JO Gargano, A Covello, A Ter-Akopian, GM AF Goodin, C. Stone, N. J. Ramayya, A. V. Daniel, A. V. Stone, J. R. Hamilton, J. H. Li, K. Hwang, J. K. Luo, Y. X. Rasmussen, J. O. Gargano, A. Covello, A. Ter-Akopian, G. M. TI g factors, spin-parity assignments, and multipole mixing ratios of excited states in N=82 isotones (134)Te, (135)I SO PHYSICAL REVIEW C LA English DT Article ID DOUBLY MAGIC SN-132; EXCITATIONS; NUCLEI AB The g-factor of the 4(+) state in (134)Te has been measured for the first time by using a new technique developed for measuring angular correlations with Gammasphere. Also reported is the first measurement of the g-factor of the 15/2(+) state in (135)I and the mixing ratios of several transitions. Furthermore, spins and parities are assigned to several levels in (134)Te and (135)I. The g-factor measurements are compared to shell model predictions and good agreement is found between experiment and theory. C1 [Goodin, C.; Ramayya, A. V.; Daniel, A. V.; Hamilton, J. H.; Li, K.; Hwang, J. K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Stone, N. J.; Stone, J. R.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daniel, A. V.; Ter-Akopian, G. M.] JINR, Flerov Lab Nucl React, Dubna, Russia. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37830 USA. [Stone, J. R.; Rasmussen, J. O.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Luo, Y. X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Gargano, A.; Covello, A.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Covello, A.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. FU U.S. DOE [DE-FG05-88ER40407, DE-AC03-76SF00098, DE-FG05-87ER40311, DE-FG02-94ER40834]; University of Tennessee; Vanderbilt University; Italian Ministero dell'Istruzione; dell'Universita e della Ricerca (MIUR) FX The work at Vanderbilt University and Lawrence Berkeley National Laboratory are supported by U.S. DOE under Grant No. DE-FG05-88ER40407 and DE-AC03-76SF00098. The Joint Institute for Heavy Ion Research is supported by University of Tennessee, Vanderbilt University and U.S. DOE through contract No. DE-FG05-87ER40311 with University of Tennessee. The work at University of Maryland is supported by U. S. DOE under Grant No. DE-FG02-94ER40834. The work at the Universita of Naples Federico II was supported in part by the Italian Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR). NR 20 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044331 DI 10.1103/PhysRevC.78.044331 PG 6 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700046 ER PT J AU Huber, GM Blok, HP Horn, T Beise, EJ Gaskell, D Mack, DJ Tadevosyan, V Volmer, J Abbott, D Aniol, K Anklin, H Armstrong, C Arrington, J Assamagan, K Avery, S Baker, OK Barrett, B Bochna, C Boeglin, W Brash, EJ Breuer, H Chang, CC Chant, N Christy, ME Dunne, J Eden, T Ent, R Fenker, H Gibson, EF Gilman, R Gustafsson, K Hinton, W Holt, RJ Jackson, H Jin, S Jones, MK Keppel, CE Kim, PH Kim, W King, PM Klein, A Koltenuk, D Kovaltchouk, V Liang, M Liu, J Lolos, GJ Lung, A Margaziotis, DJ Markowitz, P Matsumura, A Mckee, D Meekins, D Mitchell, J Miyoshi, T Mkrtchyan, H Mueller, B Niculescu, G Niculescu, I Okayasu, Y Pentchev, L Perdrisat, C Pitz, D Potterveld, D Punjabi, V Qin, LM Reimer, PE Reinhold, J Roche, J Roos, PG Sarty, A Shin, IK Smith, GR Stepanyan, S Tang, LG Tvaskis, V Meer, RLJD Vansyoc, K Van Westrum, D Vidakovic, S Vulcan, W Warren, G Wood, SA Xu, C Yan, C Zhao, WX Zheng, X Zihlmann, B AF Huber, G. M. Blok, H. P. Horn, T. Beise, E. J. Gaskell, D. Mack, D. J. Tadevosyan, V. Volmer, J. Abbott, D. Aniol, K. Anklin, H. Armstrong, C. Arrington, J. Assamagan, K. Avery, S. Baker, O. K. Barrett, B. Bochna, C. Boeglin, W. Brash, E. J. Breuer, H. Chang, C. C. Chant, N. Christy, M. E. Dunne, J. Eden, T. Ent, R. Fenker, H. Gibson, E. F. Gilman, R. Gustafsson, K. Hinton, W. Holt, R. J. Jackson, H. Jin, S. Jones, M. K. Keppel, C. E. Kim, P. H. Kim, W. King, P. M. Klein, A. Koltenuk, D. Kovaltchouk, V. Liang, M. Liu, J. Lolos, G. J. Lung, A. Margaziotis, D. J. Markowitz, P. Matsumura, A. McKee, D. Meekins, D. Mitchell, J. Miyoshi, T. Mkrtchyan, H. Mueller, B. Niculescu, G. Niculescu, I. Okayasu, Y. Pentchev, L. Perdrisat, C. Pitz, D. Potterveld, D. Punjabi, V. Qin, L. M. Reimer, P. E. Reinhold, J. Roche, J. Roos, P. G. Sarty, A. Shin, I. K. Smith, G. R. Stepanyan, S. Tang, L. G. Tvaskis, V. van der Meer, R. L. J. Vansyoc, K. Westrum, D. Van Vidakovic, S. Vulcan, W. Warren, G. Wood, S. A. Xu, C. Yan, C. Zhao, W. -X. Zheng, X. Zihlmann, B. TI Charged pion form factor between Q(2)=0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form factor SO PHYSICAL REVIEW C LA English DT Review ID QUARK-HADRON DUALITY; QCD SUM-RULES; EXCLUSIVE PROCESSES; ELECTRON-SCATTERING; PERTURBATIVE QCD; LATTICE QCD; QUANTUM CHROMODYNAMICS; RELATIVISTIC DYNAMICS; PSEUDOSCALAR MESONS; MOMENTUM-TRANSFER AB The charged pion form factor, F-pi(Q(2)), is an important quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of F-pi from data requires a model of the H-1(e,e(')pi(+))n reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for F-pi are presented for Q(2)=0.60-2.45 GeV2. Above Q(2)=1.5 GeV2, the F-pi values are systematically below the monopole parametrization that describes the low Q(2) data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q(2) regime. C1 [Huber, G. M.; Brash, E. J.; Kovaltchouk, V.; Lolos, G. J.; van der Meer, R. L. J.; Vidakovic, S.; Xu, C.] Univ Regina, Regina, SK S4S 0A2, Canada. [Blok, H. P.; Volmer, J.; Tvaskis, V.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Blok, H. P.; Tvaskis, V.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Horn, T.; Beise, E. J.; Breuer, H.; Chang, C. C.; Chant, N.; Gustafsson, K.; King, P. M.; Liu, J.; Roos, P. G.] Univ Maryland, College Pk, MD 20742 USA. [Horn, T.; Gaskell, D.; Mack, D. J.; Abbott, D.; Anklin, H.; Baker, O. K.; Dunne, J.; Eden, T.; Ent, R.; Fenker, H.; Gilman, R.; Keppel, C. E.; Liang, M.; Lung, A.; Meekins, D.; Mitchell, J.; Roche, J.; Smith, G. R.; Tang, L. G.; Vulcan, W.; Warren, G.; Wood, S. A.; Yan, C.; Zihlmann, B.] TJNAF, Div Phys, Newport News, VA 23606 USA. [Tadevosyan, V.; Mkrtchyan, H.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Volmer, J.] DESY, D-2000 Hamburg, Germany. [Aniol, K.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Anklin, H.; Boeglin, W.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33119 USA. [Armstrong, C.; Jones, M. K.; Pentchev, L.; Perdrisat, C.] Coll William & Mary, Williamsburg, VA 23187 USA. [Arrington, J.; Holt, R. J.; Jackson, H.; Mueller, B.; Potterveld, D.; Reimer, P. E.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Assamagan, K.; Avery, S.; Baker, O. K.; Christy, M. E.; Hinton, W.; Keppel, C. E.; Tang, L. G.] Hampton Univ, Hampton, VA 23668 USA. [Barrett, B.; Sarty, A.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Bochna, C.] Univ Illinois, Urbana, IL 61801 USA. [Eden, T.; Punjabi, V.] Norfolk State Univ, Norfolk, VA USA. [Gibson, E. F.] Calif State Univ Sacramento, Sacramento, CA 95819 USA. [Gilman, R.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Jin, S.; Kim, P. H.; Kim, W.; Shin, I. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Klein, A.; Qin, L. M.; Vansyoc, K.] Old Dominion Univ, Norfolk, VA 23529 USA. [Koltenuk, D.] Univ Penn, Philadelphia, PA 19104 USA. [Matsumura, A.; Miyoshi, T.; Okayasu, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan. [McKee, D.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Pitz, D.] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Westrum, D. Van] Univ Colorado, Boulder, CO 76543 USA. [Zhao, W. -X.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Zhao, W. -X.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Zihlmann, B.] Univ Virginia, Charlottesville, VA 22901 USA. RP Huber, GM (reprint author), Univ Regina, Regina, SK S4S 0A2, Canada. RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Reimer, Paul/E-2223-2013; Sarty, Adam/G-2948-2014 OI Arrington, John/0000-0002-0702-1328; FU DOE; NSF (USA); NSERC (Canada); FOM (Netherlands); NATO; KOSEF (South Korea) FX The authors thank Drs. Guidal, Laget, and Vanderhaeghen for stimulating discussions and for modifying their computer program for our needs. We also thank Dr. Obukhovsky for supplying the result of their model calculations and for many informative discussions. This work is supported by DOE and NSF (USA), NSERC (Canada), FOM (Netherlands), NATO, and KOSEF (South Korea). NR 119 TC 113 Z9 113 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 045203 DI 10.1103/PhysRevC.78.045203 PG 16 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700077 ER PT J AU Kowalski, H Lappi, T Marquet, C Venugopalan, R AF Kowalski, H. Lappi, T. Marquet, C. Venugopalan, R. TI Nuclear enhancement and suppression of diffractive structure functions at high energies SO PHYSICAL REVIEW C LA English DT Article ID DEEP-INELASTIC-SCATTERING; LARGE RAPIDITY GAP; GLUON DISTRIBUTION-FUNCTIONS; STRUCTURE FUNCTION RATIOS; NONLINEAR EVOLUTION; SMALL-X; SATURATION SCALE; IMPACT PARAMETER; VIRTUAL PHOTONS; LEADING PROTON AB We compute diffractive structure functions for both protons and nuclei in the framework of color glass condensate models with impact parameter dependence. These models have previously been shown to provide good agreement with inclusive F(2) measurements and exclusive vector meson measurements at DESY's Hadron-Electron Ring Accelerator (HERA). For nuclei, they provide good (parameter free) agreement with the inclusive F(2) data. We demonstrate good agreement of our computations with HERA measurements on inclusive diffraction. We extend our analysis to nuclei and predict the pattern of enhancement and suppression of the diffractive structure functions that can be measured at an electron-ion collider. We discuss how the impact parameter dependence crucially affects our analysis, in particular for large invariant masses at fixed Q(2). C1 [Kowalski, H.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Lappi, T.; Marquet, C.] CEA DSM Saclay, Inst Theoret Phys, F-91191 Gif Sur Yvette, France. [Marquet, C.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Venugopalan, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kowalski, H (reprint author), Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. FU DOE [DE-AC02-98CH10886]; European Commission [MOIF-CT-2006-039860] FX We thank M. Strikman, M. S. Kugeratski, V. P. Goncalves, and F. S. Navarra for discussions. R. V.'s research is supported by DOE Contract No. DE-AC02-98CH10886 and C. M.'s research is supported by the European Commission under the FP6 program, Contract No. MOIF-CT-2006-039860. NR 70 TC 40 Z9 40 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 045201 DI 10.1103/PhysRevC.78.045201 PG 11 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700075 ER PT J AU Levy, LAL Nagle, JL Rosen, C Steinberg, P AF Levy, L. A. Linden Nagle, J. L. Rosen, C. Steinberg, P. TI Quasiparticle degrees of freedom versus the perfect fluid as descriptors of the quark-gluon plasma SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; ANISOTROPIC FLOW; PHASE-TRANSITION; ELLIPTIC FLOW; QCD; MATTER; COLLABORATION; VISCOSITY; ENTROPY; MODELS AB The hot nuclear matter created at the Relativistic Heavy Ion Collider has been characterized by near-perfect fluid behavior. We demonstrate that this stands in contradiction to the identification of quantum chromodynamics quasiparticles with the thermodynamic degrees of freedom in the early (fluid) stage of heavy-ion collisions. The empirical observation of constituent quark "n(q)" scaling of elliptic flow [PHENIX, A. Adare , Phys. Rev. Lett. 98, 162301 (2007)] is juxtaposed with the lack of such scaling behavior in hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons. As the hydrodynamic fluid expands, increasing viscous effects may allow for a short time period of "quasiparticle transport" prior to hadronization. However, without a detailed understanding of the transitions between these time stages, the "n(q)" scaling is not a necessary consequence of this prescription. Also, if the duration of this stage is too short, it may not support well-defined quasiparticles. By comparing and contrasting the coalescence of quarks into hadrons with the similar process of producing light nuclei from nucleons, it is shown that the observation of "n(q)" scaling in the final state does not necessarily imply that the constituent degrees of freedom were the relevant ones in the initial state. C1 [Levy, L. A. Linden; Nagle, J. L.; Rosen, C.] Univ Colorado, Boulder, CO 80309 USA. [Steinberg, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Levy, LAL (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM Jamie.Nagle@Colorado.Edu FU United States Department of Energy [DE-FG02-00ER41152, DE-AC02-98CH10886] FX The authors acknowledge our colleagues (B. Muller, D. T. Son, T. Schaefer, and W. A. Zajc) for useful exchanges, discussions, and suggestions. The authors also thank P. Huovinen for providing the hydrodynamic calculation results. We acknowledge support from the United States Department of Energy grant DE-FG02-00ER41152 ( L. A. L. L, J.L.N,C.R.) and DE-AC02-98CH10886 (P. S.). NR 56 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044905 DI 10.1103/PhysRevC.78.044905 PG 8 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700070 ER PT J AU Li, K Hamilton, JH Ramayya, AV Zhu, SJ Luo, YX Hwang, JK Goodin, C Rasmussen, JO Ter-Akopian, GM Daniel, AV Lee, IY Wu, SC Donangelo, R Cole, JD Ma, WC Stoyer, MA AF Li, K. Hamilton, J. H. Ramayya, A. V. Zhu, S. J. Luo, Y. X. Hwang, J. K. Goodin, C. Rasmussen, J. O. Ter-Akopian, G. M. Daniel, A. V. Lee, I. Y. Wu, S. C. Donangelo, R. Cole, J. D. Ma, W. C. Stoyer, M. A. TI Identification of new collective bands in neutron-rich (102)Zr SO PHYSICAL REVIEW C LA English DT Article ID SPONTANEOUS FISSION; NUCLEI; REGION; SPIN; DEFORMATION; ARRAYS; CF-252 AB The level scheme of (102)Zr has been expanded by measuring high-fold prompt gamma-ray coincidence events in the spontaneous fission of (252)Cf with the Gammasphere array. Previous identifications have been confirmed. A two-quasi-particle band with a band head energy of 2926.4 keV has been identified for the first time, as well as two rotational collective bands, with band head energies of 1386.3 and 1652.7 keV, respectively. Spins and parties are assigned based on level systematics and angular correlation measurements. C1 [Li, K.; Hamilton, J. H.; Ramayya, A. V.; Zhu, S. J.; Luo, Y. X.; Hwang, J. K.; Goodin, C.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.; Wu, S. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ter-Akopian, G. M.; Daniel, A. V.] JINR, Flerov Lab Nucl React, Dubna, Russia. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37830 USA. [Donangelo, R.] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. [Cole, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Li, K (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. RI Sistemas Complexos, Inct/J-8597-2013 FU U. S. Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098, W-7405-ENG48, DE-AC07-05ID14527]; National Science Foundation of China [10575057, 10375032]; Higher Education Science Foundation [200003090]; The University of Tennessee; Vanderbilt University; Oak Ridge National Laboratory FX The work at Vanderbilt University, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Idaho National Laboratory are supported by the U. S. Department of Energy under Grant DE-FG05-88ER40407, Grant DE-AC03-76SF00098, Contract W-7405-ENG48, and Grant DE-AC07-05ID14527, respectively. The work at Tsinghua is supported by the National Science Foundation of China under Grants 10575057 and 10375032 and by the Special Program of Higher Education Science Foundation under Grant 200003090. The Joint Institute of Heavy-Ion Research is supported by The University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory. The authors are indebted for the use of 252Cf to the office of Basic Energy Sciences, U. S. Department of Energy, through the trans-plutonium element production facilities at the Oak Ridge National Laboratory. NR 17 TC 15 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044317 DI 10.1103/PhysRevC.78.044317 PG 6 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700032 ER PT J AU Liang, JF Shapira, D Gross, CJ Varner, RL Beene, JR Mueller, PE Stracener, DW AF Liang, J. F. Shapira, D. Gross, C. J. Varner, R. L. Beene, J. R. Mueller, P. E. Stracener, D. W. TI Fusion of radioactive (132)Sn with (64)Ni at sub-barrier energies SO PHYSICAL REVIEW C LA English DT Article ID ION-BEAMS AB Sub-barrier fusion of (132)Sn and (64)Ni was measured at E(beam)=465 MeV with an improved apparatus. The result of this new measurement is well reproduced by a coupled-channel calculation and a density-constrained time-dependent Hartree-Fock calculation. The previously measured cross section at E(beam)=453 MeV was reanalyzed. Only an upper limit of the cross section was obtained. C1 [Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Beene, J. R.; Mueller, P. E.; Stracener, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Liang, JF (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. FU U. S. Department of Energy [DE-AC05-00OR22725] FX Research at the Oak Ridge National Laboratory is supported by the U. S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 15 TC 26 Z9 26 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 047601 DI 10.1103/PhysRevC.78.047601 PG 3 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700092 ER PT J AU Lisetskiy, AF Barrett, BR Kruse, MKG Navratil, P Stetcu, I Vary, JP AF Lisetskiy, A. F. Barrett, B. R. Kruse, M. K. G. Navratil, P. Stetcu, I. Vary, J. P. TI Ab-initio shell model with a core SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; CONVERGENCE AB We construct effective two- and three-body Hamiltonians for the p-shell by performing 12h Omega ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0h Omega space. We then separate these effective Hamiltonians into inert core, one- and two-body contributions (also three-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective three- and higher-body interactions for A>6 is investigated and discussed. C1 [Lisetskiy, A. F.; Barrett, B. R.; Kruse, M. K. G.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stetcu, I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lisetskiy, AF (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. EM lisetsky@physics.arizona.edu FU NSF [PHY0244389, PHY0555396]; U.S. DOE/SC/NP [SCW0498, DE-AC52-07NA27344]; U.S. Department of Energy [DE-FG02-87ER40371, DE-FC02-07ER41457] FX We thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the development of this work. B.R.B. and A.F.L. acknowledge partial support of this work from NSF grants PHY0244389 and PHY0555396; P.N. acknowledges support in part by the U.S. DOE/SC/NP (Work Proposal No. SCW0498) and U.S. Department of Energy Grant DE-FG0287ER40371; J.P.V. acknowledges support from U.S. Department of Energy Grant DE-FC02-07ER41457; and the work of I.S. was performed under the auspices of the U.S. DOE. Prepared by LLNL under Contract DE-AC52-07NA27344. B.R.B. thanks the Gesellschaft fur Schwerionenforschung mbh Darmstadt, Germany, for its hospitality during the preparation of this manuscript and the Alexander von Humboldt Stiftung for its support. NR 24 TC 43 Z9 43 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044302 DI 10.1103/PhysRevC.78.044302 PG 9 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700017 ER PT J AU Michel, N Matsuyanagi, K Stoitsov, M AF Michel, N. Matsuyanagi, K. Stoitsov, M. TI Gamow-Hartree-Fock-Bogoliubov method: Representation of quasiparticles with Berggren sets of wave functions SO PHYSICAL REVIEW C LA English DT Article ID RIGGED HILBERT-SPACE; EXACTLY SOLVABLE POTENTIALS; HARMONIC-OSCILLATOR BASIS; BOGOLYUBOV EQUATIONS; SCHRODINGER-EQUATION; SKYRMES INTERACTION; ROTATIONAL BANDS; DEFORMED-NUCLEI; DRIP-LINE; PROGRAM AB Single-particle resonant states, also called Gamow states, as well as bound and scattering states of complex energy form a complete set, the Berggren completeness relation. It is the building block of the recently introduced Gamow shell model, where weakly bound and resonant nuclear wave functions are expanded with a many-body basis of Slater determinants generated by this set of single-particle states. However, Gamow states have never been studied in the context of Hartree-Fock-Bogoliubov theory, except in the Bardeen-Cooper-Schriefer (BCS) approximation, where both the upper and lower components of a quasiparticle wave function are assumed to possess the same radial dependence with that of a Gamow state associated with the Hartree-Fock potential. Hence, an extension of the notion of Gamow state has to be effected in the domain of quasiparticles. It is shown theoretically and numerically that bound, resonant and scattering quasiparticles are well defined and form a complete set, by which bound Hartree-Fock-Bogoliubov ground states can be constructed. It is also shown that the Gamow-Hartree-Fock single-particle basis can be used to solve the Gamow-Hartree-Fock-Bogoliubov problem. As an illustration, the proposed method is applied to neutron-rich nickel isotopes close to the neutron drip-line. C1 [Michel, N.] CEA, Ctr Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Matsuyanagi, K.] RIKEN, Nishina Ctr, Theoret Nucl Phys Lab, Wako, Saitama 351098, Japan. [Stoitsov, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stoitsov, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Stoitsov, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. RP Michel, N (reprint author), CEA, Ctr Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. FU Japan Society for the Promotion of Science (JSPS); U. S. Department of Energy [DE-FG02-96ER40963, DE-FC02-07ER41457]; UT-Battelle [DE-AC05-00OR22725]; LLC (Oak Ridge National Laboratory); Joint Institute for Heavy Ion Research [DE-FG05-87ER40361] FX The authors acknowledge the Japan Society for the Promotion of Science (JSPS) for support via an invitation for long-term research in Japan to M. S. and for postdoctoral support via a grant for foreign researchers to N.M., which make the collaboration with our colleagues at Kyoto University possible. This work was supported by the JSPS Core-to-Core Program "International Research Network for Exotic Femto Systems," and carried out as a part of the U. S. Department of Energy under Contract Nos. DE-FG02-96ER40963 (University of Tennessee), DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FG05-87ER40361 (Joint Institute for Heavy Ion Research), the UNEDF SciDAC Collaboration supported by the U. S. Department of Energy under grant No. DE-FC02-07ER41457. NR 42 TC 21 Z9 23 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044319 DI 10.1103/PhysRevC.78.044319 PG 10 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700034 ER PT J AU Schumaker, MA Cline, D Hackman, G Morton, AC Pearson, CJ Svensson, CE Wu, CY Andreyev, A Austin, RAE Ball, GC Bandyopadhyay, D Becker, JA Boston, AJ Boston, HC Buchmann, L Churchman, R Cifarelli, F Cooper, RJ Cross, DS Dashdorj, D Demand, GA Dimmock, MR Drake, TE Finlay, P Gallant, AT Garrett, PE Green, KL Grint, AN Grinyer, GF Harkness, LJ Hayes, AB Kanungo, R Leach, KG Lee, G Maharaj, R Martin, JP Moisan, F Mythili, S Nelson, L Newman, O Nolan, PJ Orce, JN Padilla-Rodal, E Phillips, AA Porter-Peden, M Ressler, JJ Roy, R Ruiz, C Sarazin, F Scraggs, DP Waddington, JC Wan, JM Whitbeck, A Williams, SJ Wong, J AF Schumaker, M. A. Cline, D. Hackman, G. Morton, A. C. Pearson, C. J. Svensson, C. E. Wu, C. Y. Andreyev, A. Austin, R. A. E. Ball, G. C. Bandyopadhyay, D. Becker, J. A. Boston, A. J. Boston, H. C. Buchmann, L. Churchman, R. Cifarelli, F. Cooper, R. J. Cross, D. S. Dashdorj, D. Demand, G. A. Dimmock, M. R. Drake, T. E. Finlay, P. Gallant, A. T. Garrett, P. E. Green, K. L. Grint, A. N. Grinyer, G. F. Harkness, L. J. Hayes, A. B. Kanungo, R. Leach, K. G. Lee, G. Maharaj, R. Martin, J. -P. Moisan, F. Mythili, S. Nelson, L. Newman, O. Nolan, P. J. Orce, J. N. Padilla-Rodal, E. Phillips, A. A. Porter-Peden, M. Ressler, J. J. Roy, R. Ruiz, C. Sarazin, F. Scraggs, D. P. Waddington, J. C. Wan, J. M. Whitbeck, A. Williams, S. J. Wong, J. TI Coulomb excitation of radioactive (21)Na and its stable mirror (21)Ne SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; HPGE CLOVER DETECTOR; HOT-CNO CYCLE; EXCITED-STATE; NE-18(ALPHA,P)NA-21 REACTION; QUADRUPOLE-MOMENTS; BEAM EXPERIMENTS; MAGNETIC-MOMENT; RP-PROCESS; TIGRESS AB The low-energy structures of the mirror nuclei (21)Ne and radioactive (21)Na have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of similar to 5x10(6) ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm(2) (nat)Ti target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while gamma rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the 3/2(+-) ground state to the first excited 5/2(+-) state was observed and B(E2) values were determined by using the 2(+)-> 0(+) de-excitation in (48)Ti as a reference. The phi segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2)up arrow values are 131 +/- 9 e(2) fm(4) (25.4 +/- 1.7 W.u.) for (21)Ne and 205 +/- 14 e(2) fm(4) (39.7 +/- 2.7 W.u.) for (21)Na. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1)down arrow values of delta=(-)0.0767 +/- 0.0027 and 0.1274 +/- 0.0025 mu(2)(N) and delta=(+)0.0832 +/- 0.0028 and 0.1513 +/- 0.0017 mu(2)(N) for (21)Ne and (21)Na, respectively (with Krane and Steffen sign convention). By using the effective charges e(p)=1.5e and e(n)=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for (21)Ne and (21)Na, respectively. This analysis resolves a significant discrepancy between a previous experimental result for (21)Na and shell-model calculations. C1 [Schumaker, M. A.; Svensson, C. E.; Bandyopadhyay, D.; Demand, G. A.; Finlay, P.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Wong, J.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Cline, D.; Hayes, A. B.; Whitbeck, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Hackman, G.; Morton, A. C.; Pearson, C. J.; Andreyev, A.; Ball, G. C.; Bandyopadhyay, D.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Harkness, L. J.; Kanungo, R.; Lee, G.; Maharaj, R.; Mythili, S.; Newman, O.; Padilla-Rodal, E.; Williams, S. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Wu, C. Y.; Becker, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Austin, R. A. E.; Gallant, A. T.; Kanungo, R.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Boston, A. J.; Boston, H. C.; Cooper, R. J.; Dimmock, M. R.; Grint, A. N.; Harkness, L. J.; Nelson, L.; Nolan, P. J.; Scraggs, D. P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Cross, D. S.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Dashdorj, D.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Drake, T. E.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Martin, J. -P.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Moisan, F.] Univ Laval, Dept Phys, Quebec City, PQ G1K 7P4, Canada. [Mythili, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Newman, O.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Orce, J. N.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Porter-Peden, M.; Sarazin, F.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Waddington, J. C.] McMaster Univ, Dept Phys, Hamilton, ON L8S 4L8, Canada. RP Schumaker, MA (reprint author), Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. RI Ressler, Jennifer Jo/F-2279-2010; Morton, Colin/K-1561-2015 OI Morton, Colin/0000-0003-0214-7551 FU Natural Sciences and Engineering Research Council of Canada; U. S. Department of Energy [FG52-06-NA26194, DE-FG02-97-ER41042]; Lawrence Livermore National Laboratory [DE-AC52-07-NA27344]; U. S. National Science Foundation; Engineering and Physical Sciences Research Council of the United Kingdom; National Research Council of Canada FX This work has been partially supported by the Natural Sciences and Engineering Research Council of Canada and by the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07-NA27344. The authors would also like to acknowledge the support offered by the U. S. Department of Energy under Grant Nos. DE-FG52-06-NA26194 and DE-FG02-97-ER41042, the U. S. National Science Foundation, and the Engineering and Physical Sciences Research Council of the United Kingdom. TRIUMF is funded via a contribution agreement with the National Research Council of Canada. NR 50 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044321 DI 10.1103/PhysRevC.78.044321 PG 13 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700036 ER PT J AU Tagliente, G Milazzo, PM Fujii, K Aerts, G Abbondanno, U Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Furman, W Goncalves, I Gonzalez-Romero, E Gramegna, F Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kappeler, F Kadi, Y Karadimos, D Karamanis, D Kerveno, M Koehler, P Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena-Rodriguez, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Stephan, C Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wiescher, M Wisshak, K AF Tagliente, G. Milazzo, P. M. Fujii, K. Aerts, G. Abbondanno, U. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Furman, W. Goncalves, I. Gonzalez-Romero, E. Gramegna, F. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Kerveno, M. Koehler, P. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena-Rodriguez, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Stephan, C. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wiescher, M. Wisshak, K. TI Experimental study of the (91)Zr(n, gamma) reaction up to 26 keV SO PHYSICAL REVIEW C LA English DT Article ID CAPTURE CROSS-SECTIONS; GIANT BRANCH STARS; NEUTRON-CAPTURE; N-TOF; STATISTICAL-MODEL; S-PROCESS; NUCLEOSYNTHESIS; CERN; TRANSMISSION; EVOLUTION AB The neutron capture cross sections of the Zr isotopes are relevant to studies in nuclear structure, nuclear astrophysics, and nuclear technology. The valence neutron of (91)Zr with respect to the neutron magic nucleus (90)Zr has interesting implications for the statistical analysis in the proximity of shell closures. In stellar nucleosynthesis, the Zr isotopes are important for the s-process reaction flow between the Fe seeds and the heavier isotopes. Because of its relatively small (n, gamma) cross sections, Zr represents also an interesting structural material for nuclear reactors. For the same reason, these cross sections are difficult to measure and reliable data are sparse. Therefore, the (n, gamma) cross sections of the Zr isotopes have been remeasured at the CERN n_TOF facility. Thanks to its high instantaneous flux, good energy resolution, and low background, this facility is particularly suited for the determination of small, resonance-dominated cross sections. In this work, results for the (91)Zr(n, gamma) (92)Zr reaction are reported in the neutron energy range from thermal to 26 keV. In this region, accurate data of 157 resonances could be obtained, 33 of these resonances are not present in the main databases and/or were observed for the first time. C1 [Tagliente, G.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Milazzo, P. M.; Fujii, K.; Abbondanno, U.; Belloni, F.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France. [Alvarez, H.; Duran, I.; Paradela, C.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe GmbH FZK, Inst Kernphys, Karlsruhe, Germany. [Badurek, G.; Jericha, E.; Leeb, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreichischen Univ, Vienna, Austria. [Baumann, P.; David, S.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IReS, IN2P3, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.; Praena-Rodriguez, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Capote, R.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Capote, R.; Lozano, M.; Quesada, J.] Univ Seville, Seville, Spain. [Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] ITN, Lisbon, Portugal. [Cennini, P.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] LIP, Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Ferrant, L.; Stephan, C.; Tassan-Got, L.] IPN, IN2P3, CNRS, Orsay, France. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Haas, B.] CENBG, IN2P3, CNRS, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN, Bologna, Italy. [Mengoni, A.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Inst Fak Phys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris La Def, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Ventura, A.] ENEA, Bologna, Italy. RP Tagliente, G (reprint author), Ist Nazl Fis Nucl, I-70126 Bari, Italy. RI Cano Ott, Daniel/K-4945-2014; Rauscher, Thomas/D-2086-2009; Jericha, Erwin/A-4094-2011; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Quesada Molina, Jose Manuel/K-5267-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012 OI Cano Ott, Daniel/0000-0002-9568-7508; Rauscher, Thomas/0000-0002-1266-0642; Jericha, Erwin/0000-0002-8663-0526; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Gramegna, Fabiana/0000-0001-6112-0602 FU EC [FIKW-CT-2000-00107] FX This work was supported by the EC under Contract FIKW-CT-2000-00107 and by the funding agencies of the participating institutes. NR 41 TC 20 Z9 20 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 045804 DI 10.1103/PhysRevC.78.045804 PG 11 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700088 ER PT J AU Timofeyuk, NK Descouvemont, P Thompson, IJ AF Timofeyuk, N. K. Descouvemont, P. Thompson, I. J. TI Threshold effects in the P-27(3/2+)-> Si-26+p and Mg-27(3/2+)-> Mg-26+n mirror decays and the stellar reaction Si-26(p,gamma)P-27 SO PHYSICAL REVIEW C LA English DT Article ID ELASTIC-SCATTERING; CHANNELS; NUCLEI AB Determination of the cross sections for stellar reaction Si-26(p,gamma)P-27 using information about the Mg-27(32(+)) mirror state can be influenced by mirror symmetry breaking in the P-27(32(+))-> Si-26+p and Mg-27(32(+))-> Mg-26+n amplitudes, which may arise as a threshold phenomenon due to the coupling to continuum. We study this effect within a multichannel microscopic cluster model. Our calculations confirm that such a possibility exists and suggest that the symmetry breaking in mirror decay amplitudes may become especially large if the mirror decay channels comprise only very small parts of the total wave functions. We use the estimates for mirror symmetry breaking in the P-27(32(+))-> Si-26+p and Mg-27(32(+))-> Mg-26+n amplitudes to derive the proton width for the astrophysically important P-27(32(+)) resonance basing on the asymptotic normalization coefficient for its mirror bound state Mg-27(32(+)) which we determine from the Mg-26(t,d)Mg-27 reaction. C1 [Timofeyuk, N. K.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Descouvemont, P.] CP229 Univ Libre Bruxelles, B-1050 Brussels, Belgium. [Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Timofeyuk, NK (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RI Descouvemont, Pierre/C-4852-2013; OI Descouvemont, Pierre/0000-0001-7014-4403 FU U.K. EPSRC [GR/T28577]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX N.K.T. is grateful to N.M. Clarke for providing with experimental data on 26Mg(t, d)27Mg reaction and useful discussions. She is also grateful to B. A. Brown for help with shell model calculations. Support from the U.K. EPSRC via grant GR/T28577 is gratefully acknowledged. Part of this work was performed the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. NR 25 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044323 DI 10.1103/PhysRevC.78.044323 PG 9 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700038 ER PT J AU Wuosmaa, AH Schiffer, JP Rehm, KE Greene, JP Henderson, DJ Janssens, RVF Jiang, CL Jisonna, L Lighthall, JC Marley, ST Moore, EF Pardo, RC Patel, N Paul, M Peterson, D Pieper, SC Savard, G Segel, RE Siemssen, RH Tang, XD Wiringa, RB AF Wuosmaa, A. H. Schiffer, J. P. Rehm, K. E. Greene, J. P. Henderson, D. J. Janssens, R. V. F. Jiang, C. L. Jisonna, L. Lighthall, J. C. Marley, S. T. Moore, E. F. Pardo, R. C. Patel, N. Paul, M. Peterson, D. Pieper, Steven C. Savard, G. Segel, R. E. Siemssen, R. H. Tang, X. D. Wiringa, R. B. TI Structure of He-7 by proton removal from Li-8 with the (d,He-3) reaction SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL CALCULATIONS; 1P SHELL; NUCLEI; ISOTOPE; HELIUM; SEARCH; STATES AB We report on a study of the structure of the unbound nucleus He-7 utilizing the proton-removal reaction H-2(Li-8,He-3)He-7. Combining the present results with those of our prior measurements of the neutron-adding reaction H-2(He-6,p)He-7, a consistent picture emerges for the low-lying excitations in He-7. Specifically, the negative-parity sequence of resonances, in order of excitation energies, is consistent with 3/2(-),1/2(-), and 5/2(-). The stable-beam reactions H-2(Li-7,t)Li-6 and H-2(Li-7,He-3)He-6 were also measured. The results are compared with the predictions of nuclear structure models, including those of ab initio quantum Monte Carlo calculations. C1 [Wuosmaa, A. H.; Lighthall, J. C.; Marley, S. T.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Schiffer, J. P.; Rehm, K. E.; Greene, J. P.; Henderson, D. J.; Janssens, R. V. F.; Jiang, C. L.; Moore, E. F.; Pardo, R. C.; Peterson, D.; Pieper, Steven C.; Savard, G.; Tang, X. D.; Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Jisonna, L.; Segel, R. E.] Northwestern Univ, Dept Phys, Evanston, IL 60208 USA. [Patel, N.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Paul, M.] Hebrew Univ Jerusalem, IL-91904 Jerusalem, Israel. [Siemssen, R. H.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. RP Wuosmaa, AH (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Wiringa, Robert/M-4970-2015; Tang, Xiaodong /F-4891-2016 FU U. S. Department of Energy, Office of Nuclear Physics [DE-FG02-04ER41320, DE-AC02-06CH11357, DE-FG02-98ER4106] FX This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contracts DE-FG02-04ER41320 (WMU), DE-AC02-06CH11357 (ANL), and DE-FG02-98ER4106 (NU). NR 34 TC 26 Z9 26 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 041302 DI 10.1103/PhysRevC.78.041302 PG 5 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700003 ER PT J AU Yadav, RB Ma, WC Hagemann, GB Bengtsson, R Ryde, H Amro, H Bracco, A Carpenter, MP Domscheit, J Frattini, S Hartley, DJ Herskind, B Hubel, H Janssens, RVF Khoo, TL Kondev, FG Lauritsen, T Lister, CJ Million, B Odegard, S Riedinger, LL Schmidt, KA Siem, S Sletten, G Varmette, PG Wilson, JN Zhang, YC AF Yadav, R. B. Ma, W. C. Hagemann, G. B. Bengtsson, R. Ryde, H. Amro, H. Bracco, A. Carpenter, M. P. Domscheit, J. Frattini, S. Hartley, D. J. Herskind, B. Hubel, H. Janssens, R. V. F. Khoo, T. L. Kondev, F. G. Lauritsen, T. Lister, C. J. Million, B. Odegard, S. Riedinger, L. L. Schmidt, K. A. Siem, S. Sletten, G. Varmette, P. G. Wilson, J. N. Zhang, Y. C. TI Identification of triaxial strongly deformed bands in Hf-168 SO PHYSICAL REVIEW C LA English DT Article ID PARTICLE-HOLE EXCITATIONS; WOBBLING EXCITATIONS; HIGH-SPIN; NUCLEI; ENERGY; MODE; WELL AB Possible decay pathways associated with three candidates for triaxial strongly deformed (TSD) bands in Hf-168 have been investigated. The spin and excitation energy of the strongest band, TSD1, were determined approximately based on gamma-ray coincidence relationships. Discrete links were established for the second band. The overall agreement between the observed properties of the bands and cranking calculations using the ULTIMATE CRANKER code provides strong support for an interpretation where band TSD1 is associated with a TSD minimum, (epsilon(2),gamma)similar to(0.43,20(degrees)), involving the pi(i(13/2))(2) and the nu(j(15/2)) high-j orbitals. This constitutes the first identification of a TSD band in Hf isotopes, which has been long-predicted by theoretical studies. The second band is understood as being associated with a near-prolate shape and a deformation enhanced with respect to the normal deformed bands. It is proposed to be built on the pi(i(13/2)h(9/2))circle times nu(i(13/2))(2) configuration. C1 [Yadav, R. B.; Ma, W. C.; Amro, H.; Varmette, P. G.; Zhang, Y. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Hagemann, G. B.; Herskind, B.; Schmidt, K. A.; Sletten, G.; Varmette, P. G.; Wilson, J. N.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bengtsson, R.] Lund Inst Technol, Dept Math Phys, S-22100 Lund, Sweden. [Ryde, H.] Lund Univ, Dept Nucl Phys, S-22100 Lund, Sweden. [Bracco, A.; Frattini, S.; Million, B.] Univ Milan, Dipartimento Fis, Milan, Italy. [Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Domscheit, J.; Hubel, H.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-5300 Bonn, Germany. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Odegard, S.; Siem, S.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Riedinger, L. L.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Yadav, RB (reprint author), Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU U. S. Department of Energy; Office of Nuclear Physics [DE-FG02-95ER40939 (MSU), DE-AC02-06CH11357 (ANL)] FX This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Grant Nos. DE-FG02-95ER40939 (MSU) and DE-AC02-06CH11357 (ANL), NR 29 TC 19 Z9 19 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2008 VL 78 IS 4 AR 044316 DI 10.1103/PhysRevC.78.044316 PG 7 WC Physics, Nuclear SC Physics GA 367TE UT WOS:000260574700031 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T Barbaro, P Cecco, S Deisher, A Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Giovanni, GP Dionisi, C Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of b-jet shapes in inclusive jet production in p overline p collisions at sqrt(s)=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID FRAGMENTATION; PHYSICS AB We present a measurement of the shapes of b-jets using 300 pb(-1) of data obtained with the upgraded Collider Detector at Fermilab (CDF II) in p(p)overbar collisions at center-of-mass energy root s=1.96 TeV. This measurement covers a wide transverse momentum range, from 52 to 300 GeV/c. Samples of heavy-flavor enhanced jets together with inclusive jets are used to extract the average shapes of b-jets. The b-jets are expected to be broader than inclusive jets. Moreover, b-jets containing a single b-quark are expected to be narrower than those containing a b(b)overbar pair from gluon splitting. The measured b-jet shapes are found to be significantly broader than expected from the PYTHIA and HERWIG Monte Carlo simulations. This effect may arise from an underestimation of the fraction of b-jets originating from gluon splitting in these simulations. The jet shape distributions provided in this paper could be compared to any full Monte Carlo simulation and could be used to further constrain the various parameters. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Mumford, R.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kim, S. H.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Azzurri, P.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bedeschi, F.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goncharov, M.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Brigliadori, L.; Carlsmith, D.; Chung, W. H.; Compostella, G.; Donini, J.; Dorigo, T.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Scodellaro, Luca/K-9091-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016 OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 27 TC 8 Z9 8 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 072005 DI 10.1103/PhysRevD.78.072005 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800018 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACS Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Cerminara, G Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Motta, H Das, A Davies, G De, K Jong, SJ La Cruz-Burelo, E Martins, CO DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Cerminara, G. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI ZZ -> l(+)l(-)nu(nu)overbar production in p(p)overbar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID E(+)E(-) COLLISIONS; ANOMALOUS COUPLINGS; PAIR-PRODUCTION; ROOT-S; DETECTOR AB We describe a search for Z boson pair production in p(p)overbar collisions at root s=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider using a data sample corresponding to an integrated luminosity of 2.7 fb(-1). Using the final state decay ZZ ->center dot(+)center dot(-)nu(nu)overbar (where center dot=e or mu) we find a signal with a 2.6 standard deviations significance (2.0 expected) corresponding to a cross section of sigma(p(p)overbar -> ZZ+X)=2.01 +/- 0.93(stat)+/- 0.29(sys) pb. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Bean, A.; Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Cerminara, G.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, IN2P3,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Beale, S.; Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Mattig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012 OI Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805 FU DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom; RFBR ( Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program; CFI,; NSERC; WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); Alexander von Humboldt Foundation ( Germany); Istituto Nazionale di Fisica Nucleare ( Italy) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom, and RFBR ( Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); Alexander von Humboldt Foundation ( Germany); and the Istituto Nazionale di Fisica Nucleare ( Italy). NR 23 TC 11 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 072002 DI 10.1103/PhysRevD.78.072002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800015 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Costa, JF Grosdidier, G Hocker, A Lepeltier, V Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PA Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL Collaboration, B AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. Collaboration, B. A. B. A. R. TI Measurement of time-dependent CP asymmetry in B-0 -> K-S(0)pi(0)gamma decays SO PHYSICAL REVIEW D LA English DT Article ID RADIATIVE B-DECAYS; STANDARD MODEL; B->S-GAMMA AB We measure the time-dependent CP asymmetry in B-0 -> K-S(0)pi(0)gamma decays for two regions of K-S(0)-pi(0) invariant mass, m(K-S(0)pi(0)), using the final BABAR data set of 467x10(6) B(B)overbar pairs collected at the PEP-II e(+)e(-) collider at SLAC. We find 339 +/- 24 B-0 -> K-*0 gamma candidates and measure S-K(*)gamma=-0.03 +/- 0.29 +/- 0.03 and C-K(*)gamma=-0.14 +/- 0.16 +/- 0.03. In the range 1.1 < m(K-S(0)pi(0))< 1.8 GeV/c(2) we find 133 +/- 20 B-0 -> K-S(0)pi(0)gamma candidates and measure S-KS(0)pi(0)gamma=-0.78 +/- 0.59 +/- 0.09 and C-KS(0)pi(0)gamma=-0.36 +/- 0.33 +/- 0.04. The uncertainties are statistical and systematic, respectively. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Calcaterra, A.; Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3,CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 29 TC 18 Z9 18 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 071102 DI 10.1103/PhysRevD.78.071102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800003 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PA Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schoder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of the branching fractions of the radiative charm decays D(0)->(K)overbar(*0)gamma and D(0)->phi gamma SO PHYSICAL REVIEW D LA English DT Article ID WEAK DECAYS; D-MESONS; RATIOS; GAMMA AB We present a measurement of the branching fractions for the Cabibbo-favored radiative decay D(0)->(K)overbar(*0)gamma and the Cabibbo-suppressed radiative decay D(0)->phi gamma. These measurements are based on a data sample corresponding to an integrated luminosity of 387.1 fb(-1) and recorded with the BABAR detector at the PEP-II e(+)e(-) asymmetric-energy collider operating at center-of-mass energies 10.58 and 10.54 GeV. We measure the branching fractions relative to the well-studied decay D(0)-> K(-)pi(+) and find B(D(0)->(K)overbar(*0)gamma)/B(D(0)-> K(-)pi(+))=(8.43 +/- 0.51 +/- 0.70)x10(-3) and B(D(0)->phi gamma)/B(D(0)-> K(-)pi(+))=(7.15 +/- 0.78 +/- 0.69)x10(-4), where the first error is statistical and the second is systematic. This is the first observation of the decay mode D(0)->(K)overbar(*0)gamma. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.; Pacetti, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Pappagallo, M.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3,CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Raven, Gerhard/0000-0002-2897-5323; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 ( France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain),; STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 ( France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 18 TC 3 Z9 3 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 071101 DI 10.1103/PhysRevD.78.071101 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800002 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Costa, JF Grosdidier, G Hocker, A Lepeltier, V Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, DS Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. S. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Observation of e(+)e(-)->rho(+)rho(-) near root s=10.58 GeV SO PHYSICAL REVIEW D LA English DT Article ID EXCLUSIVE PROCESSES; QCD; CHROMODYNAMICS; MESONS; MODEL; SPIN AB We report the first observation of e(+)e(-)->rho(+)rho(-), in a data sample of 379 fb(-1) collected with the BABAR detector at the PEP-II e(+)e(-) storage ring at center-of-mass energies near root s=10.58 GeV. We measure a cross section of sigma(e(+)e(-)->rho(+)rho(-))=8.3 +/- 0.7(stat)+/- 0.8(syst) fb within the range of vertical bar cos theta(*)vertical bar < 0.8 and vertical bar cos theta(+/-)vertical bar < 0.85, where theta(*) is the center-of-mass polar angle of the rho(+/-) meson and theta(+/-) are the angles in the rho(+/-) rest frame between the direction of the boost from the laboratory frame and the direction of the pi(+/-). Assuming production through single-photon annihilation, there are three independent helicity amplitudes. We measure the ratios of their squared moduli to be vertical bar F-00 vertical bar(2)vertical bar F-10 vertical bar(2)vertical bar F-11 vertical bar(2)= 0.51 +/- 0.14(stat)+/- 0.07(syst)0.10 +/- 0.04(stat)+/- 0.01(syst)0.04 +/- 0.03(stat)+/- 0.01(syst). The vertical bar F-00 vertical bar(2) result is inconsistent with the prediction of 1.0 made by QCD models with a significance of 3.1 standard deviations including systematic uncertainties. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.; Pacetti, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.; Meyer, W. T.; Rosenberg, E. I.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Bailey, D. S.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Patrignani, Claudia/0000-0002-5882-1747; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany),; INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation. FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. We wish to thank S. Brodsky, A. Goldhaber, and L. Dixon for helpful discussions. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRSIN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 31 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 071103 DI 10.1103/PhysRevD.78.071103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800004 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M Costa, JF Grosdidier, G Hocker, A Lepeltier, V Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Search for B -> K-*nu(nu)overbar decays SO PHYSICAL REVIEW D LA English DT Article ID JETS AB We present a search for the decays B -> K-*nu(nu)overbar using 454x10(6)B(B)overbar pairs collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC PEP-II B-Factory. We first select an event sample where one B is reconstructed in a semileptonic or hadronic mode with one charmed meson. The remaining particles in the event are then examined to search for a B -> K-*nu(nu)overbar decay. The charged K-* is reconstructed as K*+-> K-S(0)pi(+) or K*+-> K+pi(0); the neutral K-* is identified in K-*0 -> K+pi(-) mode. We establish upper limits at 90% confidence level of B(B+-> K*+nu(nu)overbar>)< 8x10(-5), B(B-0 -> K-*0 nu(nu)overbar)< 12x10(-5), and B(B -> K-*nu(nu)overbar)< 8x10(-5). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, San Diego, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Peruzzi, I. M.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Kozanecki, W.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015 OI Raven, Gerhard/0000-0002-2897-5323; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400 FU US Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council ( Canada); Commissariat a` l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules ( France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft ( Germany); Istituto Nazionale di Fisica Nucleare ( Italy),; Foundation for Fundamental Research on Matter ( The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia ( Spain); Science and Technology Facilities Council ( United Kingdom).; Marie-Curie IEF program ( European Union); A.P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council ( Canada), the Commissariat a` l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules ( France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft ( Germany), the Istituto Nazionale di Fisica Nucleare ( Italy), the Foundation for Fundamental Research on Matter ( The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia ( Spain), and the Science and Technology Facilities Council ( United Kingdom). Individuals have received support from the Marie-Curie IEF program ( European Union) and the A.P. Sloan Foundation. NR 14 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 072007 DI 10.1103/PhysRevD.78.072007 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800020 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N BeQuilleux, J D'Orazio, A Davier, M Costa, JF Grosdidier, G Hoker, A Lepeltier, V Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schorder, H Waldi, R Adye, T Feranek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yesche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Feranek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yesche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of the branching fraction, polarization, and CP asymmetries in B-0 ->rho(0)rho(0) decay, and implications for the CKM angle alpha SO PHYSICAL REVIEW D LA English DT Article AB We study B-0 ->rho(0)rho(0) decays in a sample of 465x10(6) Upsilon(4S)-> B(B)overbar events collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider located at the Stanford Linear Accelerator Center (SLAC). We measure the branching fraction B=(0.92 +/- 0.32 +/- 0.14)x10(-6) and longitudinal polarization fraction f(L)=0.75(-0.14)(+0.11)+/- 0.05, where the first uncertainty is statistical and the second is systematic. The evidence for the B-0 ->rho(0)rho(0) signal has a significance of 3.1 standard deviations, including systematic uncertainties. We investigate the proper-time dependence of the longitudinal component in the decay and measure the CP-violating coefficients S-L(00)=(0.3 +/- 0.7 +/- 0.2) and C-L(00)=(0.2 +/- 0.8 +/- 0.3). We study the implication of these results for the unitarity triangle angle alpha. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.; Saeed, M. A.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Adametz, A.; Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Feranek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot, Oxon OX11 0QX, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yesche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Raven, Gerhard/0000-0002-2897-5323; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU DOE and NSF (USA); NSERC (Canada); IHEP (China),; CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MIST (Russia); MEC (Spain); PPARC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation. FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 22 TC 28 Z9 28 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 071104 DI 10.1103/PhysRevD.78.071104 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800005 ER PT J AU Bacchetta, A Conti, F Radici, M AF Bacchetta, Alessandro Conti, Francesco Radici, Marco TI Transverse-momentum distributions in a diquark spectator model SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; GENERALIZED PARTON DISTRIBUTIONS; SINGLE-SPIN ASYMMETRIES; DRELL-YAN PROCESSES; SIVERS FUNCTION; FRAGMENTATION FUNCTIONS; STATE INTERACTIONS; QCD; NUCLEON AB All the leading-twist parton distribution functions are calculated in a spectator model of the nucleon, using scalar and axial-vector diquarks. Single gluon rescattering is used to generate T-odd distribution functions. Different choices for the diquark polarization states are considered, as well as a few options for the form factor at the nucleon-quark-diquark vertex. The results are listed in analytic form and interpreted in terms of light-cone wave functions. The model parameters are fixed by reproducing the phenomenological parametrization of unpolarized and helicity parton distributions at the lowest available scale. Predictions for the other parton densities are given and, whenever possible, compared with available phenomenological parametrizations. C1 [Bacchetta, Alessandro] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Conti, Francesco] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Conti, Francesco; Radici, Marco] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. RP Bacchetta, A (reprint author), Jefferson Lab, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM alessandro.bacchetta@jlab.org; francesco.conti@pv.infn.it; marco.radici@pv.infn.it RI Bacchetta, Alessandro/F-3199-2012; OI Bacchetta, Alessandro/0000-0002-8824-8355; Radici, Marco/0000-0002-4542-9797 FU European Integrated Infrastructure Initiative in Hadronic Physics Project [RII3-CT-2004-506078]; Jefferson Science Associates; LLC [DE-AC0506OR23177] FX F.C. and M.R. would like to thank B. Pasquini for useful discussions. This work is part of the European Integrated Infrastructure Initiative in Hadronic Physics Project under Contract No. RII3-CT-2004-506078. This work has been authored by the Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC0506OR23177. NR 80 TC 107 Z9 107 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 074010 DI 10.1103/PhysRevD.78.074010 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800046 ER PT J AU Bell, NF Kayser, BJ Law, SSC AF Bell, Nicole F. Kayser, Boris J. Law, Sandy S. C. TI Electromagnetic leptogenesis SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINO MAGNETIC-MOMENTS; HEAVY MAJORANA NEUTRINOS; MASSES; BARYOGENESIS; UNIVERSE; DECAYS; MODEL AB We present a new leptogenesis scenario, where the lepton asymmetry is generated by CP-violating decays of heavy electroweak singlet neutrinos via electromagnetic dipole moment couplings to the ordinary light neutrinos. Akin to the usual scenario where the decays are mediated through Yukawa interactions, we have shown, by explicit calculations, that the desired asymmetry can be produced through the interference of the corresponding tree-level and one-loop decay amplitudes involving the effective dipole moment operators. We also find that the relationship of the leptogenesis scale to the light neutrino masses is similar to that for the standard Yukawa-mediated mechanism. C1 [Bell, Nicole F.; Law, Sandy S. C.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Kayser, Boris J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Bell, NF (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. FU U. S. Department of Energy [DE-AC02-07CH11359] FX We would like to thank Vincenzo Cirigliano, Bruce McKellar, Ray Volkas and Lincoln Wolfenstein for helpful discussions. N. F. B. was supported by the University of Melbourne Early Career Researcher Grant Scheme, and B. J. K. was supported by Fermilab (operated by the Fermi Resarch Alliance under U. S. Department of Energy Contract No. DE-AC02-07CH11359). S. S. C. L. was supported by the Commonwealth of Australia. NR 44 TC 5 Z9 5 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 8 AR 085024 DI 10.1103/PhysRevD.78.085024 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TG UT WOS:000260574900125 ER PT J AU Burdman, G Chacko, Z Goh, HS Harnik, R Krenke, CA AF Burdman, Gustavo Chacko, Z. Goh, Hock-Seng Harnik, Roni Krenke, Christopher A. TI Quirky collider signals of folded supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID HIGGS AB We investigate the collider signals associated with scalar quirks (squirks) in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Because of the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited squirkonium loses energy to radiation before annihilating back into standard model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time scales. The most promising annihilation channel for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach. C1 [Burdman, Gustavo] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil. [Chacko, Z.; Krenke, Christopher A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Chacko, Z.; Krenke, Christopher A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Goh, Hock-Seng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Goh, Hock-Seng] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. [Harnik, Roni] USAStanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Harnik, Roni] Stanford Univ, Dept Phys, SITP, Stanford, CA 94305 USA. RP Burdman, G (reprint author), Univ Sao Paulo, Inst Fis, R Matao 187, BR-05508090 Sao Paulo, Brazil. RI Burdman, Gustavo/D-3285-2012 FU State of Sao Paulo Research Foundation (FAPESP); Brazilian National Counsel for Technological and Scientific Development (CNPq); NSF [PHY-0408954, PHY-04-57315]; DOE [DE-AC02-05CH11231, DE-AC0276SF00515] FX Is a pleasure to thank Johan Alwall, Elliott Cheu, Markus Luty, Shmuel Nussinov, and Michael Peskin for useful discussions. G. B. acknowledges the support of the State of Sao Paulo Research Foundation (FAPESP), as well as the Brazilian National Counsel for Technological and Scientific Development (CNPq). The work of Z.C. and C. A. K. was partially supported by the NSF under Grant No. PHY-0408954. The work of H. S. G. was supported in part by the NSF Grant No. PHY-04-57315 and by the DOE under Contract No. DE-AC02-05CH11231. The work of R. H. was supported by DOE Grant No. DE-AC0276SF00515. R. H. and H. S. G. also wish to thank the Aspen Center for physics where some of this work was conducted. NR 35 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 075028 DI 10.1103/PhysRevD.78.075028 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800108 ER PT J AU Cardall, CY AF Cardall, Christian Y. TI Liouville equations for neutrino distribution matrices SO PHYSICAL REVIEW D LA English DT Article ID EARLY UNIVERSE; OSCILLATIONS; MATTER AB The classical notion of a single-particle scalar distribution function or phase space density can be generalized to a matrix in order to accommodate superpositions of states of discrete quantum numbers, such as neutrino mass/flavor. Such a "neutrino distribution matrix" is thus an appropriate construct to describe a neutrino gas that may vary in space as well as time and in which flavor mixing competes with collisions. The Liouville equations obeyed by relativistic neutrino distribution matrices, including the spatial derivative and vacuum flavor mixing terms, can be explicitly but elegantly derived in two new ways: from a covariant version of the familiar simple model of flavor mixing, and from the Klein-Gordon equations satisfied by a quantum "density function" (mean value of paired quantum field operators). Associated with the latter derivation is a case study in how the joint position/momentum dependence of a classical gas (albeit with Fermi statistics) emerges from a formalism built on quantum fields. C1 [Cardall, Christian Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Cardall, Christian Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Cardall, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM cardallcy@ornl.gov FU United States Department of Energy [DE-AC05-000R22725] FX George Fuller, Jun Hidaka, Huaiyu Duan, and especially Phil Amanik provided feedback on an early version of some of the calculations in this work. Oak Ridge National Laboratory is managed by UT-Battelle under Contract No. DE-AC05-000R22725 with the United States Department of Energy. NR 35 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 8 AR 085017 DI 10.1103/PhysRevD.78.085017 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TG UT WOS:000260574900118 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Kind, OM Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Kamaluddin, B Abdullah, WAT Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behrens, U Blohm, C Bonato, A Borras, K Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Santamarta, R Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Wolf, G Wrona, K Molina, AGY Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Rosin, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Schleper, P Schoner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Borodin, M Kadenko, I Kozulia, A Libov, V Lisovyi, M Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L Peso, J Ron, E Soares, M Terron, J Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Korcsak-Gorzo, K Oliver, K Robertson, A Uribe-Estrada, C Walczak, R Bertolin, A Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Ukleja, J Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Gwenlan, C Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, A Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Hochman, D Karshon, U Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Kind, O. M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Kamaluddin, B. Wan Abdullah, W. A. T. Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behrens, U. Blohm, C. Bonato, A. Borras, K. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Santamarta, R. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Wolf, G. Wrona, K. Molina, A. G. Yagues Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lisovyi, M. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Korcsak-Gorzo, K. Oliver, K. Robertson, A. Uribe-Estrada, C. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Ukleja, J. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Gwenlan, C. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, A. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Beauty photoproduction using decays into electrons at HERA SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; H1 VERTEX DETECTOR; CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; HEAVY FLAVOR PRODUCTION; MESON CROSS-SECTIONS; HADRON-COLLISIONS; D-ASTERISK+/; D-ASTERISK(+/-) PHOTOPRODUCTION; INCLUSIVE D-ASTERISK(+/-) AB Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120 pb(-1). The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Kind, O. M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Kamaluddin, B.; Wan Abdullah, W. A. T.] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Szuba, J.] Univ Sci & Technol, AGH, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Molina, A. G. Yagues; Youngman, C.; Zeuner, W.; Gialas, I.; Boutle, S. K.] DESY, D-2000 Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Mitilini, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taejon, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.] Ist Nazl Fis Nucl, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Szuba, D.] INP, Krakow, Poland. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Abramowicz, H.] Max Planck Inst, Munich, Germany. [Kitamura, S.] Tokyo Metropolitan Univ, Dept Radiol Sci, Tokyo 158, Japan. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Tassi, Enrico/K-3958-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Wiggers, Leo/0000-0003-1060-0520 FU Natural Sciences and Engineering Research Council of Canada (NSERC); German Federal Ministry for Education and Research (BMBF) [05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA, 05 HZ4KHA]; MINERVA Gesellschaft fur Forschung GmbH; Israel Science Foundation [293/02-11.2]; U.S.-Israel Binational Science Foundation; Italian National Institute for Nuclear Physics (INFN); Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education and Korea Science and Engineering Foundation; Netherlands Foundation for Research on Matter (FOM); Polish State Committee for Scientific Research [DESY/256/2006-154/DES/2006/03]; RF Presidential [N 8122.2006.2]; Russian Ministry of Education and Science; Spanish Ministry of Education and Science; CICYT; Science and Technology Facilities Council, UK; U.S. Department of Energy; U.S. National Science Foundation; Polish Ministry of Science and Higher Education [(2006-2008)]; FNRS and its associated funds (IISN and FRIA); Inter-University Attraction Poles Program; Marie Curie Actions Transfer of Knowledge project COCOS [MTKD-CT-2004-517186]; Moscow State University, Russia; DESY, Germany; Russian Foundation for Basic Research [05-02-39028-NSFC-a]; Warsaw University, Poland; National Science Foundation; DESY, Hamburg, Germany FX We thank the DESY Directorate for their strong support and encouragement. The remarkable achievements of the HERA machine group were essential for the successful completion of this work. The design, construction and installation of the ZEUS detector have been made possible by the effort of many people who are not listed as authors. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC); the German Federal Ministry for Education and Research (BMBF), under Contracts No. 05 HZ6PDA, No. 05 HZ6GUA, No. 05 HZ6VFA and No. 05 HZ4KHA; the MINERVA Gesellschaft fur Forschung GmbH; the Israel Science Foundation (Grant No. 293/02-11.2)and the U.S.-Israel Binational Science Foundation; the Italian National Institute for Nuclear Physics (INFN); the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research; the Korean Ministry of Education and Korea Science and Engineering Foundation; the Netherlands Foundation for Research on Matter (FOM); the Polish State Committee for Scientific Research, Project No. DESY/256/2006-154/DES/2006/03; RF Presidential Grant No. N 8122.2006.2 for the leading scientific schools; the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics; the Spanish Ministry of Education and Science through funds provided by CICYT; the Science and Technology Facilities Council, UK; the U.S. Department of Energy; the U.S. National Science Foundation; the Polish Ministry of Science and Higher Education (2006-2008); FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Program subsidized by the Belgian Federal Science Policy Office; the Malaysian Ministry of Science, Technology and Innovation/Akademi Sains Malaysia Grant No. SAGA 66-02-030048. A. K. (Jagellonian University) was supported by Grant No. 1 P03B 04529 (2005-2008). The work of W. S. (Jagellonian University) was supported in part by the Marie Curie Actions Transfer of Knowledge project COCOS ( Contract No. MTKD-CT-2004-517186). N. N. V. was partly supported by Moscow State University, Russia. V. A. (Kiev) was supported by DESY, Germany. B. B. L. was partly supported by Russian Foundation for Basic Research Grant No. 05-02-39028- NSFC-a. J.U. (Pennsylvania State University) was partially supported by Warsaw University, Poland. The material of J. J. W. (Pennsylvania State University) was based on work supported by the National Science Foundation, while working at the Foundation. M. W. (University College London) was partially supported by DESY, Hamburg, Germany. NR 71 TC 19 Z9 19 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 072001 DI 10.1103/PhysRevD.78.072001 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800014 ER PT J AU Chung, SU Friedrich, JM AF Chung, Suh-Urk Friedrich, Jan Michael TI Covariant helicity-coupling amplitudes: A new formulation SO PHYSICAL REVIEW D LA English DT Article ID PARTICLES; DECAY; SPIN; COLLISIONS AB We have worked out covariant amplitudes for any two-body decay of a resonance with an arbitrary nonzero mass, which involves arbitrary integer spins in the initial and the final states. One key new ingredient for this work is the application of the total intrinsic spin operator S which is given directly in terms of the generators of the Poincare group. Using the results of this study, we show how to explore the Lorentz factors which appear naturally, if the momentum-space wave functions are used to form the covariant decay amplitudes. We have devised a method of constructing our covariant decay amplitudes, such that they lead to the Zemach amplitudes when the Lorentz factors are set to one. C1 [Chung, Suh-Urk; Friedrich, Jan Michael] Tech Univ Munich, Phys Dept E18, D-8000 Munich, Germany. [Chung, Suh-Urk] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Chung, SU (reprint author), Tech Univ Munich, Phys Dept E18, D-8000 Munich, Germany. RI Friedrich, Jan/B-9024-2013 OI Friedrich, Jan/0000-0001-9298-7882 FU Cluster of Excellence for Fundamental Physics in Munich, Germany FX S.-U.C. is indebted to the German Ministry of Science and Technology (BMBF) and the DFG for support during the visits to Bonn and Munich in the years 2003 through 2005 and again the years 2007 through 2009. He acknowledges with gratitude financial support from the Cluster of Excellence for Fundamental Physics in Munich, Germany. He is also indebted to Larry Trueman/BNL and Ron Longacre/BNL for their numerous helpful comments during the final stages of this paper. Finally, both of us acknowledge with pleasure the support and encouragement from Professor Stephan Paul, Technical University Munich. NR 22 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 074027 DI 10.1103/PhysRevD.78.074027 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800063 ER PT J AU Creutz, M AF Creutz, Michael TI Comment on "'t Hooft vertices, partial quenching, and rooted staggered QCD" SO PHYSICAL REVIEW D LA English DT Editorial Material ID EXACTLY MASSLESS QUARKS; CHIRAL FERMIONS; LATTICE AB A recent criticism of the proof of the failure of the rooting procedure with staggered fermions is shown to be incorrect. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Creutz, M (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 16 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 078501 DI 10.1103/PhysRevD.78.078501 PG 2 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800128 ER PT J AU de Florian, D Vogelsang, W Wagner, F AF de Florian, Daniel Vogelsang, Werner Wagner, Federico TI Single-inclusive hadron production in transversely polarized pp and (p)overbarp collisions with threshold resummation SO PHYSICAL REVIEW D LA English DT Article ID DRELL-YAN PROCESSES; ODD PARTON DISTRIBUTIONS; LEPTON-PAIR PRODUCTION; QCD HARD SCATTERING; CROSS-SECTIONS; MASS SINGULARITIES; LEADING ORDER; SPIN PHYSICS; J-PARC; FACTORIZATION AB We investigate the resummation of large logarithmic perturbative corrections to the partonic cross sections for single-inclusive high-p(T) hadron production in collisions of transversely polarized hadrons. We perform the resummation to next-to-leading logarithmic accuracy. Phenomenological results are given for (p)overbarp collisions at center-of-mass energy root S=14.5 GeV and for pp collisions at root S=62.4 GeV and at root S=10 GeV, which are relevant for possible experiments at the GSI-FAIR, RHIC and J-PARC facilities, respectively. We find significant enhancements of the spin-dependent and spin-averaged cross sections, but a decrease of the double-spin asymmetry A(TT)(pi). C1 [de Florian, Daniel; Wagner, Federico] Univ Buenos Aires, FCEYN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP de Florian, D (reprint author), Univ Buenos Aires, FCEYN, Dept Fis, Pabellon 1 Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 FU Conicet; UBACyT; ANPCyT; U. S. Department of Energy [DE-AC02-98CH10886] FX The work of D. dF. has been partially supported by Conicet, UBACyT and ANPCyT. W. V. is grateful to the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of his work. The work of F. W. has been supported by UBACyT. NR 63 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 074025 DI 10.1103/PhysRevD.78.074025 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800061 ER PT J AU Ejiri, S AF Ejiri, Shinji TI Canonical partition function and finite density phase transition in lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL CRITICAL-POINT; TEMPERATURE AB We discuss the nature of the phase transition for lattice QCD at finite temperature and density. We propose a method to calculate the canonical partition function by fixing the total quark number introducing approximations allowed in the low density region. An effective potential as a function of the quark number density is discussed from the canonical partition function. We analyze data obtained in a simulation of two-flavor QCD using p4-improved staggered quarks with bare quark mass m/T=0.4 on a 16(3)x4 lattice. The results suggest that the finite density phase transition at low temperature is of first order. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ejiri, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 41 TC 92 Z9 92 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 074507 DI 10.1103/PhysRevD.78.074507 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800076 ER PT J AU Esteban-Pretel, A Mirizzi, A Pastor, S Tomas, R Raffelt, GG Serpico, PD Sigl, G AF Esteban-Pretel, A. Mirizzi, A. Pastor, S. Tomas, R. Raffelt, G. G. Serpico, P. D. Sigl, G. TI Role of dense matter in collective supernova neutrino transformations SO PHYSICAL REVIEW D LA English DT Article ID NUCLEOSYNTHESIS; OSCILLATIONS AB For neutrinos streaming from a supernova core, dense matter suppresses self-induced flavor transformations if the electron density n(e) significantly exceeds the neutrino density n(nu) in the conversion region. If n(e) is comparable to n(nu), one finds multiangle decoherence, whereas the standard self-induced transformation behavior requires that in the transformation region n(nu) is safely above n(e). This condition need not be satisfied in the early phase after the supernova core bounce. Our new multiangle effect is a subtle consequence of neutrinos traveling on different trajectories when streaming from a source that is not pointlike. C1 [Esteban-Pretel, A.; Pastor, S.] Univ Valencia, Inst Fis Corpuscular, CSIC, Edifici Inst Invest, Valencia 46071, Spain. [Mirizzi, A.; Raffelt, G. G.] Werner Heisenberg Inst, Max Planck Inst Phys, D-80805 Munich, Germany. [Mirizzi, A.] Ist Nazl Fis Nucl, Rome, Italy. [Tomas, R.] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany. [Serpico, P. D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sigl, G.] Univ Paris 07, CNRS, Observ Paris, CEA,UMR 7164, F-75205 Paris, France. RP Esteban-Pretel, A (reprint author), Univ Valencia, Inst Fis Corpuscular, CSIC, Edifici Inst Invest, Apartado 22085, Valencia 46071, Spain. RI Pastor, Sergio/J-6902-2014; OI Sigl, Guenter/0000-0002-4396-645X FU DFG (Germany) [TR-27, SFB-676]; European Union [RII3-CT-2004-506222]; RT Network [MRTN-CT-2004-503369]; Spanish Government; United States Department of Energy [DE-AC02-07CH11359]; [FPA2005-01269]; [NAG5-10842] FX We acknowledge partial support by the DFG (Germany) under Grants No. TR-27 and No. SFB-676, by The Cluster of Excellence "Origin and Structure of the Universe,'' by the European Union under the ILIAS project ( Contract No. RII3-CT-2004-506222) and an RT Network (Contract No. MRTN-CT-2004-503369), and by the Spanish Grant No. FPA2005-01269. A. E.-P. is supported by a FPU grant from the Spanish Government, A. M. by INFN (Italy), and P. S. by the U. S. Department of Energy and by NASA Grant No. NAG5-10842. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 40 TC 87 Z9 87 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 8 AR 085012 DI 10.1103/PhysRevD.78.085012 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TG UT WOS:000260574900113 ER PT J AU Fukushima, K Kharzeev, DE Warringa, HJ AF Fukushima, Kenji Kharzeev, Dmitri E. Warringa, Harmen J. TI Chiral magnetic effect SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; NUMBER NON-CONSERVATION; WEINBERG-SALAM THEORY; PARITY ODD BUBBLES; ELECTROWEAK BARYOGENESIS; FINITE TEMPERATURE; SYMMETRY BREAKING; HOT QCD; INSTANTONS; VIOLATION AB Topological charge changing transitions can induce chirality in the quark-gluon plasma by the axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to an external magnetic field. To mimic the effect of the topological charge changing transitions we will introduce a chiral chemical potential. We will show that an electromagnetic current is generated along the magnetic field. This is the chiral magnetic effect. We compute the magnitude of this current as a function of magnetic field, chirality, temperature, and baryon chemical potential. C1 [Fukushima, Kenji] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kharzeev, Dmitri E.; Warringa, Harmen J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Fukushima, K (reprint author), Kyoto Univ, Yukawa Inst, Kyoto, Japan. EM fuku@yukawa.kyoto-u.ac.jp; kharzeev@bnl.gov; warringa@quark.phy.bnl.gov OI Fukushima, Kenji/0000-0003-0899-740X FU U. S. Department of Energy [DE-AC02-98CH10886]; Japanese MEXT [20740134]; Yukawa International FX We are grateful to Larry McLerran and Eric Zhitnitsky for discussions; we thank Larry McLerran also for comments on the manuscript. This manuscript has been authored under Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy. K. F. is supported by Japanese MEXT Grant No. 20740134 and also supported in part by Yukawa International Program for Quark Hadron Sciences. NR 82 TC 633 Z9 636 U1 6 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 074033 DI 10.1103/PhysRevD.78.074033 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800069 ER PT J AU Hidaka, Y Pisarski, RD AF Hidaka, Yoshimasa Pisarski, Robert D. TI Suppression of the shear viscosity in a "semi"-quark-gluon plasma SO PHYSICAL REVIEW D LA English DT Article ID T-HOOFT LOOP; SU(N) GAUGE-THEORY; HOT QCD; INTERFACE TENSION; HIGH-TEMPERATURE; CUBIC ORDER AB We consider QCD at temperatures T near T(c), where the theory deconfines. We distinguish between a "complete" quark-gluon plasma (QGP), where the vacuum expectation value of the renormalized Polyakov loop is near unity, essentially constant with T, and the "semi"-QGP, where the loop changes strongly with T. Lattice simulations indicate that in QCD, there is a semi-QGP from below T(c) to a few times that. Using a semiclassical model, we compute the shear viscosity, eta, to leading order in perturbation theory. We find that near T(c), where the expectation value of the Polyakov loop is small, that eta/T(3) is suppressed by two powers of the loop. For heavy ions, this suggests that during the initial stages of the collision, hydrodynamic behavior at the LHC will be characterized by a shear viscosity which is significantly larger than that at RHIC. C1 [Hidaka, Yoshimasa] Brookhaven Natl Lab, BNL Res Ctr, RIKEN, Upton, NY 11973 USA. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Hidaka, Y (reprint author), Brookhaven Natl Lab, BNL Res Ctr, RIKEN, Upton, NY 11973 USA. FU RIKEN BNL Research Center; U.S. Department of Energy [DE-AC0298CH10886]; Alexander von Humboldt Foundation FX This research was supported in part by the RIKEN BNL Research Center and by the U.S. Department of Energy under Cooperative Research Agreement No. DE-AC0298CH10886. R. D. P. also thanks the Alexander von Humboldt Foundation for their support. NR 55 TC 44 Z9 44 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 071501 DI 10.1103/PhysRevD.78.071501 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800008 ER PT J AU Hubisz, J Lykken, J Pierini, M Spiropulu, M AF Hubisz, Jay Lykken, Joseph Pierini, Maurizio Spiropulu, Maria TI Missing energy look-alikes with 100 pb(-1) at the CERN LHC SO PHYSICAL REVIEW D LA English DT Review ID SUPERSYMMETRIC PARTICLES; HADRON COLLIDERS; P(P)OVER-BAR COLLISIONS; TRANSVERSE ENERGY; MEASURING MASSES; TOP-QUARK; SEARCH; TEV; DIMENSIONS; HIERARCHY AB A missing energy discovery is possible at the LHC with the first 100 pb(-1) of understood data. We present a realistic strategy to rapidly narrow the list of candidate theories at, or close to, the moment of discovery. The strategy is based on robust ratios of inclusive counts of simple physics objects. We study specific cases showing discrimination of look-alike models in simulated data sets that are at least 10 to 100 times smaller than used in previous studies. We discriminate supersymmetry models from nonsupersymmetric look-alikes with only 100 pb(-1) of simulated data, using combinations of observables that trace back to differences in spin. C1 [Hubisz, Jay] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lykken, Joseph] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Pierini, Maurizio; Spiropulu, Maria] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Hubisz, J (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM hubisz@hep.anl.gov; lykken@fnal.gov; Maurizio.Pierini@cern.ch; smaria@cern.ch NR 101 TC 45 Z9 45 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 075008 DI 10.1103/PhysRevD.78.075008 PG 45 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800088 ER PT J AU Kidonakis, N Vogt, R AF Kidonakis, Nikolaos Vogt, Ramona TI Theoretical top quark cross section at the Fermilab Tevatron and the CERN LHC SO PHYSICAL REVIEW D LA English DT Article ID QCD HARD SCATTERING; HADRON-COLLISIONS; HEAVY; PHYSICS; RESUMMATION; 2-LOOPS AB We present results for the top quark pair cross section at the Tevatron and the LHC. We use the resummed double differential cross section, employing the fully kinematics-dependent soft-anomalous-dimension matrices, to calculate the soft-gluon contributions at next-to-next-to-leading order (NNLO). We improve and update our previous estimates by refining our methods, including further subleading terms, and employing the most recent parton distribution function sets. The NNLO soft corrections significantly enhance the NLO cross section while considerably reducing the scale dependence. We provide a detailed discussion of all theoretical uncertainties in our calculation, including kinematics, scale, and parton distribution uncertainties, and clarify the differences between our work and other approaches in the literature. C1 [Kidonakis, Nikolaos] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Vogt, Ramona] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vogt, Ramona] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Kidonakis, N (reprint author), Kennesaw State Univ, 1000 Chastain Rd, Kennesaw, GA 30144 USA. FU National Science Foundation [PHY 0555372, PHY-0555660]; U. S. Department of Energy by Lawrence Livermore National Security; LLC; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work of N. K. was supported by the National Science Foundation under Grant No. PHY 0555372. The work of R. V. was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and also supported in part by the National Science Foundation Grant No. NSF PHY-0555660. NR 46 TC 160 Z9 160 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 074005 DI 10.1103/PhysRevD.78.074005 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800041 ER PT J AU Learned, JG Dye, ST Pakvasa, S Svoboda, RC AF Learned, John G. Dye, Stephen T. Pakvasa, Sandip Svoboda, Robert C. TI Determination of neutrino mass hierarchy and theta(13) with a remote detector of reactor antineutrinos SO PHYSICAL REVIEW D LA English DT Article AB We describe a method for determining the hierarchy of the neutrino mass spectrum and theta(13) through remote detection of electron antineutrinos from a nuclear reactor. This method utilizing a single, 10-kiloton scintillating liquid detector at a distance of 49-63 kilometers from the reactor complex measures mass-squared differences involving nu(3) with a one(ten)-year exposure provided sin(2)(2 theta(13))> 0.05(0.02). Our technique applies the Fourier transform to the event rate as a function of neutrino flight distance over neutrino energy. Sweeping a relevant range of delta m(2) resolves separate spectral peaks for delta m(2)31 and delta m(2)32. For normal (inverted) hierarchy vertical bar delta m(2)31 vertical bar is greater (lesser) than vertical bar delta m(2)32 vertical bar. This robust determination requires a detector energy resolution of 3.5%/root E. C1 [Learned, John G.; Dye, Stephen T.; Pakvasa, Sandip] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Dye, Stephen T.] Hawaii Pacific Univ, Coll Nat Sci, Kaneohe, HI 96744 USA. [Svoboda, Robert C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Svoboda, Robert C.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Learned, JG (reprint author), Univ Hawaii Manoa, Dept Phys & Astron, 2505 Correa Rd, Honolulu, HI 96822 USA. NR 14 TC 51 Z9 51 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2008 VL 78 IS 7 AR 071302 DI 10.1103/PhysRevD.78.071302 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 367TF UT WOS:000260574800007 ER PT J AU De Lorenzi-Venneri, G Chisolm, ED Wallace, DC AF De Lorenzi-Venneri, Giulia Chisolm, Eric D. Wallace, Duane C. TI Vibration-transit theory of self-dynamic response in a monatomic liquid SO PHYSICAL REVIEW E LA English DT Article ID NONEQUILIBRIUM MOLECULAR-DYNAMICS; THERMODYNAMIC PROPERTIES; DENSITY FLUCTUATIONS; SHEAR VISCOSITY; METALS; RUBIDIUM; POTASSIUM; SODIUM AB A theoretical model for self-dynamic response is developed using vibration-transit theory, and is applied to liquid sodium at all wave vectors q from the hydrodynamic regime to the free particle limit. In this theory the zeroth-order Hamiltonian describes the vibrational motion in a single random valley harmonically extended to infinity. This Hamiltonian is tractable, is evaluated a priori for monatomic liquids, and the same Hamiltonian (the same set of eigenvalues and eigenvectors) is used for equilibrium and nonequilibrium theory. Here, for the self-intermediate scattering function F(s)(q,t), we find the vibrational contribution is in near perfect agreement with molecular dynamics (MD) through short and intermediate times, at all q. This is direct confirmation that normal mode vibrational correlations are present in the motion of the liquid state. The primary transit effect is the diffusive motion of the vibrational equilibrium positions, as the liquid transits rapidly among random valleys. This motion is modeled as a standard random walk, and the resulting theoretical F(s)(q,t) is in excellent agreement with MD results at all q and t. In the limit q ->infinity, the theory automatically exhibits the correct approach to the free-particle limit. Also, in the limit q -> 0, the hydrodynamic limit emerges as well. In contrast to the benchmark theories of generalized hydrodynamics and mode coupling, the present theory is near a priori, while achieving modestly better accuracy. Therefore, in our view, it constitutes an improvement over the traditional theories. C1 [De Lorenzi-Venneri, Giulia; Chisolm, Eric D.; Wallace, Duane C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP De Lorenzi-Venneri, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U. S. DOE [DE-AC5206NA25396] FX Brad Clements and Renzo Vallauri are gratefully acknowledged for helpful discussions. This work was supported by the U. S. DOE under Contract No. DE-AC5206NA25396. NR 34 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2008 VL 78 IS 4 AR 041205 DI 10.1103/PhysRevE.78.041205 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 367SV UT WOS:000260573800048 PM 18999410 ER PT J AU Heim, AJ Gronbech-Jensen, N Kober, EM Erpenbeck, JJ Germann, TC AF Heim, Andrew J. Gronbech-Jensen, Niels Kober, Edward M. Erpenbeck, Jerome J. Germann, Timothy C. TI Interaction potential for atomic simulations of conventional high explosives SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS; DETONATION; SYSTEMS AB In an effort to develop a chemically reactive interaction potential suitable for application to the study of conventional, organic explosives, we have modified the diatomic AB potential of Brenner [Phys. Rev. Lett. 70, 2174 (1993); 76, 2202(E) (1996)] such that it exhibits improved detonation characteristics. In particular, equilibrium molecular dynamics (MD) calculations of the modified potential demonstrate that the detonation products have an essentially diatomic, rather than polymeric, composition and that the detonation Hugoniot has the classic, concave-upward form. Nonequilibrium MD calculations reveal the separation of scales between chemical and hydrodynamic effects essential to the Zel'dovitch, von Neumann, and Doring theory. C1 [Heim, Andrew J.; Gronbech-Jensen, Niels] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Kober, Edward M.; Erpenbeck, Jerome J.; Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Heim, AJ (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. OI Germann, Timothy/0000-0002-6813-238X FU University of California [W-7405-ENG-36]; Los Alamos National Security [DE-AC52-06NA25396]; ASC Physics and Engineering Modeling program FX The authors would like to thank Sam Shaw, Alejandro Strachan, Brad Holian, Tommy Sewell, Yogesh Joglekar, and David Hall for useful conversations. This material was prepared by the University of California under Contract No. W-7405-ENG-36 and Los Alamos National Security under Contract No. DE-AC52-06NA25396 with the U. S. Department of Energy. The authors particularly wish to recognize funding provided through the ASC Physics and Engineering Modeling program. NR 26 TC 11 Z9 11 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2008 VL 78 IS 4 AR 046709 DI 10.1103/PhysRevE.78.046709 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 367SW UT WOS:000260573900087 PM 18999563 ER PT J AU Heim, AJ Gronbech-Jensen, N Kober, EM Germann, TC AF Heim, Andrew J. Gronbech-Jensen, Niels Kober, Edward M. Germann, Timothy C. TI Molecular dynamics simulations of detonation instability SO PHYSICAL REVIEW E LA English DT Article ID NUMERICAL STRUCTURE; STABILITY AB After making modifications to the reactive empirical bond-order potential for molecular dynamics (MD) of Brenner [Phys. Rev. Lett.70, 2174 (1993); 76, 2202(E) (1996)] in order to make the model behave in a more conventional manner, we discover that the updated model exhibits detonation instability, a first for MD. The instability is analyzed in terms of the accepted theory. C1 [Heim, Andrew J.; Gronbech-Jensen, Niels] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Heim, Andrew J.; Kober, Edward M.; Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Heim, AJ (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. OI Germann, Timothy/0000-0002-6813-238X FU University of California [W-7405-ENG-36]; Los Alamos National Security [DE-AC52-06NA25396]; ASC Physics and Engineering Modeling program FX The authors would like to thank Charles Kiyanda, Mark Short, Jerry Erpenbeck, Sam Shaw, Tariq Aslam, John Bdzil, Alejandro Strachan, Brad Holian, Tommy Sewell, Yogesh Joglekar, and David Hall for useful conversations. This material was prepared by the University of California under Contract No. W-7405-ENG-36 and Los Alamos National Security under Contract No. DE-AC52-06NA25396 with the U. S. Department of Energy. The authors particularly wish to recognize funding provided through the ASC Physics and Engineering Modeling program. NR 15 TC 13 Z9 13 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2008 VL 78 IS 4 AR 046710 DI 10.1103/PhysRevE.78.046710 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 367SW UT WOS:000260573900088 PM 18999564 ER PT J AU Kadau, K Barber, JL Germann, TC Alder, BJ AF Kadau, Kai Barber, John L. Germann, Timothy C. Alder, Berni J. TI Scaling of atomistic fluid dynamics simulations SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-BENARD CONVECTION; MOLECULAR-DYNAMICS; VISCOSITY; BOLTZMANN AB We have performed a series of large-scale atomistic simulations of the Rayleigh-Taylor instability including up to 5.7x10(9) particles and spanning time and length scales of up to 170 ns and 45 mu m, respectively. The results suggest that atomistic fluid dynamics simulations exhibit the same scaling as solutions of the continuum Navier-Stokes equations. Furthermore, a comparison with macroscopic Rayleigh-Taylor experiments suggests that the results of such atomistic simulations can, in fact, be scaled up to macroscopic dimensions, even for complex, nonstationary flows. C1 [Kadau, Kai; Barber, John L.; Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Alder, Berni J.] Lawrence Livermore Natl Lab, Dept Appl Phys, Livermore, CA 94550 USA. RP Kadau, K (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kkadau@lanl.gov; jlbarber@lanl.gov; tcg@lanl.gov; alder1@llnl.gov OI Germann, Timothy/0000-0002-6813-238X FU National Nuclear Security Administration of the U.S.; ASC [DE-AC52-06NA25396, LDRD-20050066] FX We would like to thank Charles Rosenblatt (Case Western) for his experimental data and discussions, and Brad Lee Holian and Peter S. Lomdahl for many fruitful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, with funding by ASC and LDRD-20050066DR. High-performance computer access through the Institutional Computing Program is gratefully acknowledged. NR 19 TC 12 Z9 12 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2008 VL 78 IS 4 AR 045301 DI 10.1103/PhysRevE.78.045301 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 367SW UT WOS:000260573900005 PM 18999481 ER PT J AU Levashov, VA Egami, T Aga, RS Morris, JR AF Levashov, V. A. Egami, T. Aga, R. S. Morris, J. R. TI Atomic bond fluctuations and crossover to potential-energy-landscape-influenced regime in supercooled liquid SO PHYSICAL REVIEW E LA English DT Article ID SPATIALLY HETEROGENEOUS DYNAMICS; DENSITY CORRELATION-FUNCTION; GLASS-FORMING LIQUIDS; MOLECULAR-DYNAMICS; MODEL GLASS; COMPUTER EXPERIMENTS; CLASSICAL FLUIDS; AMORPHOUS SOLIDS; RANDOM PACKINGS; TRANSITION AB The ideas related to potential-energy landscape and cooperativity of atomic rearrangements are widely discussed in the research field of glass transition. The crossover transition from high-temperature regime to potential-energy-landscape-influenced regime was extensively studied using the concept of inherent structure. However, the interpretation of this crossover behavior in terms of microscopic changes in real structures is still lacking. In this paper we present several observations on the crossover behavior on real structures. We compare fluctuations in the global properties (total number of bonds, total potential energy, pressure) versus fluctuations in the local properties (coordination number, atomic potential energy, local atomic pressure) by means of molecular dynamics simulations. We then show that the total and local fluctuations in the number of atomic bonds in the system depend on temperature differently above and below the temperature of crossover to the landscape-influenced regime. Similarly, the ratio between the global and local fluctuations in the potential energy and pressure changes in the vicinity of the crossover temperature, whereas the change is less distinct than in the case of the bond fluctuations. Our results indicate that local fluctuations become more correlated below the crossover temperature, most likely via the interaction through the dynamic shear elastic field. C1 [Levashov, V. A.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.; Morris, J. R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Aga, R. S.; Morris, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Levashov, VA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 47 TC 9 Z9 9 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2008 VL 78 IS 4 AR 041202 DI 10.1103/PhysRevE.78.041202 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 367SV UT WOS:000260573800045 PM 18999407 ER PT J AU Nukala, PKVV Zapperi, S Alava, MJ Simunovic, S AF Nukala, Phani K. V. V. Zapperi, Stefano Alava, Mikko J. Simunovic, Srdan TI Crack roughness in the two-dimensional random threshold beam model SO PHYSICAL REVIEW E LA English DT Article ID FRACTURE SURFACES; BRITTLE-FRACTURE; INTERFACES; WOOD AB We study the scaling of two-dimensional crack roughness using large scale beam lattice systems. Our results indicate that the crack roughness obtained using beam lattice systems does not exhibit anomalous scaling in sharp contrast to the simulation results obtained using scalar fuse lattices. The local and global roughness exponents (zeta(loc) and zeta, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be zeta(loc)=zeta=0.64 +/- 0.02. Removal of overhangs (jumps) in the crack profiles eliminates even the minute differences between the local and global roughness exponents. Furthermore, removing these jumps in the crack profile completely eliminates the multiscaling observed in other studies. We find that the probability density distribution p[Delta h(l)] of the height differences Delta h(l)=[h(x+l)-h(x)] of the crack profile obtained after removing the jumps in the profiles follows a Gaussian distribution even for small window sizes (l). C1 [Nukala, Phani K. V. V.; Simunovic, Srdan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zapperi, Stefano] Univ Modena & Reggio Emilia, Dipartimento Fis, CNRS INFM, I-41100 Modena, Italy. [Zapperi, Stefano] ISI Fdn, I-10133 Turin, Italy. [Alava, Mikko J.] Aalto Univ, Dept Appl Phys, FIN-02015 Espoo, Finland. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 NR 42 TC 12 Z9 12 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2008 VL 78 IS 4 AR 046105 DI 10.1103/PhysRevE.78.046105 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 367SW UT WOS:000260573900015 PM 18999491 ER PT J AU Sears, CMS Colby, E England, RJ Ischebeck, R McGuinness, C Nelson, J Noble, R Siemann, RH Spencer, J Walz, D Plettner, T Byer, RL AF Sears, Christopher M. S. Colby, Eric England, R. J. Ischebeck, Rasmus McGuinness, Christopher Nelson, Janice Noble, Robert Siemann, Robert H. Spencer, James Walz, Dieter Plettner, Tomas Byer, Robert L. TI Phase stable net acceleration of electrons from a two-stage optical accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to similar to 13 degrees allowing for stable net acceleration of electrons with lasers. C1 [Sears, Christopher M. S.; Colby, Eric; England, R. J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Sears, Christopher M. S.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Plettner, Tomas; Byer, Robert L.] Stanford Univ, Stanford, CA 94305 USA. RP Sears, CMS (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM cmsears@mpq.mpg.de FU Department of Energy [DE-AC02-76SF00515, DE-FG02-03ER41276] FX The authors wish to acknowledge the efforts and contributions of the NLCTA Operations group: Justin May, Doug McCormick, Tonee Smith, Richard Swent, and Keith Jobe. We would also like to thank Walt Zacherl and Bruce Rohrbough for their work on laser diagnostics. This work is supported by Department of Energy Contracts No. DE-AC02-76SF00515 and No. DE-FG02-03ER41276. NR 14 TC 25 Z9 25 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2008 VL 11 IS 10 AR 101301 DI 10.1103/PhysRevSTAB.11.101301 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 390XJ UT WOS:000262196700008 ER PT J AU Shiltsev, V Bishofberger, K Kamerdzhiev, V Kozub, S Kufer, M Kuznetsov, G Martinez, A Olson, M Pfeffer, H Saewert, G Scarpine, V Seryi, A Solyak, N Sytnik, V Tiunov, M Tkachenko, L Wildman, D Wolff, D Zhang, XL AF Shiltsev, Vladimir Bishofberger, Kip Kamerdzhiev, Vsevolod Kozub, Sergei Kufer, Matthew Kuznetsov, Gennady Martinez, Alexander Olson, Marvin Pfeffer, Howard Saewert, Greg Scarpine, Vic Seryi, Andrey Solyak, Nikolai Sytnik, Veniamin Tiunov, Mikhail Tkachenko, Leonid Wildman, David Wolff, Daniel Zhang, Xiao-Long TI Tevatron electron lenses: Design and operation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [V. Shiltsev et al., Phys. Rev. ST Accel. Beams 8, 101001 (2005)]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [V. Shiltsev et al., Phys. Rev. ST Accel. Beams 2, 071001 (1999).]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported by Shiltsev et al. [Phys. Rev. Lett. 99, 244801 (2007); New J. Phys. 10, 043042 (2008)] and by Zhang et al. [X.-L. Zhang et al., Phys. Rev. ST Accel. Beams 11, 051002 (2008)]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation, and outline the technical parameters of various subsystems. C1 [Shiltsev, Vladimir; Kamerdzhiev, Vsevolod; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; Solyak, Nikolai; Wildman, David; Wolff, Daniel; Zhang, Xiao-Long] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bishofberger, Kip] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kozub, Sergei; Sytnik, Veniamin; Tkachenko, Leonid] Inst High Energy Phys, Protvino 142284, Russia. [Seryi, Andrey] Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. [Tiunov, Mikhail] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM shiltsev@fnal.gov NR 30 TC 23 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2008 VL 11 IS 10 AR 103501 DI 10.1103/PhysRevSTAB.11.103501 PG 19 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 390XJ UT WOS:000262196700009 ER PT J AU Wagoner, TC Stygar, WA Ives, HC Gilliland, TL Spielman, RB Johnson, MF Reynolds, PG Moore, JK Mourning, RL Fehl, DL Androlewicz, KE Bailey, JE Broyles, RS Dinwoodie, TA Donovan, GL Dudley, ME Hahn, KD Kim, AA Lee, JR Leeper, RJ Leifeste, GT Melville, JA Mills, JA Mix, LP Moore, WBS Peyton, BP Porter, JL Rochau, GA Rochau, GE Savage, ME Seamen, JF Serrano, JD Sharpe, AW Shoup, RW Slopek, JS Speas, CS Struve, KW De Valde, DMV Woodring, RM AF Wagoner, T. C. Stygar, W. A. Ives, H. C. Gilliland, T. L. Spielman, R. B. Johnson, M. F. Reynolds, P. G. Moore, J. K. Mourning, R. L. Fehl, D. L. Androlewicz, K. E. Bailey, J. E. Broyles, R. S. Dinwoodie, T. A. Donovan, G. L. Dudley, M. E. Hahn, K. D. Kim, A. A. Lee, J. R. Leeper, R. J. Leifeste, G. T. Melville, J. A. Mills, J. A. Mix, L. P. Moore, W. B. S. Peyton, B. P. Porter, J. L. Rochau, G. A. Rochau, G. E. Savage, M. E. Seamen, J. F. Serrano, J. D. Sharpe, A. W. Shoup, R. W. Slopek, J. S. Speas, C. S. Struve, K. W. De Valde, D. M. Van Woodring, R. M. TI Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID INSULATED TRANSMISSION-LINES; ELECTRON-BEAMS; ROGOWSKI COILS; FARADAY CUP; DIVIDER; VACUUM; GENERATION; DIAGNOSIS; IMPEDANCE; SENSORS AB We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Omega balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Omega cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday's law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58 MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%. C1 [Wagoner, T. C.; Gilliland, T. L.; Spielman, R. B.; Moore, J. K.; Mourning, R. L.; Androlewicz, K. E.; Broyles, R. S.; Dinwoodie, T. A.; Dudley, M. E.; Peyton, B. P.; Serrano, J. D.; Slopek, J. S.; Woodring, R. M.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Stygar, W. A.; Fehl, D. L.; Bailey, J. E.; Donovan, G. L.; Hahn, K. D.; Lee, J. R.; Leeper, R. J.; Leifeste, G. T.; Mills, J. A.; Mix, L. P.; Moore, W. B. S.; Porter, J. L.; Rochau, G. A.; Rochau, G. E.; Savage, M. E.; Seamen, J. F.; Sharpe, A. W.; Speas, C. S.; Struve, K. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ives, H. C.; De Valde, D. M. Van] EG&G, Albuquerque, NM 87107 USA. [Johnson, M. F.; Reynolds, P. G.] Team Specialty Prod Corp, Albuquerque, NM 87123 USA. [Kim, A. A.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Melville, J. A.] Prodyn Technol Inc, Albuquerque, NM 87107 USA. [Shoup, R. W.] ITT Ind, Albuquerque, NM 87110 USA. RP Wagoner, TC (reprint author), Ktech Corp Inc, Albuquerque, NM 87123 USA. NR 85 TC 52 Z9 68 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2008 VL 11 IS 10 AR 100401 DI 10.1103/PhysRevSTAB.11.100401 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 390XJ UT WOS:000262196700003 ER PT J AU Zhang, Y Galambos, J Shishlo, A AF Zhang, Y. Galambos, J. Shishlo, A. TI Measurement of longitudinal acceptance and emittance of the Oak Ridge Spallation Neutron Source Superconducting Linac SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The longitudinal acceptance of the Spallation Neutron Source superconducting linac is computed with a longitudinal model. A beam current monitor and beam loss monitors are utilized in a new beam acceptance measurement technique, and the measured results show close agreement with the model. Based on the simulations and on the measurements of the superconducting linac acceptance, we developed a novel method to measure beam bunch shape, beam energy profile, and the longitudinal emittance at the entrance of the linac. The experimental measurements reveal that a large longitudinal beam halo exists in the injected beam to the superconducting linac, and the longitudinal rms emittance is approximately twice that of the nominal design. The simple measurement method is applicable to other superconducting linacs. C1 [Zhang, Y.; Galambos, J.; Shishlo, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM zhangyn@ornl.gov NR 11 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2008 VL 11 IS 10 AR 104001 DI 10.1103/PhysRevSTAB.11.104001 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 390XJ UT WOS:000262196700010 ER PT J AU Yu, HD Livescu, D AF Yu, Huidan Livescu, Daniel TI Rayleigh-Taylor instability in cylindrical geometry with compressible fluids SO PHYSICS OF FLUIDS LA English DT Article ID IMPLOSIONS; STABILITY; GROWTH; PLASMA; SYSTEM AB A linear stability analysis of the Rayleigh-Taylor instability (RTI) between two ideal inviscid immiscible compressible fluids in cylindrical geometry is performed. Three-dimensional (3D) cylindrical as well as two-dimensional (2D) axisymmetric and circular unperturbed interfaces are considered and compared to the Cartesian cases with planar interface. Focuses are on the effects of compressibility, geometry, and differences between the convergent (gravity acting inward) and divergent (gravity acting outward) cases on the early instability growth. Compressibility can be characterized by two independent parameters-a static Mach number based on the isothermal sound speed and the ratio of specific heats. For a steady initial unperturbed state, these have opposite influence, stabilization and destabilization, on the instability growth, similar to the Cartesian case [D. Livescu, Phys. Fluids 16, 118 (2004)]. The instability is found to grow faster in the 3D cylindrical than in the Cartesian case in the convergent configuration but slower in the divergent configuration. In general, the direction of gravity has a profound influence in the cylindrical cases but marginal for planar interface. For the 3D cylindrical case, instability grows faster in the convergent than in the divergent arrangement. Similar results are obtained for the 2D axisymmetric case. However, as the flow transitions from the 3D cylindrical to the 2D circular case, the results above can be qualitatively different depending on the Atwood number, interface radius, and compressibility parameters. Thus, 2D circular calculations of RTI growth do not seem to be a good model for the fully 3D cylindrical case. (C) 2008 American Institute of Physics. C1 [Yu, Huidan] Los Alamos Natl Lab, CCS 2, CNLS, Los Alamos, NM 87545 USA. RP Yu, HD (reprint author), Los Alamos Natl Lab, CCS 2, CNLS, POB 1663, Los Alamos, NM 87545 USA. EM hyu@lanl.gov; livescu@lanl.gov OI Livescu, Daniel/0000-0003-2367-1547 NR 31 TC 20 Z9 20 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2008 VL 20 IS 10 AR 104103 DI 10.1063/1.2991431 PG 11 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 367SM UT WOS:000260572800040 ER PT J AU Colvin, J Cerjan, C Hoffman, R Stoyer, M Amendt, P AF Colvin, Jeffrey Cerjan, Charles Hoffman, Robert Stoyer, Mark Amendt, Peter TI Radiochemical tracers as a mix diagnostic for the ignition double-shell capsule SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; FACILITY; IMPLOSIONS; DRIVE AB One of the most important challenges confronting laser-driven capsule implosion experiments will be a quantitative evaluation of the implosion dynamics. Since these experiments will encounter extreme conditions of pressure and temperature, establishing robust, sensitive diagnostics will be difficult. Radiochemical signatures provide insight into material mixing and laser drive asymmetry and complement x-ray and other nuclear diagnostics, since the relevant nuclear reactions sample core implosion conditions directly. Simulations of an ignition double shell target indicate that several experimentally accessible isomeric ratios will be suitable monitors of mix. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2990022] C1 [Colvin, Jeffrey; Cerjan, Charles; Hoffman, Robert; Stoyer, Mark; Amendt, Peter] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Colvin, J (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; LDRD [05-SI-005] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. W-7405-Eng-48 and in part under Contract No. DE-AC52-07NA27344 with support received from LDRD Project #05-SI-005. NR 15 TC 1 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102704 DI 10.1063/1.2990022 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100036 ER PT J AU Crocker, NA Fredrickson, ED Gorelenkov, NN Kramer, GJ Darrow, DS Heidbrink, WW Kubota, S Levinton, FM Yuh, H Menard, JE LeBlanc, BP Bell, RE AF Crocker, N. A. Fredrickson, E. D. Gorelenkov, N. N. Kramer, G. J. Darrow, D. S. Heidbrink, W. W. Kubota, S. Levinton, F. M. Yuh, H. Menard, J. E. LeBlanc, B. P. Bell, R. E. TI Alfven cascade modes at high beta in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID AXISYMMETRICAL TOROIDAL PLASMAS; ADVANCED TOKAMAK; ENERGETIC IONS; KINETIC-THEORY; DIII-D; EIGENMODES; NSTX; EXCITATION; STABILITY; PHYSICS AB Alfven cascade (AC) modes are observed in the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] reversed shear plasmas over a wide range (up to similar to 25% on axis, or similar to 11% at minimum q) of beta ratio of kinetic pressure to magnetic pressure). At low beta, the AC mode spectrum shows characteristics similar to conventional tokamaks. At higher beta, distinct beta and del beta effects are observed in the spectrum, including a significant reduction in the relative size of the frequency sweep and a toroidal mode number dependence in the minimum mode frequency. AC mode structure is obtained using reflectometry. Fast-ion loss associated with AC mode activity is observed. AC mode polarization at the plasma edge is consistent with expectation. Magnetohydrodynamic (MHD) spectroscopy is shown to be usable to determine q(min) at both low beta and high beta. Observed AC mode structure and frequency are found to be consistent with calculations for the same plasma conditions and geometry using the linear, ideal MHD hybrid kinetic code NOVA-K [C. Z. Cheng, Phys. Rep. 211, 1 (1992)]. (C) 2008 American Institute of Physics. C1 [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; Darrow, D. S.; Menard, J. E.; LeBlanc, B. P.; Bell, R. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Levinton, F. M.; Yuh, H.] Nova Photon, Princeton, NJ 08543 USA. RP Crocker, NA (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. FU U.S. DOE [DE-FG03-99ER54527, DE-AC02-76CH03073] FX This work is supported by U.S. DOE Contract Nos. DE-FG03-99ER54527 and DE-AC02-76CH03073. NR 55 TC 16 Z9 16 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102502 DI 10.1063/1.2993182 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100026 ER PT J AU D'Ipoolito, DA Myra, JR Jaeger, EF Berry, LA AF D'Ipoolito, D. A. Myra, J. R. Jaeger, E. F. Berry, L. A. TI Far-field sheaths due to fast waves incident on material boundaries SO PHYSICS OF PLASMAS LA English DT Article ID ION-CYCLOTRON RANGE; IMPURITY PRODUCTION; PLASMA RESONANCE; ICRF ANTENNAS; JET; INSTABILITY; FREQUENCIES; TOKAMAK; SCREENS; DRIVEN AB The problem of "far-field" sheath formation is studied with a new quantitative one-dimensional model. These radio-frequency (rf) sheaths occur when unabsorbed fast waves in the ion cyclotron range of frequencies are incident on a conducting surface not aligned with a flux surface. Use of a nonlinear sheath boundary condition gives self-consistent solutions for the wave fields and sheath characteristics, and it introduces a sheath-plasma-wave resonance which can enhance the sheath potential. The model is used to compute the parametric dependence of the far-field sheath potential. Its application to post-process the rf fields computed by a full-wave code for a typical D (H) minority heating scenario is also discussed. This work shows that two-dimensional effects (included heuristically) are essential in determining whether far-field sheath potentials are strong enough to cause significant edge interactions, such as impurity generation and reduced heating efficiency. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2990025] C1 [D'Ipoolito, D. A.; Myra, J. R.] Lodestar Res Corp, Boulder, CO 80301 USA. [Jaeger, E. F.; Berry, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP D'Ipoolito, DA (reprint author), Lodestar Res Corp, 2400 Cent Ave, Boulder, CO 80301 USA. EM dippolito@lodestar.com FU U. S. Department of Energy (DOE) [DE-FG02-97ER54392, DE-FC02-05ER54823, DE-AC-5-00OR22725] FX This work was carried out as part of the Scientific Discovery through Advanced Computing (SciDAC) project in radiofrequency wave-plasma interactions. We would like to thank the rf SciDAC team for their encouragement and advice on this project. One of the authors (D.D.) thanks T. Hellsten for a discussion of spectral broadening in low-single-pass wave propagation.; This work was supported by the U. S. Department of Energy (DOE) under DOE Grant Nos. DE-FG02-97ER54392, DE-FC02-05ER54823, and DE-AC-5-00OR22725; however, this support does not constitute an endorsement by the DOE of the views expressed herein. NR 34 TC 1 Z9 1 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102501 DI 10.1063/1.2990025 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100025 ER PT J AU Dorfman, S Daughton, W Roytershteyn, V Ji, H Ren, Y Yamada, M AF Dorfman, S. Daughton, W. Roytershteyn, V. Ji, H. Ren, Y. Yamada, M. TI Two-dimensional fully kinetic simulations of driven magnetic reconnection with boundary conditions relevant to the Magnetic Reconnection Experiment SO PHYSICS OF PLASMAS LA English DT Article ID NUMERICAL-SIMULATION; LABORATORY PLASMA; LINE; INSTABILITY; HYBRID AB Two-dimensional fully kinetic simulations are performed using global boundary conditions relevant to model the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys Plasmas 4, 1936 (1997)]. The geometry is scaled in terms of the ion kinetic scales in the experiment, and a reconnection layer is created by reducing the toroidal current in the flux cores in a manner similar to the actual experiment. The ion-scale features in these kinetic simulations are in remarkable agreement with those observed in MRX, including the reconnection inflow rate and quadrupole field structure. In contrast, there are significant discrepancies in the simulated structure of the electron layer that remain unexplained. In particular, the measured thickness of the electron layers is 3-5 times thicker in MRX than in the kinetic simulations. The layer length is highly sensitive to downstream boundary conditions as well as the time over which the simulation is driven. However, for a fixed set of chosen boundary conditions, an extrapolation of the scaling with the ion to electron mass ratio implies that at realistic mass ratio both the length and width will be too small compared to the experiment. This discrepancy implies that the basic electron layer physics may differ significantly between MRX and the two-dimensional, collisionless simulations. The two leading possibilities to explain the discrepancy are weak Coulomb collisions and three-dimensional effects that are present in the experiment but not included in the simulation model. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2991361] C1 [Dorfman, S.; Ji, H.; Yamada, M.] Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasma, Princeton, NJ 08543 USA. [Daughton, W.; Roytershteyn, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ren, Y.] Univ Wisconsin, Ctr Magnet Self Org Lab & Astrophys Plasma, Madison, WI 53706 USA. RP Dorfman, S (reprint author), Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasma, POB 451, Princeton, NJ 08543 USA. RI Yamada, Masaaki/D-7824-2015; Daughton, William/L-9661-2013; OI Yamada, Masaaki/0000-0003-4996-1649; Roytershteyn, Vadim/0000-0003-1745-7587 FU National Science Foundation [0447423]; Department of Energy [DE-FG02-06ER54893]; NASA [NNG05GJ25G]; DOE Fusion Energy Sciences Fellowship; NDSEG Fellowship Program FX This material is based on work supported by the National Science Foundation under Grant No. 0447423, by the Department of Energy Grant No. DE-FG02-06ER54893, and by NASA Grant No. NNG05GJ25G. S. D. was supported by a DOE Fusion Energy Sciences Fellowship and the NDSEG Fellowship Program. Simulations were partially performed at Los Alamos National Laboratory. NR 38 TC 20 Z9 20 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102107 DI 10.1063/1.2991361 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100008 ER PT J AU Gustafson, K del-Castillo-Negrete, D Dorland, W AF Gustafson, K. del-Castillo-Negrete, D. Dorland, W. TI Finite Larmor radius effects on nondiffusive tracer transport in a zonal flow SO PHYSICS OF PLASMAS LA English DT Article ID ANOMALOUS DIFFUSION; LEVY FLIGHTS; RANDOM-WALKS; STOCHASTIC-PROCESS; PLASMA TURBULENCE; CONVERGENCE; DYNAMICS; KINETICS; SHEAR; FIELD AB Finite Larmor radius (FLR) effects on nondiffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves from the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the E x B velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non-Gaussian probability distribution functions (PDFs) of particle displacements, with Levy flights in one direction only. For k(perpendicular to)rho(th)=0, where k(perpendicular to) is the characteristic wavelength of the flow and rho(th) is the thermal Larmor radius, a transition is observed in the scaling of the second moment of particle displacements: sigma(2) similar to t(gamma). The transition separates ballistic motion (gamma approximate to 2) at intermediate times from superdiffusion (gamma=1.6) at larger times. This change of scaling is accompanied by the transition of the PDF of particle displacements from algebraic decay to exponential decay. However, FLR effects seem to eliminate this transition. In all cases, the Lagrangian velocity autocorrelation function exhibits nondiffusive algebraic decay, C similar to tau(-kappa), with kappa=2-gamma to a good approximation. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of k(perpendicular to)rho(th). The shape and spatiotemporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral (alpha=beta), asymmetric, effective fractional diffusion model, where alpha and beta are the orders of the spatial and temporal fractional derivatives, respectively. (C) 2008 American Institute of Physics. [DOI:10.1063/1.3003072] C1 [Gustafson, K.; Dorland, W.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [del-Castillo-Negrete, D.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Gustafson, K (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM kgustaf@umd.edu RI Dorland, William/B-4403-2009; OI Dorland, William/0000-0003-2915-724X; Gustafson, Kyle/0000-0002-1903-9015; del-Castillo-Negrete, Diego/0000-0001-7183-801X FU Fannie and John Hertz Foundation; Oak Ridge National Laboratory [DE-AC05-00OR22725]; DOE Center for Multiscale Plasma Dynamics [DE-FC02-04ER54784] FX Thanks to T. M. Antonsen, Jr., S. Brunner, P. Ricci, M. Barnes, and I. Broemstrup for helpful discussions.; This work is supported by the Fannie and John Hertz Foundation. Additional support comes from the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 and from the DOE Center for Multiscale Plasma Dynamics, Grant No. DE-FC02-04ER54784. NR 45 TC 19 Z9 19 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102309 DI 10.1063/1.3003072 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100023 ER PT J AU In, Y Kim, J Kim, JS Garofalo, AM Jackson, GL La Haye, RJ Strait, EJ Okabayashi, M Reimerdes, H AF In, Y. Kim, J. Kim, J. S. Garofalo, A. M. Jackson, G. L. La Haye, R. J. Strait, E. J. Okabayashi, M. Reimerdes, H. TI Influences of multiple low-n modes on n=1 resistive wall mode identification and feedback control SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D; PLASMAS; TOKAMAK; COILS AB It is well known in theory that even after the n =1 resistive wall mode (RWM) is suppressed, the other low-n modes, such as n =2 or 3, can appear sequentially, as beta increases. In recent DIII-D experiments [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], we found such an example that supports the theoretical prediction: while the n =1 mode was suppressed, an n =3 mode grew dominant, leading to a beta collapse. The n = 1 RWM suppression was likely due to a combination of rotational stabilization and n = 1 RWM feedback. The multiple RWM identification was performed using an expanded matched filter, where n = 1 and n = 3 RWM basis vectors are simultaneously considered. Taking advantage of the expanded matched filter, we found that an n = 3 mode following an edge-localized-mode burst grew almost linearly for several milliseconds without being hindered. This n = 3 mode appeared responsible for the beta collapse (down to the n = 3 no-wall limit), as well as for a drop in toroidal rotation. A preliminary analysis suggests that the identity of the n= 3 mode could be related to the n = 3 RWM (possibly the first observation in tokamak experiments), while the impact of the n = 3 mode was not as destructive as that of n = 1 RWM. A numerical postprocessing of Mirnov probes showed that the n = 2 mode was also unstable, consistent with the theoretical prediction. In practice, since the presence of an n = 3 mode can interfere with the existing n = 1 RWM identification, multiple low-n mode identification is deemed essential not only to detect n > 1 mode, but also to provide accurate n = 1 RWM identification and feedback control. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2999526] C1 [In, Y.; Kim, J.; Kim, J. S.] FAR TECH Inc, San Diego, CA 92121 USA. [Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP In, Y (reprint author), FAR TECH Inc, 3550 Gen Atom Court, San Diego, CA 92121 USA. FU U.S. Department of Energy SBIR [DE-FG02-06ER84442, DE-FC0204ER54698, DE-AC02-76CH03073, DE-FG0289ER53297] FX This work was supported by the U.S. Department of Energy SBIR under Contract Nos. DE-FG02-06ER84442, DE-FC0204ER54698, DE-AC02-76CH03073, and DE-FG0289ER53297. We would like to thank all the staff in the DIII-D Team for their successful operations of the machine. NR 22 TC 4 Z9 4 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102506 DI 10.1063/1.2999526 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100030 ER PT J AU Kaganovich, ID Startsev, EA Sefkow, AB Davidson, RC AF Kaganovich, I. D. Startsev, E. A. Sefkow, A. B. Davidson, R. C. TI Controlling charge and current neutralization of an ion beam pulse in a background plasma by application of a solenoidal magnetic field: Weak magnetic field limit SO PHYSICS OF PLASMAS LA English DT Article ID REACTOR SIZED CHAMBER; ELECTRON-BEAM; FUSION CHAMBER; TRANSPORT; PROPAGATION; LENS; SIMULATIONS; GENERATION; INJECTION; IGNITION AB Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self-electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when omega(ce) greater than or similar to omega(pe)beta(b), where omega(ce)= eB/m(e)c is the electron gyrofrequency, omega(pe) is the electron plasma frequency, and beta b=V-b/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100 G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000131] C1 [Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kaganovich, ID (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy Office of Fusion Energy Sciences FX We thank Mikhail Dorf, Bryan Oliver, Dale Welch, JeanLuc Vay, and Alex Friedman for fruitful discussions. This research was supported by the U.S. Department of Energy Office of Fusion Energy Sciences and the Office of High Energy Physics. NR 74 TC 7 Z9 7 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 103108 DI 10.1063/1.3000131 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100050 ER PT J AU Kim, EH Cairns, IH Robinson, PA AF Kim, Eun-Hwa Cairns, Iver H. Robinson, Peter A. TI Mode conversion of Langmuir to electromagnetic waves at magnetic field-aligned density inhomogeneities: Simulations, theory, and applications to the solar wind and the corona SO PHYSICS OF PLASMAS LA English DT Article ID EARTHS BOW SHOCK; ANALYTIC EXPRESSIONS; LINEAR CONVERSION; PLASMA; FREQUENCY; RADIATION; PROFILE; BURSTS; POLARIZATION; PROPAGATION AB Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B(0) for a range of incident Langmuir wavevectors. Our results include: (1) both o- and x-mode waves are produced for Omega=(omega L/c)(1/3)(omega(c)/omega) <= 1, contrary to previous ideas. Only the o mode is produced for Omega >= 1.5. Here omega(c) is the (angular) electron cyclotron frequency, omega is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light. A WKB-style analysis accounts semiquantitatively for the production and relative conversion efficiencies of the o and x modes in the simulations. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Omega increases. (4) As Omega increases the total electromagnetic field changes from linear to circular polarization, with the o- and x-mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Omega increases while the o- mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%-70%. They depend strongly on the wave frequency when close to the background plasma frequency but weakly on the electron temperature T(0) and beta= T(0)/mc(2). The corresponding energy conversion efficiencies are favored since they allow separation into o and x modes, use directly measured experimental quantities, and generalize easily for wave packets. The total energy conversion efficiency differs from the power conversion efficiency by the ratio of the group speeds for each mode, is less than 10% for the value of beta=0.01 simulated, and decreases linearly with beta. Since beta approximate to 10(-5) - 10(-4) in the solar wind and corona, this beta dependence is important in applications. (7) The interference effect and the disappearance of the x mode at Omega >= 1 can be accounted for semiquantitatively using a WKB-type analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x-mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion under these conditions might explain the weak total circular polarizations of type II and III solar radio bursts. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2994719] C1 [Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RP Kim, EH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ehkim@pppl.gov OI Cairns, Iver/0000-0001-6978-9765 FU University of Sydney by the Australian Research Council; Princeton Plasma Physics Laboratory by NASA [NNH04AB23I, NNH04AA73I, NNH04AA16I, NNG07EK69I, NNH07AF37I]; NSF [ATM0411392]; DOE [DE-AC02-76CH03073] FX This research was supported at the University of Sydney by the Australian Research Council and at Princeton Plasma Physics Laboratory by NASA Grant Nos. NNH04AB23I, NNH04AA73I, NNH04AA16I, NNG07EK69I, and NNH07AF37I, NSF Grant No. ATM0411392, and DOE Contract No. DE-AC02-76CH03073. NR 37 TC 29 Z9 29 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102110 DI 10.1063/1.2994719 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100011 ER PT J AU Saito, S Gary, SP Li, H Narita, Y AF Saito, Shinji Gary, S. Peter Li, Hui Narita, Yasuhito TI Whistler turbulence: Particle-in-cell simulations SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE; SOLAR-WIND TURBULENCE; MAGNETIC-FIELD; DISSIPATION RANGE; ENERGY CASCADE; FLUCTUATIONS; ANISOTROPY; WAVES; SPECTRA; AU AB Two-dimensional electromagnetic particle-in-cell simulations in a magnetized, homogeneous, collisionless electron-proton plasma demonstrate the forward cascade of whistler turbulence. The simulations represent decaying turbulence, in which an initial, narrowband spectrum of fluctuations at wavenumbers kc/omega(e) similar or equal to 0.1 cascades toward increased damping at kc/omega(e) similar or equal to 1.0, where c/omega(e) is the electron inertial length. The turbulence displays magnetic energy spectra that are relatively steep functions of wavenumber and are anisotropic with more energy in directions relatively perpendicular to the background magnetic field B(o)=(x) over capB(o) than at the same wavenumbers parallel to B(o). In the weak turbulence regime, the primary new results of the simulations are as follows: (1) Magnetic spectra of the cascading fluctuations become more anisotropic with increasing fluctuation energy; (2) the wavevector dependence of the three magnetic energy ratios, vertical bar delta B(j)vertical bar(2)/vertical bar delta B vertical bar(2) with j = x, y, z, show good agreement with linear dispersion theory for whistler fluctuations; (3) the magnetic compressibility summed over the cascading modes satisfies 0.3 <= vertical bar delta B(x)vertical bar(2)/vertical bar delta B vertical bar(2) <= 0.6; and (4) the turbulence heats electrons in directions both parallel and perpendicular to Bo, with stronger heating in the parallel direction. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2997339] C1 [Saito, Shinji; Gary, S. Peter; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Narita, Yasuhito] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestrial Phys, D-38106 Braunschweig, Germany. RP Saito, S (reprint author), Nagoya Univ, STE Lab, Nagoya, Aichi 4648601, Japan. EM Saito@stelab.nagoya-u.ac.jp; pgary@lanl.gov; hli@lanl.gov; y.narita@tu-bs.de FU Institute of Geophysics and Planetary Physics at Los Alamos; Magnetic Turbulence and Kinetic Dissipation Project; Laboratory Directed Research and Development Program at Los Alamos, by Department of Energy [LA06-GPRB-NEM01]; National Aeronautics and Space Administration FX The authors acknowledge useful exchanges with Joe Borovsky and very helpful suggestions from the referee. This work was performed under the auspices of the U. S. Department of Energy (DOE). It was supported by the Institute of Geophysics and Planetary Physics at Los Alamos, by the Magnetic Turbulence and Kinetic Dissipation Project and the DREAM Project of the Laboratory Directed Research and Development Program at Los Alamos, by Department of Energy Project No. LA06-GPRB-NEM01, and by the Solar and Heliospheric Physics SR&T Program of the National Aeronautics and Space Administration. NR 32 TC 83 Z9 84 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102305 DI 10.1063/1.2997339 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100019 ER PT J AU Strozzi, DJ Williams, EA Hinkel, DE Froula, DH London, RA Callahan, DA AF Strozzi, D. J. Williams, E. A. Hinkel, D. E. Froula, D. H. London, R. A. Callahan, D. A. TI Ray-based calculations of backscatter in laser fusion targets SO PHYSICS OF PLASMAS LA English DT Article ID STIMULATED BRILLOUIN-SCATTERING; NATIONAL IGNITION FACILITY; INHOMOGENEOUS-PLASMA; EMISSION; SPECTRUM; NOISE; BEAMS AB A one-dimensional, steady-state model for Brillouin and Raman backscatter from an inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as "plane-wave" simulations with the paraxial propagation code PF3D. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] show that laser speckles greatly enhance the reflectivity over the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this design. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2992522] C1 [Strozzi, D. J.; Williams, E. A.; Hinkel, D. E.; Froula, D. H.; London, R. A.; Callahan, D. A.] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA. RP Strozzi, DJ (reprint author), Lawrence Livermore Natl Lab, AX Div, 7000 E Ave, Livermore, CA 94550 USA. EM strozzi2@llnl.gov OI Strozzi, David/0000-0001-8814-3791 FU Department of Energy [DE-AC52-07NA27344] FX We gratefully recognize A. B. Langdon, R. L. Berger, C. H. Still, and L. Divol for helpful discussions and support. This work was supported by U. S. Department of Energy Contract No. DE-AC52-07NA27344. NR 41 TC 23 Z9 26 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102703 DI 10.1063/1.2992522 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100035 ER PT J AU Ticos, CM Wang, ZH Wurden, GA Kline, JL Montgomery, DS AF Ticos, C. M. Wang, Zhehui Wurden, G. A. Kline, J. L. Montgomery, D. S. TI Plasma jet acceleration of dust particles to hypervelocities SO PHYSICS OF PLASMAS LA English DT Article ID TOKAMAK EDGE PLASMAS; ION DRAG FORCE; FUSION DEVICES; CARBON DUST; INJECTION; PHYSICS; DISCHARGE; DYNAMICS; FLOW; TRANSPORT AB A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10(22) m(-3) or higher, and low temperature similar to 1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2993229] C1 [Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ticos, C. M.] Natl Inst Laser Plasma & Radiat Phys, Bucharest 077125, Romania. RP Ticos, CM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Ticos, Catalin/F-1677-2011; Wurden, Glen/A-1921-2017; OI Wurden, Glen/0000-0003-2991-1484; Kline, John/0000-0002-2271-9919 FU U. S. Department of Energy [DE-AC52-06NA25396]; Office of Science; Romanian National University Research Council (CNCSIS) [RP-10] FX The authors wish to acknowledge illuminating discussions with Professor P. K. Shukla.; This work was supported in part by the U. S. Department of Energy, under Contract No. DE-AC52-06NA25396, through the Office of Science, and by the Romanian National University Research Council (CNCSIS) under Contract No. RP-10, within the PNCDI2 program. NR 63 TC 10 Z9 11 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 103701 DI 10.1063/1.2993229 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100057 ER PT J AU Wan, WG Lapenta, G AF Wan, Weigang Lapenta, Giovanni TI Evolutions of non-steady-state magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID COLLISIONLESS DRIVEN RECONNECTION; CHALLENGE; SYSTEM AB The full evolutions of collisionless non-steady-state magnetic reconnection are studied with full kinetic particle-in-cell simulations. There are different stages of reconnection: the onset or early growing stage when the out-of-plane electric field (E(y)) structure is a monopole at the X-point, the bipolar stage when the Ey structure is bipolar and the outer electron diffusion region (EDR) is being elongated over time, and the possible final steady-state stage when E(y) is uniform in the reconnection plane. We find the change of reconnection rate is not empowered or dependent on the length of the EDR. During the early growing stage, the EDR is elongated while the reconnection rate is growing. During the later stage, the reconnection rate may significantly decrease but the length of the inner EDR is largely stable. The results indicate that reconnection is not controlled by the downstream physics, but rather by the availability of plasma inflows from upstream. The physical mechanism of the EDR elongation is studied. The Hall current induced by the quadrupole magnetic field (By) is discovered to play an important role in this process. The condition of forming an extended electron super-Alfvenic outflow jet structure in nature is discussed. The jet structure could be elongated during the bipolar stage, and remains stable during steady state. The sufficiency of the electron inflow is crucial for the elongation. Open boundary conditions are applied in the outflow direction. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2991406] C1 [Wan, Weigang] Los Alamos Natl Lab, Div Theoret, Plasma Theory Grp, Los Alamos, NM 87545 USA. [Lapenta, Giovanni] Katholieke Univ Leuven, Dept Wiskunde, Ctr Plasma Astrofys, B-3001 Louvain, Belgium. RP Wan, WG (reprint author), Los Alamos Natl Lab, Div Theoret, Plasma Theory Grp, POB 1663, Los Alamos, NM 87545 USA. OI Lapenta, Giovanni/0000-0002-3123-4024 FU Los Alamos Laboratory Directed Research and Development (LDRD); Los Alamos National Security LLC [DE-AC52-06NA25396] FX This work was funded by the Los Alamos Laboratory Directed Research and Development (LDRD) program and was performed under the auspices of the NNSA of the DOE by the Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 35 TC 12 Z9 12 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102302 DI 10.1063/1.2991406 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100016 ER PT J AU Wang, ZH Si, JH Liu, W Li, H AF Wang, Zhehui Si, Jiahe Liu, Wei Li, Hui TI Equilibrium and magnetic properties of a rotating plasma annulus SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETOROTATIONAL INSTABILITY; COUETTE-FLOW; STABILITY; DISKS AB Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 10(19) m(-3), a temperature on the order of 10 eV, and a magnetic field on the order of 100 G. A laboratory plasma annulus experiment with a dimension of similar to 1 m, and rotation at similar to 0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is similar to 1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, rho U(theta)(2)/r = d(p+B(z)(2)/2 mu(0))/dr = K(0), with K(0) beinga nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-beta plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (J(r)) is produced through biasing the center rod at a negative electric potential relative to the outer wall. J(r) x B(z) torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (B(theta)) is found to be comparable with the externally applied vacuum magnetic field Bz, and mainly caused by the electric current flowing in the center cylinder; thus, B(theta)alpha r(-1). Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations. (C) 2008 American Institute of Physics. [DOI:10.1063/1.3002395] C1 [Wang, Zhehui; Si, Jiahe; Liu, Wei; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zwang@lanl.gov OI Liu, Wei/0000-0003-0935-3999 NR 31 TC 10 Z9 10 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2008 VL 15 IS 10 AR 102109 DI 10.1063/1.3002395 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 367SP UT WOS:000260573100010 ER PT J AU Crease, RP AF Crease, Robert P. TI Life at the frontier SO PHYSICS WORLD LA English DT Article C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD OCT PY 2008 VL 21 IS 10 BP 45 EP 48 PG 4 WC Physics, Multidisciplinary SC Physics GA 374DQ UT WOS:000261023200018 ER PT J AU Gorostiza, P Isacoff, EY AF Gorostiza, Pau Isacoff, Ehud Y. TI Nanoengineering Ion Channels for Optical Control SO PHYSIOLOGY LA English DT Article ID IONOTROPIC GLUTAMATE-RECEPTOR; ACETYLCHOLINE-RECEPTOR; TORPEDO-CALIFORNICA; BINDING-SITE; CRYSTAL-STRUCTURES; BOUND AGONISTS; REMOTE-CONTROL; K+ CHANNEL; ACTIVATION; MECHANISMS AB Chemical modification with photoisomerizable tethered ligands endows proteins with sensitivity to light. These optically actuated proteins are revolutionizing research in biology by making it possible to manipulate biological processes noninvasively and with unprecedented spatiotemporal resolution. C1 [Gorostiza, Pau] ICREA, IBEC, Barcelona, Spain. [Gorostiza, Pau] CIBER BBN, Barcelona, Spain. [Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Lawrence Berkeley Lab, Div Mat Biosci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Div Phys Biosci, Berkeley, CA 94720 USA. RP Gorostiza, P (reprint author), ICREA, IBEC, Parc Cient Barcelona, Barcelona, Spain. EM ehud@berkeley.edu RI Gorostiza, Pau/Q-2544-2015 OI Gorostiza, Pau/0000-0002-7268-5577 FU Human Frontier Science Program (HFSP); European Research Council (ERC); National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function [5PN2EY018241] FX P. Gorostiza is supported by the Human Frontier Science Program (HFSP) through a Career Development Award, and by the European Research Council (ERC) through a Starting Grant. This work was supported by the National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (5PN2EY018241). NR 45 TC 21 Z9 21 U1 1 U2 5 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 1548-9213 J9 PHYSIOLOGY JI Physiology PD OCT PY 2008 VL 23 IS 5 BP 238 EP 247 DI 10.1152/physiol.00018.2008 PG 10 WC Physiology SC Physiology GA 361HE UT WOS:000260117700002 PM 18927200 ER PT J AU Zeng, WQ Keegstra, K AF Zeng, Weiqing Keegstra, Kenneth TI AtCSLD2 is an integral Golgi membrane protein with its N-terminus facing the cytosol SO PLANTA LA English DT Article DE Arabidopsis; AtCSLD2; cell wall; Golgi; localization; topology ID UDP-GLUCOSE TRANSPORTER; CELLULOSE BIOSYNTHESIS; ENDOPLASMIC-RETICULUM; XYLOGLUCAN BIOSYNTHESIS; ARABIDOPSIS ENCODES; MIXED-LINKAGE; GDP-FUCOSE; SYNTHASE; CELLS; GENE AB Cellulose synthase-like proteins in the D family share high levels of sequence identity with the cellulose synthase proteins and also contain the processive beta-glycosyltransferase motifs conserved among all members of the cellulose synthase superfamily. Consequently, it has been hypothesized that members of the D family function as either cellulose synthases or glycan synthases involved in the formation of matrix polysaccharides. As a prelude to understanding the function of proteins in the D family, we sought to determine where they are located in the cell. A polyclonal antibody against a peptide located at the N-terminus of the Arabidopsis D2 cellulose synthase-like protein was generated and purified. After resolving Golgi vesicles from plasma membranes using endomembrane purification techniques including two-phase partitioning and sucrose density gradient centrifugation, we used antibodies against known proteins and marker enzyme assays to characterize the various membrane preparations. The Arabidopsis cellulose synthase-like D2 protein was found mostly in a fraction that was enriched with Golgi membranes. In addition, versions of the Arabidopsis cellulose synthase-like D2 proteins tagged with a green fluorescent protein was observed to co-localize with a DsRed-tagged Golgi marker protein, the rat alpha-2,6-sialyltransferase. Therefore, we postulate that the majority of Arabidopsis cellulose synthase-like D proteins, under our experimental conditions, are likely located at the Golgi membranes. Furthermore, protease digestion of Golgi-rich vesicles revealed almost complete loss of reaction with the antibodies, even without detergent treatment of the Golgi vesicles. Therefore, the N-terminus of the Arabidopsis cellulose synthase-like D2 protein likely faces the cytosol. Combining this observation with the transmembrane domain predictions, we postulate that the large hydrophilic domain of this protein also faces the cytosol. C1 [Zeng, Weiqing; Keegstra, Kenneth] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Zeng, Weiqing] Michigan State Univ, Cell & Mol Biol Program, E Lansing, MI 48824 USA. [Keegstra, Kenneth] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Keegstra, Kenneth] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Keegstra, K (reprint author), Michigan State Univ, DOE Plant Res Lab, Room 110,Plant Biol Bldg, E Lansing, MI 48824 USA. EM zengweiq@msu.edu; keegstra@msu.edu FU US National Science Foundation; US Department of Energy FX This work was supported in part by a grant from the Plant Genome Program at the US National Science Foundation and in part by a grant from the Biosciences Program at the US Department of Energy. The authors thank Ahmed Faik for the gift of an antibody directed against AtXT1, Teruko Konishi for technical help during the development of the sucrose step gradient protocol, Shuocheng Zhang for help with transient expression in onion epidermal cells, Melinda K Frame for help with confocal microscopy, and Karen Bird for editorial assistance during the preparation of the manuscript. NR 61 TC 16 Z9 16 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD OCT PY 2008 VL 228 IS 5 BP 823 EP 838 DI 10.1007/s00425-008-0785-2 PG 16 WC Plant Sciences SC Plant Sciences GA 345PP UT WOS:000259009000011 PM 18642024 ER PT J AU Hollmann, EM Krstic, PS Doerner, RP Nishijima, D Pigarov, AY Reinhold, CO Stuart, SJ AF Hollmann, E. M. Krstic, P. S. Doerner, R. P. Nishijima, D. Pigarov, A. Yu Reinhold, C. O. Stuart, S. J. TI Measurement and modeling of hydrogen molecule ro-vibrational accommodation on E-294 polycrystalline graphite SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID H-2-MOLECULES; EDGE; DIAGNOSTICS; RELAXATION; COLLISIONS; PLASMAS; SURFACE; PISCES AB The loss rate of H(2) and D(2) internal ro-vibrational energy in collisions with an E-294 polycrystalline graphite surface is measured in a plasma-free environment. Accommodation coefficients are found to be approximately 0.01-0.2 for vibrational energy and somewhat larger, 0.05-0.2 for rotational energy, with a slight increasing trend seen with increasing surface temperature. Molecular dynamics simulations of the experiment give a total ro-vibrational accommodation rate of order 0.1, which is consistent with the data at higher surface temperatures. C1 [Hollmann, E. M.; Doerner, R. P.; Nishijima, D.; Pigarov, A. Yu] Univ Calif San Diego, Energy Res Ctr, San Diego, CA 92093 USA. [Krstic, P. S.; Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Stuart, S. J.] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Hollmann, EM (reprint author), Univ Calif San Diego, Energy Res Ctr, San Diego, CA 92093 USA. RI Stuart, Steven/H-1111-2012; OI Reinhold, Carlos/0000-0003-0100-4962 FU US DOE [DE-FG02-07ER54912, DE-FG03-00ER54568, DE-AC05-00OR22725]; UT-Battelle; LLC; SciDAC; INCITE; DOE [DEFG0201ER45889]; NSF [CHE0239448]; DoD [47539-CHMUR] FX The technical support of L Chousal and T Lynch is gratefully acknowledged. This work was supported by US DOE Grants No DE-FG02-07ER54912 and DE-FG03-00ER54568, by US DOE under contract No DE-AC05-00OR22725 with UT-Battelle, LLC, by SciDAC and INCITE projects, by DOE grant No DEFG0201ER45889, and NSF grant No CHE0239448, and by DoD grant No 47539-CHMUR. NR 16 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2008 VL 50 IS 10 AR 102001 DI 10.1088/0741-3335/50/10/102001 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 349BW UT WOS:000259254800001 ER PT J AU Roth, J Tsitrone, E Loarer, T Philipps, V Brezinsek, S Loarte, A Counsell, GF Doerner, RP Schmid, K Ogorodnikova, OV Causey, RA AF Roth, Joachim Tsitrone, Emmanuelle Loarer, Thierry Philipps, Volker Brezinsek, Sebastijan Loarte, Alberto Counsell, Glenn F. Doerner, Russell P. Schmid, Klaus Ogorodnikova, Olga V. Causey, Rion A. TI Tritium inventory in ITER plasma-facing materials and tritium removal procedures SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Review ID HYDROGEN ISOTOPE RETENTION; CARBON CHEMICAL EROSION; CO-DEPOSITED LAYERS; FUSION DEVICES; DEUTERIUM RETENTION; ASDEX-UPGRADE; IMPLANTED DEUTERIUM; WALL INTERACTION; FLUX DEPENDENCE; DIVERTOR TILES AB Interactions between the plasma and the vessel walls constitute a major engineering problem for next step fusion devices, such as ITER, determining the choice of the plasma-facing materials. A prominent issue in this choice is the tritium inventory build-up in the vessel, which must be limited for safety reasons. The initial material selection, i.e. beryllium (Be) on the main vessel walls, tungsten (W) on the divertor upper baffle and dome, and carbon fibre composite around the strike points on the divertor plates, results both from the attempt to reduce the tritium inventory and to optimize the lifetime of the plasma-facing components. In the framework of the EU Task Force on Plasma-Wall Interaction (PWI TF), the many physics aspects governing the tritium inventory are brought together. Together with supporting information from international experts represented by the ITPA SOL/DIV section, this paper describes the present status of knowledge of the in-vessel tritium inventory build-up. Firstly, the main results from present fusion devices in this field are briefly reviewed. Then, the processes involved are discussed: implantation, trapping and diffusion in plasma-facing materials are considered as well as surface erosion and co-deposition of tritium with eroded material. The intermixing of the different materials and its influence on hydrogen retention and co-deposition is a major source of uncertainty on present estimates and is also addressed. Based on the previous considerations, estimates for the tritium inventory build-up are given for the initial choice of ITER materials, as well as for alternative options. Present estimates indicate a build-up of the tritium inventory to the administrative limit within a few hundred nominal full power D: T discharges, co-deposition with carbon being the dominant process. Therefore, tritium removal methods are also an active area of research within the EU PWI TF, and are discussed. An integrated operational scheme to slow the rate of tritium accumulation is presented, which includes plasma operation as well as conditioning procedures. C1 [Roth, Joachim; Schmid, Klaus; Ogorodnikova, Olga V.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Tsitrone, Emmanuelle; Loarer, Thierry] CEA Cadarache, DMS, EURATOM Assoc CEA, DRFC, F-13108 St Paul Les Durance, France. [Philipps, Volker; Brezinsek, Sebastijan] Forschungszentrum Julich, Inst Plasmaphys, D-52425 Julich, Germany. [Loarte, Alberto] EFDA, Close Support Unit Garching, D-85748 Garching, Germany. [Counsell, Glenn F.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Doerner, Russell P.] Univ Calif San Diego, Fus Energy Res Program, La Jolla, CA 92093 USA. [Causey, Rion A.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Roth, J (reprint author), EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. RI Brezinsek, Sebastijan/B-2796-2017 OI Brezinsek, Sebastijan/0000-0002-7213-3326 NR 97 TC 150 Z9 152 U1 10 U2 72 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2008 VL 50 IS 10 AR 103001 DI 10.1088/0741-3335/50/10/103001 PG 20 WC Physics, Fluids & Plasmas SC Physics GA 349BW UT WOS:000259254800002 ER PT J AU Simakov, AN Catto, PJ LaBombard, B Glasser, AH AF Simakov, Andrei N. Catto, Peter J. LaBombard, B. Glasser, Alan H. TI Magnetic topology effects on Alcator C-Mod scrape-off layer flow SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID PLASMA; TOKAMAK; CONFINEMENT; TRANSPORT; JT-60U; SOL AB Recent interest in the experimental study of tokamak plasma flow for different magnetic field geometries calls for theoretical understanding of the effects of tokamak magnetic topology changes on the flow. The consequences of total magnetic field reversal and/or X-point reversal on divergence-free plasma flow within magnetic flux surfaces are considered and the results are applied to interpret recent Alcator C-Mod scrape-off layer flow measurements. C1 [Simakov, Andrei N.; Glasser, Alan H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Catto, Peter J.; LaBombard, B.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 FU US Department of Energy [DE-AC52-06NA-25396]; Massachusetts Institute of Technology [DE-FG02-91ER-54109, DE-FC02-99ER-54512] FX This research was supported by the US Department of Energy Grants DE-AC52-06NA-25396 at Los Alamos National Laboratory, DE-FG02-91ER-54109 and DE-FC02-99ER-54512 at the Plasma Science and Fusion Center of the Massachusetts Institute of Technology. NR 20 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2008 VL 50 IS 10 AR 105010 DI 10.1088/0741-3335/50/10/105010 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 349BW UT WOS:000259254800012 ER PT J AU Bhalla, N Wynne, DJ Jantsch, V Dernburg, AF AF Bhalla, Needhi Wynne, David J. Jantsch, Verena Dernburg, Abby F. TI ZHP-3 Acts at Crossovers to Couple Meiotic Recombination with Synaptonemal Complex Disassembly and Bivalent Formation in C-elegans SO PLOS GENETICS LA English DT Article ID CAENORHABDITIS-ELEGANS; CROSSING-OVER; CHROMOSOME SYNAPSIS; STRAND-EXCHANGE; X-CHROMOSOME; MEIOSIS; PROTEINS; PROPHASE; KINASE; SUMO AB Crossover recombination and the formation of chiasmata normally ensure the proper segregation of homologous chromosomes during the first meiotic division. zhp-3, the Caenorhabditis elegans ortholog of the budding yeast ZIP3 gene, is required for crossover recombination. We show that ZHP-3 protein localization is highly dynamic. At a key transition point in meiotic prophase, the protein shifts from along the length of the synaptonemal complex (SC) to an asymmetric localization on the SC and eventually becomes restricted to foci that mark crossover recombination events. A zhp-3::gfp transgene partially complements a null mutation and reveals a separation of function; although the fusion protein can promote nearly wild-type levels of recombination, aneuploidy among the progeny is high, indicating defects in meiotic chromosome segregation. The structure of bivalents is perturbed in this mutant, suggesting that the chromosome segregation defect results from an inability to properly remodel chromosomes in response to crossovers. smo-1 mutants exhibit phenotypes similar to zhp-3::gfp mutants at higher temperatures, and smo-1; zhp-3::gfp double mutants exhibit more severe meiotic defects than either single mutant, consistent with a role for SUMO in the process of SC disassembly and bivalent differentiation. We propose that coordination of crossover recombination with SC disassembly and bivalent formation reflects a conserved role of Zip3/ZHP-3 in coupling recombination with SC morphogenesis. C1 [Bhalla, Needhi; Wynne, David J.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bhalla, Needhi; Dernburg, Abby F.] EO Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Jantsch, Verena] Univ Vienna, Dept Chromosome Biol, Max F Perutz Labs, Vienna, Austria. RP Bhalla, N (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM bhalla@biology.ucsc.edu RI Jantsch, Verena/A-3910-2017; OI Jantsch, Verena/0000-0002-1978-682X; Dernburg, Abby/0000-0001-8037-1079 FU National Science Foundation; WWTF [LS0905]; Austrian Research Fund (FWF); NIH [K99RR024110/R00RR024110, R01 GM065591]; Leukemia and Lymphoma Society Scholar; American Cancer Society Research Scholar FX DJW is a National Science Foundation Pre-Doctoral Fellow. VJ is funded by the WWTF (LS0905) and an Elise Richter grant of the Austrian Research Fund (FWF). NB is supported by the NIH(K99RR024110/R00RR024110). AFD is a Leukemia and Lymphoma Society Scholar, an American Cancer Society Research Scholar and is supported by the NIH (R01 GM065591). NR 50 TC 64 Z9 70 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD OCT PY 2008 VL 4 IS 10 AR e1000235 DI 10.1371/journal.pgen.1000235 PG 15 WC Genetics & Heredity SC Genetics & Heredity GA 380QS UT WOS:000261480900030 PM 18949042 ER PT J AU Burns, CT Lee, S Seifert, S Firestone, MA AF Burns, Christopher T. Lee, Sungwon Seifert, Soenke Firestone, Millicent A. TI Thiophene-based ionic liquids: synthesis, physical properties, self-assembly, and oxidative polymerization SO POLYMERS FOR ADVANCED TECHNOLOGIES LA English DT Article DE polythiophene; ionic liquids; SAXS; self-assembly ID WATER-SOLUBLE POLYTHIOPHENES; LIGHT-EMITTING-DIODES; DOPED POLY(3,4-ETHYLENEDIOXYTHIOPHENE); CONDUCTING POLYMERS; CONJUGATED POLYMERS; NUCLEIC-ACIDS; BAND-GAP; BEHAVIOR; COMPLEX; SUPERCAPACITORS AB Preparation and polymerization of methylimidazolium-based ionic liquids (ILs) that incorporate a thiophene moiety at the terminus of a C,() alkyl chain are described. Both a bromide and nitrate salt of the amphiphilic thiophene IL self-assembles in water (albeit the nitrate to a lesser extent), adopting columnar mesophases. Polarized optical microscopy and small-angle X-ray scattering (SAXS) studies show that at low water content the IL-water binary mixtures form liquid crystalline mesophases possessing significant short-range ordering due to strong pi interactions between adjacent thiophene moieties. At higher water content, the short-range ordering is lost, but long-range ordering persists up to ca. 45% (w/w) water. The chemical oxidative coupling of the nitrate monomer yields a highly water-soluble polymer. Electrochemical studies show that the polymer possesses a high oxidation potential (1.935V) and thus, is resistant to chemical doping. In dilute aqueous solution, electronic absorption spectroscopy and X-ray scattering show the polymer adopts a random, coil-like conformational state. Slight improvement in the polymer conformation can be achieved by exchange of the counter anion. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Burns, Christopher T.; Lee, Sungwon; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM firestone@anl.gov FU Office of Basic Energy Sciences, Division of Materials Sciences, United States; Department of Energy [DE-AC02-06CH11357] FX The authors thank Dr Urs Geiser for helpful discussions regarding the columnar rectangular phase. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy under Contract No. DE-AC02-06CH11357 to the UChicago, LLC. NR 55 TC 26 Z9 26 U1 2 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1042-7147 EI 1099-1581 J9 POLYM ADVAN TECHNOL JI Polym. Adv. Technol. PD OCT PY 2008 VL 19 IS 10 SI SI BP 1369 EP 1382 DI 10.1002/pat.1200 PG 14 WC Polymer Science SC Polymer Science GA 364RC UT WOS:000260351800003 ER PT J AU Pintschovius, L Weber, F Reichardt, W Kreyssig, A Heid, R Reznik, D Stockert, O Hardil, K AF Pintschovius, L. Weber, F. Reichardt, W. Kreyssig, A. Heid, R. Reznik, D. Stockert, O. Hardil, K. TI Phonon linewidths in YNi2B2C SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article DE Electron phonon coupling; density functional theory; inelastic neutron scattering ID SCATTERING AB Phouons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron-phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high T-c (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth. C1 [Pintschovius, L.; Weber, F.; Reichardt, W.; Heid, R.; Reznik, D.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Weber, F.] Univ Karlsruhe TH, Inst Phys, D-76128 Karlsruhe, Germany. [Kreyssig, A.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Kreyssig, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Reznik, D.] CE Saclay, Lab Leon Brillouin, F-91911 Gif Sur Yvette, France. [Stockert, O.] Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany. [Hardil, K.] Univ Gottingen, Inst Phys Chem, Aussenstelle FRM 2, D-85747 Garching, Germany. RP Pintschovius, L (reprint author), Forschungszentrum Karlsruhe, Inst Festkorperphys, Postfach 3640, D-76021 Karlsruhe, Germany. EM pini@ifpfzk.de NR 7 TC 7 Z9 7 U1 1 U2 3 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD OCT PY 2008 VL 71 IS 4 SI SI BP 687 EP 693 PG 7 WC Physics, Multidisciplinary SC Physics GA 403FU UT WOS:000263069300011 ER PT J AU Rosenkranz, S Osborn, R AF Rosenkranz, Stephan Osborn, Raymond TI Corelli: Efficient single crystal diffraction with elastic discrimination SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article DE Neutron diffraction; diffuse scattering; elastic discrimination ID MECHANICAL CORRELATION CHOPPER; NEUTRON; SPECTROSCOPY; SCATTERING AB Single crystal diffuse scattering provides one of the most powerful probes of short-range correlations on the. 1 - 100 nm scale, which often are responsible for the extreme field response of many emerging phenomena of great interest. Accurate modeling of such complex disorder from diffuse scattering data however puts stringent experimental demands, requiring measurements over large volumes of reciprocal space with sufficient momentum and energy resolution. Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, a will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, as compared to traditional methods, for measuring single crystal diffuse scattering over volumes of reciprocal space with elastic discrimination. C1 [Rosenkranz, Stephan; Osborn, Raymond] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Rosenkranz, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM srosenkranz@anl.gov RI Osborn, Raymond/E-8676-2011; Rosenkranz, Stephan/E-4672-2011; SNS, Corelli/O-8443-2015 OI Osborn, Raymond/0000-0001-9565-3140; Rosenkranz, Stephan/0000-0002-5659-0383; SNS, Corelli/0000-0001-5563-3292 FU US Department of Energy; Basic Energy Sciences; Department of Materials Science [DE-AC02-06CH11357] FX This work is supported by US Department of Energy, Basic Energy Sciences, Department of Materials Science under contract DE-AC02-06CH11357. NR 17 TC 5 Z9 5 U1 2 U2 7 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD OCT PY 2008 VL 71 IS 4 BP 705 EP 711 PG 7 WC Physics, Multidisciplinary SC Physics GA 403FU UT WOS:000263069300013 ER PT J AU Proffen, T AF Proffen, Th TI Total neutron scattering: The key to the local and medium range structure of complex materials SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article DE Neutron scattering; pair distribution function; disordered materials ID PAIR DISTRIBUTION FUNCTION AB Structural characterization is mainly based on the measurement of Bragg intensities and yields the average structure of crystalline materials. The total scattering pattern, however, contains structural information over all length scales, and it can be used to obtain a complete structural picture of complex materials. Suddenly one has access to a new parameter, the real-spare range of the refinement and structures can be analysed as a function of length scale straightforwardly. C1 Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Proffen, T (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Mailstop H805, Los Alamos, NM 87545 USA. EM tproffen@lanl.gov RI Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 12 TC 0 Z9 0 U1 2 U2 8 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD OCT PY 2008 VL 71 IS 4 BP 713 EP 719 PG 7 WC Physics, Multidisciplinary SC Physics GA 403FU UT WOS:000263069300014 ER PT J AU Lee, SK Keasling, JD AF Lee, Sung Kuk Keasling, Jay D. TI Heterologous protein production in Escherichia coli using the propionate-inducible pPro system by conventional and auto-induction methods SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE auto-induction; Escherichia coli; gene expression system; pPro system; prpBCDE promoter; T7 promoter ID HIGH-LEVEL EXPRESSION; BACTERIOPHAGE-T7 RNA-POLYMERASE; ENTERICA SEROVAR TYPHIMURIUM; SALMONELLA-ENTERICA; GROWTH-INHIBITION; GENE-EXPRESSION; CLONED GENES; PROMOTER; BACTERIA; CULTURES AB We examined expression of two plant genes encoding coclaurine N-methyltransferase (CMT) and norcoclaurine synthase (NCS) in Escherichia coli from the Salmonella enterica prpBCDE promoter (Pp,B) and compared it to that from the strongest IPTG-inducible promoter, P-T7. In contrast to our previous study showing slightly higher production of green fluorescent protein (GFP) from the pPro system compared to that from the T7 system, production of two plant proteins CMT and NCS from P-prpB was 2- to 4-fold higher than that from P-T7. Unlike P-T7, expression from P-prB did not reduce cell growth even when highly induced, indicating that this propionate-inducible system is more efficient for overproduction of proteins that result in growth inhibition. In an auto-induction experiment, which does not require monitoring the culture or adding inducer during cell growth, the pPro system exhibited much higher protein production than the T7 system. These results strongly indicate that the pPro system is well-suited for overproduction of recombinant proteins. Published by Elsevier Inc. C1 [Lee, Sung Kuk; Keasling, Jay D.] Univ Calif Berkeley, Berkeley Ctr Synth Biol, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Synth Biol Dept, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Berkeley Ctr Synth Biol, Dept Chem Engn, 717 Potter St,16 Bldg 977,Mail Code 3224, Berkeley, CA 94720 USA. EM sungkuk@berkeley.edu; keasling@berkeley.edu RI Lee, Sung/E-6525-2010; Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU National Institutes of Health [GM070763-1] FX This study was supported by a grant from the National Institutes of Health (GM070763-1). We would like to thank Dr. T.S. Lee, Dr. T.S. Ham and M. Ouellet for helpful discussions. NR 33 TC 14 Z9 15 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD OCT PY 2008 VL 61 IS 2 BP 197 EP 203 DI 10.1016/j.pep.2008.06.008 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 347WM UT WOS:000259172100015 PM 18639640 ER PT J AU Inokuti, M Belloni, J AF Inokuti, Mitio Belloni, Jacqueline TI Concluding remarks on ASR 2007 Symposium "Charged particle and photon interactions with matter" SO RADIATION PHYSICS AND CHEMISTRY LA English DT Editorial Material AB The symposium succeeded in bringing Forth valuable surveys of current topic ranging from fundamental physics and chemistry related to the interactions of charged particles or photons with matter, to advanced instrumentation including accelerators and analyzing systems, and to applications to materials science, biology, and medicine. The present article summarizes salient points of most of the lectures of the symposium. Incisive outlook and germs of ideas for work in the near future were apparent in some of the lectures. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Inokuti, Mitio] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Belloni, Jacqueline] Univ Paris 11, ELYSE CLIO, Chim Phys Lab, F-91405 Orsay, France. RP Inokuti, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM inokuti@sbcglobal.net NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD OCT-DEC PY 2008 VL 77 IS 10-12 BP 1121 EP 1123 DI 10.1016/j.radphyschem.2008.05.008 PG 3 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 356SR UT WOS:000259798400002 ER PT J AU Sakaue, K Gowa, T Hayano, H Kamiya, Y Kashiwagi, S Kuroda, R Masuda, A Moriyama, R Urakawa, J Ushida, K Wang, XJ Washio, M AF Sakaue, Kazuyuki Gowa, Tomoko Hayano, Hitoshi Kamiya, Yoshio Kashiwagi, Shigeru Kuroda, Ryunosuke Masuda, Akihiko Moriyama, Ryo Urakawa, Junji Ushida, Kiminori Wang, Xijie Washio, Masakazu TI Recent progress of a soft X-ray generation system based on inverse Compton scattering at Waseda University SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT International Symposium on Charged Particle and Photon Interactions with Matter CY NOV 06-09, 2007 CL Tokai, JAPAN SP Adv Sci Res Ctr, Atom Energy Agcy DE inverse Compton scattering; water window; soft X-ray source; photo-cathode rf-gun ID PULSE-RADIOLYSIS SYSTEM; FEMTOSECOND LASER; ELECTRON-BEAM AB At Waseda University, we are developing a table-top size soft X-ray source based on inverse Compton scattering between a high quality electron beam and a high power laser. Using 1047 nm laser beam (Nd:YLF) and 4.6 MeV electron beam generated from a photo-cathode rf-gun, we had already succeeded in generating inverse Compton X-rays. The energies are within the "water window" region (250-500 eV) which can be applied to biological studies. For good signal to noise ratio (SIN) and a larger number of photons, we remodeled our collision chamber and laser amplifier system. SIN is defined by the X-ray photon signal over all other noises and backgrounds such as a bremsstrahlung X-rays from a lost electron beam and an electric noises caused by a radiation and rf power source. With these modifications, the X-ray photons detected by a micro channel plate (MCP) have increased 10-fold to reach 312 ph/pulse. Total generated photons were estimated to be 3.3 X 10(4). Further, we succeeded in generating stable soft X-rays for more than 12 h. Good SIN ratio, stable X-rays have made it possible to observe the beam-laser interaction very precisely. By using this technique, we have measured the electron beam size at the collision point as 251 pm (a,) x 56 pm, (ay). (c) 2008 Elsevier Ltd. All rights reserved. C1 [Sakaue, Kazuyuki; Gowa, Tomoko; Kamiya, Yoshio; Masuda, Akihiko; Moriyama, Ryo; Washio, Masakazu] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Hayano, Hitoshi; Urakawa, Junji] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Kashiwagi, Shigeru] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Ushida, Kiminori] RIKEN, Wako, Saitama 3510198, Japan. [Wang, Xijie] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sakaue, K (reprint author), Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. EM kazu-kazu-kazu@suou.waseda.jp RI Oyama, Tomoko/E-7643-2012; Kuroda, Ryunosuke/D-2722-2014; urakawa, junji/F-4763-2014; Kamiya, Yoshio/L-4394-2014 OI Kuroda, Ryunosuke/0000-0002-8970-3321; Kamiya, Yoshio/0000-0001-8716-2536 NR 19 TC 15 Z9 15 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD OCT-DEC PY 2008 VL 77 IS 10-12 BP 1136 EP 1141 DI 10.1016/j.radphyschem.2008.05.039 PG 6 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 356SR UT WOS:000259798400005 ER PT J AU Awatsura, K Takahiro, K Takeshima, N Morikawa, T Ozaki, K Muramatsu, Y Perera, RCC AF Awatsura, K. Takahiro, K. Takeshima, N. Morikawa, T. Ozaki, K. Muramatsu, Y. Perera, R. C. C. TI Excitation-energy dependence of L-2,L-3 X-ray spectra of Cu metal and its oxides SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT International Symposium on Charged Particle and Photon Interactions with Matter CY NOV 06-09, 2007 CL Tokai, JAPAN SP Adv Sci Res Ctr, Atom Energy Agcy DE Cu; Cu2O; CUO; L-2,L-3 X-ray; intensity ratio; synchrotron radiation ID EMISSION-SPECTRA; SYNCHROTRON-RADIATION; COPPER; SPECTROSCOPY; PHOTOELECTRON; FLUORESCENCE AB The L-2,L-3 X-ray emission spectra of Cu metal and its oxides (Cu2O and CuO) have been measured by using monochromatic synchrotron radiation. From the analysis of spectra recorded at different excitation energies, the L beta(1)/L alpha(1,2) X-ray emission intensity ratio, i.e., I(L-2)/I(L-3) is discussed. The intensity ratio, I(L-2)/I(L-3) is found to show significant enhancements for the compound materials such as Cu2O and CuO, at resonance energy. At non-resonant high energy, l(L2)/I(L3) for CuO is observed to be higher than those for Cu and Cu2O. These tendencies are explained to be resonant or non-resonant excitation/deexcitation processes and absorption coefficients, including the chemical bonding effects. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Awatsura, K.; Takahiro, K.; Takeshima, N.; Morikawa, T.; Ozaki, K.] Kyoto Inst Technol, Dept Chem & Mat Technol, Sakyo Ku, Kyoto 6068585, Japan. [Muramatsu, Y.] Univ Hyogo, Dept Mat Sci & Chem, Himeji, Hyogo 6712201, Japan. [Perera, R. C. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Awatsura, K (reprint author), Kyoto Inst Technol, Dept Chem & Mat Technol, Sakyo Ku, Kyoto 6068585, Japan. EM nh9h5z@bma.biglobe.ne.jp NR 15 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD OCT-DEC PY 2008 VL 77 IS 10-12 BP 1337 EP 1339 DI 10.1016/j.radphyschem.2008.05.029 PG 3 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 356SR UT WOS:000259798400042 ER PT J AU Zhang, Q Petyuk, VA Schepmoes, AA Orton, DJ Monroe, ME Yang, F Smith, RD Metz, TO AF Zhang, Qibin Petyuk, Vladislav A. Schepmoes, Athena A. Orton, Daniel J. Monroe, Matthew E. Yang, Feng Smith, Richard D. Metz, Thomas O. TI Analysis of non-enzymatically glycated peptides: neutral-loss-triggered MS3 versus multi-stage activation tandem mass spectrometry SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID EXTRACELLULAR PROTEINS; PROTEOMIC ANALYSIS; SEQUENCE-ANALYSIS; DISSOCIATION; ENDPRODUCTS; BIOMARKERS; GLUCOSE AB Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet widely available and often suffers from significantly lower sensitivity than CID. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss-triggered MS3 and multi-stage activation) during liquid chromatography/multi-stage mass spectrometric (LC/MSn) analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss-triggered MS3 experiments, MS3 scans triggered by neutral losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss-triggered MS3 approach resulted in much higher specificity. Both techniques are viable alternatives to ETD for identifying glycated peptides. Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.; Orton, Daniel J.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Metz, TO (reprint author), POB 999,MS K8-98, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Petyuk, Vladislav/0000-0003-4076-151X; Metz, Tom/0000-0001-6049-3968 FU NCRR NIH HHS [RR018522, P41 RR018522-06, P41 RR018522]; NIDDK NIH HHS [DK071283, R21 DK071283, R33 DK071283, R33 DK071283-04] NR 27 TC 25 Z9 28 U1 1 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD OCT PY 2008 VL 22 IS 19 BP 3027 EP 3034 DI 10.1002/rcm.3703 PG 8 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 357OZ UT WOS:000259857300009 PM 18763275 ER PT J AU Ali, ZA Glebov, VY Cruz, M Duffy, T Stoeckl, C Roberts, S Sangster, TC Tommasini, R Throop, A Moran, M Dauffy, L Horsefield, C AF Ali, Z. A. Glebov, V. Yu. Cruz, M. Duffy, T. Stoeckl, C. Roberts, S. Sangster, T. C. Tommasini, R. Throop, A. Moran, M. Dauffy, L. Horsefield, C. TI Tests and calibration of NIF neutron time of flight detectors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE calibration; deuterium; explosions; laser fusion; plasma diagnostics; tritium ID NATIONAL IGNITION FACILITY; PLANS; OMEGA AB The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented. C1 [Ali, Z. A.] Natl Secur Technol LLC, Livermore, CA 94550 USA. [Glebov, V. Yu.; Cruz, M.; Duffy, T.; Stoeckl, C.; Roberts, S.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Tommasini, R.; Throop, A.; Moran, M.; Dauffy, L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ali, ZA (reprint author), Natl Secur Technol LLC, Livermore, CA 94550 USA. RI Tommasini, Riccardo/A-8214-2009 OI Tommasini, Riccardo/0000-0002-1070-3565 NR 9 TC 15 Z9 17 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E527 DI 10.1063/1.2969289 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500109 PM 19044508 ER PT J AU Batha, SH Aragonez, R Archuleta, FL Archuleta, TN Benage, JF Cobble, JA Cowan, JS Fatherley, VE Flippo, KA Gautier, DC Gonzales, RP Greenfield, SR Hegelich, BM Hurry, TR Johnson, RP Kline, JL Letzring, SA Loomis, EN Lopez, FE Luo, SN Montgomery, DS Oertel, JA Paisley, DL Reid, SM Sanchez, PG Seifter, A Shimada, T Workman, JB AF Batha, S. H. Aragonez, R. Archuleta, F. L. Archuleta, T. N. Benage, J. F. Cobble, J. A. Cowan, J. S. Fatherley, V. E. Flippo, K. A. Gautier, D. C. Gonzales, R. P. Greenfield, S. R. Hegelich, B. M. Hurry, T. R. Johnson, R. P. Kline, J. L. Letzring, S. A. Loomis, E. N. Lopez, F. E. Luo, S. N. Montgomery, D. S. Oertel, J. A. Paisley, D. L. Reid, S. M. Sanchez, P. G. Seifter, A. Shimada, T. Workman, J. B. TI TRIDENT high-energy-density facility experimental capabilities and diagnostics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE beam handling techniques; calibration; high-speed optical techniques; laser beams; particle beam diagnostics AB The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated. C1 [Batha, S. H.; Aragonez, R.; Archuleta, F. L.; Archuleta, T. N.; Benage, J. F.; Cobble, J. A.; Cowan, J. S.; Fatherley, V. E.; Flippo, K. A.; Gautier, D. C.; Gonzales, R. P.; Greenfield, S. R.; Hegelich, B. M.; Hurry, T. R.; Johnson, R. P.; Kline, J. L.; Letzring, S. A.; Loomis, E. N.; Lopez, F. E.; Luo, S. N.; Montgomery, D. S.; Oertel, J. A.; Paisley, D. L.; Reid, S. M.; Sanchez, P. G.; Seifter, A.; Shimada, T.; Workman, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Batha, SH (reprint author), Los Alamos Natl Lab, POB 1663,MS E526, Los Alamos, NM 87545 USA. RI Luo, Sheng-Nian /D-2257-2010; Hegelich, Bjorn/J-2689-2013; Flippo, Kirk/C-6872-2009; OI Luo, Sheng-Nian /0000-0002-7538-0541; Flippo, Kirk/0000-0002-4752-5141; Kline, John/0000-0002-2271-9919 NR 9 TC 30 Z9 30 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F305 DI 10.1063/1.2972020 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500224 PM 19044618 ER PT J AU Beiersdorfer, P Lepson, JK Bitter, M Hill, KW Roquemore, L AF Beiersdorfer, P. Lepson, J. K. Bitter, M. Hill, K. W. Roquemore, L. TI Time-resolved x-ray and extreme ultraviolate spectrometer for use on the National Spherical Torus Experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE boron; carbon; nitrogen; oxygen; plasma diagnostics; plasma impurities; plasma toroidal confinement; time resolved spectroscopy; Tokamak devices; ultraviolet spectrometers; X-ray spectrometers ID BEAM ION-TRAP; SPECTROSCOPY; ASTROPHYSICS AB We describe upgrades to a compact grazing-incidence spectrometer utilized on the National Spherical Torus Experiment for monitoring light and heavy impurities. A fast-readout charge couple device camera has been implemented that allows the recording of spectra with up to 25 ms time integration. This capability is used to study the time evolution of the K-shell emission of hydrogenlike and heliumlike boron, carbon, nitrogen, and oxygen between 10 and 65 A. Different camera positioning pieces have been employed to extend the possible spectral range to as high as 140. Several lines that cannot be ascribed to the usual elements found in the plasma have been observed in this spectral range, although often only in a few isolated discharges. C1 [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lepson, J. K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bitter, M.; Hill, K. W.; Roquemore, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 10 TC 17 Z9 17 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E318 DI 10.1063/1.2953488 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500076 PM 19044480 ER PT J AU Bennett, GR Smith, IC Shores, JE Sinars, DB Robertson, G Atherton, BW Jones, MC Porter, JL AF Bennett, G. R. Smith, I. C. Shores, J. E. Sinars, D. B. Robertson, G. Atherton, B. W. Jones, M. C. Porter, J. L. TI 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: A progress report SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma accelerators; plasma diagnostics; plasma inertial confinement; radiography; X-ray imaging AB When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo , Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars , Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett , Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett , Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns gate time) digital x-ray camera is being developed [G. R. Bennett , Rev. Sci. Instrum. 77, 10E322 (2006)] to extend the system to "four-frame" and markedly improve the signal-to-noise ratio. [At present, time-integrating Fuji BAS-TR2025 image plate (scanned with a Fuji BAS-5000 device) forms the time-integrated image-plane detector.]. C1 [Bennett, G. R.; Smith, I. C.; Shores, J. E.; Sinars, D. B.; Robertson, G.; Atherton, B. W.; Jones, M. C.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bennett, GR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 7 TC 15 Z9 18 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E914 DI 10.1063/1.2956823 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500172 PM 19044569 ER PT J AU Berzak, L Kaita, R Kozub, T Majeski, R Zakharov, L AF Berzak, L. Kaita, R. Kozub, T. Majeski, R. Zakharov, L. TI Magnetic diagnostics for the lithium tokamak experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE coils; lithium; plasma confinement; plasma diagnostics; plasma flow; plasma heating; plasma materials processing; plasma transport processes; Tokamak devices ID REACTOR AB The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF)similar to 3.4 kG, I(P)similar to 400 kA, and pulse length similar to 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions. C1 [Berzak, L.; Kaita, R.; Kozub, T.; Majeski, R.; Zakharov, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Berzak, L (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lberzak@pppl.gov NR 6 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F116 DI 10.1063/1.2955567 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500206 PM 19044600 ER PT J AU Biewer, TM Hillis, DL Stamp, MF Zastrow, KD AF Biewer, T. M. Hillis, D. L. Stamp, M. F. Zastrow, K. -D. CA JET-EFDA Contributors TI A proposed in-vessel calibration light source for the Joint European Torus SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE calibration; light sources; plasma diagnostics; Tokamak devices AB An in-vessel calibration light source (ICLS) is proposed for use during extended shutdown periods of the Joint European Torus (JET). The ICLS is primarily a 12 in. integrating sphere (4 in. opening) with four lamps (of known radiance), which can be positioned inside the JET vacuum vessel via the remote handling arm during interventions in the JET operating schedule. This will facilitate the in situ calibration of optical diagnostics, which rely on absolute light intensity measurements currently made when the diagnostics are removed from JET. The ICLS could ultimately reduce/remove the mechanical stresses associated with the repositioning of diagnostics for calibration purposes. At least 10 diagnostic systems (similar to 20 diagnostic subsystems) could benefit from the ICLS; in some instances the ICLS provides the only viable absolute-calibration strategy. Moreover, the ICLS will be a broad-spectrum white light source, enabling intensity calibrations at all visible wavelengths. A secondary benefit of the ICLS is in its use as an illumination source for making measurements of the reflectance (over a broad spectral range and at multiple angles) from the tiles lining the JET vacuum vessel. During the ITER-like wall intervention new Be, C, and W tiles will be installed in JET and their reflectance measured. Measurements made in subsequent JET interventions will provide data on the effect of high-temperature plasma operation on the reflectance of these tiles. C1 [Biewer, T. M.; JET-EFDA Contributors] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Biewer, T. M.; Hillis, D. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Stamp, M. F.; Zastrow, K. -D.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Biewer, TM (reprint author), JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM biewerTM@ORNL.GOV OI Biewer, Theodore/0000-0001-7456-3509 NR 10 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F530 DI 10.1063/1.2955855 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500287 PM 19068537 ER PT J AU Bitter, M Hill, KW Scott, S Feder, R Ko, J Ince-Cushman, A Rice, JE AF Bitter, M. Hill, K. W. Scott, S. Feder, R. Ko, Jinseok Ince-Cushman, A. Rice, J. E. TI Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE electromagnetic waves; plasma diagnostics; X-ray imaging ID SPECTROMETER; SPECTRA AB The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a well-known imaging error of spherical mirrors. In addition to x rays, the scheme should be applicable to a very broad spectrum of the electromagnetic radiation, including microwaves, infrared and visible light, as well as UV and extreme UV radiation, if the crystals are replaced with appropriate spherical reflectors. The scheme may also be applicable to the imaging with ultrasound. C1 [Bitter, M.; Hill, K. W.; Scott, S.; Feder, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ko, Jinseok; Ince-Cushman, A.; Rice, J. E.] Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Bitter, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 9 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E927 DI 10.1063/1.2965010 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500185 PM 19044582 ER PT J AU Boeglin, WU Roquemore, AL Maqueda, R AF Boeglin, W. U. Roquemore, A. L. Maqueda, R. TI Three-dimensional reconstruction of dust particle trajectories in the NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE dusty plasmas; plasma diagnostics AB Highly mobile incandescent dust particles are routinely observed on NSTX using two fast cameras operating in the visible region. An analysis method to reconstruct dust particle trajectories in space using two fast cameras is presented in this paper. Position accuracies of a few millimeters depending on the particle's location have been achieved and particle velocities between 10 and 200 m/s have been observed. C1 [Boeglin, W. U.] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maqueda, R.] NOVA Photon, Princeton, NJ 08543 USA. RP Boeglin, WU (reprint author), Florida Int Univ, Dept Phys, 11200 SW 8th St, Miami, FL 33199 USA. NR 5 TC 11 Z9 11 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F334 DI 10.1063/1.2965001 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500253 PM 19044642 ER PT J AU Bourgade, JL Costley, AE Reichle, R Hodgson, ER Hsing, W Glebov, V Decreton, M Leeper, R Leray, JL Dentan, M Hutter, T Morono, A Eder, D Shmayda, W Brichard, B Baggio, J Bertalot, L Vayakis, G Moran, M Sangster, TC Vermeeren, L Stoeckl, C Girard, S Pien, G AF Bourgade, J. L. Costley, A. E. Reichle, R. Hodgson, E. R. Hsing, W. Glebov, V. Decreton, M. Leeper, R. Leray, J. L. Dentan, M. Hutter, T. Morono, A. Eder, D. Shmayda, W. Brichard, B. Baggio, J. Bertalot, L. Vayakis, G. Moran, M. Sangster, T. C. Vermeeren, L. Stoeckl, C. Girard, S. Pien, G. TI Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE fusion reactors; light transmission; optical fibres; plasma diagnostics; plasma inertial confinement; radiation effects AB The next generation of large scale fusion devices-ITER/LMJ/NIF-will require diagnostic components to operate in environments far more severe than those encountered in present facilities. This harsh environment is the result of high fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiation, and in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced in today's devices. The similarities and dissimilarities between environmental effects on diagnostic components for the inertial confinement and magnetic confinement fusion fields have been assessed. Areas in which considerable overlap have been identified are optical transmission materials and optical fibers in particular, neutron detection systems and electronics needs. Although both fields extensively use cables in the hostile environment, there is little overlap because the environments and requirements are very different. C1 [Bourgade, J. L.; Girard, S.] CEA DAM Ile France, F-91297 Bruyeres Le Chatel, Arpajon, France. [Costley, A. E.; Dentan, M.; Bertalot, L.; Vayakis, G.] ITER Org, F-13108 St Paul Les Durance, France. [Reichle, R.; Hutter, T.] CEA Cadarache, DSM IRFM, Assoc EURATOM CEA, F-13108 St Paul Les Durance, France. [Hodgson, E. R.; Morono, A.] EURATOM CIEMAT Fus Assoc, Madrid 28040, Spain. [Hsing, W.; Eder, D.; Moran, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Glebov, V.; Shmayda, W.; Sangster, T. C.; Stoeckl, C.; Pien, G.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Decreton, M.; Brichard, B.; Vermeeren, L.] EURATOM, CEN SCK, B-2400 Mol, Belgium. [Leeper, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bourgade, JL (reprint author), CEA DAM Ile France, F-91297 Bruyeres Le Chatel, Arpajon, France. RI GIRARD, Sylvain/A-7981-2013 NR 5 TC 19 Z9 19 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F304 DI 10.1063/1.2972024 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500223 PM 19044617 ER PT J AU Brooks, NH Colchin, RJ Fehling, DT Hillis, DL Mu, Y Unterberg, E AF Brooks, N. H. Colchin, R. J. Fehling, D. T. Hillis, D. L. Mu, Y. Unterberg, E. TI Filterscopes: Spectral line monitors for long-pulse plasma devices SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM ID DIII-D TOKAMAK AB A photomultiplier (PMT)-based diagnostic system for monitoring spectral lines along multiple viewchords, named the "Filterscope" [R. J. Colchin et al., Rev. Sci. Instrum. 74, 2068 (2003)], is currently in use at the DIII-D, NSTX, and CDX-U fusion plasma devices in the US, and has been installed at the KSTAR device in Korea. This diagnostic has recently been upgraded for application to long-pulse devices, such as KSTAR, EAST in China, and the future ITER in France. A new data acquisition system, employing the PXI instrumentation platform with an embedded Windows microprocessor controller, can simultaneously record up to 72 channels at 100 kHz sampling rates for plasma periods lasting up to 20 min. Based on the average signal level during an adjustable time interval (100 ms in the present DIII-D implementation), the controller digitally adjusts PMT dynode voltage throughout the course of a discharge, thereby maintaining the output signals at a level where they are neither saturated nor dominated by digitizer noise. The new system's ability to accommodate large variations in source strength, discharge to discharge and within a single discharge, has proved particularly valuable during DIII-D operations, since changes between top, bottom, and double-null divertor magnetic configurations lead to large temporal variations in signal brightness. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2957777] C1 [Brooks, N. H.] Gen Atom Co, San Diego, CA 92186 USA. [Colchin, R. J.; Fehling, D. T.; Hillis, D. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mu, Y.] Univ Toronto, Toronto, ON M5S 3G4, Canada. [Unterberg, E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Brooks, NH (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Unterberg, Ezekial/F-5240-2016 OI Unterberg, Ezekial/0000-0003-1353-8865 NR 7 TC 7 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F330 DI 10.1063/1.2957777 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500249 PM 19044638 ER PT J AU Brown, CM Seely, JF Feldman, U Holland, GE Weaver, JL Obenschain, SP Kjornrattanawanich, B Fielding, D AF Brown, Charles M. Seely, John F. Feldman, Uri Holland, Glenn E. Weaver, James L. Obenschain, Steven P. Kjornrattanawanich, Benjawan Fielding, Drew TI High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE calibration; CMOS image sensors; diffraction gratings; photodiodes; plasma diagnostics; plasma production by laser; plasma properties; plasmons; telescopes; ultraviolet spectra; ultraviolet spectroscopy ID REGION AB An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength. Two pairs of high-resolution gratings can be selected for the coverage of two wavebands, one grating pair with 1800 grooves/mm and covering approximately 155-175 nm and another grating pair with 1200 grooves/mm covering 230-260 nm. The latter waveband includes the 248 nm KrF laser wavelength, and the former waveband includes the wavelength of the two-plasmon decay instability at 2/3 the KrF laser wavelength (165 nm). The detection media consist of a complementary metal oxide semiconductor imager, photostimulable phosphor image plates, and a linear array of 1 mm(2) square silicon photodiodes with 0.4 ns rise time. The telescope mirrors, spectrometer gratings, and 1 mm(2) photodiode were calibrated using synchrotron radiation, and this enables the measurement of the absolute emission from the laser-produced plasmas with temporal, spatial, and spectral resolutions. The spectrometer is capable of measuring absolute spectral emissions at 165 nm wavelength as small as 5x10(-7) J/nm from a plasma source area of 0.37 mm(2) and with 0.4 ns time resolution. C1 [Brown, Charles M.; Seely, John F.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Feldman, Uri] ARTEP Inc, Ellicott City, MD 21042 USA. [Holland, Glenn E.] SFA Inc, Crofton, MD 21114 USA. [Weaver, James L.; Obenschain, Steven P.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Kjornrattanawanich, Benjawan] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Kjornrattanawanich, Benjawan] Univ Space Res Assoc, Columbia, MD 21044 USA. [Fielding, Drew] Commonwealth Technol Inc, Alexandria, VA 22315 USA. RP Brown, CM (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. FU U.S. Department of Energy FX We thank Leonid Goray for improvements in the efficiency calculations. We thank the NIKE laser operations staff and target chamber staff for invaluable assistance and Joseph Kelleher of Commonwealth Technologies Inc. for assistance with the spectrometer design. This work was supported by the U.S. Department of Energy. The mention of commercial products does not necessarily represent an endorsement. NR 13 TC 1 Z9 1 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 103109 DI 10.1063/1.3000685 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500010 PM 19044704 ER PT J AU Brown, GV Beiersdorfer, P Emig, J Frankel, M Gu, MF Heeter, RF Magee, E Thorn, DB Widmann, K Kelley, RL Kilbourne, CA Porter, FS AF Brown, G. V. Beiersdorfer, P. Emig, J. Frankel, M. Gu, M. F. Heeter, R. F. Magee, E. Thorn, D. B. Widmann, K. Kelley, R. L. Kilbourne, C. A. Porter, F. S. TI Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE calibration; plasma diagnostics; X-ray detection ID BEAM ION-TRAP; SPECTROMETER; REGION; XRS AB The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed. C1 [Brown, G. V.; Beiersdorfer, P.; Emig, J.; Frankel, M.; Gu, M. F.; Heeter, R. F.; Magee, E.; Thorn, D. B.; Widmann, K.] Lawrence Livermore Natl Lab, Dept Phys Sci, High Energy Dens Phys & Astrophys Div, Livermore, CA 94550 USA. [Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Brown, GV (reprint author), Lawrence Livermore Natl Lab, Dept Phys Sci, High Energy Dens Phys & Astrophys Div, 7000 East Ave,L 260, Livermore, CA 94550 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 12 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E309 DI 10.1063/1.2965214 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500067 PM 19044471 ER PT J AU Bush, CE Stratton, BC Robinson, J Zakharov, LE Fredrickson, ED Stutman, D Tritz, K AF Bush, C. E. Stratton, B. C. Robinson, J. Zakharov, L. E. Fredrickson, E. D. Stutman, D. Tritz, K. TI Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma magnetohydrodynamics; plasma toroidal confinement ID CAMERA AB A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results. C1 [Bush, C. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Stratton, B. C.; Robinson, J.; Zakharov, L. E.; Fredrickson, E. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Bush, CE (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM bush@pppl.gov; bstratton@pppl.gov; ktritz@pppl.gov RI Stutman, Dan/P-4048-2015 NR 6 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E928 DI 10.1063/1.2968219 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500186 PM 19044583 ER PT J AU Charest, MR Torres, P Silbernagel, CT Kalantar, DH AF Charest, Michael R., Jr. Torres, Peter, III Silbernagel, Christopher T. Kalantar, Daniel H. TI Reliable and repeatable characterization of optical streak cameras SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE fusion reactor ignition; plasma diagnostics; standardisation; streak cameras AB Optical streak cameras are used as primary diagnostics for a wide range of physics and laser experiments at facilities such as the National Ignition Facility. To meet the strict accuracy requirements needed for these experiments, the systematic nonlinearities of the streak cameras (attributed to nonlinearities in the optical and electrical components that make up the streak camera system) must be characterized. In some cases the characterization information is used as a guide to help determine how experiment data should be taken. In other cases, the characterization data are applied to the raw data images to correct for the nonlinearities. In order to characterize an optical streak camera, a specific set of data is collected, where the response to defined inputs are recorded. A set of analysis software routines has been developed to extract information such as spatial resolution, dynamic range, and temporal resolution from this data set. The routines are highly automated, requiring very little user input and thus provide very reliable and repeatable results that are not subject to interpretation. An emphasis on quality control has been placed on these routines due to the high importance of the camera characterization information. C1 [Charest, Michael R., Jr.; Torres, Peter, III; Silbernagel, Christopher T.] Natl Secur Technol LLC, Livermore, CA 94551 USA. [Kalantar, Daniel H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Charest, MR (reprint author), Natl Secur Technol LLC, 161-A S Vasco Rd, Livermore, CA 94551 USA. EM charesmr@nv.doe.gov NR 3 TC 4 Z9 4 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F546 DI 10.1063/1.2973327 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500303 PM 19044688 ER PT J AU Chen, CD King, JA Key, MH Akli, KU Beg, FN Chen, H Freeman, RR Link, A Mackinnon, AJ MacPhee, AG Patel, PK Porkolab, M Stephens, RB Van Woerkom, LD AF Chen, C. D. King, J. A. Key, M. H. Akli, K. U. Beg, F. N. Chen, H. Freeman, R. R. Link, A. Mackinnon, A. J. MacPhee, A. G. Patel, P. K. Porkolab, M. Stephens, R. B. Van Woerkom, L. D. TI A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE bremsstrahlung; dosimeters; electron spectrometers; Monte Carlo methods; plasma diagnostics; plasma production by laser; plasma X-ray sources; X-ray spectrometers ID FAST IGNITER; LASER-PULSE; ELECTRONS AB A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.0 and the dosimeters calibrated with radioactive sources. An electron distribution with a slope temperature of 1.3 MeV is inferred from the Bremsstrahlung spectra. C1 [Chen, C. D.; Porkolab, M.] MIT, Plasma Sci Fus Ctr, Cambridge, MA 02139 USA. [King, J. A.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Key, M. H.; Chen, H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom, San Diego, CA 92186 USA. [Freeman, R. R.; Link, A.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. RP Chen, CD (reprint author), MIT, Plasma Sci Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 10 TC 34 Z9 36 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E305 DI 10.1063/1.2964231 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500063 PM 19044467 ER PT J AU Chen, H Link, AJ van Maren, R Patel, PK Shepherd, R Wilks, SC Beiersdorfer, P AF Chen, Hui Link, Anthony J. van Maren, Roger Patel, Pravesh K. Shepherd, Ronnie Wilks, Scott C. Beiersdorfer, Peter TI High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE particle spectrometers; plasma diagnostics; plasma interactions; relativistic electron beams ID TARGETS AB An ultraintense short pulse lasers incident on solid targets can generate relativistic electrons that then accelerate energetic protons and ions. These fast electrons and ions can effectively heat the solid target, beyond the region of direct laser interaction, and are important to realizing the fast ignition concept. To study these energetic ions and electrons produced from the laser-target interactions, we have developed a range of spectrometers that can cover a large energy range (from less than 0.1 MeV to above 100 MeV). They are physically compact, high performance, and low cost. We will present the basic design of these spectrometers and the test results from recent laser experiments. C1 [Chen, Hui; van Maren, Roger; Patel, Pravesh K.; Shepherd, Ronnie; Wilks, Scott C.; Beiersdorfer, Peter] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Link, Anthony J.] Ohio State Univ, Columbus, OH 43210 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Patel, Pravesh/E-1400-2011 NR 16 TC 25 Z9 25 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E533 DI 10.1063/1.2953679 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500115 PM 19044514 ER PT J AU Cho, JHJ Smith, GS Hamilton, WA Mulder, DJ Kuhl, TL Mays, J AF Cho, Jae-Hie J. Smith, Gregory S. Hamilton, William A. Mulder, Dennis J. Kuhl, Tonya L. Mays, Jimmy TI Surface force confinement cell for neutron reflectometry studies of complex fluids under nanoconfinement SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE confined flow; neutron diffraction; polymer blends ID BRUSHES; REFLECTIVITY; SOLVENTS; CHAINS AB In this paper, we describe the construction of a new neutron surface force confinement cell (NSFCC). The NSFCC is equipped with hydraulically powered in situ, temporally stable, force control system for simultaneous neutron reflectometry studies of nanoconfined complex fluid systems. Test measurements with deuterated toluene confined between two opposing diblock copolymer (polystyrene+poly 2-vinylpyridine) coated quartz substrates demonstrate the capabilities of the NSFCC. With increasing hydraulically applied force, a series of well-defined decreasing separations were observed from neutron reflectivity measurements. No noticeable changes in the hydraulic pressure used for controlling the surface separation were observed during the measurements, demonstrating the high stability of the apparatus. This newly designed NSFCC introduces a higher level of control for studies of confinement and consequent finite size effects on nanoscale structure in a variety of complex fluid and soft condensed matter systems. C1 [Cho, Jae-Hie J.; Smith, Gregory S.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hamilton, William A.] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia. [Mulder, Dennis J.; Kuhl, Tonya L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Smith, GS (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Smith, Gregory/D-1659-2016 OI Smith, Gregory/0000-0001-5659-1805 NR 20 TC 5 Z9 5 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 103908 DI 10.1063/1.3005483 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500036 PM 19044730 ER PT J AU Clementson, J Beiersdorfer, P Magee, EW AF Clementson, J. Beiersdorfer, P. Magee, E. W. TI Grazing-incidence spectrometer on the SSPX spheromak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma confinement; plasma diagnostics; spectrophotometry; ultraviolet spectra; X-ray optics ID BEAM ION-TRAP; FUSION PLASMA DIAGNOSTICS; EXTREME-ULTRAVIOLET; PHYSICS EXPERIMENT; SPECTROSCOPY; SPECTROGRAPH AB The silver flat field spectrometer (SFFS) is a high-resolution grazing-incidence diagnostic for magnetically confined plasmas. It covers the wavelength range of 25-450 A with a resolution of Delta lambda=0.3 A full width at half maximum. The SFFS employs a spherical 1200 lines/mm grating for flat-field focusing. The imaging is done using a backilluminated Photometrics charge-coupled device camera allowing a bandwidth of around 200 A per spectrum. The spectrometer has been used for atomic spectroscopy on electron beam ion traps and for plasma spectroscopy on magnetic confinement devices. Here we describe the design of the SFFS and the spectrometer setup at the sustained spheromak physics experiment in Livermore. C1 [Clementson, J.; Beiersdorfer, P.; Magee, E. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Clementson, J.] Lund Inst Technol, Atom Phys Div, SE-22100 Lund, Sweden. RP Clementson, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM clementson@llnl.gov NR 22 TC 9 Z9 9 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F538 DI 10.1063/1.2965776 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500295 PM 19044680 ER PT J AU Cowan, JS Flippo, KA Gaillard, SA AF Cowan, Joseph S. Flippo, Kirk A. Gaillard, Sandrine A. TI Characterization of radiochromic film scanning techniques used in short-pulse-laser ion acceleration SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE densitometry; high-speed optical techniques; ion beams; plasma diagnostics; proton beams ID HIGH-INTENSITY LASER; PROTON-BEAMS; DOSIMETRIC MEASUREMENTS; PLASMA AB Radiochromic film (RCF) is increasingly being used as a detector for proton beams from short-pulse laser-matter interaction experiments using the RCF imaging spectroscope technique. The community has traditionally used inexpensive flatbed scanners to digitize and analyze the data, as opposed to more expensive and time-consuming microdensitometers (MicroDs). Often, the RCF densities in some regions exceed an optical density (OD) of 3. Flatbed scanners are generally limited to a maximum OD of similar to 3. Because of the high exposure density, flatbed scanners may yield data that are not reliable due to light scatter and light diffusion from areas of low density to areas of high density. This happens even when the OD is slightly above 1. We will demonstrate the limitations of using flatbed scanners for this type of radiographic media and characterize them compared to measurements made using a MicroD. A technique for cross characterizing both systems using a diffuse densitometer with a NIST wedge will also be presented. C1 [Cowan, Joseph S.; Flippo, Kirk A.; Gaillard, Sandrine A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gaillard, Sandrine A.] Univ Nevada, Reno, NV 89557 USA. RP Cowan, JS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 NR 20 TC 7 Z9 7 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E535 DI 10.1063/1.2971974 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500117 PM 19044516 ER PT J AU Dauffy, LS Koch, JA Tommasini, R Izumi, N AF Dauffy, L. S. Koch, J. A. Tommasini, R. Izumi, N. TI Using x-rays to test chemical vapor deposited diamond detectors for areal density measurement at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE diamond; fusion reactor ignition; plasma density; plasma diagnostics; plasma production by laser; plasma temperature; X-ray detection AB At the National Ignition Facility (NIF), 192 laser beams will compress a target containing a mixture of deuterium and tritium that will release fusion neutrons, photons, and other radiation. Diagnostics are being designed to measure this emitted radiation to infer crucial parameters of an ignition shot. Chemical vapor deposited (CVD) diamond is one of the ignition diagnostics that will be used as a neutron time-of-flight detector for measuring primary (14.1 MeV) neutron yield, ion temperature, and plasma areal density. This last quantity is the subject of this study and is inferred from the number of downscattered neutrons arriving late in time, divided by the number of primary neutrons. We determine in this study the accuracy with which this detector can measure areal density when the limiting factor is detector and electronics saturation. We used laser-produced x-rays to reproduce NIF signals in terms of charge carrier density, time between pulses, and amplitude contrast and found that the effect of the large pulse on the small pulse is at most 8.4%, which is less than the NIF accuracy requirement of +/- 10%. C1 [Dauffy, L. S.; Koch, J. A.; Tommasini, R.; Izumi, N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dauffy, LS (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. EM dauffyl@llnl.gov RI IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 NR 3 TC 0 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E931 DI 10.1063/1.2955705 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500189 PM 19044586 ER PT J AU Delamater, ND Wilson, DC Kyrala, GA Seifter, A Hoffman, NM Dodd, E Singleton, R Glebov, V Stoeckl, C Li, CK Petrasso, R Frenje, J AF Delamater, N. D. Wilson, D. C. Kyrala, G. A. Seifter, A. Hoffman, N. M. Dodd, E. Singleton, R. Glebov, V. Stoeckl, C. Li, C. K. Petrasso, R. Frenje, J. TI Use of d-He-3 proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with similar to 0.2 NIF scale high temperature Hohlraums at Omega SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE explosions; gold; laser fusion; plasma diagnostics; plasma simulation ID NATIONAL IGNITION FACILITY; CONFINEMENT-FUSION PLASMAS; LASER SYSTEM; PERFORMANCE AB We present the calculations and preliminary results from experiments on the Omega laser facility using d-He-3 filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 mu m lengthx1200 mu m diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-He-3 gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra. C1 [Delamater, N. D.; Wilson, D. C.; Kyrala, G. A.; Seifter, A.; Hoffman, N. M.; Dodd, E.; Singleton, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Glebov, V.; Stoeckl, C.] Univ Rochester, LLE, Rochester, NY 14627 USA. [Li, C. K.; Petrasso, R.; Frenje, J.] MIT, Cambridge, MA 02139 USA. RP Delamater, ND (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 15 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E526 DI 10.1063/1.2978198 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500108 PM 19044507 ER PT J AU Dewald, EL Thomas, C Milovich, J Edwards, J Sorce, C Kirkwood, R Meeker, D Jones, O Izumi, N Landen, OL AF Dewald, E. L. Thomas, C. Milovich, J. Edwards, J. Sorce, C. Kirkwood, R. Meeker, D. Jones, O. Izumi, N. Landen, O. L. TI NIF-scale re-emission sphere measurements of early-time Tr=100 eV hohlraum symmetry (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE ignition; plasma heating by laser; X-ray effects; X-ray reflection; X-ray scattering ID NATIONAL-IGNITION-FACILITY; TARGET EXPERIMENTS; PHYSICS BASIS AB The indirect-drive National Ignition Campaign (NIC) proposes to set the first 2 ns of hohlraum radiation symmetry by observing the instantaneous soft x-ray re-emission pattern from a high-Z sphere in place of the ignition capsule. To assess this technique under NIC conditions, we used the Omega Laser Facility to image the re-emission of Bi coated spheres with 200 ps temporal, 50-100 mu m spatial, and 30% spectral resolution. The sphere is driven by 70% NIC-scale vacuum Au hohlraums heated to Tr=100 eV using two cones per side laser beam illumination. The experiments have demonstrated the required accuracies of < 3%P(2)/P(0) and < 3%P(4)/P(0) Legendre mode flux asymmetry at both 900 and 1200 eV re-emission photon energies. The re-emission patterns at 900 and 1200 eV are also consistent with each other and their relative dependence on radiation temperature. We measured the P(2)/P(0) and P(4)/P(0) dependence to laser cone power ratio. View factor calculations are in agreement with the experimentally measured radiation flux and re-emit images when assuming 55% inner beam and 100 % outer beam coupling into x rays at the hohlraum wall. C1 [Dewald, E. L.; Thomas, C.; Milovich, J.; Edwards, J.; Sorce, C.; Kirkwood, R.; Meeker, D.; Jones, O.; Izumi, N.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dewald, EL (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI IZUMI, Nobuhiko/J-8487-2016 OI IZUMI, Nobuhiko/0000-0003-1114-597X NR 11 TC 15 Z9 15 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E903 DI 10.1063/1.2970041 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500161 PM 19044558 ER PT J AU Diem, SJ Taylor, G Caughman, JB Efthimion, P Kugel, H LeBlanc, BP Preinhaelter, J Sabbagh, SA Urban, J Wilgen, J AF Diem, S. J. Taylor, G. Caughman, J. B. Efthimion, P. Kugel, H. LeBlanc, B. P. Preinhaelter, J. Sabbagh, S. A. Urban, J. Wilgen, J. TI Electron Bernstein wave emission based diagnostic on National Spherical Torus Experiment (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma Bernstein waves; plasma boundary layers; plasma collision processes; plasma diagnostics; plasma fluctuations; plasma instability; Tokamak devices ID PLASMA; PROPAGATION; TOKAMAKS; MODE AB National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B(T) less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T(e) measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T(e) measurements in the ST. Practically, a robust T(e)(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T(e)(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T(e)< 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T(e) inside the B-X-O MC layer, significantly increasing B-X-O transmission. C1 [Diem, S. J.; Taylor, G.; Efthimion, P.; Kugel, H.; LeBlanc, B. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Caughman, J. B.; Wilgen, J.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Preinhaelter, J.; Urban, J.] IPPCR Assoc, EURATOM, Inst Plasma Phys, Prague 18200, Czech Republic. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Diem, SJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Caughman, John/R-4889-2016 OI Urban, Jakub/0000-0002-1796-3597; Caughman, John/0000-0002-0609-1164 NR 20 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F101 DI 10.1063/1.2953592 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500191 PM 19044588 ER PT J AU Doppner, T Neumayer, P Girard, F Kugland, NL Landen, OL Niemann, C Glenzer, SH AF Doeppner, T. Neumayer, P. Girard, F. Kugland, N. L. Landen, O. L. Niemann, C. Glenzer, S. H. TI High order reflectivity of highly oriented pyrolytic graphite crystals for x-ray energies up to 22 keV SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE graphite; plasma inertial confinement; plasma light propagation; plasma X-ray sources; reflectivity; X-ray scattering ID HIGH-INTENSITY AB We used Kr K alpha (12.6 keV), Zr K alpha (15.7 keV), and Ag K alpha (22.2 keV) x-rays, produced by petawatt-class laser pulses, to measure the integrated crystal reflectivity R(int) of flat highly oriented pyrolytic graphite (HOPG) up to the fifth order. The maximum R(int) was observed in first order (3.7 mrad at 12.6 keV), decreasing by a factor of 3-5 for every successive order, and dropping by a factor of 2-2.5 at 22.2 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x-ray sources (E >= 20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility. C1 [Doeppner, T.; Neumayer, P.; Kugland, N. L.; Landen, O. L.; Niemann, C.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kugland, N. L.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Girard, F.] Commissariat Energie Atom, F-91680 Bruyeres Le Chatel, France. RP Doppner, T (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 14 TC 10 Z9 10 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E311 DI 10.1063/1.2966378 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500069 PM 19044473 ER PT J AU Dunn, J Magee, EW Shepherd, R Chen, H Hansen, SB Moon, SJ Brown, GV Gu, MF Beiersdorfer, P Purvis, MA AF Dunn, J. Magee, E. W. Shepherd, R. Chen, H. Hansen, S. B. Moon, S. J. Brown, G. V. Gu, M. -F. Beiersdorfer, P. Purvis, M. A. TI High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma production by laser; plasma X-ray sources ID GRATING SPECTROMETER; SPECTRA AB A large radius, R=44.3 m, high resolution grating spectrometer (HRGS) with 2400 lines/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 A wavelength range. The instrument can be run with a 10-20 mu m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 A, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (full width at half maximum), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies. C1 [Dunn, J.; Magee, E. W.; Shepherd, R.; Chen, H.; Hansen, S. B.; Moon, S. J.; Brown, G. V.; Gu, M. -F.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Purvis, M. A.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Purvis, M. A.] Colorado State Univ, NSF ERC Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. RP Dunn, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM dunn6@llnl.gov NR 15 TC 4 Z9 4 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E314 DI 10.1063/1.2968704 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500072 PM 19044476 ER PT J AU Fittinghoff, DN Bower, DE Hollaway, JR Jacoby, BA Weiss, PB Buckles, RA Sammons, TJ McPherson, LA Ruiz, CL Chandler, GA Torres, JA Leeper, RJ Cooper, GW Nelson, AJ AF Fittinghoff, David N. Bower, Dan E. Hollaway, James R. Jacoby, Barry A. Weiss, Paul B. Buckles, Robert A. Sammons, Timothy J. McPherson, Leroy A. Jr. Ruiz, Carlos L. Chandler, Gordon A. Torres, Jose A. Leeper, Ramon J. Cooper, Gary W. Nelson, Alan J. TI One-dimensional neutron imager for the Sandia Z facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE deuterium; neutron radiography; neutron sources; plasma diagnostics; plasma production; tritium; Z pinch ID INERTIAL CONFINEMENT FUSION; Z PINCHES; TARGETS; PHYSICS AB A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 mu m along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility. C1 [Fittinghoff, David N.; Bower, Dan E.; Hollaway, James R.; Jacoby, Barry A.; Weiss, Paul B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Buckles, Robert A.; Sammons, Timothy J.] Natl Secur Technol LLC, Livermore, CA 94550 USA. [McPherson, Leroy A. Jr.; Ruiz, Carlos L.; Chandler, Gordon A.; Torres, Jose A.; Leeper, Ramon J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cooper, Gary W.; Nelson, Alan J.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Fittinghoff, DN (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM fittinghoff1@llnl.gov NR 12 TC 3 Z9 3 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E530 DI 10.1063/1.2988819 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500112 PM 19044511 ER PT J AU Flippo, KA Workman, J Gautier, DC Letzring, S Johnson, RP Shimada, T AF Flippo, K. A. Workman, J. Gautier, D. C. Letzring, S. Johnson, R. P. Shimada, T. TI Scaling laws for energetic ions from the commissioning of the new Los Alamos National Laboratory 200 TW Trident laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE laser beams; proton beams; solid lasers ID ACCELERATED PROTON-BEAMS; HIGH-INTENSITY LASER; PLASMA INTERACTIONS; TARGETS; DRIVEN; GENERATION; SIMULATION; PULSES; SOLIDS AB The recent Los Alamos National Laboratory Trident laser enhanced from 30 to 200 TW in power allows more than 100 J to be delivered on target in 500 fs with a spot size smaller than 12 mu m at full width at half maximum. 15 mu m flat-foil targets have been observed to produce proton beams in excess of 50 MeV at an intensity of only similar to 4x10(19) W/cm(2) with efficiencies approaching 5%. The Trident laser beam characteristics are presented along with the data compared to published scaling laws for proton acceleration. C1 [Flippo, K. A.; Workman, J.; Gautier, D. C.; Letzring, S.; Johnson, R. P.; Shimada, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Flippo, KA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 NR 37 TC 17 Z9 17 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E534 DI 10.1063/1.2987678 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500116 PM 19044515 ER PT J AU Florido, R Nagayama, T Mancini, RC Tommasini, R Delettrez, JA Regan, SP Smalyuk, VA Rodriguez, R Gil, JM AF Florido, R. Nagayama, T. Mancini, R. C. Tommasini, R. Delettrez, J. A. Regan, S. P. Smalyuk, V. A. Rodriguez, R. Gil, J. M. TI Analysis of time-resolved argon line spectra from OMEGA direct-drive implosions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE argon; explosions; plasma diagnostics; plasma inertial confinement; radiative transfer; spectral line breadth; time resolved spectra; X-ray spectra ID SHELL SPECTROSCOPY; CORE CONDITIONS; PROFILES; OPACITY; PLASMAS AB We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 mu m in diameter, 27 mu m wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for diagnostic purposes. The argon K-shell line spectrum is primarily emitted at the collapse of the implosion and its analysis provides a spectroscopic diagnostic of the core implosion conditions. The observed spectra includes the He alpha, Ly alpha, He beta, He gamma, Ly beta, and Ly gamma line emissions and their associated He- and Li-like satellites thus covering a broad photon energy range from 3100 to 4200 eV with a spectral resolution power of approximately 500. The data analysis relies on detailed atomic and spectral models that take into account nonequilibrium collisional-radiative atomic kinetics, Stark-broadened line shapes, and radiation transport calculations. C1 [Florido, R.; Nagayama, T.; Mancini, R. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Tommasini, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Florido, R.; Rodriguez, R.; Gil, J. M.] Univ Las Palmas Gran Canaria, Dept Fis, Las Palmas Gran Canaria 35017, Spain. RP Florido, R (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Tommasini, Riccardo/A-8214-2009; Florido, Ricardo/H-5513-2015 OI Tommasini, Riccardo/0000-0002-1070-3565; Florido, Ricardo/0000-0001-7428-6273 NR 10 TC 8 Z9 9 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E310 DI 10.1063/1.2965779 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500068 PM 19044472 ER PT J AU Foley, EL Levinton, FM Yuh, HY Zakharov, LE AF Foley, E. L. Levinton, F. M. Yuh, H. Y. Zakharov, L. E. TI The motional Stark effect diagnostic for ITER using a line-shift approach SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE fluorescence; fusion reactor instrumentation; laser beam applications; plasma diagnostics; plasma interactions; plasma magnetohydrodynamics; plasma simulation; Stark effect AB The United States has been tasked with the development and implementation of a motional Stark effect (MSE) system on ITER. In the harsh ITER environment, MSE is particularly susceptible to degradation, as it depends on polarimetry, and the polarization reflection properties of surfaces are highly sensitive to thin film effects due to plasma deposition and erosion of a first mirror. Here we present the results of a comprehensive study considering a new MSE-based approach to internal plasma magnetic field measurements for ITER. The proposed method uses the line shifts in the MSE spectrum (MSE-LS) to provide a radial profile of the magnetic field magnitude. To determine the utility of MSE-LS for equilibrium reconstruction, studies were performed using the ESC-ERV code system. A near-term opportunity to test the use of MSE-LS for equilibrium reconstruction is being pursued in the implementation of MSE with laser-induced fluorescence on NSTX. Though the field values and beam energies are very different from ITER, the use of a laser allows precision spectroscopy with a similar ratio of linewidth to line spacing on NSTX as would be achievable with a passive system on ITER. Simulation results for ITER and NSTX are presented, and the relative merits of the traditional line polarization approach and the new line-shift approach are discussed. C1 [Foley, E. L.; Levinton, F. M.; Yuh, H. Y.] Nova Photon Inc, Princeton, NJ 08540 USA. [Zakharov, L. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Foley, EL (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. EM foley@novaphotonics.com NR 11 TC 8 Z9 8 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F521 DI 10.1063/1.2957776 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500278 PM 19044666 ER PT J AU Frenje, JA Casey, DT Li, CK Rygg, JR Seguin, FH Petrasso, RD Yu Glebov, V Meyerhofer, DD Sangster, TC Hatchett, S Haan, S Cerjan, C Landen, O Moran, M Song, P Wilson, DC Leeper, RJ AF Frenje, J. A. Casey, D. T. Li, C. K. Rygg, J. R. Seguin, F. H. Petrasso, R. D. Yu Glebov, V. Meyerhofer, D. D. Sangster, T. C. Hatchett, S. Haan, S. Cerjan, C. Landen, O. Moran, M. Song, P. Wilson, D. C. Leeper, R. J. TI First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE explosions; neutron spectrometers; plasma density; plasma diagnostics; plasma inertial confinement; plasma temperature ID NATIONAL-IGNITION-FACILITY; INERTIAL-CONFINEMENT-FUSION; LASER; IMPLOSIONS; PLASMAS AB A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly , Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density (rho R), ion temperature (T(i)), and yield (Y(n)) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring rho R at the National Ignition Facility (NIF) [G. H. Miller , Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well. C1 [Frenje, J. A.; Casey, D. T.; Li, C. K.; Rygg, J. R.; Seguin, F. H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Hatchett, S.; Haan, S.; Cerjan, C.; Landen, O.; Moran, M.; Song, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Leeper, R. J.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Frenje, JA (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 22 TC 46 Z9 47 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E502 DI 10.1063/1.2956837 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500084 PM 19044488 ER PT J AU Gautier, DC Flippo, KA Letzring, SA Shimada, JWT Johnson, RP Hurry, TR Gaillard, SA Hegelich, BM AF Gautier, D. C. Flippo, K. A. Letzring, S. A. Shimada, J. Workman T. Johnson, R. P. Hurry, T. R. Gaillard, S. A. Hegelich, B. M. TI A novel backscatter focus diagnostic for the TRIDENT 200 TW laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE optical focusing; plasma diagnostics; plasma-beam interactions ID ACCELERATION AB Here we present the first direct focal spot images and analysis of an ultrahigh intensity short-pulse laser focus (>5x10(19) W/cm(2)) on target. Such a focal spot characterization is typically done previous to the shot with a low-power alignment beam using equivalent plane imaging techniques. The resulting intensity of the shot is then inferred from these results. We report on the development of a backscatter focus diagnostic, which enables imaging of the on-target full-power focal spot. C1 [Gautier, D. C.; Flippo, K. A.; Letzring, S. A.; Shimada, J. Workman T.; Johnson, R. P.; Hurry, T. R.; Gaillard, S. A.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gaillard, S. A.] Univ Nevada, Nevada Terawatt Facil, Reno, NV 89557 USA. RP Gautier, DC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Hegelich, Bjorn/J-2689-2013; Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 NR 11 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F547 DI 10.1063/1.2979881 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500304 PM 19044689 ER PT J AU Gautier, DC Kline, JL Flippo, KA Gaillard, SA Letzring, SA Hegelich, BM AF Gautier, D. C. Kline, J. L. Flippo, K. A. Gaillard, S. A. Letzring, S. A. Hegelich, B. M. TI A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE cameras; light scattering; optical microscopy; particle tracks; photography; solid-state nuclear track detectors ID ACCELERATED PROTON-BEAMS; LASER; GENERATION AB Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface. A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola. C1 [Gautier, D. C.; Kline, J. L.; Flippo, K. A.; Gaillard, S. A.; Letzring, S. A.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gaillard, S. A.] Univ Nevada, Nevada Terawatt Facil, Reno, NV 89557 USA. RP Gautier, DC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Hegelich, Bjorn/J-2689-2013; Flippo, Kirk/C-6872-2009; OI Flippo, Kirk/0000-0002-4752-5141; Kline, John/0000-0002-2271-9919 NR 11 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E536 DI 10.1063/1.2965000 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500118 PM 19044517 ER PT J AU Giroud, C Meigs, AG Negus, CR Zastrow, KD Biewer, TM Versloot, TW AF Giroud, Carine Meigs, A. G. Negus, C. R. Zastrow, K. -D. Biewer, T. M. Versloot, T. W. CA JET-EFDA Contributors TI Impact of calibration technique on measurement accuracy for the JET core charge-exchange system SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE calibration; plasma density; plasma diagnostics; plasma impurities; plasma temperature; plasma toroidal confinement AB The core charge-exchange diagnostic at the Joint European Torus (JET) provides measurements of the impurity ion temperature T(i), toroidal velocity V(Phi), and impurity ion densities n(imp), across the whole minor radius. A contribution to the uncertainty of the measured quantities is the error resulting from the multi-Gaussian fit and photon statistics, usually quoted for each measured data. Absolute intensity calibration and especially alignment of the viewing directions can introduce an important systematic error. The technique adopted at JET to reduce this systematic contribution to the error is presented in this paper. The error in T(i), V(Phi), and n(imp) is then discussed depending on their use. C1 [Giroud, Carine; Meigs, A. G.; Negus, C. R.; Zastrow, K. -D.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Biewer, T. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Versloot, T. W.] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, Trilateral Euregio Cluster, NL-3430 BE Nieuwegein, Netherlands. [JET-EFDA Contributors] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Giroud, C (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM cgiroud@jet.uk NR 10 TC 19 Z9 19 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F525 DI 10.1063/1.2974806 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500282 PM 19068535 ER PT J AU Glebov, VY Moran, M Stoeckl, C Sangster, TC Cruz, M AF Glebov, V. Yu. Moran, M. Stoeckl, C. Sangster, T. C. Cruz, M. TI Neutron bang time detector based on a light pipe SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE neutron detection; oscilloscopes; photodiodes; photomultipliers; scintillation; stainless steel ID OMEGA AB A neutron bang time detector consisting of a scintillator, light pipe, photomultiplier tube (PMT), and high-bandwidth oscilloscope has been implemented on the 60-beam, 30 kJ OMEGA Laser Facility at the University of Rochester's Laboratory for Laser Energetics. Light from the scintillator, located 23 cm from the target, is transmitted from the target bay through a 9.6-m-long, 2 in. diameter polished stainless steel pipe to the PMT. The PMT signal is recorded by two channels of a 6 GHz, 10 GS/s Tektronix 6604 oscilloscope. The OMEGA optical fiducial pulse train is recorded on the third oscilloscope channel using a fast photodiode to provide the timing reference to the laser. This bang time detector is absolutely temporally calibrated and has been demonstrated to measure the bang time for neutron yields above 1x10(9) with an accuracy of better than 25 ps. C1 [Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.; Cruz, M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Moran, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Glebov, VY (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM vgle@lle.rochester.edu NR 10 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E528 DI 10.1063/1.2955571 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500110 PM 19044509 ER PT J AU Graf, A May, M Beiersdorfer, P AF Graf, A. May, M. Beiersdorfer, P. TI Multichannel Doppler transmission grating spectrometer at the Alcator C-Mod tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE Doppler measurement; plasma diagnostics; plasma temperature; plasma toroidal confinement; Tokamak devices; visible spectrometers ID ROTATION; PLASMAS AB Upgrades to an existing transmission grating spectrometer for visible light used for Doppler velocity and temperature measurements at the Alcator C-Mod tokamak are given. These include a new Princeton Instruments Photonmax 512B charge-coupled device and a four channel fiber optic input. These together allow improvements to the signal level, time resolution, and the number of spatial channels. The fiber optic input allows four simultaneous spatial channels each of which offers a larger percentage of input light flux when compared to the standard fiber slit combination. The "on chip" amplification combined with versatile pixel binning further increases the signal to noise ratio allowing a continuous acquisition of spectra every 8 ms. The error bars for extracted velocity and temperature values are potentially smaller owing to the smaller pixel size and increased light flux which allow a more detailed line shape and simplifies line fitting. Examples of time and space resolved spectra are shown and further improvements are discussed. C1 [Graf, A.] Univ Calif Davis, Davis, CA 95616 USA. [May, M.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Graf, A (reprint author), Univ Calif Davis, Davis, CA 95616 USA. NR 6 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F544 DI 10.1063/1.2953596 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500301 PM 19044686 ER PT J AU Grim, GP Finch, JP King, NSP Morgan, GL Oertel, JA Wilde, CH Wilke, MD Wilson, DC Johnson, DE AF Grim, G. P. Finch, J. P. King, N. S. P. Morgan, G. L. Oertel, J. A. Wilde, C. H. Wilke, M. D. Wilson, D. C. Johnson, D. E. TI A spatially resolved ion temperature diagnostic for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE fusion reactor ignition; plasma diagnostics; plasma inertial confinement; plasma temperature ID INERTIAL CONFINEMENT FUSION; NEUTRON; NIF; MIX AB The concepts and initial development efforts for a spatially resolved ion temperature diagnostic are described. The diagnostic is intended for Inertial Confinement Fusion experiments at the National Ignition Facility and is an integration of neutron aperture imaging and ion temperature techniques. The neutron imaging technique is extended by recording tomographic projections of the radiation-to-light converter on a streak camera. The streak record is used to calculate images at multiple times during the arrival of the thermally broadened 14.1 MeV neutron flux. The resulting set of images is used to determine the spatially resolved ion temperature. C1 [Grim, G. P.; Finch, J. P.; King, N. S. P.; Morgan, G. L.; Oertel, J. A.; Wilde, C. H.; Wilke, M. D.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Johnson, D. E.] Nat Sect Technol, Los Alamos, NM 87544 USA. RP Grim, GP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM gpgrim@lanl.gov NR 13 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E537 DI 10.1063/1.2973324 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500119 PM 19044518 ER PT J AU Grim, GP Bradley, PA Bredeweg, TA Keksis, AL Fowler, MM Hayes, AC Jungman, G Obst, AW Rundberg, RS Vieira, DJ Wilhelmy, JB Bernstein, LA Cerjan, CJ Fortner, RJ Moody, KJ Schneider, DH Shaughnessy, DA Stoeffl, W Stoyer, MA AF Grim, G. P. Bradley, P. A. Bredeweg, T. A. Keksis, A. L. Fowler, M. M. Hayes, A. C. Jungman, G. Obst, A. W. Rundberg, R. S. Vieira, D. J. Wilhelmy, J. B. Bernstein, L. A. Cerjan, C. J. Fortner, R. J. Moody, K. J. Schneider, D. H. Shaughnessy, D. A. Stoeffl, W. Stoyer, M. A. TI Prompt radiochemistry at the National Ignition Facility (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE fusion reactor targets; plasma diagnostics; plasma inertial confinement ID DEBRIS COLLECTION; NIF; MIX AB Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material. C1 [Grim, G. P.; Bradley, P. A.; Bredeweg, T. A.; Keksis, A. L.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Obst, A. W.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bernstein, L. A.; Cerjan, C. J.; Fortner, R. J.; Moody, K. J.; Schneider, D. H.; Shaughnessy, D. A.; Stoeffl, W.; Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Grim, GP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM gpgrim@lanl.gov OI Bradley, Paul/0000-0001-6229-6677 NR 8 TC 6 Z9 6 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E503 DI 10.1063/1.2972174 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500085 PM 19044489 ER PT J AU Hanson, GR Wilgen, JB Lau, C Lin, Y Wallace, GM Wukitch, SJ AF Hanson, G. R. Wilgen, J. B. Lau, C. Lin, Y. Wallace, G. M. Wukitch, S. J. TI Scrape-off layer reflectometer for Alcator C-Mod SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE electron density; plasma applications; plasma boundary layers; plasma probes; reflectometers; Tokamak devices ID DENSITY PROFILE MEASUREMENTS AB A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of similar to 10 mu s to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations. C1 [Hanson, G. R.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lau, C.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Hanson, GR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Lin, Yijun/B-5711-2009 NR 7 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F114 DI 10.1063/1.2966460 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500204 PM 19044598 ER PT J AU Haugh, MJ Schneider, MB AF Haugh, M. J. Schneider, M. B. TI Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics ID GROUND CALIBRATION; ASTRO-E2 AB The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 mu m square pixels, and 15 mu m thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/Delta E approximate to 10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within +/- 1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager. C1 [Haugh, M. J.] Natl Secur Technol, Livermore, CA 94550 USA. [Schneider, M. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Haugh, MJ (reprint author), Natl Secur Technol, POB 2710, Livermore, CA 94550 USA. EM haughmj@nv.doegov NR 6 TC 6 Z9 6 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E925 DI 10.1063/1.2966457 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500183 PM 19044580 ER PT J AU Heeter, RF Anderson, SG Booth, R Brown, GV Emig, J Fulkerson, S McCarville, T Norman, D Schneider, MB Young, BKF AF Heeter, R. F. Anderson, S. G. Booth, R. Brown, G. V. Emig, J. Fulkerson, S. McCarville, T. Norman, D. Schneider, M. B. Young, B. K. F. TI OZSPEC-2: An improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma; sensors; X-ray emission spectra; X-ray spectrometers ID SPECTROGRAPH; CAMERAS; REGION AB A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 mu m resolution over a 1500 mu m field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/Delta E>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments. C1 [Heeter, R. F.; Anderson, S. G.; Booth, R.; Brown, G. V.; Emig, J.; Fulkerson, S.; McCarville, T.; Norman, D.; Schneider, M. B.; Young, B. K. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Heeter, RF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM heeter1@llnl.gov NR 15 TC 4 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E303 DI 10.1063/1.2981180 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500061 PM 19044465 ER PT J AU Herrmann, HW Mack, JM Young, CS Malone, RM Stoeffl, W Horsfield, CJ AF Herrmann, Hans W. Mack, Joseph M. Young, Carlton S. Malone, Robert M. Stoeffl, Wolfgang Horsfield, Colin J. TI Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE Cherenkov counters; Cherenkov radiation; explosions; fusion reactor instrumentation; gamma-rays; gas scintillation detectors; plasma inertial confinement; plasma production AB Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation. C1 [Herrmann, Hans W.; Mack, Joseph M.; Young, Carlton S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Malone, Robert M.] Natl Secur Technol, Los Alamos Operat, Los Alamos, NM 87544 USA. [Stoeffl, Wolfgang] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Horsfield, Colin J.] Atom Weapons Estab, Aldermaston, England. RP Herrmann, HW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 5 TC 7 Z9 11 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E531 DI 10.1063/1.2979868 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500113 PM 19044512 ER PT J AU Hill, KW Bitter, ML Scott, SD Ince-Cushman, A Reinke, M Rice, JE Beiersdorfer, P Gu, MF Lee, SG Broennimann, C Eikenberry, EF AF Hill, K. W. Bitter, M. L. Scott, S. D. Ince-Cushman, A. Reinke, M. Rice, J. E. Beiersdorfer, P. Gu, M. -F. Lee, S. G. Broennimann, Ch. Eikenberry, E. F. TI A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma flow; plasma temperature; plasma toroidal confinement; Tokamak devices; X-ray spectrometers AB A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (similar to 1 cm) and temporal (similar to 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (v(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and v(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented. C1 [Hill, K. W.; Bitter, M. L.; Scott, S. D.] Princeton Univ, PPPL, Princeton, NJ 08543 USA. [Ince-Cushman, A.; Reinke, M.; Rice, J. E.] MIT, PSFC, Cambridge, MA 02139 USA. [Beiersdorfer, P.; Gu, M. -F.] LLNL, Livermore, CA 94550 USA. [Lee, S. G.] Natl Fus Res Inst, Taejon 305333, South Korea. [Broennimann, Ch.; Eikenberry, E. F.] DECTRIS Ltd, CH-5232 Villigen, Switzerland. RP Hill, KW (reprint author), Princeton Univ, PPPL, POB 451, Princeton, NJ 08543 USA. NR 5 TC 26 Z9 27 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E320 DI 10.1063/1.2969080 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500078 PM 19044482 ER PT J AU Holcomb, CT Makowski, MA Allen, SL Meyer, WH Van Zeeland, MA AF Holcomb, C. T. Makowski, M. A. Allen, S. L. Meyer, W. H. Van Zeeland, M. A. TI Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM ID D TOKAMAK AB Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E(R) profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on the toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2955711] C1 [Holcomb, C. T.; Makowski, M. A.; Allen, S. L.; Meyer, W. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP Holcomb, CT (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. NR 12 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F518 DI 10.1063/1.2955711 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500275 PM 19044663 ER PT J AU Idzorek, GC Tierney, TE Lockard, TE Moy, KJ Keister, JW AF Idzorek, G. C. Tierney, T. E. Lockard, T. E. Moy, K. J. Keister, J. W. TI Reproducible, rugged, and inexpensive photocathode x-ray diode SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE calibration; carbon; photocathodes; photodiodes; scanning electron microscopy; X-ray apparatus AB The photoemissive cathode type of x-ray diode (XRD) is popular for measuring time and spectrally resolved output of pulsed power experiments. Vitreous carbon XRDs currently used on the Sandia National Laboratories Z-machine were designed in the early 1980s and use materials and processes no longer available. Additionally cathodes used in the high x-ray flux and dirty vacuum environment of a machine such as Z suffer from response changes requiring recalibration. In searching for a suitable replacement cathode, we discovered very high purity vitreous-carbon planchets are commercially available for use as biological substrates in scanning electron microscope (SEM) work. After simplifying the photocathode mounting to use commercially available components, we constructed a set of 20 XRDs using SEM planchets that were then calibrated at the National Synchrotron Light Source at Brookhaven National Laboratory. We present comparisons of the reproducibility and absolute calibrations between the current vitreous-carbon XRDs and our new design. C1 [Idzorek, G. C.; Tierney, T. E.; Lockard, T. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Moy, K. J.] NSTec, Las Vegas, NV 89193 USA. [Keister, J. W.] SFA Inc, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Idzorek, GC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 7 TC 0 Z9 2 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E922 DI 10.1063/1.2969279 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500180 PM 19044577 ER PT J AU Ince-Cushman, A Rice, JE Bitter, M Reinke, ML Hill, KW Gu, MF Eikenberry, E Broennimann, C Scott, S Podpaly, Y Lee, SG Marmar, ES AF Ince-Cushman, A. Rice, J. E. Bitter, M. Reinke, M. L. Hill, K. W. Gu, M. F. Eikenberry, E. Broennimann, Ch. Scott, S. Podpaly, Y. Lee, S. G. Marmar, E. S. TI Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma confinement; plasma diagnostics; Tokamak devices; X-ray detection; X-ray spectroscopy ID TOKAMAK PLASMA; CRYSTAL SPECTROMETERS; INVERSION; ASYMMETRIES; PROFILES; ARGON AB The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter , Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann , J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H. Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented. C1 [Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Marmar, E. S.] MIT, Cambridge, MA 02139 USA. [Bitter, M.; Hill, K. W.; Scott, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Gu, M. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Eikenberry, E.; Broennimann, Ch.] DECTRIS Ltd, CH-5232 Villigen, Switzerland. [Lee, S. G.] Natl Fus Res Inst, Taejon 305333, South Korea. RP Ince-Cushman, A (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 22 TC 74 Z9 74 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E302 DI 10.1063/1.2968707 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500060 PM 19044464 ER PT J AU Intrator, T Sun, X Dorf, L Furno, I Lapenta, G AF Intrator, T. Sun, X. Dorf, L. Furno, I. Lapenta, G. TI A three dimensional probe positioner SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma probes AB In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a "wobbly" probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame. C1 [Intrator, T.; Sun, X.; Furno, I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dorf, L.] Appl Mat Inc, Santa Clara, CA 95054 USA. [Lapenta, G.] Katholieke Univ Leuven, Ctr Plasma Astrofys, Melbourne, Vic 3001, Australia. RP Intrator, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Lapenta, Giovanni/0000-0002-3123-4024 NR 5 TC 3 Z9 3 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F129 DI 10.1063/1.2956746 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500219 PM 19044613 ER PT J AU Jones, B Coverdale, CA Nielsen, DS Jones, MC Deeney, C Serrano, JD Nielsen-Weber, LB Meyer, CJ Apruzese, JP Clark, RW Coleman, PL AF Jones, B. Coverdale, C. A. Nielsen, D. S. Jones, M. C. Deeney, C. Serrano, J. D. Nielsen-Weber, L. B. Meyer, C. J. Apruzese, J. P. Clark, R. W. Coleman, P. L. TI Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE copper; exploding wires; explosions; plasma diagnostics; plasma X-ray sources; X-ray imaging; Z pinch ID Z-ACCELERATOR; EMISSION AB A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage , in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with < 10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman , and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools. C1 [Jones, B.; Coverdale, C. A.; Nielsen, D. S.; Jones, M. C.; Deeney, C.] Sandia Natl Labs, Albuquerque, NM USA. [Serrano, J. D.; Nielsen-Weber, L. B.; Meyer, C. J.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Apruzese, J. P.; Clark, R. W.] USN, Res Lab, Washington, DC 20375 USA. [Coleman, P. L.] Alameda Appl Sci Corp, San Leandro, CA 94577 USA. RP Jones, B (reprint author), Sandia Natl Labs, Albuquerque, NM USA. EM bmjones@sandia.gov NR 17 TC 6 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E906 DI 10.1063/1.2969280 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500164 PM 19044561 ER PT J AU Kantsyrev, VL Safronova, AS Williamson, KM Wilcox, P Ouart, ND Yilmaz, MF Struve, KW Voronov, DL Feshchenko, RM Artyukov, IA Vinogradov, AV AF Kantsyrev, V. L. Safronova, A. S. Williamson, K. M. Wilcox, P. Ouart, N. D. Yilmaz, M. F. Struve, K. W. Voronov, D. L. Feshchenko, R. M. Artyukov, I. A. Vinogradov, A. V. TI Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma diodes; plasma production by laser; plasma sources AB New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed. C1 [Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Wilcox, P.; Ouart, N. D.; Yilmaz, M. F.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Struve, K. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Voronov, D. L.] Kharkiv Polytech Univ, UA-61002 Kharkov, Ukraine. [Feshchenko, R. M.; Artyukov, I. A.; Vinogradov, A. V.] PN Lebedev Phys Inst, Moscow 119991, Russia. RP Kantsyrev, VL (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Feshchenko, Ruslan/H-5832-2013; Vinogradov, Alexander/M-5331-2015; Artyukov, Igor/B-3105-2009 OI Feshchenko, Ruslan/0000-0002-2470-1595; Artyukov, Igor/0000-0001-7915-697X NR 10 TC 5 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F542 DI 10.1063/1.2957934 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500299 PM 19044684 ER PT J AU Keiter, PA Comely, A Morton, J Tierney, H Workman, J Taylor, M AF Keiter, Paul A. Comely, Andrew Morton, John Tierney, Heidi Workman, Jonathan Taylor, Mark TI Conversion efficiency of high-Z backlighter materials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE laser beam effects; optical materials; X-ray production; X-ray spectra ID LASER-PRODUCED PLASMA; X-RAY-EMISSION; TARGETS; PERFORMANCE AB High-Z backlighter materials are commonly used as x-ray sources for diagnosing laser-driven experiments. In order to properly plan for experiments and analyze the data, it is important to understand both the number and distribution of photons emitted by the x-ray source when it is irradiated by a laser. The conversion efficiency of L-shell and M-shell emitters is not as well understood as K-shell emitters. The conversion efficiency of the former is typically presented in terms of the entire L- or M-shell spectral region. However, for some applications, one may only want to use a subset of this spectral region. Laser conversion efficiency for L-shell and M-shell emitters suitable for high-energy (>3 keV) absorption spectroscopy is presented at multiple laser intensities. The measured conversion efficiency of the materials ranges from 0.2% to 0.6%. C1 [Keiter, Paul A.; Tierney, Heidi; Workman, Jonathan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Comely, Andrew; Morton, John; Taylor, Mark] Atom Weap Estab, Reading RG7 4PR, Berks, England. RP Keiter, PA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM pkeiter@lanl.gov RI Keiter, Paul/J-3037-2013 NR 16 TC 5 Z9 5 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E918 DI 10.1063/1.2978202 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500176 PM 19044573 ER PT J AU King, JD McLean, HS Wood, RD Romero-Talamas, CA Moller, JM Morse, EC AF King, J. D. McLean, H. S. Wood, R. D. Romero-Talamas, C. A. Moller, J. M. Morse, E. C. TI An ion Doppler spectrometer instrument for ion temperature and flow measurements on SSPX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE discharges (electric); Doppler broadening; flow measurement; helium; hydrogen; optical fibres; photomultipliers; plasma diagnostics; plasma flow; plasma temperature AB A high-resolution ion Doppler spectrometer (IDS) has been installed on the sustained spheromak plasma experiment to measure ion temperatures and plasma flow. The system is composed of a 1 m focal length Czerny-Turner spectrometer with a diffraction grating line density of 2400 lines/mm, which allows for first order spectra between 300 and 600 nm. A 16-channel photomultiplier tube detection assembly combined with output coupling optics provides a spectral resolution of 0.0126 nm/channel. We calculate in some detail the mapping of curved slit images onto the linear detector array elements. This is important in determining the wavelength resolution and setting the optimum vertical extent of the slit. Also, because of the small wavelength window of the IDS, a miniature fiber-optic survey spectrometer sensitive to a wavelength range 200-1100 nm and having a resolution of 0.2 nm is used to obtain a time-integrated spectrum for each shot to verify specific impurity line radiation. Several measurements validate the systems operation. Doppler broadening of C III 464.72 nm line in the plasma shows time-resolved ion temperatures up to 250 eV for hydrogen discharges, which is consistent with neutral particle energy analyzer measurements. Flow measurements show a sub-Alfvenic plasma flow ranging from 5 to 45 km/s for helium discharges. C1 [King, J. D.; McLean, H. S.; Wood, R. D.; Romero-Talamas, C. A.; Moller, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Morse, E. C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP King, JD (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. NR 10 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F535 DI 10.1063/1.2957842 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500292 PM 19044677 ER PT J AU Kline, JL Montgomery, DS Flippo, KA Johnson, RP Rose, HA Shimada, T Williams, EA AF Kline, J. L. Montgomery, D. S. Flippo, K. A. Johnson, R. P. Rose, H. A. Shimada, T. Williams, E. A. TI Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM AB A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degrees angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (similar to 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2955927] C1 [Kline, J. L.; Montgomery, D. S.; Flippo, K. A.; Johnson, R. P.; Rose, H. A.; Shimada, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Williams, E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kline, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Flippo, Kirk/C-6872-2009; OI Flippo, Kirk/0000-0002-4752-5141; Kline, John/0000-0002-2271-9919 NR 3 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F551 DI 10.1063/1.2955927 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500308 PM 19044693 ER PT J AU Ko, JS Scott, S Bitter, M Lerner, S AF Ko, Jinseok Scott, Steve Bitter, Manfred Lerner, Scott TI Design of a new optical system for Alcator C-Mod motional Stark effect diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE birefringence; calibration; light polarisation; light sources; mirrors; optical design techniques; optical focusing; polarimeters; ray tracing; Stark effect; thermal stresses; thermo-optical effects AB The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. C1 [Ko, Jinseok] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Scott, Steve; Bitter, Manfred] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lerner, Scott] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ko, JS (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. NR 5 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F520 DI 10.1063/1.2953681 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500277 PM 19044665 ER PT J AU Kritcher, AL Neumayer, P Lee, HJ Doppner, T Falcone, RW Glenzer, SH Morse, EC AF Kritcher, A. L. Neumayer, P. Lee, H. J. Doeppner, T. Falcone, R. W. Glenzer, S. H. Morse, E. C. TI Demonstration of x-ray Thomson scattering using picosecond K-alpha x-ray sources in the characterization of dense heated matter SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE free electron lasers; high-speed techniques; laser beams; laser fusion; plasma density; plasma diagnostics; plasma temperature; Thomson effect; X-ray scattering ID PLASMAS; LASER AB We present K-alpha x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-alpha x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1x10(5) photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL. C1 [Kritcher, A. L.; Neumayer, P.; Doeppner, T.; Glenzer, S. H.] Lawrence Livermore Natl Lab, L399, Livermore, CA 94551 USA. [Kritcher, A. L.; Morse, E. C.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. [Lee, H. J.; Falcone, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94709 USA. RP Kritcher, AL (reprint author), Lawrence Livermore Natl Lab, L399, POB 808, Livermore, CA 94551 USA. EM kritcher@berkeley.edu NR 19 TC 8 Z9 8 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E739 DI 10.1063/1.2965778 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500158 PM 19044555 ER PT J AU Kruschwitz, CA Wu, M Moy, K Rochau, G AF Kruschwitz, Craig A. Wu, Ming Moy, Ken Rochau, Greg TI Monte Carlo simulations of high-speed, time-gated microchannel-plate-based x-ray detectors: Saturation effects in dc and pulsed modes and detector dynamic range SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE microchannel plates; Monte Carlo methods; X-ray apparatus; X-ray detection ID MULTIPLIERS AB We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. A new model of charge buildup on the walls of the MCP channels is briefly described. The simulation results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser, and good agreement is found. These results indicate that a weak saturation can change the exponent of gain with voltage and that a strong saturation leads to a gain plateau. These results also demonstrate that the dynamic range of a MCP in pulsed mode has a value of between 10(2) and 10(3). C1 [Kruschwitz, Craig A.; Wu, Ming; Moy, Ken] Natl Secur Technol LLC, Los Alamos, NM 87544 USA. [Rochau, Greg] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kruschwitz, CA (reprint author), Natl Secur Technol LLC, Los Alamos, NM 87544 USA. NR 10 TC 8 Z9 8 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E911 DI 10.1063/1.2969283 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500169 PM 19044566 ER PT J AU Kugland, NL Neumayer, P Doppner, T Chung, HK Constantin, CG Girard, F Glenzer, SH Kemp, A Niemann, C AF Kugland, N. L. Neumayer, P. Doeppner, T. Chung, H. -K. Constantin, C. G. Girard, F. Glenzer, S. H. Kemp, A. Niemann, C. TI High contrast Kr gas jet K alpha x-ray source for high energy density physics experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE krypton; plasma diagnostics; plasma jets; plasma production by laser; plasma sources; plasma temperature; plasma X-ray sources ID PLASMAS AB A high contrast 12.6 keV Kr K alpha source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (K alpha to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10(-5). Filtered shadowgraphy indicates that the Kr K alpha and K beta x rays are emitted from a roughly 1x2 mm(2) emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e., mean ionization state 13-16), based on the observed ratio of K alpha to K beta. Kr gas jets provide a debris-free high energy K alpha source for time-resolved diagnosis of dense matter. C1 [Kugland, N. L.; Constantin, C. G.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Neumayer, P.; Doeppner, T.; Chung, H. -K.; Glenzer, S. H.; Kemp, A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Girard, F.] Commissariat Energie Atom, F-91680 Bruyeres Le Chatel, France. RP Kugland, NL (reprint author), Univ Calif Los Angeles, Dept Phys, Box 951547, Los Angeles, CA 90095 USA. NR 23 TC 17 Z9 17 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E917 DI 10.1063/1.2955709 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500175 PM 19044572 ER PT J AU Le Pape, S Macphee, A Hey, D Patel, P Mackinnon, A Key, M Pasley, J Wei, MS Chen, S Ma, T Beg, F Alexander, N Stephens, R Offerman, D Link, A Van-Woerkom, L Freeman, R AF Le Pape, Sebastien Macphee, Andrew Hey, Daniel Patel, Pravesh Mackinnon, Andrew Key, Mike Pasley, John Wei, Mingsheng Chen, Sophia Ma, Tammy Beg, Farhat Alexander, N. Stephens, Rich Offerman, Dustin Link, A. Van-Woerkom, Lynn Freeman, R. TI Density measurement of shock compressed foam using two-dimensional x-ray radiography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE density measurement; foams; high-speed optical techniques; laser beam effects; quartz; radiography; shock wave effects; titanium; X-ray production ID DRIVEN; LASER; WAVES AB We have used spherically bent quartz crystal to image a laser-generated shock in a foam medium. The foam targets had a density of 0.16 g/cm(3) and thickness of 150 mu m, an aluminum/copper pusher drove the shock. The experiment was performed at the Titan facility at Lawrence Livermore National Laboratory using a 2 ns, 250 J laser pulse to compress the foam target, and a short pulse (10 ps, 350 J) to generate a bright Ti K alpha x-ray source at 4.5 keV to radiograph the shocked target. The crystal used gives a high resolution (similar to 20 mu m) monochromatic image of the shock compressed foam. C1 [Le Pape, Sebastien; Macphee, Andrew; Hey, Daniel; Patel, Pravesh; Mackinnon, Andrew; Key, Mike] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pasley, John; Wei, Mingsheng; Chen, Sophia; Ma, Tammy; Beg, Farhat] Univ Calif San Diego, La Jolla, CA 92093 USA. [Alexander, N.; Stephens, Rich] Gen Atom, San Diego, CA 92121 USA. [Offerman, Dustin; Link, A.; Van-Woerkom, Lynn; Freeman, R.] Ohio State Univ, Columbus, OH 43210 USA. RP Le Pape, S (reprint author), Lawrence Livermore Natl Lab, 700 East Ave, Livermore, CA 94550 USA. RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; Brennan, Patricia/N-3922-2015; OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; chen, sophia n./0000-0002-3372-7666; Stephens, Richard/0000-0002-7034-6141 FU U. S. Department of Energy [DE-FC02-04ER54789, DE-FG02-05ER54834, W-7405-Eng-48] FX This work was performed under the auspices of the U. S. Department of Energy under Contract Nos. DE-FC02-04ER54789 (Fusion Science Center), DE-FG02-05ER54834, and W-7405-Eng-48. The work and vital assistance of the technical, scientific, and administrative staff connected with the Jupiter Laser Facility at LLNL are gratefully acknowledged. Useful discussions regarding these experiments with S. C. Wilks of LLNL are also kindly acknowledged. This experiment was performed as part of LLNL's Institute of Laser Science and Applications-University Program. NR 15 TC 3 Z9 3 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 106104 DI 10.1063/1.2982237 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500054 PM 19044748 ER PT J AU LeBlanc, BP AF LeBlanc, B. P. TI Thomson scattering density calibration by Rayleigh and rotational Raman scattering on NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE argon; dust; electron density; geometrical optics; nitrogen; Raman spectra; Rayleigh scattering; stray light ID SYSTEM; LIGHT; GASES AB The multipoint Thomson scattering diagnostic measures the profiles of the electron temperature T(e)(R) and density n(e)(R) on the horizontal midplane of NSTX. Normal operation makes use of Rayleigh scattering in nitrogen or argon to derive the density profile. While the Rayleigh scattering n(e)(R) calibration has been validated by comparison to other density measurements and through its correlation with plasma phenomena, it does require dedicated detectors at the laser wavelength in this filter polychromator based diagnostic. The presence of dust and/or stray laser light precludes routine use of these dedicated spectral channels for Thomson scattering measurement. Hence it is of interest to investigate the use of Raman scattering in nitrogen for the purpose of density calibration since it could free up detection equipment, which could then be used for the instrumentation of additional radial channels. In this paper the viewing optics "geometrical factor" profiles obtained from Rayleigh and Raman scattering are compared. While both techniques agree nominally, residual effects on the order of 10% remain and will be discussed. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP LeBlanc, BP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM leblanc@pppl.gov NR 11 TC 11 Z9 11 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E737 DI 10.1063/1.2956747 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500156 PM 19044553 ER PT J AU Lee, SG Bak, JG Nam, UW Moon, MK Cheon, JK Bitter, M Hill, K AF Lee, S. G. Bak, J. G. Nam, U. W. Moon, M. K. Cheon, J. K. Bitter, M. Hill, K. TI Spectral resolution measurement of an x-ray imaging crystal spectrometer for KSTAR SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE delay lines; position sensitive particle detectors; readout electronics; Tokamak devices; X-ray imaging; X-ray spectrometers; X-ray tubes AB A spectral resolution measurement of the x-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research machine utilizing a segmented position-sensitive detector and time-to-digital converter based delay-line readout electronics was performed by using an x-ray tube in a laboratory. The measured spectral resolution is about 12 600, which means the actual energy resolution is 0.32 eV for the x-ray tube's bremsstrahlung peak energy of 4 keV. The results from the spectral resolution measurement are described. C1 [Lee, S. G.; Bak, J. G.] Natl Fus Res Inst, Taejon 305333, South Korea. [Nam, U. W.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Moon, M. K.; Cheon, J. K.] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Bitter, M.; Hill, K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lee, SG (reprint author), Natl Fus Res Inst, Taejon 305333, South Korea. EM sglee@nfri.re.kr NR 10 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E317 DI 10.1063/1.2982416 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500075 PM 19044479 ER PT J AU Lee, W Park, HK Cho, MH Namkung, W Smith, DR Domier, CW Luhmann, NC AF Lee, W. Park, H. K. Cho, M. H. Namkung, W. Smith, D. R. Domier, C. W. Luhmann, N. C., Jr. TI Spatial resolution study and power calibration of the high-k scattering system on NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE calibration; fusion reactor instrumentation; plasma diagnostics; plasma fluctuations; plasma turbulence; plasma waves; Tokamak devices ID TORE-SUPRA; TEMPERATURE GRADIENT; ELECTRON-TRANSPORT; TURBULENCE; TOKAMAK AB NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect. C1 [Lee, W.; Park, H. K.; Cho, M. H.; Namkung, W.] POSTECH, Dept Phys, Pohang 790784, South Korea. [Smith, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Domier, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Lee, W (reprint author), POSTECH, Dept Phys, Pohang 790784, South Korea. EM woochang@pppl.gov NR 17 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E723 DI 10.1063/1.2969404 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500142 PM 19044540 ER PT J AU Leeper, RJ AF Leeper, Ramon J. TI Preface: Proceedings of the 17th Topical Conference on High-Temperature Plasma Diagnostics, Albuquerque, NM, 2008 SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Editorial Material DE plasma confinement; plasma diagnostics C1 Sandia Natl Labs, Diagnost & Target Phys Dept, Albuquerque, NM 87185 USA. RP Leeper, RJ (reprint author), Sandia Natl Labs, Diagnost & Target Phys Dept, POB 5800, Albuquerque, NM 87185 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E101 DI 10.1063/1.2992523 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500058 ER PT J AU Lockard, TE Idzorek, GC Tierney, TE Watt, RG AF Lockard, T. E. Idzorek, G. C. Tierney, T. E., IV Watt, R. G. TI Radiation flux and spectral analysis of the multi-temperature Z dynamic hohlraum SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma temperature; plasma X-ray sources; Z pinch AB Experiments performed at the Sandia National Laboratories (SNL) Z-machine, located in Albuquerque, New Mexico produce hot (similar to 220 eV) plasmas. X-ray emission from the plasma is used to drive radiation flow experiments. Our standard plasma diagnostic suite consists of x-ray diodes (XRDs), silicon photodiodes, and nickel thin film bolometers. Small diagnostic holes allow us to view the hot plasma from the side, top axial anode side, and bottom axial cathode side. Computer software has been written to process the raw data to calculate data quality, fold in detector spectral response and experiment geometry for emitted flux, calculate a multidetector spectral unfold, and yield an equivalent time-dependent Planckian temperature profile. Spectral unfolds of our XRD data generally yield a Planckian-like spectrum. In our presentation we will compare our diagnostic techniques, analysis, and results to more accurately characterize spectral unfolds in order to establish better drive conditions for our experiments. C1 [Lockard, T. E.; Idzorek, G. C.; Tierney, T. E., IV; Watt, R. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lockard, TE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 10 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F322 DI 10.1063/1.2987681 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500241 PM 19044635 ER PT J AU London, RA Froula, DH Sorce, CM Moody, JD Suter, LJ Glenzer, SH Jones, OS Meezan, NB Rosen, MD AF London, R. A. Froula, D. H. Sorce, C. M. Moody, J. D. Suter, L. J. Glenzer, S. H. Jones, O. S. Meezan, N. B. Rosen, M. D. TI Optical transmission of glass for the National Ignition Facility near backscatter imagers under x-ray exposure SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE fusion reactor materials; glass; light transmission; plasma production by laser; radiation protection ID SIMULATIONS; SIO2 AB In experiments at the National Ignition Facility (NIF), the near backscatter imager materials need to maintain high optical transmission while exposed to hohlraum generated x rays. Glass plates are incorporated in the design to protect the optical scattering plates from x-ray damage. Radiation environments spanning those expected on NIF have been produced at the Omega Laser Facility by symmetric laser illumination of 1 mm sized gold spheres. The time-dependent ultraviolet transmission of sample glass plates was measured. The data are interpreted with a free electron absorption model. Combined with the simulations of the hohlraum x-ray emission, this model is used to predict the transmission of the glass plates on the NIF. We predict that the plates should perform adequately up to the peak of the laser pulse. C1 [London, R. A.; Froula, D. H.; Sorce, C. M.; Moody, J. D.; Suter, L. J.; Glenzer, S. H.; Jones, O. S.; Meezan, N. B.; Rosen, M. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP London, RA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. NR 20 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F549 DI 10.1063/1.2956833 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500306 PM 19044691 ER PT J AU Ma, T Beg, FN MacPhee, AG Chung, HK Key, MH Mackinnon, AJ Patel, PK Hatchett, S Akli, KU Stephens, RB Chen, CD Freeman, RR Link, A Offermann, DT Ovchinnikov, V Van Woerkom, LD AF Ma, T. Beg, F. N. MacPhee, A. G. Chung, H. -K. Key, M. H. Mackinnon, A. J. Patel, P. K. Hatchett, S. Akli, K. U. Stephens, R. B. Chen, C. D. Freeman, R. R. Link, A. Offermann, D. T. Ovchinnikov, V. Van Woerkom, L. D. TI Electron heated target temperature measurements in petawatt laser experiments based on extreme ultraviolet imaging and spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma beam injection heating; plasma diagnostics; plasma light propagation; plasma temperature AB Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 and 256 eV photon energies give a planar deuterated carbon target rear surface pre-expansion temperature in the 125-150 eV range, with the rear plasma plume averaging a temperature approximately 74 eV. C1 [Ma, T.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Ma, T.; MacPhee, A. G.; Chung, H. -K.; Key, M. H.; Mackinnon, A. J.; Patel, P. K.; Hatchett, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom, San Diego, CA 92186 USA. [Chen, C. D.] MIT, Plasma Sci Fus Ctr, Cambridge, MA 02139 USA. [Freeman, R. R.; Link, A.; Offermann, D. T.; Ovchinnikov, V.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. RP Ma, T (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Offermann, Dustin/0000-0002-6033-4905; Stephens, Richard/0000-0002-7034-6141 NR 7 TC 2 Z9 2 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E312 DI 10.1063/1.2965260 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500070 PM 19044474 ER PT J AU MacPhee, AG Akli, KU Beg, FN Chen, CD Chen, H Clarke, R Hey, DS Freeman, RR Kemp, AJ Key, MH King, JA Le Pape, S Link, A Ma, TY Nakamura, H Offermann, DT Ovchinnikov, VM Patel, PK Phillips, TW Stephens, RB Town, R Tsui, YY Wei, MS Van Woerkom, LD Mackinnon, AJ AF MacPhee, A. G. Akli, K. U. Beg, F. N. Chen, C. D. Chen, H. Clarke, R. Hey, D. S. Freeman, R. R. Kemp, A. J. Key, M. H. King, J. A. Le Pape, S. Link, A. Ma, T. Y. Nakamura, H. Offermann, D. T. Ovchinnikov, V. M. Patel, P. K. Phillips, T. W. Stephens, R. B. Town, R. Tsui, Y. Y. Wei, M. S. Van Woerkom, L. D. Mackinnon, A. J. TI Diagnostics for fast ignition science (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE bremsstrahlung; fusion reactor ignition; plasma diagnostics; plasma inertial confinement ID LASER-PLASMA INTERACTIONS; TARGETS AB The ignition concept for electron fast ignition inertial confinement fusion requires sufficient energy be transferred from an similar to 20 ps laser pulse to the compressed fuel via approximately MeV electrons. We have assembled a suite of diagnostics to characterize such transfer, simultaneously fielding absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256 eV; spherically bent crystal imagers at 4.5 and 8 keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung, electron and proton spectrometers (along the same line of sight), and a picosecond optical probe interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following the laser-plasma interactions at extremely high intensities in both planar and conical targets. Together with accurate on-shot laser focal spot and prepulse characterization, these measurements are yielding new insights into energy coupling and are providing critical data for validating numerical particle-in-cell (PIC) and hybrid PIC simulation codes in an area crucial for fast ignition and other applications. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultrahigh intensity laser-plasma interactions are discussed. C1 [MacPhee, A. G.; Chen, C. D.; Chen, H.; Hey, D. S.; Kemp, A. J.; Key, M. H.; Le Pape, S.; Patel, P. K.; Phillips, T. W.; Town, R.; Mackinnon, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA. [Beg, F. N.; King, J. A.; Ma, T. Y.; Wei, M. S.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Clarke, R.] CCLRC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Freeman, R. R.; Link, A.; Offermann, D. T.; Ovchinnikov, V. M.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. [Tsui, Y. Y.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada. [Nakamura, H.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. RP MacPhee, AG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM macphee2@llnl.gov RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014 OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906 NR 21 TC 16 Z9 16 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F302 DI 10.1063/1.2978199 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500221 PM 19044615 ER PT J AU Maddox, BR Park, HS Remington, BA McKernan, M AF Maddox, B. R. Park, H. S. Remington, B. A. McKernan, M. TI Calibration and characterization of single photon counting cameras for short-pulse laser experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE CCD image sensors; high-speed optical techniques; laser beams; photon counting; X-ray spectra AB The x-ray photon counting efficiency of various charged-coupled device (CCD) based cameras was studied as a function of photon energy and exposure. A pair of Spectral Instruments model 800 CCD cameras fitted with 16 mu m thick back-illuminated CCDs were calibrated at low x-ray energy using two well established histogram methods. In addition, two new thick substrate CCDs were evaluated for use at high energy. One was a commercially available Princeton Instruments PI-LCX1300 deep depletion CCD camera, while the other used a custom designed 650 mu m thick partially depleted CCD fitted to a Spectral Instruments model 800 camera body. It is shown that at high x-ray energy, a pixel-summing algorithm is necessary to reconstruct the x-ray spectra in the thicker substrate CCDs. This paper will describe the different algorithms used to extract spectra and the absolute detection efficiencies using these algorithms. These detectors and algorithms will be very useful in detecting high-energy x-ray photons from high-intensity short-pulse laser interactions. C1 [Maddox, B. R.; Park, H. S.; Remington, B. A.; McKernan, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Maddox, BR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 9 TC 18 Z9 23 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E924 DI 10.1063/1.2966374 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500182 PM 19044579 ER PT J AU Makowski, MA Allen, SL Holcomb, CT Lerner, S Morris, K Wong, N AF Makowski, M. A. Allen, S. L. Holcomb, C. T. Lerner, S. Morris, K. Wong, N. TI Optimization of the optical design of the ITER MSE diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE aberrations; light polarisation; mirrors; plasma diagnostics; Stark effect AB The motional Stark effect (MSE) diagnostic will be essential for the study of advanced scenarios on ITER and its design is currently underway with initial emphasis on the optical design. Optical performance, as measured by photon throughput and minimization of polarization aberrations, will be critical to the success of the diagnostic. Consequently, the initial design work has been focused heavily on this area. In order meet the ITER MSE diagnostic design requirements, two approaches for the measurement are under consideration. The first is based on standard polarimeter techniques to measure the polarization of the emitted light, whereas the second measures the Stark splitting from which parallel to B parallel to can be inferred, where parallel to B parallel to is the magnitude of the total magnetic field. The base line design of the optical system is centered on the first approach. Emphasis in this case is placed on minimizing the polarization aberrations of the optical relay system. Motivation for the second method results from concern that the optical properties of the plasma-facing mirror, particularly its diattenuation and retardance, will degrade with plasma exposure. The second approach, while less sensitive to aberrations induced by plasma exposure effects, requires greater optical throughput in order to measure the complete Stark spectrum. We have developed an optimized optical design applicable to both measurement techniques. A summary of the design is presented and design issues are discussed. C1 [Makowski, M. A.; Allen, S. L.; Holcomb, C. T.; Lerner, S.; Morris, K.; Wong, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Makowski, MA (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. NR 5 TC 1 Z9 1 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F519 DI 10.1063/1.2955708 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500276 PM 19044664 ER PT J AU Malone, RM Herrmann, HW Stoeffl, W Mack, JM Young, CS AF Malone, R. M. Herrmann, H. W. Stoeffl, W. Mack, J. M. Young, C. S. TI Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 degrees off-axis parabolic mirrors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE Cherenkov counters; fusion reactor instrumentation; gamma-ray detection; mirrors; plasma diagnostics AB Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities. C1 [Malone, R. M.] Natl Secur Technol, Los Alamos, NM 87544 USA. [Herrmann, H. W.; Mack, J. M.; Young, C. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stoeffl, W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Malone, RM (reprint author), Natl Secur Technol, POB 809, Los Alamos, NM 87544 USA. NR 3 TC 10 Z9 14 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E532 DI 10.1063/1.2969281 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500114 PM 19044513 ER PT J AU May, MJ Halvorson, C Perry, T Weber, F Young, P Silbernagel, C AF May, M. J. Halvorson, C. Perry, T. Weber, F. Young, P. Silbernagel, C. TI Photoconductive detectors with fast temporal response for laser produced plasma experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE diamond; gallium arsenide; photoconducting devices; plasma diagnostics; plasma production by laser; synchrotron radiation; X-ray detection AB Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires x-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different x-ray sensitive photoconductive detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using x-ray radiation from a synchrotron radiation source are presented. C1 [May, M. J.; Halvorson, C.; Perry, T.; Weber, F.; Young, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Silbernagel, C.] Natl Secur Technol LLC, Livermore, CA 94550 USA. RP May, MJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RI Perry, Theodore/K-3333-2014 OI Perry, Theodore/0000-0002-8832-2033 NR 8 TC 2 Z9 2 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E304 DI 10.1063/1.2955614 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500062 PM 19044466 ER PT J AU McCarthy, KJ Combs, SK Baylor, LR Caughman, JBO Fehling, DT Foust, CR McGill, JM Carmona, JM Rasmussen, DA AF McCarthy, K. J. Combs, S. K. Baylor, L. R. Caughman, J. B. O. Fehling, D. T. Foust, C. R. McGill, J. M. Carmona, J. M. Rasmussen, D. A. TI A compact flexible pellet injector for the TJ-II stellarator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE cryogenics; fusion reactor design; fusion reactor materials; plasma toroidal confinement; refrigeration; stellarators ID TECHNOLOGY; SYSTEM AB A compact pellet injector is being built for the TJ-II stellarator. It is an upgraded version of the "pellet injector in a suitcase" developed at Oak Ridge National Laboratory and installed on the Madison Symmetric Torus where it continues to be used in many plasma experiments. The design aim is to provide maximum flexibility at minimal cost, while allowing for future upgrades. It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation, a combined mechanical punch/propellant valve system, pellet diagnostics, and an injection line, destined for use as an active diagnostic and for fueling. In order to fulfill both objectives it will be sufficiently flexible to permit pellets, with diameters from 0.4 to 1 mm, to be fabricated and accelerated to velocities from 150 to similar to 1000 m s(-1). C1 [McCarthy, K. J.; Carmona, J. M.] CIEMAT, Lab Nacl Fus, E-28040 Madrid, Spain. [Combs, S. K.; Baylor, L. R.; Caughman, J. B. O.; Fehling, D. T.; Foust, C. R.; McGill, J. M.; Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McCarthy, KJ (reprint author), CIEMAT, Lab Nacl Fus, Av Complutense 22, E-28040 Madrid, Spain. RI Caughman, John/R-4889-2016 OI Caughman, John/0000-0002-0609-1164 NR 14 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F321 DI 10.1063/1.2955706 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500240 PM 19044634 ER PT J AU Nagayama, T Mancini, RC Florido, R Tommasini, R Koch, JA Delettrez, JA Regan, SP Smalyuk, VA Welser-Sherrill, LA Golovkin, IE AF Nagayama, T. Mancini, R. C. Florido, R. Tommasini, R. Koch, J. A. Delettrez, J. A. Regan, S. P. Smalyuk, V. A. Welser-Sherrill, L. A. Golovkin, I. E. TI Comparison of genetic-algorithm and emissivity-ratio analyses of image data from OMEGA implosion cores SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE explosions; genetic algorithms; laser fusion; plasma diagnostics; plasma temperature ID X-RAY SPECTROSCOPY; GRADIENTS; PLASMAS; SHELL AB Detailed analysis of x-ray narrow-band images from argon-doped deuterium-filled inertial confinement fusion implosion experiments yields information about the temperature spatial structure in the core at the collapse of the implosion. We discuss the analysis of direct-drive implosion experiments at OMEGA, in which multiple narrow-band images were recorded with a multimonochromatic x-ray imaging instrument. The temperature spatial structure is investigated by using the sensitivity of the Ly beta/He beta line emissivity ratio to the temperature. Three analysis methods that consider the argon He beta and Ly beta image data are discussed and the results compared. The methods are based on a ratio of image intensities, ratio of Abel-inverted emissivities, and a search and reconstruction technique driven by a Pareto genetic algorithm. C1 [Nagayama, T.; Mancini, R. C.; Florido, R.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Tommasini, R.; Koch, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Welser-Sherrill, L. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Golovkin, I. E.] Prism Computat Sci, Madison, WI 53711 USA. RP Nagayama, T (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Florido, Ricardo/H-5513-2015; Tommasini, Riccardo/A-8214-2009 OI Florido, Ricardo/0000-0001-7428-6273; Tommasini, Riccardo/0000-0002-1070-3565 NR 10 TC 15 Z9 17 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E921 DI 10.1063/1.2966370 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500179 PM 19044576 ER PT J AU Neumayer, P Sorce, C Froula, DH Divol, L Rekow, V Loughman, K Knight, R Glenzer, SH Bahr, R Seka, W AF Neumayer, Paul Sorce, Charles Froula, Dustin H. Divol, Laurent Rekow, Vern Loughman, Kevin Knight, Russel Glenzer, Siegfried H. Bahr, Raymond Seka, Wolf TI A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE backscatter; calibration; laser fusion; solid lasers; stimulated Brillouin scattering; stimulated Raman scattering ID PLASMAS AB A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a millijoule-class laser onto the diagnostic to allow the in situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the second and third harmonics of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled Hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets. C1 [Neumayer, Paul; Sorce, Charles; Froula, Dustin H.; Divol, Laurent; Rekow, Vern; Loughman, Kevin; Knight, Russel; Glenzer, Siegfried H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Bahr, Raymond; Seka, Wolf] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Neumayer, P (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 9 TC 9 Z9 10 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F548 DI 10.1063/1.2953413 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500305 PM 19044690 ER PT J AU Olson, RE Hicks, DG Spears, BK Celliers, PM Holder, JP Landen, OL Geissel, M Kellogg, JW Bennett, GR Edens, AD Atherton, BW Leeper, RJ AF Olson, R. E. Hicks, D. G. Spears, B. K. Celliers, P. M. Holder, J. P. Landen, O. L. Geissel, M. Kellogg, J. W. Bennett, G. R. Edens, A. D. Atherton, B. W. Leeper, R. J. TI Design of a streaked radiography instrument for ICF ablator tuning measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma inertial confinement; radiography AB A streaked radiography diagnostic has been proposed as a technique to determine the ablator mass remaining in an inertial confinement fusion ignition capsule at peak velocity. This instrument, the "HXRI-5," has been designed to fit within a National Ignition Facility Diagnostic Instrument Manipulator. The HXRI-5 will be built at Sandia National Laboratories (SNL), and initial testing will be done at the SNL Z-Beamlet Facility. In this paper, we will describe the National Ignition Campaign requirements for this diagnostic, the instrument design, and the planned test experiments. C1 [Olson, R. E.; Geissel, M.; Kellogg, J. W.; Bennett, G. R.; Edens, A. D.; Atherton, B. W.; Leeper, R. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hicks, D. G.; Spears, B. K.; Celliers, P. M.; Holder, J. P.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Olson, RE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM reolson@sandia.gov RI Hicks, Damien/B-5042-2015 OI Hicks, Damien/0000-0001-8322-9983 NR 8 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E913 DI 10.1063/1.2965021 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500171 PM 19044568 ER PT J AU Osborn, DL Zou, P Johnsen, H Hayden, CC Taatjes, CA Knyazev, VD North, SW Peterka, DS Ahmed, M Leone, SR AF Osborn, David L. Zou, Peng Johnsen, Howard Hayden, Carl C. Taatjes, Craig A. Knyazev, Vadim D. North, Simon W. Peterka, Darcy S. Ahmed, Musahid Leone, Stephen R. TI The multiplexed chemical kinetic photoionization mass spectrometer: A new approach to isomer-resolved chemical kinetics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE mass spectrometers; multiplexing; photoionisation; reaction kinetics; synchrotron radiation ID ALKYLPEROXY RADICALS; BEAM; PHOTOABSORPTION; RESOLUTION; STABILITY; DYNAMICS; PROPYNE; CATIONS; ALLENE; FLOW AB We have developed a multiplexed time- and photon-energy-resolved photoionization mass spectrometer for the study of the kinetics and isomeric product branching of gas phase, neutral chemical reactions. The instrument utilizes a side-sampled flow tube reactor, continuously tunable synchrotron radiation for photoionization, a multimass double-focusing mass spectrometer with 100% duty cycle, and a time- and position-sensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed three-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation. C1 [Osborn, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Knyazev, Vadim D.] Catholic Univ Amer, Dept Chem, Res Ctr Chem Kinet, Washington, DC 20064 USA. [North, Simon W.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.] Ernest Orlando Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. RP Osborn, DL (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM dlosbor@sandia.gov; cataatj@sandia.gov RI Osborn, David/A-2627-2009; Ahmed, Musahid/A-8733-2009; North, Simon/G-5054-2012 OI North, Simon/0000-0002-0795-796X FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U. S. Department of Energy; Sandia Corporation, a Lockheed Martin Co. [DE-AC04-94-AL85000]; Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Mahadeva Sinha (Jet Propulsion Laboratory) and Intelligent Ion Inc. for technical advice in optimizing the mass spectrometer for photoionization and Professor Evan Williams (University of California, Berkeley) for helpful discussions. We thank Mr. Eric Granlund (University of California, Berkeley) for excellent machining of custom parts, Dr. Oswald Siegmund (Sensor Sciences) for assistance in implementing the detector technology, and Dr. Kevin Wilson (Lawrence Berkeley National Laboratory) for advice and support at the Chemical Dynamics Beamline. This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U. S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 28 TC 70 Z9 70 U1 12 U2 65 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 104103 DI 10.1063/1.3000004 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500039 PM 19044733 ER PT J AU Osborne, GC Safronova, AS Kantsyrev, VL Safronova, UI Yilmaz, MF Williamson, KM Shrestha, I Beiersdorfer, P AF Osborne, G. C. Safronova, A. S. Kantsyrev, V. L. Safronova, U. I. Yilmaz, M. F. Williamson, K. M. Shrestha, I. Beiersdorfer, P. TI Diagnostic of charge balance in high-temperature tungsten plasmas using LLNL EBIT SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE inner-shell ionisation; plasma collision processes; plasma diagnostics; plasma X-ray sources; tungsten; Z pinch AB Diagnostic of high-temperature M-shell W plasmas is challenging because of contribution of numerous ionization stages in a relatively narrow x-ray spectral region. A method using LLNL EBIT data generated at different electron beam energies has been established for the identification of prominent spectral features and for the determination of charge balance in x-ray M-shell W spectra between 3.5 and 8.5 A. It extends previous work [A. S. Safronova , Can. J. Phys. 86, 267 (2008)] which used only Ni-like lines to include the neighboring ionization stages. This diagnostic procedure was tested with results from Z-pinch plasmas produced on the 1 MA pulse power generator Zebra at UNR. These results are of particular importance for fusion research. C1 [Osborne, G. C.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Yilmaz, M. F.; Williamson, K. M.; Shrestha, I.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Osborne, GC (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 6 TC 4 Z9 4 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E308 DI 10.1063/1.2968100 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500066 PM 19044470 ER PT J AU Pablant, NA Burrell, KH Groebner, RJ Kaplan, DH Holcomb, CT AF Pablant, N. A. Burrell, K. H. Groebner, R. J. Kaplan, D. H. Holcomb, C. T. TI Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM ID SPECTROSCOPY; PROFILES; TOKAMAK; PLASMAS AB We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D-alpha emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D-alpha transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2966596] C1 [Pablant, N. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.] Gen Atom Co, San Diego, CA 92186 USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pablant, NA (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. NR 16 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F517 DI 10.1063/1.2966596 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500274 PM 19044662 ER PT J AU Podesta, M Heidbrink, WW Bell, RE Feder, R AF Podesta, M. Heidbrink, W. W. Bell, R. E. Feder, R. TI The NSTX fast-ion D-alpha diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE particle beams; plasma diagnostics; plasma toroidal confinement; plasma-beam interactions; Tokamak devices ID SPHERICAL TORUS EXPERIMENT AB A new diagnostic, aimed at energy-resolved measurements of the spatial and temporal dynamics of fast ions in NSTX plasmas, is described. It is based on active charge-exchange recombination spectroscopy. The fast-ion signal is inferred from light emitted in the wavelength range of the D(alpha) line by fast ions recombining with an injected neutral beam. Two complementary systems are operational. The first system, based on a spectrometer coupled to a charge coupled device detector, has 16 channels with space, time, and energy resolution of 5 cm, 10 ms, and 10 keV, respectively. The second system monitors the energy-integrated fast-ion signal on time scales of similar to 20 mu s at three different radii. Signals are measured by a multianode photomultiplier tube. For both systems, each channel includes two paired views, intercepting and missing the neutral beam for a direct subtraction of the background signal not associated with fast ions. Examples of signals from the 2008 NSTX run are presented. C1 [Podesta, M.; Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bell, R. E.; Feder, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. NR 12 TC 31 Z9 31 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E521 DI 10.1063/1.2956744 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500103 PM 19044503 ER PT J AU Pollock, BB Froula, DH Tynan, GR Divol, L Price, D Costa, R Yepiz, F Fulkerson, S Mangini, F Glenzer, SH AF Pollock, B. B. Froula, D. H. Tynan, G. R. Divol, L. Price, D. Costa, R. Yepiz, F. Fulkerson, S. Mangini, F. Glenzer, S. H. TI Multicentimeter long high density magnetic plasmas for optical guiding SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE heat transfer; optical waveguides; plasma magnetohydrodynamics; plasma-beam interactions ID ELECTRON-BEAMS; ACCELERATOR AB We present a platform for producing long plasma channels suitable for guiding lasers over several centimeters by applying magnetic fields to limit the radial heat flux from a preforming laser beam. The resulting density gradient will be used as an optical plasma waveguide. The plasma conditions have been chosen to be consistent with the requirements for laser wakefield acceleration where multi-GeV electrons are predicted. A detailed description of the system used to produce the high (5 T) magnetic fields and initial results that show a 5 cm long plasma column are discussed. C1 [Pollock, B. B.; Froula, D. H.; Tynan, G. R.; Divol, L.; Price, D.; Costa, R.; Yepiz, F.; Fulkerson, S.; Mangini, F.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pollock, B. B.; Tynan, G. R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Mangini, F.] St Marys Coll Calif, Moraga, CA 94556 USA. RP Pollock, BB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 10 TC 1 Z9 1 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F550 DI 10.1063/1.2968711 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500307 PM 19044692 ER PT J AU Porter, FS Gygax, J Kelley, RL Kilbourne, CA King, JM Beiersdorfer, P Brown, GV Thorn, DB Kahn, SM AF Porter, Frederick Scott Gygax, John Kelley, Richard L. Kilbourne, Caroline A. King, Jonathan M. Beiersdorfer, Peter Brown, Gregory V. Thorn, Daniel B. Kahn, Steven M. TI Performance of the EBIT calorimeter spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE cryogenics; electron beams; X-ray spectrometers ID XRS AB The EBIT calorimeter spectrometer (ECS) is a new high-resolution, broadband x-ray spectrometer that has recently been installed at the Electron Beam Ion Trap Facility (EBIT) at the Lawrence Livermore National Laboratory. The ECS is an entirely new production class spectrometer that replaces the XRS/EBIT spectrometer that has been operating at EBIT since 2000. The ECS utilizes a 32-pixel x-ray calorimeter array from the XRS instrument on the Suzaku x-ray observatory. Eighteen of the pixels are optimized for the 0.1-10 keV band and yield 4.5 eV full width at half maximum energy resolution and 95% quantum efficiency at 6 keV. In addition, the ECS includes 14 detector pixels that are optimized for the high-energy band with a bandpass from 0.5 to over 100 keV with 34 eV resolution and 32% quantum efficiency at 60 keV. The ECS detector array is operated at 50 mK using a five stage cryogenic system that is entirely automated. The instrument takes data continuously for over 65 h with a 2.5 h recycle time. The ECS is a nondispersive, broadband, highly efficient spectrometer that is one of the prime instruments at the EBIT facility. The instrument is used for studies of absolute cross sections, charge exchange recombination, and x-ray emission from nonequilibrium plasmas, among other measurements in our laboratory astrophysics program. C1 [Porter, Frederick Scott; Gygax, John; Kelley, Richard L.; Kilbourne, Caroline A.; King, Jonathan M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beiersdorfer, Peter; Brown, Gregory V.; Thorn, Daniel B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kahn, Steven M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Porter, FS (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; XRAY, SUZAKU/A-1808-2009 OI Porter, Frederick/0000-0002-6374-1119; NR 10 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E307 DI 10.1063/1.2957925 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500065 PM 19044469 ER PT J AU Reighard, AB Glendinning, SG Young, PE Hsing, WW Foord, M Schneider, M Lu, K Dittrich, T Wallace, R Sorce, C AF Reighard, A. B. Glendinning, S. G. Young, P. E. Hsing, W. W. Foord, M. Schneider, M. Lu, K. Dittrich, T. Wallace, R. Sorce, C. TI Long duration backlighter experiments at Omega SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE carbon; high-speed optical techniques; laser ablation; X-ray effects; X-ray imaging; X-ray lasers; zinc ID PINHOLE AB We have successfully demonstrated a 7.5 ns duration pinhole-apertured backlighter at the Omega laser facility. Pinhole-apertured point-projection backlighting for 8 ns will be useful for imaging evolving features in experiments at the National Ignition Facility. The backlighter consisted of a 20 mu m diameter pinhole in a 75 mu m thick Ta substrate separated from a Zn emitter (9 keV) by a 400 mu m thick high-density carbon piece. The carbon prevented the shock from the laser-driven surface from reaching the substrate before 8 ns and helped minimize x-ray ablation of the pinhole substrate. Grid wires in x-ray framing camera images of a gold grid have a source-limited resolution significantly smaller than the pinhole diameter due to the high aspect ratio of the pinhole, but do not become much smaller at late times. C1 [Reighard, A. B.; Glendinning, S. G.; Young, P. E.; Hsing, W. W.; Foord, M.; Schneider, M.; Lu, K.; Dittrich, T.; Wallace, R.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reighard, AB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM reighard2@llnl.gov NR 11 TC 6 Z9 7 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E915 DI 10.1063/1.2981173 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500173 PM 19044570 ER PT J AU Rochau, GA Wu, M Kruschwitz, C Joseph, N Moy, K Bailey, J Krane, M Thomas, R Nielsen, D Tibbitts, A AF Rochau, G. A. Wu, M. Kruschwitz, C. Joseph, N. Moy, K. Bailey, J. Krane, M. Thomas, R. Nielsen, D. Tibbitts, A. TI Measurement and modeling of pulsed microchannel plate operation (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE Monte Carlo methods; plasma diagnostics; position sensitive particle detectors ID FRAMING CAMERAS; TEMPORAL-RESOLUTION; RAY; GAIN AB Microchannel plates (MCPs) are a standard detector for fast-framing x-ray imaging and spectroscopy of high-temperature plasmas. The MCP is coated with conductive striplines that carry short duration voltage pulses to control the timing and amplitude of the signal gain. This gain depends on the voltage to a large exponent so that small reflections or impedance losses along the striplines can have a significant impact on the position-dependent amplitude and pulse width of the gain. Understanding the pulsed gain response therefore requires careful measurements of the position- and time-dependent surface voltage coupled with detailed modeling of the resulting electron cascade. We present measurements and modeling of the time- and space-dependent gain response of MCP detectors designed for use at Sandia National Laboratories' Z facility. The pulsed gain response is understood through measurements using a high impedence probe to determine the voltage pulse propagating along the stripline surface. Coupling the surface voltage measurements with Monte Carlo calculations of the electron cascade in the MCP provides a prediction of the time- and position-dependent gain that agrees with measurements made on a subpicosecond UV laser source to within the 25% uncertainty in the simulations. C1 [Rochau, G. A.; Bailey, J.; Nielsen, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wu, M.; Kruschwitz, C.; Joseph, N.; Moy, K.; Krane, M.; Thomas, R.; Tibbitts, A.] Natl Secur Technol, Las Vegas, NV 89193 USA. RP Rochau, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 23 TC 6 Z9 7 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E902 DI 10.1063/1.2965787 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500160 PM 19044557 ER PT J AU Roquemore, AL Zweben, SJ Kaita, R Marsalsa, RJ Bush, CE Maqueda, RJ AF Roquemore, A. L. Zweben, S. J. Kaita, R. Marsalsa, R. J. Bush, C. E. Maqueda, R. J. TI Diagnostics for the biased electrode experiment on NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE antennas in plasma; electrodes; fusion reactor instrumentation; Langmuir probes; plasma boundary layers; plasma diagnostics; Tokamak devices ID PLASMA CONVECTION; EDGE TURBULENCE; DIVERTOR AB A linear array of four small biased electrodes was installed in NSTX in an attempt to control the width of the scrape-off layer by creating a strong local poloidal electric field. The set of electrodes was separated poloidally by a 1 cm gap between electrodes and were located slightly below the midplane of NSTX, 1 cm behind the rf antenna, and oriented so that each electrode is facing approximately normal to the magnetic field. Each electrode can be independently biased to +/- 100 V. Present power supplies limit the current on two electrodes to 30 A and the other two to 10 A each. The effect of local biasing was measured with a set of Langmuir probes placed between the electrodes and another set extending radially outward from the electrodes, and also by the gas puff imaging diagnostic located 1 m away along the magnetic field lines intersecting the electrodes. Two fast cameras were also aimed directly at the electrode array. The hardware and controls of the biasing experiment will be presented and the initial effects on local plasma parameters will be discussed. C1 [Roquemore, A. L.; Zweben, S. J.; Kaita, R.; Marsalsa, R. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bush, C. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Maqueda, R. J.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Roquemore, AL (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. NR 7 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F124 DI 10.1063/1.2981166 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500214 PM 19044608 ER PT J AU Rudakov, DL Yu, JH Boedo, JA Hollmann, EM Krasheninnikov, SI Moyer, RA Muller, SH Pigarov, AY Rosenberg, M Smirnov, RD West, WP Boivin, RL Bray, BD Brooks, NH Hyatt, AW Wong, CPC Roquemore, AL Skinner, CH Solomon, WM Ratynskaia, S Fenstermacher, ME Groth, M Lasnier, CJ McLean, AG Stangeby, PC AF Rudakov, D. L. Yu, J. H. Boedo, J. A. Hollmann, E. M. Krasheninnikov, S. I. Moyer, R. A. Muller, S. H. Pigarov, A. Yu. Rosenberg, M. Smirnov, R. D. West, W. P. Boivin, R. L. Bray, B. D. Brooks, N. H. Hyatt, A. W. Wong, C. P. C. Roquemore, A. L. Skinner, C. H. Solomon, W. M. Ratynskaia, S. Fenstermacher, M. E. Groth, M. Lasnier, C. J. McLean, A. G. Stangeby, P. C. TI Dust measurements in tokamaks (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE dusty plasmas; electrostatic devices; image sensors; laser beams; Mie scattering; particle size measurement; plasma diagnostics; solid lasers; Tokamak devices ID DIII-D DIVERTOR; FUSION DEVICES; CARBON DUST; 1ST WALL; PLASMA; PARTICLES; DIAGNOSTICS; SPECTROSCOPY; OPERATION; TRANSPORT AB Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 mu m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics. C1 [Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ratynskaia, S.] Royal Inst Technol, EE, SE-10044 Stockholm, Sweden. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McLean, A. G.; Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, Canada. RP Rudakov, DL (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Smirnov, Roman/B-9916-2011; Groth, Mathias/G-2227-2013 OI Smirnov, Roman/0000-0002-9114-5330; NR 41 TC 29 Z9 29 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F303 DI 10.1063/1.2969422 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500222 PM 19044616 ER PT J AU Safronova, AS Kantsyrev, VL Esaulov, AA Ouart, ND Yilmaz, MF Williamson, KM Shlyaptseva, V Shrestha, I Osborne, GC Coverdale, CA Jones, B Deeney, C AF Safronova, A. S. Kantsyrev, V. L. Esaulov, A. A. Ouart, N. D. Yilmaz, M. F. Williamson, K. M. Shlyaptseva, V. Shrestha, I. Osborne, G. C. Coverdale, C. A. Jones, B. Deeney, C. TI X-ray diagnostics of imploding plasmas from planar wire arrays composed of Cu and few tracer Al wires on the 1MA pulsed power generator at UNR SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE aluminium; copper; plasma diagnostics; plasma temperature; X-ray spectra ID RADIATION; MA AB Tracer aluminum alloyed wires (Al5056) are used to provide additional information for x-ray diagnostics of implosions of Cu planar wire arrays (PWAs). Specifically, the analysis of combined PWA experiments using the extensive set of x-ray diagnostics is presented. In these experiments, which were conducted at the 1MA pulsed power generator at University of Nevada, Reno, the Z-pinch load consisted of several (eight) Cu alloyed (main material) and one to two Al alloyed (tracer) wires mounted in a single plane row or double parallel plane rows, single planar wire array (SPWA) or double planar wire array (DPWA), respectively. The analysis of x-ray spatially resolved spectra from the main material indicates the increase in the electron temperature T(e) near the cathode. In general, the axial gradients in T(e) are more pronounced for SPWA than for DPWA due to the more "columnlike" plasma formation for SPWA compared to "hot-spot-like" plasma formation for DPWA. In addition, x-ray spectra from tracer wires are studied, and estimated plasma parameters are compared with those from the main material. It is observed that the x-ray K-shell Al spectra manifest more opacity features for the case of SPWA with about 18% of Al mass (to the total load mass) compared to the case of DPWA with about 11% of Al mass. The analysis of time-gated spectra shows that the relative intensity of the most intense K-shell Al line, small before the x-ray burst, increases with time and peaks close to the maximum of the sub-keV signal. C1 [Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Ouart, N. D.; Yilmaz, M. F.; Williamson, K. M.; Shlyaptseva, V.; Shrestha, I.; Osborne, G. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Coverdale, C. A.; Jones, B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Deeney, C.] US DOE, NNSA, Washington, DC 20585 USA. RP Safronova, AS (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 11 TC 8 Z9 8 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E315 DI 10.1063/1.2965785 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500073 PM 19044477 ER PT J AU Schmitz, L Wang, G Hillesheim, JC Rhodes, TL Peebles, WA White, AE Zeng, L Carter, TA Solomon, W AF Schmitz, L. Wang, G. Hillesheim, J. C. Rhodes, T. L. Peebles, W. A. White, A. E. Zeng, L. Carter, T. A. Solomon, W. TI Detection of zonal flow spectra in DIII-D by a dual-channel Doppler backscattering system SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE Doppler effect; plasma density; plasma diagnostics; plasma flow; plasma fluctuations; plasma turbulence; shear flow; Tokamak devices ID REFLECTOMETRY; PROFILE; TOKAMAK AB Doppler backscattering (DBS) has been successfully used to measure the ExB flow velocity and local intermediate wavenumber density fluctuation levels in the DIII-D tokamak. Depending on the launch angle and the frequency of the probing beam, the signal backscattered from the plasma cut-off layer is sensitive to density fluctuations at a specific perpendicular wavenumber (1 <= k(perpendicular to)rho(s)<= 4). Due to the localization and high time resolution for poloidal flow measurements, DBS is well suited to detect stationary and time-dependent shear flows [zonal flows (ZFs)]. We present a novel scheme to measure ZF spectra using a dual-channel DBS system capable of simultaneously probing two minor radii separated by a distance of 0.2 cm 2p(3/2) emission features are particularly useful in determining the charge state distribution and average ion charge < Z >, which are strongly sensitive to the electron temperature. C1 [Trabert, E.; Hansen, S. B.; Beiersdorfer, P.; Brown, G. V.; Widmann, K.; Chung, H. -K.] Lawrence Livermore Natl Lab, High Temp & Astrophys Div, Livermore, CA 94550 USA. [Trabert, E.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. RP Trabert, E (reprint author), Lawrence Livermore Natl Lab, High Temp & Astrophys Div, Livermore, CA 94550 USA. EM trabert1@llnl.gov NR 17 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E313 DI 10.1063/1.2953443 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500071 PM 19044475 ER PT J AU Tsang, T Bellavia, S Connolly, R Gassner, D Makdisi, Y Russo, T Thieberger, P Trbojevic, D Zelenski, A AF Tsang, T. Bellavia, S. Connolly, R. Gassner, D. Makdisi, Y. Russo, T. Thieberger, P. Trbojevic, D. Zelenski, A. TI Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE colliding beam accelerators; fluorescence; particle beam diagnostics; storage rings ID POLARIMETER AB A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. C1 [Tsang, T.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.] Brookhaven Natl Lab, Collider Accelerator Div, Upton, NY 11973 USA. RP Tsang, T (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. EM tsang@bnl.gov FU U. S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by U. S. Department of Energy under Contract No. DE-AC02-98CH10886. We thank M. Minty for useful discussions and comments on this paper. NR 28 TC 4 Z9 4 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 105103 DI 10.1063/1.2999905 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500048 PM 19044742 ER PT J AU Visco, A Drake, RP Froula, DH Glenzer, SH Pollock, BB AF Visco, A. Drake, R. P. Froula, D. H. Glenzer, S. H. Pollock, B. B. TI Temporal dispersion of a spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE diffraction gratings; high-speed optical techniques; masks; optical dispersion; spectrometers ID SCATTERING AB The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., full-aperture backscatter station, Thomson scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution is shown to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal resolution, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated with the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300 fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks. C1 [Visco, A.; Drake, R. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [Froula, D. H.; Glenzer, S. H.; Pollock, B. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Visco, A (reprint author), Univ Michigan, 2455 Hayward, Ann Arbor, MI 48109 USA. RI Drake, R Paul/I-9218-2012 OI Drake, R Paul/0000-0002-5450-9844 NR 7 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F545 DI 10.1063/1.2972022 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500302 PM 19044687 ER PT J AU Wang, ZH Ticos, CM AF Wang, Zhehui Ticos, Catalin M. TI Dust as a versatile matter for high-temperature plasma diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE dust; photometry; plasma diagnostics; plasma flow ID BEAM INJECTION AB Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented. C1 [Wang, Zhehui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ticos, Catalin M.] Natl Inst Laser Plasma & Radiat Phys, Magurele 077125, Romania. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Ticos, Catalin/F-1677-2011 NR 17 TC 6 Z9 6 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F333 DI 10.1063/1.2953409 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500252 PM 19044641 ER PT J AU Watkins, JG Taussig, D Boivin, RL Mahdavi, MA Nygren, RE AF Watkins, J. G. Taussig, D. Boivin, R. L. Mahdavi, M. A. Nygren, R. E. TI High heat flux Langmuir probe array for the DIII-D divertor plates SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE ceramics; cryopumping; divertors; graphite; heat conduction; Langmuir probes; plasma toroidal confinement; plasma transport processes; Tokamak devices ID TOKAMAK; PLASMA AB Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m(2) for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5 degrees surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of J(sat), T(e), and V(f) with 4 mm spatial resolution are shown. C1 [Watkins, J. G.; Nygren, R. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Taussig, D.; Boivin, R. L.; Mahdavi, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP Watkins, JG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 19 TC 7 Z9 7 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F125 DI 10.1063/1.2982423 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500215 PM 19044609 ER PT J AU White, AE Schmitz, L Peebles, WA Carter, TA Rhodes, TL Doyle, EJ Gourdain, PA Hillesheim, JC Wang, G Holland, C Tynan, GR Austin, ME McKee, GR Shafer, MW Burrell, KH Candy, J DeBoo, JC Prater, R Staebler, GM Waltz, RE Makowski, MA AF White, A. E. Schmitz, L. Peebles, W. A. Carter, T. A. Rhodes, T. L. Doyle, E. J. Gourdain, P. A. Hillesheim, J. C. Wang, G. Holland, C. Tynan, G. R. Austin, M. E. McKee, G. R. Shafer, M. W. Burrell, K. H. Candy, J. DeBoo, J. C. Prater, R. Staebler, G. M. Waltz, R. E. Makowski, M. A. TI A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE plasma density; plasma diagnostics; plasma fluctuations; plasma radiofrequency heating; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence ID DIII-D TOKAMAK; TEMPERATURE-FLUCTUATIONS; TORE-SUPRA; CORE; ABSORPTION; UPGRADE; PLASMA; ECE AB A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o)similar to 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta)<= 1.8 cm(-1) and k(r)<= 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from similar to 0.5% to similar to 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a=0.5, but not at a second location, r/a=0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code. C1 [White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Doyle, E. J.; Gourdain, P. A.; Hillesheim, J. C.; Wang, G.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Holland, C.; Tynan, G. R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [McKee, G. R.; Shafer, M. W.] Univ Wisconsin, Madison, WI 53706 USA. [Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.] Gen Atom Co, San Diego, CA 92186 USA. [Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP White, AE (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RI Carter, Troy/E-7090-2010; White, Anne/B-8990-2011 OI Carter, Troy/0000-0002-5741-0495; FU U. S. Department of Energy [DE-FG03-01ER54615, JP333701, DE-FG0289ER53296, DE-FG02-07ER54917, DE-FG03-97ER54415, DE-FG02-89ER53296, DE-FC02-04ER54698, DE-AC52-07NA27344] FX This research was supported by the U. S. Department of Energy under DE-FG03-01ER54615, JP333701, DE-FG0289ER53296, DE-FG02-07ER54917, DE-FG03-97ER54415, DE-FG02-89ER53296, DE-FC02-04ER54698, and DE-AC52-07NA27344. AEW and JCH were supported by appointments to the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U. S. Department of Energy and the Oak Ridge Associated Universities. We thank the DIII-D team for their support of these experiments. NR 29 TC 28 Z9 28 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 103505 DI 10.1063/1.2981186 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500018 PM 19044712 ER PT J AU Wilcox, PG Safronova, AS Kantsyrev, VL Safronova, UI Williamson, KM Yilmaz, MF Clementson, J Beiersdorfer, P Struve, KW AF Wilcox, P. G. Safronova, A. S. Kantsyrev, V. L. Safronova, U. I. Williamson, K. M. Yilmaz, M. F. Clementson, J. Beiersdorfer, P. Struve, K. W. TI Extreme ultraviolet spectroscopy of low-Z ion plasmas for fusion applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics; plasma impurities; plasma kinetic theory; plasma toroidal confinement; ultraviolet spectroscopy AB The study of impurities is a key component of magnetic fusion research as it is directly related to plasma properties and steady-state operation. Two of the most important low-Z impurities are carbon and oxygen. The appropriate method of diagnosing these ions in plasmas is extreme ultraviolet (EUV) spectroscopy. In this work the results of two different sets of experiments are considered, and the spectra in a spectral region from 40 to 300 A are analyzed. The first set of experiments was carried out at the Sustained Spheromak Physics Experiment at LLNL, where EUV spectra of oxygen ions were recorded. The second set of experiments was performed at the compact laser-plasma x-ray/EUV facility "Sparky" at UNR. In particular, Mylar and Teflon slabs were used as targets to produce carbon, oxygen, and fluorine ions of different ionization stages. Nonlocal thermodynamic equilibrium kinetic models of O, F, and C were applied to identify the most diagnostically important spectral features of low-Z ions between 40 to 300 A and to provide plasma parameters for both sets of experiments. C1 [Wilcox, P. G.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Williamson, K. M.; Yilmaz, M. F.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Clementson, J.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Struve, K. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wilcox, PG (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 8 TC 6 Z9 6 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F543 DI 10.1063/1.2956745 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500300 PM 19044685 ER PT J AU Wilke, MD Batha, SH Bradley, PA Day, RD Clark, DD Fatherley, VE Finch, JP Gallegos, RA Garcia, FP Grim, GP Jaramillo, SA Montoya, AJ Moran, MJ Morgan, GL Oertel, JA Ortiz, TA Payton, JR Pazuchanics, P Schmidt, DW Valdez, AC Wilde, CH Wilson, DC AF Wilke, Mark D. Batha, Steven H. Bradley, Paul A. Day, Robert D. Clark, David D. Fatherley, Valerie E. Finch, Joshua P. Gallegos, Robert A. Garcia, Felix P. Grim, Gary P. Jaramillo, Steven A. Montoya, Andrew J. Moran, Michael J. Morgan, George L. Oertel, John A. Ortiz, Thomas A. Payton, Jeremy R. Pazuchanics, Peter Schmidt, Derek W. Valdez, Adelaida C. Wilde, Carl H. Wilson, Doug C. TI The National Ignition Facility Neutron Imaging System SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE plasma diagnostics ID INERTIAL CONFINEMENT FUSION AB The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y(n)>10(14) neutrons. The shielding will also permit the NIS to function at neutron yields >10(18), which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical modeling code. C1 [Wilke, Mark D.; Batha, Steven H.; Bradley, Paul A.; Day, Robert D.; Clark, David D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary P.; Jaramillo, Steven A.; Montoya, Andrew J.; Morgan, George L.; Oertel, John A.; Ortiz, Thomas A.; Payton, Jeremy R.; Pazuchanics, Peter; Schmidt, Derek W.; Valdez, Adelaida C.; Wilde, Carl H.; Wilson, Doug C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Moran, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wilke, MD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wilke@lanl.gov OI Bradley, Paul/0000-0001-6229-6677 NR 11 TC 25 Z9 28 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E529 DI 10.1063/1.2987984 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500111 PM 19044510 ER PT J AU Wilson, DC Bradley, PA Cerjan, CJ Salmonson, JD Spears, BK Hatchet, SP Herrmann, HW Glebov, VY AF Wilson, D. C. Bradley, P. A. Cerjan, C. J. Salmonson, J. D. Spears, B. K. Hatchet, S. P., II Herrmann, H. W. Glebov, V. Yu. TI Diagnosing ignition with DT reaction history SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE Cherenkov counters; deuterium; explosions; fusion reactor fuel; fusion reactor instrumentation; laser fusion; plasma diagnostics; plasma shock waves; plasma turbulence; tritium ID FUSION CAPSULE IMPLOSIONS; DRIVEN; MIX AB A full range DT reaction history of an ignition capsule, from 10(9) to 10(20) neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final similar to 100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within similar to 50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium (similar to 1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules. C1 [Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P., II] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Glebov, V. Yu.] Univ Rochester, LLE, Rochester, NY 14623 USA. RP Wilson, DC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Bradley, Paul/0000-0001-6229-6677 NR 15 TC 3 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E525 DI 10.1063/1.2969420 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500107 PM 19044506 ER PT J AU Workman, J Cobble, J Flippo, K Gautier, DC Letzring, S AF Workman, J. Cobble, J. Flippo, K. Gautier, D. C. Letzring, S. TI High-energy, high-resolution x-ray imaging on the Trident short-pulse laser facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE laser fusion; photon counting; plasma diagnostics; plasma X-ray sources; radiography; X-ray imaging ID PLASMAS; SHOCK AB With the completion of the Trident laser facility upgrade, 200 TW high-energy laser pulses are now capable of producing x-ray pulses with energies in the range of 15-40 keV, which will be used for high-spatial resolution radiography. A diagnostic suite is being developed on the laser system to investigate and characterize the x-ray emission from high-Z targets. This includes charge coupled device based single-photon counters, imaging plates, a high-energy electronic imager, spectral diagnostics, and optical and x-ray spot size diagnostics. We describe recent x-ray results from a commissioning campaign as well as describe the development and design of a high-energy spectrometer. X-ray radiographs taken at 22 keV with a spatial resolution of 25 mu m are a first demonstration on this facility of high-energy, high-spatial resolution capability. C1 [Workman, J.; Cobble, J.; Flippo, K.; Gautier, D. C.; Letzring, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Workman, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM workman@lanl.gov RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 NR 17 TC 8 Z9 8 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10E905 DI 10.1063/1.2965012 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500163 PM 19044560 ER PT J AU Yuh, HY Levinton, FM Scott, SD Ko, J AF Yuh, Howard Y. Levinton, F. M. Scott, S. D. Ko, J. TI Simulation of the motional Stark effect diagnostic gas-filled torus calibration SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 17th Topical Conference on High-Temperature Plasma Diagnostics CY 2008 CL Albuquerque, NM DE magnetic reconnection; plasma beam injection heating; plasma diagnostics; plasma simulation; Stark effect; Tokamak devices AB Many motional Stark effect diagnostics around the world make use of a calibration procedure in which the observed neutral beam is injected into a gas-filled torus with known vacuum fields. The instrument is calibrated by reconciling measured angles with vacuum magnetic reconstructions through a range of pitch angles. This in situ gas-filled torus calibration most closely approximates the working conditions of the diagnostic and includes effects such as beam and viewing geometries, beam voltages, Faraday and stress induced birefringence (in most cases) of the transmissive optics, as well as the polarimeter response. However, secondary neutrals, produced after ionization then reneutralization of a beam neutral, have been found to contaminate measured angles by emitting Balmer alpha with similar Doppler shifts and Stark polarizations as beam neutrals, but with different polarization angles. Simulation results that show spectral and angle behavior versus calibration parameters such as fill gas pressure will be presented. Data from NSTX and C-Mod will be compared to simulations results. C1 [Yuh, Howard Y.; Levinton, F. M.] Nova Photon Inc, Princeton, NJ 08540 USA. [Scott, S. D.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Ko, J.] MIT PSFC, Cambridge, MA 02139 USA. RP Yuh, HY (reprint author), Nova Photon Inc, 1 Oak Pl, Princeton, NJ 08540 USA. NR 4 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2008 VL 79 IS 10 AR 10F523 DI 10.1063/1.2969419 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 367ST UT WOS:000260573500280 PM 19044668 ER PT J AU Richter, B Goldston, D Crabtree, G Glicksman, L Goldstein, D Greene, D Kammen, D Levine, M Lubell, M Savitz, M Sperling, D Schlachter, F Scofield, J Dawson, J AF Richter, Burton Goldston, David Crabtree, George Glicksman, Leon Goldstein, David Greene, David Kammen, Dan Levine, Mark Lubell, Michael Savitz, Maxine Sperling, Daniel Schlachter, Fred Scofield, John Dawson, James TI How America can look within to achieve energy security and reduce global warming SO REVIEWS OF MODERN PHYSICS LA English DT Review DE energy resources; energy consumption; transportation; building; heating; lighting; global warming; government policies; research and development; hybrid electric vehicles; fuel cells ID THERMOELECTRIC-MATERIALS; PERFORMANCE; CHALLENGES; METAL AB The American Physical Society regularly produces reports on issues of public import that require technical understanding and for which an objective and authoritative analysis would be of particular use to the public and policy makers. This report, entitled Energy Future: Think Efficiency, is the latest in the series and appears here as a special supplement issue of Reviews of Modern Physics, as have other such reports. It is hard to imagine a more timely study topic, given the urgent environmental, geopolitical, and economic incentives for improving energy efficiency at this juncture. Energy Future: Think Efficiency provides a valuable and broadly applicable guide to effective approaches, many of which employ existing technologies and, surprisingly, need not be difficult or expensive. In order to have the most immediate impact, an earlier version of Energy Future: Think Efficiency was issued at a press release in Washington, D.C. in September of 2008 in hard copy and online. Prior to its release a distinguished review panel examined the report and its conclusions. Thus the study has been rigorously refereed although this was outside of the usual review process employed by RMP. Except for adjustments in pagination, this version is unchanged from the earlier version. The report introduction contains full information on the study personnel, review panel members, and other acknowledgments, so these are not repeated here. What is repeated is an expression of deep appreciation to all those involved in the preparation of a revelatory report on a topic of critical importance. C1 [Richter, Burton; Savitz, Maxine; Schlachter, Fred; Dawson, James] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Crabtree, George] Argonne Natl Lab, Argonne, IL USA. [Greene, David] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Levine, Mark] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sperling, Daniel] Univ Calif Davis, Davis, CA 95616 USA. [Scofield, John] Oberlin Coll, Oberlin, OH USA. RP Richter, B (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. NR 98 TC 37 Z9 38 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 J9 REV MOD PHYS JI Rev. Mod. Phys. PD OCT-DEC PY 2008 VL 80 IS 4 BP S1 EP S107 DI 10.1103/RevModPhys.80.S1 PG 107 WC Physics, Multidisciplinary SC Physics GA 391SO UT WOS:000262253500001 ER PT J AU Whicker, JJ Janecky, DR Doerr, TB AF Whicker, Jeffrey J. Janecky, David R. Doerr, Ted B. TI Adaptive management: A paradigm for remediation of public facilities following a terrorist attack SO RISK ANALYSIS LA English DT Article DE adaptive management; emergency response; facility restoration; terrorism ID BIOLOGICAL WARFARE AGENTS; SITE RESTORATION; CLEAN ENOUGH; CHALLENGES; FRAMEWORK; THREATS; SECTOR AB Terrorist actions are aimed at maximizing harm (health, psychological, economical, and political) through the combined physical impacts of the act and fear. Immediate and effective response to a terrorist act is critical to limit human and environmental harm, effectively restore facility function, and maintain public confidence. Though there have been terrorist attacks in public facilities that we have learned from, overall our experiences in restoration of public facilities following a terrorist attack are limited. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in industrial settings and has many unique technical, economic, social, and political challenges. For example, there may be a great need to quickly restore the facility to full operation and allow public access even though it was not designed for easy or rapid restoration, and critical information is needed for quantitative risk assessment and effective restoration must be anticipated to be incomplete and uncertain. Whereas present planning documents have substantial linearity in their organization, the "adaptive management" paradigm provides a constructive parallel paradigm for restoration of public facilities that anticipates and plans for uncertainty, inefficiencies, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a public facility after a terrorist attack suggest that integration of adaptive management principles explicitly into restoration processes will result in substantially enhanced and flexible responses necessary to meet the uncertainties of potential terrorist attacks. C1 [Whicker, Jeffrey J.; Janecky, David R.; Doerr, Ted B.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Whicker, JJ (reprint author), Mail Stop 6761, Los Alamos, NM 87545 USA. EM jjwhicker@lanl.gov OI Janecky, David/0000-0001-9072-8326 FU U. S. Department of Homeland Security, Directorate of Science & Technology, Chemical & Biological RD section FX We thank the anonymous reviewers whose suggestions greatly improved the article. This work was supported by the U. S. Department of Homeland Security, Directorate of Science & Technology, Chemical & Biological R&D section, as part of the Response and Recovery Program for the Facility Restoration Operational Technology Demonstration Project. NR 30 TC 4 Z9 4 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD OCT PY 2008 VL 28 IS 5 BP 1445 EP 1456 DI 10.1111/j.1539-6924.2008.01102.x PG 12 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 350OT UT WOS:000259363300020 PM 18761729 ER PT J AU Weigelt, B Bissell, MJ AF Weigelt, Britta Bissell, Mina J. TI Unraveling the microenvironmental influences on the normal mammary gland and breast cancer SO SEMINARS IN CANCER BIOLOGY LA English DT Review DE three-dimensional cell cultures; tissue architecture; normal mammary gland; breast cancer; signal transduction; drug testing ID GROWTH-FACTOR RECEPTOR; RECONSTITUTED BASEMENT-MEMBRANE; GENE-EXPRESSION SIGNATURE; 3-DIMENSIONAL CULTURE MODELS; STIMULATING FACTOR-I; EPITHELIAL-CELLS; EXTRACELLULAR-MATRIX; STEM-CELLS; MALIGNANT BREAST; TUMOR MICROENVIRONMENT AB The normal mammary gland and invasive breast tumors are both complex 'organs' composed of multiple cell types as well as extracellular matrix in three-dimensional (313) space. Conventionally, both normal and malignant breast cells are studied in vitro as two-dimensional monolayers of epithelial cells, which results in the loss of structure and tissue function. Many laboratories are now investigating regulation of signaling function in the normal mammary gland using 3D cultures. However, it is also important to assay malignant breast cells ex vivo in a physiologically relevant environment to more closely mimic tumor architecture, signal transduction regulation and tumor behavior in vivo. Here we present the potential of these 3D models for drug testing, target validation and guidance of patient selection for clinical trials. We also argue that in order to get full insight into the biology of the normal and malignant breast, and to create in vivo-like models for therapeutic approaches in humans, we need to continue to create more complex heterotypic models to approach the full context the cells encounter in the human body. Published by Elsevier Ltd. C1 [Weigelt, Britta; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Weigelt, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS 977-225A, Berkeley, CA 94720 USA. EM bweigelt@lbl.gov; mjbissell@lbl.gov RI Peng, Chunwei/F-6788-2010 FU U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC03 SF0098]; National Cancer Institute [RO1 CA064786]; Dutch Cancer Society FX We would like to thank P.A. Kenny (Bissell laboratory) for critical reading of the manuscript and J.L. Peterse (Netherlands Cancer Institute, Amsterdam, The Netherlands) for the photographs of Fig. 1.; This work was supported by grants and a Distinguished Fellowship Award from the U.S. Department of Energy, Office of Biological and Environmental Research (DE-AC03 SF0098), and by the National Cancer Institute (RO1 CA064786) to M.J. Bissell with O.W. Petersen. B. Weigelt was supported by a postdoctoral fellowship of the Dutch Cancer Society (KWF). NR 164 TC 150 Z9 155 U1 0 U2 21 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1044-579X J9 SEMIN CANCER BIOL JI Semin. Cancer Biol. PD OCT PY 2008 VL 18 IS 5 BP 311 EP 321 DI 10.1016/j.semcancer.2008.03.013 PG 11 WC Oncology SC Oncology GA 353FJ UT WOS:000259551200003 PM 18455428 ER PT J AU Yong, GJ Kolagani, RM Adhikari, S Mundle, RM Cox, DW Davidson, AL Liang, Y Drury, OB Hau-Riege, SP Gardner, C Ables, E Bionta, RM Friedrich, S AF Yong, G. J. Kolagani, Rajeswari M. Adhikari, S. Mundle, R. M. Cox, D. W. Davidson, A. L., III Liang, Y. Drury, O. B. Hau-Riege, S. P. Gardner, C. Ables, E. Bionta, R. M. Friedrich, S. TI Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers SO Sensor Letters LA English DT Article DE Bolometer; Perovskite Manganites; X-ray Detector; Pulsed Laser Deposition; Linac Coherent Light Source; X-ray Free Electron Laser; Thermal Detector; Metal Insulator Transition; Oxide-Si Heteroepitaxy; Colossal Magnetoresistive; Manganites; CMR ID THIN-FILMS; TRANSPORT-PROPERTIES; WAVELENGTH; RADIATION; EMISSION; GROWTH; SI AB Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd(0.67)Sr(0.33)MnO(3), grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors. C1 [Yong, G. J.; Kolagani, Rajeswari M.; Adhikari, S.; Mundle, R. M.; Cox, D. W.; Davidson, A. L., III] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. [Liang, Y.] Phys Sci Res Labs, Motorola Labs, Tempe, AZ 85284 USA. [Drury, O. B.; Hau-Riege, S. P.; Gardner, C.; Ables, E.; Bionta, R. M.; Friedrich, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yong, GJ (reprint author), Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. EM gyong@towson.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Jess and Mildred Fisher College of Science and Mathematics, Towson University; Research Corporation [CC 6291] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge support from the undergraduate research grants to Sanjay Adhikari, Rajeh Mundle, David Cox and Anthony Davidson III from the Jess and Mildred Fisher College of Science and Mathematics, Towson University. Thanks are due to Jeff Klupt for help with laboratory instrumentation. Rajeswari M. Kolagani acknowledges support from the Cottrell College Science Award from the Research Corporation through grant CC 6291. NR 21 TC 6 Z9 6 U1 0 U2 0 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-198X J9 SENSOR LETT JI Sens. Lett. PD OCT PY 2008 VL 6 IS 5 BP 741 EP 745 DI 10.1166/sl.2008.m151 PG 5 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation; Physics, Applied SC Chemistry; Electrochemistry; Instruments & Instrumentation; Physics GA 395WQ UT WOS:000262554600011 ER PT J AU Walsh, S Chilton, L Tardiff, M Metoyer, C AF Walsh, Stephen Chilton, Larry Tardiff, Mark Metoyer, Candace TI Effect of the Temperature-Emissivity Contrast on the Chemical Signal for Gas Plume Detection Using Thermal Image Data SO SENSORS LA English DT Article DE plumes; signal; emissivity; clutter; temperature; LWIR; hyperspectral; Signal-to-Noise Ratio ID VAPOR CONCENTRATION-PATHLENGTH; MATCHED-FILTER DETECTION; WEAK GASEOUS PLUMES; HYPERSPECTRAL IMAGERY; ENDMEMBER EXTRACTION; CLUTTER AB Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background emissivity and plume/ground temperatures are isolated, and their effects on chemical signal are described. This analysis shows that the plume's physical state, emission or absorption, is directly dependent on the background emissivity and plume/ground temperatures. It then describes what conditions on the background emissivity and plume/ground temperatures have inhibiting or amplifying effects on the chemical signal. These claims are illustrated by analyzing synthetic hyperspectral imaging data with the adaptive matched filter using two chemicals and three distinct background emissivities. C1 [Walsh, Stephen; Chilton, Larry; Tardiff, Mark; Metoyer, Candace] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Walsh, S (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM stephen.walsh@pnl.gov; lawrence.chilton@pnl.gov; mark.tardiff@pnl.gov; candace.metoyer@pnl.gov OI Walsh, Stephen/0000-0002-0505-648X FU United States National Nuclear Security Administration's Office of Nonproliferation Research and Development; Battelle Memorial Institute for the US Department of Energy [DAC05-76RL01830] FX This work was supported by the United States National Nuclear Security Administration's Office of Nonproliferation Research and Development and conducted at the US Department of Energy's Pacific Northwest National Laboratory. The laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract DAC05-76RL01830. The authors would also like to acknowledge the helpful comments of the reviewers which led to improvements in the manuscript. NR 16 TC 2 Z9 2 U1 0 U2 1 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD OCT PY 2008 VL 8 IS 10 BP 6471 EP 6483 DI 10.3390/s8106471 PG 13 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 366TB UT WOS:000260505200022 PM 27873881 ER PT J AU Barham, M Steigmann, DJ McElfresh, M Rudd, RE AF Barham, M. Steigmann, D. J. McElfresh, M. Rudd, R. E. TI Limit-point instability of a magnetoelastic membrane in a stationary magnetic field SO SMART MATERIALS & STRUCTURES LA English DT Article AB In a previous study (Barham et al 2007 Acta Mech. 191 1-19), the finite deformation of a circular magnetoelastic membrane in an axisymmetric dipole field was calculated by specializing the equations of three-dimensional magnetoelastic equilibrium. The predicted response was found to be similar to the classical limit-point instability occurring in analogous purely mechanical problems. A limit-point instability occurs under conditions corresponding to the incipient non-existence of equilibria. Under such conditions the body is necessarily on the verge of a dynamical state. In the present setting, this corresponds to the occurrence of a maximum in the equilibrium deflection of the membrane with respect to applied field strength and proximity of the field source. The earlier conjecture of a limit-point instability, advanced in Barham et al (2007 Acta Mech. 191 1-19), is confirmed in the present work by using a variational method based on an adaptation of the energy criterion of elastic stability to the magnetoelastic setting. C1 [Barham, M.; Steigmann, D. J.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [McElfresh, M.; Rudd, R. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Barham, M (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. FU US Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed in part under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 5 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 J9 SMART MATER STRUCT JI Smart Mater. Struct. PD OCT PY 2008 VL 17 IS 5 AR 055003 DI 10.1088/0964-1726/17/5/055003 PG 6 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 351VQ UT WOS:000259454400003 ER PT J AU Stan, L Holesinger, TG Maiorov, B Chen, Y Feldmann, DM Usov, IO DePaula, RF Selvamanickam, V Civale, L Foltyn, SR Jia, QX AF Stan, L. Holesinger, T. G. Maiorov, B. Chen, Y. Feldmann, D. M. Usov, I. O. DePaula, R. F. Selvamanickam, V. Civale, L. Foltyn, S. R. Jia, Q. X. TI Structural and superconducting properties of (Y, Gd) Ba(2)Cu(3)O(7-delta) grown by MOCVD on samarium zirconate buffered IBAD-MgO SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COATED CONDUCTORS; THIN-FILMS; LAYERS; SUPERPOWER AB Textured samarium zirconate (SZO) films have been grown by reactive cosputtering directly on an ion beam assisted deposited (IBAD) MgO template, without an intermediate homoepitaxial MgO layer. The subsequent growth of 0.9 mu m thick (Y, Gd) Ba(2)Cu(3)O(7-delta) ((Y, Gd) BCO) films by metal organic chemical vapor deposition (MOCVD) yielded well textured films with a full width at half maximum of 1.9 degrees and 3.4 degrees for the out-of-plane and in-plane texture, respectively. Microstructural characterizations of the SZO buffered samples revealed clean interfaces. This indicates that the SZO not only provides a diffusion barrier, but also functions as a buffer for (Y, Gd) BCO grown by MOCVD. The achievement of self-field critical current densities (J(c)) of over 2 MA cm(-2) at 75.5 K is another proof of the effectiveness of SZO as a buffer on the IBAD-MgO template. The in-field measurements revealed an asymmetric angular dependence of J(c) and a shift of the ab-plane maxima due to the tilted nature of the template and (Y, Gd)(2)O(3) particles existing in the (Y, Gd) BCO matrix. The present results are especially important because they demonstrate that high temperature superconducting coated conductors with simpler architecture can be fabricated using commercially viable processes. C1 [Stan, L.; Holesinger, T. G.; Maiorov, B.; Feldmann, D. M.; Usov, I. O.; DePaula, R. F.; Civale, L.; Foltyn, S. R.; Jia, Q. X.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chen, Y.; Selvamanickam, V.] SuperPower Inc, Schenectady, NY 12304 USA. RP Stan, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Jia, Q. X./C-5194-2008; OI Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 NR 16 TC 8 Z9 8 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2008 VL 21 IS 10 AR 105023 DI 10.1088/0953-2048/21/10/105023 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 355HH UT WOS:000259699500024 ER PT J AU Groves, JF Du, Y Lyubinetsky, I Baer, DR AF Groves, J. F. Du, Y. Lyubinetsky, I. Baer, D. R. TI Focused ion beam directed self-assembly (Cu(2)O on SrTiO(3)): FIB pit and Cu(2)O nanodot evolution SO SUPERLATTICES AND MICROSTRUCTURES LA English DT Article; Proceedings Paper CT Meeting of the European-Materials-Research-Society CY MAY 28-JUN 01, 2007 CL Strasbourg, FRANCE DE Nanotechnology; Self-assembly; Metal oxides ID QUANTUM DOTS; SURFACES; NUCLEATION; ISLANDS; INAS; GAAS AB A gallium focused ion beam has been used to create discrete pits on a SrTiO(3)(100) surface with the idea that these pits will serve as the nucleation sites for subsequent Cu(2)O nanodot growth. The concentration of gallium within these pits has been analysed using a high-resolution Auger system immediately after pit formation and also following wet chemical etching and thermal annealing of the surface. The geometry of the pits has been determined following etching and annealing using atomic force microscopy (AFM). Growth of Cu(2)O nanodots on the patterned surfaces has been per-formed for different processing and Ga dose conditions. Growth of Cu(2)O nanodots within the pits is the primary mode of dot formation. In several samples, dot growth within pits appears to occur by a two-step process with pits filling before initiation of a second, distinct phase of nanodot growth above the plane of the original SrTiO(3) surface. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Groves, J. F.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. PNNL, Richland, WA 99352 USA. RP Groves, JF (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM jgroves@virginia.edu RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 NR 16 TC 3 Z9 3 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0749-6036 J9 SUPERLATTICE MICROST JI Superlattices Microstruct. PD OCT-NOV PY 2008 VL 44 IS 4-5 BP 677 EP 685 DI 10.1016/j.spmi.2008.01.016 PG 9 WC Physics, Condensed Matter SC Physics GA 376RF UT WOS:000261200000052 ER PT J AU Ozturk, O Park, JB Black, TJ Rodriguez, JA Hrbek, J Chen, DA AF Ozturk, O. Park, J. B. Black, T. J. Rodriguez, J. A. Hrbek, J. Chen, D. A. TI Methanethiol chemistry on TiO2-supported Ni clusters SO SURFACE SCIENCE LA English DT Article DE Low energy ion scattering (LEIS); Soft X-ray photoelectron spectroscopy; Scanning tunneling microscopy; Surface chemical reaction; Thermal desorption; Nickel; Titanium oxide; Clusters ID METAL-SUPPORT INTERACTIONS; RAY PHOTOELECTRON-SPECTROSCOPY; PT-RH CLUSTERS; SURFACE SCIENCE; MODEL CATALYSTS; DIMETHYL METHYLPHOSPHONATE; THERMAL-DECOMPOSITION; MOLYBDENUM-SULFIDE; TIO2(110) SURFACES; TITANIUM-DIOXIDE AB The thermal decomposition of methanethiol on Ni clusters grown on TiO2(110) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrode-sulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiOx and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen. (C) 2008 Elsevier B.V. All rights reserved. C1 [Park, J. B.; Black, T. J.; Chen, D. A.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Ozturk, O.] Gebze Inst Technol, Dept Phys, TR-41400 Gebze, Turkey. [Rodriguez, J. A.; Hrbek, J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Chen, DA (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM chen@mail.chem.sc.edu RI Hrbek, Jan/I-1020-2013; OI Chen, Donna A./0000-0003-4962-5530 FU U.S. Army Research Office [W91INF-05-1-0184]; Department of Energy-EPSCoR; Office of Basic Energy Science [DE-FG02-01ER45892]; U.S. Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886] FX D.A.C. gratefully acknowledges financial support from the U.S. Army Research Office (W91INF-05-1-0184) and the Department of Energy-EPSCoR, Office of Basic Energy Science, (DE-FG02-01ER45892). Support for J.A.R. and J.H. and the part of this work that was carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, comes from the U.S. Department of Energy, Division of Chemical Sciences, under the Contract No. DE-AC02-98CH10886. D.A.C. also thanks Prof Michael Myrick for his help in conducting the experiments at NSLS. NR 63 TC 18 Z9 18 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 1 PY 2008 VL 602 IS 19 BP 3077 EP 3088 DI 10.1016/j.susc.2008.07.032 PG 12 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 369LL UT WOS:000260695900001 ER PT J AU Wang, CM Saraf, LV Qiang, Y AF Wang, C. M. Saraf, L. V. Qiang, Y. TI Microstructures of ZnO films deposited on (0001) and r-cut alpha-Al2O3 using metal organic chemical vapor deposition SO THIN SOLID FILMS LA English DT Article DE Transmission electron microscopy; Zinc oxide; Thin films; Metal-organic chemical vapor deposition ID SAPPHIRE SUBSTRATE; ROTATION DOMAINS; BUFFER LAYER; GROWTH; HETEROSTRUCTURES; FERROMAGNETISM; HETEROEPITAXY; TEMPERATURE; ELIMINATION AB Zinc oxide films were deposited on (0001) and r-cut alpha-Al2O3 under identical conditions using metal organic chemical vapor deposition. Microstructures of the ZnO films were studied in detail using conventional and high-resolution transmission electron microscopy (HRTEM), electron diffraction, and HRTEM image simulations. The films deposited on these two substrates show distinctive structural differences. The Film grown on r-cut alpha-Al2O3 shows a high-quality single crystal with an orientation relationship of alpha-Al2O3[-101-1]//ZnO[0001] and (alpha-Al2O3(10-1-2)//ZnO(2-1-10). The interface between the film and the substrate was abrupt and decorated with high density of misfit dislocations. Film grown on alpha-Al2O3 (0001) shows several orientation domains. Typically, one domain correspond to the classic growth model such that alpha-Al2O3 (0001)//ZnO(0001) and alpha-Al2O3 [11-20]//ZnO[10-10]. Another domain corresponds to the growth mode such that alpha-Al2O3 [11-20]//ZnO[10-10] but the (0001) plane of ZnO is tilted relative to the (0001) plane of alpha-Al2O3 such that ZnO(0001) is almost parallel to the alpha-Al2O3 (-1104) plane. This orientation reduces the extent of lattice mismatch as compared with the classic growth mode. The interface between ZnO and alpha-Al2O3 is abrupt and possesses periodic dislocations. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wang, C. M.; Saraf, L. V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Qiang, Y.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM chongminwang@pnl.gov FU DOE [DE-AC06-76RLO-1830]; DOE-BES [DE-FG02-07ER46386]; DOE-EPSCoR [DE-FG02-04ER46142] FX The research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL), which is operated by Battelle for the DOE under Contract No. DE-AC06-76RLO-1830. The work at the University of Idaho is partially supported by DOE-BES (DE-FG02-07ER46386) and DOE-EPSCoR (DE-FG02-04ER46142). NR 21 TC 9 Z9 9 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 1 PY 2008 VL 516 IS 23 BP 8337 EP 8342 DI 10.1016/j.tsf.2008.04.001 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 367VD UT WOS:000260579800020 ER PT J AU Abiade, JT Miao, GX Gupta, A Gapud, AA Kumar, D AF Abiade, J. T. Miao, G. X. Gupta, A. Gapud, A. A. Kumar, D. TI Structural and magnetic properties of self-assembled nickel nanoparticles in a yttria stabilized zirconia matrix (vol 516, pg 2082, 2008) SO THIN SOLID FILMS LA English DT Correction C1 [Abiade, J. T.; Kumar, D.] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Dept Chem Engn, Tuscaloosa, AL 35487 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Ctr Mat Informat Technol MINT, Tuscaloosa, AL 35487 USA. [Gapud, A. A.] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. [Kumar, D.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Abiade, JT (reprint author), 127 Holden Hall,MC 0237, Blacksburg, VA 24061 USA. EM jabiade@vt.edu RI Miao, Guo-Xing/A-2411-2008 OI Miao, Guo-Xing/0000-0002-8735-8077 NR 1 TC 0 Z9 0 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 1 PY 2008 VL 516 IS 23 BP 8762 EP 8762 DI 10.1016/j.tsf.2008.04.035 PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 367VD UT WOS:000260579800095 ER PT J AU Boulaflous, A Faso, C Brandizzi, F AF Boulaflous, Aurelia Faso, Carmen Brandizzi, Federica TI Deciphering the Golgi apparatus: From imaging to genes SO TRAFFIC LA English DT Editorial Material DE Arabidopsis; fluorescent proteins; forward genetics; Golgi ID PLANT ENDOPLASMIC-RETICULUM; GREEN FLUORESCENT PROTEIN; MEMBRANE-PROTEIN; CELLS; ARABIDOPSIS; TRANSPORT; EXPORT; DYNAMICS; STACKS; MATRIX AB The Golgi apparatus is a vital organelle in eukaryotic cells. It grabs and processes secretory materials synthesized by the endoplasmic reticulum (ER) before sorting them to their destination. The Golgi also receives materials from vacuoles/lysosomes and the plasma membrane for further recycling to other compartments within the cell (1) (Figure 1). Given the vital role of the Golgi in a cell, it is important to understand how this organelle attains and maintains its structural and functional integrity during the intense processes of membrane traffic. Despite an equally central role of the Golgi in membrane traffic in eukaryotes, the organization of this organelle has some unique features in each cell system. Therefore, the wealth of information available on the structure and activity of the Golgi in one system is not always directly transferable to others. However, certain morphological and functional aspects are common among cell systems. Therefore, studying the factors that regulate organelle biogenesis and organization of the Golgi apparatus is important in basic cell biology of eukaryotes and may also contribute to a better understanding of how different cell systems have evolved. In this study, we report on the identification of Golgi mutants in plant cells. We have developed a screen that is a promising strategy not only for the identification of genes responsible for the morphological and functional integrity of the plant Golgi but could also provide fundamental information on other multicellular systems for which the power of forward genetics cannot be exploited as easily as in Arabidopsis. C1 [Boulaflous, Aurelia; Faso, Carmen; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM brandizz@msu.edu OI Faso, Carmen/0000-0002-1831-9365 NR 29 TC 15 Z9 15 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1398-9219 J9 TRAFFIC JI Traffic PD OCT PY 2008 VL 9 IS 10 BP 1613 EP 1617 DI 10.1111/j.1600-0854.2008.00769.x PG 5 WC Cell Biology SC Cell Biology GA 348VK UT WOS:000259238000007 PM 18503640 ER PT J AU Bradley, SA King, WE Browning, ND AF Bradley, Steven A. King, Wayne E. Browning, Nigel D. TI FEMMS 2007 PROCEEDINGS OF THE ELEVENTH CONFERENCE ON FRONTIERS OF ELECTRON MICROSCOPY IN MATERIALS SCIENCE SONOMA, CA, SEPTEMBER 24-28, 2007 Preface SO ULTRAMICROSCOPY LA English DT Editorial Material C1 [Bradley, Steven A.] UOP LLC, Des Plaines, IL 60017 USA. [King, Wayne E.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Chem Mat & Life Sci Directorate, Livermore, CA 94450 USA. RP Bradley, SA (reprint author), UOP LLC, 25 E Algonquin Rd, Des Plaines, IL 60017 USA. EM steven.bradley@uop.com; weking@llnl.gov; browning20@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2008 VL 108 IS 11 BP V EP V DI 10.1016/j.ultramic.2008.04.094 PG 1 WC Microscopy SC Microscopy GA 366XZ UT WOS:000260518200001 ER PT J AU Bartel, TP Kisielowski, C AF Bartel, T. P. Kisielowski, C. TI A quantitative procedure to probe for compositional inhomogeneities in InxGa1-xN alloys SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 11th Conference on Frontiers of Electron Microscopy in Materials Science CY SEP 24-28, 2007 CL Sonoma, CA DE Quantitative HRTEM; Strain; InGaN; Clustering ID TRANSMISSION ELECTRON-MICROSCOPY; INGAN QUANTUM-WELLS; ELASTIC RELAXATION; DEFECTS; STRAIN; HETEROSTRUCTURES; RECOMBINATION; DISPLACEMENT; DIFFRACTION; INTERFACES AB The distribution of indium in a GaN/InxGa1-xN/AlyGa1-yN quantum well with x +/-Delta x = 0.24 +/- 0.07 is quantitatively investigated by extraction of displacement fields from lattice images. Simulations accurately describe the measured strain relaxation across a wedge-shaped sample for a sample thickness up to 150nm. The proportionality between indium concentration and resulting lattice constant c(x) is approximated by c(x) = 0.5185+0.111xnm. In general, it is challenging to discriminate the effects of random alloying against clustering. In InxGa1-xN this is particularly true at low indium concentrations x<0.2. For an accurate quantitative analysis, sample preparation and imaging were developed such that radiation damage can be recognized if present. Further, an analysis of detection limits and knowledge of the sample thickness are crucial for obtaining reproducible results. Data averaging is necessary to reach sufficient precision. Consequently, the size of the indium-rich clusters is poorly known if x is small. Beyond the interest in physical properties of InxGa1-xN alloys, the analysis of strain and its relaxation exemplifies how quantitative analysis is possible at an atomic level and is in excellent agreement with theoretical predictions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bartel, T. P.; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Div Mat Sci, Berkeley, CA 94720 USA. [Bartel, T. P.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. RP Kisielowski, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM CFKisielowski@lbl.gov RI Bartel, Til/C-1098-2008 NR 34 TC 8 Z9 8 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2008 VL 108 IS 11 BP 1420 EP 1426 DI 10.1016/j.ultramic.2008.04.096 PG 7 WC Microscopy SC Microscopy GA 366XZ UT WOS:000260518200004 PM 18691817 ER PT J AU LaGrange, T Campbell, GH Reed, B Taheri, M Pesavento, JB Kim, JS Browning, ND AF LaGrange, Thomas Campbell, Geoffrey H. Reed, Bw Taheri, Mitra Pesavento, J. Bradley Kim, Judy S. Browning, Nigel D. TI Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM) SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 11th Conference on Frontiers of Electron Microscopy in Materials Science CY SEP 24-28, 2007 CL Sonoma, CA DE Ultrafast electron diffraction; Time resolved electron microscopy; Catalysis; Martensitic phase transformations ID EXOTHERMIC REACTIONS; SILICON NANOWIRES; MULTILAYER FOILS; GAN NANOWIRES; X-RAY; GROWTH; DIFFRACTION; KINETICS; TRANSFORMATION; NUCLEATION AB Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions. (C) 2008 Published by Elsevier B.V. C1 [LaGrange, Thomas; Campbell, Geoffrey H.; Reed, Bw; Taheri, Mitra; Pesavento, J. Bradley; Kim, Judy S.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kim, Judy S.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP LaGrange, T (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM lagrange@llnl.gov RI Campbell, Geoffrey/F-7681-2010; Taheri, Mitra/F-1321-2011; Reed, Bryan/C-6442-2013; OI Browning, Nigel/0000-0003-0491-251X NR 42 TC 49 Z9 49 U1 6 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2008 VL 108 IS 11 BP 1441 EP 1449 DI 10.1016/j.ultramic.2008.03.013 PG 9 WC Microscopy SC Microscopy GA 366XZ UT WOS:000260518200007 PM 18783886 ER PT J AU Walker, CA Hodges, VC AF Walker, C. A. Hodges, V. C. TI Comparing Metal-Ceramic Brazing Methods SO WELDING JOURNAL LA English DT Editorial Material C1 [Walker, C. A.; Hodges, V. C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Walker, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cawalke@sandia.gov NR 20 TC 10 Z9 10 U1 0 U2 3 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD OCT PY 2008 VL 87 IS 10 BP 43 EP 50 PG 8 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 494HW UT WOS:000269803500007 ER PT J AU Vianco, PT AF Vianco, Paul T. TI AWS Breaks New Ground with Soldering Specification SO WELDING JOURNAL LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptvianc@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD OCT PY 2008 VL 87 IS 10 BP 53 EP 54 PG 2 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 494HW UT WOS:000269803500008 ER PT J AU Lucovsky, G Lee, S Long, JP Seo, H Luning, J AF Lucovsky, G. Lee, S. Long, J. P. Seo, H. Luening, J. TI Elimination of GeO(2) and Ge(3)N(4) interfacial transition regions and defects at n-type Ge interfaces: A pathway for formation of n-MOS devices on Ge substrates SO APPLIED SURFACE SCIENCE LA English DT Article DE n-type ge substrates; interfacial transition regions; n-MOS devices; band gaps GeO(2) and Ge(3)N(4); X-ray absorption spectroscopy; visible and VUVSE ID ELEMENTAL OXIDES; GATE DIELECTRICS; GERMANIUM; STATES AB The contribution from relatively low-K SiON interfacial transition regions (ITRs) between Si and transition metal (TM) gate dielectrics places a significant limitation on equivalent oxide thickness ( EOT) scaling for Si complementary metal-oxide-semiconductor (CMOS) devices. This limitation is equally significant and limiting for Ge CMOS devices. Low-K Ge-based ITRs in Ge devices have also been shown to limit performance and reliability, particular for n-MOS field effect transistors. This article identifies the source of signicant electron trapping at interfaces between n-Ge or inverted p-Ge, and Ge oxide, nitride and oxynitride ITRs. This is shown to be an interfacial band alignment issue in which native Ge ITRs have conduction band offset energies smaller than those of TM dielectrics, and trap electrons for negative Ge substrate bias. This article also describes a novel remote plasma processing approach for effectively eliminating any significant native Ge ITRs and using a plasma-processing/annealing process sequence for bonding TM gate dielectrics directly to the Ge substrate surface. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lucovsky, G.; Lee, S.; Long, J. P.; Seo, H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Luening, J.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Lucovsky, G (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM lucovsky@ncsu.edu FU Air Force Office of Scientific Research; Defense Threat Reduction Agency; Army Office of Scientific Research; National Research Council Fellowship FX The authors acknowledge research support from the Air Force Office of Scientific Research in a MURI collaboration with Vanderbilt University, the Defense Threat Reduction Agency, and the Army Office of Scientific Research. We acknowledge important collaborations with (i) Dave Aspnes of NC State University in the use of spectroscopic ellipsometry for studying ex-situ surface cleaning of Ge, and (ii) collaborations with Marc Ulrich of NC State University and the Army Research Office and Rijay Vasic, who is a Post Doctoral Fellow at NC State University supported by a National Research Council Fellowship. The X-ray absorption spectra in this article have been obtained on Beam-line 10-1 at the Stanford Synchrotron Research Laboratory (SSRL). NR 20 TC 20 Z9 20 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 30 PY 2008 VL 254 IS 23 BP 7933 EP 7937 DI 10.1016/j.apsusc.2008.03.157 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 347WR UT WOS:000259172600095 ER PT J AU Gross, R Guzman, CA Sebaihia, M dos Santos, VAPM Pieper, DH Koebnik, R Lechner, M Bartels, D Buhrmester, J Choudhuri, JV Ebensen, T Gaigalat, L Herrmann, S Khachane, AN Larisch, C Link, S Linke, B Meyer, F Mormann, S Nakunst, D Rukert, C Schneiker-Bekel, S Schulze, K Vorholter, FJ Yevsa, T Engle, JT Goldman, WE Puhler, A Gobel, UB Goesmann, A Blocker, H Kaiser, O Martinez-Arias, R AF Gross, Roy Guzman, Carlos A. Sebaihia, Mohammed dos Santos, Vitor A. P. Martins Pieper, Dietmar H. Koebnik, Ralf Lechner, Melanie Bartels, Daniela Buhrmester, Jens Choudhuri, Jomuna V. Ebensen, Thomas Gaigalat, Lars Herrmann, Stefanie Khachane, Amit N. Larisch, Christof Link, Stefanie Linke, Burkhard Meyer, Folker Mormann, Sascha Nakunst, Diana Ruekert, Christian Schneiker-Bekel, Susanne Schulze, Kai Vorhoelter, Frank-Joerg Yevsa, Tetyana Engle, Jacquelyn T. Goldman, William E. Puehler, Alfred Goebel, Ulf B. Goesmann, Alexander Bloecker, Helmut Kaiser, Olaf Martinez-Arias, Rosa TI The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae SO BMC GENOMICS LA English DT Article ID DENITRIFYING PSEUDOMONAS SP; CHLOROBENZENE DIOXYGENASE; MOLECULAR PATHOGENESIS; CATABOLIC PATHWAYS; GENUS BORDETELLA; GENOMIC ISLANDS; CLC ELEMENT; STRAIN B13; IDENTIFICATION; PERTUSSIS AB Background: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. Results: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the dc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. Conclusion: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches. C1 [Gross, Roy; Lechner, Melanie; Link, Stefanie] Univ Wurzburg, Chair Microbiol, Bioctr, D-97074 Wurzburg, Germany. [Guzman, Carlos A.; Ebensen, Thomas; Schulze, Kai; Yevsa, Tetyana] Helmholtz Ctr Infect Res, Dept Vaccinol & Appl Microbiol, D-38124 Braunschweig, Germany. [Sebaihia, Mohammed] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. [dos Santos, Vitor A. P. Martins; Khachane, Amit N.] Helmholtz Ctr Infect Res, Div Mol Biotechnol, D-38124 Braunschweig, Germany. [Pieper, Dietmar H.] Helmholtz Ctr Infect Res, Dept Microbial Pathogenesis, D-38124 Braunschweig, Germany. [Koebnik, Ralf] CNRS UP IRD 911, Inst Rech Dev UMR 5096, F-34394 Montpellier 5, France. [Bartels, Daniela; Choudhuri, Jomuna V.; Larisch, Christof; Linke, Burkhard; Meyer, Folker; Schneiker-Bekel, Susanne; Goesmann, Alexander; Kaiser, Olaf] Univ Bielefeld, CeBiTec, D-33501 Bielefeld, Germany. [Buhrmester, Jens; Gaigalat, Lars; Mormann, Sascha; Nakunst, Diana; Ruekert, Christian; Vorhoelter, Frank-Joerg; Puehler, Alfred] Univ Bielefeld, Chair Genet, D-33501 Bielefeld, Germany. [Herrmann, Stefanie; Goebel, Ulf B.] Charite Univ Med Berlin, Inst Microbiol & Hyg, D-10117 Berlin, Germany. [Engle, Jacquelyn T.] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA. [Goldman, William E.] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA. [Bloecker, Helmut; Martinez-Arias, Rosa] Helmholtz Ctr Infect Res, Dept Genome Anal, D-38124 Braunschweig, Germany. [Bartels, Daniela; Meyer, Folker] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Buhrmester, Jens; Kaiser, Olaf] Roche Diagnost GmbH, D-82377 Penzberg, Germany. [Choudhuri, Jomuna V.] BASF Plant Sci GmbH, D-67117 Limburgerhof, Germany. RP Gross, R (reprint author), Univ Wurzburg, Chair Microbiol, Bioctr, Hubland, D-97074 Wurzburg, Germany. EM roy@biozentrum.uni-wuerzburg.de; carlos.guzman@helmholtz-hzi.de; ms5@sanger.ac.uk; vds@helmholtz-hzi.de; dpi@helmholtz-hzi.de; koebnik@mpl.ird.fr; mellie_lechner@yahoo.de; bartels@mcs.anl.gov; jens.buhrmester@roche.com; jomuna-veronica.choudhuri@basf.com; thomas.ebensen@helmholtz-hzi.de; lars.gaigalat@genetik.uni-bielefeld.de; stefanie.herrmann@charite.de; amit.khachane@mail.mcgill.ca; christof.larisch@genetik.uni-bielefeld.de; stefanielink@web.de; blinke@cebitec.uni-bielefeld.de; folker@mcs.anl.gov; smormann@genetik.uni-bielefeld.de; diana.nakunst@genetik.uni-bielefeld.de; christian.rueckert@genetik.uni-bielefeld.de; susanne.schneiker@genetik.uni-bielefeld.de; ksc@gbf.de; frank-joerg.vorhoelter@genetik.uni-bielefeld.de; tetyana.yevsa@helmholtz-hzi.de; goldman@wustl.edu; goldman@med.unc.edu; puehler@genetik.uni-bielefeld.de; ulf.goebel@charite.de; alexander.goesmann@cebitec.uni-bielefeld.de; bloecker@helmholtz-hzi.de; olaf.kaiser@roche.com; martinezarias21@yahoo.com RI Koebnik, Ralf/J-5627-2014; OI Koebnik, Ralf/0000-0002-4419-0542; Goldman, William/0000-0002-1551-6718; Meyer, Folker/0000-0003-1112-2284; Ruckert, Christian/0000-0002-9722-4435 FU BMBF; Deutsche Forschungsgemeinschaft [SFB479/A2] FX This work was supported by the Pathogenomics Competence Network of the BMBF and by the priority research programme SFB479/A2 from the Deutsche Forschungsgemeinschaft. NR 53 TC 36 Z9 344 U1 0 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 30 PY 2008 VL 9 AR 449 DI 10.1186/1471-2164-9-449 PG 14 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 369EV UT WOS:000260678000001 PM 18826580 ER PT J AU Danielyan, K Ganguly, K Ding, BS Atochin, D Zaitsev, S Murciano, JC Huang, PL Kasner, SE Cines, DB Muzykantov, VR AF Danielyan, Kristina Ganguly, Kumkum Ding, Bi-Sen Atochin, Dmitriy Zaitsev, Sergei Murciano, Juan-Carlos Huang, Paul L. Kasner, Scott E. Cines, Douglas B. Muzykantov, Vladimir R. TI Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator SO CIRCULATION LA English DT Article DE erythrocytes; fibrinolysis; plasminogen activators; stroke ID FOCAL CEREBRAL-ISCHEMIA; ARTERY-BYPASS-SURGERY; EMBOLIC STROKE; PROPHYLACTIC FIBRINOLYSIS; PERIOPERATIVE MANAGEMENT; MYOCARDIAL-INFARCTION; THERAPEUTIC WINDOW; ADJUVANT TREATMENT; RAT MODEL; TPA AB Background - Cerebrovascular thrombosis is a major source of morbidity and mortality after surgery, but thromboprophylaxis in this setting is limited because of the formidable risk of perioperative bleeding. Thrombolytics (eg, tissue-type plasminogen activator [tPA]) cannot be used prophylactically in this high-risk setting because of their short duration of action and risk of causing hemorrhage and central nervous system damage. We found that coupling tPA to carrier red blood cells (RBCs) prolongs and localizes tPA activity within the bloodstream and converts it into a thromboprophylactic agent, RBC/tPA. To evaluate the utility of this new approach for preventing cerebrovascular thrombosis, we examined the effect of RBC/tPA in animal models of cerebrovascular thromboembolism and ischemia. Methods and Results - Preformed fibrin microemboli were injected into the middle carotid artery of mice, occluding downstream perfusion and causing severe infarction and 50% mortality within 48 hours. Preinjected RBC/tPA rapidly lysed nascent cerebral thromboemboli, providing rapid, durable reperfusion and reducing morbidity and mortality. These beneficial effects were not achieved by preinjection of tPA, even at a 10-fold higher dose, which increased mortality from 50% to 90% by 10 hours after embolization. RBC/tPA injected 10 minutes after tail amputation to simulate postsurgical hemostasis did not cause bleeding from the wound, whereas soluble tPA caused profuse bleeding. RBC/tPA neither aggravated brain damage caused by focal ischemia in a filament model of middle carotid artery occlusion nor caused postthrombotic hemorrhage in hypertensive rats. Conclusions - These results suggest a potential RBC/tPA utility as thromboprophylaxis in patients who are at risk for acute cerebrovascular thromboembolism. C1 [Danielyan, Kristina; Ding, Bi-Sen; Zaitsev, Sergei; Muzykantov, Vladimir R.] Univ Penn, Dept Pharmacol, Philadelphia, PA 19104 USA. [Kasner, Scott E.] Univ Penn, Dept Neurol, Philadelphia, PA 19104 USA. [Cines, Douglas B.] Univ Penn, Dept Pathol, Philadelphia, PA 19104 USA. [Ganguly, Kumkum] Los Alamos Natl Lab, Los Alamos, NM USA. [Atochin, Dmitriy; Huang, Paul L.] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA. [Murciano, Juan-Carlos] Ctr Nacl Invest Cardiovasc, Madrid, Spain. RP Muzykantov, VR (reprint author), Univ Penn, Dept Pharmacol, 1 John Morgan Bldg,3620 Hamilton Walk, Philadelphia, PA 19104 USA. EM muzykant@mail.med.upenn.edu RI Kasner, Scott/C-6109-2011; Atochin, Dmitriy/Q-3150-2016 FU National Institutes of Health [RO1 HL66442, HL090697, HL076406, CA83121, HL076206, HL82545]; American Heart Association Bugher-Stroke Award; American Heart Association predoctoral fellowship; American Heart Association Scientist Development Award; Institute for Translational Medicine and Therapeutics; University of Pennsylvania; Fondo de investigacion Sanitaria [PI 040961]; Ramon y Cajal Foundation Awards FX This study was supported by National Institutes of Health grants RO1 HL66442, HL090697, HL076406, CA83121, HL076206, and HL82545 and American Heart Association Bugher-Stroke Award (Dr Muzykantov), American Heart Association predoctoral fellowship (B.-S. Ding), American Heart Association Scientist Development Award (Dr Zaitsev), and an award from the Institute for Translational Medicine and Therapeutics, University of Pennsylvania (Dr Cines), and Fondo de investigacion Sanitaria grant PI 040961 and Ramon y Cajal Foundation Awards (Dr Murciano). NR 48 TC 38 Z9 39 U1 1 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD SEP 30 PY 2008 VL 118 IS 14 BP 1442 EP 1449 DI 10.1161/CIRCULATIONAHA.107.750257 PG 8 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 354OE UT WOS:000259648100007 PM 18794394 ER PT J AU Long, CN Turner, DD AF Long, C. N. Turner, D. D. TI A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR; RADIANCE; NETWORK; SKIES AB We present an improved self-adaptive methodology for the continuous estimation of downwelling clear-sky longwave (LW) radiative flux based on analysis of surface irradiance, air temperature, and humidity measurements that includes a term to account for near surface optically thin haze. Comparison between our estimations and clear-sky LW measurements for many years of data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) sites show agreement at about the 4 W m(-2) level, with 75%, 94%, and 68% of the data falling within that range for the SGP, TWP, and NSA sites, respectively. Although there is no exact means of determining the uncertainty associated with the clear-sky LW estimations, our analyses and comparison with detailed radiative transfer (RT) model calculations suggest our estimations on average are no worse than model calculations that require temporally and spatially averaged input information. Our technique exhibits a high degree of repeatability for the downwelling LW cloud effect, with agreement at about the 3 W m(-2) level. Applying our technique and that of Long and Ackerman (2000) to 15 years of data from the ARM SGP site shows the maximum all-sky and clear-sky SW and LW occurs during summer, with the greatest year-to-year clear-sky SW variability occurring in fall. The downwelling LW cloud effect is fairly constant across the seasons, but the greatest SW cloud effect occurs in spring. The downwelling net cloud effect is dominated by the SW, with the largest effect occurring in spring (-64 W m(-2)) and the smallest occurring during winter (-21 W m(-2)). C1 [Long, C. N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, D. D.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. RP Long, CN (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM chuck.long@pnl.gov FU Office of Science (BER) of the U. S. Department of Energy [DE-FG02-06ER64167] FX The authors acknowledge the support of the Office of Science (BER) of the U. S. Department of Energy as part of the ARM Program, including a grant (DE-FG02-06ER64167) to the University of Wisconsin - Madison. Recognition is also extended to those responsible for the operation and maintenance of the instruments that produced the data used in this study; their diligent and dedicated efforts are often underappreciated. NR 22 TC 30 Z9 30 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 30 PY 2008 VL 113 IS D18 AR D18206 DI 10.1029/2008JD009936 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 356US UT WOS:000259803700003 ER PT J AU Mao, WL Struzhkin, VV Baron, AQR Tsutsui, S Tommaseo, CE Wenk, HR Hu, MY Chow, P Sturhahn, W Shu, JF Hemley, RJ Heinz, DL Mao, HK AF Mao, Wendy L. Struzhkin, Viktor V. Baron, Alfred Q. R. Tsutsui, Satoshi Tommaseo, Caterina E. Wenk, Hans-Rudolf Hu, Michael Y. Chow, Paul Sturhahn, Wolfgang Shu, Jinfu Hemley, Russell J. Heinz, Dion L. Mao, Ho-Kwang TI Experimental determination of the elasticity of iron at high pressure SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID EARTHS INNER-CORE; X-RAY-DIFFRACTION; NUCLEAR RESONANT SCATTERING; TRANSITION-METALS FE; DENSITY-OF-STATES; TRAVEL-TIMES; FREE OSCILLATIONS; HCP-IRON; IN-SITU; ANISOTROPY AB We present a multitechnique approach to experimentally determine the elastic anisotropy of polycrystalline hcp Fe at high pressure. Directional phonon measurements from inelastic X-ray scattering on a sample with lattice preferred orientation at 52 GPa in a diamond anvil cell were coupled with X-ray diffraction data to determine the elastic tensor. Comparison of the results from this new method with the elasticity determined by lattice strain analysis of radial X-ray diffraction measurements showed significant differences, highlighting the importance of strength anisotropy in hcp Fe. At 52 GPa, we found that a method which combines results from inelastic scattering and pressure-volume measurements gives a shape in the velocity anisotropy close to sigmoidal (with a faster c and slower a axis) a smaller magnitude in the anisotropy and compared to velocities based on the lattice strain method which gives a bell shape velocity distribution with the fast direction between the c and a axes. We used additional results from nuclear resonant inelastic X-ray scattering to constrain errors and provide additional validation of the accuracy of our results. C1 [Mao, Wendy L.] Stanford Univ, SLAC, Dept Geol & Environm Sci & Photon Sci, Stanford, CA 94305 USA. [Baron, Alfred Q. R.] RIKEN, SPring 8, Sayo, Hyogo 6795148, Japan. [Hu, Michael Y.; Chow, Paul] Carnegie Inst Washington, Adv Photon Source, HPCAT, Washington, DC 20015 USA. [Heinz, Dion L.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Struzhkin, Viktor V.; Shu, Jinfu; Hemley, Russell J.; Mao, Ho-Kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Tommaseo, Caterina E.] Univ Gottingen, Dept Crystallog, D-37077 Gottingen, Germany. [Baron, Alfred Q. R.; Tsutsui, Satoshi] JASRI, SPring 8, Sayo, Hyogo 6795198, Japan. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Mao, WL (reprint author), Stanford Univ, SLAC, Dept Geol & Environm Sci & Photon Sci, Stanford, CA 94305 USA. EM wmao@stanford.edu RI Mao, Wendy/D-1885-2009; Struzhkin, Viktor/J-9847-2013 OI Struzhkin, Viktor/0000-0002-3468-0548 FU NSF [EAR-0738873, EAR-0337006, 0409321]; Carnegie DOE Alliance Center (CDAC); DOE-BES; DOE-NNSA; DOD-TACOM; W. M. Keck Foundation; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Japan Synchrotron Radiation Research Institute (JASRI); IXS experiments [2003A0022-ND3-np, 2003B0693-ND3d-np] FX The authors would like to thank F. M. Richter, B. A. Buffet, W. A. Bassett, and two anonymous reviewers for helpful comments on the manuscript. W. Mao is supported through the Geophysics program at NSF (EAR-0738873). H. R. Wenk acknowledges support from NSF (EAR-0337006) and the Carnegie DOE Alliance Center (CDAC). The HPCAT facility is supported by DOE-BES, DOE-NNSA (CDAC), NSF (EAR-0337006 and 0409321), DOD-TACOM, and the W. M. Keck Foundation. The Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. Use of BL35XU in SPring-8 was supported by the Japan Synchrotron Radiation Research Institute (JASRI), and the IXS experiments were performed with their approval (proposal 2003A0022-ND3-np and 2003B0693-ND3d-np). NR 61 TC 20 Z9 20 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD SEP 30 PY 2008 VL 113 IS B9 AR B09213 DI 10.1029/2007JB005229 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 356VE UT WOS:000259804900001 ER PT J AU Bardeen, WA AF Bardeen, William A. TI HEAVY-LIGHT MESONS AND CHIRAL SYMMETRY SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT International Workshop on Chiral Symmetry in Hadron and Nuclear Physics CY NOV 13-16, 2007 CL Osaka Univ, Osaka, JAPAN SP RCNP HO Osaka Univ DE Charm mesons; chiral symmetry; heavy-quark symmetry; chiral Lagrangians ID DYNAMICAL MODEL; QUARK SYMMETRY; SUPERCONDUCTIVITY; ANALOGY AB The chiral structure of heavy-light mesons is explored with a particular focus on the nature of the D(s)J charmed mesons. Theoretical predictions for the hadronic and radiative decays of these mesons are compared to recent experimental data. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Bardeen, WA (reprint author), Fermilab Natl Accelerator Lab, MS 106,POB 500, Batavia, IL 60510 USA. EM bardeen@fnal.gov NR 21 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 30 PY 2008 VL 23 IS 27-30 BP 2209 EP 2217 DI 10.1142/S0217732308029058 PG 9 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 358NT UT WOS:000259925500004 ER PT J AU Hatsuda, T Aoki, S Ishii, N Nemura, H AF Hatsuda, Tetsuo Aoki, Sinya Ishii, Noriyoshi Nemura, Hidekatsu TI FROM LATTICE QCD TO NUCLEAR FORCE SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT International Workshop on Chiral Symmetry in Hadron and Nuclear Physics CY NOV 13-16, 2007 CL Osaka Univ, Osaka, JAPAN SP RCNP HO Osaka Univ DE Nucleon-nucleon potential; lattice QCD calculation ID BARYON-BARYON INTERACTION; SHORT-RANGE PART; QUARK-MODEL; N-N; 2-NUCLEON INTERACTION; CHIRAL LAGRANGIANS; REPULSIVE CORE; NEUTRON-STARS; FIELD THEORY; FORMULATION AB After a brief introduction to the phenomenological nucleon-nucleon (NN) potentials, the basic formulation of deriving the NN potential from lattice QCD simulations on the basis of the equal-time Bethe-Salpeter wave function is presented. The resultant non-local NN potential and its derivative expansion are discussed. Ongoing and planned studies on the lattice with quenched and full QCD simulations are summarized. C1 [Hatsuda, Tetsuo] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Ishii, Noriyoshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan. [Nemura, Hidekatsu] RIKEN, Adv Meson Sci Lab, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. RP Hatsuda, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM hatsuda@phys.s.u-tokyo.ac.jp; saoki@het.ph.tsukuba.ac.jp; ishii@rarfaxp.riken.jp; nemura@riken.jp RI Hatsuda, Tetsuo/C-2901-2013 NR 45 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 EI 1793-6632 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 30 PY 2008 VL 23 IS 27-30 BP 2265 EP 2272 DI 10.1142/S0217732308029174 PG 8 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 358NT UT WOS:000259925500015 ER PT J AU Ishii, N Aoki, S Hatsuda, T AF Ishii, Noriyoshi Aoki, Sinya Hatsuda, Tetsuo TI LATTICE QCD CALCULATION OF NUCLEAR FORCES SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT International Workshop on Chiral Symmetry in Hadron and Nuclear Physics CY NOV 13-16, 2007 CL Osaka Univ, Osaka, JAPAN SP RCNP HO Osaka Univ DE Lattice QCD; nuclear force; tensor force AB Quenched lattice QCD results of nuclear forces are presented. Inter-nucleon potentials are constructed from Bethe-Salpeter wave functions of two nucleon states by using a Schrodinger-type equation. The results of the central force in S-1(0) channel posses the repulsive core at short distance as well as the attraction at medium distance, both of which are enhanced in the light quark mass region. A preliminary result on the tensor force is also presented with the central force in S-3(1) channel. C1 [Ishii, Noriyoshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058577, Japan. [Hatsuda, Tetsuo] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. RP Ishii, N (reprint author), Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan. EM ishii@ribf.riken.jp; saoki@het.ph.tsukuba.ac.jp; hatsuda@phys.s.u-tokyo.ac.jp RI Hatsuda, Tetsuo/C-2901-2013 NR 9 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 30 PY 2008 VL 23 IS 27-30 BP 2281 EP 2284 DI 10.1142/S0217732308029198 PG 4 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 358NT UT WOS:000259925500017 ER PT J AU Nemura, H Ishii, N Aoki, S Hatsuda, S AF Nemura, H. Ishii, N. Aoki, S. Hatsuda, S. TI LATTICE QCD SIMULATION OF HYPERON-NUCLEON POTENTIAL SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT International Workshop on Chiral Symmetry in Hadron and Nuclear Physics CY NOV 13-16, 2007 CL Osaka Univ, Osaka, JAPAN SP RCNP HO Osaka Univ DE Lattice QCD calculations; hyperon-nucleon interactions AB We calculate p Xi(0) potentials from the equal-time Bethe-Salpeter amplitude measured in the quenched QCD simulation with the spatial lattice volume, (4.4 fm)(3). The standard Wilson gauge action with the gauge coupling beta = 5.7 on 32(4) lattice together with the standard Wilson quark action isused. The hopping parameter kappa(ud) = 0:1678 is chosen for u and d quarks, which corresponds to m(pi) similar or equal to 0.37 GeV. The physical strange quark mass is used by taking the parameter kappa(s) = 0.1643 which is deduced from the physical K meson mass. The lattice spacing a = 0.1420 fm is determined by the physical rho meson mass. We find that the p Xi(0) potential has sizable spin dependence. Strong repulsive core is found in S-1(0) channel while the effective central potential in the S-3(1) channel has relatively weak repulsive core. The potentials also have weak at tractive parts in the medium to long distance region (0:6 fm <= r <= 1.2 fm) in both of the S-1(0) and S-3(1) channels. C1 [Nemura, H.] RIKEN, Adv Meson Sci Lab, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Ishii, N.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Hatsuda, S.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Nemura, H (reprint author), RIKEN, Adv Meson Sci Lab, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM nemura@riken.jp; ishii@rarfaxp.riken.jp; saoki@het.ph.tsukuba.ac.jp; hatsuda@phys.s.u-tokyo.ac.jp NR 8 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 30 PY 2008 VL 23 IS 27-30 BP 2285 EP 2288 DI 10.1142/S0217732308029204 PG 4 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 358NT UT WOS:000259925500018 ER PT J AU Bentz, W Lawley, S Thomas, AW AF Bentz, W. Lawley, S. Thomas, A. W. TI ON THE EQUATION OF STATE IN EFFECTIVE QUARK THEORIES SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT International Workshop on Chiral Symmetry in Hadron and Nuclear Physics CY NOV 13-16, 2007 CL Osaka Univ, Osaka, JAPAN SP RCNP HO Osaka Univ DE Equation of state; nuclear matter; quark matter ID NUCLEAR-MATTER AB We discuss the saturation mechanism for the nuclear matter equation of state in a chiral effective quark theory. The importance of the scalar polarizability of the nucleon is emphasized. The phase transition to color superconducting quark matter is also discussed. C1 [Bentz, W.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Lawley, S.] Univ Adelaide, Special Res Ctr Subatom Struct Matter, Adelaide, SA 5005, Australia. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. RP Bentz, W (reprint author), Tokai Univ, Sch Sci, Dept Phys, 1117 Kitakaname, Hiratsuka, Kanagawa 2591292, Japan. OI Thomas, Anthony/0000-0003-0026-499X NR 3 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 30 PY 2008 VL 23 IS 27-30 BP 2477 EP 2480 DI 10.1142/S0217732308029629 PG 4 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 358NT UT WOS:000259925500057 ER PT J AU Schwegler, E Sharma, M Gygi, F Galli, G AF Schwegler, Eric Sharma, Manu Gygi, Francois Galli, Giulia TI Melting of ice under pressure SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high pressure; phase transitions; water ID 1ST PRINCIPLES SIMULATIONS; DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; WATER; H2O; TRANSITIONS; ACCURACY; PHASES; VII; GPA AB The melting of ice under pressure is investigated with a series of first-principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10-50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 and 40 GPa, ice melts as a molecular solid. For pressures above approximate to 45 Gpa, there is a sharp increase in the slope of the melting curve because of the presence of molecular dissociation and proton diffusion in the solid before melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid. C1 [Schwegler, Eric; Gygi, Francois; Galli, Giulia] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sharma, Manu; Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Gygi, Francois] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Schwegler, E (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM schwegler@llnl.gov RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 FU U.S. Department of Energy [DE-AC52-07NA27344]; Office of Science, U.S. Department of Energy, SciDAC [DE-FC02-06ER46262] FX This work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and partly supported by the Office of Science, U.S. Department of Energy, SciDAC Grant DE-FC02-06ER46262. Use of computer resources from Lawrence Livermore National Laboratory and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program is gratefully acknowledged. NR 38 TC 62 Z9 62 U1 1 U2 40 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 30 PY 2008 VL 105 IS 39 BP 14779 EP 14783 DI 10.1073/pnas.0808137105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 357IW UT WOS:000259840500009 PM 18809909 ER PT J AU Opperman, CH Bird, DM Williamson, VM Rokhsar, DS Burke, M Cohn, J Cromer, J Diener, S Gajan, J Graham, S Houfek, TD Liu, Q Mitros, T Schaff, J Schaffer, R Scholl, E Sosinski, BR Thomas, VP Windham, E AF Opperman, Charles H. Bird, David M. Williamson, Valerie M. Rokhsar, Dan S. Burke, Mark Cohn, Jonathan Cromer, John Diener, Steve Gajan, Jim Graham, Steve Houfek, T. D. Liu, Qingli Mitros, Therese Schaff, Jennifer Schaffer, Reenah Scholl, Elizabeth Sosinski, Bryon R. Thomas, Varghese P. Windham, Eric TI Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE compaction; dauer; development; horizontal gene transfer; gene ID BETA-1,4-ENDOGLUCANASE GENES; CYST NEMATODES; RESISTANCE; INCOGNITA AB We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the free-living nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution. C1 [Opperman, Charles H.; Bird, David M.; Burke, Mark; Cohn, Jonathan; Cromer, John; Diener, Steve; Gajan, Jim; Graham, Steve; Houfek, T. D.; Schaff, Jennifer; Schaffer, Reenah; Scholl, Elizabeth; Windham, Eric] N Carolina State Univ, Dept Plant Pathol, Ctr Biol Nematode Parasitism, Raleigh, NC 27695 USA. [Williamson, Valerie M.; Liu, Qingli; Thomas, Varghese P.] Univ Calif Davis, Dept Nematol, Davis, CA 95616 USA. [Rokhsar, Dan S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Mitros, Therese] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Sosinski, Bryon R.] N Carolina State Univ, Genome Res Lab, Raleigh, NC 27695 USA. RP Opperman, CH (reprint author), N Carolina State Univ, Dept Plant Pathol, Ctr Biol Nematode Parasitism, Box 7616, Raleigh, NC 27695 USA. EM warthog@ncsu.edu FU U.S. Department of Agriculture; National Science Foundation FX This work was supported by a grant from the Microbial Genome Sequencing Program of the Cooperative State, Research, Education, and Extension Service, U.S. Department of Agriculture. ESTs were generated at Washington University's Genome Sequencing Center with the support of the National Science Foundation Plant Genome panel. NR 33 TC 236 Z9 250 U1 2 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 30 PY 2008 VL 105 IS 39 BP 14802 EP 14807 DI 10.1073/pnas.0805946105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 357IW UT WOS:000259840500013 PM 18809916 ER PT J AU Welsh, EA Liberton, M Stoeckel, J Loh, T Elvitigala, T Wang, C Wollam, A Fulton, RS Clifton, SW Jacobs, JM Aurora, R Ghosh, BK Sherman, LA Smith, RD Wilson, RK Pakrasi, HB AF Welsh, Eric A. Liberton, Michelle Stoeckel, Jana Loh, Thomas Elvitigala, Thanura Wang, Chunyan Wollam, Aye Fulton, Robert S. Clifton, Sandra W. Jacobs, Jon M. Aurora, Rajeev Ghosh, Bijoy K. Sherman, Louis A. Smith, Richard D. Wilson, Richard K. Pakrasi, Himadri B. TI The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE diurnal rhythm; linear chromosome; nitrogen fixation; optical mapping; proteomics ID SP STRAIN ATCC-51142; LINEAR PLASMIDS; PACIFIC-OCEAN; SEQUENCE; FIXATION; CHROMOSOMES; EVOLUTION; PROTEIN; IDENTIFICATION; REPLICATION AB Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N-2-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell. C1 [Welsh, Eric A.; Liberton, Michelle; Stoeckel, Jana; Loh, Thomas; Elvitigala, Thanura; Ghosh, Bijoy K.; Pakrasi, Himadri B.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Wilson, Richard K.] Washington Univ, Sch Med, Genome Sequencing Ctr, St Louis, MO 63108 USA. [Jacobs, Jon M.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Aurora, Rajeev] St Louis Univ, Sch Med, Dept Mol Microbiol & Immunol, St Louis, MO 63104 USA. [Sherman, Louis A.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. RP Pakrasi, HB (reprint author), Washington Univ, Dept Biol, 1 Brookings Dr CB1137, St Louis, MO 63130 USA. EM pakrasi@wustl.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Aurora, Rajeev/0000-0002-6609-6055 FU Danforth Foundation at Washington University; Department of Energy-Basic Energy Science program; National Science Foundation Frontiers in Integrative Biological Research program; Wiley Environmental Molecular Science Laboratory; U.S. Department of Energy's Office of Biological and Environmental Research program (Pacific Northwest National Laboratory) FX We thank all members of the Pakrasi Lab for collegial discussions and active participation in the manual annotation of the Cyanothece 51142 genome. This work was supported by the Danforth Foundation at Washington University, the Department of Energy-Basic Energy Science program (H. B. P.), and the National Science Foundation Frontiers in Integrative Biological Research program (H. B. P., R. A., and B. G). This work is also part of a Membrane Biology Scientific Grand Challenge project at the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research program (Pacific Northwest National Laboratory). NR 40 TC 85 Z9 327 U1 3 U2 38 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 30 PY 2008 VL 105 IS 39 BP 15094 EP 15099 DI 10.1073/pnas.0805418105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 386WW UT WOS:000261914300048 PM 18812508 ER PT J AU Budai, JD Liu, W Tischler, JZ Pan, ZW Norton, DP Larson, BC Yang, W Ice, GE AF Budai, J. D. Liu, W. Tischler, J. Z. Pan, Z. W. Norton, D. P. Larson, B. C. Yang, W. Ice, G. E. TI Polychromatic X-ray micro- and nanodiffraction for spatially-resolved structural studies SO THIN SOLID FILMS LA English DT Article DE Microbeams; Polychromatic microdiffraction; Nanodiffraction; 3D X-ray microscopy; Nanostructures ID PLASTIC-DEFORMATION; YBA2CU3O7-X FILMS; GRAIN NUCLEATION; MICRODIFFRACTION; GROWTH; RESOLUTION; DEVICES; ELECTROMIGRATION; DIFFRACTION; BEAM AB The availability of intense, focused synchrotron X-ray microbeams has enabled new techniques for materials investigations with sub-micron spatial resolution. The scanning microbeam setup we have developed at the XOR-UNI beamline at the Advanced Photon Source (APS) is versatile in that it provides 1D, 2D or 3D scans (including depth resolution), and call alternate between polychromatic- and monochromatic-beam modes. Focusing in both modes uses elliptical Kirkpatrick-Baez (K-B) reflecting mirrors. Beam diameters of similar to 500 nm FWHM are now routine, and 90 nm focus has been demonstrated. In white-beam mode, a CCD detector records a complete Laue diffraction pattern, which is analyzed with all automated indexing program. These X-ray diffraction patterns provide real-space maps of the local lattice structure, crystal orientation, grain morphology, and strain tensor. Spatially-resolved X-ray microdiffraction studies are now providing previously unavailable measurements of local microstructures. These measurements, in turn, yield new insights in several classic fields of materials science. This paper will illustrate the application of polychromatic scanning X-ray microscopy with examples from I D 2D and 3D materials systems. In I D systems, we have mapped the Structure and orientation of an individual ZnO nanorod along with the associated Ge catalyst particle used to control the nanocrystal growth. In 2D systems, X-ray microdiffraction studies have revealed the mechanisms for local crystallographic tilting in epitaxial oxide films grown on textured Ni substrates for superconducting applications. In 3D systems, X-ray microscopy investigations have included in-situ Studies of microstructural evolution during thermal grain growth in polycrystalline aluminum. In general, these spatially-resolved measurements provide important new insights and are valuable as input for theoretical and Computer modeling studies of a wide range of material processes. (C) 2008 Elsevier B.V. All rights reserved. C1 [Budai, J. D.; Tischler, J. Z.; Larson, B. C.; Ice, G. E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Pan, Z. W.] Univ Georgia, Athens, GA 30602 USA. [Norton, D. P.] Univ Florida, Gainesville, FL USA. [Yang, W.; Ice, G. E.] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL USA. RP Budai, JD (reprint author), POB 2008, Oak Ridge, TN 37831 USA. EM budaijd@ornl.gov RI Yang, Wenge/H-2740-2012; Budai, John/R-9276-2016; OI Budai, John/0000-0002-7444-1306; Pan, Zhengwei/0000-0002-3854-958X FU Division of Materials Sciences and Engineering, U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; ORNL; UIUC-MRL; NIST; UOP; DOE-BES Office of Science FX Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy, Office of Science under contract with UT-Battelle, LLC. UNI-CAT/XOR supported by ORNL, UIUC-MRL, NIST, UOP and DOE-BES Office of Science. Use of the APS was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 54 TC 13 Z9 13 U1 3 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD SEP 30 PY 2008 VL 516 IS 22 BP 8013 EP 8021 DI 10.1016/j.tsf.2008.04.045 PG 9 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 364UK UT WOS:000260360700011 ER PT J AU Paulauskas, IE Katz, JE Jellison, GE Lewis, NS Boatner, LA AF Paulauskas, I. E. Katz, J. E. Jellison, G. E., Jr. Lewis, N. S. Boatner, L. A. TI Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation SO THIN SOLID FILMS LA English DT Article DE Solar energy; Photoelectrochemical cells; Photoanodes; KTaO3; SrTiO3; BaTiO3; ZnO ID PHOTOASSISTED ELECTROLYSIS; OPTICAL FUNCTIONS; PHOTOELECTROLYSIS; SRTIO3; ELLIPSOMETRY; IRRADIATION AB Single crystals of various n-type semiconducting oxides have been investigated in order to better understand the relationship between their photoelectrochemical behavior and their optical properties. The single crystals used in this Study were all n-type and consisted of. KTaO3, BaTiO3, SrTiO3, and ZnO. Current density vs applied potential measurements indicated that all of the crystals exhibited diodic properties when in contact with a highly basic electrolyte (8.5 M NaOH at room temperature). The ZnO electrodes, however, exhibited some degradation after exposure to the operational cell environment. Results indicate that the spectral quantum yield of the crystals is related to the penetration depth of the incident light, meaning that electron-hole pairs formed far from the semiconductor-liquid junction are less likely to be collected than those formed near the surface (e.g. inside the depletion regions). Additionally the quantum yield was found to decrease with time. In the case of KTaO3, the decay of the quantum yield was fit to a double exponential, which Suggests that a complicated process is operative for this material. Ongoing research is directed toward understanding the influence of both temperature variations and the surface/electrolyte interface on the effects observed in the case of KTaO3. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jellison, G. E., Jr.; Boatner, L. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Paulauskas, I. E.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Katz, J. E.; Lewis, N. S.] CALTECH, Beckman Inst, Pasadena, CA 91125 USA. [Katz, J. E.; Lewis, N. S.] CALTECH, Kavli Nanosci Inst, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Jellison, GE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM jellisongejr@ornl.gov RI Katz, Jordan/B-1560-2010; Boatner, Lynn/I-6428-2013; Katz, Jordan/J-5599-2016 OI Boatner, Lynn/0000-0002-0235-7594; Katz, Jordan/0000-0002-6242-2124 FU DOE Office of Basic Energy Sciences FX This research was sponsored by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. It was performed at the Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 18 TC 14 Z9 14 U1 3 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD SEP 30 PY 2008 VL 516 IS 22 BP 8175 EP 8178 DI 10.1016/j.tsf.2008.04.026 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 364UK UT WOS:000260360700039 ER PT J AU Johnson, JA Woodford, JB Rajput, D Kolesnikov, AI Schleuter, JA Eryilmaz, OL Erdemir, A AF Johnson, J. A. Woodford, J. B. Rajput, D. Kolesnikov, A. I. Schleuter, J. A. Eryilmaz, O. L. Erdemir, A. TI Carbon-hydrogen bonding in near-frictionless carbon SO APPLIED PHYSICS LETTERS LA English DT Article ID DIAMOND-LIKE CARBON; FILMS AB The uniquely low friction behavior of near-frictionless carbon (NFC) as compared to conventional diamondlike carbon (DLC) is determined by the bonding within the film. Inelastic neutron scattering (INS) and Fourier transform infrared (FTIR) spectroscopy were used to probe the bonding environment of carbon and hydrogen; both INS and FTIR can probe the whole sample. Previous work has focused on surface studies; the present results show that in the film as a whole the majority of the hydrogen is adjacent to sp(3)-bonded carbon. In addition this work has determined the absence of any molecular hydrogen in NFC. (C) 2008 American Institute of Physics. C1 [Johnson, J. A.; Rajput, D.] Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. [Johnson, J. A.; Woodford, J. B.; Kolesnikov, A. I.; Schleuter, J. A.; Eryilmaz, O. L.; Erdemir, A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Johnson, JA (reprint author), Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. EM jjohnson@utsi.edu RI Rajput, Deepak/A-2147-2012; Johnson, Jacqueline/P-4844-2014; Kolesnikov, Alexander/I-9015-2012 OI Johnson, Jacqueline/0000-0003-0830-9275; Kolesnikov, Alexander/0000-0003-1940-4649 FU Argonne National Laboratory's; U. S. Department of Energy [DE-AC02-06CH11357, DE-AC05-00OR22725] FX Argonne National Laboratory's work was supported under U. S. Department of Energy Contract No. DE-AC02-06CH11357 and work at ORNL/SNS was managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. We would also like to thank R. Carpick for valuable discussions. NR 21 TC 2 Z9 2 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 29 PY 2008 VL 93 IS 13 AR 131911 DI 10.1063/1.2990757 PG 3 WC Physics, Applied SC Physics GA 356RA UT WOS:000259794100031 ER PT J AU Kumar, D Oh, SH Pennycook, SJ Majumdar, AK AF Kumar, Dhananjay Oh, Sang Ho Pennycook, Stephen J. Majumdar, A. K. TI Scaling exponent within the side-jump mechanism of Hall effect size-dependence in Ni nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article ID PARTICLES; FILMS AB High- resolution Hall data in only 3.5 mu g of Ni nanocrystals, grown in a planar array on TiN, are reported. We conclude from the exponent, n similar to 1.06 +/- 0.01 in R-s similar to rho(n), where R-s is the extraordinary Hall constant and rho is the Ohmic resistivity, that the side- jump mechanism could still be operative if the nanocrystals are below a certain critical size and the mean free path of the electrons is strongly temperature dependent only in the magnetic layer. Also, the 1000 times larger value of Rs than those in bulk Ni makes it an ideal candidate for magnetic sensors. (C) 2008 American Institute of Physics. C1 [Kumar, Dhananjay; Oh, Sang Ho; Majumdar, A. K.] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Ctr Adv Mat & Smart Struct, Greensboro, NC 27411 USA. [Kumar, Dhananjay; Oh, Sang Ho; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Majumdar, A. K.] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India. RP Majumdar, AK (reprint author), N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Ctr Adv Mat & Smart Struct, Greensboro, NC 27411 USA. EM akm@bose.res.in NR 15 TC 1 Z9 1 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 29 PY 2008 VL 93 IS 13 AR 133105 DI 10.1063/1.2987517 PG 3 WC Physics, Applied SC Physics GA 356RA UT WOS:000259794100080 ER PT J AU Nikolic, RJ Conway, AM Reinhardt, CE Graff, RT Wang, TF Deo, N Cheung, CL AF Nikolic, R. J. Conway, A. M. Reinhardt, C. E. Graff, R. T. Wang, T. F. Deo, N. Cheung, C. L. TI 6 : 1 aspect ratio silicon pillar based thermal neutron detector filled with (10)B SO APPLIED PHYSICS LETTERS LA English DT Article AB Current helium-3 tube based thermal neutron detectors have shortcomings in achieving simultaneously high efficiency and low voltage while maintaining adequate fieldability performance. By using a three-dimensional silicon p-i-n diode pillar array filled with boron-10 these constraints can be overcome. The fabricated pillar structured detector reported here is composed of 2 mu m diameter silicon pillars with a 4 mu m pitch and height of 12 m mu. A thermal neutron detection efficiency of 7.3+/-0.6% and a neutron-to-gamma discrimination of 105 at 2 V reverse bias were measured for this detector. When scaled to larger aspect ratio, a high efficiency device is possible. (C) 2008 American Institute of Physics. C1 [Nikolic, R. J.; Conway, A. M.; Reinhardt, C. E.; Graff, R. T.; Wang, T. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Deo, N.; Cheung, C. L.] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Deo, N.; Cheung, C. L.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Nikolic, RJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM nikolic1@llnl.gov RI Conway, Adam/C-3624-2009; Cheung, Chin Li/B-8270-2013 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-405940] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, LLNL-JRNL-405940. NR 12 TC 36 Z9 36 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 29 PY 2008 VL 93 IS 13 AR 133502 DI 10.1063/1.2985817 PG 3 WC Physics, Applied SC Physics GA 356RA UT WOS:000259794100107 ER PT J AU Tetard, L Passian, A Lynch, RM Voy, BH Shekhawat, G Dravid, V Thundat, T AF Tetard, Laurene Passian, Ali Lynch, Rachel M. Voy, Brynn H. Shekhawat, Gajendra Dravid, Vinayak Thundat, Thomas TI Elastic phase response of silica nanoparticles buried in soft matter SO APPLIED PHYSICS LETTERS LA English DT Article ID FABRICATION; HOLOGRAPHY AB Tracking the uptake of nanomaterials by living cells is an important component in assessing both potential toxicity and in designing future materials for use in vivo. We show that the difference in the local elasticity at the site of silica (SiO(2)) nanoparticles confined within a macrophage enables functional ultrasonic interactions. By elastically exciting the cell, a phase perturbation caused by the buried SiO(2) nanoparticles was detected and used to map the subsurface populations of nanoparticles. Localization and mapping of stiff chemically synthesized silica nanoparticles within the cellular structures of a macrophage are important in basic as well as applied studies. (C) 2008 American Institute of Physics. C1 [Tetard, Laurene; Passian, Ali; Lynch, Rachel M.; Voy, Brynn H.; Thundat, Thomas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Tetard, Laurene; Passian, Ali; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Shekhawat, Gajendra; Dravid, Vinayak] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Passian, A (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI Dravid, Vinayak/B-6688-2009 FU DOE-OBER; NSF-NSEC; SRC; [DE-AC0500OR22725] FX This research was sponsored by DOE-OBER. We are indebted to W. Wang and B. Gu of ORNL for their support and for supplying silica, and D. Glass for help with animal experiments. Research of V. P. D. and G. S. was supported by NSF-NSEC and SRC. We are grateful to V. Castranova at NIOSH for training with the pharyngeal aspiration and BAL techniques. ORNL is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC0500OR22725. NR 13 TC 26 Z9 26 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 29 PY 2008 VL 93 IS 13 AR 133113 DI 10.1063/1.2987460 PG 3 WC Physics, Applied SC Physics GA 356RA UT WOS:000259794100088 ER PT J AU Liu, YM Bartal, G Zhang, X AF Liu, Yongmin Bartal, Guy Zhang, Xiang TI All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region SO OPTICS EXPRESS LA English DT Article ID PHOTONIC CRYSTALS; DIFFRACTION LIMIT; OPTICAL HYPERLENS; SUPERLENS; METAMATERIALS; FREQUENCIES; INDEX; RANGE; LENS AB We theoretically demonstrated that all-angle negative refraction and imaging can be implemented by metallic nanowires embedded in a dielectric matrix. When the separation between the nanowires is much smaller than the incident wavelength, these structures can be characterized as indefinite media, whose effective permittivities perpendicular and parallel to the wires are opposite in signs. Under this condition, the dispersion diagram is hyperbolic for transverse magnetic waves propagating in the nanowire system, thereby exhibiting all-angle negative refraction. Such indefinite media can operate over a broad frequency range (visible to near-infrared) far from any resonances, thus they offer an effective way to manipulate light propagation in bulk media with low losses, allowing potential applications in photonic devices. (C) 2008 Optical Society of America C1 [Liu, Yongmin; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 5130 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Yongmin/F-5322-2010; Zhang, Xiang/F-6905-2011 FU Air Force Office of Scientific Research (AFOSR) [FA9550-04-1-0434]; National Science Foundation (NSF) Nanoscale Science and Engineering Center [DMI-0327077] FX This work was supported by the Air Force Office of Scientific Research (AFOSR) MURI program (FA9550-04-1-0434), and the National Science Foundation (NSF) Nanoscale Science and Engineering Center (DMI-0327077). NR 42 TC 140 Z9 143 U1 7 U2 45 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 29 PY 2008 VL 16 IS 20 BP 15439 EP 15448 DI 10.1364/OE.16.015439 PG 10 WC Optics SC Optics GA 360XK UT WOS:000260091300015 PM 18825180 ER PT J AU Wang, BN Zhou, JF Koschny, T Soukoulis, CM AF Wang, Bingnan Zhou, Jiangfeng Koschny, Thomas Soukoulis, Costas M. TI Nonlinear properties of split-ring resonators SO OPTICS EXPRESS LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; METAMATERIALS AB In this letter, the properties of split-ring resonators (SRRs) loaded with high-Q capacitors and nonlinear varactors are theoretically analyzed and experimentally measured. We demonstrate that the resonance frequency f(m) of the nonlinear SRRs can be tuned by increasing the incident power. fm moves to lower and higher frequencies for the SRR loaded with one varactor and two back-to-back varactors, respectively. For high incident powers, we observe bistable tunable metamaterials and hysteresis effects. Moreover, the coupling between two nonlinear SRRs is also discussed. (c) 2008 Optical Society of America C1 [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Inst Elect Struct & Laser, FORTH, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Wang, BN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Wang, Bingnan/C-6332-2011; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Zhou, Jiangfeng/0000-0002-6958-3342 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; office of Naval Research [N00014-07-1-D359]; European Community [213390] FX Work at Ames Laboratory was supported by the Department of Energy ( Basic Energy Sciences) under contract No. DE-AC02-07CH11358. This work was partially supported by the office of Naval Research (Award No. N00014-07-1-D359), and European Community FET project PHOME (Contract No. 213390). NR 19 TC 74 Z9 75 U1 0 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 29 PY 2008 VL 16 IS 20 BP 16058 EP 16063 DI 10.1364/OE.16.016058 PG 6 WC Optics SC Optics GA 360XK UT WOS:000260091300080 PM 18825245 ER PT J AU Cole, GD Behymer, E Bond, TC Goddard, LL AF Cole, Garrett D. Behymer, Elaine Bond, Tiziana C. Goddard, Lynford L. TI Short-wavelength MEMS-tunable VCSELs SO OPTICS EXPRESS LA English DT Article ID SURFACE-EMITTING LASERS; VERTICAL-CAVITY SOAS; TUNING RANGE; MU-M; SPECTROSCOPY; OXYGEN; MODE; BAND; CO AB We present electrically-injected MEMS-tunable vertical-cavity surface-emitting lasers with emission wavelengths below 800 nm. Operation in this wavelength range, near the oxygen A-band from 760-780 nm, is attractive for absorption-based optical gas sensing. These fully-monolithic devices are based on an oxide-aperture AlGaAs epitaxial structure and incorporate a suspended dielectric Bragg mirror for wavelength tuning. By implementing electrostatic actuation, we demonstrate the potential for tuning rates up to 1 MHz, as well as a wide wavelength tuning range of 30 nm (767-737 nm). (c) 2008 Optical Society of America C1 [Cole, Garrett D.; Behymer, Elaine; Bond, Tiziana C.; Goddard, Lynford L.] Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, Livermore, CA 94550 USA. RP Cole, GD (reprint author), Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, Livermore, CA 94550 USA. EM cole35@llnl.gov; bond7@llnl.gov RI Cole, Garrett/B-9383-2011 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. GDC acknowledges financial support from the Engineering Relations with Academia (ERA) program at LLNL and thanks Jonathan Geske and Michael MacDougal of Aerius Photonics, LLC, as well as Benjamin Kogel of the Technische Universitat Darmstadt for numerous enlightening discussions. NR 28 TC 14 Z9 14 U1 1 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 29 PY 2008 VL 16 IS 20 BP 16093 EP 16103 DI 10.1364/OE.16.016093 PG 11 WC Optics SC Optics GA 360XK UT WOS:000260091300083 PM 18825248 ER PT J AU Boyle, TJ Ottley, LAM Rodriguez, MA AF Boyle, Timothy J. Ottley, Leigh Anna M. Rodriguez, Mark A. TI Structurally characterized group 4 metal alkoxides modified with the pyridyl-based ligands 2-mercapto pyridine n-oxide and 3,3 '-dihydroxy-2,2 '-bipyridine SO POLYHEDRON LA English DT Article DE Metal alkoxides; Pyridine; Mercapto; Crystal structure ID CRYSTAL-STRUCTURES; ALPHA,ALPHA-DISUBSTITUTED-2,6-PYRIDINEDIMETHOXIDE LIGANDS; COMPLEXES; PRECURSORS; TITANIUM(IV); COBALT(III); DERIVATIVES; MORPHOLOGY; PHOSPHINE; SOLVATE AB An investigation of a series of substituted pyridyl-based ligands was undertaken using 2-mercapto pyridine n-oxide (H-2MPO) and 3,3'-dihydroxy-2,2'-bipyridine (H(2)-OBPy) as the modifying reagents of a series of titanium alkoxides. The resultant products were identified as (2MPO)(2)Ti(OR)(2) [OR = OCHMe(2) (1), OCH(2)CMe(3) (2), OCMe(3) (3)] and [(OR)(2)M(mu(c)-OBPy)](3) where M\OR = Ti\OCH(2)CMe(3) (4) along with Zr\OCMe(3) (5) from Zr(OCMe(3))(4) (mu(c) = chelating bridging). The structure of 1-3 were found to adopt similar monomeric structures with octahedrally (Oh) bound Ti metal centers using two terminal OR and two chelating 2MPO derivatives. Switching to the OBPy ligand, cyclic trinuclear species with Oh bound metals that employed two terminal OR and two mu(c)-OBPy ligands were isolated. The two rings of the bridging OBPy were rotated such that one O and one N from different rings chelate to a single metal. The synthesis and characterization of these compounds and comparison to appropriate literature species are presented. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Boyle, Timothy J.; Ottley, Leigh Anna M.; Rodriguez, Mark A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU Office of Basic Energy Science; US Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank Dr. Todd M. Alam for his simulation of the NMR data. For support of this research, the authors thank the Office of Basic Energy Science and the US Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. NR 39 TC 5 Z9 5 U1 3 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD SEP 29 PY 2008 VL 27 IS 14 BP 3079 EP 3084 DI 10.1016/j.poly.2008.06.037 PG 6 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 358BT UT WOS:000259892200003 ER PT J AU Ghosh, D Manka, A Strey, R Seifert, S Winans, RE Wyslouzil, BE AF Ghosh, David Manka, Alexandra Strey, Reinhard Seifert, Soenke Winans, Randall E. Wyslouzil, Barbara E. TI Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NEUTRON-SCATTERING; TEMPERATURE-RANGE; MOLECULAR CONTENT; ALCOHOL SERIES; BINARY NUCLEI; CLOUD CHAMBER; RATE SURFACES; VAPOR; TUBE; NANODROPLETS AB In our earlier publication [M. Gharibeh et al., J. Chem. Phys. 122, 094512 (2005)] we determined the temperatures and partial pressures corresponding to the maximum nucleation rate for a series n-alcohols (C(i)H(2i+1)OH; i=3-5) during condensation in a supersonic nozzle. Although we were able to determine the characteristic time Delta t(Jmax) corresponding to the peak nucleation rate, we were unable to measure the number density of the aerosol and, thus, unable to directly quantify the nucleation rate J. In this paper we report the results of our pioneering small angle x-ray scattering (SAXS) experiments of n-alcohol droplets formed in a supersonic nozzle together with a new series of complementary pressure trace measurements. By combining the SAXS and pressure trace measurement data we determine the nucleation rates as a function of temperature and supersaturation. (C) 2008 American Institute of Physics. C1 [Ghosh, David; Manka, Alexandra; Strey, Reinhard] Univ Cologne, Inst Phys Chem, D-50939 Cologne, Germany. [Seifert, Soenke; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Ghosh, David; Manka, Alexandra; Wyslouzil, Barbara E.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Ghosh, David; Manka, Alexandra; Wyslouzil, Barbara E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. RP Ghosh, D (reprint author), Philip Morris Res Labs GmbH, Fuggestr 3, D-51149 Cologne, Germany. EM wyslouzil.1@osu.edu RI Wyslouzil, Barbara/G-8219-2012 FU National Science Foundation [CHE-0410045, CHE-0518042]; American Chemical Society; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation under Grant Nos. CHE-0410045 and CHE-0518042 and by the Donors of the Petroleum Research Fund administered by the American Chemical Society. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank D. Bergmann, S. Tanimura, H. Laksmono, J. Wolk, and K. Distel for their help in conducting the SAXS experiments. NR 43 TC 14 Z9 14 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2008 VL 129 IS 12 AR 124302 DI 10.1063/1.2978384 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 357ZA UT WOS:000259884600026 PM 19045018 ER PT J AU Joly, AG Beck, KM Hess, WP AF Joly, Alan G. Beck, Kenneth M. Hess, Wayne P. TI Electronic energy transfer on CaO surfaces SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATOMIC DESORPTION; IONIC SURFACES; MGO; EXCITATION; SPECTRA; CRYSTALS; DYNAMICS; OXIDES; STATES AB We excite low-coordinated surface sites of nanostructured CaO samples using tunable UV laser pulses and observe hyperthermal O-atom emission indicative of an electronic excited-state desorption mechanism. The O-atom yield increases dramatically with photon energy, between 3.75 and 5.4 eV, below the bulk absorption threshold. The peak of the kinetic energy distribution does not increase with photon energy in the range from 3.9 to 5.15 eV. These results are analyzed in the context of a laser desorption model developed previously for nanostructured MgO samples. The data are consistent with desorption induced by exciton localization at corner-hole trapped surface sites following electronic energy transfer from higher coordinated surface sites. (C) 2008 American Institute of Physics. C1 [Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Joly, AG (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnl.gov FU Department of Energy, Division of Chemical Sciences of the Office of Basic Energy Sciences FX The authors were supported by the Department of Energy, Division of Chemical Sciences of the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle. Experiments were performed in the Environmental Molecular Sciences Laboratory, a U. S. Department of Energy user facility operated by the office of Biological and Environmental Research. NR 26 TC 4 Z9 4 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2008 VL 129 IS 12 AR 124704 DI 10.1063/1.2980049 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 357ZA UT WOS:000259884600053 PM 19045045 ER PT J AU Lacevic, N Gee, RH Saab, A Maxwell, R AF Lacevic, Naida Gee, Richard H. Saab, Andrew Maxwell, Robert TI Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POLYHEDRAL OLIGOMERIC SILSESQUIOXANE; MOLECULAR-DYNAMICS SIMULATION; BIOMEDICAL APPLICATIONS; POSS POLYMERS; COPOLYMERS; POLY(DIMETHYLSILOXANE); SISLESQUIOXANES; ELASTOMERS; NETWORKS; RHEOLOGY AB Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly (dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties. (C) 2008 American Institute of Physics. C1 [Lacevic, Naida; Gee, Richard H.; Saab, Andrew; Maxwell, Robert] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Lacevic, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM nlacevic@consalteff.com; gee10@llnl.gov NR 46 TC 13 Z9 13 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2008 VL 129 IS 12 AR 124903 DI 10.1063/1.2980044 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 357ZA UT WOS:000259884600069 PM 19045061 ER PT J AU Liu, J Miller, WH AF Liu, Jian Miller, William H. TI Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID CENTROID MOLECULAR-DYNAMICS; LIQUID PARA-HYDROGEN; VIBRATIONAL-ENERGY RELAXATION; QUANTUM-STATISTICAL MECHANICS; MONTE-CARLO SIMULATIONS; PATH-INTEGRAL METHODS; MODE-COUPLING THEORY; PROBABILITIES S-MATRIX; COHERENT-STATE DENSITY; THERMAL RATE CONSTANTS AB The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors. (C) 2008 American Institute of Physics. C1 [Liu, Jian] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, KS Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Liu, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM miller@cchem.berkeley.edu RI Liu, Jian/B-2274-2012 OI Liu, Jian/0000-0002-2906-5858 FU Office of Naval Research [N00014-05-1-0457]; Director, Office of Science; Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Naval Research Grant No. N00014-05-1-0457 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge a generous allocation of supercomputing time from the National Energy Research Scientific Computing Center (NERSC). We thank F. Paesani and G. Voth for providing the CMD data in Ref. 110. We also thank D. Manolopoulos for his comments on the manuscript. J.L. thanks C. Predescu for a helpful discussion on the bisection method (Ref. 121) of the PIMC about two years ago and also thanks T. F. Miller for some useful discussions. NR 160 TC 21 Z9 21 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2008 VL 129 IS 12 AR 124111 DI 10.1063/1.2981065 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 357ZA UT WOS:000259884600018 PM 19045010 ER PT J AU Wu, SL Mickley, LJ Jacob, DJ Rind, D Streets, DG AF Wu, Shiliang Mickley, Loretta J. Jacob, Daniel J. Rind, David Streets, David G. TI Effects of 2000-2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LIGHTNING DISTRIBUTIONS; ATMOSPHERIC CHEMISTRY; ISOPRENE EMISSION; MODEL; NOX; AIR; SIMULATIONS; TRANSPORT; METHANE; IMPACT AB We use a global chemical transport model (GEOS-Chem) driven by a general circulation model (NASA Goddard Institute for Space Studies GCM) to investigate the effects of 2000-2050 global change in climate and emissions (the Intergovernmental Panel on Climate Change A1B scenario) on the global tropospheric ozone budget and on the policy-relevant background (PRB) ozone in the United States. The PRB ozone, defined as the ozone that would be present in U. S. surface air in the absence of North American anthropogenic emissions, has important implications for setting national air quality standards. We examine separately and then together the effects of changes in climate and anthropogenic emissions of ozone precursors. We find that the 2000 2050 change in global anthropogenic emissions of ozone precursors increases the global tropospheric ozone burden by 17%. The 2000-2050 climate change increases the tropospheric ozone burden by 1.6%, due mostly to lightning in the upper troposphere, and also increases global tropospheric OH by 12%. In the lower troposphere, by contrast, climate change generally decreases the background ozone. The 2000-2050 increase in global anthropogenic emissions of ozone precursors increases PRB ozone by 2-6 ppb in summer; the maximum effect is found in April (3-7 ppb). The summertime PRB ozone decreases by up to 2 ppb with 2000-2050 climate change, except over the Great Plains, where it increases slightly as a result of increasing soil NOx emission. Climate change cancels out the effect of rising global anthropogenic emissions on the summertime PRB ozone in the eastern United States, but there is still a 2-5 ppb increase in the west. C1 [Wu, Shiliang; Mickley, Loretta J.; Jacob, Daniel J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Rind, David] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Wu, Shiliang; Mickley, Loretta J.; Jacob, Daniel J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Wu, SL (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM s.wu@post.harvard.edu RI Mickley, Loretta/D-2021-2012; Chem, GEOS/C-5595-2014; OI Mickley, Loretta/0000-0002-7859-3470; Streets, David/0000-0002-0223-1350 FU U. S. EPA STAR Program FX This work was supported by the U. S. EPA STAR Program. We thank Arlene Fiore (NOAA GFDL) for help in processing the emission growth factors. NR 76 TC 62 Z9 63 U1 3 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 27 PY 2008 VL 113 IS D18 AR D18312 DI 10.1029/2007JD009639 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 353YW UT WOS:000259607100002 ER PT J AU Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Ayres, DS Baller, B Barnes, PD Barr, G Barrett, WL Becker, BR Belias, A Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Bower, C Buckley-Geer, E Cavanaugh, S Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Coleman, SJ Culling, AJ de Jong, JK Dierckxsens, M Diwan, MV Dorman, M Dytman, SA Escobar, CO Evans, JJ Harris, EF Feldman, GJ Frohne, MV Gallagher, HR Godley, A Goodman, MC Gouffon, P Gran, R Grashorn, EW Grossman, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hatcher, R Heller, K Himmel, A Holin, A Hylen, J Irwin, GM Ishitsuka, M Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Kim, JJ Kim, MS Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kotelnikov, SK Kreymer, A Kumaratunga, S Lang, K Ling, J Litchfield, PJ Litchfield, RP Loiacono, L Lucas, P Ma, J Mann, WA Marchionni, A Marshak, ML Marshall, JS Mayer, N McGowan, AM Meier, JR Merzon, GI Messier, MD Metelko, CJ Michael, DG Miller, JL Miller, WH Mishra, SR Moore, CD Morfin, J Mualem, L Mufson, S Murgia, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Ospanov, R Paley, J Paolone, V Para, A Patzak, T Pavlovic, Z Pawloski, G Pearce, GF Peck, CW Peterson, EA Petyt, DA Pittam, R Plunkett, RK Rahaman, A Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Rodrigues, PA Rosenfeld, C Rubin, HA Ruddick, K Ryabov, VA Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Seun, SM Shanahan, P Smart, W Smith, C Sousa, A Speakman, B Stamoulis, P Strait, M Symes, P Tagg, N Talaga, RL Tavera, MA Thomas, J Thompson, J Thomson, MA Thron, JL Tinti, G Trostin, I Tsarev, VA Tzanakos, G Urheim, J Vahle, P Viren, B Ward, CP Ward, DR Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C Wojcicki, SG Wright, DM Yang, T Zois, M Zhang, K Zwaska, R AF Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Ayres, D. S. Baller, B. Barnes, P. D., Jr. Barr, G. Barrett, W. L. Becker, B. R. Belias, A. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Bower, C. Buckley-Geer, E. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Culling, A. J. de Jong, J. K. Dierckxsens, M. Diwan, M. V. Dorman, M. Dytman, S. A. Escobar, C. O. Evans, J. J. Harris, E. Falk Feldman, G. J. Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Hylen, J. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Kim, J. J. Kim, M. S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. Ling, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marchionni, A. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, J. L. Miller, W. H. Mishra, S. R. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pawloski, G. Pearce, G. F. Peck, C. W. Peterson, E. A. Petyt, D. A. Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Seun, S. -M. Shanahan, P. Smart, W. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Symes, P. Tagg, N. Talaga, R. L. Tavera, M. A. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Yang, T. Zois, M. Zhang, K. Zwaska, R. CA MINOS Collaboration TI Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLOBAL ANALYSIS AB This Letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum-mechanical oscillations of neutrino flavor with mass splitting vertical bar Delta m(2)vertical bar = (2.43 +/- 0.13) x 10(-3) eV(2) (68% C.L.) and mixing angle sin(2)(2 theta) > 0.90 (90% C.L.). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight: namely, neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard-deviation levels, respectively. C1 [Ayres, D. S.; Goodman, M. C.; McGowan, A. M.; Reichenbacher, J.; Sanchez, M. C.; Talaga, R. L.; Thron, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Stamoulis, P.; Tzanakos, G.; Zois, M.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Dierckxsens, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.; Zhang, K.] Assoc Univ Inc, Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Michael, D. G.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Peck, C. W.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Cobb, J. H.; Culling, A. J.; Marshall, J. S.; Thomson, M. A.; Ward, C. P.; Ward, D. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, IF UNICAMP, BR-13083970 Campinas, SP, Brazil. [Patzak, T.] Univ Paris 07, APC, Paris 13, France. [Adamson, P.; Baller, B.; Belias, A.; Bernstein, R. H.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Buckley-Geer, E.; Childress, S.; Choudhary, B. C.; Grossman, N.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Marchionni, A.; Moore, C. D.; Morfin, J.; Para, A.; Rameika, R. A.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.; Wehmann, A.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Boehm, J.; Cavanaugh, S.; Feldman, G. J.; Sanchez, M. C.; Seun, S. -M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [de Jong, J. K.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Armstrong, R.; Bower, C.; Ishitsuka, M.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Trostin, I.] ITEP, High Energy Expt Phys Dept, Moscow 117218, Russia. [Miller, J. L.] James Madison Univ, Dept Phys, Harrisonburg, VA 22807 USA. [Kotelnikov, S. K.; Merzon, G. I.; Ryabov, V. A.; Tsarev, V. A.] Lebedev Phys Inst, Dept Nucl Phys, Moscow 119991, Russia. [Barnes, P. D., Jr.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dorman, M.; Evans, J. J.; Holin, A.; Kordosky, M.; Koskinen, D. J.; Nichol, R. J.; Smith, C.; Thomas, J.; Vahle, P.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Arms, K. E.; Becker, B. R.; Grashorn, E. W.; Heller, K.; Kasahara, S. M. S.; Kumaratunga, S.; Litchfield, P. J.; Marshak, M. L.; McGowan, A. M.; Meier, J. R.; Miller, W. H.; Peterson, E. A.; Petyt, D. A.; Plunkett, R. K.; Ruddick, K.; Speakman, B.; Strait, M.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Barr, G.; Cobb, J. H.; Evans, J. J.; Grzelak, K.; Litchfield, R. P.; Pittam, R.; Rodrigues, P. A.; Sousa, A.; Tinti, G.; Weber, A.; West, N.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Bhattacharya, D.; Dytman, S. A.; Kim, M. S.; Naples, D.; Thompson, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Andreopoulos, C.; Belias, A.; Dorman, M.; Hartnell, J.; Nicholls, T. C.; Pearce, G. F.; Raufer, T. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Godley, A.; Kim, J. J.; Ling, J.; Mishra, S. R.; Rahaman, A.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Murgia, S.; Pawloski, G.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Harris, E. Falk; Harris, P. G.; Hartnell, J.; Symes, P.; Tavera, M. A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Watabe, M.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Kopp, S.; Lang, K.; Loiacono, L.; Ma, J.; Ospanov, R.; Pavlovic, Z.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Kordosky, M.; Mann, W. A.; Oliver, W. P.; Schneps, J.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Warsaw Univ, Dept Phys, PL-00681 Warsaw, Poland. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Coleman, S. J.; Nelson, J. K.; Vahle, P.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Adamson, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Evans, Justin/P-4981-2014; Kotelnikov, Sergey/A-9711-2014; Gouffon, Philippe/I-4549-2012; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Nichol, Ryan/C-1645-2008; Tinti, Gemma/I-5886-2013; Harris, Philip/I-7419-2012; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Merzon, Gabriel/N-2630-2015; OI Thomson, Mark/0000-0002-2654-9005; Marchionni, Alberto/0000-0003-3039-9537; Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555; Evans, Justin/0000-0003-4697-3337; Kotelnikov, Sergey/0000-0002-8027-4612; Gouffon, Philippe/0000-0001-7511-4115; Ling, Jiajie/0000-0003-2982-0670; Harris, Philip/0000-0003-4369-3874; Koskinen, David/0000-0002-0514-5917; COLEMAN, STEPHEN/0000-0002-4621-9169 FU U.S. DOE; U.K. STFC; U.S. NSF; State and University of Minnesota; University of Athens, Greece; Brazil's FAPESP; CNPq FX This work was supported by the U.S. DOE, the U.K. STFC, the U.S. NSF, the State and University of Minnesota, the University of Athens, Greece, and Brazil's FAPESP and CNPq. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contribution to this effort. NR 25 TC 226 Z9 226 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 131802 DI 10.1103/PhysRevLett.101.131802 PG 5 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600018 PM 18851439 ER PT J AU Dimonte, G Daligault, J AF Dimonte, Guy Daligault, Jerome TI Molecular-dynamics simulations of electron-ion temperature relaxation in a classical Coulomb plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID COEFFICIENTS AB Molecular-dynamics simulations are used to investigate temperature relaxation between electrons and ions in a fully ionized, classical Coulomb plasma with minimal assumptions. Recombination is avoided by using like charges. The relaxation rate agrees with theory in the weak coupling limit ( g equivalent to potential/kinetic energy << 1), whereas it saturates at g > 1 due to correlation effects. The "Coulomb log'' is found to be independent of the ion charge (at constant g) and mass ratio > 25. C1 [Dimonte, Guy; Daligault, Jerome] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dimonte, G (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU U. S. Department of Energy by Los Alamos National Laboratory [DE-AC5206NA2 5396] FX We thank L. S. Brown, R. Singleton, G. Csanak, and D. Mozyrsky for useful discussions. This work was performed for the U. S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC5206NA2 5396. NR 17 TC 51 Z9 51 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 135001 DI 10.1103/PhysRevLett.101.135001 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600033 PM 18851454 ER PT J AU Guillemin, R Carniato, S Stolte, WC Journel, L Taieb, R Lindle, DW Simon, M AF Guillemin, R. Carniato, S. Stolte, W. C. Journel, L. Taieb, R. Lindle, D. W. Simon, M. TI Linear dichroism in resonant inelastic x-ray scattering to molecular spin-orbit states SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAMAN-SCATTERING; BRANCHING RATIO; SPECTRA; FIELD; HCL; PHOTOEMISSION; SPECTROSCOPY; ELECTRON AB Polarization-dependent resonant inelastic x-ray scattering (RIXS) is shown to be a new probe of molecular-field effects on the electronic structure of isolated molecules. A combined experimental and theoretical analysis explains the linear dichroism observed in Cl 2p RIXS following Cl 1s excitation in HCl and CF(3)Cl as due to molecular-field effects, including singlet-triplet exchange, indicating polarized-RIXS provides a direct probe of spin-orbit-state populations applicable to any molecule. C1 [Guillemin, R.; Carniato, S.; Journel, L.; Taieb, R.; Simon, M.] Univ Paris 06, UPMC, Lab Chim Phys Mat & Rayonnement, UMR 7614, F-75005 Paris, France. [Guillemin, R.; Carniato, S.; Journel, L.; Taieb, R.; Simon, M.] CNRS, Lab Chim Phys Mat & Rayonnement, UMR 7614, F-75005 Paris, France. [Stolte, W. C.; Lindle, D. W.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Stolte, W. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Guillemin, R (reprint author), Univ Paris 06, UPMC, Lab Chim Phys Mat & Rayonnement, UMR 7614, F-75005 Paris, France. FU ALS; NSF [PHY-05-55699]; CNRS; Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS), France FX The authors thank the staff of the ALS for their support. The UNLV team was funded by NSF under Grant No. PHY-05-55699. Financial support of PICS by CNRS is gratefully acknowledged. Computations were performed at the Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS), France. NR 26 TC 22 Z9 22 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 133003 DI 10.1103/PhysRevLett.101.133003 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600023 PM 18851444 ER PT J AU Kanigel, A Chatterjee, U Randeria, M Norman, MR Koren, G Kadowaki, K Campuzano, JC AF Kanigel, A. Chatterjee, U. Randeria, M. Norman, M. R. Koren, G. Kadowaki, K. Campuzano, J. C. TI Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-T-C; NORMAL-STATE; SUPERFLUID DENSITY; GAP; BI2SR2CACU2O8+DELTA AB In the underdoped high temperature superconductors, instead of a complete Fermi surface above T(c), only disconnected Fermi arcs appear, separated by regions that still exhibit an energy gap. We show that in this pseudogap phase, the energy-momentum relation of electronic excitations near E(F) behaves like the dispersion of a normal metal on the Fermi arcs, but like that of a superconductor in the gapped regions. We argue that this dichotomy in the dispersion is difficult to reconcile with a competing order parameter, but is consistent with pairing without condensation. C1 [Kanigel, A.; Chatterjee, U.; Campuzano, J. C.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Kanigel, A.; Koren, G.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Randeria, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Norman, M. R.; Campuzano, J. C.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kadowaki, K.] Univ Tsukuba, Inst Mat Sci, Tsukuba 3053573, Japan. RP Kanigel, A (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RI Norman, Michael/C-3644-2013 FU NSF [DMR-0606255, DMR-0084402]; U. S. DOE, Office of Science [DE-AC02-06CH11357]; Synchrotron Radiation Center FX This work was supported by NSF DMR-0606255 and the U. S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357. The Synchrotron Radiation Center is supported by NSF DMR-0084402. NR 28 TC 84 Z9 85 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 137002 DI 10.1103/PhysRevLett.101.137002 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600062 PM 18851483 ER PT J AU Lashley, JC Shapiro, SM Winn, BL Opeil, CP Manley, ME Alatas, A Ratcliff, W Park, T Fisher, RA Mihaila, B Riseborough, P Salje, EKH Smith, JL AF Lashley, J. C. Shapiro, S. M. Winn, B. L. Opeil, C. P. Manley, M. E. Alatas, A. Ratcliff, W. Park, T. Fisher, R. A. Mihaila, B. Riseborough, P. Salje, E. K. H. Smith, J. L. TI Observation of a continuous phase transition in a shape-memory alloy SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEV ENERGY RESOLUTION; ORDER PARAMETERS; LANDAU THEORY; AUZN ALLOYS; TRANSFORMATION; DEPENDENCE; SATURATION AB Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au(0.52)Zn(0.48). Elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33, 0.67, 0) at temperatures corresponding to each sample's transition temperature (T(M) = 64 and 45 K, respectively). Although the new Bragg peaks appear in a discontinuous manner in the Au(0.52)Zn(0.48) sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near T(M) are in favorable accord with a continuous transition. A fit to the pressure dependence of T(M) suggests the presence of a critical end point in the AuZn phase diagram located at T(M)* = 2.7 K and p* = 3.1 GPa. C1 [Lashley, J. C.; Park, T.; Fisher, R. A.; Mihaila, B.; Smith, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shapiro, S. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Winn, B. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Opeil, C. P.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Manley, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Alatas, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ratcliff, W.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Park, T.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Riseborough, P.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. RP Lashley, JC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Riseborough, Peter/D-4689-2011; Park, Tuson/A-1520-2012; Mihaila, Bogdan/D-8795-2013; Salje, Ekhard/M-2931-2013; Manley, Michael/N-4334-2015; Winn, Barry/A-5065-2016 OI Mihaila, Bogdan/0000-0002-1489-8814; Salje, Ekhard/0000-0002-8781-6154; Winn, Barry/0000-0001-6383-4318 FU Trustees of Boston College; Office of Science; United States Department of Energy [DE-ACO2-98CH10886]; Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work was performed under the auspices of the United States Department of Energy and Department of Commerce and supported in part by the Trustees of Boston College. Work at Brookhaven is supported by the Office of Science, United States Department of Energy, under Contract No. DE-ACO2-98CH10886. The use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 32 TC 18 Z9 18 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 135703 DI 10.1103/PhysRevLett.101.135703 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600042 PM 18851463 ER PT J AU Liu, D Chu, XQ Lagi, M Zhang, Y Fratini, E Baglioni, P Alatas, A Said, A Alp, E Chen, SH AF Liu, Dazhi Chu, Xiang-qiang Lagi, Marco Zhang, Yang Fratini, Emiliano Baglioni, Piero Alatas, Ahmet Said, Ayman Alp, Ercan Chen, Sow-Hsin TI Studies of phononlike low-energy excitations of protein molecules by inelastic X-ray scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID EGG-WHITE LYSOZYME; NEUTRON-SCATTERING; HYDRATION WATER; DYNAMICAL TRANSITION; SIMULATION ANALYSIS; RESOLUTION; MYOGLOBIN; CROSSOVER; SPECTRA AB Molecular dynamics simulations and neutron scattering experiments have shown that many hydrated globular proteins exhibit a universal dynamic transition at T(D) = 220 K, below which the biological activity of a protein sharply diminishes. We studied the phononlike low-energy excitations of two structurally very different proteins, lysozyme and bovine serum albumin, using inelastic x-ray scattering above and below TD. We found that the excitation energies of the high-Q phonons show a marked softening above TD. This suggests that the large amplitude motions of wavelengths corresponding to this specific Q range are intimately correlated with the increase of biological activities of the proteins. C1 [Liu, Dazhi; Chu, Xiang-qiang; Lagi, Marco; Zhang, Yang; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Lagi, Marco; Fratini, Emiliano; Alatas, Ahmet] Univ Florence, Dept Chem, I-50019 Florence, Italy. [Lagi, Marco; Fratini, Emiliano; Baglioni, Piero] Univ Florence, CSGI, I-50019 Florence, Italy. [Said, Ayman; Alp, Ercan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. EM sowhsin@mit.edu RI Lagi, Marco/A-4100-2008; Chu, Xiangqiang/A-1572-2011; Fratini, Emiliano/C-9983-2010; Baglioni, Piero/B-1208-2011; Zhang, Yang/A-7975-2012; Liu, Dazhi/G-2675-2013; OI Fratini, Emiliano/0000-0001-7104-6530; Baglioni, Piero/0000-0003-1312-8700; Zhang, Yang/0000-0002-7339-8342; Liu, Dazhi/0000-0002-7604-6940; Chu, Xiang-qiang/0000-0003-4320-5316 FU Department of Energy [DE-FG02-90ER45429]; U. S. Department of Energy; Office of Basic Energy Sciences [DE-AC0Z-06CH11357]; CSGI; MIUR; EU FX This research is supported by the Department of Energy Grant DE-FG02-90ER45429. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC0Z-06CH11357. M. L., E. F. and P. B. acknowledge financial support from CSGI and MIUR. We would like to thank Bogdan M. Leu for his technical assistance during the experiments. We profited from being affiliated with the EU funded Marie-Curie Research and Training Network on Arrested Matter. NR 29 TC 36 Z9 36 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 135501 DI 10.1103/PhysRevLett.101.135501 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600038 PM 18851459 ER PT J AU Mikkelsen, DR Dorland, W AF Mikkelsen, D. R. Dorland, W. TI Dimits shift in realistic gyrokinetic plasma-turbulence simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID ALCATOR C-MOD; ZONAL FLOWS; CONFINEMENT; TRANSPORT; DYNAMICS; TOKAMAKS AB In simulations of turbulent plasma transport due to long wavelength (k perpendicular to p(i) <= 1) electrostatic drift-type instabilities, we find a persistent nonlinear up-shift of the effective threshold. Next-generation tokamaks will likely benefit from the higher effective threshold for turbulent transport, and transport models should incorporate suitable corrections to linear thresholds. The gyrokinetic simulations reported here are more realistic than previous reports of a Dimits shift because they include nonadiabatic electron dynamics, strong collisional damping of zonal flows, and finite electron and ion collisionality together with realistic shaped magnetic geometry. Reversing previously reported results based on idealized adiabatic electrons, we find that increasing collisionality reduces the heat flux because collisionality reduces the nonadiabatic electron microinstability drive. C1 [Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Dorland, W.] Univ Maryland, College Pk, MD 20742 USA. RP Mikkelsen, DR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mikk@pppl.gov RI Dorland, William/B-4403-2009 OI Dorland, William/0000-0003-2915-724X FU U. S. Department of Energy [DE-AC02-76CH03073, DE-FG03-95ER54296, DE-FC02-04ER54784] FX We thank G. W. Hammett, S. Scott, and R. E. Waltz for enlightening discussions. Use of the parallel computers at the National Energy Research Scientific Computing Center (NERSC) and PPPL is gratefully acknowledged. This work was supported by U. S. Department of Energy Contracts No. DE-AC02-76CH03073, No. DE-FG03-95ER54296, and No. DE-FC02-04ER54784 (CMPD). NR 27 TC 15 Z9 15 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 135003 DI 10.1103/PhysRevLett.101.135003 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600035 PM 18851456 ER PT J AU Muller, A Schippers, S Habibi, M Esteves, D Wang, JC Phaneuf, RA Kilcoyne, ALD Aguilar, A Dunsch, L AF Mueller, A. Schippers, S. Habibi, M. Esteves, D. Wang, J. C. Phaneuf, R. A. Kilcoyne, A. L. D. Aguilar, A. Dunsch, L. TI Significant redistribution of Ce 4d oscillator strength observed in photoionization of endohedral Ce@C-82(+) ions SO PHYSICAL REVIEW LETTERS LA English DT Article ID FULLERENES; RESONANCE; STATE AB Mass-selected beams of atomic Ceq+ ions (q = 2, 3, 4), of C-82(+) and of endohedral Ce@C-82(+) ions were employed to study photoionization of free and encaged cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce@C-82(+) fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength appears to be diverted to the additional decay channels opened by the fullerene cage surrounding the Ce atom. C1 [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Habibi, M.; Esteves, D.; Wang, J. C.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Kilcoyne, A. L. D.; Aguilar, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Dunsch, L.] Leibniz Inst Festkorper & Werkstoffforsch Dresden, D-01171 Dresden, Germany. RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Office of Basic Energy Sciences of the U.S. Department of Energy; Deutsche Forschungsgemeinschaft FX This research was funded by the Office of Basic Energy Sciences of the U.S. Department of Energy and by the Deutsche Forschungsgemeinschaft. Thanks go to Christian Kastner for his work in the fullerene production. NR 20 TC 47 Z9 48 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 133001 DI 10.1103/PhysRevLett.101.133001 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600021 PM 18851442 ER PT J AU Somma, RD Boixo, S Barnum, H Knill, E AF Somma, R. D. Boixo, S. Barnum, H. Knill, E. TI Quantum simulations of classical annealing processes SO PHYSICAL REVIEW LETTERS LA English DT Article ID ISING SPIN-GLASS; MODEL AB We describe a quantum algorithm that solves combinatorial optimization problems by quantum simulation of a classical simulated annealing process. Our algorithm exploits quantum walks and the quantum Zeno effect induced by evolution randomization. It requires order 1/root delta steps to find an optimal solution with bounded error probability, where delta is the minimum spectral gap of the stochastic matrices used in the classical annealing process. This is a quadratic improvement over the order 1/delta steps required by the latter. C1 [Somma, R. D.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Boixo, S.; Barnum, H.] Los Alamos Natl Lab, CCS Informat Sci 3, Los Alamos, NM 87545 USA. [Boixo, S.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Knill, E.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. RP Somma, RD (reprint author), Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. EM rsomma@perimeterinstitute.ca FU Perimeter Institute for Theoretical Physics; Government of Canada; Province of Ontario; NNSA of the US DOE [DE-AC52-06NA25396]; NSF [PHY-0653596] FX We thank S. Jordan for discussions, and B. Eastin and D. Hume for their careful reading of the manuscript. This research was supported by Perimeter Institute for Theoretical Physics, by the Government of Canada through Industry Canada, and by the Province of Ontario through the Ministry of Research and Innovation. It was also carried out under the auspices of the NNSA of the US DOE at LANL under Contract No. DE-AC52-06NA25396, and with support from NSF Grant No. PHY-0653596. Contributions to this work by NIST, an agency of the US government, are not subject to copyright laws. NR 23 TC 34 Z9 35 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2008 VL 101 IS 13 AR 130504 DI 10.1103/PhysRevLett.101.130504 PG 4 WC Physics, Multidisciplinary SC Physics GA 355AI UT WOS:000259680600008 PM 18851429 ER PT J AU Smith, G Yard, J AF Smith, Graeme Yard, Jon TI Quantum communication with zero-capacity channels SO SCIENCE LA English DT Article ID SEPARABILITY CRITERION; BOUND ENTANGLEMENT; MIXED STATES AB Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not completely specify a channel's ability to transmit quantum information. C1 [Smith, Graeme] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Yard, Jon] Los Alamos Natl Lab, Quantum Inst, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Smith, G (reprint author), IBM Corp, Thomas J Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA. EM gsbsmith@gmail.com FU CNLS; Quantum Institute; Laboratory Directed Research and Development; U. S. Department of Energy FX We are indebted to C. Bennett, C. Callaway, E. Timmermans, B. Toner, and A. Winter for encouragement and comments on an earlier draft. J. Y. is supported by the CNLS and the Quantum Institute through grants provided by the Laboratory Directed Research and Development program of the U. S. Department of Energy. NR 24 TC 125 Z9 128 U1 1 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 26 PY 2008 VL 321 IS 5897 BP 1812 EP 1815 DI 10.1126/science.1162242 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 352MM UT WOS:000259501300031 PM 18719249 ER PT J AU Di, LP Chen, AJ Yang, WL Liu, Y Wei, YX Mehrotra, P Hu, CM Williams, D AF Di, Liping Chen, Aijun Yang, Wenli Liu, Yang Wei, Yaxing Mehrotra, Piyush Hu, Chaumin Williams, Dean TI The development of a geospatial data Grid by integrating OGC Web services with Globus-based Grid technology SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT GIS-Grid Workshop at Open Grid Forum CY OCT 03-06, 2005 CL Boston, MA DE geospatial data; interoperability; geospatial Grid; OGC; Globus; NWGISS AB Geospatial science is the science and art of acquiring, archiving, manipulating, analyzing, communicating, modeling with, and utilizing spatially explicit data for understanding physical, chemical, biological, and social systems on the Earth's surface or near the surface. In order to share distributed geospatial resources and facilitate the interoperability, the Open Geospatial Consortium (OGC), in industry-government-academia consortium, has developed a set of widely accepted Web-based interoperability standards and protocols. Grid is the technology enabling resource sharing and coordinated problem solving in dynamic, raulti-institutional virtual organizations. Geospatiall (;rid is an extension and applicalion of Grid technology in the geospatial discipline. This paper discusses problems associated with directly using Globus-based Grid technology in the geospatial disciplines, the needs for geospatial Grids, and the Natures of geospatial Grids. Then, the paper presents a research project that develops and deploys a geospatial Grid through integrating Web-based geospatial interoperability standards and technology developed by OGC with Globus-based Grid technology. The geospatial Grid technology developed by this project makes the interoperable, personalized, on-demand data access and services a reality at large geospatial data archives. Such a technology can significantly reduce problems associated with archiving, manipulating, analyzing and utilizing large volumes of geospatial data at distributed locations. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Di, Liping; Chen, Aijun; Yang, Wenli; Liu, Yang; Wei, Yaxing] George Mason Univ, CSISS, Greenbelt, MD 20770 USA. [Mehrotra, Piyush; Hu, Chaumin] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Williams, Dean] DOE Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Di, LP (reprint author), George Mason Univ, CSISS, 6301 Ivy Lane,Suite 620, Greenbelt, MD 20770 USA. EM ldi@gmu.edu RI Wei, Yaxing/K-1507-2013 OI Wei, Yaxing/0000-0001-6924-0078 NR 35 TC 19 Z9 21 U1 1 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD SEP 25 PY 2008 VL 20 IS 14 BP 1617 EP 1635 DI 10.1002/cpe.1292 PG 19 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 354SV UT WOS:000259660200002 ER PT J AU Tomkins, C Kumar, S Orlicz, G Prestridge, K AF Tomkins, C. Kumar, S. Orlicz, G. Prestridge, K. TI An experimental investigation of mixing mechanisms in shock-accelerated flow SO JOURNAL OF FLUID MECHANICS LA English DT Article ID UNSTABLE GAS-CYLINDERS; LATE-INTERMEDIATE TIME; TURBULENT SHEAR FLOWS; FINE-SCALE STRUCTURE; NUMERICAL SIMULATIONS; DYNAMICS; INSTABILITY; PLANAR; PROPAGATION; TRANSITION AB An experimental investigation of mixing mechanisms in a shock-Induced instability flow is described. We obtain quantitative two-dimensional maps of the heavy-gas (SF6) concentration using planar laser-induced fluorescence for the case of a shock-accelerated cylinder of heavy gas in air. The instantaneous scalar dissipation rate, or mixing rate. X, is estimated experimentally for the first time in this type of flow, and used to identify the regions of most intense post-shock mixing and examine the underlying mechanisms. We observe instability growth in certain regions of the flow beginning at intermediate times. The mixing rate results show that while these unstable regions play a significant role in the mixing process, a large amount of mixing also occurs by mechanisms directly associated with the primary instability, including gradient intensification via the large-scale strain field in a particular non-turbulent region of the flow. C1 [Tomkins, C.; Kumar, S.; Orlicz, G.; Prestridge, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Tomkins, C (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RI Prestridge, Kathy/C-1137-2012 OI Prestridge, Kathy/0000-0003-2425-5086 NR 31 TC 44 Z9 56 U1 1 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD SEP 25 PY 2008 VL 611 BP 131 EP 150 DI 10.1017/S0022112008002723 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 355BE UT WOS:000259682800007 ER PT J AU Zhang, Y Hu, XM Leung, LR Gustafson, WI AF Zhang, Yang Hu, Xiao-Ming Leung, L. Ruby Gustafson, William I., Jr. TI Impacts of regional climate change on biogenic emissions and air quality SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; CONTINENTAL UNITED-STATES; PHASE OXIDATION-PRODUCTS; ISOPRENE EMISSIONS; TROPOSPHERIC CHEMISTRY; MODEL DESCRIPTION; SURFACE OZONE; PART I; CMAQ; PHOTOOXIDATION AB [1] Regional air quality simulations are conducted at a horizontal grid resolution of 36 km for four summers (2001, 2002, 2051, and 2052) to examine the sensitivity of air quality to potential regional climate change in the United States. In response to the predicted warmer climate in 2051/2052, the emissions of isoprene and terpene increase by 20-92% and 20-56%, respectively, over most of the domain. Surface O-3 increases by up to 19-20%. Such increases are largely driven by changes in temperature, solar radiation, and cloud fraction over most of the domain. PM2.5, its compositions, and visibility exhibit an overall negative sensitivity (decrease by up to 40%), resulting from the competition of the negative temperature effect and positive emission/temperature effects. While the response of dry deposition is governed by the negative sensitivity of surface resistances, that of wet deposition is either positive or negative, depending on the relative dominancy of changes in PM2.5 and precipitation. Overall the net climatic effect due to changes in climatic variables alone dominates changes in O-3, PM2.5, and wet and total deposition, and the net biogenic emission effect due to changes in biogenic emissions alone as a result of climate change is important for isoprene, organic matter, visibility, and dry deposition over several regions. Models that do not include secondary organic aerosol formation from isoprene may underestimate by at least 20% of the responses of organic aerosols to future climate changes over many areas of the modeling domain. Both regional climate and air quality exhibit interannual variability, particularly in temperature, isoprene emissions, and PM2.5 concentrations, indicating a need for long-term simulations to predict future air quality. Compared with results from global models, stronger regional climate change signals may cause projected local impacts of climate change that are stronger or even different in sign. C1 [Zhang, Yang; Hu, Xiao-Ming] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA. [Leung, L. Ruby; Gustafson, William I., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, Y (reprint author), N Carolina State Univ, Dept Marine Earth & Atmospher Sci, 1125 Jordan Hall,Campus Box 8208,2800 Faucette Dr, Raleigh, NC 27695 USA. EM yzhang9@ncsu.edu RI Hu, Xiao-Ming/D-8085-2011; Gustafson, William/A-7732-2008 OI Hu, Xiao-Ming/0000-0002-0769-5090; Gustafson, William/0000-0001-9927-1393 FU NASA Award [NNG04GJ90G]; NSF Career Award [Atm-0348819]; U.S. EPA Award [IAG DW89-93963401]; U.S. Department of Energy [DE-AC06-76RLO 1830] FX The CMAQ work at NCSU was supported by NASA Award NNG04GJ90G and NSF Career Award Atm-0348819. The MM5 work at PNNL was supported by the U. S. EPA Award IAG DW89-93963401 through its Office of Research and Development. Thanks are owed to Warren Peters of the U. S. EPA/OAQPS, and George Pouliot, Ken Schere, and Tom Pierce of the U. S. NOAA/EPA, for providing meteorological fields, emission inventories, initial and boundary conditions for the 2001 simulations; to Steve Howard and Alice Gilliland of the U. S. NOAA/EPA, for providing the Fortran code for extracting data from CMAQ and the CASTNET, IMPROVE, STN, and AIRS-AQS observational databases;to Shaocai Yu of the U. S. NOAA/EPA, for providing the Fortran code for statistical calculations; and to Jian-Ping Huang, a former research associate at NCSU, for his work in the early stage of this study. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 68 TC 24 Z9 26 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 25 PY 2008 VL 113 IS D18 AR D18310 DI 10.1029/2008JD009965 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 353YU UT WOS:000259606900001 ER PT J AU Larmat, C Tromp, J Liu, Q Montagner, JP AF Larmat, Carene Tromp, Jeroen Liu, Qinya Montagner, Jean-Paul TI Time reversal location of glacial earthquakes SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SEISMIC-WAVE PROPAGATION; SPECTRAL-ELEMENT SIMULATIONS; ADJOINT METHODS; FREQUENCY; EXTRAPOLATION; ACOUSTICS; INVERSION; MIGRATION; TOMOGRAPHY; SEISMOLOGY AB In 2003, Ekstrom et al. reported the detection and location of a new class of earthquakes occurring in the polar regions of the Earth. The proposed source mechanism involves large and sudden sliding motions of glaciers, which gave the name "glacial earthquakes'' to these events. In this study we localize some of these earthquakes with a time reversal mirror (TRM) algorithm, which, contrary to ordinary back projection methods, does not involve testing each possible source location. In TRM localization, an earthquake is located on the basis of only one 3-D spectral element simulation of seismic wave propagation by using the full complexity of recorded data as simultaneous time-reversed sources. We show that on the basis of this approach, even glacial earthquakes with a faint signal can be correctly localized and that the pattern of the time-reversed wavefield is coherent with the motion of glaciers down their valley. C1 [Larmat, Carene; Tromp, Jeroen; Liu, Qinya] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Montagner, Jean-Paul] Inst Phys Globe, Dept Sismol, F-75252 Paris, France. RP Larmat, C (reprint author), Los Alamos Natl Lab, EES Geophys Grp 11, MS D443, Los Alamos, NM 87545 USA. EM carene@lanl.gov RI Montagner, Jean-Paul/A-8733-2011; Larmat, Carene/B-4686-2011; GEOFON, GlobalSeismicNetwork/E-4273-2012; Tromp, Jeroen/B-6185-2015; OI Montagner, Jean-Paul/0000-0001-9958-3012; Tromp, Jeroen/0000-0002-2742-8299; Larmat, Carene S/0000-0002-3607-7558 FU Institutional Support at Los Alamos; National Science Foundation [EAR-0309576] FX This work was partially funded by Institutional Support at Los Alamos and by the National Science Foundation under grant EAR-0309576. The data used in this study were provided by the IRIS Data Management Center. This is contribution 9000 of the Division of Geological and Planetary Sciences (GPS), California Institute of Technology. The numerical simulations for this research were performed on Caltech's GPS Division Dell cluster. NR 38 TC 23 Z9 23 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD SEP 25 PY 2008 VL 113 IS B9 AR B09314 DI 10.1029/2008JB005607 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 353ZH UT WOS:000259608200001 ER PT J AU Domin, D Braida, B Lester, WA AF Domin, Dominik Braida, Benoit Lester, William A., Jr. TI Breathing orbital valence bond method in diffusion Monte Carlo: C-H bond dissociation of acetylene SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WAVE-FUNCTIONS; BASIS-SETS; ENERGIES; ATOMS; MOLECULES; CHEMISTRY; C2H2; OPTIMIZATION; PROGRAM; PACKAGE AB This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 +/- 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 +/- 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 +/- 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 +/- 0.5 kcal/mol). C1 [Domin, Dominik; Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Braida, Benoit] Univ Paris 06, UPMC, Chim Theor Lab, UMR 7616, F-75005 Paris, France. [Braida, Benoit] CNRS, UMR 7616, F-75252 Paris, France. [Lester, William A., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov RI BRAIDA, Benoit/L-7782-2013 OI BRAIDA, Benoit/0000-0003-3725-3215 NR 52 TC 3 Z9 3 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 25 PY 2008 VL 112 IS 38 BP 8964 EP 8969 DI 10.1021/jp8020062 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 350GY UT WOS:000259341900013 PM 18646737 ER PT J AU Wemhoff, AP Howard, WM Burnham, AK Nichols, AL AF Wemhoff, Aaron P. Howard, William M. Burnham, Alan K. Nichols, Albert L., III TI An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DELTA-PHASE-TRANSITION; PLASTIC BONDED EXPLOSIVES; HMX AB A new chemical kinetic model for the beta-delta transition and decomposition of LX-10 (95% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, 5% Viton A binder) is presented here. This model implements aspects of previous kinetic models but calibrates the model parameters to data sets of three experiments: differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and one-dimensional time to explosion (ODTX). The calibration procedure contains three stages: one stage uses open-pan DSC and TGA to develop a base reaction for formation of heavy gases, a second stage features closed-pan DSC to ascertain the autocatalytic behavior of reactant gases attacking the solid explosive, and a final stage adjusts the rate for the breakdown of heavy reactant gases using ODTX experimental data. The resultant model presents a large improvement in the agreement between simulated DSC and TGA results and their respective experiments while maintaining the same level of agreement with ODTX, scaled thermal explosion, and laser heating explosion times when compared to previous models. C1 [Wemhoff, Aaron P.; Howard, William M.; Burnham, Alan K.; Nichols, Albert L., III] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wemhoff, AP (reprint author), Lawrence Livermore Natl Lab, POB 808,L-227, Livermore, CA 94551 USA. EM aaron.wemhoff@villanova.edu FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We gratefully acknowledge the effort by Matt McClelland and Jack Yoh in obtaining the material models, Rich Becker for the development of implicit hydrodynamics in ALE3D, Craig Tarver for his guidance on the kinetic models for this project, and Jaroslaw Knap for his effort in modeling the strain response of the STEX experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 12 Z9 12 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 25 PY 2008 VL 112 IS 38 BP 9005 EP 9011 DI 10.1021/jp804190r PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 350GY UT WOS:000259341900018 PM 18759420 ER PT J AU Li, S Cooper, VR Thonhauser, T Puzder, A Langreth, DC AF Li, Shen Cooper, Valentino R. Thonhauser, T. Puzder, Aaron Langreth, David C. TI A density functional theory study of the benzene-water complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; DISPERSION CORRECTIONS; AROMATIC INTERACTIONS; STACKING INTERACTIONS; DIPOLE-MOMENTS; HYDROGEN-BONDS; DNA; MOLECULES; ACCEPTORS; DYNAMICS AB The intermolecular interaction of the benzene-water complex is calculated using real-space pseudopotential density functional theory utilizing a van der Waals density functional. Our results for the intermolecular potential energy surface clearly show a stable configuration with the water molecule standing above or below the benzene with one or both of the H atoms pointing toward the benzene plane, as predicted by previous studies. However, when the water molecule is pulled outside the perimeter of the ring, the configuration of the complex becomes unstable, with the water molecule attaching in a saddle point configuration to the rim of the benzene with its 0 atom adjacent to a benzene H. We find that this structural change is connected to a change in interaction from H (water)/pi cloud (benzene) to O (water)/H (benzene). We compare our results for the ground-state structure with results from experiments and quantum-chemical calculations. C1 [Li, Shen; Cooper, Valentino R.; Thonhauser, T.; Puzder, Aaron; Langreth, David C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Thonhauser, T.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Puzder, Aaron] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Li, S (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. RI Cooper, Valentino /A-2070-2012 OI Cooper, Valentino /0000-0001-6714-4410 FU NSF [DMR-0456937] FX This work was supported in part by NSF Grant DMR-0456937. NR 54 TC 58 Z9 58 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 25 PY 2008 VL 112 IS 38 BP 9031 EP 9036 DI 10.1021/jp801693p PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 350GY UT WOS:000259341900021 PM 18729422 ER PT J AU Teng, XW Han, WQ Wang, Q Li, L Frenkel, AI Yang, JC AF Teng, Xiaowei Han, Weiqiang Wang, Qi Li, Long Frenkel, Anatoly I. Yang, Judith C. TI Hybrid Pt/Au nanowires: Synthesis and electronic structure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MONOLAYER-PROTECTED CLUSTERS; REPLACEMENT REACTION; METAL NANOCRYSTALS; SELECTIVE GROWTH; SEEDED GROWTH; NANOPARTICLES; GOLD; NANOSTRUCTURES; PLATINUM; SILVER AB This letter reports the synthesis of a new type of noble metal/noble metal hybrid (Pt/Au hybrid nanowires) via galvanic replacement reaction between Pt nanowires and AuCl3. The width of nanowire component is about 2.3 +/- 0.2 nm wide, and the diameter of Au component is about 4.5 nm +/- 0.8 nm. More interestingly, by using X-ray absorption spectroscopy technique, charge transfer upon hybrids formation was observed, that d-charge depletion occurred at the Pt site, accompanied by d-charge gain at the Au site. The reported methodology to synthesize Pt/Au hybrid nanowires and study of electronic structure of Pt/Au hybrids will be of great importance in catalysis and materials science. C1 [Teng, Xiaowei; Han, Weiqiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Qi; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Li, Long; Yang, Judith C.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Frenkel, Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Han, WQ/E-2818-2013 OI Frenkel, Anatoly/0000-0002-5451-1207; FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-03ER15476]; University of Pittsburgh; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Synchrotron Catalysis Consortium [DE-FG02-05ER15688] FX This work is supported by the U.S. DOE under contract DE-AC02-98CH10886 (W.H.) and DE-FG02-03ER15476 (J.C.Y., L.L., A.I.F., Q.W.). L.L. and J.C.Y. thank Nanoscale Fabrication and Characterization Facility (NFCF) at the University of Pittsburgh. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886 and beamlines X19A/X18B are partly supported by Synchrotron Catalysis Consortium under contract DE-FG02-05ER15688. NR 43 TC 30 Z9 32 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 25 PY 2008 VL 112 IS 38 BP 14696 EP 14701 DI 10.1021/jp8054685 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 350HD UT WOS:000259342400002 ER PT J AU McGrath, P Fojas, AM Reimer, JA Cairns, EJ AF McGrath, Patrick Fojas, Aurora Marie Reimer, Jeffrey A. Cairns, Elton J. TI Site-dependent C-13 chemical shifts of CO adsorbed on pt electrocatalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; LEVEL LOCAL-DENSITY; CARBON-MONOXIDE; NMR; PLATINUM; SURFACES; NANOPARTICLES; DIFFUSION; OXIDATION; METHANOL AB C-13 NMR and hydrogen-region cyclic voltammetry are used to parse the distribution of adsorbed CO on Pt electrocatalysts into two different types of sites. Trends in the NMR shift data show that (CO)-C-13 adsorbed on so-called weakly bound H sites show larger Knight shifts as compared to (CO)-C-13 adsorbed onto strongly bound H sites, and thus experience greater back-bonding from the Pt conduction band. These results are discussed in the context of local electron densities of states and the varying oxidation reactivities associated with these sites on the Pt surface. C1 [Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Reimer, JA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Cairns, Elton/E-8873-2012 OI Cairns, Elton/0000-0002-1179-7591 FU U.S. Army Research Laboratory; U.S. Army Research Office [48713CH]; RWTH Aachen University FX This material is based upon work supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number 48713CH. JAR acknowledges the Deutsche Forschungsgemeinschaft (DFG) for his Mercator Professorship at RWTH Aachen University. NR 17 TC 4 Z9 4 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 25 PY 2008 VL 112 IS 38 BP 14702 EP 14705 DI 10.1021/jp806068t PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 350HD UT WOS:000259342400003 ER PT J AU Zhang, F Yiu, Y Aronson, AC Wong, SS AF Zhang, Fen Yiu, Yuen Aronson, A. C. Wong, Stanislaus S. TI Exploring the room-temperature synthesis and properties of multifunctional doped tungstate nanorods SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID-SOLUTION FILMS; ELECTROCHEMICAL METHOD; QUANTUM DOTS; MAGNETIC-PROPERTIES; OPTICAL-PROPERTIES; BLUE-LUMINESCENCE; CARBON NANOTUBE; CRYSTAL-FIELD; MWO4 M; MN AB Uniform Mn-doped alkaline-earth metal tungstate-AWO(4) (A = Ca, Sr, Ba)-nanorods of reproducible size, shape, and composition have been methodically prepared using a modified template-directed methodology under ambient, room-temperature conditions. The dopant ion distribution within the nanostructures does not appear to adversely affect either the structural or crystalline integrity of our as-prepared compounds, as determined by microscopy and diffraction studies. What is much more important is the fact that the presence of Mn2+ not only substantially increases the photoluminescent potential of a pristine tungstate material but also reinforces its versatility by adding a desirable magnetic component to its repertoire of properties. In so doing, we have created multifunctional one-dimensional nanorods with exciting opto-magnetic behavior, which should become important for the future incorporation of these materials into functional nanoscale devices, with various potential applications in a number of diverse fields. C1 [Zhang, Fen; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Yiu, Yuen; Aronson, A. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aronson, A. C.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Lab, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Yiu, Yuen/A-4353-2010; Zhang, Fen/G-5015-2010 OI Yiu, Yuen/0000-0002-1466-6191; NR 80 TC 33 Z9 33 U1 5 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 25 PY 2008 VL 112 IS 38 BP 14816 EP 14824 DI 10.1021/jp80361 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 350HD UT WOS:000259342400020 ER PT J AU Ingham, B Illy, BN Toney, MF Howdyshell, ML Ryan, MP AF Ingham, Bridget Illy, Benoit N. Toney, Michael F. Howdyshell, Marci L. Ryan, Mary P. TI In situ synchrotron X-ray diffraction experiments on electrochemically deposited ZnO nanostructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZINC-OXIDE FILMS; THIN-FILMS; EPITAXIAL ELECTRODEPOSITION; GROWTH; ARRAYS; FABRICATION; NANOWIRE; NANORODS AB We present results of in situ synchrotron X-ray diffraction experiments on electrochemically formed ZnO nanostructured films during their growth on to Au substrates. This allows the evolution of texture to be monitored throughout the deposition process. The results are in good agreement with previous in situ X-ray absorption spectroscopy measurements of growth kinetics and indicate that strong preferred orientation, which is not evident from the microstructure, develops early in the growth process. C1 [Ingham, Bridget] Ind Res Ltd, Lower Hutt, New Zealand. [Ingham, Bridget; Toney, Michael F.; Howdyshell, Marci L.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Illy, Benoit N.; Ryan, Mary P.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Illy, Benoit N.; Ryan, Mary P.] Univ London Imperial Coll Sci Technol & Med, London Ctr Nanotechnol, London SW7 2AZ, England. RP Ingham, B (reprint author), Ind Res Ltd, 69 Gracefield Rd, Lower Hutt, New Zealand. EM b.ingham@irl.cri.nz OI Ryan, Mary/0000-0001-8582-3003 FU U.S. Department of Energy; New Zealand Foundation for Research, Science and Technology [C08X0409] FX XRD data were collected at beam line 11-3 at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. XAS data were collected at beam fine X10C at the National Synchrotron Light Source. Use of the NSLS, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The authors thank H. Isaacs, K. Sutter, L. Fareria and M. Sansone at NSLS and BNL for technical support. Funding was provided in part by the New Zealand Foundation for Research, Science and Technology under Contract No. C08X0409. M.L.H. was supported by a Science Undergraduate Laboratory Internship, funded by the U.S. Department of Energy. NR 28 TC 13 Z9 13 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 25 PY 2008 VL 112 IS 38 BP 14863 EP 14866 DI 10.1021/jp806184z PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 350HD UT WOS:000259342400027 ER PT J AU Liu, XY Kameda, J Anderegg, JW Takaki, S Abiko, K McMahon, CJ AF Liu, X. -Y. Kameda, J. Anderegg, J. W. Takaki, S. Abiko, K. McMahon, C. J., Jr. TI Hydrogen-induced cracking in a very-high-purity high-strength steel SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE hydrogen embrittlement; intergranular fracture; high-strength steels ID INDUCED INTERGRANULAR FRACTURE; EMBRITTLEMENT; IMPURITIES; IRON AB It is shown that intergranular fracture along prior-austenite grain boundaries in a ultrahigh-strength quenched and tempered 4340-type steel is not suppressed by eliminating all segregated embrittling elements. This leaves open the question of how brittle intergranular cracks are nucleated in hydrogen in the absence of such impurities. (C) 2008 Elsevier B.V. All rights reserved. C1 [Liu, X. -Y.; Kameda, J.; McMahon, C. J., Jr.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Anderegg, J. W.] US DOE, Ames Lab, Ames, IA 50010 USA. [Takaki, S.; Abiko, K.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. RP McMahon, CJ (reprint author), Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM cmcmahon@lrsm.upenn.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-01ER45924] FX This research was carried outwith the support of the U.S. Department of Energy, Office of Basic Energy Sciences, under grant no. DE-FG02-01ER45924; the interest and support of Dr. Yok Chen is gratefully acknowledged. We are grateful to Dr. K. Takada and the members of the analytical group in the Institute for Materials Research at Tohoku University for the chemical analysis of the alloy and also to Messrs. N. Harima, Y. Sasada. T. Shigatomi, T. Mega, and Dr. H. Nitta for the preparation of the alloy specimens. NR 9 TC 17 Z9 20 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 25 PY 2008 VL 492 IS 1-2 BP 218 EP 220 DI 10.1016/j.msea.2008.03.012 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 340KM UT WOS:000258644500030 ER PT J AU Hamedani, HA Dahmen, KH Li, D Peydaye-Saheli, H Garmestani, H Khaleel, M AF Hamedani, Hoda Amani Dahmen, Klaus-Hermann Li, Dongsheng Peydaye-Saheli, Houman Garmestani, Hamid Khaleel, M. TI Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Gradient porous cathodes; Spray pyrolysis; LSM; IT-SOFCs ID OXIDE FUEL-CELLS; LANTHANUM STRONTIUM MANGANITE; 2-POINT CORRELATION-FUNCTIONS; FUNCTIONALLY GRADED CATHODES; YTTRIA-STABILIZED ZIRCONIA; COMPOSITE SOFC CATHODES; ELECTROCHEMICAL PERFORMANCE; CHEMICAL DIFFUSION; THIN-FILMS; MICROSTRUCTURE AB Multiple-step ultrasonic spray pyrolysis was developed to produce a gradient porous lanthanum strontium manganite (LSM) cathode on yttria-stabilized zirconia (YSZ) electrolyte for use in intermediate temperature solid oxide fuel cells (IT-SOFCs). The effect of solvent and precursor type on the morphology and compositional homogeneity of the LSM film was first identified. The LSM film prepared from organometallic precursor and organic solvent showed a homogeneous crack-free microstructure before and after hear treatment as opposed to aqueous solution. With respect to the effect of processing parameters, increasing the temperature and solution flow rate in the specific range of 520-580 degrees C leads to change the microstructure from a dense to a highly porous structure. Using a dilute organic solution a nanocrystal line thin layer was first deposited at 520 degrees C and Solution flow rate of 0.73 ml/min on YSZ surface: then, three gradient porous layers were sprayed from concentrated Solution at higher temperatures (540-580 degrees C) and Solution flow rates (1.13-1.58 ml/min) to form a gradient porous LSM cathode film with similar to 30 mu m thickness. The microstructure, phase crystallinity and compositional homogeneity or the fabricated films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive analysis of X-ray (EDX). Results showed that the spray pyrolized gradient film fabricated in the temperature range of 520-580 degrees C is composed of highly crystalline LSM phase which can remove the need for subsequent hear treatment. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hamedani, Hoda Amani; Dahmen, Klaus-Hermann; Li, Dongsheng; Peydaye-Saheli, Houman; Garmestani, Hamid] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Khaleel, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hamedani, HA (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr,J Erskine Love Bldg, Atlanta, GA 30332 USA. EM hamani3@mail.gatech.edu OI Dahmen, Klaus-Hermann/0000-0002-0960-4762; khaleel, mohammad/0000-0001-7048-0749 FU NERI [DE-FC07-06ID14750]; Pacific Northwest National Laboratory FX The funding for this project became available as part of a NERI grants DE-FC07-06ID14750 through DOE-Idaho National lab. We would also like to acknowledge funding through Pacific Northwest National Laboratory. NR 34 TC 21 Z9 21 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD SEP 25 PY 2008 VL 153 IS 1-3 BP 1 EP 9 DI 10.1016/j.mseb.2008.07.006 PG 9 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 386XG UT WOS:000261915300001 ER PT J AU Massoudi, M Phuoc, TX AF Massoudi, Mehrad Phuoc, Tran X. TI Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES LA English DT Article DE density-gradient-dependent fluids; granular materials; heat generation; dissipation; shear flow; continuum mechancis; non-Newtonian fluids ID COAL-WATER MIXTURES; GRANULAR-MATERIALS; THERMAL-CONDUCTIVITY; STRESS CALCULATIONS; IGNITION; SPHERES; TEMPERATURE; CRITICALITY; ASSEMBLIES; STOCKPILES AB In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Massoudi, Mehrad; Phuoc, Tran X.] NETL, US Dept Energy, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), NETL, US Dept Energy, POB 10940, Pittsburgh, PA 15236 USA. EM massoudi@netl.doe.gov NR 64 TC 5 Z9 5 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0170-4214 EI 1099-1476 J9 MATH METHOD APPL SCI JI Math. Meth. Appl. Sci. PD SEP 25 PY 2008 VL 31 IS 14 BP 1685 EP 1703 DI 10.1002/mma.994 PG 19 WC Mathematics, Applied SC Mathematics GA 364ON UT WOS:000260345100005 ER PT J AU Hugenholtz, P Tyson, GW AF Hugenholtz, Philip Tyson, Gene W. TI Microbiology - Metagenomics SO NATURE LA English DT Editorial Material C1 [Hugenholtz, Philip] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA 94598 USA. [Tyson, Gene W.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. RP Hugenholtz, P (reprint author), DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA 94598 USA. EM phugenholtz@lbl.gov; gtyson@mit.edu RI Hugenholtz, Philip/G-9608-2011; Tyson, Gene/C-6558-2013; OI hugenholtz, philip/0000-0001-5386-7925 NR 6 TC 140 Z9 149 U1 9 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 25 PY 2008 VL 455 IS 7212 BP 481 EP 483 DI 10.1038/455481a PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 351TU UT WOS:000259449600035 PM 18818648 ER PT J AU Loginova, E Bartelt, NC Feibelman, PJ McCarty, KF AF Loginova, Elena Bartelt, Norman C. Feibelman, Peter J. McCarty, Kevin F. TI Evidence for graphene growth by C cluster attachment SO NEW JOURNAL OF PHYSICS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; AUGMENTED-WAVE METHOD; EPITAXIAL GRAPHENE; MOLECULAR-DYNAMICS; SURFACES; CARBON; TRANSITION; RU(0001); DECOMPOSITION; GRAPHITE AB Using low-energy electron microscopy (LEEM), we have measured the local concentration of mobile carbon adatoms from which graphene sheets form on a Ru(0001) surface, and simultaneously, the growth rates of individual graphene islands. Graphene crystal growth on Ru differs strikingly from that of two-dimensional metal islands on metals: (i) C adatoms experience a large energy barrier to attaching to graphene step edges, so adatom diffusion does not limit growth. (ii) The supersaturations needed for appreciable growth rates are comparable to those required to nucleate islands. (iii) The growth rate is a highly nonlinear function of supersaturation, with a large activation energy (2.0 +/- 0.1 eV). Our analysis suggests that graphene grows by adding rare clusters of about five atoms rather than adding the abundant monomers ( adatoms). Knowing the growth mechanism and monitoring the supersaturation, we can control the pattern of growing graphene sheets. C1 [Loginova, Elena; Bartelt, Norman C.; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012 OI McCarty, Kevin/0000-0002-8601-079X; FU Office of Basic Energy Sciences; Division of Materials Sciences; US DOE [DE-AC04-94AL8500]; T U Wien's Institut fur Theoretische Physik FX We thank J C Hamilton, J J de Yoreo and T Ohta for helpful discussions. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences of the US DOE under contract DE-AC04-94AL8500. VASP was developed at T U Wien's Institut fur Theoretische Physik. NR 40 TC 172 Z9 175 U1 7 U2 117 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 25 PY 2008 VL 10 AR 093026 DI 10.1088/1367-2630/10/9/093026 PG 16 WC Physics, Multidisciplinary SC Physics GA 354CG UT WOS:000259615900001 ER PT J AU Ibe, M Nakayama, Y Yanagida, TT AF Ibe, M. Nakayama, Y. Yanagida, T. T. TI Conformal supersymmetry breaking and dynamical tuning of the cosmological constant SO PHYSICS LETTERS B LA English DT Article ID POSITIVE ENERGY; SUPERGRAVITY; DUALITY; REPRESENTATIONS AB We propose "conformal supersymmetry breaking" models, which tightly relate the conformal breaking scale (i.e. R-symmetry breaking scale) and the supersymmetry breaking scale. Both the scales are originated from the constant term in the superpotential through the common source of the R-symmetry breaking. We show that dynamical tuning between those mass scales significantly reduces the degree of fine-tuning necessary for generating the almost vanishing cosmological constant. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ibe, M.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Ibe, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Nakayama, Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nakayama, Y.] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Yanagida, T. T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Yanagida, T. T.] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778568, Japan. RP Ibe, M (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM ibe@slac.stanford.edu RI Yanagida, Tsutomu/A-4394-2011 FU US Department of Energy [DE-AC02-76SF00515]; NSF [PHY-0555662]; UC Berkeley Center for Theoretical Physics; World Premier International Research Center Initiative (WPI Program), MEXT, Japan FX The work of M.I. was supported by the US Department of Energy under contract number DE-AC02-76SF00515. The research of Y.N. is supported in part by NSF grant PHY-0555662 and the UC Berkeley Center for Theoretical Physics. This work was supported by World Premier International Research Center Initiative (WPI Program), MEXT, Japan. NR 27 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 25 PY 2008 VL 668 IS 1 BP 28 EP 31 DI 10.1016/j.physletb.2008.07.003 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 355NU UT WOS:000259716400007 ER PT J AU Cai, Y Shinar, R Zhou, Z Shinar, J AF Cai, Yuankun Shinar, Ruth Zhou, Zhaoqun Shinar, Joseph TI Multianalyte sensor array based on an organic light emitting diode platform SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Multianalyte sensor arrays; Organic light emitting devices; OLEDs; Glucose; Lactate; Ethanol sensor array ID DISSOLVED-OXYGEN; COMBINATORIAL FABRICATION; GLUCOSE; DEVICES; BIOSENSOR; POLYMER; ELECTROLUMINESCENCE; TEMPERATURE; FILMS; QUANTIFICATION AB A compact photoluminescence (PL)-based sensor array, utilizing pulsed organic light emitting diode (OLED) pixels as the excitation sources, for sequential or simultaneous detection of multiple analytes in a single sample, is described. The utility and potential advantages of the structurally integrated OLED-based platform for multianalyte detection are demonstrated for oxygen, glucose, lactate, and ethanol. The detection of glucose, lactate, and ethanol is based on monitoring the concentration of dissolved oxygen (DO) at the completion of the enzymatic oxidation reactions of these analytes in sealed cells. The monitoring in sealed cells and the ready access of the enzyme, when in solution, to the analyte enable a limit of detection of similar to 0.02 mM, which is better than that obtained with enzymes embedded in sol-gel films. The DO concentration is determined via its effect on the PL decay time of the oxygen-sensitive dye Pt octaethylporphyrin embedded in a polystyrene film. A modified Stern-Volmer equation is derived to generate a linear calibration. The 2 mm x 2 mm OLED pixels and the sensor films are fabricated on glass substrates that are attached back-to-back, generating a compact module devoid of any optical couplers. Two individually addressable OLED pixels are associated with the detection of each analyte. This configuration enables consecutive detection of all analytes within a few minutes utilizing a single photodetector (PD). Simultaneous detection is achieved by using an array of small-size Si photodiode PDs compatible with the OLED pixel array. The OLED-based sensing array is unique in its ease of fabrication and integration with the sensing component, while its performance attributes are comparable to those obtained for detection of a single analyte using any excitation source. (C) 2008 Elsevier B.V. All rights reserved. C1 [Shinar, Ruth] Iowa State Univ, Ctr Microelect Res, Ames, IA 50011 USA. [Cai, Yuankun; Zhou, Zhaoqun; Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Cai, Yuankun; Zhou, Zhaoqun; Shinar, Joseph] US DOE, Ames Lab, Ames, IA 50011 USA. RP Shinar, J (reprint author), Iowa State Univ, Ctr Microelect Res, Ames, IA 50011 USA. EM rshinar@iastate.edu; jshinar@iastate.edu FU Iowa State University (ISU) [DE-AC 02-07CH11358]; Director for Energy Research; Office of Basic Energy Sciences; USDOE; ISU Institute for Physical Research and Technology; National Aeronautics and Space Administration; National Science Foundation FX We thank Chengliang Qian for technical assistance. Ames Laboratory is operated by Iowa State University (ISU) for the United States Department of Energy (USDOE) under Contract DE-AC 02-07CH11358. This work was partially supported by the Director for Energy Research, Office of Basic Energy Sciences, USDOE, the ISU Institute for Physical Research and Technology, the National Aeronautics and Space Administration, and the National Science Foundation. NR 50 TC 28 Z9 28 U1 3 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD SEP 25 PY 2008 VL 134 IS 2 BP 727 EP 735 DI 10.1016/j.snb.2008.06.019 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 361SJ UT WOS:000260147100060 ER PT J AU Rumiche, F Wang, HH Hu, WS Indacochea, JE Wang, ML AF Rumiche, F. Wang, H. H. Hu, W. S. Indacochea, J. E. Wang, M. L. TI Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Hydrogen sensor; Anodic aluminum oxide; Nanowell; Palladium ID THIN-FILMS; CARBON NANOTUBES; SENSING PROPERTIES; PALLADIUM FILMS; FABRICATION; SURFACE; ARRAYS; ELECTRODE; NANOWIRE; ECONOMY AB A nanostructured sensing device based on anodic aluminum oxide (AAO) nanowells was fabricated and investigated for hydrogen gas sensing. AAO nanowells with an average pore diameter of 73 nm and with 2, 6, and 12 min anodization time were immersed in a surfactant solution and coated with an 8 nm film of palladium nanoparticles. The electrical resistance change of the nanostructured sensor with hydrogen gas exposure was used as the sensing parameter. The AAO nanowells and nanostructures were characterized using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and contact angle measurements. Using argon as a carrier gas, hydrogen concentrations as low as 0.05 vol.% (500 ppm) can be detected at room temperature. Response times as fast as 1.15s were obtained for the AAO nanowell-Pd nanostructure detector which compared to current devices and nanostructures in development, is found to be considerably faster without compromising sensor response magnitude and selectivity. (c) 2008 Elsevier B.V. All rights reserved. C1 [Rumiche, F.; Wang, H. H.; Hu, W. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rumiche, F.; Indacochea, J. E.; Wang, M. L.] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA. [Hu, W. S.] Natl Tsing Hua Univ, Dept Chem, Hsinchu, Taiwan. RP Wang, HH (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hau.wang@anl.gov FU U.S. National Science Foundation [CMS-0529320]; Electron Microscopy Center at Argonne National Laboratory FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC0206CH11357. The work at UIC was financially supported by the U.S. National Science Foundation (Grant No. CMS-0529320). The authors would like to acknowledge the use of the field emission scanning electron microscope at the Electron Microscopy Center at Argonne National Laboratory. NR 49 TC 31 Z9 31 U1 5 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD SEP 25 PY 2008 VL 134 IS 2 BP 869 EP 877 DI 10.1016/j.snb.2008.06.054 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 361SJ UT WOS:000260147100081 ER PT J AU Das, R Gupta, A Kumar, D Hoh, S Pennycook, SJ Hebard, AF AF Das, R. Gupta, A. Kumar, D. Hoh, S. Pennycook, S. J. Hebard, A. F. TI Dipolar interactions and their influence on the critical single domain grain size of Ni in layered Ni/Al(2)O(3) composites SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PARTICLE-SIZE; RELAXATION-TIME; NANOPARTICLES; COBALT; COERCIVITY; DEPENDENCE; ANISOTROPY; DYNAMICS; SYSTEM AB Pulsed laser deposition has been used to fabricate Ni/Al(2)O(3) multilayer composites in which Ni nanoparticles with diameters in the range of 3-60 nm are embedded as layers in an insulating Al(2)O(3) host. At fixed temperatures, the coercive fields plotted as a function of particle size show well-defined peaks, which define a critical size that delineates a crossover from coherently rotating single domain to multiple domain behavior. We observe a shift in peak position to higher grain size as temperature increases and describe this shift with theory that takes into account the decreasing influence of dipolar magnetic interactions from thermally induced random orientations of neighboring grains. C1 [Das, R.; Hebard, A. F.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Gupta, A.; Kumar, D.; Hoh, S.] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [Kumar, D.; Hoh, S.; Pennycook, S. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Hebard, AF (reprint author), Univ Florida, Dept Phys, Box 118440, Gainesville, FL 32611 USA. EM afh@phys.ufl.edu FU US National Science Foundation [DMR-0403480] FX This research was performed as a part of the Nanoscale Interdisciplinary Research Team project supported by the US National Science Foundation grant number DMR-0403480. We thank R Skomski for useful discussions and comments. NR 33 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 24 PY 2008 VL 20 IS 38 AR 385213 DI 10.1088/0953-8984/20/38/385213 PG 5 WC Physics, Condensed Matter SC Physics GA 341TC UT WOS:000258736800028 PM 21693831 ER PT J AU Song, YJ Dorin, RM Garcia, RM Jiang, YB Wang, H Li, P Qiu, Y van Swol, F Miller, JE Shelnutt, JA AF Song, Yujiang Dorin, Rachel M. Garcia, Robert M. Jiang, Ying-Bing Wang, Haorong Li, Peng Qiu, Yan van Swol, Frank Miller, James E. Shelnutt, John A. TI Synthesis of platinum nanowheels using a bicellar template SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MODEL MEMBRANES; PROTEINS; NANOSTRUCTURES; LIPOSOMES; VESICLES AB Disk-like surfactant bicelles provide a unique meso-structured reaction environment for templating the wet-chemical reduction of platinum(II) salt by ascorbic acid to produce platinum nanowheels. The Pt wheels are 496 +/- 55 nm in diameter and possess thickened centers and radial dendritic nanosheets (about 2-nm in thickness) culminating in flared dendritic rims. The structural features of the platinum wheels arise from confined growth of platinum within the bilayer that is also limited at edges of the bicelles. The size of CTAB/FC7 bicelles is observed to evolve with the addition of Pt(II) complex and ascorbic acid, synthetic control is demonstrated by varying the reaction parameters including metal salt concentration, temperature, and total surfactant concentration. This study opens up opportunities for the use of other inhomogeneous soft templates for synthesizing metals, metal alloys, and possibly semiconductors with complex nanostructures. C1 [Song, Yujiang; Dorin, Rachel M.; Garcia, Robert M.; Jiang, Ying-Bing; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank; Miller, James E.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Dorin, Rachel M.; Garcia, Robert M.; Wang, Haorong; Qiu, Yan; Shelnutt, John A.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Song, YJ (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM ysong@sandia.gov; jasheln@unm.edu RI Song, Yujiang/A-8700-2009; Shelnutt, John/A-9987-2009; Miller, James/C-1128-2011 OI Shelnutt, John/0000-0001-7368-582X; Miller, James/0000-0001-6811-6948 FU U.S. Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DEAC04-94AL85000. NR 19 TC 65 Z9 66 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 24 PY 2008 VL 130 IS 38 BP 12602 EP + DI 10.1021/ja8047464 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 349QG UT WOS:000259295400026 PM 18729320 ER PT J AU Lipton, AS Heck, RW Hernick, M Fierke, CA Ellis, PD AF Lipton, Andrew S. Heck, Robert W. Hernick, Marcy Fierke, Carol A. Ellis, Paul D. TI Residue ionization in LpxC directly observed by Zn-67 NMR spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID UDP-(3-O-ACYL)-N-ACETYLGLUCOSAMINE DEACETYLASE LPXC; ZINC-DEPENDENT DEACETYLASE; GAUSSIAN-BASIS SETS; UDP-3-O-(R-3-HYDROXYMYRISTOYL)-N-ACETYLGLUCOSAMINE DEACETYLASE; ESCHERICHIA-COLI; ALKALINE-PHOSPHATASE; ANTIBACTERIAL AGENTS; CARBONIC-ANHYDRASE; ATOMS LI; BIOSYNTHESIS AB The pH dependence of the solid-state Zn-67 NMR lineshapes has been measured for both the wild type (WT) and the H265A mutant of Aquifex aeolicus LpxC, each in the absence of substrate (resting state). The Zn-67 NMR spectrum of WT LpxC at pH 6 (prepared at 0 degrees C) contains two overlapping quadrupole lineshapes with C-q values of 10 and 12.9 MHz, while the spectrum measured for the sample prepared at a pH near 9 (at 0 degrees C) is dominated by the appearance of a third species with a C-q of 14.3 MHz. These findings are consistent with the two pK(a) values previously observed by the bell-shaped dependence of the LpxC-catalyzed reaction. On the basis of comparison of the experimental results with predictions from quantum mechanical/molecular mechanical (QM/MM) modeling, we suggest that pK(a1) (low pH) represents the ionization of Glu78 and pK(a2) (high pH) reflects the ionization of another active site residue located near the zinc ion, such as His265. These results are also consistent with water being bound to the Zn2+ ion throughout this pH range. The Zn-67 NMR spectra of the H265A mutant appear to be pH independent, with a C-q of 9.55 MHz being sufficient to describe both low- and high-pH data. The QM/MM models of the H265A mutant suggest that over this pH range water is bound to the zinc ion while Glu78 is protonated. C1 [Hernick, Marcy; Fierke, Carol A.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Lipton, Andrew S.; Heck, Robert W.; Ellis, Paul D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Fierke, CA (reprint author), Univ Michigan, Dept Chem, 930 N Univ, Ann Arbor, MI 48109 USA. EM fierke@umich.edu; paul.ellis@pnl.gov OI Hernick, Marcy/0000-0002-2839-5767 FU National Institutes of Health [EB-2050, GM40602]; Cystic Fibrosis Foundation [HERNIC05F0]; U.S. DOE FX This work was supported by grants from the National Institutes of Health (Federal Grants EB-2050 to PNNL and GM40602 to C.A.F.) and the Cystic Fibrosis Foundation (Grant HERNIC05F0 to M.H.). This research was carried out in the EMSL (a national scientific user facility sponsored by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research) located at PNNL and operated for the DOE by Battelle. Computations were performed in part using the Molecular Science Computing Facility in the EMSL. NWChem versions 5.0 and 5.1, as developed and distributed by PNNL, P.O. Box 999, Richland, WA 99352, and funded by the U.S. DOE, were used to obtain some of these results. NR 45 TC 14 Z9 14 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 24 PY 2008 VL 130 IS 38 BP 12671 EP 12679 DI 10.1021/ja801776c PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 349QG UT WOS:000259295400050 PM 18761443 ER PT J AU Liang, Y Pingali, SV Jogalekar, AS Snyder, JP Thiyagarajan, P Lynn, DG AF Liang, Yan Pingali, Sai Venkatesh Jogalekar, Ashutosh S. Snyder, James P. Thiyagarajan, Pappannan Lynn, David G. TI Cross-strand pairing and amyloid assembly SO BIOCHEMISTRY LA English DT Article ID ANTIPARALLEL BETA-SHEETS; HELIX-FORMING TENDENCIES; SIDE-CHAIN INTERACTIONS; OCCURRING AMINO-ACIDS; SYNCHROTRON X-RAY; PROTEINS; PEPTIDE; FIBRIL; DYNAMICS; STABILITY AB Amino acid cross-strand pairing interactions along a P-sheet surface have been implicated in protein P-structural assembly and stability, yet the relative contributions have been difficult to evaluate directly. Here we develop the central core sequence of the A beta peptide associated with Alzheimer's disease, A beta(16-22), as an experimental system for evaluating these interactions. The peptide allows for internal comparisons between electrostatic and steric interactions within the P-sheet and an evaluation of these cross-strand pair contributions to beta-sheet registry. A morphological transition from fibers to hollow nanotubes arises from changes in beta-sheet surface complementarity and provides a convenient indicator of the beta-strand strand registry. The intrinsic beta-sequence and pair correlations are critical to regulate secondary assembly. These studies provide evidence for a critical desolvation step that is not present in most models of the nucleation-dependent pathway for amyloid assembly. C1 [Liang, Yan; Jogalekar, Ashutosh S.; Snyder, James P.; Lynn, David G.] Emory Univ, Ctr Fundamental & Appl Mol Evolut, Dept Chem, Atlanta, GA 30322 USA. [Liang, Yan; Jogalekar, Ashutosh S.; Snyder, James P.; Lynn, David G.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Pingali, Sai Venkatesh; Thiyagarajan, Pappannan] Argonne Natl Lab, Argonne, IL 60439 USA. RP Snyder, JP (reprint author), Emory Univ, Ctr Fundamental & Appl Mol Evolut, Dept Chem, Atlanta, GA 30322 USA. EM jsnyder@emory.edu; thiyaga@anl.gov; dlynn2@emory.edu OI Pingali, Sai Venkatesh/0000-0001-7961-4176 FU U. Chicago Argonne, LLC [DE-AC02-06CH11357]; Apkarian Electron Microscopy Facility; Emory University; [DOE ER15377]; [NSF-CHE 0404677]; [NSF-CHE 0739189] FX We gratefully acknowledge the support by DOE ER15377, NSF-CHE 0404677, and NSF-CHE 0739189 and the excellent assistance of Soenke Seifert in the X-ray scattering experiments at the Advanced Photon Source at the Argonne National Laboratory funded by the DOE, BES, under contract DE-AC02-06CH11357 to the U. Chicago Argonne, LLC. We further acknowledge the use of the Apkarian Electron Microscopy Facility and the Center for the Analysis of Supramolecular Self-assemblies for Atomic Force Microscopy at Emory University. NR 60 TC 52 Z9 53 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 23 PY 2008 VL 47 IS 38 BP 10018 EP 10026 DI 10.1021/bi801081c PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 349GA UT WOS:000259268100011 PM 18759497 ER PT J AU Schwarz, JA Brokstein, PB Voolstra, C Terry, AY Manohar, CF Miller, DJ Szmant, AM Coffroth, MA Medina, M AF Schwarz, Jodi A. Brokstein, Peter B. Voolstra, Christian Terry, Astrid Y. Manohar, Chitra F. Miller, David J. Szmant, Alina M. Coffroth, Mary Alice Medina, Monica TI Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata (vol 9, pg 97, 2008) SO BMC GENOMICS LA English DT Correction C1 [Voolstra, Christian; Medina, Monica] Univ Calif, Sch Nat Sci, Merced, CA 95344 USA. [Schwarz, Jodi A.; Brokstein, Peter B.; Terry, Astrid Y.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Manohar, Chitra F.] Celera, Alameda, CA 94502 USA. [Miller, David J.] James Cook Univ, Comparat Genom Ctr, Townsville, Qld 4811, Australia. [Szmant, Alina M.] Ctr Marine Sci, Wilmington, NC 28409 USA. [Coffroth, Mary Alice] SUNY Buffalo, Dept Geol Sci, Buffalo, NY 14260 USA. RP Medina, M (reprint author), Univ Calif, Sch Nat Sci, POB 2039, Merced, CA 95344 USA. EM jaschwarz@vassar.edu; pbbrokstein@lbl.gov; cvoolstra@ucmerced.edu; ayterry@lbl.gov; Chitra.Manohar@celera.com; david.miller@jcu.edu.au; szmanta@uncw.edu; coffroth@buffalo.edu; mmedina@ucmerced.edu RI Voolstra, Christian/H-7158-2014 OI Voolstra, Christian/0000-0003-4555-3795 NR 1 TC 6 Z9 6 U1 1 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 23 PY 2008 VL 9 AR 435 DI 10.1186/1471-2164-9-435 PG 1 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 357CZ UT WOS:000259825200001 ER PT J AU Kanapathipillai, M Yusufoglu, Y Rawal, A Hu, YY Lo, CT Thiyaigarajan, P Kalay, YE Akinc, M Mallapragada, S Schmidt-Rohr, K AF Kanapathipillai, M. Yusufoglu, Y. Rawal, A. Hu, Y. -Y. Lo, C. -T. Thiyaigarajan, P. Kalay, Y. E. Akinc, M. Mallapragada, S. Schmidt-Rohr, K. TI Synthesis and characterization of ionic block copolymer templated calcium phosphate nanocomposites SO CHEMISTRY OF MATERIALS LA English DT Article ID NMR-SPECTROSCOPY; MINERALIZATION; POLYMER; HYDROXYAPATITE; NANOPARTICLES; TEMPERATURE; COMPOSITES; COLLAGEN; CLAY; GELS AB Self-assembling thermo-reversibly gelling anionic and zwitterionic pentablock copolymers were used as templates for precipitation of calcium phosphate nanostructures, controlling their size and ordered structural arrangement. Calcium and phosphate ions were dissolved ill a block-copolymer micellar dispersion at low temperatures. Aging at ambient temperature produced inorganic nanoparticles, presumably nucleated by ionic interactions. The self-assembled nanocomposites were characterized by small-angle X-ray and neutron scattering (SAXS/SANS), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). H-1-P-31 NMR with 1H spin diffusion from polymer to phosphate proved the formation of nanocomposites, with inorganic particle sizes from similar to 2 nm, characterized by 1H-P-31 dipolar couplings, to > 100 nm. TEM analysis showed polymer micelles surrounded by calcium phosphate. SAXS attested that a significant fraction of the calcium phosphate was templated by the polymer micelles. SANS data indicated that the order of the polymer was enhanced by the inorganic phase. The nanocomposite gels exhibited higher moduli than the neat polymer gels. The calcium phosphate was characterized by TGA, X-ray diffraction, high-resolution TEM, and various NMR techniques. An unusual crystalline phase with >= 2 chemically and >= 3 magnetically inequivalent HPO42- ions was observed with the zwitterionic copolymer, highlighting the influence of the polymer on the calcium phosphate crystallization. The inorganic fraction of the nanocomposite was around 30 wt % of the dried hydrogel. Thus, a significant fraction of calcium phosphate has been templated by the tailored self-assembling ionic block copolymers, providing a bottom-up approach to nanocomposite Synthesis. C1 [Rawal, A.; Hu, Y. -Y.; Schmidt-Rohr, K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Rawal, A.; Hu, Y. -Y.; Schmidt-Rohr, K.] Iowa State Univ, Dept Chem Engn, Ames, IA 50011 USA. [Lo, C. -T.; Thiyaigarajan, P.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yusufoglu, Y.; Akinc, M.] Iowa State Univ, Dept Mat Engn, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu RI Mallapragada, Surya/F-9375-2012; Hu, Yan-Yan/A-1795-2015 OI Hu, Yan-Yan/0000-0003-0677-5897 FU the U.S. Department of Energy [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy under Contract DE-AC02-07CH11358. This work benefited from the use of IPNS and APS, funded by the U.S. DOE. Office of Science. Office of Basic Energy Science under Contract DE-AC02-06CH11357. We wish to thank Matthew J. Kramer for helpful discussion of the TEM results. NR 28 TC 21 Z9 21 U1 8 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 23 PY 2008 VL 20 IS 18 BP 5922 EP 5932 DI 10.1021/cm703441n PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 349IR UT WOS:000259275000027 ER PT J AU McFarlane, SA Mather, JH Ackerman, TP Liu, Z AF McFarlane, Sally A. Mather, James H. Ackerman, Thomas P. Liu, Zheng TI Effect of clouds on the calculated vertical distribution of shortwave absorption in the tropics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE-TRANSFER; SOLAR-RADIATION; ATMOSPHERIC RADIATION; EFFECTIVE SIZES; CIRRUS CLOUDS; HEATING RATES; WATER CLOUDS; PART II; SATELLITE; MODELS AB High vertical resolution profiles of cloud properties were obtained from cloud radars operated by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus in the Tropical Western Pacific (TWP). Broadband flux calculations using a correlated k-distribution model were performed to estimate the effect of clouds on the total column and vertical distribution of shortwave absorption at these tropical sites. Sensitivity studies were performed to examine the role of precipitable water vapor, cloud vertical location, optical depth, and particle size on the shortwave (SW) column absorption. On average, observed clouds had little impact on the calculated total SW column absorption at the two sites, but a significant impact on the vertical distribution of SW absorption. Differences in the column amount, vertical profiles, and diurnal cycle of SW absorption at the two sites were due primarily to differences in cirrus cloud frequency. C1 [McFarlane, Sally A.; Mather, James H.] Pacific NW Natl Lab, Climate Phys Grp, Richland, WA 99352 USA. [Ackerman, Thomas P.; Liu, Zheng] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA. [Ackerman, Thomas P.; Liu, Zheng] Univ Washington, Dept Atmospher Sci, Seattle, WA 98105 USA. RP McFarlane, SA (reprint author), Pacific NW Natl Lab, Climate Phys Grp, POB 999,MS K9-24, Richland, WA 99352 USA. EM sally.mcfarlane@pnl.gov RI McFarlane, Sally/C-3944-2008; Liu, Zheng/C-1163-2012 OI Liu, Zheng/0000-0003-4132-8136 FU DOE office of Biological and Environmental Research FX The authors thank Dr. Laura Hinkelman and three anonymous reviewers for their helpful comments on the manuscript. The Pacific Northwest National Laboratory is operated by Battelle for U. S. Department of Energy (DOE). This research was supported by the DOE office of Biological and Environmental Research as part of the Atmospheric Radiation Measurement (ARM) program. The ARM surface data were obtained from the ARM archive (www.archive.arm.gov). The TOA fluxes from the GMS-5 satellite were calculated by the NASA Langley Cloud and Radiation Research Group and were also obtained from the ARM archive. NR 47 TC 7 Z9 9 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 23 PY 2008 VL 113 IS D18 AR D18203 DI 10.1029/2008JD009791 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 353YS UT WOS:000259606700004 ER PT J AU Olsen, BD Shah, M Ganesan, V Segalman, RA AF Olsen, Bradley D. Shah, Manas Ganesan, Venkat Segalman, Rachel A. TI Universalization of the phase diagram for a model rod-coil diblock copolymer SO MACROMOLECULES LA English DT Article ID POLYMER-POLYMER INTERFACE; SMALL-ANGLE SCATTERING; POWER-LAW APPROACH; BLOCK-COPOLYMERS; MOLECULAR-WEIGHT; INTERACTION PARAMETER; HOMOPOLYMER BLENDS; NEUTRON-SCATTERING; SEGREGATION; BEHAVIOR AB The Flory-Huggins interaction is measured for a model rod-coil block copolymer system, poly(alkoxyphenylenevinylene-b-isoprene), by fitting the interfacial segregation of block copolymer to a homopolymer interface and by using the random phase approximation (RPA) for block copolymers. The measured interfacial segregation of a block copolymer to the interface between homopolymers, fit with a self-consistent field theory (SCFT) simulation using chi as a variable parameter, gives a functional form chi = 34.8/T - 0.091. When RPA is applied to neutron scattering curves for the rod-coil system above the order-disorder transition, the theoretical structure factors are inconsistent with observed scattering curves clue to complex aggregated structures formed in the nematic and isotropic states. Using the Flory-Huggins parameter and a previously measured value of the Maier-Saupe parameter, the PPV-b-PI phase diagram may be converted from system-specific variables to dimensionless parameters. Under the assumptions that the rods are ideal nematogens, interaction strengths are composition-independent, and rod-coil and rod-rod interactions are local, this yields the first quantitative universal phase diagram for rod-coil block copolymers. C1 [Olsen, Bradley D.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Austin, TX 78712 USA. [Shah, Manas; Ganesan, Venkat] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu RI Shah, Manas/G-1845-2010; Ganesan, Venkat/B-9912-2011; Shah, Manas/G-9971-2016; OI Segalman, Rachel/0000-0002-4292-5103; Olsen, Bradley/0000-0002-7272-7140 FU National Science Foundation [DMR00-80034]; Welch Foundation and the Petroleum Research Fund of the American Chemical Society FX We gratefully acknowledge support from an NSF CAREER Award. This work made use of the Materials Research Laboratory Central Facilities at the University of California Santa Barbara supported by the National Science Foundation under Award DMR00-80034. We thank Tom Mates for assistance with DSIMS experiments. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. We also thank Man-Ho Kim and Boualem Hammouda for experimental assistance and helpful discussions. B.D.O. gratefully acknowledges the Fannie and John Hertz Foundation for a graduate fellowship. V.G. acknowledges partial support by a grant from the Welch Foundation and the Petroleum Research Fund of the American Chemical Society. NR 61 TC 72 Z9 74 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 23 PY 2008 VL 41 IS 18 BP 6809 EP 6817 DI 10.1021/ma800978c PG 9 WC Polymer Science SC Polymer Science GA 349KP UT WOS:000259280000035 ER PT J AU Brannigan, G Henin, J Law, R Eckenhoff, R Klein, ML AF Brannigan, Grace Henin, Jerome Law, Richard Eckenhoff, Roderic Klein, Michael L. TI Embedded cholesterol in the nicotinic acetylcholine receptor SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE protein-lipid interaction; ligand-gated ion channel; cys loop receptor ID MEMBRANE-LIPID-COMPOSITION; GATED ION-CHANNEL; GATING MECHANISM; ANGSTROM RESOLUTION; MOLECULAR-DYNAMICS; PROTEIN STRUCTURES; AUTOMATED DOCKING; ENERGY FUNCTION; RICH MEMBRANES; FORCE-FIELD AB The nicotinic acetylcholine receptor (nAChR) is a cation-selective channel central to both neuronal and muscular processes and is considered the prototype for ligand-gated ion channels, motivating a structural determination effort that spanned several decades [Unwin IN (2005) Refined structure of the nicotinic acetylcholine receptor at 4 angstrom resolution. J Mol Biol 346:967-989]. Purified nAChR must be reconstituted in a mixture containing cholesterol to function. Proposed modes of interaction between cholesterol and the protein range from specific binding to indirect membrane-mediated mechanisms. However, the underlying cause of nAChR sensitivity to cholesterol remains controversial, in part because the vast majority of functional studies were conducted before a medium resolution structure was reported. We show that the nAChR contains internal sites capable of containing cholesterol, whose occupation stabilizes the protein structure. We detect sites at the protein-lipid interface as conventionally predicted from functional data, as well as deeply buried sites that are not usually considered. Molecular dynamics simulations reveal that occupation of both superficial and deeply buried sites most effectively preserves the experimental structure; the structure collapses in the absence of bound cholesterol. In particular, we find that bound cholesterol directly supports contacts between the agonist-binding domain and the pore that are thought to be essential for activation of the receptor. These results likely apply to those other ion channels within the Cys-loop superfamily that depend on cholesterol, such as the GABA receptor. C1 [Brannigan, Grace; Henin, Jerome; Klein, Michael L.] Univ Penn, Dept Chem, Ctr Mol Modeling, Philadelphia, PA 19104 USA. [Law, Richard] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Eckenhoff, Roderic] Univ Penn, Sch Med, Dept Anesthesiol & Crit Care, Philadelphia, PA 19104 USA. RP Brannigan, G (reprint author), Univ Penn, Dept Chem, Ctr Mol Modeling, Philadelphia, PA 19104 USA. EM grace@cmm.upenn.edu RI Henin, Jerome/A-7080-2008; OI Henin, Jerome/0000-0003-2540-4098; Brannigan, Grace/0000-0001-8949-2694 FU National Institutes of Health; National Science Foundation; National Center for Supercomputing Applications FX Prof. William DeGrado is gratefully acknowledged for his critical reading of the manuscript. The work was supported by grants from the National Institutes of Health and by the National Science Foundation through TeraGrid resources provided by the National Center for Supercomputing Applications. NR 42 TC 83 Z9 83 U1 1 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 23 PY 2008 VL 105 IS 38 BP 14418 EP 14423 DI 10.1073/pnas.0803029105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 353TY UT WOS:000259592400036 PM 18768796 ER PT J AU Whittle, EJ Tremblay, AE Buist, PH Shanklin, J AF Whittle, Edward J. Tremblay, Amy E. Buist, Peter H. Shanklin, John TI Revealing the catalytic potential of an acyl-ACP desaturase: Tandem selective oxidation of saturated fatty acids SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE binuclear iron; diiron; hydroxylation; nonheme iron; catalysis ID CARRIER-PROTEIN DESATURASE; DELTA(9) DESATURASE; CRYSTAL-STRUCTURE; RICINUS-COMMUNIS; DIIRON PROTEINS; LIPIDS; HYDROXYLATION; SPECIFICITY; MUTAGENESIS; SITE AB It is estimated that plants contain thousands of fatty acid structures, many of which arise by the action of membrane-bound desaturases and desaturase-like enzymes. The details of "unusual" e.g., hydroxyl or conjugated, fatty acid formation remain elusive, because these enzymes await structural characterization. However, soluble plant acyl-ACP (acyl carrier protein) desaturarses have been studied in far greater detail but typically only catalyze desaturation (dehydrogenation) reactions. We describe a mutant of the castor acyl-ACP desaturase (T117R/G188L/D280K) that converts stearoyl-ACP into the allylic alcohol trans-isomer (E)-10-18:1-9-OH via a cis isomer (Z)-9-18:1 intermediate. The use of regiospecifically deuterated substrates shows that the conversion of (Z)-9-18:1 substrate to (E)-10-18:1-9-OH product proceeds via hydrogen abstraction at C-11 and highly regioselective hydroxylation (>97%) at C-9. O-18-labeling studies show that the hydroxyl oxygen in the reaction product is exclusively derived from molecular oxygen. The mutant enzyme converts (E)-9-18:1-ACP into two major products, (Z)-10-18:1-9-OH and the conjugated linolenic acid isomer, (E)-9-(Z)-11-18:2. The observed product profiles can be rationalized by differences in substrate binding as dictated by the curvature of substrate channel at the active site. That three amino acid substitutions, remote from the diiron active site, expand the range of reaction outcomes to mimic some of those associated with the membrane-bound desaturase family underscores the latent potential of O-2-dependent nonheme diiron enzymes to mediate a diversity of functionalization chemistry. In summary, this study contributes detailed mechanistic insights into factors that govern the highly selective production of unusual fatty acids. C1 [Whittle, Edward J.; Shanklin, John] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Tremblay, Amy E.; Buist, Peter H.] Carleton Univ, Dept Chem, Ottawa, ON K1S 5B6, Canada. RP Shanklin, J (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. EM shanklin@bnl.gov FU U.S. Department of Energy; Natural Sciences and Engineering Research Council (NSERC); [OGP-2528] FX E.J.W. and J.S. thank the Office of Basic Energy Sciences of the U.S. Department of Energy, for financial support of this work. Support was also provided by Natural Sciences and Engineering Research Council (NSERC) (CGS-M postgraduate scholarship program to A.E.T., Grant OGP-2528 to P.H.B.). We thank Pat Covello for providing some of the deuterated compounds and Jodie Guy for structural comparisons of ivy and castor desaturase and for graphics assistance. NR 32 TC 22 Z9 22 U1 5 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 23 PY 2008 VL 105 IS 38 BP 14738 EP 14743 DI 10.1073/pnas.0805645105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 353TY UT WOS:000259592400091 PM 18796606 ER PT J AU Azad, AK Prasankumar, RP Talbayev, D Taylor, AJ Averitt, RD Zide, JMO Lu, H Gossard, AC O'Hara, JF AF Azad, Abul K. Prasankumar, Rohit P. Talbayev, Diyar Taylor, Antoinette J. Averitt, Richard D. Zide, Joshua M. O. Lu, Hong Gossard, Arthur C. O'Hara, John F. TI Carrier dynamics in InGaAs with embedded ErAs nanoislands SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON; RELAXATION; SAPPHIRE; GAAS AB Using time-resolved optical-pump terahertz-probe spectroscopy, we study the ultrafast carrier dynamics in In(0.53)Ga(0.47)As:ErAs, a potential candidate for 1550 nm based terahertz photoconductive detectors. Material growth is performed by codepositing ErAs nanoislands with Be-compensated InGaAs on an InP:Fe substrate using molecular beam epitaxy. The material shows a rapid photoconductivity response following optical excitation. Photoexcitation with similar to 0.5 mu J/cm(2) 800 nm femtosecond laser pulses yields a 3.2 ps carrier lifetime in optical-pump terahertz-probe experiments. We also measure the carrier lifetime using a 1550 nm femtosecond optical pump-probe system, and it is found to agree well with the terahertz measurements. These short lifetimes demonstrate significant potential for implementing terahertz systems using telecommunication based technologies. (C) 2008 American Institute of Physics. C1 [Azad, Abul K.; Prasankumar, Rohit P.; Talbayev, Diyar; Taylor, Antoinette J.; O'Hara, John F.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Averitt, Richard D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Zide, Joshua M. O.] Univ Delaware, Newark, DE 19716 USA. [Lu, Hong; Gossard, Arthur C.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Azad, AK (reprint author), Los Alamos Natl Lab, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM aazad@lanl.gov RI Talbayev, Diyar/C-5525-2009; Azad, Abul/B-1163-2011; Zide, Joshua/B-5105-2010; LU, Hong/D-3658-2013; OI Talbayev, Diyar/0000-0003-3537-1656; Zide, Joshua/0000-0002-6378-7221; LU, Hong/0000-0002-8340-2739; Azad, Abul/0000-0002-7784-7432 NR 16 TC 25 Z9 25 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 22 PY 2008 VL 93 IS 12 AR 121108 DI 10.1063/1.2989127 PG 3 WC Physics, Applied SC Physics GA 356SY UT WOS:000259799100008 ER PT J AU Geisz, JF Friedman, DJ Ward, JS Duda, A Olavarria, WJ Moriarty, TE Kiehl, JT Romero, MJ Norman, AG Jones, KM AF Geisz, J. F. Friedman, D. J. Ward, J. S. Duda, A. Olavarria, W. J. Moriarty, T. E. Kiehl, J. T. Romero, M. J. Norman, A. G. Jones, K. M. TI 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions SO APPLIED PHYSICS LETTERS LA English DT Article AB A photovoltaic conversion efficiency of 40.8% at 326 suns concentration is demonstrated in a monolithically grown, triple-junction III-V solar cell structure in which each active junction is composed of an alloy with a different lattice constant chosen to maximize the theoretical efficiency. The semiconductor structure was grown by organometallic vapor phase epitaxy in an inverted configuration with a 1.83 eV Ga(.51)In(.49)P top junction lattice-matched to the GaAs substrate, a metamorphic 1.34 eV In(.04)Ga(.96)As middle junction, and a metamorphic 0.89 eV In(.37)Ga(.63)As bottom junction. The two metamorphic junctions contained approximately 1 x 10(5) cm(-2) and 2-3 x 10(6) cm(-2) threading dislocations, respectively. (C) 2008 American Institute of Physics. C1 [Geisz, J. F.; Friedman, D. J.; Ward, J. S.; Duda, A.; Olavarria, W. J.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Geisz, JF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM john_geisz@nrel.gov RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU United States Department of Energy [DE-AC36-99-GO10337] FX The authors thank M. Young, C. Kramer, and K. Emery for their contributions. We also thank Sarah Kurtz, J. M. Olson, and M. W. Wanlass for useful discussions and their pioneering work that made this possible. This work was funded by the United States Department of Energy under Contract No. DE-AC36-99-GO10337. NR 13 TC 258 Z9 269 U1 4 U2 77 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 22 PY 2008 VL 93 IS 12 AR 123505 DI 10.1063/1.2988497 PG 3 WC Physics, Applied SC Physics GA 356SY UT WOS:000259799100098 ER PT J AU Horansky, RD Ullom, JN Beall, JA Hilton, GC Irwin, KD Dry, DE Hastings, EP Lamont, SP Rudy, CR Rabin, MW AF Horansky, Robert D. Ullom, Joel N. Beall, James A. Hilton, Gene C. Irwin, Kent D. Dry, Donald E. Hastings, Elizabeth P. Lamont, Stephen P. Rudy, Clifford R. Rabin, Michael W. TI Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSITION-EDGE SENSORS; ENERGY RESOLUTION; SPECTROMETRY; DETECTORS; SPECTRA AB Identification of trace nuclear materials is usually accomplished by alpha spectrometry. Current detectors cannot distinguish critical elements and isotopes. We have developed a detector called a microcalorimeter, which achieves a resolution of 1.06 keV for 5.3 MeV alphas, the highest resolving power of any energy dispersive measurement. With this exquisite resolution, we can unambiguously identify the (240)Pu/(239)Pu ratio in Pu, a critical measurement for ascertaining the intended use of nuclear material. Furthermore, we have made a direct measurement of the (209)Po ground state decay. (C) 2008 American Institute of Physics. C1 [Horansky, Robert D.; Ullom, Joel N.; Beall, James A.; Hilton, Gene C.; Irwin, Kent D.] Natl Inst Stand & Technol, Boulder, CO USA. [Dry, Donald E.; Hastings, Elizabeth P.; Lamont, Stephen P.; Rudy, Clifford R.; Rabin, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Horansky, RD (reprint author), Natl Inst Stand & Technol, 325 Broadway,MS 817-03, Boulder, CO USA. EM horansky@nist.gov FU U. S. Department of Energy; Office of Nonproliferation Research and Development; LANL/LDRD Program; Intelligence Community Postdoctoral Fellowship program FX We acknowledge valuable technical discussions with Harvey Moseley. We gratefully acknowledge the support of the U. S. Department of Energy through the Office of Nonproliferation Research and Development and the LANL/LDRD Program for this work. R. D. H. thanks the Intelligence Community Postdoctoral Fellowship program. NR 19 TC 20 Z9 20 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 22 PY 2008 VL 93 IS 12 AR 123504 DI 10.1063/1.2978204 PG 3 WC Physics, Applied SC Physics GA 356SY UT WOS:000259799100097 ER PT J AU Yunus, M Ruden, PP Smith, DL AF Yunus, M. Ruden, P. P. Smith, D. L. TI Spin injection effects on exciton formation in organic semiconductors SO APPLIED PHYSICS LETTERS LA English DT Article ID CONJUGATED POLYMERS; SINGLET AB The effects of spin-polarized electron and hole injection from ferromagnetic contacts on the formation and distribution of singlet and triplet excitons in a conjugated organic semiconductor are modeled. Electron and hole transport in the semiconductor are described by spin-dependent device equations for a structure resembling an organic light emitting diode. The formation of electron-hole pairs at a given site is modeled as a Langevin process, and the subsequent local relaxation into the lowest energy exciton states is described by rate equations. Once formed, excitons may recombine in the semiconductor or diffuse through the material and recombine at the contact interfaces. The model calculations yield steady-state spatial profiles for singlet and triplet excitons. It is shown that spin-polarized injection increases the formation of singlet excitons, and that the diffusion of excitons has significant effects on the triplet exciton profile. (C) 2008 American Institute of Physics. C1 [Yunus, M.; Ruden, P. P.] Univ Minnesota, Minneapolis, MN 55455 USA. [Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yunus, M (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. RI Riminucci, Alberto/D-7525-2011 OI Riminucci, Alberto/0000-0003-0976-1810 FU NSF [ECCS-0724886]; DOE BES Work Proposal [08SPCE973] FX This work was supported in part by the NSF (ECCS-0724886). Access to the Minnesota Supercomputing Institute is gratefully acknowledged. Work at LANL was supported by DOE BES Work Proposal No. 08SPCE973. NR 17 TC 3 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 22 PY 2008 VL 93 IS 12 AR 123312 DI 10.1063/1.2988273 PG 3 WC Physics, Applied SC Physics GA 356SY UT WOS:000259799100093 ER PT J AU Zhou, GW Chen, XD Gallagher, D Yang, JC AF Zhou, Guangwen Chen, Xidong Gallagher, David Yang, Judith C. TI Percolating oxide film growth during Cu(111) oxidation SO APPLIED PHYSICS LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; OXYGEN-INDUCED RECONSTRUCTIONS; SITU UHV-TEM; TEMPERATURE; CU(001); ISLANDS; CU2O; DIFFUSION AB We report in situ transmission electron microscopy dynamic observations of the early stage oxidation of Cu (111) surfaces at similar to 450 degrees C, which show that the Cu2O film morphology evolves with continued oxidation from initially ramified islands to irregularly connected clusters. The geometrical features of these noncompact oxide films are analyzed in terms of the scaling theory of percolation. We show by kinetic Monte Carlo simulations that the percolating oxide film growth is related to a mechanism of neighbor-dependent site percolation. (C) 2008 American Institute of Physics. C1 [Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. [Chen, Xidong] Cedarville Univ, Dept Sci & Math, Cedarville, OH 45314 USA. [Chen, Xidong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gallagher, David] Cedarville Univ, Dept Comp Sci & Engn, Cedarville, OH 45314 USA. [Yang, Judith C.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu NR 24 TC 10 Z9 10 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 22 PY 2008 VL 93 IS 12 AR 123104 DI 10.1063/1.2990624 PG 3 WC Physics, Applied SC Physics GA 356SY UT WOS:000259799100065 ER PT J AU Pfeifer, T Abel, MJ Nagel, PM Jullien, A Loh, ZH Bell, MJ Neumark, DM Leone, SR AF Pfeifer, Thomas Abel, Mark J. Nagel, Phillip M. Jullien, Aurelie Loh, Zhi-Heng Bell, M. Justine Neumark, Daniel M. Leone, Stephen R. TI Time-resolved spectroscopy of attosecond quantum dynamics SO CHEMICAL PHYSICS LETTERS LA English DT Review ID HIGH-HARMONIC-GENERATION; SOFT X-RAYS; FREQUENCY-DOMAIN INTERFEROMETER; PROBING MOLECULAR-DYNAMICS; CARRIER-ENVELOPE PHASE; ELECTRON DYNAMICS; LASER-PULSES; MULTIPHOTON IONIZATION; EXTREME-ULTRAVIOLET; METAL NANOPARTICLES AB The advent of attosecond pulsed radiation leads to a large unexplored scientific area in chemical physics: the direct time-resolved measurement of electronic quantum dynamics. Major scientific goals include spectroscopy of single- and multi-electron motion and dynamical electron correlations, relating to orbital interactions in valence and core electronic levels of atoms and molecules. The results of such studies address a wide array of scientific and technological applications. Here, the current state-of-the-art of attosecond-dynamics measurements is reviewed and several novel spectroscopic methods are discussed that are particularly important for applications in chemical physics: attosecond transient absorption/dispersion spectroscopy, laser-induced-dipole spectroscopy, and absolute-phase spectroscopy. (c) 2008 Elsevier B.V. All rights reserved. C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem & Phys, 209 Gilman Hall, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Neumark, Daniel/B-9551-2009; Jullien, Aurelie/C-8345-2009; Loh, Zhi-Heng/B-6952-2011 OI Neumark, Daniel/0000-0002-3762-9473; Loh, Zhi-Heng/0000-0001-9729-9632 FU MURI program [FA9550-04-10242]; US Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt-Foundation; National Science Foundation [CHE-072662] FX We would like to thank Lukas Gallmann, Jun Ye, and Jason Jones for essential contributions to the experimental setup. The authors acknowledge financial support of a MURI program from the Air Force Office of Scientific Research, contract No. FA9550-04-10242. Portions of the laboratory were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract DE-AC02-05CH11231. T. P. acknowledges support of a Feodor Lynen Fellowship of the Alexander von Humboldt-Foundation. S. R. L. acknowledges recent support for his portion of the attosecond effort through National Science Foundation Grant CHE-072662. NR 184 TC 52 Z9 52 U1 4 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD SEP 22 PY 2008 VL 463 IS 1-3 BP 11 EP 24 DI 10.1016/j.cplett.2008.08.059 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 347OH UT WOS:000259150400002 ER PT J AU Walters, RT AF Walters, R. Tom TI Comment on "Tritium absorption-desorption characteristics of LaNi4.25Al0.75" SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE LaNi4.25Al0.75; metal tritide; P-C-T curves; thermodynamic parameters ID NI-AL TRITIDES; HELIUM DYNAMICS; METAL TRITIDES; BEHAVIOR; HYDRIDES; DECAY AB The thermodynamic data Cor LaNi4.25Al0.75 tritide, reported by Wang et al. (W.-d. Wang et al. J. Alloys Compd. (2006), doi:10.1016/ j.jallcom.206.09.122), are in variance with our published data. The plateau pressures for the P-C-T isotherms at all temperatures are significantly lower than Published data. As a result, the derived thermodynamic parameters, Delta H degrees and Delta S degrees, are questionable. Using the thermodynamic parameters derived from the data reported by Wang et al. will result in under estimating the expected pressures, and therefore not to provide the desired performance for storing and processing-tritium. Published by Elsevier B.V. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Walters, RT (reprint author), Savannah River Natl Lab, 773-A, Aiken, SC 29808 USA. EM tom.walters@srnl.doc.gov NR 13 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 22 PY 2008 VL 464 IS 1-2 BP L10 EP L12 DI 10.1016/j.jallcom.2007.10.008 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 355NJ UT WOS:000259715300003 ER PT J AU Li, X Liu, SS Chen, WW Wang, LS AF Li, Xi Liu, Sherry S. Chen, Wenwu Wang, Lai-Sheng TI The electronic structure of MoC and WC by anion photoelectron spectroscopy (vol 111, art no 2464, 1999) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Li, Xi] Washington State Univ, Dept Phys, Richland, WA 99352 USA. Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Li, X (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99352 USA. EM ls.wang@pnl.gov NR 2 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2008 VL 129 IS 11 AR 119902 DI 10.1063/1.2976332 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 357YT UT WOS:000259883900050 ER PT J AU Beauchemin, CAA McSharry, JJ Drusano, GL Nguyen, JT Went, GT Ribeiro, RM Perelson, AS AF Beauchemin, Catherine A. A. McSharry, James J. Drusano, George L. Nguyen, Jack T. Went, Gregory T. Ribeiro, Ruy M. Perelson, Alan S. TI Modeling amantadine treatment of influenza A virus in vitro SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE drug; resistance; hollow-fiber; mathematical modeling; infectious diseases ID MATHEMATICAL-MODEL; PROTON CHANNEL; RESISTANCE; INFECTION; INHIBITORS; CULTURE; HUMANS; H1N1 AB We analyzed the dynamics of an influenza A/Albany/1/98 (H3N2) viral infection, using a set of mathematical models highlighting the differences between in vivo and in vitro infection. For example, we found that including virion loss due to cell entry was critical for the in vitro model but not for the in vivo model. Experiments were performed on influenza virus-infected MDCK cells in vitro inside a hollow-fiber (HF) system, which was used to continuously deliver the drug amantadine. The HF system captures the dynamics of an influenza infection, and is a controlled environment for producing experimental data which lend themselves well to mathematical modeling. The parameter estimates obtained from fitting our mathematical models to the HF experimental data are consistent with those obtained earlier for a primary infection in a human model. We found that influenza A/Albany/1/98 (H3N2) virions under normal experimental conditions at 37 degrees C rapidly lose infectivity with a half-life of similar to 6.6 +/- 0.2 h, and that the lifespan of productively infected MDCK cells is similar to 13 h. Finally, using our models we estimated that the maximum efficacy of amantadine in blocking viral infection is similar to 74%, and showed that this low maximum efficacy is likely due to the rapid development of drug resistance. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Beauchemin, Catherine A. A.] Ryerson Univ, Dept Phys, Toronto, ON M5B 2K3, Canada. [Beauchemin, Catherine A. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. [McSharry, James J.; Drusano, George L.] Ordway Res Inst, Albany, NY USA. [Nguyen, Jack T.; Went, Gregory T.] Adamas Pharmaceut, Emeryville, CA USA. RP Beauchemin, CAA (reprint author), Ryerson Univ, Dept Phys, 350 Victoria St, Toronto, ON M5B 2K3, Canada. EM cbeau@ryerson.ca RI Beauchemin, Catherine/G-4619-2011; OI Beauchemin, Catherine/0000-0003-0599-0069; Ribeiro, Ruy/0000-0002-3988-8241 FU US Department of Energy [DE-AC52-06NA25396]; LANL/LDRD Program (RMR, ASP); UNM/LANL; NSERC Discovery Grant; NIH R21-AI73607; Adamas Pharmaceuticals Inc FX The authors wish to thank Kristine Zager for technical assistance. Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06NA25396 and supported by the LANL/LDRD Program (RMR, ASP), a UNM/LANL joint Science and Technology Laboratory grant, an NSERC Discovery Grant, and NIH Grant R21-AI73607 (CAAB). In addition, support was provided by Adamas Pharmaceuticals Inc. to the Ordway Research Institute to perform the experiments. NR 23 TC 59 Z9 59 U1 1 U2 13 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD SEP 21 PY 2008 VL 254 IS 2 BP 439 EP 451 DI 10.1016/j.jtbi.2008.05.031 PG 13 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 349AK UT WOS:000259251000025 PM 18653201 ER PT J AU Lintott, CJ Schawinski, K Slosar, A Land, K Bamford, S Thomas, D Raddick, MJ Nichol, RC Szalay, A Andreescu, D Murray, P Vandenberg, J AF Lintott, Chris J. Schawinski, Kevin Slosar, Anze Land, Kate Bamford, Steven Thomas, Daniel Raddick, M. Jordan Nichol, Robert C. Szalay, Alex Andreescu, Dan Murray, Phil Vandenberg, Jan TI Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods : data analysis; galaxies : elliptical and lenticular, cD; galaxies : general; galaxies : spiral ID ARTIFICIAL NEURAL-NETWORKS; MAGNITUDE RELATION; CLUSTER GALAXIES; DATA RELEASE; CLASSIFICATION; EVOLUTION; SYSTEM; SAMPLE AB In order to understand the formation and subsequent evolution of galaxies one must first distinguish between the two main morphological classes of massive systems: spirals and early-type systems. This paper introduces a project, Galaxy Zoo, which provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This achievement was made possible by inviting the general public to visually inspect and classify these galaxies via the internet. The project has obtained more than 4 x 10(7) individual classifications made by similar to 10(5) participants. We discuss the motivation and strategy for this project, and detail how the classifications were performed and processed. We find that Galaxy Zoo results are consistent with those for subsets of SDSS galaxies classified by professional astronomers, thus demonstrating that our data provide a robust morphological catalogue. Obtaining morphologies by direct visual inspection avoids introducing biases associated with proxies for morphology such as colour, concentration or structural parameters. In addition, this catalogue can be used to directly compare SDSS morphologies with older data sets. The colour-magnitude diagrams for each morphological class are shown, and we illustrate how these distributions differ from those inferred using colour alone as a proxy for morphology. C1 [Lintott, Chris J.; Schawinski, Kevin; Slosar, Anze; Land, Kate] Oxford Astrophys, Oxford OX1 3RH, England. [Slosar, Anze] Lawrence Berkeley Natl Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Dept Phys, Berkeley, CA 94720 USA. [Bamford, Steven; Thomas, Daniel; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Raddick, M. Jordan; Szalay, Alex; Vandenberg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Andreescu, Dan] LinkLab, Bronx, NY 10471 USA. [Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, County Down, Ireland. RP Lintott, CJ (reprint author), Oxford Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM cjl@astro.ox.ac.uk; kevins@astro.ox.ac.uk RI Bamford, Steven/E-8702-2010; OI Bamford, Steven/0000-0001-7821-7195; Schawinski, Kevin/0000-0001-5464-0888 FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. NR 39 TC 401 Z9 402 U1 1 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2008 VL 389 IS 3 BP 1179 EP 1189 DI 10.1111/j.1365-2966.2008.13689.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 346RS UT WOS:000259087500014 ER PT J AU Maschietto, F Hatch, NA Venemans, BP Rottgering, HJA Miley, GK Overzier, RA Dopita, MA Eisenhardt, PR Kurk, JD Meurer, GR Pentericci, L Rosati, P Stanford, SA van Breugel, W Zirm, AW AF Maschietto, F. Hatch, N. A. Venemans, B. P. Roettgering, H. J. A. Miley, G. K. Overzier, R. A. Dopita, M. A. Eisenhardt, P. R. Kurk, J. D. Meurer, G. R. Pentericci, L. Rosati, P. Stanford, S. A. van Breugel, W. Zirm, A. W. TI [O III] emitters in the field of the MRC 0316-257 protocluster SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : active; galaxies : clusters : general; galaxies : evolution; cosmology : observations; early Universe ID LYMAN-BREAK GALAXIES; LARGE-SCALE STRUCTURE; STAR-FORMING GALAXIES; LY-ALPHA EMITTERS; REST-FRAME ULTRAVIOLET; RADIO GALAXY; HIGH-REDSHIFT; INFRARED OBSERVATIONS; FORMATION HISTORY; SPIDERWEB GALAXY AB Venemans et al. found evidence for an overdensity of Ly alpha emission-line galaxies associated with the radio galaxy MRC 0316-257 at z = 3.13 indicating the presence of a massive protocluster. Here, we present the results of a search for additional star-forming galaxies and active galactic nucleus (AGN) within the protocluster. Narrow-band infrared imaging was used to select candidate [O III] emitters in a 1.1 x 1.1 Mpc(2) region around the radio galaxy. 13 candidates have been detected. Four of these are among the previously confirmed sample of Ly alpha galaxies, and an additional three have been confirmed through follow-up infrared spectroscopy. The three newly confirmed objects lie within a few hundred km s(-1) of each other, but are blueshifted with respect to the radio galaxy and Ly alpha emitters by similar to 2100 km s(-1). Although the sample is currently small, our results indicate that the radio-selected protocluster is forming at the centre of a larger, similar to 60 comoving Mpc superstructure. On the basis of a Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) imaging study we calculate dust-corrected star formation rates and investigate morphologies and sizes of the [O III] candidate emitters. From a comparison of the star formation rate derived from UV continuum and [O III] emission, we conclude that at least two of the [O III] galaxies harbour an AGN which ionized the O(+) gas. C1 [Maschietto, F.; Hatch, N. A.; Roettgering, H. J. A.; Miley, G. K.; Zirm, A. W.] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands. [Venemans, B. P.] Inst Astron, Cambridge CB3 OAH, England. [Overzier, R. A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Eisenhardt, P. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kurk, J. D.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Meurer, G. R.; Zirm, A. W.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pentericci, L.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Rosati, P.] European So Observ, D-85748 Garching, Germany. [Stanford, S. A.] Univ Calif Davis, Davis, CA 95616 USA. [Stanford, S. A.; van Breugel, W.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [van Breugel, W.] Univ Calif, Merced, CA 95344 USA. RP Maschietto, F (reprint author), Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM maschietto@strw.leidenuniv.nl RI Dopita, Michael/P-5413-2014; OI Dopita, Michael/0000-0003-0922-4986; Hatch, Nina/0000-0001-5600-0534 FU Royal Netherlands Academy of Arts and Sciences FX This research is based on observations made with the VLT at ESO, Paranal, with program numbers 077.A-0310(A, B) and 078. A-0002( A, B), and on observations made with the NASA/ESA HST, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. NAH and GKM acknowledge funding from the Royal Netherlands Academy of Arts and Sciences. NR 63 TC 13 Z9 13 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2008 VL 389 IS 3 BP 1223 EP 1232 DI 10.1111/j.1365-2966.2008.13571.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 346RS UT WOS:000259087500018 ER PT J AU Ratcliff, BN AF Ratcliff, Blair N. TI Advantages and limitations of the RICH technique for particle identification SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 6th International Workshop on Ring Image Cherenkov Counters (RICH 2007) CY OCT 15-20, 2007 CL Trieste, ITALY ID IMAGING CHERENKOV COUNTERS AB The ring imaging Cherenkov (RICH) technique for hadronic particle identification (PID) is described. The advantages and limitations of RICH PID counters are compared with those of other classic PID techniques, such as threshold Cherenkov counters, ionization loss (dE/dx) in tracking devices, and time of flight (TOF) detectors. (C) 2008 Elsevier B.V. All rights reserved. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Ratcliff, BN (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM blair@slac.stanford.edu NR 8 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2008 VL 595 IS 1 BP 1 EP 7 DI 10.1016/j.nima.2008.07.087 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 368UA UT WOS:000260646800002 ER PT J AU Cisbani, E Colilli, S Cusanno, F Fratoni, R Frullani, S Garibaldi, F Giuliani, F Gricia, M Lucentini, M Santavenere, F Urciuoli, GM Iodice, M Argentieri, A De Cataldo, G De Leo, R Lagamba, L Marrone, S Nappi, E Carnsonne, A Kross, B Michaels, R Reitz, B Segal, J Wojtsekhowski, B Zorn, C Monno, E Breuer, H AF Cisbani, E. Colilli, S. Cusanno, F. Fratoni, R. Frullani, S. Garibaldi, F. Giuliani, F. Gricia, M. Lucentini, M. Santavenere, F. Urciuoli, G. M. Iodice, M. Argentieri, A. De Cataldo, G. De Leo, R. Lagamba, L. Marrone, S. Nappi, E. Carnsonne, A. Kross, B. Michaels, R. Reitz, B. Segal, J. Wojtsekhowski, B. Zorn, C. Monno, E. Breuer, H. TI Upgrade of the proximity focusing RICH at JLab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 6th International Workshop on Ring Image Cherenkov Counters (RICH 2007) CY OCT 15-20, 2007 CL Trieste, ITALY DE Gas-filled counters; Cherenkov detector; Neutron spin structure ID JEFFERSON-LAB AB The Hall A RICH at Jefferson Lab is undergoing an upgrade to adapt to the higher momentum kinematics of the neutron spin structure Transversity experiments planned to run in 2008. The JLab RICH is a proximity focusing detector using liquid C6F14 as Cherenkov radiator, a thin layer of CsI as photon converter, evaporated on segmented pad panels of a proportional chamber. The original RICH had a superior hadron identification up to 2 GeV/c with pion/kaon rejection at the level of 1:1000 at similar to 90% intrinsic efficiency. The upgrade will extend this performance above 2.4 GeV/c by means of a larger photon detector (a multiwire-multipad proportional chamber) and a longer proximity gap which will improve the photon detection geometrical efficiency and the angular resolution, respectively. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Urciuoli, G. M.] Ist Super Sanita, I-00161 Rome, Italy. [Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Urciuoli, G. M.] INFN Roma, I-00161 Rome, Italy. [Iodice, M.] INFN Roma Tre, I-00146 Rome, Italy. [Argentieri, A.; De Cataldo, G.; De Leo, R.; Lagamba, L.; Marrone, S.; Nappi, E.] Univ Bari, I-70126 Bari, Italy. [Argentieri, A.; De Cataldo, G.; De Leo, R.; Lagamba, L.; Marrone, S.; Nappi, E.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Carnsonne, A.; Kross, B.; Michaels, R.; Reitz, B.; Segal, J.; Wojtsekhowski, B.; Zorn, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Monno, E.] Ctr Ric Faenza, ENEA, I-48018 Faenza, Italy. [Breuer, H.] Univ Maryland, College Pk, MD 20742 USA. RP Cisbani, E (reprint author), Ist Super Sanita, Viale Regina Elena 299, I-00161 Rome, Italy. EM evaristo.cisbani@iss.infn.it RI Cisbani, Evaristo/C-9249-2011; OI Cisbani, Evaristo/0000-0002-6774-8473; Lagamba, Luigi/0000-0002-0233-9812 NR 7 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2008 VL 595 IS 1 BP 44 EP 46 DI 10.1016/j.nima.2008.07.091 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 368UA UT WOS:000260646800011 ER PT J AU Benitez, J Leith, DWGS Mazaheri, G Ratcliff, BN Schwiening, J Va'vra, J Ruckman, LL Varner, GS AF Benitez, J. Leith, D. W. G. S. Mazaheri, G. Ratcliff, B. N. Schwiening, J. Va'vra, J. Ruckman, Larry L. Varner, Gary S. TI Status of the Fast Focusing DIRC (fDIRC) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 6th International Workshop on Ring Image Cherenkov Counters (RICH 2007) CY OCT 15-20, 2007 CL Trieste, ITALY DE Photodetectors; Cherenkov detectors; RICH; B factory; Super flavor factory ID PHOTON DETECTORS AB We have built and successfully tested a novel particle identification detector concept, the Fast Focusing DIRC (fDIRC). The prototype's concept is based on the BaBar DIRC with several important improvements: (a) much faster pixelated photon detectors based on Burle MCP-PMTs and Hamamatsu MaPMTs, (b) a focusing mirror allowing a smaller photon detector, reducing the sensitivity to backgrounds in future applications, (c) electronics capable of measuring the single photon resolution to better than sigma approximate to 100-200 ps. The fDIRC is the first RICH detector to successfully correct the chromatic error by timing. (C) 2008 Elsevier B.V. All rights reserved. C1 [Benitez, J.; Leith, D. W. G. S.; Mazaheri, G.; Ratcliff, B. N.; Schwiening, J.; Va'vra, J.] Stanford Univ, SLAC, Stanford, CA 94309 USA. [Ruckman, Larry L.; Varner, Gary S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. RP Schwiening, J (reprint author), Stanford Univ, SLAC, Stanford, CA 94309 USA. EM jochen.schwiening@slac.stanford.edu NR 8 TC 28 Z9 28 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2008 VL 595 IS 1 BP 104 EP 107 DI 10.1016/j.nima.2008.07.042 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 368UA UT WOS:000260646800027 ER PT J AU Va'vra, J Ertley, C Leith, DWGS Ratcliff, B Schwiening, J AF Va'vra, J. Ertley, C. Leith, D. W. G. S. Ratcliff, B. Schwiening, J. TI A high-resolution TOF detector-A possible way to compete with a RICH detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 6th International Workshop on Ring Image Cherenkov Counters (RICH 2007) CY OCT 15-20, 2007 CL Trieste, ITALY DE Photodetectors; Cherenkov detectors; RICH; TOF ID SINGLE PHOTONS; MCP-PMT AB Using two identical 64-pixel Burle/Photonis MCP-PMTs (micro-channel plate PMT) to provide start and stop signals, we have achieved a timing resolution of sigma(Single_detector)similar to 7.2 ps for N-pe similar to 100 photoelectrons (N-pe) with a laser diode providing a 1 mm spot on the MCP window. The limiting resolution achieved was sigma(Single_detector)similar to 5.0 ps for N-pe similar to 250, for which we estimate the MCP-PMT contribution of sigma(MCP-PMT)similar to 4.5 ps. The electronics contribution is estimated as sigma(Electronics) = 3.42 ps. These results suggest that an ultra-high-resolution TOF detector may become a reality at future experiments one day. (C) 2008 Published by Elsevier B.V. C1 [Va'vra, J.; Leith, D. W. G. S.; Ratcliff, B.; Schwiening, J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Ertley, C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Va'vra, J (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, POB 4349, Stanford, CA 94309 USA. EM jjv@slac.stanford.edu NR 6 TC 25 Z9 25 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2008 VL 595 IS 1 BP 270 EP 273 DI 10.1016/j.nima.2008.07.021 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 368UA UT WOS:000260646800067 ER PT J AU Margaryan, A Hashimoto, O Majewski, S Tang, L AF Margaryan, A. Hashimoto, O. Majewski, S. Tang, L. TI RF Cherenkov picosecond timing technique for high energy physics applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 6th International Workshop on Ring Image Cherenkov Counters (RICH 2007) CY OCT 15-20, 2007 CL Trieste, ITALY DE Photodetectors; Cherenkov detectors; Particle identification ID DETECTOR AB The Cherenkov time-of-propagation (TOP) detector and Cherenkov time-of-flight (TOF) detector in a "head-on" geometry based on the recently proposed time measuring technique with radio frequency (RF) phototube are considered. Results of the Monte Carlo simulations are presented. (C) 2008 Elsevier B.V. All rights reserved. C1 [Margaryan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Hashimoto, O.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Majewski, S.; Tang, L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Margaryan, A (reprint author), Yerevan Phys Inst, 2 Alikhanian Bros St, Yerevan 375036, Armenia. EM mat@mail.yerphi.am NR 9 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2008 VL 595 IS 1 BP 274 EP 277 DI 10.1016/j.nima.2008.07.065 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 368UA UT WOS:000260646800068 ER PT J AU Ricotti, M Gnedin, NY Shull, JM AF Ricotti, Massimo Gnedin, Nickolay Y. Shull, J. Michael TI The fate of the first galaxies. III. Properties of primordial dwarf galaxies and their impact on the intergalactic medium SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies : dwarf; galaxies : formation; intergalactic medium; methods : numerical ID MILKY-WAY SATELLITE; EARLY METAL ENRICHMENT; NEUTRAL ATOMIC PHASES; LOCAL GROUP; SPHEROIDAL GALAXIES; DARK-MATTER; BLACK-HOLES; RADIATIVE FEEDBACK; HIGH-REDSHIFT; INTERSTELLAR-MEDIUM AB In two previous papers, we presented simulations of the first galaxies in a representative volume of the universe. The simulations are unique because we model feedback-regulated galaxy formation, using time-dependent, spatially inhomogeneous radiative transfer coupled to hydrodynamics. Here we study the properties of simulated primordial dwarf galaxies with masses less than or similar to 2 x 10(8) M(circle dot) and investigate their impact on the intergalactic medium. While many primordial galaxies are dark, about 100-500 per comoving Mpc(3) are luminous but relatively faint. They form preferentially in chain structures and have low surface brightness stellar spheroids extending to 20% of the virial radius. Their interstellar medium has mean density n(H) approximate to 10-100 cm(-3), metallicity Z similar to 0.01-0.1 Z(circle dot), and can sustain a multiphase structure. With large scatter, the mean efficiency of star formation scales with halo mass, < f*> proportional to M(DM)(2), independent of redshift. Because of feedback, halos smaller than a critical mass, M(crit)(z), are devoid of most of their baryons. More interestingly, we find that dark halos have always a smaller M(crit)(z) than luminous ones. Metal enrichment of the intergalactic medium is inhomogeneous, with only a 1%-10% volume filling factor of enriched gas with [Z/H] > -3.0 and 10%-50% with [Z/H] > -5.0. At z approximate to 10, the fraction of stars with metallicity Z < 10(-3) Z(circle dot) is 10(-6) of the total stellar mass. However, this study focuses on the effects of radiative feedback.mechanical feedback from SN explosions is only included in two of the seven simulations we have analyzed. Although detections of high-redshift dwarf galaxies with the James Webb Space Telescope will be a challenge, studies of their fossil records in the local universe are promising because of their large spatial density. C1 [Ricotti, Massimo] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Shull, J. Michael] Univ Colorado, Dept Astrophys & Planetary Sci, CASA, Boulder, CO 80309 USA. RP Ricotti, M (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM ricotti@astro.umd.edu; gnedin@fnal.gov; mshull@casa.colorado.edu FU NASA [NNX07AG77G, NNX07AH10G]; NSF [AST 07-07474, AST 07-08309] FX This work was supported by the Theoretical Astrophysics program at the University of Colorado (NASA grant NNX07AG77G and NSF grant AST 07-07474) and at the University of Maryland (NASA grant NNX07AH10G and NSF grant AST 07-08309). NR 89 TC 58 Z9 58 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2008 VL 685 IS 1 BP 21 EP 39 DI 10.1086/590901 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 349WO UT WOS:000259314200003 ER PT J AU Belczynski, K Taam, RE AF Belczynski, Krzysztof Taam, Ronald E. TI The most massive progenitors of neutron stars: CXO J164710.2-455216 SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries : close; stars : evolution; stars : neutron ID BLACK-HOLE FORMATION; ASYMPTOTIC GIANT BRANCH; CLUSTER WESTERLUND-1; POPULATION SYNTHESIS; STELLAR PARAMETERS; BINARY EVOLUTION; INITIAL MASS; PULSAR; RATES; INTERMEDIATE AB The evolution leading to the formation of a neutron star in the very young Westerlund 1 star cluster is investigated. The turnoff mass has been estimated to be similar to 35 M-circle dot, indicating a cluster age similar to 3-5 Myr. The brightest X-ray source in the cluster, CXO J164710.2-455216, is a slowly spinning (10 s) single neutron star and potentially a magnetar. Since this source was argued to be a member of the cluster, the neutron star progenitor must have been very massive (M-ZAMS >= 40 M-circle dot), as noted by Muno et al. Since such massive stars are generally believed to form black holes (rather than neutron stars), the existence of this object poses a challenge for understanding massive star evolution. We point out that, while single-star progenitors below M-ZAMS <= 20 M-circle dot form neutron stars, binary evolution completely changes the progenitor mass range. In particular, we demonstrate that mass loss in Roche lobe overflow enables stars as massive as 50-80 M-circle dot, under favorable conditions, to form neutron stars. If the very high observed binary fraction of massive stars in Westerlund 1 (greater than or similar to 70%) is considered, it is natural that CXO J164710.2-455216 was formed in a binary which was disrupted in a supernova explosion, such that it is now found as a single neutron star. Hence, the existence of a neutron star in a given stellar population does not necessarily place stringent constraints on progenitor mass when binary interactions are considered. It is concluded that the existence of a neutron star in the Westerlund 1 cluster is fully consistent with the generally accepted framework of stellar evolution. C1 [Belczynski, Krzysztof] Los Alamos Natl Lab, CCS2 ISRI Grp, Los Alamos, NM 87545 USA. [Belczynski, Krzysztof] New Mexico State Univ, Dept Astron, Las Cruces, NM USA. [Taam, Ronald E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Taam, Ronald E.] Natl Tsing Hua Univ, ASIAA, TIARA, Hsinchu, Taiwan. RP Belczynski, K (reprint author), Los Alamos Natl Lab, CCS2 ISRI Grp, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM kbelczyn@nmsu.edu; r-taam@northwestern.edu FU NSF [AST 07-03950]; Academia Sinica; National Science Council Excellence Projects program in Taiwan [NSC 96-2752-M-007-007-PAE] FX We would like to thank K. Stepien and N. Langer for useful comments on this study, and the anonymous referee for the careful reading of the manuscript. K. B. thanks the Academia Sinica Institute of Astronomy and Astrophysics in Taipei for hospitality. We acknowledge partial support through NSF grant AST 07-03950 (R. T.), and by the Theoretical Institute for Advanced Research in Astrophysics (TIARA), operated under Academia Sinica and the National Science Council Excellence Projects program in Taiwan, administered through grant number NSC 96-2752-M-007-007-PAE. NR 48 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2008 VL 685 IS 1 BP 400 EP 405 DI 10.1086/590551 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 349WO UT WOS:000259314200034 ER PT J AU Escala, A Larson, RB AF Escala, Andres Larson, Richard B. TI STABILITY OF GALACTIC GAS DISKS AND THE FORMATION OF MASSIVE CLUSTERS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: formation; galaxies: star clusters; instabilities; ISM: evolution ID GLOBULAR-CLUSTERS; MOLECULAR CLOUDS; GALAXY FORMATION; STAR-FORMATION; GROWTH AB We study gravitational instabilities in disks, with special attention to the most massive clumps that form because they are expected to be the progenitors of globular-type clusters. The maximum unstable mass is set by rotation and depends only on the surface density and orbital frequency of the disk. We propose that the formation of massive clusters is related to this largest scale in galaxies not stabilized by rotation. Using data from the literature, we predict that globular-like clusters can form in nuclear starburst disks and protogalactic disks but not in typical spiral galaxies, in agreement with observations. C1 [Escala, Andres] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, SLAC, Menlo Pk, CA 94025 USA. [Larson, Richard B.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. RP Escala, A (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, SLAC, 2575 Sand Hill Rd,MS 29, Menlo Pk, CA 94025 USA. RI Escala, Andres /J-6618-2016 NR 26 TC 36 Z9 36 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2008 VL 685 IS 1 BP L31 EP L34 DI 10.1086/592271 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 398KK UT WOS:000262730800008 ER PT J AU Bhojwani, D Kang, H Menezes, RX Yang, W Sather, H Moskowitz, NP Min, DJ Potter, JW Harvey, R Hunger, SP Seibel, N Raetz, EA Pieters, R Horstmann, MA Relling, MV den Boer, ML Willman, CL Carroll, WL AF Bhojwani, Deepa Kang, Huining Menezes, Renee X. Yang, Wenjian Sather, Harland Moskowitz, Naomi P. Min, Dong-Joon Potter, Jeffrey W. Harvey, Richard Hunger, Stephen P. Seibel, Nita Raetz, Elizabeth A. Pieters, Rob Horstmann, Martin A. Relling, Mary V. den Boer, Monique L. Willman, Cheryl L. Carroll, William L. TI Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children's oncology group study on behalf of the Dutch Childhood Oncology Group and the German Cooperative Study Group for childhood acute lymphoblastic leukemia SO JOURNAL OF CLINICAL ONCOLOGY LA English DT Article ID MINIMAL RESIDUAL DISEASE; CLASSIFICATION; CANCER; DISCOVERY; THERAPY; TOOL AB Purpose To identify children with acute lymphoblastic leukemia (ALL) at initial diagnosis who are at risk for inferior response to therapy by using molecular signatures. Patients and Methods Gene expression profiles were generated from bone marrow blasts at initial diagnosis from a cohort of 99 children with National Cancer Institute-defined high-risk ALL who were treated uniformly on the Children's Oncology Group (COG) 1961 study. For prediction of early response, genes that correlated to marrow status on day 7 were identified on a training set and were validated on a test set. An additional signature was correlated with long-term outcome, and the predictive models were validated on three large, independent patient cohorts. Results We identified a 24-probe set signature that was highly predictive of day 7 marrow status on the test set (P = .0061). Pathways were identified that may play a role in early blast regression. We have also identified a 47-probe set signature (which represents 41 unique genes) that was predictive of long-term outcome in our data set as well as three large independent data sets of patients with childhood ALL who were treated on different protocols. However, we did not find sufficient evidence for the added significance of these genes and the derived predictive models when other known prognostic features, such as age, WBC, and karyotype, were included in a multivariate analysis. Conclusion Genes and pathways that play a role in early blast regression may identify patients who may be at risk for inferior responses to treatment. A fully validated predictive gene expression signature was defined for high-risk ALL that provided insight into the biologic mechanisms of treatment failure. C1 [Carroll, William L.] NYU, Ctr Canc, Div Pediat Hematol Oncol, Sch Med, New York, NY 10016 USA. Mt Sinai Sch Med, Dept Pediat, New York, NY USA. Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Sophia Childrens Univ Hosp, Erasmus Med Ctr, Dept Paediat Oncol Haematol, Rotterdam, Netherlands. Leiden Univ, Dept Human Genet, Med Ctr, NL-2300 RA Leiden, Netherlands. Univ Tennessee, Dept Pharmaceut Sci, Coll Med, Memphis, TN USA. Univ Tennessee, Dept Pharmaceut Sci, Coll Pharm, Memphis, TN USA. Univ So Calif, Arcadia, CA USA. Childrens Oncol Grp, Arcadia, CA USA. Univ Florida, Coll Med, Dept Pediat, Gainesville, FL USA. Univ Florida, Shands Canc Ctr, Gainesville, FL USA. George Washington Univ, Sch Med & Publ Hlth, Childrens Natl Med Ctr, Dept Hematol & Oncol, Washington, DC USA. Univ Med Ctr, Res Inst, Hamburg, Germany. Univ Med Ctr, Clin Pediat Oncol, Hamburg, Germany. RP Carroll, WL (reprint author), NYU, Ctr Canc, Div Pediat Hematol Oncol, Sch Med, 550 1St Ave, New York, NY 10016 USA. EM William.carroll@nyumc.org OI Bhojwani, Deepa/0000-0002-7559-7927 FU National Cancer Institute [U01 CA114762,, CA21765, CA51001]; Director's Challenge [U01 CA88361]; Penelope London Foundation; Friedman Fund for Childhood Leukemia; Walter Family Pediatric Leukemia Fund; Garrett B. Smith Foundation; Pediatric Cancer Foundation; Dutch Cancer Society and the Pediatric Oncology Foundation of Rotterdam; Center of Medical Systems Biology, established by the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research; National Institutes of Health National Institute of General Medical Sciences Pharmacogenetics Research Network and Database [U01 GM61393, U01 GM61374]; American-Lebanese-Syrian Associated Charities FX Supported by Grants No. U01 CA114762, CA21765 (W.Y. and M. V. R.), and CA51001 (W.Y. and M.V.R.) from the National Cancer Institute; Director's Challenge Grant No. U01 CA88361 (C.L.W., W.L.C.); by the Penelope London Foundation; the Friedman Fund for Childhood Leukemia; the Walter Family Pediatric Leukemia Fund; the Garrett B. Smith Foundation (N.P.M.); the Pediatric Cancer Foundation; the Dutch Cancer Society and the Pediatric Oncology Foundation of Rotterdam (M. L.D., R.X.M., and R.P.); the Center of Medical Systems Biology, established by the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (R.X.M.); Grants No. U01 GM61393 and U01 GM61374 from the National Institutes of Health National Institute of General Medical Sciences Pharmacogenetics Research Network and Database (W.Y. and M.V.R.); and the American-Lebanese-Syrian Associated Charities (W.Y. and M.V.R.). NR 26 TC 57 Z9 59 U1 0 U2 0 PU AMER SOC CLINICAL ONCOLOGY PI ALEXANDRIA PA 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA SN 0732-183X J9 J CLIN ONCOL JI J. Clin. Oncol. PD SEP 20 PY 2008 VL 26 IS 27 BP 4376 EP 4384 DI 10.1200/JCO.2007.14.4519 PG 9 WC Oncology SC Oncology GA 350KG UT WOS:000259350700006 PM 18802149 ER PT J AU Meyer, F Paarmann, D D'Souza, M Olson, R Glass, EM Kubal, M Paczian, T Rodriguez, A Stevens, R Wilke, A Wilkening, J Edwards, RA AF Meyer, F. Paarmann, D. D'Souza, M. Olson, R. Glass, E. M. Kubal, M. Paczian, T. Rodriguez, A. Stevens, R. Wilke, A. Wilkening, J. Edwards, R. A. TI The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes SO BMC BIOINFORMATICS LA English DT Article ID SUBUNIT RIBOSOMAL-RNA; DATABASE; CLASSIFICATION; ENVIRONMENT; COMMUNITIES AB Background: Random community genomes (metagenomes) are now commonly used to study microbes in different environments. Over the past few years, the major challenge associated with metagenomics shifted from generating to analyzing sequences. High-throughput, low-cost next-generation sequencing has provided access to metagenomics to a wide range of researchers. Results: A high-throughput pipeline has been constructed to provide high-performance computing to all researchers interested in using metagenomics. The pipeline produces automated functional assignments of sequences in the metagenome by comparing both protein and nucleotide databases. Phylogenetic and functional summaries of the metagenomes are generated, and tools for comparative metagenomics are incorporated into the standard views. User access is controlled to ensure data privacy, but the collaborative environment underpinning the service provides a framework for sharing datasets between multiple users. In the metagenomics RAST, all users retain full control of their data, and everything is available for download in a variety of formats. Conclusion: The open-source metagenomics RAST service provides a new paradigm for the annotation and analysis of metagenomes. With built-in support for multiple data sources and a back end that houses abstract data types, the metagenomics RAST is stable, extensible, and freely available to all researchers. This service has removed one of the primary bottlenecks in metagenome sequence analysis-the availability of high-performance computing for annotating the data. C1 [Meyer, F.; Olson, R.; Glass, E. M.; Paczian, T.; Stevens, R.; Wilkening, J.; Edwards, R. A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Meyer, F.; Paarmann, D.; D'Souza, M.; Kubal, M.; Rodriguez, A.; Stevens, R.; Wilke, A.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Edwards, R. A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. RP Meyer, F (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM folker@mcs.anl.gov; paarmann@mcs.anl.gov; dsouza@mcs.anl.gov; olson@mcs.anl.gov; marland@mcs.anl.gov; mkubal@mcs.anl.gov; paczian@mcs.anl.gov; arodri7@mcs.anl.gov; stevens@anl.gov; wilke@mcs.anl.gov; jared@mcs.anl.gov; redwards@mcs.anl.gov OI Meyer, Folker/0000-0003-1112-2284 FU National Institute of Allergy and Infectious Diseases; National Institutes of Health; Department of Health and Human Services [HHSN266200400042C]; U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Part of this project has been funded with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN266200400042C. Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. We thank Forest Rohwer and all members of his group for helpful advice while developing the pipeline. We thank Veronika Vonstein and Ross Over-beek and the members of their group for advice and comments in using subsystem technology. The submitted manuscript has been created by UChicago Argonne, LLC, operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 27 TC 1229 Z9 1264 U1 39 U2 277 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD SEP 19 PY 2008 VL 9 AR 386 DI 10.1186/1471-2105-9-386 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 360TD UT WOS:000260079800001 PM 18803844 ER PT J AU Bowman, GR Comolli, LR Zhu, J Eckart, M Koenig, M Downing, KH Moerner, WE Earnest, T Shapiro, L AF Bowman, Grant R. Comolli, Luis R. Zhu, Jian Eckart, Michael Koenig, Marcelle Downing, Kenneth H. Moerner, W. E. Earnest, Thomas Shapiro, Lucy TI A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole SO CELL LA English DT Article ID BACILLUS-SUBTILIS; CAULOBACTER-CRESCENTUS; ACTIN HOMOLOG; SEGREGATION; CYCLE; MREB; MORPHOGENESIS; LOCALIZATION; DIVISION; POLARITY AB Bacterial replication origins move towards opposite ends of the cell during DNA segregation. We have identified a proline-rich polar protein, PopZ, required to anchor the separated Caulobacter crescentus chromosome origins at the cell poles, a function that is essential for maintaining chromosome organization and normal cell division. PopZ interacts directly with the ParB protein bound to specific DNA sequences near the replication origin. As the origin/ParB complex is being replicated and moved across the cell, PopZ accumulates at the cell pole and tethers the origin in place upon arrival. The polar accumulation of PopZ occurs by a diffusion/capture mechanism that requires the MreB cytoskeleton. High molecular weight oligomers of PopZ assemble in vitro into a filamentous network with trimer junctions, suggesting that the PopZ network and ParB-bound DNA interact in an adhesive complex, fixing the chromosome origin at the cell pole. C1 [Bowman, Grant R.; Shapiro, Lucy] Stanford Univ, Dept Dev Biol, Sch Med, Beckman Ctr, Stanford, CA 94305 USA. [Comolli, Luis R.; Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Zhu, Jian; Earnest, Thomas] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Eckart, Michael] Stanford Univ, Stanford Prot & Nucle Acid Facil, Sch Med, Beckman Ctr, Stanford, CA 94305 USA. [Koenig, Marcelle; Moerner, W. E.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. RP Shapiro, L (reprint author), Stanford Univ, Dept Dev Biol, Sch Med, Beckman Ctr, Stanford, CA 94305 USA. EM shapiro@stanford.edu RI Moerner, William/C-3260-2008 OI Moerner, William/0000-0002-2830-209X FU National Institutes of Health [GM32506, GM051426, 5R24GM73011-3, F32GM080008, 5 P20 HG003638-02]; Department of Energy [DE-AC02-05CH11231, DE-FG02-01ER63219] FX We are grateful to Balaji Srinivasan and Esteban Toro for developing bioinformatics tools. We thank Martin Thanbichler for purified ParB. Mike Fero designed software used for fluorescence microscopy, Bob Glaeser and Byong-Gyoon Han provided advice on EM sample preparation, Greg Hura assisted in SAXS analysis, and James Gober and Christine Jacobs-Wagner provided antibodies and strains. This work is supported by National Institutes of Health grants GM32506, GM051426, and 5R24GM73011-3 to L. S., F32GM080008 to G. B., and 5 P20 HG003638-02 to M. K. and W. E. M.; and Department of Energy grants DE-AC02-05CH11231 to L. R. C., J.X., and T. E., and DE-FG02-01ER63219 to L. S. NR 34 TC 146 Z9 146 U1 1 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD SEP 19 PY 2008 VL 134 IS 6 BP 945 EP 955 DI 10.1016/j.cell.2008.07.015 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 349YB UT WOS:000259318100015 PM 18805088 ER PT J AU Duda, DM Borg, LA Scott, DC Hunt, HW Hammel, M Schulman, BA AF Duda, David M. Borg, Laura A. Scott, Daniel C. Hunt, Harold W. Hammel, Michal Schulman, Brenda A. TI Structural insights into NEDD8 activation of Cullin-RING ligases: Conformational control of conjugation SO CELL LA English DT Article ID UBIQUITIN-LIKE PROTEINS; E3 LIGASE; SACCHAROMYCES-CEREVISIAE; CUL5-RBX2 MODULES; GENOME-WIDE; IN-VIVO; COMPLEX; SCF; BINDING; DOMAIN AB Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8 similar to CuI5(ctd)-Rbx1 and SAXS analysis of NEDD8 similar to CuI1(ctd)-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination. C1 [Duda, David M.; Scott, Daniel C.; Schulman, Brenda A.] St Jude Childrens Res Hosp, Howard Hughes Med Inst, Memphis, TN 38105 USA. [Duda, David M.; Borg, Laura A.; Scott, Daniel C.; Hunt, Harold W.; Schulman, Brenda A.] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Duda, David M.; Borg, Laura A.; Scott, Daniel C.; Hunt, Harold W.; Schulman, Brenda A.] St Jude Childrens Res Hosp, Dept Genet Tumor Cell Biol, Memphis, TN 38105 USA. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Schulman, BA (reprint author), St Jude Childrens Res Hosp, Howard Hughes Med Inst, Memphis, TN 38105 USA. EM brenda.schulman@stjude.org FU U.S. DOE [DE-AC02-05CH11231]; NSLS [DE-AC02-98CH10886]; American Lebanese Syrian Associated Charities of St. Jude,; NIH [P30CA021765, R01GM069530]; Howard Hughes Medical Institute; Beckman Young Investigator Award; Pew Scholar Award; Phillip and Elizabeth Gross Foundation; DOD [DAMD17-03-0420]; American Cancer Society FX We are grateful to D. King and S. Zhou for mass spectrometry/Edman sequencing, J. Endicott for cdk2 plasmid, C. Ross and Staff at ALS 8.2.1, ALS 12.3.1, and NSLS X25 beamlines, V. Pagala, P. Murray, R. Deshaies, Z.Q. Pan, J. W. Harper, M. Lee, B. Dye, D. Miller, S. Bozeman, and members of the Schulman lab for assistance, advice, and/or discussions. ALS is supported by U.S. DOE Contract No. DE-AC02-05CH11231, and NSLS by DE-AC02-98CH10886. This work was supported in part by American Lebanese Syrian Associated Charities of St. Jude, by NIH P30CA021765 to St. Jude, the Howard Hughes Medical Institute, a Beckman Young Investigator Award, a Pew Scholar Award, the Phillip and Elizabeth Gross Foundation, the NIH (R01GM069530), and DOD (DAMD17-03-0420) to B. A. S. and by an American Cancer Society fellowship to D.M.D. B.A.S. is an Investigator of the Howard Hughes Medical Institute. NR 62 TC 333 Z9 340 U1 7 U2 22 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD SEP 19 PY 2008 VL 134 IS 6 BP 995 EP 1006 DI 10.1016/j.cell.2008.07.022 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 349YB UT WOS:000259318100019 PM 18805092 ER PT J AU Sawaya, MR Wojtowicz, WM Andre, I Qian, B Wu, W Baker, D Eisenberg, D Zipursky, SL AF Sawaya, Michael R. Wojtowicz, Woj M. Andre, Ingemar Qian, Bin Wu, Wei Baker, David Eisenberg, David Zipursky, S. Lawrence TI A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms SO CELL LA English DT Article ID MOLECULAR DIVERSITY; PROTEIN STRUCTURES; CRYSTAL-STRUCTURE; AXON GUIDANCE; DROSOPHILA DSCAM; SELF-AVOIDANCE; RECOGNITION; REFINEMENT; SOFTWARE; ADHESION AB Drosophila Dscam encodes a vast family of immunoglobulin (Ig)-containing proteins that exhibit isoform-specific homophilic binding. This diversity is essential for cell recognition events required for wiring the brain. Each isoform binds to itself but rarely to other isoforms. Specificity is determined by "matching'' of three variable Ig domains within an similar to 220 kD ectodomain. Here, we present the structure of the homophilic binding region of Dscam, comprising the eight N-terminal Ig domains (Dscam(1-8)). Dscam(1-8) forms a symmetric homodimer of S-shaped molecules. This conformation, comprising two reverse turns, allows each pair of the three variable domains to "match'' in an antiparallel fashion. Structural, genetic, and biochemical studies demonstrate that, in addition to variable domain "matching,'' intramolecular interactions between constant domains promote homophilic binding. These studies provide insight into how "matching'' at all three pairs of variable domains in Dscam mediates isoform-specific recognition. C1 [Sawaya, Michael R.; Eisenberg, David] Univ Calif Los Angeles, DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Wojtowicz, Woj M.; Wu, Wei; Zipursky, S. Lawrence] Univ Calif Los Angeles, David Geffen Sch Med, Howard Hughes Med Inst, Dept Biol Chem, Los Angeles, CA 90095 USA. [Andre, Ingemar; Qian, Bin; Baker, David] Univ Washington, Howard Hughes Med Inst, Dept Biochem, Seattle, WA 98195 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu; lzipursky@mednet.ucla.edu RI Andre, Ingemar/O-4777-2014; Baker, David/K-8941-2012; OI Andre, Ingemar/0000-0002-4753-8233; Baker, David/0000-0001-7896-6217; Sawaya, Michael/0000-0003-0874-9043 FU Howard Hughes Medical Institute; NIGMS NIH HHS [GM07185, T32 GM007185] NR 26 TC 57 Z9 58 U1 1 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD SEP 19 PY 2008 VL 134 IS 6 BP 1007 EP 1018 DI 10.1016/j.cell.2008.07.042 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 349YB UT WOS:000259318100020 PM 18805093 ER PT J AU Agarwal, R Swaminathan, S AF Agarwal, Rakhi Swaminathan, Subramanyam TI SNAP-25 substrate peptide (residues 180-183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID LOW NANOMOLAR AFFINITY; AMINO-ACID-COMPOSITION; LIGHT-CHAIN; SEROTYPE-A; ANGSTROM RESOLUTION; STRUCTURAL-ANALYSIS; POTENT INHIBITORS; CRYSTAL-STRUCTURE; RECOGNITION; PROTEASE AB Clostridium botulinum neurotoxins are the most potent toxins to humans. The recognition and cleavage of SNAREs are prime evente in exhibiting their toxicity. We report here the crystal structure of the catalytically active full-length botulinum serotype E catalytic domain (BoNT E) in complex with SNAP-25 (a SNARE protein) substrate peptide Arg(180)-Ile(181)-Met(182)-Glu(183) (P1-P3'). It is remarkable that the peptide spanning the scissile bond binds to but bypasses cleavage by the enzyme and inhibits the catalysis fairly with K(i) similar to 69 mu M. The inhibitory peptide occupies the active site of BoNT E and shows well defined electron density. The catalytic zinc and the conserved key residue Tyr(350) of the enzyme facilitate the docking of Arg(180) (P1) by interacting with its carbonyl oxygen that displaces the nucleophilic water. The general base Glu(212) side chain interacts with the main chain amino group of P1 and P1'. Conserved Arg(347) of BoNT E stabilizes the proper docking of the Ile(181) (P1') main chain, whereas the hydrophobic pockets stabilize the side chains of Ile181 (P1') and Met(182) (P2'), and the 250 loop stabilizes Glu(183) (P3'). Structural and functional analysis revealed an important role for the P1' residue and S1' pocket in driving substrate recognition and docking at the active site. This study is the first of its kind and rationalizes the substrate cleavage strategy of BoNT E. Also, our complex structure opens up an excellent opportunity of structure-based drug design for this fast acting and extremely toxic high priority BoNT E. C1 [Agarwal, Rakhi; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU National Institutes of Health [1R56Al058175]; Department of Energy Prime [DEAC02-98CH10886]; [DAMD1702-2]; [DTRA BO742081] FX This work was supported, in whole or in part, by National Institutes of Health Grant 1R56Al058175. This work was also supported by Grants DAMD1702-2 and DTRA BO742081 under Department of Energy Prime Contract DEAC02-98CH10886 with the Brookhaven National Laboratory. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact. NR 38 TC 14 Z9 14 U1 1 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD SEP 19 PY 2008 VL 283 IS 38 BP 25944 EP 25951 DI 10.1074/jbc.M803756200 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 348GX UT WOS:000259200100022 PM 18658150 ER PT J AU Tan, KM Duquette, M Liu, JH Lawler, J Wang, JH AF Tan, Kemin Duquette, Mark Liu, Jin-huan Lawler, Jack Wang, Jia-huai TI The crystal structure of the heparin-binding reelin-N domain of F-spondin SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE ECM protein; F-spondin; reelin-N domain; heparin binding; axon guidance ID AMYLOID PRECURSOR PROTEIN; CELL-ADHESION; EXTRACELLULAR-MATRIX; FLOOR PLATE; RECOGNITION; SUPERFAMILY; MOLECULE; GUIDANCE; CD2; INTEGRINS AB The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin. The crystal structure of the reelin-N domain resolved to 2.0 angstrom reveals a variant immunoglobulin-like fold and potential heparin-binding sites. Substantial conformational variations even in secondary structure are observed between the two chemically identical reelin-N domains in one crystallographic asymmetric unit. The variations may result from extensive, highly specific interactions across the interface of the two reelin-N domains. The calculated values of buried surface area and the interface's shape complementarity are consistent with the formation of a weak dimer. The homophilic asymmetric dimer can potentially offer advantages in binding to ligands such as glycosaminoglycans, which may, in turn, bridge the two reelin-N domains and stabilize the dimer. Published by Elsevier Ltd. C1 [Tan, Kemin; Liu, Jin-huan; Wang, Jia-huai] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Tan, Kemin; Liu, Jin-huan] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA. [Tan, Kemin] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Tan, Kemin] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. [Duquette, Mark; Lawler, Jack] Beth Israel Deaconess Med Ctr, Dept Pathol, Div Canc Biol & Angiogenesis, Boston, MA 02215 USA. [Lawler, Jack] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA. [Wang, Jia-huai] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA. [Wang, Jia-huai] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. RP Tan, KM (reprint author), Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. EM ktan@anl.gov FU National Heart, Lung and Blood Institute of the National Institutes of Health [HL49081, HL68003] FX We thank Florence Poy for help in cDNA pool preparation and Qunyan Lu for help in protein purification. This work was supported by a grant (HL49081 and HL68003) from the National Heart, Lung and Blood Institute of the National Institutes of Health to J.-H.W. and J.L. NR 39 TC 8 Z9 10 U1 0 U2 0 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 19 PY 2008 VL 381 IS 5 BP 1213 EP 1223 DI 10.1016/j.jmb.2008.06.045 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 347VJ UT WOS:000259169100011 PM 18602404 ER PT J AU Tuma, R Tsuruta, H French, KH Prevelige, PE AF Tuma, Roman Tsuruta, Hiro French, Kenneth H. Prevelige, Peter E. TI Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE self-assembly; virus; X-ray; kinetics; structure ID P22 SCAFFOLDING PROTEIN; COAT PROTEIN; PHAGE-P22 PROCAPSIDS; SOLUTION SCATTERING; STRUCTURAL-CHANGES; BUILDING-BLOCKS; VIRUS CAPSIDS; MATURATION; BINDING; DOMAIN AB Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter approximate to 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibrium (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Tuma, Roman] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds, W Yorkshire, England. [Tuma, Roman; French, Kenneth H.; Prevelige, Peter E.] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. [Tuma, Roman] Univ Helsinki, Inst Biotechnol, FIN-00014 Helsinki, Finland. [Tsuruta, Hiro] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Tuma, R (reprint author), Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds, W Yorkshire, England. EM r.tuma@leeds.ac.uk FU Academy of Finland [1118462]; National Institutes of Health (NIH) [GM47980]; National Science Foundation [DBI-9726698]; Department of Energy, Office of Biological and Environmental Research; National Center for Research Resources (NCRR); Biomedical Technology Program [5 P41 RR001209] FX R.T. was in part supported by a research fellowship from Academy of Finland (1118462). P.E.P. was supported by grant GM47980 from the National Institutes of Health (NIH) and grant DBI-9726698 from the National Science Foundation. X-ray scattering studies were carried out at the Stanford Synchrotron Radiation Laboratory a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources (NCRR), Biomedical Technology Program Grant 5 P41 RR001209. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. NR 50 TC 25 Z9 25 U1 0 U2 8 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 19 PY 2008 VL 381 IS 5 BP 1395 EP 1406 DI 10.1016/j.jmb.2008.06.020 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 347VJ UT WOS:000259169100024 PM 18582476 ER PT J AU Pluth, MD Bergman, RG Raymond, KN AF Pluth, Michael D. Bergman, Robert G. Raymond, Kenneth N. TI Acceleration of amide bond rotation by encapsulation in the hydrophobic interior of a water-soluble supramolecular assembly SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID BADER ELECTRON POPULATIONS; HOST-GUEST COMPLEXATION; NMR CHEMICAL-SHIFTS; MOLECULAR RECOGNITION; INTERNAL-ROTATION; TWISTED AMIDES; STABILIZATION; RESONANCE; ISOMERIZATION; CATALYSIS AB The hydrophobic interior cavity of a self-assembled supramolecular assembly exploits the hydrophobic effect for the encapsulation of tertiary amides. Variable-temperature (1)H NMR experiments reveal that the free energy barrier for rotation around the C-N amide bond is lowered by up to 3.6 kcal/mol upon encapsulation. The hydrophobic cavity of the assembly is able to stabilize the less polar transition state of the amide rotation process. Carbon- 13 labeling studies showed that the (13)C NMR chemical shift of the carbonyl resonance increases with temperature for the encapsulated amides, which suggests that the assembly is able to favor a twisted form of the amide. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu RI Pluth, Michael/A-7222-2012 OI Pluth, Michael/0000-0003-3604-653X FU Director, Office of Science; Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy at LBNL [DE-AC02-05CHI 1231]; NSF FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CHI 1231 and an NSF predoctoral fellowship to M.D.P. NR 37 TC 13 Z9 13 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD SEP 19 PY 2008 VL 73 IS 18 BP 7132 EP 7136 DI 10.1021/jo800991g PG 5 WC Chemistry, Organic SC Chemistry GA 348FA UT WOS:000259195200023 PM 18687002 ER PT J AU Sandoval, J O'Dogherty, L Aguado, R Bartolini, A Bruchez, S Bill, M AF Sandoval, Jose O'Dogherty, Luis Aguado, Roque Bartolini, Annachiara Bruchez, Sebastien Bill, Markus TI Aalenian carbon-isotope stratigraphy: Calibration with ammonite, radiolarian and nannofossil events in the Western Tethys SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE Aalenian; Betic Cordillera; Spain; Ammonites; Biostratigraphy; Radiolarians; Calcareous nannofossils; Carbon-isotope stratigraphy; Palaeoceanography ID CALCAREOUS NANNOPLANKTON; FAUNAL TURNOVER; SOUTHERN SPAIN; MIDDLE; PERTURBATION; EVOLUTION; TRANSITION; BOUNDARY; RECORD; BASIN AB In this study a detailed carbon-isotope stratigraphy of four Aalenian sections well-dated with ammonites from the Median Subbetic palaeogeographic domain (external zones of the Betic Cordillera, southern Spain) is presented. Two of these represent the most complete Aalenian sections of the southern Iberian palaeomargin (western Tethys). These sections are rhythmic sequences made of marls and marly limestones containing rich ammonite fauna and nannofossils that enable an accurate biostratigraphic control at the subzone level. Moreover. the lower and upper Aalenian boundaries are well defined in these sections and therefore represent optimal sites to link the carbon-isotope curves to ammonite zones and subzones and nannofossil events. The uppermost Toarcian-lowermost Bajocian delta C-13 values of bulk carbonates show evident fluctuations. The values are low (similar to 1 parts per thousand) in the Upper Toarcian (Mactra Subzone), increase slightly to -2 parts per thousand in Lower Aalenian (Compturn Subzone), fall to a relative minimum (similar to 1-1.5 parts per thousand) in the Middle Aalenian (Bradfordensis Zone), reach a marked positive peak of 2.5-2.7 parts per thousand in the Upper Aalenian (Concavum Subzone), and then the values decrease again to 1.5-1.7 parts per thousand near the Aalenian/Bajocian boundary. Marine carbonate delta C-13 curves in Subbetic and the Apennines shows similar variations but higher delta C-13 values in the Apennines sections. A slight offset is also present between the sections from the same basin. This drift is interpreted by variations in carbon isotopic composition of sea-water DIC associated with different palaeoceanographic settings. Comparison of the delta C-13 values of bulk carbonates and biotic events (ammonite diversity, and nannofossil and radiolarian abundances) reveals relationships between the carbon cycle and biotic evolution. The latest Toarcian-Aalenian turnovers (Toarcian/Aalenian boundary and Middle/Late Aalenian) follow low delta C-13 values, where extinct taxa are replaced by new ones. Radiation episodes are associated with increasing delta C-13 values and with sea-level rise. In the earliest Late Aalenian, concomitantly with a major delta C-13 positive excursion and with the transgressive cycle, it is noted a major increase of the eutrophic calcareous nannofossil genus Biscutum and a sharp peak in radiolarian abundance. Although the Aalenian interval seems not to be characterized by major large amplitude negative or positive excursions, as observed in other Phanerozoic intervals, these data point to a close connection between perturbations in the global carbon cycle and the palaeoenvironmental changes that occurred, which in turn had important interactions with the evolution of pelagic biota. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sandoval, Jose] Univ Granada, Dpto Estratig & Paleontol, Granada 18002, Spain. [O'Dogherty, Luis] CASEM, Dpto Ciencias Tierra, Puerto Real 11510, Spain. [Aguado, Roque] Univ Jaen, Dpto Geol, Linares 23700, Spain. [Bartolini, Annachiara] MNHN, CNRS, UMR 5143, F-75231 Paris, France. [Bruchez, Sebastien] Inst Geol & Paleontol, CH-1015 Lausanne, Switzerland. [Bill, Markus] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. RP Sandoval, J (reprint author), Univ Granada, Dpto Estratig & Paleontol, Granada 18002, Spain. EM sandoval@ugr.es RI O'Dogherty, Luis/M-7664-2013; Sandoval, Jose/K-4667-2014; Aguado, Roque/K-5077-2014; Bill, Markus/D-8478-2013 OI O'Dogherty, Luis/0000-0001-7229-2370; Sandoval, Jose/0000-0003-4698-0748; Aguado, Roque/0000-0002-1343-2326; Bill, Markus/0000-0001-7002-2174 FU DGI (Direccion General de Investigacion, Spain) [CGL2005-02500]; EMMI and RNM-200 Research Groups, junta de Andalucia, Spain; Swiss National Science Foundation [2000-052555] FX We would like to express our gratitude to Dr. J. Guex, University of Lausanne, for comments on the manuscript and Dr. S. Hesselbo, University of Oxford, for a critical riding, helpful suggestions and English corrections that have improved the manuscript. Also we thank Finn Surlyk and an anonymous reviewer for their comments on this manuscript. This study forms part of the results obtained in Research Projects: CGL2005-02500, financed by the DGI (Direccion General de Investigacion, Spain), by the EMMI and RNM-200 Research Groups, junta de Andalucia, Spain) and by the Project no. 2000-052555 financed by the Swiss National Science Foundation. NR 75 TC 26 Z9 27 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD SEP 19 PY 2008 VL 267 IS 1-2 BP 115 EP 137 DI 10.1016/j.palaeo.2008.06.013 PG 23 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 358UG UT WOS:000259942400010 ER PT J AU Kilbourne, KH Quinn, TM Webb, R Guilderson, T Nyberg, J Winter, A AF Kilbourne, K. H. Quinn, T. M. Webb, R. Guilderson, T. Nyberg, J. Winter, A. TI Paleoclimate proxy perspective on Caribbean climate since the year 1751: Evidence of cooler temperatures and multidecadal variability SO PALEOCEANOGRAPHY LA English DT Article ID SEA-SURFACE TEMPERATURE; ATLANTIC THERMOHALINE CIRCULATION; INTERTROPICAL CONVERGENCE ZONE; HEMISPHERE WARM POOL; NORTH-ATLANTIC; ICE-AGE; TROPICAL ATLANTIC; ATMOSPHERIC CIRCULATION; CORAL MONTASTRAEA; ISOTOPIC RECORD AB Annually resolved coral delta O-18 and Sr/Ca records from southwestern Puerto Rico are used to investigate Caribbean climate variability between 1751 and 2004 C. E. Mean surface ocean temperatures in this region have increased steadily by about 2 degrees C since the year 1751, with Sr/Ca data indicating 2.1 +/- 0.8 degrees C and delta O-18 data indicating 2.7 +/- 0.5 degrees C. Coral geochemical records from across the tropics demonstrate that regional variability is important for understanding climate variations at centennial time scales. A strong multidecadal salinity signal in the oxygen isotope data correlates with observed multidecadal temperature variations in the Northern Hemisphere. Instrumental wind and precipitation data indicate that the most recent coral isotopic variations are caused by expansion and contraction of the steep regional salinity gradient, forced by trade wind anomalies through meridional Ekman transport. The timing of the fluctuations suggests that the multidecadal-scale wind and surface circulation anomalies might play a role in Atlantic temperature variability and meridional overturning circulation, but further work is needed to confirm this suggestion. C1 [Kilbourne, K. H.] McDaniel Coll, Environm Policy & Sci Program, Westminster, MD 21157 USA. [Guilderson, T.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Nyberg, J.] Geol Survey Sweden, SE-75128 Uppsala, Sweden. [Quinn, T. M.] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78759 USA. [Webb, R.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Winter, A.] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00681 USA. [Guilderson, T.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, T.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. RP Kilbourne, KH (reprint author), McDaniel Coll, Environm Policy & Sci Program, 2 Coll Hill, Westminster, MD 21157 USA. EM kkilbourne@mcdaniel.edu RI Quinn, Terrence/A-5755-2008; Kilbourne, Kelly /D-6560-2012 OI Kilbourne, Kelly /0000-0001-7864-8438 FU National Science Foundation [OCE-0327420]; University of South Florida FX We thank the reviewers for their constructive comments. Discussions and technical support by Jonathan Eisheid contributed to the analysis of modern precipitation data by K. H. K. Dive master Milton Carlo of the University of Puerto Rico and Captain Angel Nazario are thanked for their help with sample collection. Coral-drilling guru Fred Taylor and Peter Swart also contributed to the fieldwork. Kevin Helmle of Nova Southeastern University helped cut and X-radiograph all of the cores used in this study. Funding for this project was from National Science Foundation grant OCE-0327420 and the Elsie and William Knight Oceanographic Fellowship of the University of South Florida. NR 83 TC 48 Z9 49 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0883-8305 EI 1944-9186 J9 PALEOCEANOGRAPHY JI Paleoceanography PD SEP 19 PY 2008 VL 23 IS 3 AR PA3220 DI 10.1029/2008PA001598 PG 14 WC Geosciences, Multidisciplinary; Oceanography; Paleontology SC Geology; Oceanography; Paleontology GA 351BM UT WOS:000259399100001 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Vre, L Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, S Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Muelmenstaedt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wuerthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Vre, Lefe Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for doubly charged Higgs bosons with lepton-flavor-violating decays involving tau leptons SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRINO MASSES; MODEL AB We search for pair production of doubly charged Higgs particles (H-+/-+/-) followed by decays into electron-tau (e tau) and muon-tau (mu tau) pairs using data (350 pb(-1)) collected from (p) over barp collisions at root s = 1.96 TeV by the CDF II experiment. We search separately for cases where three or four final-state leptons are detected, and combine results for exclusive decays to left-handed e tau (mu tau) pairs. We set an H-+/-+/- lower mass limit of 114(112) GeV/c(2) at the 95% confidence level. C1 [Anastassov, A.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, Santander 39005, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Inst Expt Phys, Kosice 04001, Slovakia. Comenius Univ, Bratislava 84248, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. Chonnam Natl Univ, Kwangju 500757, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Grinstein, Sebastian/N-3988-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Grinstein, Sebastian/0000-0002-6460-8694; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Leonardo, Nuno/0000-0002-9746-4594; Osterberg, Kenneth/0000-0003-4807-0414; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Warburton, Andreas/0000-0002-2298-7315; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678 NR 17 TC 40 Z9 40 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 121801 DI 10.1103/PhysRevLett.101.121801 PG 7 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500020 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Campbell, S Chang, BS Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Esumi, S Eyser, KO Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gadrat, S Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y De Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Ichihara, T Imai, K Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kawall, D Kazantsev, AV Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kubart, J Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liska, T Litvinenko, A Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, M Mitchell, JT Mitrovski, M Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sato, S Sawada, S Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, N Tserruya, I Tsuchimoto, Y Vale, C Valle, H Van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Campbell, S. Chang, B. S. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gadrat, S. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. De Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Ichihara, T. Imai, K. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kawall, D. Kazantsev, A. V. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lajoie, J. G. Lebedev, A. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, M. Mitchell, J. T. Mitrovski, M. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sato, S. Sawada, S. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. Van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI J/psi production in root s(NN)=200 GeV Cu+Cu collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; PARTON DISTRIBUTIONS; NUCLEUS COLLISIONS; ENERGY-LOSS; SUPPRESSION; ABSORPTION; QCD AB Yields for J/psi production in Cu+Cu collisions at root s(NN) = 200 GeV have been measured over the rapidity range |y|< 2.2 and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data offer greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, in the range where the quark-gluon plasma transition threshold is predicted to lie. Cold nuclear matter estimates based on ad hoc fits to d+Au data describe the Cu+Cu data up to N-part similar to 50, corresponding to a Bjorken energy density of at least 1.5 GeV/fm(3). C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Charles Univ Prague, CR-11636 Prague 1, Czech Republic. CIAE, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. Czech Tech Univ, Prague 16636 6, Czech Republic. CEA Saclay, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida Inst Technol, Melbourne, FL 32901 USA. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, CNRS, IN2P3, Lab Leprine Ringuet, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Blaise Pascal, CNRS, IN2P3, LPC, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. Peking Univ, Beijing, Peoples R China. PNPI, Gatchina 188300, Leningrad Reg, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. RI Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017 OI Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; FU Office of Nuclear Physics in DOE Office of Science; NSF (U.S.); MEXT; JSPS (Japan); CNPq; FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS; CEA (France); BMBF; DAAD; AvH (Germany); OTKA (Hungary); DAE (India); ISF (Israel); KRF; KOSEF (Korea); MES; RAS; FAAE (Russia); VR; KAW (Sweden); U.S. CRDF; USHungarian NSF-OTKA-MTA; US-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (U.S.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT ( Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, USHungarian NSF-OTKA-MTA, and US-Israel BSF. NR 25 TC 93 Z9 93 U1 5 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 122301 DI 10.1103/PhysRevLett.101.122301 PG 6 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500022 ER PT J AU Afanasev, A Baker, OK Beard, KB Biallas, G Boyce, J Minarni, M Ramdon, R Shinn, M Slocum, P AF Afanasev, A. Baker, O. K. Beard, K. B. Biallas, G. Boyce, J. Minarni, M. Ramdon, R. Shinn, M. Slocum, P. TI Experimental limit on optical-photon coupling to light neutral scalar bosons SO PHYSICAL REVIEW LETTERS LA English DT Article ID CP CONSERVATION; PARTICLES; COSMOLOGY; MASSLESS; SEARCH; AXION AB We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 meV (milli-electron volts) and coupling strength greater than 10(-6) GeV-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space. C1 [Afanasev, A.; Ramdon, R.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Baker, O. K.; Slocum, P.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Beard, K. B.] Muons Inc, Batavia, IL 60510 USA. [Boyce, J.; Shinn, M.] Jefferson Lab, Free Electron Laser Div, Newport News, VA 23606 USA. [Minarni, M.] Riau Univ, Dept Phys, Fis FMIPA UNRI, Pekanbaru 28293, Riau, Indonesia. RP Afanasev, A (reprint author), Hampton Univ, Dept Phys, Hampton, VA 23668 USA. OI Afanasev, Andrei/0000-0003-0679-3307 FU Office of Naval Research [N00014-06-1-1168] FX The authors thank the technical staff of the Jefferson Lab Free Electron Laser Facility, especially F. Dylla, G. Neil, G. Williams, R. Walker, D. Douglas, S. Benson, K. Jordan, C. Hernandez-Garcia, and J. Gubeli, as well as M. C. Long of Hampton University for their excellent support of the experimental program. Funding from the Office of Naval Research Grant N00014-06-1-1168 is gratefully acknowledged. NR 45 TC 74 Z9 76 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 120401 DI 10.1103/PhysRevLett.101.120401 PG 4 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500002 PM 18851343 ER PT J AU Park, CH Yang, L Son, YW Cohen, ML Louie, SG AF Park, Cheol-Hwan Yang, Li Son, Young-Woo Cohen, Marvin L. Louie, Steven G. TI New generation of massless Dirac fermions in graphene under external periodic potentials SO PHYSICAL REVIEW LETTERS LA English DT Article ID CARBON NANOTUBES AB We show that new massless Dirac fermions are generated when a slowly varying periodic potential is applied to graphene. These quasiparticles, generated near the supercell Brillouin zone boundaries with anisotropic group velocity, are different from the original massless Dirac fermions. The quasiparticle wave vector (measured from the new Dirac point), the generalized pseudospin vector, and the group velocity are not collinear. We further show that with an appropriate periodic potential of triangular symmetry, there exists an energy window over which the only available states are these quasiparticles, thus providing a good system to probe experimentally the new massless Dirac fermions. The required parameters of external potentials are within the realm of laboratory conditions. C1 [Park, Cheol-Hwan; Yang, Li; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Park, Cheol-Hwan; Yang, Li; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Son, Young-Woo] Konkuk Univ, Dept Phys, Seoul 143701, South Korea. [Son, Young-Woo] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea. RP Park, CH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM cheolwhan@civet.berkeley.edu RI Park, Cheol-Hwan/A-1543-2009; son, Young-Woo/B-2566-2010 OI Park, Cheol-Hwan/0000-0003-1584-6896; FU NSF [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; KOSEF [R01-2007-000-10654-0]; Nano RD program [2008-03670]; Korean government (MEST) FX C.- H. P. thanks D. S. Novikov for fruitful discussions. This work was supported by NSF Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.-W.S. was supported by KOSEF Grant No. R01-2007-000-10654-0 and by Nano R&D program 2008-03670 through the KOSEF funded by the Korean government (MEST). Computational resources have been provided by NPACI and NERSC. NR 22 TC 210 Z9 212 U1 5 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 126804 DI 10.1103/PhysRevLett.101.126804 PG 4 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500060 PM 18851401 ER PT J AU Sundaramoorthy, R Weiss, AH Hulbert, SL Bartynski, RA AF Sundaramoorthy, R. Weiss, A. H. Hulbert, S. L. Bartynski, R. A. TI Direct evidence for dynamic broadening of the energy spectra associated with the later steps of an Auger cascade SO PHYSICAL REVIEW LETTERS LA English DT Article ID RELAXATION AB Auger cascade decay processes are of critical importance in x-ray-induced biological damage, chemical reactions, and desorption. Here, we report the first measurements of the isolated energy spectra of electrons emitted during the later steps of an Auger cascade process in a solid (MnO). The large widths and energy gains observed in cascade-induced Mn MVV Auger spectra (as compared to the spectra resulting from direct photoexcitation of the M core hole) provide strong evidence that valence holes created in previous cascade steps participate dynamically in later cascade steps. C1 [Sundaramoorthy, R.; Weiss, A. H.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Hulbert, S. L.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. [Bartynski, R. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Sundaramoorthy, R (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. RI Weiss, Alex/G-4941-2011 FU Petroleum Research Fund; Welch Foundation [Y-1100]; NSF [ECS0224166, DMR98-12628]; U. S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-98CH10886] FX The authors acknowledge the Petroleum Research Fund, the Welch Foundation Y-1100, and the NSF No. ECS0224166 and No. DMR98-12628. The NSLS is supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under DE-AC02-98CH10886. G. A. Sawatzky is acknowledged for stimulating discussions. NR 12 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 127601 DI 10.1103/PhysRevLett.101.127601 PG 4 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500071 PM 18851412 ER PT J AU Wang, X Ischebeck, R Muggli, P Katsouleas, T Joshi, C Mori, WB Hogan, MJ AF Wang, X. Ischebeck, R. Muggli, P. Katsouleas, T. Joshi, C. Mori, W. B. Hogan, M. J. TI Positron injection and acceleration on the wake driven by an electron beam in a foil-and-gas plasma SO PHYSICAL REVIEW LETTERS LA English DT Article AB A novel approach for generating and accelerating positron bunches in a plasma wake is proposed and modeled. The system consists of a plasma with an embedded thin foil into which two electron beams are shot. The first beam creates a region for accelerating and focusing positrons and the second beam provides positrons to be accelerated. Monte Carlo and 3D PIC simulations show a large number of positrons (10(7)similar to 10(8)) are trapped and accelerated to similar to 5 GeV over 1 m with relatively narrow energy spread and low emittance. C1 [Wang, X.; Muggli, P.; Katsouleas, T.] Univ So Calif, Los Angeles, CA 90089 USA. [Ischebeck, R.; Hogan, M. J.] Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. [Joshi, C.; Mori, W. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Wang, X (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. FU Department of Energy [DE-FC02-01ER41192, DE-AC02-76SF00515, DE-FG03-92ER40745, DE-FG5206NA26195, DE-FG0392ER40727, DE-AC0376SF0098, DE-FG02-03ER54721]; National Science Foundation [ECS-9632735, DMS9722121, PHY-0078715] FX This work supported by Department of Energy Contracts No. DE-FC02-01ER41192, No. DE-AC02-76SF00515 (SLAC), No. DE-FG03-92ER40745, No. DE-FG5206NA26195, No. DE-FG0392ER40727, No. DE-AC0376SF0098, DE-FG02-03ER54721 and National Science Foundation Grants No. ECS-9632735, No. DMS9722121, and No. PHY-0078715. Simulations were done at the USC Center for High Performance Computing and Communications (HPCC). Useful discussions with the members of the E-167 collaboration at SLAC are greatly acknowledged. NR 15 TC 10 Z9 13 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 124801 DI 10.1103/PhysRevLett.101.124801 PG 4 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500037 PM 18851378 ER PT J AU Yin, L Daughton, W Karimabadi, H Albright, BJ Bowers, KJ Margulies, J AF Yin, L. Daughton, W. Karimabadi, H. Albright, B. J. Bowers, Kevin J. Margulies, J. TI Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLE-ACCELERATION; CURRENT SHEET AB Using the largest three-dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. The diffusion region tends to elongate in the outflow direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures with finite extent in the current direction. The secondary kink folds the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay between these secondary instabilities plays a key role in controlling the time-dependent reconnection rate in large-scale systems. C1 [Yin, L.; Daughton, W.; Albright, B. J.; Bowers, Kevin J.; Margulies, J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Yin, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RI Daughton, William/L-9661-2013; OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320 FU NASA [NNH04AB221]; DOE [DE-FG02-06ER54893]; IGPP FX This work was done under the auspices of the U. S. DOE by LANS LLC LANL and supported by NASA (NNH04AB221), DOE (DE-FG02-06ER54893), and IGPP. Calculations were run on the Roadrunner supercomputer. NR 12 TC 37 Z9 37 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2008 VL 101 IS 12 AR 125001 DI 10.1103/PhysRevLett.101.125001 PG 4 WC Physics, Multidisciplinary SC Physics GA 350UB UT WOS:000259377500038 PM 18851379 ER PT J AU Schmitt, F Kirchmann, PS Bovensiepen, U Moore, RG Rettig, L Krenz, M Chu, JH Ru, N Perfetti, L Lu, DH Wolf, M Fisher, IR Shen, ZX AF Schmitt, F. Kirchmann, P. S. Bovensiepen, U. Moore, R. G. Rettig, L. Krenz, M. Chu, J. -H. Ru, N. Perfetti, L. Lu, D. H. Wolf, M. Fisher, I. R. Shen, Z. -X. TI Transient electronic structure and melting of a charge density wave in TbTe3 SO SCIENCE LA English DT Article ID RAMAN-SCATTERING; SUPERCONDUCTORS; THERMALIZATION; EXCITATIONS; K0.3MOO3 AB Obtaining insight into microscopic cooperative effects is a fascinating topic in condensed matter research because, through self- coordination and collectivity, they can lead to instabilities with macroscopic impacts like phase transitions. We used femtosecond time- and angle- resolved photoelectron spectroscopy (trARPES) to optically pump and probe TbTe3, an excellent model system with which to study these effects. We drove a transient charge density wave melting, excited collective vibrations in TbTe3, and observed them through their time-, frequency-, and momentum- dependent influence on the electronic structure. We were able to identify the role of the observed collective vibration in the transition and to document the transition in real time. The information that we demonstrate as being accessible with trARPES will greatly enhance the understanding of all materials exhibiting collective phenomena. C1 [Kirchmann, P. S.; Bovensiepen, U.; Rettig, L.; Krenz, M.; Perfetti, L.; Wolf, M.] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. [Schmitt, F.; Moore, R. G.; Chu, J. -H.; Ru, N.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Moore, R. G.; Lu, D. H.; Shen, Z. -X.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Wolf, M.] Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany. [Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RP Bovensiepen, U (reprint author), Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany. EM uwe.bovensiepen@physik.fu-berlin.de; zxshen@stanford.edu RI Kirchmann, Patrick/C-1195-2008; Krenz, Marcel/J-8949-2014; Rettig, Laurenz/H-6462-2016; Wolf, Martin/Q-3548-2016; Bovensiepen, Uwe/E-7435-2017 OI Kirchmann, Patrick/0000-0002-4835-0654; Rettig, Laurenz/0000-0002-0725-6696; Bovensiepen, Uwe/0000-0002-1506-4491 FU Max-Planck-Gesellschaft; International Max Planck Research School; Deutsche Forschungsgemeinschaft [BO 1823/2, Sfb 450]; Heisenberg program; U. S. Department of Energy Office of Basic Energy Science, Division of Materials Science and Engineering FX We thank L. DeGiorgi et al. and D. Mihailovic et al. for fruitful discussions. We acknowledge funding from the Max-Planck-Gesellschaft through the International Max Planck Research School and by the Deutsche Forschungsgemeinschaft through BO 1823/2, Sfb 450, and the Heisenberg program. This work is supported by the U. S. Department of Energy Office of Basic Energy Science, Division of Materials Science and Engineering. NR 26 TC 187 Z9 187 U1 5 U2 78 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 19 PY 2008 VL 321 IS 5896 BP 1649 EP 1652 DI 10.1126/science.1160778 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 349RG UT WOS:000259300400026 PM 18703710 ER PT J AU Kenzelmann, M Strassle, T Niedermayer, C Sigrist, M Padmanabhan, B Zolliker, M Bianchi, AD Movshovich, R Bauer, ED Sarrao, JL Thompson, JD AF Kenzelmann, M. Straessle, Th. Niedermayer, C. Sigrist, M. Padmanabhan, B. Zolliker, M. Bianchi, A. D. Movshovich, R. Bauer, E. D. Sarrao, J. L. Thompson, J. D. TI Coupled superconducting and magnetic order in CeCoIn(5) SO SCIENCE LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; FIELD AB Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to unconventional superconductivity. Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these order parameters generally compete. We report that close to the upper critical field, CeCoIn(5) adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity in a first- order transition at the upper critical field leads to the simultaneous collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order. A symmetry analysis of the coupling between the magnetic order and the superconducting gap function suggests a form of superconductivity that is associated with a nonvanishing momentum. C1 [Kenzelmann, M.; Straessle, Th.; Niedermayer, C.; Padmanabhan, B.; Zolliker, M.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Kenzelmann, M.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Straessle, Th.; Niedermayer, C.; Padmanabhan, B.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Sigrist, M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Bianchi, A. D.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Bianchi, A. D.] Univ Montreal, Regroupement Quebecois Mat Pointe, Montreal, PQ H3C 3J7, Canada. [Movshovich, R.; Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kenzelmann, M (reprint author), Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. RI Bauer, Eric/D-7212-2011; Sigrist, Manfred/C-4570-2008; Niedermayer, Christof/K-4436-2014; Kenzelmann, Michel/A-8438-2008; Bianchi, Andrea/E-9779-2010; OI Sigrist, Manfred/0000-0002-8627-5093; Kenzelmann, Michel/0000-0001-7913-4826; Bianchi, Andrea/0000-0001-9340-6971; Bauer, Eric/0000-0003-0017-1937 FU Swiss National Science Foundation [PP002-102831]; Swiss National Center of Competence in Research program Materials with Novel Electronic Properties; Los Alamos Laboratory Directed Research and Development program; Natural Sciences and Engineering Research Council of Canada (Canada); Fonds Quebecois de la Recherche sur la Nature et les Technologies (Quebec); Canada Research Chair Foundation FX Work at ETH was supported by the Swiss National Science Foundation under contract PP002-102831. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, and was supported by the Swiss National Center of Competence in Research program Materials with Novel Electronic Properties. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy and supported in part by the Los Alamos Laboratory Directed Research and Development program. A. D. B. received support from the Natural Sciences and Engineering Research Council of Canada (Canada), Fonds Quebecois de la Recherche sur la Nature et les Technologies (Quebec), and the Canada Research Chair Foundation. NR 23 TC 187 Z9 187 U1 6 U2 37 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 19 PY 2008 VL 321 IS 5896 BP 1652 EP 1654 DI 10.1126/science.1161818 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 349RG UT WOS:000259300400027 PM 18719250 ER PT J AU McComas, DJ Ebert, RW Elliott, HA Goldstein, BE Gosling, JT Schwadron, NA Skoug, RM AF McComas, D. J. Ebert, R. W. Elliott, H. A. Goldstein, B. E. Gosling, J. T. Schwadron, N. A. Skoug, R. M. TI Weaker solar wind from the polar coronal holes and the whole Sun SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HELIOSPHERIC MAGNETIC-FIELD; TERMINATION SHOCK; ULYSSES; MAXIMUM; HELIOSHEATH; NORTHERN; REGION; PLASMA AB Observations of solar wind from both large polar coronal holes (PCHs) during Ulysses' third orbit showed that the fast solar wind was slightly slower, significantly less dense, cooler, and had less mass and momentum flux than during the previous solar minimum (first) orbit. In addition, while much more variable, measurements in the slower, in-ecliptic wind match quantitatively with Ulysses and show essentially identical trends. Thus, these combined observations indicate significant, long-term variations in solar wind output from the entire Sun. The significant, long-term trend to lower dynamic pressures means that the heliosphere has been shrinking and the heliopause must be moving inward toward the Voyager spacecraft. In addition, our observations suggest a significant and global reduction in the mass and energy fed in below the sonic point in the corona. The lower supply of mass and energy may result naturally from a reduction of open magnetic flux during this period. C1 [McComas, D. J.; Ebert, R. W.; Elliott, H. A.; Gosling, J. T.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. [McComas, D. J.; Ebert, R. W.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. [Goldstein, B. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Skoug, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP McComas, DJ (reprint author), SW Res Inst, Space Sci & Engn Div, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.edu FU NASA FX We thank all the wonderful men and women who have made the Ulysses program such an outstanding success. For Figure 1, we also specifically thank the Ulysses magnetometer team for data used to identify the magnetic polarities and H. Morgan for help in assembling the images in the top right plot. Work at LANL was performed under the auspices of the U. S. DOE. This work was funded by NASA under the Ulysses program. NR 27 TC 236 Z9 236 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 18 PY 2008 VL 35 IS 18 AR L18103 DI 10.1029/2008GL034896 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 351AF UT WOS:000259395600003 ER PT J AU Sawyer, KR Steele, RP Glascoe, EA Cahoon, JF Schlegel, JP Head-Gordon, M Harris, CB AF Sawyer, Karma R. Steele, Ryan P. Glascoe, Elizabeth A. Cahoon, James F. Schlegel, Jacob P. Head-Gordon, Martin Harris, Charles B. TI Direct observation of photoinduced bent nitrosyl excited-state complexes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL-COMPLEXES; MOLECULAR-ORBITAL METHODS; GAUSSIAN-BASIS SETS; NITRIC-OXIDE; COUPLING CONSTANTS; REACTIVITY; CHEMISTRY; TRICARBONYLNITROSYLCOBALT; PHOTOCHEMISTRY AB Ground-state structures with side-on nitrosyl (eta(2)-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited-state structures with bent-NO ligands have been proposed for years but never directly observed. Here, we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry Of CO(CO)(3)(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and eta(2)-NO structural isomers, but we have observed two bent-NO complexes. DFT modeling of the ground- and excited-state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO)(3)(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited-state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU National Science Foundation Division of Physical Chemistry; Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science foundation [0535710] FX The National Science Foundation Division of Physical Chemistry is acknowledged for funding. We also acknowledge the Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 for the use of some specialized equipment and contractor supported research (CSR). R.P.S. acknowledges funding from the National Science foundation under Grant no. CHE-0535710. Special thanks to Renee Frontiera and Prof. Rich Mathies for use of the UV-vis spectrometer and Aram Yang for helpful discussions. NR 68 TC 5 Z9 5 U1 4 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 18 PY 2008 VL 112 IS 37 BP 8505 EP 8514 DI 10.1021/jp802705w PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 347KR UT WOS:000259140400004 PM 18729431 ER PT J AU Gibbs, GV Downs, RT Cox, DF Rosso, KM Ross, NL Kirfel, A Lippmann, T Morgenroth, W Crawford, TD AF Gibbs, G. V. Downs, R. T. Cox, D. F. Rosso, K. M. Ross, N. L. Kirfel, A. Lippmann, T. Morgenroth, W. Crawford, T. D. TI Experimental bond critical point and local energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: Comparison with properties calculated for non-transition and transition metal M-O bonded interactions for silicates and oxides SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RAY CHARGE-DENSITY; ELECTRON-DENSITY; CRYSTAL-CHEMISTRY; SYNCHROTRON-RADIATION; TOPOLOGICAL ANALYSIS; ATOMIC INTERACTIONS; DIFFRACTION DATA; EARTH MATERIALS; CHEMICAL-BOND; DISTRIBUTIONS AB Bond critical point (bcp) and local energy density properties for the electron density (ED) distributions, calculated with first-principle quantum mechanical methods for divalent transition metal Mn-, Co-, and Fe-containing silicates and oxides are compared with experimental model ED properties for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine, each determined with high-energy synchrotron single-crystal X-ray diffraction data. Trends between the experimental bond lengths, R(M-O), (M = Mn, Fe, Co), and the calculated bcp properties are comparable with those observed for non-transition M-O bonded interactions. The bcp properties, local total energy density, H(r(c)), and bond length trends determined for the Mn-O, Co-O, and Fe-O interactions are also comparable. A comparison is also made with model experimental bcp properties determined for several Mn-O, Fe-O, and Co-O bonded interactions for selected organometallic complexes and several oxides. Despite the complexities of the structures of the organometallic complexes, the agreement between the calculated and model experimental bcp properties is fair to good in several cases. The G(r(c))/rho(r(c)) versus R(M-O) trends established for non-transition metal M-O bonded interactions hold for the transition metal M-O bonded interactions with G(r(c))/rho(r(c)) increasing in value as H(r(c)) becomes progressively more negative in value, indicating an increasing shared character of the interaction as G(r(c))/rho(r(c)) increases in value. As observed for the non-transition metal M-O bonded interactions, the Laplacian, del(2)rho(r(c)), increases in value as p(rc) increases and as H(rc) decreases and becomes progressive more negative in value. The Mn-O, Fe-O, and Co-O bonded interactions are indicated to be of intermediate character with a substantial component of closed-shell character compared with Fe-S and Ni-S bonded interactions, which show greater shared character based on the vertical bar V(r(c))vertical bar G(r(c)) bond character indicator. The atomic charges conferred on the transition metal atoms for the three olivines decrease with increasing atomic number from Mn to Fe to Co as the average M-O bond lengths decrease from 2.219 to 2.168 to 2.128 angstrom, respectively. C1 [Gibbs, G. V.; Ross, N. L.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Downs, R. T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Rosso, K. M.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Rosso, K. M.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Kirfel, A.] Univ Bonn, Mineral & Petrol Inst, D-53115 Bonn, Germany. [Morgenroth, W.] HASYLAB DESY, D-22603 Hamburg, Germany. [Lippmann, T.] GKSS, D-21502 Geesthacht, Germany. [Cox, D. F.] Virginia Tech, Dept Chem Engn, Blacksburg, VA 24061 USA. [Crawford, T. D.] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. RP Gibbs, GV (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RI Crawford, Thomas/A-9271-2017 OI Crawford, Thomas/0000-0002-7961-7016 FU National Science Foundation (NSF) [CHE-0715185]; U.S. Department of Energy [EAR-0609885, EAR-0609906]; Office of Basic Energy Sciences; Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL); U.S. DOE Office of Biological and Environmental Research; DOE [DE-AC06-76RLO 1830]; Bundesminister fur Bildung and Forschung [KS1 PDA]; Research Corporation; Oak Ridge National Laboratory by Scientific Discovery [DE-AC05-00OR22725]; [DE-FG02-97ER14751] FX We thank the National Science Foundation (NSF) and the U.S. Department of Energy for supporting this study with Grants EAR-0609885 (N.L.R. and G.V.G.), EAR-0609906 (R.T.D.), and DE-FG02-97ER14751 (D.F.C.). K.M.R. acknowledges a grant from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Geosciences Division, and computational facilities and support from the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The computations were performed in part at the EMSL at PNNL. The EMSL is a national scientific user facility sponsored by the U.S. DOE Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract DE-AC06-76RLO 1830. A.K. gratefully acknowledges financial support by the Bundesminister fur Bildung and Forschung, Contract KS1 PDA. T.D.C. was supported by a grant from the NSF (CHE-0715185), a Cottrell Scholar Award from the Research Corporation, and a subcontract from Oak Ridge National Laboratory by Scientific Discovery through the AciDAC program of the DOE under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory. G.V.G. takes pleasure in thanking Bob Downs for inviting him to visit the University of Arizona during the winter of 2008, where the bulk of the paper was written. We also thank the two reviewers for making several valuable suggestions that led to a substantial improvement of the paper. NR 82 TC 20 Z9 20 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 18 PY 2008 VL 112 IS 37 BP 8811 EP 8823 DI 10.1021/jp804280j PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 347KR UT WOS:000259140400043 PM 18714960 ER PT J AU Shin, Y Wang, LQ Bae, IT Arey, BW Exarhos, GJ AF Shin, Yongsoon Wang, Li-Qiong Bae, In-Tae Arey, Bruce W. Exarhos, Gregory J. TI Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID D-FRUCTOSE FORMATION; INFRARED SPECTROPHOTOMETRY; LEVULINIC ACID; DEHYDRATION; 5-HYDROXYMETHYL-2-FURALDEHYDE; NANOPARTICLES; PARTICLES; GLUCOSE AB Colloidal carbon spheres have been prepared from aqueous alpha-, beta-, and gamma-cyclodextrin (CD) solutions in closed systems under hydrothermal conditions at 160 degrees C. Both liquid and solid-state C-13 NMR spectra taken for samples at different reaction times have been used to monitor the dehydration and carbonization pathways. CD slowly hydrolyzes to glucose and forms 5-hydroxymethyl furfural (HMF) followed by carbonization into colloidal carbon spheres. The isolated carbon spheres are 70-150 nm in diameter, exhibit a core-shell structure, and are comprised of a condensed core (C=C) peppered with resident chemical functionalities including carboxylate and hydroxyl groups. Evidence from C-13 solid-state NMR and FT-IR spectra reveal that the evolving carbon spheres show a gradual increase in the amount of aromatic carbon as a function of reaction time and that the carbon spheres generated from gamma-CD, contain significantly higher aromatic carbon than those derived from alpha- and beta-CD. C1 [Shin, Yongsoon; Wang, Li-Qiong; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K2-44, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov FU Office of Basic Energy Sciences; Division of Materials Science and Engineering Physics; U.S. Department of Energy [DE-AC06-76RL0 1830] FX This work supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics, U.S. Department of Energy, under contract DE-AC06-76RL0 1830 with the Battelle Memorial Institute. NR 25 TC 76 Z9 77 U1 10 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 18 PY 2008 VL 112 IS 37 BP 14236 EP 14240 DI 10.1021/jp801343y PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 347KT UT WOS:000259140700005 ER PT J AU Woo, BK Chen, W Joly, AG Sammynaiken, R AF Woo, Boon Kuan Chen, Wei Joly, Alan G. Sammynaiken, R. TI The effects of aging on the luminescence of PEG-coated water-soluble ZnO nanoparticle solutions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; NANOSTRUCTURES; GROWTH AB Water-soluble ZnO nanoparticles coated with polyethylene glycol biscarboxymethyl (PEG(COOH)(2)) were prepared in ethanol/water solutions. The ZnO nanoparticles have a hexagonal structure with an average size of 10 nm. Three different luminescence bands are observed from the nanoparticle solutions: green emission at 530 nm from surface states or defects, UV emission at 380 nm from the ZnO exciton, and an emission band at around 338 nm from the PEG(COOH)(2). The fresh as-prepared samples have very strong green emission at 530 nm from surface states or defects but very weak excitonic emission at 380 nm. After dilution with ethanol, the green emission decreases in intensity and the excitonic emission increases. In the diluted samples, the excitonic luminescence intensity increases with storage time. This intensity increase is attributed to surface passivation by CH3COO- ligands resulting from precursor reactions in the ethanol solvent. C1 [Woo, Boon Kuan; Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sammynaiken, R.] Univ Saskatchewan, Saskatchewan Struct Sci Ctr, Saskatoon, SK S7H 5C9, Canada. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. FU UTA; NSR; DHS [CBET-0736172, DOD HDTRA1-08-P-0034]; Department of Defense Breast Cancer Research Program (BCRP); Office of the Congressionally Directed Medical Research Programs (CDMRP) [W81XWH-08-1-0450]; Department of Energy's Office of Biological and Environmental Research; NSERC; NRC; CIHR; University of Saskatchewan; [DE-AC06-76RLO1830] FX This work is supported by the Startup and LERR Funds from UTA, the NSR and DHS joint program (CBET-0736172), DOD HDTRA1-08-P-0034, and the Department of Defense Breast Cancer Research Program (BCRP) of the Office of the Congressionally Directed Medical Research Programs (CDMRP) (W81XWH-08-1-0450). Part of the research described in this paper was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RLO1830. The Canadian Light Source is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. NR 21 TC 24 Z9 24 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 18 PY 2008 VL 112 IS 37 BP 14292 EP 14296 DI 10.1021/jp803649k PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 347KT UT WOS:000259140700014 ER PT J AU Zhang, C Allotta, PM Xiong, G Stair, PC AF Zhang, Chao Allotta, Paula M. Xiong, Guang Stair, Peter C. TI UV-Raman and fluorescence spectroscopy of benzene adsorbed inside zeolite pores SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VIBRONIC LEVEL FLUORESCENCE; HOST-GUEST INTERACTIONS; FT-RAMAN; RESONANCE RAMAN; ABSORPTION-SPECTRUM; BINARY ADSORPTION; 260-NM TRANSITION; SILICEOUS ZSM-5; GAMMA-ALUMINA; ULTRAVIOLET AB UV-Raman spectroscopy was used to investigate the host-guest interactions of benzene molecules adsorbed within siliceous MFI. With use of 244 nm ultraviolet laser light as the excitation source, several new peaks appear in the spectra. These peaks are not expected from normal Raman scattering of liquid benzene and not seen in the FT-Raman spectra of benzene in silicalite, but appear in the UV-Raman spectra because of the Raman resonance effect. Further investigations diminish the possibility that the new peaks are due to laser-induced chemical reactions. The fluorescence spectra show the fluorescence bands of benzene with vibration progressions, which suggests that the adsorbed benzene molecules are not clustered. Considering that the dimensions of benzene molecules closely match the channel sizes of MFI, it is proposed that the symmetry of D-6h-benzene in the excited state degrades to lower symmetry upon adsorption due to compression of benzene molecules inside MFI pores. In support of this result, UV-Raman spectra of toluene in MFI and benzene adsorbed in zeolite Beta were also studied. C1 [Zhang, Chao; Allotta, Paula M.; Stair, Peter C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Dept Chem, Evanston, IL 60208 USA. [Zhang, Chao; Allotta, Paula M.; Stair, Peter C.] Northwestern Univ, Inst Environm Catalysis, Evanston, IL 60208 USA. [Xiong, Guang; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Ctr Catalysis & Surface Sci, Dept Chem, Evanston, IL 60208 USA. EM pstair@northwestern.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-97ER14789] FX Financial support of this work was provided by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-97ER14789. NR 41 TC 5 Z9 5 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 18 PY 2008 VL 112 IS 37 BP 14501 EP 14507 DI 10.1021/jp804291x PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 347KT UT WOS:000259140700042 ER PT J AU Li, Y Baledent, V Barisic, N Cho, Y Fauque, B Sidis, Y Yu, G Zhao, X Bourges, P Greven, M AF Li, Y. Baledent, V. Barisic, N. Cho, Y. Fauque, B. Sidis, Y. Yu, G. Zhao, X. Bourges, P. Greven, M. TI Unusual magnetic order in the pseudogap region of the superconductor HgBa(2)CuO(4+delta) SO NATURE LA English DT Article ID HIGH-T-C; METALS; STATES; MODEL AB The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high- transition- temperature (high-T(c)) superconductivity, characterized by anomalous physical properties(1,2). There are open questions about the number of distinct phases and the possible presence of a quantum- critical point underneath the superconducting dome(3-5). The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa(2)Cu(3)O(6+delta) (YBCO) resulted in contradictory claims of no(6,7) and weak(8,9) magnetic order, and the interpretation of muon spin relaxation measurements on YBCO(10,11) and of circularly polarized photoemission experiments on Bi(2)Sr(2)CaCu(2)O(8+delta) ( refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa(2)CuO(4+delta) (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO(14,15), this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature(16-18) rather than a phase transition temperature(19-21). Instead, they are consistent with a variant of previously proposed charge- current- loop order(19,20) that involves apical oxygen orbitals(22), and with the notion that many of the unusual properties arise from the presence of a quantum- critical point(3-5,19). C1 [Barisic, N.; Cho, Y.; Zhao, X.; Greven, M.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Li, Y.; Yu, G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Baledent, V.; Fauque, B.; Sidis, Y.; Bourges, P.] CEA Saclay, CNRS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France. [Barisic, N.] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Cho, Y.] Pusan Natl Univ, BK21 Team Nano Fus Technol, Pusan 609735, South Korea. [Zhao, X.] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Coll Chem, Changchun 130012, Peoples R China. [Greven, M.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Greven, M (reprint author), Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. EM greven@stanford.edu RI Yu, Guichuan/K-4025-2014; Barisic, Neven/E-4246-2015 FU US Department of Energy; National Science Foundation FX We thank H. Alloul and C. Varma for comments. The work at Stanford University was supported by grants from the US Department of Energy and the National Science Foundation. NR 30 TC 169 Z9 171 U1 6 U2 69 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 18 PY 2008 VL 455 IS 7211 BP 372 EP 375 DI 10.1038/nature07251 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 349EX UT WOS:000259265200040 PM 18800135 ER PT J AU Valentine, J Zhang, S Zentgraf, T Ulin-Avila, E Genov, DA Bartal, G Zhang, X AF Valentine, Jason Zhang, Shuang Zentgraf, Thomas Ulin-Avila, Erick Genov, Dentcho A. Bartal, Guy Zhang, Xiang TI Three-dimensional optical metamaterial with a negative refractive index SO NATURE LA English DT Article ID TRANSMISSION; FREQUENCIES; TERAHERTZ; LIGHT AB Metamaterials are artificially engineered structures that have properties, such as a negative refractive index(1-4), not attainable with naturally occurring materials. Negative- index metamaterials (NIMs) were first demonstrated for microwave frequencies(5,6), but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals(7,8). Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two- dimensional waveguide(9). Three- dimensional ( 3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction(10,11). Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 ( that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices(12,13), compact resonators and highly directional sources(14). C1 [Valentine, Jason; Zhang, Shuang; Zentgraf, Thomas; Ulin-Avila, Erick; Genov, Dentcho A.; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; zhang, shuang/G-5224-2011; Valentine, Jason/A-6121-2012; ulin-avila, erick/M-3278-2014; Zentgraf, Thomas/G-8848-2013 OI Zentgraf, Thomas/0000-0002-8662-1101 FU US Army Research Office (ARO) MURI programme [50432-PH-MUR]; NSF Nano-scale Science and Engineering Center [DMI-0327077]; Alexander von Humboldt Foundation; Office of Science; Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX We acknowledge funding support from US Army Research Office (ARO) MURI programme 50432-PH-MUR and partly by the NSF Nano-scale Science and Engineering Center DMI-0327077. We thank H. Bechtel and M. C. Martin for assisting in measurements of near-infrared transmission and reflection, and S. R. J. Brueck for discussion. T.Z. acknowledges a fellowship from the Alexander von Humboldt Foundation. Multilayer deposition was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 30 TC 1049 Z9 1084 U1 76 U2 708 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD SEP 18 PY 2008 VL 455 IS 7211 BP 376 EP U32 DI 10.1038/nature07247 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 349EX UT WOS:000259265200041 PM 18690249 ER PT J AU Bhaumik, D Scott, GK Schokrpur, S Patil, CK Campisi, J Benz, CC AF Bhaumik, D. Scott, G. K. Schokrpur, S. Patil, C. K. Campisi, J. Benz, C. C. TI Expression of microRNA-146 suppresses NF-kappa B activity with reduction of metastatic potential in breast cancer cells SO ONCOGENE LA English DT Article DE NF-kappa B; miRNA-146; metastatic breast cancer ID RECEPTOR; INTERLEUKIN-1; SECRETION; ACTIVATION; SURVIVAL; INVASION; IMMUNITY; PATHWAY; PLAYERS AB Cancer cells often acquire a constitutively active nuclear factor-kappa B (NF-kappa B) program to promote survival, proliferation and metastatic potential by mechanisms that remain largely unknown. Extending observations from an immunologic setting, we demonstrate that microRNA-146a and microRNA-146b (miR-146a/b) when expressed in the highly metastatic human breast cancer cell line MDA-MB-231 function to negatively regulate NF-kappa B activity. Lentiviral-mediated expression of miR-146a/b significantly downregulated interleukin (IL)-1 receptor-associated kinase and TNF receptor-associated factor 6, two key adaptor/scaffold proteins in the IL-1 and Toll-like receptor signaling pathway, known to positively regulate NF-kappa B activity. Impaired NF-kappa B activity was evident from reduced phosphorylation of the NF-kappa B inhibitor I kappa B alpha, reduced NF-kappa B DNA-binding activity and suppressed expression of the NF-kappa B target genes IL-8, IL-6 and matrix metalloproteinase-9. Functionally, miR-146a/b-expressing MDA-MB-231 cells showed markedly impaired invasion and migration capacity relative to control cells. These findings implicate miR-146a/b as a negative regulator of constitutive NF-kappa B activity in a breast cancer setting and suggest that modulating miR-146a/b levels has therapeutic potential to suppress breast cancer metastases. C1 [Bhaumik, D.; Scott, G. K.; Schokrpur, S.; Campisi, J.; Benz, C. C.] Buck Inst Age Res, Novato, CA 94945 USA. [Patil, C. K.; Campisi, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Scott, GK (reprint author), Buck Inst Age Res, 8001 Redwood Blvd, Novato, CA 94945 USA. EM gscott@buckinstitute.org FU NIH [R01CA36773, P01-AG025901, P50-CA58207, R37-AG09909] FX This work was supported in part by NIH grants R01CA36773, P01-AG025901, P50-CA58207 and R37-AG09909 as well as Hazel P Munroe memorial funding to the Buck Institute. NR 26 TC 329 Z9 362 U1 2 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD SEP 18 PY 2008 VL 27 IS 42 BP 5643 EP 5647 DI 10.1038/onc.2008.171 PG 5 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 349KX UT WOS:000259280800010 PM 18504431 ER PT J AU Amsler, C Doser, M Antonelli, M Asner, DA Babu, KS Baer, H Band, HR Barnett, RM Bergren, E Beringer, J Bernardi, G Bertl, V Bichsel, H Biebel, O Bloch, P Blucher, E Blusk, S Cahn, RN Carena, M Caso, C Cecccci, A Chakraborty, D Chen, MC Chivukula, RS Cowan, G Dahl, O D'Ambrosio, G Damour, T de Gouvea, A DeGrand, T Dobrescu, B Drees, A Edwards, DA Eidelman, S Elvira, VD Erler, J Ezhela, VV Feng, JL Fetscher, W Fields, BD Foster, B Gaisser, TK Garren, L Gerber, HJ Gerbier, G Gherghetta, T Giudice, GF Goodman, A Grab, C Gritsan, AV Grivaz, JF Groom, DE Grunewald, M Gurtu, A Gutsche, T Haber, HE Hagiwara, K Hagmann, C Hayes, KG Hernandez-Rey, JJ Hikasa, K Hincliliffe, I Hocker, A Huston, J Igo-Kemenes, P Jackson, JD Johnson, KF Junk, T Karlen, D Kayser, B Kirkby, D Klein, SR Knowles, IG Kolda, C Kowalewski, RV Kreitz, P Krusche, B Kuyanov, YV Kwon, Y Lahav, O Langacker, P Liddle, A Ligeti, Z Lin, CJ Liss, TM Littenberg, L Liu, JC Lugovsky, KS Lugovsky, SB Mahlke, H Mangano, ML Mannel, T Manohar, AV Marciano, WJ Martin, AD Masoni, A Milstead, M Miquel, R Moenig, K Murayama, H Nakamura, K Narain, M Nason, P Navas, S Nevski, P Nir, Y Olive, KA Pape, L Patrignani, C Peacock, JA Piepke, A Punzi, G Quadt, A Raby, S Raffelt, G Rateliff, BN Renk, B Richardson, P Roesler, S Rolli, S Romaniouk, A Rosenberg, LJ Rosner, JL Sachrajda, CT Sakai, Y Sarkar, S Sauli, F Schneider, O Scott, D Seligman, WG Shaevitz, MH Sjostrand, T Smith, JG Smoot, GF Spanier, S Spieler, H Stahl, A Stanev, T Stone, SL Surniyoshi, T Tanabashi, M Terning, J Titov, M Tkachenko, NP Tornqvist, NA Tovey, D Trilling, GH Trippe, TG Valencia, G van Bibber, K Vincter, MG Vogel, P Ward, DR Watari, T Vebber, BR Weiglein, G Wells, JD Whalley, M Wheeler, A Wohl, CG Wolfenstein, L Womersley, J Woody, CL Workmnan, RL Yamamoto, A Yao, WM Zenin, OV Zhang, J Zhu, RY Zyla, PA AF Amsler, C. Doser, M. Antonelli, M. Asner, D. M. Babu, K. S. Baer, H. Band, H. R. Barnett, R. M. Bergren, E. Beringer, J. Bernardi, G. Bertl, W. Bichsel, H. Biebel, O. Bloch, P. Blucher, E. Blusk, S. Cahn, R. N. Carena, M. Caso, C. Cecccci, A. Chakraborty, D. Chen, M. -C. Chivukula, R. S. Cowan, G. Dahl, O. D'Ambrosio, G. Damour, T. de Gouvea, A. DeGrand, T. Dobrescu, B. Drees, M. Edwards, D. A. Eidelman, S. Elvira, V. D. Erler, J. Ezhela, V. V. Feng, J. L. Fetscher, W. Fields, B. D. Foster, B. Gaisser, T. K. Garren, L. Gerber, H. -J. Gerbier, G. Gherghetta, T. Giudice, G. F. Goodman, M. Grab, C. Gritsan, A. V. Grivaz, J. -F. Groom, D. E. Gruenewald, M. Gurtu, A. Gutsche, T. Haber, H. E. Hagiwara, K. Hagmann, C. Hayes, K. G. Hernandez-Rey, J. J. Hikasa, K. Hincliliffe, I. Hoecker, A. Huston, J. Igo-Kemenes, P. Jackson, J. D. Johnson, K. F. Junk, T. Karlen, D. Kayser, B. Kirkby, D. Klein, S. R. Knowles, I. G. Kolda, C. Kowalewski, R. V. Kreitz, P. Krusche, B. Kuyanov, Yu. V. Kwon, Y. Lahav, O. Langacker, P. Liddle, A. Ligeti, Z. Lin, C. -J. Liss, T. M. Littenberg, L. Liu, J. C. Lugovsky, K. S. Lugovsky, S. B. Mahlke, H. Mangano, M. L. Mannel, T. Manohar, A. V. Marciano, W. J. Martin, A. D. Masoni, A. Milstead, D. Miquel, R. Moenig, K. Murayama, H. Nakamura, K. Narain, M. Nason, P. Navas, S. Nevski, P. Nir, Y. Olive, K. A. Pape, L. Patrignani, C. Peacock, J. A. Piepke, A. Punzi, G. Quadt, A. Raby, S. Raffelt, G. Rateliff, B. N. Renk, B. Richardson, P. Roesler, S. Rolli, S. Romaniouk, A. Rosenberg, L. J. Rosner, J. L. Sachrajda, C. T. Sakai, Y. Sarkar, S. Sauli, F. Schneider, O. Scott, D. Seligman, W. G. Shaevitz, M. H. Sjostrand, T. Smith, J. G. Smoot, G. F. Spanier, S. Spieler, H. Stahl, A. Stanev, T. Stone, S. L. Surniyoshi, T. Tanabashi, M. Terning, J. Titov, M. Tkachenko, N. P. Tornqvist, N. A. Tovey, D. Trilling, G. H. Trippe, T. G. Valencia, G. van Bibber, K. Vincter, M. G. Vogel, P. Ward, D. R. Watari, T. Vebber, B. R. Weiglein, G. Wells, J. D. Whalley, M. Wheeler, A. Wohl, C. G. Wolfenstein, L. Womersley, J. Woody, C. L. Workmnan, R. L. Yamamoto, A. Yao, W-M. Zenin, O. V. Zhang, J. Zhu, R. -Y. Zyla, P. A. CA Particle Data Grp TI Review of particle physics SO PHYSICS LETTERS B LA English DT Review ID DEEP-INELASTIC-SCATTERING; SUPERSYMMETRIC STANDARD MODEL; MICROWAVE-ANISOTROPY-PROBE; TO-LEADING-ORDER; PHOTON STRUCTURE-FUNCTION; GRAND UNIFIED THEORIES; ANOMALOUS MAGNETIC-MOMENT; ELECTROWEAK SYMMETRY-BREAKING; HIGGS-BOSON MASSES; UB-VERTICAL-BAR AB This biennial Review summarizes much of particle physics. Using data from previous editions., plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors., probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology. C1 [Caso, C.; Patrignani, C.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. [Amsler, C.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Doser, M.; Bloch, P.; Cecccci, A.; Giudice, G. F.; Gurtu, A.; Hoecker, A.; Mangano, M. L.; Roesler, S.; Sauli, F.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Antonelli, M.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Asner, D. M.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Babu, K. S.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Baer, H.; Johnson, K. F.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Band, H. R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Barnett, R. M.; Beringer, J.; Cahn, R. N.; Dahl, O.; Hincliliffe, I.; Jackson, J. D.; Ligeti, Z.; Lin, C. -J.; Murayama, H.; Smoot, G. F.; Spieler, H.; Trilling, G. H.; Trippe, T. G.; Wohl, C. G.; Yao, W-M.; Zyla, P. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Bernardi, G.] CNRS, LPNHE, IN2P3, F-75252 Paris, France. [Bernardi, G.] Univ Paris 06, F-75252 Paris, France. [Bernardi, G.] Univ Paris 07, F-75252 Paris, France. [Bertl, W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Bichsel, H.; Rosenberg, L. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Biebel, O.] Univ Munich, Dept Phys, D-80799 Munich, Germany. [Blucher, E.; Carena, M.; Rosner, J. L.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Blusk, S.; Stone, S. L.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Carena, M.; Dobrescu, B.; Elvira, V. D.; Garren, L.; Junk, T.; Kayser, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Caso, C.; Patrignani, C.] Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chakraborty, D.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chen, M. -C.; Feng, J. L.; Kirkby, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Chivukula, R. S.; Huston, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Cowan, G.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [D'Ambrosio, G.] Napoli Complesso Univ Monte St Angelo, INFN Sez, I-80126 Naples, Italy. [Damour, T.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [de Gouvea, A.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [DeGrand, T.; Smith, J. G.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Drees, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Edwards, D. A.] DESY, D-22603 Hamburg, Germany. [Eidelman, S.] Budker Inst Nucl Phys, RU-630090 Novosibirsk, Russia. [Erler, J.] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Teor, Mexico City 04510, DF, Mexico. [Ezhela, V. V.; Kuyanov, Yu. V.; Lugovsky, K. S.; Lugovsky, S. B.; Tkachenko, N. P.; Zenin, O. V.] Inst High Energy Phys, COMPAS Grp, RU-142284 Protvino, Russia. [Fetscher, W.; Gerber, H. -J.; Grab, C.; Pape, L.] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Fields, B. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foster, B.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Gaisser, T. K.; Stanev, T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Gerbier, G.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Gherghetta, T.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Goodman, M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Grivaz, J. -F.] CNRS, LAL, IN2P3, F-91898 Orsay, France. [Grivaz, J. -F.] Univ Paris 11, F-91898 Orsay, France. [Gruenewald, M.] Univ Ghent, Dept Subat Phys, B-9000 Ghent, Belgium. [Gurtu, A.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gutsche, T.] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Haber, H. E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Hagiwara, K.; Nakamura, K.; Sakai, Y.; Yamamoto, A.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hagmann, C.; van Bibber, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hayes, K. G.] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA. [Hernandez-Rey, J. J.] Univ Politecn Valencia, CSIC, IFIC, Inst Fis Corpuscular, E-46071 Valencia, Spain. [Hikasa, K.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Igo-Kemenes, P.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Karlen, D.; Kowalewski, R. V.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Knowles, I. G.; Peacock, J. A.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3JZ, Midlothian, Scotland. [Kolda, C.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Kreitz, P.; Liu, J. C.; Rateliff, B. N.; Spanier, S.; Wheeler, A.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Krusche, B.] Univ Basel, Inst Phys, CH-4056 Basel, Switzerland. [Kwon, Y.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Langacker, P.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Liddle, A.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Liss, T. M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Littenberg, L.; Marciano, W. J.; Nevski, P.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Mahlke, H.] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Mannel, T.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Manohar, A. V.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Martin, A. D.; Richardson, P.; Weiglein, G.; Whalley, M.] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. [Masoni, A.] Cittadella Univ Monserrato, Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Monserrato, CA, Italy. [Milstead, D.] Stockholm Univ, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden. [Miquel, R.] Inst Fis Altes Energies, Inst Catalana Recerca & Estudis Avancats, E-08193 Barcelona, Spain. [Moenig, K.] DESY Zeuthen, D-15735 Zeuthen, Germany. [Murayama, H.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Murayama, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Narain, M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Nason, P.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Navas, S.] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain. [Navas, S.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Nir, Y.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Olive, K. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Punzi, G.] Univ Pisa, INFN, I-56127 Pisa, Italy. [Punzi, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Quadt, A.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Raby, S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Raffelt, G.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Renk, B.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Rolli, S.] Tufts Univ, Medford, MA 02155 USA. [Romaniouk, A.] Moscow Engn & Phys Inst, Moscow 115409, Russia. [Sachrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Seligman, W. G.] Columbia Univ, Nevis Labs, Irvington, NY 10533 USA. [Shaevitz, M. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Sjostrand, T.] Lund Univ, Dept Theoret Phys, S-22362 Lund, Sweden. [Stahl, A.] Rhein Westfal TH Aachen, Inst Phys 3, Phys Zentrum, D-52056 Aachen, Germany. [Surniyoshi, T.] Tokyo Metropolitan Univ, High Energy Phys Lab, Tokyo 1920397, Japan. [Tanabashi, M.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Terning, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Tornqvist, N. A.] Univ Helsinki, Dept Phys Sci, FIN-00014 Helsinki, Finland. [Tovey, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Valencia, G.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Vogel, P.] CALTECH, Kellogg Radiat Lab 106 38, Pasadena, CA 91125 USA. [Ward, D. R.; Vebber, B. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Watari, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Wells, J. D.] Univ Michigan, Randall Lab 2477, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Wolfenstein, L.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Womersley, J.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Woody, C. L.] George Washington Univ Virginia Campus, Dept Phys, Ashburn, VA 20147 USA. [Zhang, J.] Chinese Acad Sci, IHEP, Beijing 100049, Peoples R China. [Zhu, R. -Y.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Caso, C (reprint author), Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. RI Patrignani, Claudia/C-5223-2009; Stahl, Achim/E-8846-2011; Chivukula, R. Sekhar/C-3367-2012; Punzi, Giovanni/J-4947-2012; Murayama, Hitoshi/A-4286-2011; Hernandez-Rey, Juan Jose/N-5955-2014; Sarkar, Subir/G-5978-2011; Navas, Sergio/N-4649-2014; OI Chen, Mu-Chun/0000-0002-5749-2566; Olive, Keith/0000-0001-7201-5998; Scott, Douglas/0000-0002-6878-9840; Sjostrand, Torbjorn/0000-0002-7630-8605; Watari, Taizan/0000-0002-8879-1008; Miquel, Ramon/0000-0002-6610-4836; Patrignani, Claudia/0000-0002-5882-1747; Stahl, Achim/0000-0002-8369-7506; Chivukula, R. Sekhar/0000-0002-4142-1077; Punzi, Giovanni/0000-0002-8346-9052; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Sarkar, Subir/0000-0002-3542-858X; Navas, Sergio/0000-0003-1688-5758; Webber, Bryan/0000-0001-7474-0990; Nason, Paolo/0000-0001-9250-246X FU Office of Science; Office of High Energy and Nuclear Physics; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation [PHY-0652989]; European Laboratory for Particle Physics (CERN) FX The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, the Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by the U.S. National Science Foundation under Agreement No. PHY-0652989; by the European Laboratory for Particle Physics (CERN); by all implementing arrangement between the governments of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology) and the United States (DOE) on cooperative research and development; and by the Italian National Institute of Nuclear Physics (INFN). NR 4749 TC 4357 Z9 4380 U1 119 U2 1010 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 18 PY 2008 VL 667 IS 1-5 BP 1 EP + DI 10.1016/j.physletb.2008.07.018 PG 1314 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 347WD UT WOS:000259171200001 ER PT J AU Galperin, M Nitzan, A Ratner, MA AF Galperin, Michael Nitzan, Abraham Ratner, Mark A. TI The non-linear response of molecular junctions: the polaron model revisited SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID QUANTUM TRANSPORT AB A polaron model proposed as a possible mechanism for non-linear conductance (Galperin et al 2005 Nano Lett. 5 125-30) is revisited with the focus on the differences between the weak and strong molecule-lead coupling cases. Within the one-molecule-level model we present an approximate expression for the electronic Green function corresponding to the inelastic transport case, which in the appropriate limits reduces to expressions presented previously for the isolated molecule and for a molecular junction coupled to a slow vibration (static limit). The relevance of considerations based on the isolated molecule limit to understanding properties of molecular junctions is discussed. C1 [Galperin, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Galperin, Michael] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nitzan, Abraham] Tel Aviv Univ, Sackler Fac Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Ratner, Mark A.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. RP Galperin, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM galperin@lanl.gov; nitzan@post.tau.ac.il; ratner@chem.northwestern.edu RI Abraham, Nitzan/A-9963-2008; Galperin, Michael/B-2838-2011 OI Galperin, Michael/0000-0002-1401-5970 FU Israel Science Foundation; US-Israel Binational Science Foundation; German-Israel Foundation FX MG thanks Yuri M Galperin, Ivar Martin, and Andrei Komnik for stimulating discussions. MG gratefully acknowledges the support of a LANL Director's Postdoctoral Fellowship. AN thanks the Israel Science Foundation, the US-Israel Binational Science Foundation and the German-Israel Foundation for financial support. MR thanks the NSF/MRSEC for support, through the NU-MRSEC. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 17 TC 33 Z9 33 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 17 PY 2008 VL 20 IS 37 AR 374107 DI 10.1088/0953-8984/20/37/374107 PG 6 WC Physics, Condensed Matter SC Physics GA 341SH UT WOS:000258734700009 PM 21694414 ER PT J AU Hybertsen, MS Venkataraman, L Klare, JE CWhalley, A Steigerwald, ML Nuckolls, C AF Hybertsen, Mark S. Venkataraman, Latha Klare, Jennifer E. CWhalley, Adam Steigerwald, Michael L. Nuckolls, Colin TI Amine-linked single-molecule circuits: systematic trends across molecular families SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SELF-ASSEMBLED MONOLAYER; JUNCTION CONDUCTANCE; ELECTRONIC TRANSPORT; GOLD(111) SURFACE; CHARGE-TRANSPORT; ADSORPTION; DEPENDENCE; CONTACTS; CONDUCTIVITY; TRANSISTORS AB A comprehensive review is presented of single-molecule junction conductance measurements across families of molecules measured while breaking a gold point contact in a solution of molecules with amine end groups. A theoretical framework unifies the picture for the amine-gold link bonding and the tunnel coupling through the junction using density functional theory based calculations. The reproducible electrical characteristics and utility for many molecules is shown to result from the selective binding between the gold electrodes and amine link groups through a donor-acceptor bond to undercoordinated gold atoms. While the bond energy is modest, the maximum force sustained by the junction is comparable to, but less than, that required to break gold point contacts. The calculated tunnel coupling provides conductance trends for all 41 molecule measurements presented here, as well as insight into the variability of conductance due to the conformational changes within molecules with torsional degrees of freedom. The calculated trends agree to within a factor of 2 with the measured values for conductance ranging from 10(-7)G(0) to 10(-2)G(0), where G(0) is the quantum of conductance (2e(2)/h). C1 [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Venkataraman, Latha; Klare, Jennifer E.; CWhalley, Adam; Nuckolls, Colin] Columbia Univ, Ctr Elect Transport Mol Nanostruct, New York, NY USA. [Klare, Jennifer E.; CWhalley, Adam; Steigerwald, Michael L.; Nuckolls, Colin] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu OI Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 FU Nanoscale Science and Engineering Initiative of the National Science Foundation (NSF) [CHE-0641523]; New York State Office of Science, Technology, and Academic Research (NYSTAR); US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NSF [DMR0213574] FX This work was supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation (NSF) under NSF award number CHE-0641523 and by the New York State Office of Science, Technology, and Academic Research (NYSTAR). This work was supported in part by the US Department of Energy, Office of Basic Energy Sciences, under contract number DE-AC02-98CH10886 and by the MRSEC Program of the NSF under Award number DMR0213574. NR 61 TC 90 Z9 90 U1 4 U2 43 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 17 PY 2008 VL 20 IS 37 AR 374115 DI 10.1088/0953-8984/20/37/374115 PG 14 WC Physics, Condensed Matter SC Physics GA 341SH UT WOS:000258734700017 PM 21694422 ER PT J AU Banerjee, S Malliakas, CD Jang, JI Ketterson, JB Kanatzidis, MG AF Banerjee, Santanu Malliakas, Christos D. Jang, Joon I. Ketterson, John B. Kanatzidis, Mercouri G. TI 1/(infinity)[ZrPSe6-]: A soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID 2ND-ORDER OPTICAL NONLINEARITY; PHASE-CHANGE PROPERTIES; D(0) TRANSITION-METALS; CRYSTAL-STRUCTURE; RB; SELENOPHOSPHATE; FILMS; ANION; THIOPHOSPHATE; SN2P2S6 AB Zirconium selenophosphate compounds with a unique polar structure show strong second harmonic generation and they dissolve in polar solvent to produce photoluminescent solutions. C1 [Banerjee, Santanu; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Jang, Joon I.; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Ketterson, John/B-7234-2009 FU National Science Foundation (NSF) [DMR-0801855]; NSF/Department of Energy (DOE) [CHE-0535644] FX Financial Support from the National Science Foundation (NSF) (DMR-0801855) is gratefully acknowledged. ChemMatCARS Sector 15 is principally supported by the NSF/ Department of Energy (DOE) under Grant Number CHE-0535644. The Advanced Photon Source at Argonne National Laboratory is supported by the DOE, Office of Science, Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357. NR 53 TC 59 Z9 60 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 17 PY 2008 VL 130 IS 37 BP 12270 EP + DI 10.1021/ja804166m PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 347KO UT WOS:000259139900035 PM 18715000 ER PT J AU Owen, JS Park, J Trudeau, PE Alivisatos, AP AF Owen, Jonathan S. Park, Jungwon Trudeau, Paul-Emile Alivisatos, A. Paul TI Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CDSE NANOCRYSTALS; GOLD NANOPARTICLE; GROWTH; STOICHIOMETRY; SPECTROSCOPY; MORPHOLOGY; BINDING AB The surface chemistry of cadmium selenide nanocrystals, prepared from tri-n-octylphosphine selenide and cadmium octadecylphosphonate in tri-n-octylphosphine oxide, was studied with (1)H and {(1)H}(31)P NMR spectroscopy as well as ESI-MS and XPS. The identity of the surface ligands was inferred from reaction of nanocrystals with Me(3)Si-X (X = -S-SiMe(3), -Se-SiMe(3), -Cl and -S-(CH(2)CH(2)O)(4)OCH(3))) and unambiguous assignment of the organic byproducts, O,O'-bis(trimethylsilyl)octadecylphosphonic acid ester and O, O'-bis(trimethylsilyl)ocatdecylphosphonic acid anhydride ester. Nanocrystals isolated from these reactions have undergone exchange of the octadecylphosphonate ligands for -X as was shown by (1)H NMR (X = -S-(CH(2)CH(2)O)(4)OCH(3)) and XPS (X = -Cl). Addition of free thiols to as prepared nanocrystals results in binding of the thiol to the particle surface and quenching of the nanocrystal fluorescence. Isolation of the thiol-ligated nanocrystals shows this chemisorption proceeds without displacement of the octadecylphosphonate ligands, suggesting the presence of unoccupied Lewis-acidic sites on the particle surface. In the presence of added triethylamine, however, the octadecylphosphonate ligands are readily displaced from the particle surface as was shown with (1)H and {(1)H}(31)P NMR. These results, in conjunction with previous literature reports, indicate that as-prepared nanocrystal surfaces are terminated by X-type binding of octadecylphosphonate moieties to a layer of excess cadmium ions. C1 [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015; Park, Jungwon/O-1153-2016; OI Alivisatos , Paul /0000-0001-6895-9048; Park, Jungwon/0000-0003-2927-4331; Owen, Jonathan/0000-0001-5502-3267 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Dr. Anthony lavarone of the QB3/Chemistry Mass Spectrometry Facility at UC Berkeley for assistance with mass spectrometry measurements P.-E.T. acknowledges Matt Sheldon for assistance with XPS measurements. NR 24 TC 203 Z9 205 U1 28 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 17 PY 2008 VL 130 IS 37 BP 12279 EP + DI 10.1021/ja804414f PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 347KO UT WOS:000259139900038 PM 18722426 ER PT J AU Culp, JT Smith, MR Bittner, E Bockrath, B AF Culp, Jeffrey T. Smith, Milton R. Bittner, Edward Bockrath, Bradley TI Hysteresis in the physisorption of CO2 and N-2 in a flexible pillared layer nickel cyanide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORK; SPIN-CROSSOVER BEHAVIOR; COORDINATION POLYMERS; CLATHRATE-FORMATION; SORPTION PROPERTIES; HYDROGEN-BONDS; ADSORPTION; COMPLEX; TRANSFORMATION; FLEXIBILITY AB Rare hysteretic adsorption/desorption isotherms are reported for CO2 and N-2 on a pillared Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)(4)] compound (NiBpeneNiCN). The hysteresis occurs under moderate pressure and at temperatures above the critical temperatures of the respective gases. Powder X-ray diffraction measurements indicate that the material is an extended three-dimensional analogue of the well-known Hofmann clathrates which is formed through axial bridging of the in-plane octahedral Ni sites by the bidentate 1,2-bis(4-pyridyl) ethylene. The hysteretic behavior toward guest adsorption and desorption is attributed to a structural phase transition in the material resulting from a variation in the tilt angle of the 1,2-bis(4-pyridyl)ethylene pillars. Kinetics studies on the desorption of acetone from the material show two first-order processes with two rate constants yielding activation energies of 68 and 55 kJ/mol when loadings are greater than 1 equiv of acetone per formula unit. The CO2 adsorption/desorption isotherms on the series of structurally similar Ni(L)[Ni(CN)(4)] compounds, where L = pyrazine, 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane, and dipyridylacetylene, are also reported. In contrast to NiBpeneNiCN, the rigid members of this series show normal type I isotherms with no measureable hysteresis and no significant structural changes during the adsorption/desorption cycle, while the flexible 1,2-bis(4-pyridyl)ethane-bridged sample collapses in the guest-free state and shows no significant adsorption of CO2. C1 [Culp, Jeffrey T.; Smith, Milton R.; Bittner, Edward; Bockrath, Bradley] Natl Energy Technol Lab, US Dept Energy, Pittsburgh, PA 15236 USA. [Culp, Jeffrey T.] Parsons, South Pk, PA USA. RP Culp, JT (reprint author), Natl Energy Technol Lab, US Dept Energy, POB 10940, Pittsburgh, PA 15236 USA. EM Jeffrey.Culp@pp.netl.doe.gov RI Culp, Jeffrey/B-1219-2010 OI Culp, Jeffrey/0000-0002-7422-052X FU National Energy Technology Laboratory [DE-AC26-04NT41817]; Oak Ridge Institute for Scientific Education (ORISE) FX This technical effort was performed in Support of the National Energy Technology Laboratory's ongoing research in CO, capture under the RIDS contract DE-AC26-04NT41817. M.R.S. and E.B. were supported through an Oak Ridge Institute for Scientific Education (ORISE) Faculty Research Appointment at NETL. The authors thank Elizabeth Frommell at NETL for her assistance with the powder X-ray diffraction measurements and Sheila Hedges at NETL for her assistance with the TGA measurements. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the United States Department of Energy. NR 37 TC 84 Z9 84 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 17 PY 2008 VL 130 IS 37 BP 12427 EP 12434 DI 10.1021/ja802474b PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 347KO UT WOS:000259139900057 PM 18717562 ER PT J AU Bart, SC Anthon, C Heinemann, FW Bill, E Edelstein, NM Meyer, K AF Bart, Suzanne C. Anthon, Christian Heinemann, Frank W. Bill, Eckhard Edelstein, Norman M. Meyer, Karsten TI Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DIALKYL-CARBAMATE COMPLEXES; ELECTRON-TRANSFER REACTIONS; NITROGEN SIGMA-BONDS; IMIDO COMPLEXES; ORGANOURANIUM COMPLEXES; TRANSITION-ELEMENTS; MOLECULAR-STRUCTURE; EXCHANGE-REACTIONS; CRYSTAL-STRUCTURES; PHENYL ISOCYANATE AB Sterically pressured mid- to high-valent uranium complexes with an aryloxide substituted triazacyclononane ligand scaffold, [(((R)ArO)(3)tacn)(3-)], were studied for carbon dioxide activation and transformation chemistry. The high valent uranium(V) imido species [(((R)ArO)(3)tacn)U(NR)] (R = (t)Bu, R' = 2,4,6-trimethylphenyl (2-(t)Bu); R = Ad, R' = 2,4,6-trimethylphenyl (2-Ad); R = (t)Bu, R' = phenyl (3-(t)Bu)) were synthesized and spectroscopically characterized. X-ray crystallography of the tert-butyl mesityl imido derivative, 2-(t)Bu, reveals coordination of a bent imido fragment with a relatively long U-N bond distance of 2.05 angstrom. The mesityl imido complexes reacted with carbon dioxide, readily extruding free isocyanate to produce uranium(V) terminal oxo species, [ (((R)ArO)(3)tacn)U(O)] (R = (t)Bu (4-(t)Bu), Ad (4-Ad)), presumably through multiple bond metathesis via a uranium(V) carbimate intermediate. Using the smaller phenyl imido fragment in 3-(t)Bu slowed isocyanate loss, allowing the uranium(V) carbimate intermediate to undergo a second metathesis reaction, ultimately producing the diphenyl ureate derivative, [(((tBu)ArO)(3)tacn)U(NPh(2))CO] (5-(t)Bu). Single crystal X-ray diffraction studies were carried out on both uranium(V) terminal oxo complexes and revealed short U-O bonds (1.85 angstrom) indicative of a formal U O triple bond. The electronic structure of the oxo U(V) complexes was investigated by electronic absorption and EPR spectroscopies as well as SQUID magnetization and DFT studies, which indicated that their electronic properties are highly unusual. To obtain insight into the reactivity Of CO(2) With U-N bonds, the reaction of the uranium(IV) amide species, [(((R)ArO)(3)tacn)U(NHMes)] (R = (t)Bu (6-(t)Bu), Ad (6-Ad) with carbon dioxide was investigated. These reactions produced the uranium(IV) carbamate complexes, [(((R)ArO)(3)tacn)U(CO(2)NHMes)] (R = (t)Bu (7-(t)Bu), Ad (7-Ad)), resulting from insertion of carbon dioxide into U-N(amide) bonds. The molecular structures of the synthesized uranium carbamate complexes highlight the different reactivities due to the steric pressure introduced by the alkyl derivatized tris(aryloxide) triazacyclononane ligand. The sterically open tert-butyl derivative creates a monodentate eta(1)-O bound carbamate species, while the sterically more bulky adamantyl-substituted compound forces a bidentate kappa(2)-O,O coordination mode of the carbamate ligand. C1 [Bart, Suzanne C.; Anthon, Christian; Heinemann, Frank W.; Meyer, Karsten] Univ Erlangen Nurnberg, Dept Chem & Pharm Inorgan Chem, D-91058 Erlangen, Germany. [Edelstein, Norman M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Bill, Eckhard] Max Planck Inst Bioinorgan Chem, D-45470 Mulheim, Germany. RP Meyer, K (reprint author), Univ Erlangen Nurnberg, Dept Chem & Pharm Inorgan Chem, Egerlandstr 1, D-91058 Erlangen, Germany. EM kmeyer@chemie.uni-erlangen.de RI Meyer, Karsten/G-2570-2012 OI Meyer, Karsten/0000-0002-7844-2998 FU Alexander von Humboldt Foundation; U.S. Department of Energy (DOE) [DE-FG02-O4ER 15537]; DFG FX S.C.B. would like to thank the Alexander von Humboldt Foundation for a postdoctoral fellowship. This research was supported by grants from the U.S. Department of Energy (DOE grant DE-FG02-O4ER 15537), DFG, and SFB 583. Dr. C. Hauser (FAU) is gratefully acknowledged for her assistance with preparation of this manuscript. NR 64 TC 134 Z9 134 U1 5 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 17 PY 2008 VL 130 IS 37 BP 12536 EP 12546 DI 10.1021/ja804263w PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 347KO UT WOS:000259139900070 PM 18715008 ER PT J AU Brown, P ReVelle, DO Silber, EA Edwards, WN Arrowsmith, S Jackson, LE Tancredi, G Eaton, D AF Brown, P. ReVelle, D. O. Silber, E. A. Edwards, W. N. Arrowsmith, S. Jackson, L. E., Jr. Tancredi, G. Eaton, D. TI Analysis of a crater-forming meteorite impact in Peru SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LOWER ATMOSPHERE; FRAGMENTATION; MODEL; FALL; LUMINOSITY; ALTIPLANO; DYNAMICS; MIDDLE AB The fireball producing a crater-forming meteorite fall near Carancas, Peru, on 15 September 2007 has been analyzed using eyewitness, seismic, and infrasound records. The meteorite impact, which produced a crater of 13.5 m diameter, is found to have released of order 10(10) J of energy, equivalent to similar to 2-3 tons of TNT high explosives based on infrasonic measurements. Our best fit trajectory solution places the fireball radiant at an azimuth of 82 degrees relative to the crater, with an entry angle from the horizontal of 63 degrees. From entry modeling and infrasonic energetics constraints, we find an initial energy for the fireball to be in the 0.06-0.32 kton TNT equivalent. The initial velocity for the meteoroid is restricted to be below 17 km/s from orbit considerations alone, while modeling suggests an even lower best fit velocity close to 12 km/s. The initial mass of the meteoroid is in the range of 3-9 tons. At impact, modeling suggests a final end mass of order a few metric tons and impact velocity in the 1.5-4 km/s range. We suggest that the formation of such a substantial crater from a chondritic mass was the result of the unusually high strength (and corresponding low degree of fragmentation in the atmosphere) of the meteoritic body. Additionally, the high altitude of the impact site (3800 m.a.s.l) resulted in an almost one order of magnitude higher impact speed than would have been the case for the same body impacting close to sea level. C1 [Brown, P.; Silber, E. A.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [ReVelle, D. O.; Arrowsmith, S.] Los Alamos Natl Lab, Climate & Environm Dynam Group, Meteorol Modeling Team, Los Alamos, NM 87545 USA. [Edwards, W. N.] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. [Jackson, L. E., Jr.] Nat Resources Canada, Geol Survey Canada, Pacific Div, Vancouver, BC V6B 5J3, Canada. [Tancredi, G.] Fac Ciencias, Dpto Astron, Montevideo 11400, Uruguay. [Eaton, D.] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. RP Brown, P (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM pbrown@uwo.ca FU Natural Sciences and Engineering Research council of Canada; Canada Research Chairs program FX P. G. B. thanks the Natural Sciences and Engineering Research council of Canada and the Canada Research Chairs program for support. The authors thank Dr. Hernando Tavera from the Instituto Geofisico del Peru for making available the seismic data from the UBINS site and G. Pereira from Observatorio Astronomico de Patacamaya for providing information from several witnesses. We thank the British Atmospheric Data Centre for access to the UKMO upper air weather data. The authors gratefully acknowledge helpful discussions with J. Melosh and A. R. Hildebrand. NR 33 TC 17 Z9 17 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 16 PY 2008 VL 113 IS E9 AR E09007 DI 10.1029/2008JE003105 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 351AY UT WOS:000259397600001 ER PT J AU Borovsky, JE Denton, MH AF Borovsky, Joseph E. Denton, Michael H. TI A statistical look at plasmaspheric drainage plumes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Review ID TURBULENT BOUNDARY-LAYER; GEOSYNCHRONOUS ORBIT; SOLAR-WIND; CONCENTRATION FLUCTUATIONS; GEOMAGNETIC-ACTIVITY; OUTER MAGNETOSPHERE; AURORAL SPIRALS; PLASMA CLOUDS; BULGE REGION; DENSITY AB [1] The properties of plasmaspheric drainage plumes are examined using cold-plasma measurements in geosynchronous orbit. During high-speed stream-driven storms, 210 plume crossings are collected and statistically analyzed. Plumes that persist for 4 days are common, which was the duration of our search. Plumes weaken with age, becoming narrower in local time with plasma that becomes less dense. Cold-plasma flow velocities are sunward in the plumes, with flow speeds decreasing as the storms progress. Plumes transfer typically 2 x 10(26) ions/ sec (1.2 ton/hr of protons) when they are young, and the rate of transport decreases with plume age. A total of approximately 2 x 10(31) ions (34 tons of protons) are transported via plumes in the life of a storm. About half of the outer plasmasphere is drained in the first 20 hours of a storm. Large density fluctuations in the plumes indicate that the drainage plumes are lumpy, and large velocity fluctuations of the plasma flow indicate that the drainage plumes may be turbulent. Because of their persistence, drainage plumes are anticipated to be a regular feature of any ongoing geomagnetic storm. C1 [Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Denton, Michael H.] Univ Lancaster, Dept Commun Syst, Lancaster LA1 4WA, England. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Mail Stop D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Denton, Michael/0000-0002-1748-3710 FU LDRD Program at Los Alamos National Laboratory; NSF National Space Weather Program FX The authors wish to thank Bob McPherron for providing an updated list of stream interfaces for this study. This research was supported by the LDRD Program at Los Alamos National Laboratory and by the NSF National Space Weather Program. [72] Amitava Bhattacharjee thanks Mark Adrian and Jerry Goldstein for their assistance in evaluating this paper. NR 118 TC 63 Z9 63 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 16 PY 2008 VL 113 IS A9 AR A09221 DI 10.1029/2007JA012994 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 351BG UT WOS:000259398400001 ER PT J AU Micheel, CM Zanchet, D Alivisatos, AP AF Micheel, C. M. Zanchet, D. Alivisatos, A. Paul TI Correlation analysis of TEM images of nanocrystal molecules SO LANGMUIR LA English DT Article ID FLUORESCENT NANOCRYSTALS; NANOPARTICLE GROUPINGS; GOLD NANOPARTICLES; DNA; ORGANIZATION; ARRAYS; SIZE AB Quantitative characterization of images of nanocrystals and nanostructures is a challenging but important task. The development and optimization of methods for the construction of complex nanostructures rely on imaging techniques. Computer programs were developed to quantify TEM images of nanocrystal/DNA nanostructures, and results are presented for heterodimers and trimers of gold nanocrystals. The programs presented here have also been used to analyze more complex trimers and tetramers linked by branched DNA, as well as for structures made from attaching gold nanocrystals to CdSe/ZnS core-shell quantum dots. This work has the additional goal of enabling others to quickly and easily adapt the methods for their own use. C1 [Micheel, C. M.; Zanchet, D.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley & Mat Sci Div, Dept Chem, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley & Mat Sci Div, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Zanchet, Daniela/D-6566-2012; Alivisatos , Paul /N-8863-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Zanchet, Daniela/0000-0003-1475-2548; Alivisatos , Paul /0000-0001-6895-9048; Micheel, Christine/0000-0002-7744-9039 FU Howard Hughes Medical Institute; FAPESP [01/07715-8]; LNLS; Office of Science; Office of Basic Energy Sciences; Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-05CH11231] FX C.M.M. thanks the Howard Hughes Medical Institute for the support of a Predoctoral Fellowship. D.Z. is grateful to FAPESP, Proc. 01/07715-8, and to LNLS for financial support. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.M.M. thanks Deborah Aruguete and Shelley Claridge for their helpful advice. NR 23 TC 6 Z9 6 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 16 PY 2008 VL 24 IS 18 BP 10084 EP 10088 DI 10.1021/la801101k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 347DJ UT WOS:000259120500027 PM 18702476 ER PT J AU Roland, LA McCarthy, MD Guilderson, T AF Roland, Leslie A. McCarthy, Matthew D. Guilderson, Tom TI Sources of molecularly uncharacterized organic carbon in sinking particles from three ocean basins: A coupled Delta C-14 and delta C-13 approach SO MARINE CHEMISTRY LA English DT Article DE Carbon isotopes; Particulate organic matter; Organic constituents; Resuspended sediments; Non-selective preservation; Composition ID SANTA-BARBARA BASIN; CARIACO BASIN; COMPOUND CLASSES; PACIFIC-OCEAN; WATER COLUMN; EQUATORIAL PACIFIC; AMINO-ACIDS; INORGANIC RADIOCARBON; MATTER PRESERVATION; COASTAL SEDIMENTS AB Several recent studies have suggested dramatically different ideas about the source and nature of molecularly uncharacterized organic carbon (MUC) in sinking marine particles (POC). Carbon isotope data coupled with hydrolysis has indicated MUC is lipid-like material, suggesting selective preservation [Hwang, J. and Druffel, E.R.M., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science, 299: 881-884.]. In contrast, NMR-based work has strongly indicated non-selective degradation, with amino acid dominating resistant material [Hedges, J.l. et al., 2001. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature. 409: 801-804.]. This study set out to explore this seeming paradox, and to examine the hypothesis that the nature of MUC may vary strongly between margin and open ocean regions. We examined the coupled elemental, stable and radiocarbon isotopic compositions of three fractions of sinking POC: lipids, acid soluble (AS) material (a proxy for hydrolyzable biomolecules). and acid insoluble (Al) material (a proxy for the MUC). Delta C-14 and delta C-13 measurements were made on three time-series of sediment trap samples in widely separate ocean regions: Santa Barbara Basin, Cariaco Basin, and an oceanic site in the Eastern Subtropical Atlantic off Dakar, Africa. Delta C-14 compositions of Al fractions at all sites indicated substantial contribution by pre-aged marine carbon sources (40-60% of total sinking POC), not derived from direct export of surface productivity. Comparison of delta C-13 and Delta C-14 values with coexisting lipid and AS signatures also suggested widely different Al compositions from different ocean environments. Al material in coastal California waters consistently appeared lipid-like, in agreement with several studies near the same region [Hwang, J. and Druffel, E.R.M., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science, 299: 881-884.: Hwang, J., Druffel, E. R.M., Eglinton, T.I. and Repeta. DJ., 2006b. Source(s) and cycling of the nonhydrolyzable organic fraction of oceanic particles. Geochimica et Cosmochimica Acta, 70: 5162-5168.]. In contrast, our oceanic site's Al isotopic signatures were more consistent with non-selective preservation of a range of biochemical classes. Al compositions in Cariaco Basin proved to be variable with time, suggesting a complex and variable mixture of Al sources. These results suggest a major divergence between coastal and oceanic Al sources and composition. Taken together, we propose that the dominant mechanism influencing molecularly uncharacterized material is non-selective preservation during initial water column transit; influenced to varying degrees by subsequent addition of allochthonous and C-14-depleted organic carbon sources. In our coastal margin sites, all Al properties point to resuspended sediment as the most likely source of total uncharacterizable POC. In our more oceanic site, where particles have much longer transit times, incorporation of old DOC into POC, in addition to resuspended sediment. may have a substantial influence on overall Delta C-14 ages. We propose that major differences between Al compositions in different locations is tied to variation in availability of such pre-aged OC sources, linked to regional oceanographic conditions and strongly influenced by proximity to continental shelves. The strong correlations we observe between %Al vs. %AS composition and elemental and isotopic values also implies that substantial amounts of POC collected via sediment traps in some locations is not exported directly from surface production, but added from other pre-aged reservoirs. (c) 2008 Elsevier B.V. All rights reserved. C1 [Roland, Leslie A.; McCarthy, Matthew D.; Guilderson, Tom] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, Tom] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP McCarthy, MD (reprint author), Univ Calif Santa Cruz, Dept Ocean Sci, 1156 High St, Santa Cruz, CA 95064 USA. EM mccarthy@pmc.ucsc.edu FU UC/LLNL Laboratory Directed Research and Development Program [04-ERD-060]; UCOP Campus Laboratory Collaboration Program; U.S. Department of Energy by the University of California's Lawrence Livermore National Laboratory [W-7405Eng-48] FX We would like to thank Bob Thunell and Eric Tappa for access to the CAR and SBB sediment trap archives; Leslie Sautter graciously provided sediment trap splits for the ESA site. Deepest thanks to Ian Voparil, Brett Walker, jenny Lehman, and Paula Zermeno for lab assistance and support. Also, we would like to thank Ellen Druffel for very helpful comments on an early version of the manuscript, Greg Rau and Miguel Goni for invaluable suggestions regarding data treatment, and insightful comments by four anonymous reviewers. Funding was provided by the UC/LLNL Laboratory Directed Research and Development Program (04-ERD-060) and the UCOP Campus Laboratory Collaboration Program. Radiocarbon analyses were performed under the auspices of the U.S. Department of Energy by the University of California's Lawrence Livermore National Laboratory (contract W-7405Eng-48). NR 79 TC 9 Z9 9 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4203 J9 MAR CHEM JI Mar. Chem. PD SEP 16 PY 2008 VL 111 IS 3-4 BP 199 EP 213 DI 10.1016/j.marchem.2008.05.010 PG 15 WC Chemistry, Multidisciplinary; Oceanography SC Chemistry; Oceanography GA 374MU UT WOS:000261048500006 ER PT J AU Yang, K Zhang, LD Xu, T Heroux, A Zhao, R AF Yang, Kui Zhang, Lingdi Xu, Tao Heroux, Annie Zhao, Rui TI Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID SPLICING FACTOR PRP8; SPLICEOSOME ACTIVATION; RETINITIS-PIGMENTOSA; ATOMIC-STRUCTURE; CATALYTIC CENTER; SITE; TRANSPOSASE; MUTANTS; SUBUNIT; BINDING AB Prp8 stands out among hundreds of splicing factors as a key regulator of spliceosome activation and a potential cofactor of the splicing reaction. We present here the crystal structure of a 274-residue domain (residues 1,822-2,095) near the C terminus of Saccharomyces cerevisiae Prp8. The most striking feature of this domain is a beta-hairpin finger protruding out of the protein (hence, this domain will be referred to as the beta-finger domain), resembling many globular ribosomal proteins with protruding extensions. Mutations throughout the beta-finger change the conformational equilibrium between the first and the second catalytic step. Mutations at the base of the beta-finger affect U4/U6 unwinding-mediated spliceosome activation. Prp8 may insert its beta-finger into the first-step complex (U2/U5/U6/pre-mRNA) or U4/U6.U5 tri-snRNP and stabilize these complexes. Mutations on the beta-finger likely alter these interactions, leading to the observed mutant phenotypes. Our results suggest a possible mechanism of how Prp8 regulates spliceosome activation. These results also demonstrate an analogy between a spliceosomal protein and ribosomal proteins that insert extensions into folded rRNAs and stabilize the ribosome. C1 [Yang, Kui; Zhang, Lingdi; Xu, Tao; Zhao, Rui] Univ Colorado Denver, Dept Biochem & Mol Genet, Aurora, CO 80045 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Zhao, R (reprint author), MS 8101,POB 6511,L18-9108,12801 E 17th Ave, Aurora, CO 80045 USA. EM rui.zhao@ucdenver.edu FU Offices of Biological and Environmental Research; Basic Energy Sciences of the U.S.; Department of Energy and the National Center for Research Resources of the National Institutes of Health; National Science Foundation [MCB-0718802]; Thorkildsen postdoctoral; American Heart Association FX We thank D. Brow, C. Query, and B. Schwer for providing yeast strain and plasmids; D. Brow, J. Kieft, and R. Davis for helpful discussion and/or critical reading of the manuscript; the staff of the x-ray facility (supported in part by the University of Colorado Cancer Center) and Biophysics core facility at the University of Colorado Denver Anschutz Medical Campus. Financial support for National Synchrotron Light Source comes principally from the Offices of Biological and Environmental Research and from the Basic Energy Sciences of the U.S. Department of Energy and the National Center for Research Resources of the National Institutes of Health. This work was supported by a National Science Foundation Grant MCB-0718802 (to R.Z.). R.Z. is a Kimmel Scholar. K.Y. is supported in part by a Thorkildsen postdoctoral fellowship. L.Z. is supported by an American Heart Association postdoctoral fellowship. NR 40 TC 53 Z9 54 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 16 PY 2008 VL 105 IS 37 BP 13817 EP 13822 DI 10.1073/pnas.0805960105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 351QG UT WOS:000259438500027 PM 18779563 ER PT J AU Li, LO Chang, ZZ Pan, ZQ Fu, ZQ Wang, XQ AF Li, Lenong Chang, Zhenzhan Pan, Zhiqiang Fu, Zheng-Qing Wang, Xiaoqiang TI Modes of heme binding and substrate access for cytochrome P450CYP74A revealed by crystal structures of allene oxide synthase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE oxylipin; jasmonate; guayule ID PROSTACYCLIN SYNTHASE; MOLECULAR GRAPHICS; ACID; RESOLUTION; IDENTIFICATION; PROTEIN; 9-HYDROPEROXIDES; CRYSTALLOGRAPHY; CONFORMATION; OXYLIPINS AB Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex. with the substrate analog 13(S)-hydroxyoctadeca-9Z, 11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between beta 3-2 and beta 3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism. C1 [Pan, Zhiqiang] ARS, USDA, Nat Prod Utilizat Res Unit, University, MS 38677 USA. [Li, Lenong; Chang, Zhenzhan; Wang, Xiaoqiang] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Fu, Zheng-Qing] Argonne Natl Lab, SE Reg Collaborat Access Team, Argonne, IL 60439 USA. [Fu, Zheng-Qing] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. RP Pan, ZQ (reprint author), ARS, USDA, Nat Prod Utilizat Res Unit, POB 8048, University, MS 38677 USA. EM zpan@ars.usda.gov; xwang@noble.org FU Samuel Roberts Noble Foundation FX We thank Drs. Y. Tang and H. Pan for critical reading of the manuscript, and K. Tan at the Structural Biology Center beamline 19ID at the Advanced Photon Source, Argonne National Laboratory (Argonne, IL) for assistance with data collection. Argonne is operated by University of Chicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under Contract DE-AC02-06CH113S7. This work was supported by the Samuel Roberts Noble Foundation. NR 46 TC 35 Z9 41 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 16 PY 2008 VL 105 IS 37 BP 13883 EP 13888 DI 10.1073/pnas.0804099105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 351QG UT WOS:000259438500038 PM 18787124 ER PT J AU Bloushtain-Qimron, N Yao, J Snyder, EL Shipitsin, M Campbell, LL Mani, SA Hua, M Chen, HY Ustyansky, V Antosiewicz, JE Argani, P Halushka, MK Thomson, JA Pharoah, P Porgador, A Sukumar, S Parsons, R Richardson, AL Stampfer, MR Gelman, RS Nikolskaya, T Nikolsky, Y Polyak, K AF Bloushtain-Qimron, Noga Yao, Jun Snyder, Eric L. Shipitsin, Michail Campbell, Lauren L. Mani, Sendurai A. Hua, Min Chen, Haiyan Ustyansky, Vadim Antosiewicz, Jessica E. Argani, Pedram Halushka, Marc K. Thomson, James A. Pharoah, Paul Porgador, Angel Sukumar, Saraswati Parsons, Ramon Richardson, Andrea L. Stampfer, Martha R. Gelman, Rebecca S. Nikolskaya, Tatiana Nikolsky, Yuri Polyak, Kornelia TI Cell type-specific DNA methylation patterns in the human breast SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cancer; differentiation; progenitor; stem cell ID EMBRYONIC STEM-CELLS; IN-VITRO; CANCER; DIFFERENTIATION; POLYCOMB; TRANSFORMATION; EXPRESSION; HIERARCHY; NETWORKS; ROLES AB Cellular identity and differentiation are determined by epigenetic programs. The characteristics of these programs in normal human mammary epithelium and their similarity to those in stem cells are unknown. To begin investigating these issues, we analyzed the DNA methylation and gene expression profiles of distinct subpopulations of mammary epithelial cells by using MSDK (methylation-specific digital karyotyping) and SAGE (serial analysis of gene expression). We identified discrete cell-type and differentiation state-specific DNA methylation and gene expression patterns that were maintained in a subset of breast carcinomas and correlated with clinically relevant tumor subtypes. CD44+ cells were the most hypomethylated and highly expressed several transcription factors with known stem cell function including HOXA10 and TCF3. Many of these genes were also hypomethylated in BMP4-treated compared with undifferentiated human embryonic stem (ES) cells that we analyzed by MSDK for comparison. Further highlighting the similarity of epigenetic programs of embryonic and mammary epithelial cells, genes highly expressed in CD44+ relative to more differentiated CD24+ cells were significantly enriched for Suz12 targets in ES cells. The expression of FOXC1, one of the transcription factors hypomethylated and highly expressed in CD44+ cells, induced a progenitor-like phenotype in differentiated mammary epithelial cells. These data suggest that epigenetically controlled transcription factors play a key role in regulating mammary epithelial cell phenotypes and imply similarities among epigenetic programs that define progenitor cell characteristics. C1 [Bloushtain-Qimron, Noga; Yao, Jun; Snyder, Eric L.; Shipitsin, Michail; Campbell, Lauren L.; Hua, Min; Polyak, Kornelia] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Chen, Haiyan; Gelman, Rebecca S.] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA. [Yao, Jun; Snyder, Eric L.; Shipitsin, Michail; Hua, Min; Polyak, Kornelia] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA. [Richardson, Andrea L.] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA. [Campbell, Lauren L.; Polyak, Kornelia] Harvard Univ, Sch Med, Program Biol & Biomed Sci, Boston, MA 02115 USA. [Richardson, Andrea L.] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA. [Chen, Haiyan] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. [Bloushtain-Qimron, Noga; Argani, Pedram; Porgador, Angel] Ben Gurion Univ Negev, Fac Hlth Sci, Dept Microbiol & Immunol, IL-84105 Beer Sheva, Israel. [Bloushtain-Qimron, Noga; Argani, Pedram; Porgador, Angel] Ben Gurion Univ Negev, Canc Res Ctr, IL-84105 Beer Sheva, Israel. [Mani, Sendurai A.] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA. [Ustyansky, Vadim; Nikolskaya, Tatiana; Nikolsky, Yuri] GeneGo Inc, St Joseph, MI 49085 USA. [Antosiewicz, Jessica E.; Thomson, James A.] Univ Wisconsin, Sch Med, Madison, WI 53706 USA. [Halushka, Marc K.] Johns Hopkins Univ, Sch Med, Baltimore, MD 21231 USA. [Pharoah, Paul] Can Res UK, Cambridge CB2 0RE, England. [Parsons, Ramon] Columbia Univ, Dept Med, New York, NY 10032 USA. [Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nikolskaya, Tatiana] Russian Acad Sci, NI Vavilov Gen Genet Res Inst, Moscow 117809, Russia. RP Polyak, K (reprint author), Dana Farber Canc Inst, Dept Med Oncol, 44 Binney St D740C, Boston, MA 02115 USA. EM kornelia_polyak@dfci.harvard.edu RI Nikolskaya, Tatiana/M-5008-2013; Mani, Sendurai/A-7244-2009; OI Mani, Sendurai/0000-0002-5918-4276; Halushka, Marc/0000-0002-7112-7389 FU National Institutes of Health [CA89393, CA94074, CA116235, CA112970]; U.S. Department of Defense [W81XWH-07-1-0294]; American Cancer Society [RSG-05-154-01-MGO]; Susan Komen Foundation [PDF042234, PDF0707996]; Fannie E. Rippel Foundation; Harvard/Dana-Farber SPORE in Breast Cancer Developmental Research; Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy [DE-AC03-76SF00098] FX We greatly appreciate the help of Fiona Blows with the acquisition of human tissue samples and Dyane Bailey for assistance with immunohistochemistry. We thank Dr. Honami Naora (MID Anderson Cancer Center, Houston, TX) for her generous gift of the HOXA10 antibody; the Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada, and the Cancer Genome Anatomy Project for MSDK and SAGE library sequencing, respectively. This work was supported by the National Institutes of Health Grants CA89393, CA94074, and CA116235 (to K.P.), U.S. Department of Defense Grant W81XWH-07-1-0294 (to K.P.), and American Cancer Society Grant RSG-05-154-01-MGO (to K.P.); Susan Komen Foundation fellowships PDF042234 (to M.H.) and PDF0707996 (to M.S.); Fannie E. Rippel Foundation fellowship (S.A.M.); Harvard/Dana-Farber SPORE in Breast Cancer Developmental Research (E.L.S.); and the Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy, Contract DE-AC03-76SF00098 (to M.R.S.); and National Institutes of Health Grant CA112970 (to M.R.S.). NR 26 TC 132 Z9 139 U1 0 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 16 PY 2008 VL 105 IS 37 BP 14076 EP 14081 DI 10.1073/pnas.0805206105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 351QG UT WOS:000259438500071 PM 18780791 ER PT J AU Ulbrich, MH Isacoff, EY AF Ulbrich, Maximilian H. Isacoff, Ehud Y. TI Rules of engagement for NMDA receptor subunits SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE NR3; total internal reflection; single-molecule fluorescence; subunit stoichiometry; triheteromeric ID CALCIUM PERMEABILITY; SURFACE EXPRESSION; NR3A; PROTEINS; NEURONS; CLONING; FAMILY; BRAIN; CELLS; NR1 AB Canonical NMDA receptors assemble from two glycine-binding NR1 subunits with two glutamate-binding NR2 subunits to form glutamate-gated excitatory receptors that mediate synaptic transmission and plasticity. The role of glycine-binding NR3 subunits is less clear. Whereas in Xenopus laevis oocytes, two NR3 subunits coassemble with two NR1 subunits to form a glycine-gated receptor, such a receptor has yet to be found in mammalian cells. Meanwhile, 14111, NR2, and NR3 appear to coassemble into triheteromeric receptors in neurons, but it is not clear whether this occurs in oocytes. To test the rules that govern subunit assembly in NMDA receptors, we developed a single-molecule fluorescence colocalization method. The method focuses selectively on the plasma membrane and simultaneously determines the subunit composition of hundreds of individual protein complexes within an optical patch on a live cell. We find that NR1, NR2, and NR3 follow an exclusion rule that yields separate populations of NR1/NR2 and NR1/NR3 receptors on the surface of oocytes. In contrast, coexpression of NR1, NR3A, and NR3B yields triheteromeric receptors with a fixed stoichiometry of two NR1 subunits with one NR3A and one NR3B. At least part of this regulation of subunit stoichiometry appears to be caused by internal retention. Thus, depending on the mixture of subunits, functional receptors on the cell surface may follow either an exclusion rule or a stoichiometric combination rule, providing an important constraint on functional diversity. Cell-to-cell differences in the rules may help sculpt distinct physiological properties. C1 [Ulbrich, Maximilian H.; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Sci, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM ehud@berkeley.edu FU American Heart Association postdoctoral fellowship; National Institutes of Health [R01 NS035549] FX We thank Nikolaus Sucher and Michael Hollmann for helpful discussion. We thank for cDNA encoding NMDA receptor subunits: Noam Ziv (Technion, Haifa, Israel) for NR1; Stefano Vicini (Georgetown University, Washington, DC) for NR2A, NR2B, and GFP-NR2B; Dongxian Zhang (Burnham Institute for Medical Research, La Jolla, CA) for NR3A and NR3B; and Roger Tsien (University of California, San Diego) for tdTomato. This work was supported by an American Heart Association postdoctoral fellowship (to M.H.U.) and National Institutes of Health Grant R01 NS035549. NR 19 TC 69 Z9 73 U1 1 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 16 PY 2008 VL 105 IS 37 BP 14163 EP 14168 DI 10.1073/pnas.0802075105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 351QG UT WOS:000259438500086 PM 18779583 ER PT J AU Massoudi, M Phuoc, TX AF Massoudi, Mehrdad Phuoc, Tran X. TI On the motion of a second grade fluid due to longitudinal and torsional oscillations of a cylinder: A numerical study SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE continuum mechanics; second grade fluids; unsteady flows; drag reduction; torsional and longitudinal oscillations; cylinder; oil drilling ID NON-NEWTONIAN FLUID; UNSTEADY UNIDIRECTIONAL FLOWS; ELASTICO-VISCOUS FLUID; OLDROYD-B FLUID; CIRCULAR-CYLINDER; SUDDEN APPLICATION; PRESSURE-GRADIENT; IMPULSIVE MOTION; 2ND GRADE; DRAG AB Unsteady problems involving the second grade fluids have received considerable attention in recent years. The present study is an attempt to look at the motion of an oscillating rod in a second grade fluid. Specifically, we solve numerically for the flow of a second grade fluid surrounding a solid cylindrical rod that is suddenly set into longitudinal and torsional motion. The equations are made dimensionless. The results are presented for the shear stresses at the wall, related to the drag force; these are physical quantities of interest, especially in oil-drilling applications. Published by Elsevier Inc. C1 [Massoudi, Mehrdad; Phuoc, Tran X.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM massoudi@netl.doe.gov NR 55 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD SEP 15 PY 2008 VL 203 IS 2 BP 471 EP 481 DI 10.1016/j.amc.2008.05.133 PG 11 WC Mathematics, Applied SC Mathematics GA 349WJ UT WOS:000259313700002 ER PT J AU Hurley, DH Lewis, R Wright, OB Matsuda, O AF Hurley, D. H. Lewis, R. Wright, O. B. Matsuda, O. TI Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses SO APPLIED PHYSICS LETTERS LA English DT Article ID PICOSECOND ULTRASONICS; VIBRATIONAL-MODES; QUANTUM-WELLS; OSCILLATIONS; GENERATION; DIFFUSION; FILMS; GOLD AB We demonstrate the coherent generation and control of gigahertz acoustic phonons with ultrafast optical pulses. Two distinct acoustic phonon modes, a surface acoustic phonon mode and a longitudinal acoustic phonon mode, are generated simultaneously by irradiating nanolithographic absorption gratings on semiconductor substrates. Two material systems are examined: suboptical wavelength aluminum absorption gratings on Si and GaAs substrates. Constructive and complete destructive interference conditions are demonstrated using two pump pulses derived from a single Michelson interferometer. (C) 2008 American Institute of Physics. C1 [Hurley, D. H.; Lewis, R.] Idaho Natl Lab, Mat Characterizat Dept, Idaho Falls, ID 83415 USA. [Wright, O. B.; Matsuda, O.] Hokkaido Univ, Grad Sch Engn, Dept Appl Phys, Sapporo, Hokkaido 0608628, Japan. RP Hurley, DH (reprint author), Idaho Natl Lab, Mat Characterizat Dept, POB 1625, Idaho Falls, ID 83415 USA. EM david.hurley@inl.gov RI Matsuda, Osamu/A-7193-2012 OI Matsuda, Osamu/0000-0002-0736-1242 NR 22 TC 13 Z9 13 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 15 PY 2008 VL 93 IS 11 AR 113101 DI 10.1063/1.2978197 PG 3 WC Physics, Applied SC Physics GA 356SM UT WOS:000259797900063 ER PT J AU Jesse, S Maksymovych, P Kalinin, SV AF Jesse, Stephen Maksymovych, Peter Kalinin, Sergei V. TI Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics SO APPLIED PHYSICS LETTERS LA English DT Article ID FILMS AB A rapid multidimensional spectroscopic imaging approach in scanning probe microscopy is developed and applied to piezoresponse force spectroscopy. Evolution of resonance frequency, dissipation, and piezoresponse signal at each point during acquisition of local hysteresis loops provides information on polarization dynamics and voltage dependent contact mechanics of ferroelectric surfaces. The measurements illustrate significant frequency shifts during piezoresponse force spectroscopy, necessitating the use of frequency-tracking methods. The method is universal and can be extended to other scanning probe microscopy techniques. (C) 2008 American Institute of Physics. C1 [Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jesse, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sjesse@ornl.gov; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Maksymovych, Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483 FU Center for Nanoscale Materials Sciences; Division of Materials Sciences and Engineering; Eugene P. Wigner Fellowship; Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC05-00OR22725] FX Research was sponsored by the Center for Nanoscale Materials Sciences (S.J., S. V. K.) Division of Materials Sciences and Engineering (S.J.), and (P.M.) Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725. R. Ramesh (UC Berkeley) and M. Alexe (MPI Halle) are gratefully acknowledged for the ferroelectric samples used in this study. The BE SPM and SS-PFM are available as a part of user program at the CNMS (www.cnms.ornl.gov). NR 16 TC 35 Z9 35 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 15 PY 2008 VL 93 IS 11 AR 112903 DI 10.1063/1.2980031 PG 3 WC Physics, Applied SC Physics GA 356SM UT WOS:000259797900059 ER PT J AU Xiong, Y Liu, ZW Zhang, X AF Xiong, Yi Liu, Zhaowei Zhang, Xiang TI Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD OPTICAL LITHOGRAPHY; DIP-PEN NANOLITHOGRAPHY; NEAR-FIELD; PHOTOLITHOGRAPHY; RESOLUTION AB We utilize a metal-dielectric multilayer structure to generate deep-subwavelength one-dimensional and two-dimensional periodic patterns with diffraction-limited masks. The working wavelength and the pattern are set by the flexible design of the multilayer structure. This scheme is suitable to be applied to deep-subwavelength photolithography. As an example, we numerically demonstrate pattern periods down to 50 nm under 405 nm light illumination. (C) 2008 American Institute of Physics. C1 [Xiong, Yi; Liu, Zhaowei; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Zhaowei/A-8521-2010; Zhang, Xiang/F-6905-2011 FU National Science Foundation (NSF); Nanoscale Science and Engineering Center [DMI-0327077]; Air Force Office of Scientific Research (AFOSR); Multidisciplinary University Research Initiative (MURI) [FA9550-04-1-0434] FX The authors thank Dr. Guy Bartal and Dr. Stephane Durant for valuable discussions. This work was supported by the National Science Foundation (NSF) Nanoscale Science and Engineering Center (Grant No. DMI-0327077) and the Air Force Office of Scientific Research (AFOSR), the Multidisciplinary University Research Initiative (MURI) (Grant No. FA9550-04-1-0434). NR 35 TC 66 Z9 71 U1 5 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 15 PY 2008 VL 93 IS 11 AR 111116 DI 10.1063/1.2985898 PG 3 WC Physics, Applied SC Physics GA 356SM UT WOS:000259797900016 ER PT J AU Zellner, MB Buttler, WT AF Zellner, M. B. Buttler, W. T. TI Exploring Richtmyer-Meshkov instability phenomena and ejecta cloud physics SO APPLIED PHYSICS LETTERS LA English DT Article ID TAYLOR AB This effort investigates ejecta cloud expansion from a shocked Sn target propagating into vacuum. To assess the expansion, dynamic ejecta cloud density distributions were measured via piezoelectric pin diagnostics offset at three heights from the target free surface. The dynamic distributions were first converted into static distributions, similar to a radiograph, and then self compared. The cloud evolved self-similarly at the distances and times measured, inferring that the amount of mass imparted to the instability, detected as ejecta, either ceased or approached an asymptotic limit. (c) 2008 American Institute of Physics. C1 [Zellner, M. B.; Buttler, W. T.] Los Alamos Natl Lab, Phys Div P23, Los Alamos, NM 87545 USA. RP Zellner, MB (reprint author), Los Alamos Natl Lab, Phys Div P23, MS H803, Los Alamos, NM 87545 USA. EM mzellner@lanl.gov FU (U.S.) Department of Energy FX This work was supported by the (U.S.) Department of Energy. We especially thank Darcie Dennis-Koller, Mark E. Byers, Paulo A. Rigg, James E. Hammerberg, and Guy Dimonte of the LANL for their experimental assistance and helpful discussions. NR 12 TC 28 Z9 31 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 15 PY 2008 VL 93 IS 11 AR 114102 DI 10.1063/1.2982421 PG 3 WC Physics, Applied SC Physics GA 356SM UT WOS:000259797900092 ER PT J AU Law, RJ Munson, K Sachs, G Lightstone, FC AF Law, Richard J. Munson, Keith Sachs, George Lightstone, Felice C. TI An ion gating mechanism of gastric H,K-ATPase based on molecular dynamics simulations SO BIOPHYSICAL JOURNAL LA English DT Article ID SARCOPLASMIC-RETICULUM; BINDING-SITES; CALCIUM-PUMP; TRANSMEMBRANE SEGMENT; POTASSIUM CHANNEL; CRYSTAL-STRUCTURE; ALPHA-SUBUNIT; K+; NA,K-ATPASE; WATER AB Gastric H, K-ATPase is an electroneutral transmembrane pump that moves protons from the cytoplasm of the parietal cell into the gastric lumen in exchange for potassium ions. The mechanism of transport against the established electrochemical gradients includes intermediate conformations in which the transferred ions are trapped (occluded) within the membrane domain of the pump. The pump cycle involves switching between the E1 and E2P states. Molecular dynamics simulations on homology models of the E2P and E1 states were performed to investigate the mechanism of K+ movement in this enzyme. We performed separate E2P simulations with one K+ in the luminal channel, one K+ ion in the occlusion site, two K+ ions in the occlusion site, and targeted molecular dynamics from E2P to E1 with two K+ ions in the occlusion site. The models were inserted into a lipid bilayer system and were stable over the time course of the simulations, and K+ ions in the channel moved to a consistent location near the center of the membrane domain, thus de. ning the occlusion site. The backbone carbonyl oxygen from residues 337 through 342 on the nonhelical turn of M4, as well as side-chain oxygen from E343, E795, and E820, participated in the ion occlusion. A single water molecule was stably bound between the two K+ ions in the occlusion site, providing an additional ligand and partial shielding the positive charges from one another. Targeted molecular dynamics was used to transform the protein from the E2P to the E1 state (two K+ ions to the cytoplasm). This simulation identified the separation of the water column in the entry channel as the likely gating mechanism on the luminal side. A hydrated exit channel also formed on the cytoplasmic side of the occlusion site during this simulation. Hence, water molecules became available to hydrate the ions. The movement of the M1M2 transmembrane segments, and the displacement of residues Q159, E160, Q110, and T152 during the conformational change, as well as the motions of E343 and L346, acted as the cytoplasmic-side gate. C1 [Law, Richard J.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. [Munson, Keith; Sachs, George] Univ Calif Los Angeles, David Geffen Sch Med, Lab Membrane Biol, Los Angeles, CA 90024 USA. [Munson, Keith; Sachs, George] Vet Adm Greater Los Angeles Healthcare Syst, Los Angeles, CA 90024 USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, L-372,700 E Ave, Livermore, CA 94550 USA. EM felice@llnl.gov FU National Institutes of Health [DK058333]; U. S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at the Lawrence Livermore National Laboratory [UCRL-JRNL-2333318] FX The work of K. M and G. S. is supported by the National Institutes of Health grant DK058333. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The project 06-SI-003 was funded by the Laboratory Directed Research and Development Program at the Lawrence Livermore National Laboratory, UCRL-JRNL-2333318. NR 37 TC 10 Z9 10 U1 0 U2 2 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 15 PY 2008 VL 95 IS 6 BP 2739 EP 2749 DI 10.1529/biophysj.107.128025 PG 11 WC Biophysics SC Biophysics GA 343BI UT WOS:000258826900014 PM 18567633 ER PT J AU Moretti, M Di Fabrizio, E Cabrini, S Musetti, R De Angelis, F Firrao, G AF Moretti, Manola Di Fabrizio, Enzo Cabrini, Stefano Musetti, Rita De Angelis, Francesco Firrao, Giuseppe TI An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE sensor; DNA; detection; pore; electrophoresis ID POLYNUCLEOTIDE MOLECULES; PORE; APERTURES; MEMBRANES; CAPTURE; CHANNEL AB Single nanopores have attracted interest for their use as biosensing devices. In general, methods involve measuring ionic current blockades associated with translocation of analytes through the nanopore, but the detection of such short time lasting events requires complex equipment and setup that are critical for convenient routine biosensing. Here we present a novel biosensing concept based on a single nanopore in a silicon nitride membrane and two anchor-linked DNA species that forms trans-pore hybrids, realizing a stable blockade of ionic current through the pore. Molecular recognition events affecting the DNA hybrids cause a pore opening and the consequent establishment of an ionic current. In the present implementation of the device, we constructed a magnetic bead/streptavidin/biotin-DNA1/DNA2-biotin/streptavidin/Quantumdot-cluster complex (where DNA1 is a mismatched reverse complement of DNA2) through a sub-micrometric pore and monitored DNA strand displacement events occurring after addition of art oligonucleotide complementary to DNA2. The electric and mechanical aspects of the novel device, as well as its potential in biosensing are discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Moretti, Manola; Musetti, Rita; Firrao, Giuseppe] Univ Udine, Dipartimento Biol & Protez Piante, I-33100 Udine, Italy. [Di Fabrizio, Enzo; De Angelis, Francesco] Magna Graecia Univ Catanzaro, Catanzaro, Italy. [Di Fabrizio, Enzo] Lab TASC INFM CNR, Trieste, Italy. [Cabrini, Stefano] Mol Foundry LBNL, Nanofabricat Facil, Berkeley, CA 94720 USA. RP Firrao, G (reprint author), Univ Udine, Dipartimento Biol & Protez Piante, Via Sci 208, I-33100 Udine, Italy. EM firrao@uniud.it OI FIRRAO, Giuseppe/0000-0002-7890-0899 NR 25 TC 8 Z9 9 U1 2 U2 15 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD SEP 15 PY 2008 VL 24 IS 1 BP 141 EP 147 DI 10.1016/j.bios.2008.03.047 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 351LH UT WOS:000259425300022 PM 18539021 ER PT J AU Lipciuc, ML Wang, F Yang, X Kitsopoulos, TN Fanourgakis, GS Xantheas, SS AF Lipciuc, M. Laura Wang, Fengyan Yang, Xueming Kitsopoulos, Theofanis N. Fanourgakis, George S. Xantheas, Sotiris S. TI Cluster-controlled photofragmentation: The case of the Xe-pyrrole cluster SO CHEMPHYSCHEM LA English DT Article DE cluster compounds; photofragmentation; photolysis; pyrrole; xenon ID CONFIGURATION-INTERACTION CALCULATIONS; REPULSIVE (1)PI-SIGMA-ASTERISK STATES; BASIS-SETS; CONICAL INTERSECTIONS; ATOM ELIMINATION; EXCITED-STATES; PHOTODISSOCIATION; MOLECULES; HYDROGEN; ULTRAVIOLET C1 [Lipciuc, M. Laura; Wang, Fengyan; Kitsopoulos, Theofanis N.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Greece. [Kitsopoulos, Theofanis N.] Univ Crete, Dept Chem, Iraklion 71003, Greece. [Wang, Fengyan; Yang, Xueming] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China. [Fanourgakis, George S.; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Lipciuc, ML (reprint author), Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Greece. EM theo@iesl.forth.gr RI Yang, Xueming/C-8764-2013; Kitsopoulos, Theofanis/A-8355-2014; Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU Southern Dynamics [MTKD-CT-2004-014306]; European Commission [RII3-CT-2003-506350]; European Research Program Transfer of Knowledge; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy FX Part of this work was supported by the transfer of knowledge program Southern Dynamics MTKD-CT-2004-014306. The experimental work was performed at the Ultraviolet Loser Facility operating at IESL-FORTH and has been supported in part by the European Commission through the Research Infrastructures activity of FP6 ("Laserlab-Europe" RII3-CT-2003-506350). S.S.X. acknowledges a Marie Curie Fellowship from the European Research Program Transfer of Knowledge. Part of this work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the US Department of Energy NR 26 TC 12 Z9 12 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD SEP 15 PY 2008 VL 9 IS 13 BP 1838 EP 1841 DI 10.1002/cphc.200800288 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 355LK UT WOS:000259710200004 PM 18677783 ER PT J AU Srivastava, S Gray, JW Reid, BJ Grad, O Greenwood, A Hawk, ET AF Srivastava, Sudhir Gray, Joe W. Reid, Brian J. Grad, Oren Greenwood, Addison Hawk, Ernest T. CA Translational Res Working Grp TI Translational research working group developmental pathway for biospecimen-based assessment modalities SO CLINICAL CANCER RESEARCH LA English DT Article ID UROTHELIAL CARCINOMA; BREAST-CANCER; HYBRIDIZATION; OPINION; ASSAY AB The Translational Research Working Group (TRWG) was created as a national initiative to evaluate the current status of National Cancer Institute's investment in translational research and envision its future. The TRWG conceptualized translational research as a set of six developmental processes or pathways focused on various clinical goals. One of those pathways describes the development of biospecimen-based assays that use biomarkers for the detection, diagnosis, and prognosis of cancer and the assessment of response to cancer treatment. The biospecimen-based assessment modality pathway was conceived not as comprehensive description of the corresponding real-world processes but rather as a tool designed to facilitate movement of a candidate assay through the translational process to the point where it can be handed off for definitive clinical testing. This paper introduces the pathway in the context of prior work and discusses key challenges associated with the biomarker development process in light of the pathway. C1 [Srivastava, Sudhir] NCI, Canc Prevent Div, Bethesda, MD 20892 USA. [Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Reid, Brian J.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Grad, Oren] Inst Sci & Technol Policy, Wellesley, MA USA. [Greenwood, Addison] NCI, Off Commun, Bethesda, MD 20892 USA. [Hawk, Ernest T.] NCI, Off Ctr Training & Resources, Bethesda, MD 20892 USA. RP Hawk, ET (reprint author), Univ Texas MD Anderson Canc Ctr, Div Canc Prevent & Populat Sci, Unit 1370, POB 301439, Houston, TX 77230 USA. EM ehawk@mdanderson.org FU NCI NIH HHS [P50 CA 58207, P50 CA058207, U54 CA112970, U54 CA112970-04] NR 11 TC 17 Z9 18 U1 1 U2 3 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD SEP 15 PY 2008 VL 14 IS 18 BP 5672 EP 5677 DI 10.1158/1078-0432.CCR-08-1267 PG 6 WC Oncology SC Oncology GA 350JC UT WOS:000259347600007 PM 18794074 ER PT J AU Brandenberger, JM Crecelius, EA Louchouarn, P AF Brandenberger, Jill M. Crecelius, Eric A. Louchouarn, Patrick TI Historical inputs and natural recovery rates for heavy metals and organic biomarkers in Puget Sound during the 20th century SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SEDIMENTS; GEOCHRONOLOGIES; TRANSPORT; MERCURY; SPRAWL; MATTER; BAY C1 [Brandenberger, Jill M.; Crecelius, Eric A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Louchouarn, Patrick] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA. RP Brandenberger, JM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Jill.Brandenberger@pnl.gov FU National Oceanic and Atmospheric Administration; Coastal Hypoxia Research Program [NA05NOS4781203]; Pacific Northwest National Laboratory FX The 2005 program was supported by the National Oceanic and Atmospheric Administration, Coastal Hypoxia Research Program grant NA05NOS4781203, and the Pacific Northwest National Laboratory. NR 24 TC 14 Z9 14 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2008 VL 42 IS 18 BP 6786 EP 6790 DI 10.1021/es703099c PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 347KM UT WOS:000259139400007 PM 18853790 ER PT J AU Oram, LL Strawn, DG Marcus, MA Fakra, SC Moller, G AF Oram, Libbie L. Strawn, Daniel G. Marcus, Matthew A. Fakra, Sirine C. Moeller, Gregory TI Macro- and microscale investigation of selenium speciation in blackfoot river, Idaho sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID WATER-QUALITY CRITERIA; ELEMENTAL SELENIUM; SEQUENTIAL EXTRACTIONS; PHOSPHORIA FORMATION; MICROBIAL OXIDATION; SOLUBLE SELENIUM; MINE DRAINAGE; AQUATIC LIFE; REDUCTION; SOILS AB The transport and bioavailability of selenium in the environment is controlled by its chemical speciation. However, knowledge of the biogeochemistry and speciation of Se in streambed sediment is limited. We investigated the speciation of Se in sediment cores from the Blackfoot River (BFR), Idaho using sequential extractions and synchrotron-based micro-X-ray fluorescence (mu-SXRF). We collected mu-SXRF oxidation state maps of Se in sediments, which had not been done on natural sediment samples. Selective extractions showed that most Se in the sediments is present as either (1) nonextractable Se or (2) base extractable Se. Results from mu-SXRF showed three defined species of Se were present in all four samples: Se(-II,0), Se(IV), and Se(VI). Se(-II,0) was the predominant species in samples from one location, and Se(IV) was the predominant species in samples from a second location. Results from both techniques were consistent, and suggested that the predominant species were Se(-II) species associated with recalcitrant organic matter, and Se(IV) species tightly bound to organic materials. This information can be used to predict the biogeochemical cycling and bioavailability of Se in streambed sediment environments. C1 [Oram, Libbie L.] Univ Idaho, Dept Environm Sci, Dept Plant Soils & Entomol Sci, Moscow, ID 83844 USA. [Moeller, Gregory] Univ Idaho, Dept Food Sci & Toxicol, Moscow, ID 83844 USA. [Marcus, Matthew A.; Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Oram, LL (reprint author), Univ Idaho, Dept Environm Sci, Dept Plant Soils & Entomol Sci, POB 442339, Moscow, ID 83844 USA. EM lloram@vandals.uidaho.edu RI Strawn, Daniel/B-6936-2012 FU USEPA [X970339010]; Office of Science, Office of Basic Energy Sciences, and the Materials Sciences Division of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX Funding for this research was provided by the USEPA, grant ID X970339010. The Advanced Light Source, where much of this research was conducted, is supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Materials Sciences Division of the U.S. Department of Energy under contract DE-AC03-76SF00098 at the Lawrence Berkeley National Laboratory. Assistance on this project was graciously provided by Drs. Brian Hart and Leslie Baker at the University of Idaho. NR 47 TC 17 Z9 17 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2008 VL 42 IS 18 BP 6830 EP 6836 DI 10.1021/es7032229 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 347KM UT WOS:000259139400013 PM 18853796 ER PT J AU O'Loughlin, EJ AF O'Loughlin, Edward J. TI Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FE(III) OXIDE REDUCTION; DISSIMILATORY IRON REDUCTION; NATURAL ORGANIC-MATTER; GREEN RUST FORMATION; HUMIC SUBSTANCES; FE(III)-REDUCING BACTERIUM; MICROBIAL REDUCTION; METAL REDUCTION; RESPIRATION; SEDIMENTS AB Electron transfer mediators (ETMs) such as low-molecular-mass quinones (e.g., juglone and lawsone) and humic substances are believed to play a role in many redox reactions involved in contaminant transformations and the biogeochemical cycling of many redox-active elements (e.g., Fe and Mn) in aquatic and terrestrial environments. This study examines the effects of a series of compounds representing major classes of natural and synthetic organic ETMs, including low-molecular-mass quinones, humic substances, phenazines, phenoxazines, phenothiazines, and indigo derivatives, on the bioreduction of lepidocrocite (gamma-FeOOH) by the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32. Although S. putrefaciens CN32 was able to reduce lepidocrocite in the absence of exogenous ETMs, the addition of exogenous ETMs enhanced the bioreduction of lepidocrocite. In general, the rate of Fe(II) production correlated well with the reduction potentials of the ETMs. The addition of humic acids or unfractionated natural organic matter at concentrations of 10 mg organic C L-1 resulted in, at best, a minimal enhancement of lepidocrocite bioreduction. This observation suggests that electron shuttling by humic substances is not likely to play a major role in Fe(III) bioreduction in oligotrophic environments such as subsurface sediments with low organic C contents. C1 Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP O'Loughlin, EJ (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM oloughlin@anl.gov RI O'Loughlin, Edward/C-9565-2013 OI O'Loughlin, Edward/0000-0003-1607-9529 FU U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research, Environmental Remediation Science Program [DE-AC02-06CH11357] FX I thank Karen Haugen and three anonymous reviewers for their thoughtful reviews of the manuscript. Funding was provided by the U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research, Environmental Remediation Science Program, under contract DE-AC02-06CH11357. NR 48 TC 53 Z9 58 U1 3 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2008 VL 42 IS 18 BP 6876 EP 6882 DI 10.1021/es800686d PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 347KM UT WOS:000259139400020 PM 18853803 ER PT J AU Buss, HL Sak, PB Webb, SM Brantley, SL AF Buss, Heather L. Sak, Peter B. Webb, Samuel M. Brantley, Susan L. TI Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MASS-BALANCE; COSMOGENIC NUCLIDES; EXPERIMENTAL FOREST; SURFACE-AREA; LONG-TERM; BIOTITE; RATES; MECHANISM; EROSION; PEDOGENESIS AB In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (similar to 2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive Delta V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (001) from 10.0 to 10.5 angstrom, forming "altered biotite". Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(11). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10(-14) mol biotite m(-1) s(-1). Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 fun resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 em surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10(-13) mol hornblende m(-2) s(-1): the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O(2) at the bedrock-saprolite interface. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Buss, Heather L.] US Geol Survey, Menlo Pk, CA 94025 USA. [Sak, Peter B.] Dickinson Coll, Dept Geol, Carlisle, PA 17013 USA. [Webb, Samuel M.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. RP Buss, HL (reprint author), US Geol Survey, 345 Middlefield Rd,MS 420, Menlo Pk, CA 94025 USA. EM hlbuss@usgs.gov; sakp@dickinson.edu; samwebb@slac.stanford.edu; brantley@eesi.psu.edu RI Webb, Samuel/D-4778-2009; Buss, Heather/M-1693-2013 OI Webb, Samuel/0000-0003-1188-0464; FU DOE [DE-FG02-05ER15675]; Penn State Biogeochemical Research Initiative for Education (BRIE); NSF-IGERT [DGE-9972759]; Penn State Center for Environmental Chemistry and Geochemistry; NSF Graduate Research Fellowship Program; National Academy of Sciences Research Associateship Program; NSF [CHE-0431328]; Department of Energy; Office of Biological and Environmental Research; National Institutes of Health; National Center for Research Resources; Biomedical Technology Program FX We thank A.F. White and R.C. Fletcher for helpful discussions and field support; D. Eggler and E. Merino for assistance with optical microscopy; M. Angelone and J. Cantolina for analytical assistance; M. Rosario-Torres, J. Troester, and G. Hernandez for field support; and S. Anderson and three anonymous reviewers for comments that helped improve the manuscript. Funding provided by DOE grant no. DE-FG02-05ER15675, the Penn State Biogeochemical Research Initiative for Education (BRIE) supported by NSF-IGERT Grant No. DGE-9972759, and the Penn State Center for Environmental Chemistry and Geochemistry. H.L. Buss acknowledges fellowship support of the NSF Graduate Research Fellowship Program and postdoctoral support from the National Academy of Sciences Research Associateship Program. S.L Brantley acknowledges support from the Center for Environmental Kinetics Analysis supported by NSF Grant No. CHE-0431328. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy. Office of Biological and Environmental Research, and by the National Institutes of Health. National Center for Research Resources. Biomedical Technology Program. NR 66 TC 78 Z9 79 U1 6 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2008 VL 72 IS 18 BP 4488 EP 4507 DI 10.1016/j.gca.2008.06.020 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 346ZI UT WOS:000259107700004 ER PT J AU Matthews, KA Grottoli, AG McDonough, WF Palardy, JE AF Matthews, Kathryn A. Grottoli, Andrea G. McDonough, William F. Palardy, James E. TI Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID O-18 ISOTOPIC DISEQUILIBRIUM; EASTERN PACIFIC; BIOLOGICAL CARBONATES; GALAPAGOS-ISLANDS; PORITES CORALS; TRACE-METALS; ICP-MS; VARIABILITY; TEMPERATURE; SR/CA AB Skeletal cadmium-to-calcium (Cd/Ca) ratios in hermatypic stony corals have been used to reconstruct changes in upwelling over time, yet there has not been a systematic evaluation of this tracer's natural variability within and among coral species, between depths and across environmental conditions. Here, coral skeletal Cd/Ca ratios were measured in multiple colonies of Pavona clavus, Pavona gigantea and Porites lobata reared at two depths (1 and 7 m) during both upwelling and nonupwelling intervals in the Gulf of Panama (Pacific). Overall, skeletal Cd/Ca ratios were significantly higher during upwelling than during nonupwelling, in shallow than in deep corals, and in both species of Pavona than in P. lobata. P. lobata skeletal Cd/Ca ratios were uniformly low compared to those in the other species, with no significant differences between upwelling and nonupwelling values. Among colonies of the same species, skeletal Cd/Ca ratios were always higher in all shallow P. gigantea colonies during upwelling compared to nonupwelling, though the magnitude of the increase varied among colonies. For P. lobata, P. clavus and deep P. giganten, changes in skeletal Cd/Ca ratios were not consistent among all colonies, with some colonies having lower ratios during upwelling than during nonupwelling. No statistically significant relationships were found between skeletal Cd/Ca ratios and maximum linear skeletal extension, delta C-13 or delta O-18, suggesting that at seasonal resolution the Cd/Ca signal was decoupled from growth rate, coral metabolism, and ocean temperature and salinity, respectively. These results led to the following conclusions, (1) coral skeletal Cd/Ca ratios are independent of skeletal extension, coral metabolism and ambient temperature/salinity, (2) shallow P. gigantea is the most reliable species for paleoupwelling reconstruction and (3) the average Cd/Ca record of several colonies, rather than of a single coral, is needed to reliably reconstruct paleoupwelling events. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Matthews, Kathryn A.] Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA. [Grottoli, Andrea G.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [McDonough, William F.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Palardy, James E.] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA. RP Matthews, KA (reprint author), Los Alamos Natl Lab, Nucl & Radiochem Grp, POB 1663, Los Alamos, NM 87545 USA. EM kmatthews@lanl.gov RI Grottoli, Andrea/C-9736-2009; McDonough, William/C-4791-2009; McDonough, William/I-7720-2012 OI McDonough, William/0000-0001-9154-3673; McDonough, William/0000-0001-9154-3673 FU William Penn Fellowship; Evolving Earth Foundation; Penn Summer Stipend in Paleontology; Government of Alberta Sir James Lougheed Award of Distinction; Petroleum Research Foundation [41740-G2]; National Science Foundation in Chemical Oceanography [0610487] FX The authors thank R. Ash, O. Gibb and M. Cathey for analytical and logistical assistance, L. D'Croz and the Smithsonian Tropical Research Institute for field support, R. Fairbanks at Columbia University for delta18OSW analyses, and L. Rodrigues. R. Moyer and B. Williams for helpful discussion. Input from D. Lea, P. Montagna and one anonymous reviewer improved the clarity and quality of this manuscript. Funding for this work was awarded to KAM through a William Penn Fellowship, the Evolving Earth Foundation and the Penn Summer Stipend in Paleontology, and to J.E.P. by the Government of Alberta Sir James Lougheed Award of Distinction. The majority of technical, laboratory, stipend and field support was provided by funds awarded to A.G.G. by the Petroleum Research Foundation (No. 41740-G2) and the National Science Foundation program in Chemical Oceanography (OCE No. 0610487). K.A.M. was a Ph.D. student and J.E.P. was an undergraduate student in A.G.G.'s laboratory during the execution of this research. NR 67 TC 18 Z9 20 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2008 VL 72 IS 18 BP 4537 EP 4550 DI 10.1016/j.gca.2008.05.064 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 346ZI UT WOS:000259107700007 ER PT J AU Mulfort, KL Hupp, JT AF Mulfort, Karen L. Hupp, Joseph T. TI Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks SO INORGANIC CHEMISTRY LA English DT Article ID STORAGE MATERIALS; H-2 STORAGE; ADSORPTION; LI; COORDINATION; VARIANTS; SORPTION AB A 2-fold interwoven metal-organic framework has been chemically reduced and doped with Li+, Na+, and K+. At low pressures and temperatures, the reduced and doped materials exhibit enhanced H-2 uptake-up to 65% higher than for the neutral framework. Notably, at similar doping levels, H-2 binding is strongest with Li+ and decreases as Li+ > Na+ > K+. However, the uptake increases in the opposite order. We attribute the behavior to structural changes accompanying framework reduction. C1 [Mulfort, Karen L.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mulfort, Karen L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu RI Hupp, Joseph/K-8844-2012 OI Hupp, Joseph/0000-0003-3982-9812 FU U.S. Dept. of Energy, Office of Science [DE-FG020 1 ER 15244]; Argonne National Laboratory (Laboratory-Grad Fellowship for KLM) FX We gratefully acknowledge the U.S. Dept. of Energy, Office of Science (grant # DE-FG020 1 ER 15244), and Argonne National Laboratory (Laboratory-Grad Fellowship for KLM) for financial support of our work. NR 25 TC 126 Z9 127 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 15 PY 2008 VL 47 IS 18 BP 7936 EP 7938 DI 10.1021/ic800700h PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 346UB UT WOS:000259093700001 PM 18549202 ER PT J AU Jocher, CJ Moore, EG Pierce, JD Raymond, KN AF Jocher, Christoph J. Moore, Evan G. Pierce, Jason D. Raymond, Kenneth N. TI Aqueous Ln(III) luminescence agents derived from a tasty precursor SO INORGANIC CHEMISTRY LA English DT Article ID LANTHANIDE COMPLEXES AB The synthesis, characterization, and photophysical properties are reported for several Ln(III) complexes of a tetradentate chelate, 5LIO-MAM, derived from the common flavor enhancer "maltol". Eu(III), Yb(III), and Nd(III) form stable ML2 complexes in aqueous solution that emit in the red or near-infrared (NIR) upon excitation at ca. 330 nm. The synthesis, aqueous stability, and photophysical properties are reported for a novel tetradentate ligand derived from maltol, a commonly used flavor enhancer. In aqueous solution, this chelate forms stable complexes with Ln(III) cations, and sensitized emission was observed from Eu(III), Yb(III), and Nd(III). A comparison with recently reported and structurally analogous ligands reveals a slightly higher basicity but lower complex stability with Eu(III) [pEu = 14.7(1)]. A very poor metal-centered quantum yield with Eu(III) was observed (Phi)(tot) = 0.04%), which can be rationalized by the similar energy of the ligand triplet state and the Eu(III) D-5(0) emissive level. Instead, sensitized emission from the Yb(III) and Nd(III) cations was observed, which emit in the NIR. C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu FU NIH [HL69832]; U.S. Department of Energy at LBNL [DE-AC02-05CH 11231]; German Research Foundation (DFG) FX This work was partially supported by the NIH (Grant HL69832) and supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract DE-AC02-05CH 11231. C.J.J. acknowledges the German Research Foundation (DFG) for a postdoctoral fellowship. NR 11 TC 9 Z9 9 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 15 PY 2008 VL 47 IS 18 BP 7951 EP 7953 DI 10.1021/ic8010162 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 346UB UT WOS:000259093700006 PM 18707093 ER PT J AU Antonio, MR Chiang, MH AF Antonio, Mark R. Chiang, Ming-Hsi TI Stabilization of plutonium(III) in the Preyssler polyoxometalate SO INORGANIC CHEMISTRY LA English DT Article ID AQUEOUS-SOLUTION; COMPLEXES; HETEROPOLYANIONS; COORDINATION; VALENCE; ANION; OXIDATION; CERIUM; LANTHANIDE; POTENTIALS AB The Na+ ion encapsulated within the Preyssler heteropolyoxoanion, [NaP5W30O110](14-), was exchanged with Pu(III) under hydrothermal conditions to obtain [Pu(III)P5W30O110](12-) (abbreviated [PuPA](12-)) with hybrid electrochemical properties resulting from the combination of the key redox behaviors of the Pu cation and the P-W-O anion. The electroanalytical chemistry of this two-center, multielectron redox system in a 1 M HCl electrolyte shows that Pu(Ill) is oxidized to Pu(IV) at the half-wave potential, E-1/2, of +0.960 V versus Ag/AgCl, which is 0.197 V more positive than the corresponding electrode potential for the Pu(III) aqua ion also in 1 M HCl, indicating the stabilization of the trivalent Pu cation by its encapsulation in the Preyssler polyoxometalate (POM). This effect is uncommon in actinide-POM chemistry, wherein electrode potential shifts of the opposite nature (to more negative values), leading to the stabilization of the tetravalent ions by complexation, are renowned. Moreover, in cyclic voltammetry measurements of the Pu(III) aqua ion and [PuPA](12-), the peak currents, i(p), for the one-electron Pu(III)/Pu(IV) processes show different dependencies with the scan rate, nu. The former shows proportionality with nu(1/2), indicating freely diffusing species, whereas the latter shows proportionality with v, indicating a surface-confined one. The first of the five successive two-electron, W-centered reduction processes in [PuPA](12-) occurs at E-1/2 = -0.117 V versus Ag/AgCl, which is 1.077 V less than the E-1/2 for the Pu(III)/Pu(IV) oxidation, thereby providing an experimental, electrochemical measure of the highest occupied molecular orbital/lowest unoccupied molecular orbital energy gap, which compares well with values previously obtained by density-functional theory, complete active space-self consistent field, and post-Hartree-Fock calculations for a series of Mn+-exchanged systems, [MPA](n-15) for 1 <= n <= 4 (Fernandez, J. A.; Lopez, X.; Bo, C.; de Graff, C.; Baerends, E. J.; Poblet, J. M. J. Am Chem. Soc. 2007, 129, 12244-12253). It was not possible to prepare the Np-exchanged Preyssler anion in the manner of [PuPA](12-), because of the instability of tri- and tetravalent Np to oxidation and the formation of the neptunyl(V) ion, which also could not be exchanged for Na+. C1 [Antonio, Mark R.; Chiang, Ming-Hsi] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chiang, Ming-Hsi] Acad Sinica, Inst Chem, Taipei 115, Taiwan. RP Antonio, MR (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mantonio@anl.gov RI Chiang, Ming-Hsi/E-2044-2015 OI Chiang, Ming-Hsi/0000-0002-7632-9369 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357] FX We thank Clayton W. Williams and L. Soderholm (ANL) for assistance during the initial stages of this work, which was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357. NR 45 TC 20 Z9 20 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 15 PY 2008 VL 47 IS 18 BP 8278 EP 8285 DI 10.1021/ic8008893 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 346UB UT WOS:000259093700044 PM 18698696 ER PT J AU Gaunt, AJ Reilly, SD Enriquez, AE Hayton, TW Boncella, JM Scott, BL Neu, MP AF Gaunt, Andrew J. Reilly, Sean D. Enriquez, Alejandro E. Hayton, Trevor W. Boncella, James M. Scott, Brian L. Neu, Mary P. TI Low-valent molecular plutonium halide complexes SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-STRUCTURE; N-DONOR LIGAND; CRYSTAL-STRUCTURES; LANTHANIDE(III)/ACTINIDE(III) DIFFERENTIATION; TRIVALENT ACTINIDE; LANTHANIDE CATIONS; IODIDE COMPLEXES; PHOSPHINE OXIDE; URANIUM; CHEMISTRY AB Treatment of plutonium metal with 1.5 equiv of bromine in tetrahydrofuran (thf) led to isolation of PuBr3(thf)(4) (1), which is a new versatile synthon for exploration of non-aqueous Pu(III) chemistry. Adventitious water in the system resulted in structural characterization of the eight-coordinate complex [PuBr2(H2O)(6)][Br] (2). The crystal structure of Pul(3)(thf)(4) (3) has been determined for the first time and is isostructural with Ul(3)(thf)(4). Attempts to form a bis(imido) plutonyl(VI) moiety ([Pu(NR)(2)](2+)) by oxidation of Pul(3)(PY)(4) with iodine and (BuNH2)-Bu-t resulted in crystallization of the Pu(III) Complex [Pul(2)(thf)(4)(py)][I-3] (4). Dissolution of a Pu(IV) carbonate with a HCl/Et2O solution in thf gave the mixed valent (III/IV) complex salt [PuCl2(thf)(5)][PuCl5(thf)] (5) as the only tractable product. Oxidation of Pu[N(SiMe3)(2)](3) with TeCl4 afforded the Pu(IV) complex Pu[N(SiMe3)(2)](3)Cl (6), which may prove to be a useful entry route for investigation of organometallic/non-aqueous tetravalent plutonium chemistry. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Plutonium Mfg & Technol Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Directorate Chem Life & Earth Sci, Los Alamos, NM 87545 USA. RP Gaunt, AJ (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM gaunt@lanl.gov; mneu@lanl.gov RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Gaunt, Andrew/0000-0001-9679-6020; Boncella, James/0000-0001-8393-392X FU Heavy Element Chemistry Research Program, Chemical Sciences Division of the Office of Basic Energy Sciences; U.S. Department of Energy; G. T. Seaborg Institute at Los Alamos National Laboratory (LANL); Laboratory Directed Research and Development (LDRD) program FX We thank the Heavy Element Chemistry Research Program, Chemical Sciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy, and the G. T. Seaborg Institute at Los Alamos National Laboratory (LANL) for funding. A.J.G. also thanks the Laboratory Directed Research and Development (LDRD) program at LANL for a short term research grant in the summer of 2007. NR 72 TC 13 Z9 13 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 15 PY 2008 VL 47 IS 18 BP 8412 EP 8419 DI 10.1021/ic8009139 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 346UB UT WOS:000259093700057 PM 18714989 ER PT J AU Lai, H McJunkin, TR Miller, CJ Scott, JR Almirall, JR AF Lai, Hanh McJunkin, Timothy R. Miller, Carla J. Scott, Jill R. Almirall, Jose R. TI The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE ion mobility spectrometry; ion trajectory simulation; modeling; SIMION; statistical diffusion simulation ID PLASMA CHROMATOGRAPHY; MASS-SPECTROMETRY; RESOLUTION; PRESSURE; DESIGN; EXPLOSIVES; COMPUTER; OPTICS; FLOW; TUBE AB The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks (R) with COSMSOSFIoWorks (R) fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time. intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance. (C) 2008 Elsevier B.V. All rights reserved. C1 [McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Lai, Hanh; Almirall, Jose R.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. [Lai, Hanh; Almirall, Jose R.] Florida Int Univ, Int Forens Res Inst, Miami, FL 33199 USA. RP Scott, JR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM jill.scott@inl.gov; almirall@fiu.edu RI Almirall, Jose/D-1280-2010; McJunkin, Timothy/G-8385-2011; Scott, Jill/G-7275-2012 OI Almirall, Jose/0000-0002-5257-7499; McJunkin, Timothy/0000-0002-4987-9170; FU National Institute of justice [2006-DN-BX-K027]; Idaho National Laboratory [DE-AC07-051D14517] FX Funding for H.L. is acknowledged from the Kauffman Doctoral Student Fellowship by The Ewing Marion Kauffman Foundation and the Eugenio Pino Entrepreneurship Center at Florida International University. Additional funding from the National Institute of justice (2006-DN-BX-K027), and the Idaho National Laboratory under DOE/NE Idaho Operations Office Contract DE-AC07-051D14517 is also acknowledged. NR 30 TC 22 Z9 23 U1 4 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP 15 PY 2008 VL 276 IS 1 BP 1 EP 8 DI 10.1016/j.ijms.2008.06.011 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 352TL UT WOS:000259520200001 ER PT J AU Nakaki, H Kim, YK Yokoyama, S Ikariyama, R Funakubo, H Streiffer, SK Nishida, K Saito, K Gruverman, A AF Nakaki, Hiroshi Kim, Yong Kwan Yokoyama, Shintaro Ikariyama, Rikyu Funakubo, Hiroshi Streiffer, S. K. Nishida, Ken Saito, Keisuke Gruverman, Alexei TI Experimental evidence of strain relaxed domain structure in (100)/(001)-oriented epitaxial lead titanate thick films grown by metal organic chemical vapor deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Epitaxial (100)/(001)-oriented PbTiO(3) films with thickness of 2.8 mu m were grown on Nb-doped (100) SrTiO(3) substrates by pulsed metal organic chemical vapor deposition. Complex domain structures consisting of c-domains (c1) and three types of a-domains (a1, a2, and a3) were observed by piezoresponse force microscopy in conjunction with high-resolution x-ray diffraction analysis. The obtained results suggest that (a2/a3) and (a1/c1) domain configurations represent mostly strain-relaxed structures. This conclusion is in good agreement with theoretical predictions made for thick films [Phys. State., Solidi 37, 329 (1976)]. (c) 2008 American Institute of Physics. C1 [Nakaki, Hiroshi; Kim, Yong Kwan; Yokoyama, Shintaro; Ikariyama, Rikyu; Funakubo, Hiroshi] Tokyo Inst Technol, Dept Innovat & Engn Mat, Yokohama, Kanagawa 2268503, Japan. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Nishida, Ken] Natl Def Acad, Dept Elect Engn, Yokohama, Kanagawa 239, Japan. [Saito, Keisuke] Bruker AXS, Applicat Lab, Kanagawa Ku, Yokohama, Kanagawa 2210022, Japan. [Gruverman, Alexei] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. RP Nakaki, H (reprint author), Tokyo Inst Technol, Dept Innovat & Engn Mat, Yokohama, Kanagawa 2268503, Japan. RI Streiffer, Stephen/A-1756-2009; Gruverman, alexei/P-3537-2014 OI Gruverman, alexei/0000-0003-0492-2750 NR 14 TC 15 Z9 15 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2008 VL 104 IS 6 AR 064121 DI 10.1063/1.2981193 PG 6 WC Physics, Applied SC Physics GA 361HS UT WOS:000260119300118 ER PT J AU Raitses, Y Smirnov, A Fisch, NJ AF Raitses, Y. Smirnov, A. Fisch, N. J. TI Comment on "Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source". [J. Appl. Phys. 102, 123305 (2007)] SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THRUSTER; PLASMA; TRANSPORT AB It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. 0 2008 American Institute of Physics. [DOI: 10.1063/1.2976361] C1 [Raitses, Y.; Smirnov, A.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Raitses, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM yraitses@pppl.gov FU Air Force Office of Scientific Research FX This work was supported by the Air Force Office of Scientific Research. NR 19 TC 4 Z9 4 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2008 VL 104 IS 6 AR 066102 DI 10.1063/1.2976361 PG 2 WC Physics, Applied SC Physics GA 361HS UT WOS:000260119300182 ER PT J AU Ulrich, TJ Griffa, M Anderson, BE AF Ulrich, T. J. Griffa, M. Anderson, B. E. TI Symmetry-based imaging condition in time reversed acoustics SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ULTRASONIC FIELDS; MULTIPLE-SCATTERING; CHAOTIC CAVITIES; WAVE-GUIDE; MODE; OPERATOR; SOLIDS; MIRROR; FILTER; MEDIA AB Introduced in this paper is a new method of determining and investigating focal positions of time reversed elastic wave fields. This method exploits the temporally symmetric nature of time reversed acoustics focused signals as they are akin to the autocorrelation function of the forward propagation received signals. Contrasting this symmetry with the degree of asymmetry at regions away from the focal location provides details about the original source that cannot be retrieved when using other standard imaging conditions. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2980323] C1 [Ulrich, T. J.; Griffa, M.; Anderson, B. E.] Los Alamos Natl Lab, EES 11, Los Alamos, NM 87545 USA. RP Ulrich, TJ (reprint author), Los Alamos Natl Lab, EES 11, Los Alamos, NM 87545 USA. EM tju@lanl.gov; mgriffa@lanl.gov RI Anderson, Brian/G-8819-2012; OI Griffa, Michele/0000-0001-8407-9438 FU Institutional Support (LDRD) FX The work was supported by Institutional Support (LDRD) at the Los Alamos National Laboratory. The authors are grateful for invaluable input from Robert Guyer, Paul Johnson, and Carene Larmat. NR 38 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2008 VL 104 IS 6 AR 064912 DI 10.1063/1.2980323 PG 8 WC Physics, Applied SC Physics GA 361HS UT WOS:000260119300172 ER PT J AU Venkataraman, S Hermann, H Sordelet, DJ Eckert, J AF Venkataraman, S. Hermann, H. Sordelet, D. J. Eckert, J. TI Influence of sub-T-g annealing on the crystallization kinetics Of Cu47Ti33Zr11Ni8Si1 metallic glass SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STRUCTURAL RELAXATION; AMORPHOUS-ALLOYS; PHASE-SEPARATION; TRANSITION; BEHAVIOR; TEMPERATURE; NANOCRYSTALLIZATION; NUCLEATION; STABILITY; POWDERS AB The influence of sub-T-g preannealing on the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glass powders is investigated by differential scanning calorimetry. Sub-T-g treatment induces changes in the isochronal calorimetry traces. Isothermal investigations show that transformation occurs by nucleation and growth, and there is no influence of the preannealing on the transformation kinetics in terms of the Avrami constant. Crystallization occurs by an increasing nucleation rate. A gradual but significant difference is observed in the calculated values of the activation energy. The decrease in activation energy of nanocrystallization can be explained on the basis of increased short-range ordering caused by preannealing. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981188] C1 [Venkataraman, S.; Hermann, H.; Eckert, J.] IFW Dresden, Inst Complex Mat, D-01069 Dresden, Germany. [Sordelet, D. J.] Iowa State Univ, US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA USA. [Eckert, J.] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany. RP Venkataraman, S (reprint author), IFW Dresden, Inst Complex Mat, Helmholtzstr 20, D-01069 Dresden, Germany. EM s.venkataraman@ifw-dresden.de FU German Research Foundation [Ec 111/10]; U.S. DOE, BES, through Iowa State University [W-7405-ENG-82] FX This work was supported by the German Research Foundation (Grant No. Ec 111/10) as well as by the U.S. DOE, BES, through Iowa State University under Contract No. W-7405-ENG-82. NR 28 TC 6 Z9 6 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2008 VL 104 IS 6 AR 066107 DI 10.1063/1.2981188 PG 3 WC Physics, Applied SC Physics GA 361HS UT WOS:000260119300187 ER PT J AU Radovic, M Speakman, SA Allard, LF Payzant, EA Lara-Curzio, E Kriven, WM Lloyd, J Fegely, L Orlovskaya, N AF Radovic, M. Speakman, S. A. Allard, L. F. Payzant, E. A. Lara-Curzio, E. Kriven, W. M. Lloyd, J. Fegely, L. Orlovskaya, N. TI Thermal, mechanical and phase stability of LaCoO3 in reducing and oxidizing environments SO JOURNAL OF POWER SOURCES LA English DT Article DE reduction; perovskite; thermal expansion; stability; fuel cells ID MAGNETIC-PROPERTIES; SPIN TRANSITION; PEROVSKITE; OXIDES; REDUCTION; NONSTOICHIOMETRY; LA4CO3O10+DELTA; EXPANSION; ETHYLENE AB Thermal, mechanical, and phase stability of LaCoO3 perovskite in air and 4% H-2/96% Ar reducing atmosphere have been studied by thermal mechanical analysis (TMA), high temperature microhardness, and high temperature/room temperature X-ray diffraction. The thermal behavior of LaCoO3 in air exhibits a non-linear expansion in the 100-400 degrees C temperature range. A significant increase of coefficient of thermal expansion (CTE) measured in air both during heating and cooling experiments occurs in the 200-250 degrees C temperature range, corresponding to a known spin state transition. LaCoO3 is found to be highly unstable in a reducing atmosphere. In case where LaCoO3 was present as a powder, where surface reduction mechanism would prevail, the reduction starts as earlier as 375 degrees C with a formation of the metallic Co and La2O3 at 600 degrees C. In the bulk form, LaCoO3 undergoes a series of expansion and contractions due to phase transformations beginning around 500 degrees C with very intensive chemical/phase changes at 800 degrees C and above. These expansions and contractions are directly related to the formation of La3Co3O8, La2CoO4, La4Co3O10, La2O3, CoO, and other Co compounds in the reducing atmosphere. Although LaCoO3 is a good ionic and electronic conductor and catalyst, its high thermal expansion as well as structural, mechanical, and phase instability in reducing environments present a serious restriction for its application in solid oxide fuel cells, sensors or gas separation membranes. (C) 2008 Elsevier B.V. All rights reserved. C1 [Orlovskaya, N.] Univ Cent Florida, Dept Mechan Mat & Aerosp Engn, Orlando, FL 32816 USA. [Radovic, M.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Speakman, S. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kriven, W. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61820 USA. [Lloyd, J.; Fegely, L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Orlovskaya, N.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mechan Mat & Aerosp Engn, Orlando, FL 32816 USA. EM norlovsk@mail.ucf.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 FU NSF, DMR [0201770]; Department of Energy's Faculty; Assistant Secretary for energy efficiency and renewable energy; Office of FreedomCAR and Vehicle Technologies; US Department of Energy [2005-080, 2003-059] FX This research was supported by NSF, DMR (project #0201770) and in part by an appointment to the Department of Energy's Faculty and Student Team program. This research was also supported in part by the Assistant Secretary for energy efficiency and renewable energy, Office of FreedomCAR and Vehicle Technologies, as a part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract 2005-080 and 2003-059. NR 28 TC 20 Z9 21 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 15 PY 2008 VL 184 IS 1 BP 77 EP 83 DI 10.1016/j.jpowsour.2008.05.063 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 355NY UT WOS:000259716800010 ER PT J AU Chou, YS Stevenson, JW Singh, P AF Chou, Yeong-Shyung Stevenson, Jeffry W. Singh, Prabhakar TI Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect SO JOURNAL OF POWER SOURCES LA English DT Article DE seal strength; sealing glass; interface; Crofer22APU; SOFC ID COMPRESSIVE MICA SEALS; CERAMIC SEALANTS; FERRITIC STEELS; TECHNOLOGY; PROGRESS; ALLOYS; STACK AB A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate longterm exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar] Pacific NW Natl Lab, Dept Mat, Richland, WA 99354 USA. RP Chou, YS (reprint author), Pacific NW Natl Lab, Dept Mat, K2-44,POB 999, Richland, WA 99354 USA. EM yeong-shyung.chou@pnl.gov RI Singh, Prabhakar/M-3186-2013 FU US Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program; Battelle Memorial Institute for the US Department of Energy [DE-AC06-76RLO 1830] FX The authors would like to thank S. Carlson for SEM sample preparation, and J. Coleman for SEM analysis. This work summarized in this paper was funded by the US Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program. The authors would like to thank Wayne Surdoval, Mani Manivannan, and Briggs White from NETL for helpful discussions. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract no. DE-AC06-76RLO 1830. NR 30 TC 48 Z9 48 U1 3 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 15 PY 2008 VL 184 IS 1 BP 238 EP 244 DI 10.1016/j.jpowsour.2008.06.020 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 355NY UT WOS:000259716800028 ER PT J AU Gemmen, RS Williams, MC Gerdes, K AF Gemmen, Randall S. Williams, Mark C. Gerdes, Kirk TI Degradation measurement and analysis for cells and stacks SO JOURNAL OF POWER SOURCES LA English DT Article DE degradation; fuel cell; standards; ASR; area-specific resistance ID OXIDE FUEL-CELL; SOFC STACK; PART I; TEMPERATURE; ANODE; DEPENDENCE; MODEL AB Past research in solid oxide fuel cell (SOFC) performance assessment and improvement has focused on cell operating voltage (efficiency). Related to this metric, but distinct and equally important, is performance degradation. This paper examines cell degradation, provides key definitions needed for its characterization, and discusses the relationship of various cell performance variables. To characterize degradation, two parameters are defined, namely, area-specific resistance (ASR), and degradation rate (DR). The ASR of a cell/stack increases as a result of degradation, and therefore needs to be modeled as a time-dependent parameter. A model for SOFC cell performance is used to describe polarization losses, and to predict degradation performance. The model is then used to demonstrate the use of ASR and DR in the assessment of degradation. Available experimental data is separately used to do the same. ASR is shown to be insensitive to certain variations in test conditions and therefore is the preferred parameter for fuel cell developers when comparing performance differences arising from incremental changes in design/materials. DR is the preferred parameter for determining changes in efficiency over the lifetime of the cell/stack, which is a key concern for end users. Published by Elsevier B.V. C1 [Gemmen, Randall S.; Williams, Mark C.] Natl Energy Technol Lab, URS EG&G, Morgantown, WV 26507 USA. RP Gemmen, RS (reprint author), Natl Energy Technol Lab, URS EG&G, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM randall.gemmen@netl.doe.gov; mark.willams@eg.netl.doe.gov; kirk.gerdes@netl.doe.gov NR 28 TC 35 Z9 35 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 15 PY 2008 VL 184 IS 1 BP 251 EP 259 DI 10.1016/j.jpowsour.2008.06.047 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 355NY UT WOS:000259716800030 ER PT J AU Thomas, EV Bloom, I Christophersen, JP Battaglia, VS AF Thomas, E. V. Bloom, I. Christophersen, J. P. Battaglia, V. S. TI Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing SO JOURNAL OF POWER SOURCES LA English DT Article DE bootstrap; Monte Carlo simulation; lack-of-fit AB Statistical models based on data from accelerated aging experiments are used to predict cell life. In this article, we discuss a methodology for estimating the mean cell life with uncertainty bounds that uses both a degradation model (reflecting average cell performance) and an error model (reflecting the measured cell-to-cell variability in performance). Specific forms for the degradation and error models are presented and illustrated with experimental data that were acquired from calendar-life testing of high-power lithium-ion cells as part of the U.S. Departmentof Energy's (DOEs) Advanced Technology Development program. Monte Carlo simulations, based on the developed models, are used to assess lack-of-fit and develop uncertainty limits for the average cell life. In addition, we discuss the issue of assessing the applicability of degradation models (based on data acquired from cells aged under static conditions) to the degradation of cells aged under more realistic dynamic conditions (e.g., varying temperature). (C) 2008 Elsevier B.V. All rights reserved. C1 [Thomas, E. V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bloom, I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Christophersen, J. P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Battaglia, V. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Thomas, EV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM evthoma@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000]; DOE [DE-AC02-06CH11357, DE-AC07-05ID14517, DE-AC03-76SF00098] FX This work was performed under the auspices of DOE Office of Vehicle Technologies, Hybrid and Electric Systems through the Advanced Technology Development (ATD) Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. The authors also acknowledge DOE support under Contract No.'s DE-AC02-06CH11357, DE-AC07-05ID14517, and DE-AC03-76SF00098. NR 11 TC 36 Z9 37 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 15 PY 2008 VL 184 IS 1 BP 312 EP 317 DI 10.1016/j.jpowsour.2008.06.017 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 355NY UT WOS:000259716800039 ER PT J AU Caris, J Varadarajan, R Stephens, JJ Lewandowski, JJ AF Caris, Joshua Varadarajan, Ravikumar Stephens, John J., Jr. Lewandowski, John J. TI Microstructural effects on tension and fatigue behavior of Cu-15Ni-8Sn sheet SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE copper alloys; fatigue-life; Coffin-Manson-Basquin; spring materials ID NI-SN ALLOYS; SPINODAL DECOMPOSITION; MECHANICAL-PROPERTIES; TRANSFORMATION; STRENGTH; COPPER AB The effects of systematic changes in microstructure/heat treatment on the mechanical behavior of Cu-15Ni-8Sn (Pfinodal(R)) were evaluated in uniaxial tension and in cyclic strain-controlled fatigue with the use of a modified GE Flex Tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and fracture surfaces were analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature, where testing was conducted on similar materials. Significant effects of cold work and heat treatment on both the tension and fatigue behavior were obtained and rationalized based on the mechanisms of failure, revealed by SEM, for this system. (C) 2008 Elsevier B.V. All rights reserved. C1 [Caris, Joshua; Varadarajan, Ravikumar; Lewandowski, John J.] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. [Stephens, John J., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Caris, J (reprint author), Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. EM joshua.caris@case.edu NR 34 TC 2 Z9 2 U1 5 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 15 PY 2008 VL 491 IS 1-2 BP 137 EP 146 DI 10.1016/j.msea.2008.01.061 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 334QR UT WOS:000258236800017 ER PT J AU Dumitru, A Gelis, F McLerran, L Venugopalan, R AF Dumitru, Adrian Gelis, Francois McLerran, Larry Venugopalan, Raju TI Glasma flux tubes and the near side ridge phenomenon at RHIC SO NUCLEAR PHYSICS A LA English DT Article DE Color Glass Condensate; Glasma; flux tubes; radial flow; ridge ID HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; NUCLEUS-NUCLEUS COLLISIONS; STRONG EXTERNAL SOURCES; HIGH-ENERGY SCATTERING; WEINBERG-SALAM THEORY; HIGH-DENSITY QCD; PARTICLE CORRELATIONS; ANGULAR-CORRELATIONS; TRANSVERSE-MOMENTUM AB We investigate the consequences of long range rapidity correlations in the Glasma. Particles produced locally in the transverse plane are correlated by approximately boost invariant flux tubes of longitudinal color electric and magnetic fields that are formed when two sheets of Colored Glass Condensate pass through one another, each acquiring a modified color charge density in the collision. We argue that such long range rapidity correlations persist during the evolution of the Quark-Gluon Plasma formed later in the collision. When combined with transverse flow, these correlations reproduce many of the features of the recently observed ridge events in heavy ion collisions at RHIC. (C) 2008 Elsevier B.V. All rights reserved. C1 [McLerran, Larry; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Dumitru, Adrian] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Gelis, Francois] CERN, Div Theory, PH TH, Case C01600, CH-1211 Geneva 23, Switzerland. [McLerran, Larry] Brookhaven Natl Lab, RIKEN Brookhaven Res Ctr, Upton, NY 11973 USA. RP Venugopalan, R (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. EM rajuv@mac.com NR 76 TC 194 Z9 194 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 15 PY 2008 VL 810 BP 91 EP 108 DI 10.1016/j.nuclphysa.2008.06.012 PG 18 WC Physics, Nuclear SC Physics GA 356JG UT WOS:000259773900004 ER PT J AU Demos, SG Sharareh, S AF Demos, Stavros G. Sharareh, Shiva TI Real time assessment of RF cardiac tissue ablation with optical spectroscopy SO OPTICS EXPRESS LA English DT Article ID RADIOFREQUENCY CATHETER ABLATION; ATRIAL-FIBRILLATION; MYOCARDIUM; COMPLICATIONS; MICROBUBBLES; DEPENDENCE; IMPEDANCE; LESIONS; SAFETY AB An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, contact of catheter with the tissue, lesion formation, depth of penetration of the lesion, formation of char and coagulum during the ablation. (c) 2008 Optical Society of America. C1 [Demos, Stavros G.] Univ Calif Davis, Ctr Biophoton, Sacramento, CA 95817 USA. [Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Sharareh, Shiva] Biosense Webster Inc, Diamond Bar, CA 91765 USA. RP Demos, SG (reprint author), Univ Calif Davis, Ctr Biophoton, Sacramento, CA 95817 USA. EM Demos1@llnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Biosense Webster Inc; University of California, Davis [PHY 0120999] FX This work was performed in part under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research is supported by funding from Biosense Webster Inc. and the Center for Biophotonics, an NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. NR 27 TC 6 Z9 6 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 15 PY 2008 VL 16 IS 19 BP 15286 EP 15296 DI 10.1364/OE.16.015286 PG 11 WC Optics SC Optics GA 349HM UT WOS:000259271900101 PM 18795066 ER PT J AU Paranthaman, MP Bhuiyan, MS Sathyamurthy, S Heatherly, L Cantoni, C Goyal, A AF Paranthaman, M. Parans Bhuiyan, M. S. Sathyamurthy, S. Heatherly, L. Cantoni, C. Goyal, A. TI Improved textured La2Zr2O7 buffer on La3TaO7 seed for all-MOD Buffer/YBCO coated conductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 20th International Symposium on Superconductivity CY NOV 05-07, 2007 CL Tsukuba, JAPAN SP Tsukuba Int Congress Ctr DE sol-gel processing; thin films; buffer layers; YBCO coated conductors ID CHEMICAL SOLUTION DEPOSITION; SUPERCONDUCTOR WIRES; LANTHANUM ZIRCONATE; THIN-FILMS; FABRICATION; LAYERS; OXIDE AB The overall purpose of this research is to develop a potentially low-cost, high throughput high yield,, manufacturing process for buffer deposition, and to gain a fundamental understanding of buffer layers required for an all metal-organic deposition (MOD) based chemical solution approach This understanding is critical to the development of a reliable, robust, low-cost, long-length manufacturing process of 2G wires. The standard RABiTS architectures consists of a starting template of biaxially textured Ni-W (5 at.%) substrate with a seed layer of Y2O3, a barrier layer of YSZ, and a CeO2 cap. In this three-layer architecture, all the buffers are deposited using reactive sputtering. We have recently demonstrated that the barrier properties and the performance of MOD La2Zr2O7 (LZO) match that of sputtered YSZ layers. In this work, the texture of MOD LZO was also improved by inserting a sputtered Y2O3 seed layer on which LZO grows without any degradation of texture. Significant improvement in the texture of sputtered Y2O3 seeds on NiW substrates is usually observed which is then transferred to the LZO layer. A key challenge for an all-solution approach is to replace the sputtered seed layer with a possible MOD seed layer with improved texture and on which no degradation of LZO texture occurs. Very recently, we have grown MOD La3TaO7 (LTO) seeds directly on biaxially textured Ni-W (3 at.%) with improved texture. In this study, we report a systematic investigation of the growth MOD LZO barrier layer on MOD LTO seeds. Preliminary results show that it is possible to grow MOD LZO with improved texture on MOD LTO seeds, This approach could be potentially used for future all MOD buffer/YBCO coated conductors. Published by Elsevier B.V. C1 [Paranthaman, M. Parans; Bhuiyan, M. S.; Sathyamurthy, S.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Heatherly, L.; Cantoni, C.; Goyal, A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Paranthaman, MP (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. EM paranthamanm@ornl.gov RI Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013 OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni, Claudia/0000-0002-9731-2021 NR 16 TC 14 Z9 14 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD SEP 15 PY 2008 VL 468 IS 15-20 BP 1587 EP 1590 DI 10.1016/j.physc.2008.05.078 PG 4 WC Physics, Applied SC Physics GA 355ML UT WOS:000259712900126 ER PT J AU Suenaga, M Iwakuma, M Sueyoshi, T Izumi, T Mimura, M Takahashi, Y Aoki, Y AF Suenaga, M. Iwakuma, M. Sueyoshi, T. Izumi, T. Mimura, M. Takahashi, Y. Aoki, Y. TI Effects of a ferromagnetic substrate on hysteresis losses of a YBa2Cu3O7 coated conductor in perpendicular ac applied magnetic fields SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 20th International Symposium on Superconductivity CY NOV 05-07, 2007 CL Tsukuba, JAPAN SP Tsukuba Int Congress Ctr DE Ac losses; YBCO; coated conductors; magnetic substrates ID SUPERCONDUCTING TAPES; II-SUPERCONDUCTOR AB The effects of a ferromagnetic substrate on ac losses of a YBa2Cu3O7, YBCO, coated conductor in perpendicular ac magnetic fields were investigated by measuring the losses of a set of the specimens which were made by placing one Ni-5 at.% W tape on one or both sides of a YBCO layer on a Hastelloy tape. For applied field amplitude, mu H-0(0), < similar to 5 mT, the losses with the Ni-W tape(s) were higher than those of the YBCO tape, but for similar to 5 mT < pohlo < similar to 0.1 T, the losses were reduced by putting the Ni-W tape(s) on the YBCO tape. For mu H-0(0) > similar to 0.1 T, the losses became the same for all of the specimens. Also, the geometric portion Z(0) of the susceptibility chi was determined from the hysteresis loops for these specimens, and was found to decease with the addition of the magnetic substrate. These observations agreed very well with the theoretical Calculations for the losses and chi(0) for a YBCO layer on a ferromagnetic substrate, by [Mawatari, arVir:0710:2151vl, (cond-mat.supr-con)]. (C) 2008 Elsevier B.V. All rights reserved. C1 [Suenaga, M.; Iwakuma, M.; Sueyoshi, T.] Kyushu Univ, Res Inst Superconductor Sci & Syst, Fukuoka 8190395, Japan. [Izumi, T.] Superconduct Res Lab, Koto Ku, Tokyo 1350062, Japan. [Mimura, M.] Furukawa Elect Corp Ltd, Nikko, Tochigi 3211493, Japan. [Takahashi, Y.; Aoki, Y.] Showa Cable Syst Co LTD, Kanagawa 2291133, Japan. RP Suenaga, M (reprint author), Brookhaven Natl Lab, 76 Cornell Ave, Upton, NY 11973 USA. EM mas@bnl.gov NR 11 TC 10 Z9 11 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD SEP 15 PY 2008 VL 468 IS 15-20 BP 1714 EP 1717 DI 10.1016/j.physc.2008.05.182 PG 4 WC Physics, Applied SC Physics GA 355ML UT WOS:000259712900156 ER PT J AU Chiaramonti, AN Lanier, CH Marks, LD Stair, PC AF Chiaramonti, Ann N. Lanier, Courtney H. Marks, Laurence D. Stair, Peter C. TI Time, temperature, and oxygen partial pressure-dependent surface reconstructions on SrTiO3(111): A systematic study of oxygen-rich conditions SO SURFACE SCIENCE LA English DT Article DE Transmission high energy electron diffraction; Transmission electron microscopy; Surface reconstruction; Surface structure; Morphology; Roughness and topography; Oxides; Single crystal Surfaces ID TRANSMISSION ELECTRON-MICROSCOPY; SINGLE-CRYSTAL SRTIO3; STRONTIUM-TITANATE; POINT-DEFECTS; DIFFUSION; ENERGIES; FILMS AB The formation of surface reconstructions on the (111) surface of SrTiO3 following Ar+ ion bombardment and annealing in oxygen-rich (0.2 <= pO(2) <= 1.0) environments is systematically investigated using transmission electron Microscopy imaging and diffraction. A series of air stable and highly reproducible reconstructions are observed whose periodicity depends on the combination of annealing time, temperature, and oxygen partial pressure. Approximate phase maps can be constructed for each annealing time investigated, and these reveal that for short annealing times (0.5 h) the periodicity of the observed reconstruction is a primarily function of the partial pressure of oxygen in the annealing environment while for long annealing times (10 h) the observed periodicity is primarily a function of the annealing temperature. For intermediate annealing times (5 h), three coexisting reconstructions are observed to exist on a single specimen. Published by Elsevier B.V. C1 [Chiaramonti, Ann N.] Argonne Natl Lab, Div Mat Sci, Interfacial Mat Grp, Argonne, IL 60439 USA. [Chiaramonti, Ann N.; Lanier, Courtney H.; Marks, Laurence D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Chiaramonti, AN (reprint author), Argonne Natl Lab, Div Mat Sci, Interfacial Mat Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chiaramonti@anl.gov RI Marks, Laurence/B-7527-2009; Chiaramonti, Ann/E-7459-2013 OI Chiaramonti, Ann/0000-0001-9933-3267 FU National Science Foundation; US Department of Energy Office of Science [CHE-9810378]; Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-03ER15457] FX The authors would like to acknowledge the contributions of W. Tu and J.-Y. Kim to the TEM specimen preparation and annealing. This work was supported by the EMSI program of the National Science Foundation and the US Department of Energy Office of Science (CHE-9810378) as well as the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy (DE-FG02-03ER15457) at the Northwestern University Institute for Environmental Catalysis. Argonne National Laboratory, a US Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 34 TC 13 Z9 13 U1 0 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD SEP 15 PY 2008 VL 602 IS 18 BP 3018 EP 3025 DI 10.1016/j.susc.2008.07.033 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 367KI UT WOS:000260550500012 ER PT J AU Zwolak, M AF Zwolak, Michael TI Finite representations of continuum environments SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RENORMALIZATION-GROUP; QUANTUM; DYNAMICS; SYSTEMS; DECAY AB Understanding dissipative and decohering processes is fundamental to the study of quantum systems. An accurate and generic method for investigating these processes is to simulate both the system and environment, which, however, is computationally very demanding. We develop a novel approach to constructing finite representations of the environment based on the influence of different frequency scales on the system's dynamics. As an illustration, we analyze a solvable model of an optical mode decaying into a reservoir. The influence of the environment modes is constant for small frequencies, but drops off rapidly for large frequencies, allowing for a very sparse representation at high frequencies that gives a significant computational speedup in simulating the environment. This approach provides a general framework for simulating open quantum systems. (c) 2008 American Institute of Physics. C1 [Zwolak, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zwolak, Michael] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA. RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B213, Los Alamos, NM 87545 USA. EM mpz@lanl.gov RI Zwolak, Michael/G-2932-2013 OI Zwolak, Michael/0000-0001-6443-7816 FU Gordon and Betty Moore Fellowship at Caltech; U. S. Department of Energy FX We thank W. Zurek, G. Refael, G. Smith, F. M. Cucchietti, and P. Milonni for helpful comments. This research was supported in part by a Gordon and Betty Moore Fellowship at Caltech and by the U. S. Department of Energy through the LANL/LDRD Program. NR 28 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2008 VL 129 IS 10 AR 101101 DI 10.1063/1.2976008 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 357YQ UT WOS:000259883600001 PM 19044898 ER PT J AU Sanderson, MG Dentener, FJ Fiore, AM Cuvelier, C Keating, TJ Zuber, A Atherton, CS Bergmann, DJ Diehl, T Doherty, RM Duncan, BN Hess, P Horowitz, LW Jacob, DJ Jonson, JE Kaminski, JW Lupu, A MacKenzie, IA Mancini, E Marmer, E Park, R Pitari, G Prather, MJ Pringle, KJ Schroeder, S Schultz, MG Shindell, DT Szopa, S Wild, O Wind, P AF Sanderson, M. G. Dentener, F. J. Fiore, A. M. Cuvelier, C. Keating, T. J. Zuber, A. Atherton, C. S. Bergmann, D. J. Diehl, T. Doherty, R. M. Duncan, B. N. Hess, P. Horowitz, L. W. Jacob, D. J. Jonson, J. -E. Kaminski, J. W. Lupu, A. MacKenzie, I. A. Mancini, E. Marmer, E. Park, R. Pitari, G. Prather, M. J. Pringle, K. J. Schroeder, S. Schultz, M. G. Shindell, D. T. Szopa, S. Wild, O. Wind, P. TI A multi-model study of the hemispheric transport and deposition of oxidised nitrogen SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ECOSYSTEMS; FUTURE AB Fifteen chemistry-transport models are used to quantify, for the first time, the export of oxidised nitrogen (NOy) to and from four regions (Europe, North America, South Asia, and East Asia), and to estimate the uncertainty in the results. Between 12 and 24% of the NOx emitted is exported from each region annually. The strongest impact of each source region on a foreign region is: Europe on East Asia, North America on Europe, South Asia on East Asia, and East Asia on North America. Europe exports the most NOy, and East Asia the least. East Asia receives the most NOy from the other regions. Between 8 and 15% of NOx emitted in each region is transported over distances larger than 1000 km, with 3-10% ultimately deposited over the foreign regions. C1 [Sanderson, M. G.; Pringle, K. J.] Met Off Hadley Ctr, Exeter, Devon, England. [Dentener, F. J.; Cuvelier, C.; Marmer, E.] Inst Environm & Sustainabil, DG JRC, European Commiss, Ispra, Italy. [Fiore, A. M.; Horowitz, L. W.] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA. [Keating, T. J.] US EPA, Off Policy Anal & Review, Washington, DC USA. [Zuber, A.] European Commiss, Environm Directorate Gen, Brussels, Belgium. [Atherton, C. S.; Bergmann, D. J.] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. [Diehl, T.; Duncan, B. N.] UMBC, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. [Doherty, R. M.; MacKenzie, I. A.] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland. [Hess, P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Jacob, D. J.; Park, R.] Harvard Univ, Atmospher Chem Modelling Grp, Cambridge, MA 02138 USA. [Jonson, J. -E.; Wind, P.] Norwegian Meteorol Inst, Oslo, Norway. [Kaminski, J. W.; Lupu, A.] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 2R7, Canada. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, Laquila, Italy. [Prather, M. J.] Univ Calif Irvine, Irvine, CA USA. [Schroeder, S.; Schultz, M. G.] Forschungszentrum Julich, ICG2, Julich, Germany. [Shindell, D. T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, D. T.] Columbia Univ, New York, NY USA. [Szopa, S.] Lab Sci Climat & Environm, Gif Sur Yvette, France. [Wild, O.] Univ Lancaster, Div Environm Sci, Lancaster LA1 4YQ, England. RP Sanderson, MG (reprint author), Met Off Hadley Ctr, Exeter, Devon, England. RI Wild, Oliver/A-4909-2009; Szopa, Sophie/F-8984-2010; Schultz, Martin/I-9512-2012; Lupu, Alexandru/D-3689-2009; Bergmann, Daniel/F-9801-2011; Shindell, Drew/D-4636-2012; Duncan, Bryan/A-5962-2011; Pringle, Kirsty /A-4697-2013; mackenzie, ian/E-9320-2013; Horowitz, Larry/D-8048-2014; Park, Rokjin/I-5055-2012; Hess, Peter/M-3145-2015; Pitari, Giovanni/O-7458-2016; OI Wild, Oliver/0000-0002-6227-7035; Szopa, Sophie/0000-0002-8641-1737; Schultz, Martin/0000-0003-3455-774X; Lupu, Alexandru/0000-0002-4520-5523; Bergmann, Daniel/0000-0003-4357-6301; Horowitz, Larry/0000-0002-5886-3314; Park, Rokjin/0000-0001-8922-0234; Hess, Peter/0000-0003-2439-3796; Pitari, Giovanni/0000-0001-7051-9578; Mancini, Eva/0000-0001-7071-0292 NR 13 TC 33 Z9 33 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 13 PY 2008 VL 35 IS 17 AR L17815 DI 10.1029/2008GL035389 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 348GV UT WOS:000259199900008 ER PT J AU Johnson, BT Heese, B McFarlane, SA Chazette, P Jones, A Bellouin, N AF Johnson, B. T. Heese, B. McFarlane, S. A. Chazette, P. Jones, A. Bellouin, N. TI Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CENTER CLIMATE MODEL; SAHARAN DUST; OPTICAL DEPTH; LIDAR MEASUREMENTS; EXPERIMENT SHADE; SAFARI 2000; IN-SITU; IMPACT; CLOUD; EMISSIONS AB This paper presents measurements of the vertical distribution of aerosol extinction coefficient over West Africa during the Dust and Biomass-burning Aerosol Experiment (DABEX)/African Monsoon Multidisciplinary Analysis dry season Special Observing Period Zero (AMMA-SOP0). In situ aircraft measurements from the UK FAAM aircraft have been compared with two ground-based lidars (POLIS and ARM MPL) and an airborne lidar on an ultralight aircraft. In general, mineral dust was observed at low altitudes (up to 2 km), and a mixture of biomass burning aerosol and dust was observed at altitudes of 2-5 km. The study exposes difficulties associated with spatial and temporal variability when intercomparing aircraft and ground measurements. Averaging over many profiles provided a better means of assessing consistent errors and biases associated with in situ sampling instruments and retrievals of lidar ratios. Shortwave radiative transfer calculations and a 3-year simulation with the HadGEM2-A climate model show that the radiative effect of biomass burning aerosol was somewhat sensitive to the vertical distribution of aerosol. In particular, when the observed low-level dust layer was included in the model, the absorption of solar radiation by the biomass burning aerosols increased by 10%. We conclude that this absorption enhancement was caused by the dust reflecting solar radiation up into the biomass burning aerosol layer. This result illustrates that the radiative forcing of anthropogenic absorbing aerosol can be sensitive to the presence of natural aerosol species. C1 [Johnson, B. T.; Jones, A.; Bellouin, N.] Met Off, Exeter EX1 3PB, Devon, England. [Chazette, P.] UVSQ, CEA Saclay, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. [Heese, B.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. [McFarlane, S. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Johnson, BT (reprint author), Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England. EM ben.johnson@metoffice.gov.uk RI Johnson, Ben/A-6563-2013; McFarlane, Sally/C-3944-2008; OI Bellouin, Nicolas/0000-0003-2109-9559 FU Met Office and the Natural Environment Research Council; African Monsoon Multidisciplinary Analysis (AMMA); UK Department for the Environment, Food and Rural Affairs and Ministry of Defence Integrated Climate Programme [GA01101]; Centre National d'Etudes Spatiales (CNES); Commissariat a l'Energie Atomique (CEA); [CBC/2B/0417-Annex C5] FX The FAAM aircraft is jointly funded by the Met Office and the Natural Environment Research Council. The work of B. H. was funded by the African Monsoon Multidisciplinary Analysis (AMMA) (http://www.amma-international.org). The AMF data were provided by the U. S. Department of Energy as part of the Atmospheric Radiation Measurement Program Climate Research Facility. The authors thank Connor Flynn for help processing the MPL data. The contributions of A.J. and N.B. were supported by the UK Department for the Environment, Food and Rural Affairs and Ministry of Defence Integrated Climate Programme-GA01101, CBC/2B/0417-Annex C5. P. C. was funded by Centre National d'Etudes Spatiales (CNES) and by Commissariat a l'Energie Atomique (CEA). We also thank Didier Tanre for his efforts in establishing and maintaining the Banizoumbou AERONET site. NR 66 TC 55 Z9 56 U1 5 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 12 PY 2008 VL 113 IS D17 AR D00C12 DI 10.1029/2008JD009848 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 348HC UT WOS:000259200600004 ER PT J AU Xu, ZY Leong, KH Reed, CB AF Xu, Zhiyue Leong, Keng H. Reed, Claude B. TI Nondestructive evaluation and real-time monitoring of laser surface hardening SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE laser surface hardening; ferrous alloys; process monitoring; infrared sensors AB An infrared process monitor was used to monitor in real-time the infrared emissions during laser surface hardening of ferrous alloys. The signals from the monitor were correlated with the hardness and case depth of the laser-treated tracks. Test data show that a linear relationship exists between the monitor output DC level voltage and hardness up to the maximum hardness possible and also between the monitor output DC level voltage and case depth. This simple relationship makes it easy to monitor process hardness, case depth and quality of laser heat-treated workpiece. A calibration test on a prototypic material can be used to determine the upper and lower bounds of the voltage signals for a sound quality treatment. In-process monitoring or real-time nondestructive measurement of the hardness and depth of the laser transformation hardened case can then be achieved. The monitor is also capable of tracking changes in surface quality or flatness of the part that is being treated. (c) 2007 Elsevier B.V. All rights reserved. C1 [Xu, Zhiyue; Leong, Keng H.; Reed, Claude B.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Xu, ZY (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave,Bldg 308, Argonne, IL 60439 USA. EM zxu@anl.gov NR 12 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD SEP 12 PY 2008 VL 206 IS 1-3 BP 120 EP 125 DI 10.1016/j.jmatprotec.2007.12.030 PG 6 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 325BN UT WOS:000257563200015 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K De Jong, SJ De La Cruz-Burelo, E Martins, CDO DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. De Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for long-lived particles decaying into electron or photon pairs with the D0 detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERSYMMETRY AB In this Letter we report on a search for long-lived particles that decay into final states with two electrons or photons. Such long-lived particles arise in a variety of theoretical models, such as hidden valleys and supersymmetry with gauge-mediated breaking. By precisely reconstructing the direction of the electromagnetic shower we are able to probe much longer lifetimes than previously explored. We see no evidence of the existence of such long-lived particles and interpret this search as a quasi model-independent limit on their production cross section, as well as a limit on a long-lived fourth generation quark. C1 [Abazov, V. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K. M.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K. M.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K. M.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K. M.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA Saclay, SPP, Irfu, DAPNIA, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; De Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Johnson, C.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, J.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellavance, A.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferbel, T.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hensel, C.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Li, Liang/0000-0001-6411-6107; Landsberg, Greg/0000-0002-4184-9380; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Carrera, Edgar/0000-0002-0857-8507; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom and RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 19 TC 16 Z9 16 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 111802 DI 10.1103/PhysRevLett.101.111802 PG 7 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700008 PM 18851273 ER PT J AU Aharmim, B Ahmed, SN Amsbaugh, JF Anthony, AE Banar, J Barros, N Beier, EW Bellerive, A Beltran, B Bergevin, M Biller, SD Boudjemline, K Boulay, MG Bowles, TJ Browne, MC Bullard, TV Burritt, TH Cai, B Chan, YD Chauhan, D Chen, M Cleveland, BT Cox-Mobrand, GA Currat, CA Dai, X Deng, H Detwiler, J DiMarco, M Doe, PJ Doucas, G Drouin, PL Duba, CA Duncan, FA Dunford, M Earle, ED Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Ford, RJ Formaggio, JA Fowler, MM Gagnon, N Germani, JV Goldschmidt, A Goon, JTM Graham, K Guillian, E Habib, S Hahn, RL Hallin, AL Hallman, ED Hamian, AA Harper, GC Harvey, PJ Hazama, R Heeger, KM Heintzelman, WJ Heise, J Helmer, RL Henning, R Hime, A Howard, C Howe, MA Huang, M Jagam, P Jamieson, B Jelley, NA Keeter, KJ Klein, JR Kormos, LL Kos, M Kruger, A Kraus, C Krauss, CB Kutter, T Kyba, CCM Lange, R Law, J Lawson, IT Lesko, KT Leslie, JR Loach, JC MacLellan, R Majerus, S Mak, HB Maneira, J Martin, R McBryde, K McCauley, N McDonald, AB Mcgee, S Mifflin, C Miller, GG Miller, ML Monreal, B Monroe, J Morissette, B Myers, A Nickel, BG Noble, AJ Oblath, NS O'Keeffe, HM Ollerhead, RW Gann, GDO Oser, SM Ott, RA Peeters, SJM Poon, AWP Prior, G Reitzner, SD Rielage, K Robertson, BC Robertson, RGH Rollin, E Schwendener, MH Secrest, JA Seibert, SR Simard, O Simpson, JJ Sinclair, L Skensved, P Smith, MWE Steiger, TD Stonehill, LC Tesic, G Thornewell, PM Tolich, N Tsui, T Tunnell, CD Van Wechel, T Van Berg, R VanDevender, BA Virtue, CJ Walker, TJ Wall, BL Waller, D Tseung, HWC Wendland, J West, N Wilhelmy, JB Wilkerson, JF Wilson, JR Wouters, JM Wright, A Yeh, M Zhang, F Zuber, K AF Aharmim, B. Ahmed, S. N. Amsbaugh, J. F. Anthony, A. E. Banar, J. Barros, N. Beier, E. W. Bellerive, A. Beltran, B. Bergevin, M. Biller, S. D. Boudjemline, K. Boulay, M. G. Bowles, T. J. Browne, M. C. Bullard, T. V. Burritt, T. H. Cai, B. Chan, Y. D. Chauhan, D. Chen, M. Cleveland, B. T. Cox-Mobrand, G. A. Currat, C. A. Dai, X. Deng, H. Detwiler, J. DiMarco, M. Doe, P. J. Doucas, G. Drouin, P. -L. Duba, C. A. Duncan, F. A. Dunford, M. Earle, E. D. Elliott, S. R. Evans, H. C. Ewan, G. T. Farine, J. Fergani, H. Fleurot, F. Ford, R. J. Formaggio, J. A. Fowler, M. M. Gagnon, N. Germani, J. V. Goldschmidt, A. Goon, J. T. M. Graham, K. Guillian, E. Habib, S. Hahn, R. L. Hallin, A. L. Hallman, E. D. Hamian, A. A. Harper, G. C. Harvey, P. J. Hazama, R. Heeger, K. M. Heintzelman, W. J. Heise, J. Helmer, R. L. Henning, R. Hime, A. Howard, C. Howe, M. A. Huang, M. Jagam, P. Jamieson, B. Jelley, N. A. Keeter, K. J. Klein, J. R. Kormos, L. L. Kos, M. Krueger, A. Kraus, C. Krauss, C. B. Kutter, T. Kyba, C. C. M. Lange, R. Law, J. Lawson, I. T. Lesko, K. T. Leslie, J. R. Loach, J. C. MacLellan, R. Majerus, S. Mak, H. B. Maneira, J. Martin, R. McBryde, K. McCauley, N. McDonald, A. B. Mcgee, S. Mifflin, C. Miller, G. G. Miller, M. L. Monreal, B. Monroe, J. Morissette, B. Myers, A. Nickel, B. G. Noble, A. J. Oblath, N. S. O'Keeffe, H. M. Ollerhead, R. W. Gann, G. D. Orebi Oser, S. M. Ott, R. A. Peeters, S. J. M. Poon, A. W. P. Prior, G. Reitzner, S. D. Rielage, K. Robertson, B. C. Robertson, R. G. H. Rollin, E. Schwendener, M. H. Secrest, J. A. Seibert, S. R. Simard, O. Simpson, J. J. Sinclair, L. Skensved, P. Smith, M. W. E. Steiger, T. D. Stonehill, L. C. Tesic, G. Thornewell, P. M. Tolich, N. Tsui, T. Tunnell, C. D. Van Wechel, T. Van Berg, R. VanDevender, B. A. Virtue, C. J. Walker, T. J. Wall, B. L. Waller, D. Tseung, H. Wan Chan Wendland, J. West, N. Wilhelmy, J. B. Wilkerson, J. F. Wilson, J. R. Wouters, J. M. Wright, A. Yeh, M. Zhang, F. Zuber, K. TI Independent measurement of the total active (8)B solar neutrino flux using an array of (3)He proportional counters at the sudbury neutrino observatory SO PHYSICAL REVIEW LETTERS LA English DT Article ID OSCILLATIONS; SIMULATION; MATTER; WATER AB The Sudbury Neutrino Observatory (SNO) used an array of (3)He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu(x)) (8)B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54(-0.31)(+0.33)(stat)(-0.34)(+0.36)(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Delta m(2) = 7.59(-0.21)(+0.19) x 10(-5) eV(2) and theta = 34.4(-1.2)(+1.3) degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results. C1 [Aharmim, B.; Chauhan, D.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Krueger, A.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Beltran, B.; Habib, S.; Hallin, A. L.; Krauss, C. B.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Jamieson, B.; Oser, S. M.; Tsui, T.; Wendland, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T IZ1, Canada. [Hahn, R. L.; Lange, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bellerive, A.; Boudjemline, K.; Cai, B.; Dai, X.; Drouin, P. -L.; Graham, K.; Mifflin, C.; Rollin, E.; Simard, O.; Sinclair, L.; Tesic, G.; Waller, D.; Zhang, F.] Ottawa Carleton Inst Phys, Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Bergevin, M.; Jagam, P.; Law, J.; Lawson, I. T.; Nickel, B. G.; Ollerhead, R. W.; Reitzner, S. D.; Simpson, J. J.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Bergevin, M.; Chan, Y. D.; Currat, C. A.; Detwiler, J.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Poon, A. W. P.; Prior, G.; Tolich, N.] Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Bergevin, M.; Chan, Y. D.; Currat, C. A.; Detwiler, J.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Poon, A. W. P.; Prior, G.; Tolich, N.] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Barros, N.; Maneira, J.] Lab Instrumentaco & Fis Expt Particulas, P-1000149 Lisbon, Portugal. [Banar, J.; Boulay, M. G.; Bowles, T. J.; Browne, M. C.; Elliott, S. R.; Fowler, M. M.; Gagnon, N.; Germani, J. V.; Goldschmidt, A.; Miller, G. G.; Rielage, K.; Smith, M. W. E.; Stonehill, L. C.; Thornewell, P. M.; Wilhelmy, J. B.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goon, J. T. M.; Kutter, T.; McBryde, K.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Formaggio, J. A.; Ott, R. A.; Walker, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Thornewell, P. M.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Beier, E. W.; Deng, H.; Dunford, M.; Kyba, C. C. M.; McCauley, N.; Secrest, J. A.; Van Berg, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ahmed, S. N.; Beltran, B.; Boulay, M. G.; Chen, M.; Dai, X.; DiMarco, M.; Duncan, F. A.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Graham, K.; Guillian, E.; Habib, S.; Hallin, A. L.; Harvey, P. J.; Keeter, K. J.; Kormos, L. L.; Kos, M.; Kraus, C.; Krauss, C. B.; Leslie, J. R.; MacLellan, R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Duncan, F. A.; Ford, R. J.; Gagnon, N.; Lawson, I. T.; Morissette, B.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. [Anthony, A. E.; Huang, M.; Klein, J. R.; Miller, M. L.; Monreal, B.; Monroe, J.; Seibert, S. R.; Tunnell, C. D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amsbaugh, J. F.; Browne, M. C.; Bullard, T. V.; Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Germani, J. V.; Hamian, A. A.; Harper, G. C.; Hazama, R.; Heeger, K. M.; Mcgee, S.; Myers, A.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; Van Wechel, T.; VanDevender, B. A.; Wall, B. L.; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Amsbaugh, J. F.; Browne, M. C.; Bullard, T. V.; Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Germani, J. V.; Hamian, A. A.; Harper, G. C.; Hazama, R.; Heeger, K. M.; Mcgee, S.; Myers, A.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Stonehill, L. C.; Tolich, N.; Van Wechel, T.; Wall, B. L.; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. RI Heeger, Karsten/A-9533-2011; Hallin, Aksel/H-5881-2011; Kormos, Laura/D-1032-2012; Kyba, Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Prior, Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros, Nuno/O-1921-2016 OI Heeger, Karsten/0000-0002-4623-7543; Kyba, Christopher/0000-0001-7014-1843; Prior, Gersende/0000-0002-6058-1420; Maneira, Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705 FU Canada: NSERC; Industry Canada; NRC; Northern Ontario Heritage Fund; Vale Inco; AECL; Ontario Power Generation; HPCVL; CFI; CRC, Westgrid; US: Department of Energy; NERSC PDSF; UK; STFC (formerly PPARC); Portugal FX This research was supported by: Canada: NSERC, Industry Canada, NRC, Northern Ontario Heritage Fund, Vale Inco, AECL, Ontario Power Generation, HPCVL, CFI, CRC, Westgrid; US: Department of Energy, NERSC PDSF; UK: STFC (formerly PPARC); Portugal: FCT. We thank the SNO technical staff for their strong contributions. NR 30 TC 195 Z9 196 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 111301 DI 10.1103/PhysRevLett.101.111301 PG 5 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700006 PM 18851271 ER PT J AU Amendt, P AF Amendt, Peter TI Effects of ionization gradients on inertial-confinement-fusion capsule hydrodynamic stability SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; NATIONAL-IGNITION-FACILITY; RICHTMYER-MESHKOV INSTABILITY; LASER SYSTEM; GROWTH-RATES; TARGETS; COMPRESSIBILITY; FLUIDS; OMEGA AB A linear perturbation analysis based on velocity potentials is adapted to include the regional, average-ion charge states (Z) in an imploding, inertial-confinement-fusion capsule and shown to lead to superclassical Rayleigh-Taylor growth following deceleration onset. The added instability is ascribed to an inverted ion-entropy gradient driven by the stepwise ionization mismatch Delta Z across the fuel-pusher interface and is predicted to principally occur in low Atwood-number (< 0.5) implosions associated with low-Z pushers. Similar instability enhancement may pertain to supernovae phenomena and ionization fronts in H II protostellar regions. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Amendt, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM amendt1@llnl.gov FU Lawrence Livermore National Security, LLC (LLNS) [DE-AC52-07NA27344, LDRD-08-ERD-062] FX This work performed under the auspices of the Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344 and supported by LDRD-08-ERD-062. NR 32 TC 4 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 115004 DI 10.1103/PhysRevLett.101.115004 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700026 PM 18851291 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behrens, U Blohm, C Bonato, A Borras, K Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Santamarta, R Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Wolf, G Wrona, K Molina, AGY Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Rosin, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Borodin, M Kadenko, I Kozulia, A Libov, V Lisovyi, M Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Korcsak-Gorzo, K Oliver, K Robertson, A Uribe-Estrada, C Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Ukleja, J Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Gwenlan, C Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, A Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Hochman, D Karshon, U Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behrens, U. Blohm, C. Bonato, A. Borras, K. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Santamarta, R. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Wolf, G. Wrona, K. Molina, A. G. Yaguees Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lisovyi, M. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Korcsak-Gorzo, K. Oliver, K. Robertson, A. Uribe-Estrada, C. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Ukleja, J. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Gwenlan, C. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, A. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Inclusive (KSKS0)-K-0 resonance production in ep collisions at HERA SO PHYSICAL REVIEW LETTERS LA English DT Article ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; DESIGN; CONSTRUCTION; PERFORMANCE; GLUEBALLS; PHYSICS AB Inclusive (KSKS0)-K-0 production in ep collisions at the DESY ep collider HERA was studied with the ZEUS detector using an integrated luminosity of 0.5 fb(-1). Enhancements in the mass spectrum were observed and are attributed to the production of f(2)(1270)/a(2)(0)(1320), f(2)(')(1525) and f(0)(1710). Masses and widths were obtained using a fit which takes into account theoretical predictions based on SU(3) symmetry arguments, and are consistent with the Particle Data Group values. The f(0)(1710) state, which has a mass consistent with a glueball candidate, was observed with a statistical significance of 5 standard deviations. However, if this state is the same as that seen in gamma gamma -> (KSKS0)-K-0, it is unlikely to be a pure glueball state. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, Bonn, Germany. [Brock, I.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Hudson, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, P.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Molina, A. G. Yaguees; Youngman, C.; Zeuner, W.] DESY, D-2000 Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Nicholass, D.; Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Sztuk, J.; Stadie, H.; Turcato, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Standage, J.] Ist Nazl Fis Nucl, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.; Ukleja, A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Chilton, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Nicholass, D.] UCL, London, England. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Vlasov, N. N.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Tokushuku, K.] Univ Tokyo, Tokyo, Japan. [Abramowicz, H.] Max Planck Inst, Munich, Germany. [Kitamura, S.] Tokyo Metropolitan Univ, Dept Radiol Sci, Tokyo 158, Japan. [Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Doyle, Anthony/C-5889-2009; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Fazio, Salvatore /G-5156-2010; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Ferrando, James/A-9192-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; OI Doyle, Anthony/0000-0001-6322-6195; Gladilin, Leonid/0000-0001-9422-8636; Ferrando, James/0000-0002-1007-7816; Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337 NR 19 TC 7 Z9 7 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 112003 DI 10.1103/PhysRevLett.101.112003 PG 6 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700011 PM 18851276 ER PT J AU Dean, DJ Hagen, G Hjorth-Jensen, M Papenbrock, T Schwenk, A AF Dean, D. J. Hagen, G. Hjorth-Jensen, M. Papenbrock, T. Schwenk, A. TI Comment on "Ab initio Study of (40)Ca with an Importance-Truncated No-Core Shell Model" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by R. Roth and P. Navratil [Phys. Rev. Lett. 99, 092501 (2007)]. The authors of the Letter offer a Reply. C1 [Dean, D. J.; Hagen, G.; Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.; Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hagen, G.; Hjorth-Jensen, M.] Univ Oslo, Ctr Math Appl, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Schwenk, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Dean, DJ (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Hagen, Gaute/I-6146-2012; OI Hagen, Gaute/0000-0001-6019-1687; Dean, David/0000-0002-5688-703X; Papenbrock, Thomas/0000-0001-8733-2849 NR 4 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 119201 DI 10.1103/PhysRevLett.101.119201 PG 1 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700075 PM 18851340 ER PT J AU Dziarmaga, J Meisner, J Zurek, WH AF Dziarmaga, Jacek Meisner, Jakub Zurek, Wojciech H. TI Winding up of the wave-function phase by an insulator-to-superfluid transition in a ring of coupled Bose-Einstein condensates SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYMMETRY-BREAKING; COSMOLOGICAL EXPERIMENTS; DEFECT FORMATION; STRING FORMATION; VORTEX FORMATION; LIQUID-CRYSTALS; COSMIC STRINGS; QUENCH; TEMPERATURE; GENERATION AB We study phase transition from the Mott insulator to superfluid in a periodic optical lattice. Kibble-Zurek mechanism predicts buildup of winding number through random walk of BEC phases, with the step size scaling as a third root of transition rate. We confirm this and demonstrate that this scaling accounts for the net winding number after the transition. C1 [Dziarmaga, Jacek; Meisner, Jakub] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland. [Dziarmaga, Jacek; Meisner, Jakub] Jagiellonian Univ, Ctr Complex Syst Res, PL-30059 Krakow, Poland. [Dziarmaga, Jacek; Meisner, Jakub; Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Dziarmaga, J (reprint author), Jagiellonian Univ, Inst Phys, Reymonta 4, PL-30059 Krakow, Poland. FU DoE LDRD program at Los Alamos; Polish Government [N202 079135]; Marie Curie ATK [MTKD-CT2004-517186] FX This work was supported by the DoE LDRD program at Los Alamos, the Polish Government project N202 079135, and the Marie Curie ATK project COCOS (MTKD-CT2004-517186). NR 63 TC 48 Z9 48 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 115701 DI 10.1103/PhysRevLett.101.115701 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700035 PM 18851300 ER PT J AU Fishman, RS Okamoto, S Reboredo, FA AF Fishman, Randy S. Okamoto, Satoshi Reboredo, Fernando A. TI Inverse Jahn-Teller transition in bimetallic oxalates SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-PROPERTIES; ORGANIC CATION; MIXED-VALENCY; PSEUDOPOTENTIALS; FERRIMAGNET; FORMALISM; COMPLEX; SPACE AB Because of the competition between the spin-orbit coupling and the Jahn-Teller (JT) energies in Fe(II)Fe(III) bimetallic oxalates, we theoretically predict that an undistorted phase with C(3) symmetry about each Fe site may be recovered at low temperatures. Both lower and upper JT transitions bracketing the ferrimagnetic transition temperature T(c) are predicted for compounds that exhibit magnetic compensation. Comparisons with recent measurements and first-principles calculations provide strong evidence for the inverse JT transition below T(c). C1 [Fishman, Randy S.; Okamoto, Satoshi; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Reboredo, Fernando/B-8391-2009; Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; FU Oak Ridge National Laboratory; U. S. Department of Energy [AC05-00OR22725]; Division of Materials Science and Engineering of the U. S. DOE FX We would like to acknowledge conversations with Dr. Murilo Tiago. This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 and by the Division of Materials Science and Engineering of the U. S. DOE. NR 26 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 116402 DI 10.1103/PhysRevLett.101.116402 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700039 PM 18851304 ER PT J AU Froula, DH Divol, L Berger, RL London, RA Meezan, NB Strozzi, DJ Neumayer, P Ross, JS Stagnitto, S Suter, LJ Glenzer, SH AF Froula, D. H. Divol, L. Berger, R. L. London, R. A. Meezan, N. B. Strozzi, D. J. Neumayer, P. Ross, J. S. Stagnitto, S. Suter, L. J. Glenzer, S. H. TI Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASER-PLASMA; RAMAN-SCATTERING; FACILITY; REDUCTION; SIMULATIONS; PERFORMANCE; TARGETS; FUSION AB We demonstrate a significant reduction of stimulated Brillouin scattering by polarization smoothing in large-scale high-temperature hohlraum plasma conditions where filamentation is measured to be negligible. The stimulated Brillouin scattering experimental threshold (defined as the intensity at which 5% of the incident light is backscattered) is measured to increase by a factor of 1.7 +/- 0.2 when polarization smoothing is applied. An analytical model relevant to inertial confinement fusion plasma conditions shows that the measured reduction in backscatter with polarization smoothing results from the random spatial variation in polarization of the laser beam, not from the reduction in beam contrast. C1 [Froula, D. H.; Divol, L.; Berger, R. L.; London, R. A.; Meezan, N. B.; Strozzi, D. J.; Neumayer, P.; Ross, J. S.; Stagnitto, S.; Suter, L. J.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Froula, DH (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. EM froula1@llnl.gov OI Strozzi, David/0000-0001-8814-3791 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; [LDRD 06-ERD-056] FX This work was supported by LDRD 06-ERD-056 and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 26 TC 15 Z9 17 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 115002 DI 10.1103/PhysRevLett.101.115002 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700024 PM 18851289 ER PT J AU Fuchs, GD Dobrovitski, VV Hanson, R Batra, A Weis, CD Schenkel, T Awschalom, DD AF Fuchs, G. D. Dobrovitski, V. V. Hanson, R. Batra, A. Weis, C. D. Schenkel, T. Awschalom, D. D. TI Excited-state spectroscopy using single spin manipulation in diamond SO PHYSICAL REVIEW LETTERS LA English DT Article ID NITROGEN-VACANCY CENTER; N-V CENTER; COHERENT DYNAMICS; RESONANCE; ELECTRON; QUBITS AB We use single-spin resonant spectroscopy to study the spin structure in the orbital excited state of a diamond nitrogen-vacancy (N-V) center at room temperature. The data show that the excited-state spin levels have a zero-field splitting that is approximately half of the value of the ground state levels, a g factor similar to the ground state value, and a hyperfine splitting similar to 20x larger than in the ground state. In addition, the width of the resonances reflects the electronic lifetime in the excited state. We also show that the spin level splitting can significantly differ between N-V centers, likely due to the effects of local strain, which provides a pathway to control over the spin Hamiltonian and may be useful for quantum-information processing. C1 [Fuchs, G. D.; Awschalom, D. D.] Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. [Dobrovitski, V. V.] Ames Lab, Ames, IA 50011 USA. [Dobrovitski, V. V.] Iowa State Univ, Ames, IA 50011 USA. [Hanson, R.] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands. [Batra, A.; Weis, C. D.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Fuchs, GD (reprint author), Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. RI Hanson, Ronald/B-9555-2008 FU AFOSR; FOM and NWO; U.S. DOE FX We thank Elias Sideras-Hiddad for supplying the diamond substrate as well as for conversations regarding implantation. This work is supported by AFOSR (G.D.F., D.D.A.), FOM and NWO (R.H.) and the U.S. DOE (A.B., C.D.W., T.S., V.V.D). NR 24 TC 88 Z9 90 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 117601 DI 10.1103/PhysRevLett.101.117601 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700067 PM 18851332 ER PT J AU Inderhees, SE Borchers, JA Green, KS Kim, MS Sun, K Strycker, GL Aronson, MC AF Inderhees, S. E. Borchers, J. A. Green, K. S. Kim, M. S. Sun, K. Strycker, G. L. Aronson, M. C. TI Manipulating the magnetic structure of Co Core/CoO shell nanoparticles: Implications for controlling the exchange bias SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; ANISOTROPY; CO/COO; DEPENDENCE; MECHANISMS; BILAYERS; COBALT; MODEL AB We present an experimental study of the effects of oxidation on the magnetic and crystal structures of exchange biased epsilon-Co/CoO core-shell nanoparticles. Transmission electron microscopy measurements reveal that oxidation creates a Co-CoO interface which is highly directional and epitaxial in quality. Neutron diffraction measurements find that below a Neel temperature T-N of similar to 235 K the magnetization of the CoO shell is modulated by two wave vectors, q(1)= (1/2 1/2 1/2)2 pi/alpha and q(2) = (100)2 pi/alpha. Oxidation affects the q(1) component of the magnetization very little, but hugely enhances the q(2) component, resulting in the magnetic decompensation of the core-shell interface. We propose that the large exchange bias effect results from the highly ordered interface between the Co core and CoO shell, and from enhanced core-shell coupling by the uncompensated interface moment. C1 [Inderhees, S. E.; Green, K. S.; Kim, M. S.; Sun, K.; Strycker, G. L.; Aronson, M. C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Borchers, J. A.] NIST, Gaithersburg, MD 20899 USA. [Kim, M. S.; Aronson, M. C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Inderhees, SE (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. FU DOE [FG02-94ER45526] FX We acknowledge discussions with C. Grey, S. Majetich, J. Rhyne, and J. W. Lynn, and are grateful to C. D. Malliakas and M. G. Kanatzidis for access to their x-ray diffractometer. Work at the University of Michigan and Brookhaven was performed under the auspices of the DOE under Grant DE-FG02-94ER45526. NR 30 TC 61 Z9 61 U1 3 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 117202 DI 10.1103/PhysRevLett.101.117202 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700058 PM 18851323 ER PT J AU Mukhopadhyay, MK Jiao, X Lurio, LB Jiang, Z Stark, J Sprung, M Narayanan, S Sandy, AR Sinha, SK AF Mukhopadhyay, M. K. Jiao, X. Lurio, L. B. Jiang, Z. Stark, J. Sprung, M. Narayanan, S. Sandy, A. R. Sinha, S. K. TI Thickness induced structural changes in polystyrene films SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLASS-TRANSITION TEMPERATURE; ULTRATHIN POLYMER-FILMS; NEUTRON-SCATTERING; CHAIN CONFORMATION; X-RAY; INTERFACES; DENSITY; SURFACE AB Changes to the structure of polystyrene melt films as measured through the spectrum of density fluctuations have been observed as a function of film thickness down to the polymer radius of gyration (R(g)). Films thicker than 4R(g) show bulklike density fluctuations. Thinner films exhibit a peak in S(q) near q=0 which grows with decreasing thickness. This peak is attributed to a decreased interpenetration of chains resulting in an enhanced compressibility. Measurements were made using small angle x-ray scattering in a standing wave geometry designed to enhance scattering from the interior of the film compared to interface scattering. C1 [Mukhopadhyay, M. K.; Jiang, Z.; Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Jiao, X.; Jiang, Z.; Sprung, M.; Narayanan, S.; Sandy, A. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lurio, L. B.; Stark, J.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. RP Mukhopadhyay, MK (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RI Jiang, Zhang/A-3297-2012; Mukhopadhyay, Mrinmay/E-6667-2012 OI Jiang, Zhang/0000-0003-3503-8909; FU NSF [DMR-0209542]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to acknowledge K. Binder and K. Schweizer for useful discussions, H. Gibson for his expert technical work, and A. Habenschuss for sharing data on bulk PS melts. 'This work is supported by NSF Grant No. DMR-0209542. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 28 Z9 29 U1 6 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 115501 DI 10.1103/PhysRevLett.101.115501 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700028 PM 18851293 ER PT J AU Naaman, O Aumentado, J Friedland, L Wurtele, JS Siddiqi, I AF Naaman, O. Aumentado, J. Friedland, L. Wurtele, J. S. Siddiqi, I. TI Phase-locking transition in a chirped superconducting Josephson resonator SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUTORESONANT NONSTATIONARY EXCITATION; PLASMAS; MODE AB We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I(0), the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I(0) with a nonswitching detector, with potential applications in quantum state measurement. C1 [Naaman, O.; Siddiqi, I.] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA. [Aumentado, J.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Friedland, L.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Naaman, O (reprint author), Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA. RI Aumentado, Jose/C-2231-2009; Siddiqi, Irfan/E-5548-2015; wurtele, Jonathan/J-6278-2016 OI Aumentado, Jose/0000-0001-5581-1466; wurtele, Jonathan/0000-0001-8401-0297 FU Office of Naval Research [N00014-07-1-0774]; UC Berkeley Chancellor's Faculty Partnership Fund; Hellman Family Faculty Fund; U.S.-Israel Binational Science Foundation [2004033]; U. S. Department of Energy [DE-FG02-04ER41289] FX The authors thank R. Vijayaraghavan, V. Manucharyan, and J. Clarke for useful discussions. Financial support was provided by the Office of Naval Research under Grant No. N00014-07-1-0774 (O.N., I.S.), UC Berkeley Chancellor's Faculty Partnership Fund (I. S.), the Hellman Family Faculty Fund (I.S.), the U.S.-Israel Binational Science Foundation under Grant No. 2004033 (L.F., J.W.), and the U. S. Department of Energy under Grant No. DE-FG02-04ER41289 (J.W.). NR 23 TC 33 Z9 33 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 117005 DI 10.1103/PhysRevLett.101.117005 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700055 PM 18851320 ER PT J AU Okamoto, S AF Okamoto, Satoshi TI Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID HUBBARD-MODEL; INFINITE DIMENSIONS; ANDERSON MODEL; SUPERCONDUCTIVITY; OXIDES; MAGNETORESISTANCE; SUPERLATTICES; MODULATION; INTERFACE; DEVICES AB The dynamical-mean-field method is applied to investigate the transport properties of heterostructures consisting of a strongly correlated electron system connected to metallic leads. The spectral function inside the correlated region is sensitive to the change of the interaction strength and bias voltage. Because of this sensitivity, current vs voltage characteristics of such heterostructures are rather nonlinear regardless of the detail of the potential profile inside the correlated region. The electronic properties such as the double occupancy are also changed by the bias voltage. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Okamoto, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM okapon@ornl.gov RI Okamoto, Satoshi/G-5390-2011 OI Okamoto, Satoshi/0000-0002-0493-7568 FU Division of Materials Sciences and Engineering; U. S. Department of Energy FX The author thanks J.E. Han, B. K. Nikolic, S. Onoda, and Z.Y. Zhang for their valuable discussions. This work was supported by the Division of Materials Sciences and Engineering, the U. S. Department of Energy. NR 31 TC 33 Z9 33 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 116807 DI 10.1103/PhysRevLett.101.116807 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700049 PM 18851314 ER PT J AU Roth, R Navratil, P AF Roth, R. Navratil, P. TI Comment on "Ab initio Study of (40)Ca with an Importance-Truncated No-Core Shell Model'' - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Roth, R.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Roth, R (reprint author), Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany. RI Roth, Robert/B-6502-2008 NR 8 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 119202 DI 10.1103/PhysRevLett.101.119202 PG 1 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700076 ER PT J AU Sefat, AS Jin, RY McGuire, MA Sales, BC Singh, DJ Mandrus, D AF Sefat, Athena S. Jin, Rongying McGuire, Michael A. Sales, Brian C. Singh, David J. Mandrus, David TI Superconductivity at 22 K in Co-doped BaFe(2)As(2) crystals SO PHYSICAL REVIEW LETTERS LA English DT Article ID METAL AB Here we report bulk superconductivity in BaFe(1.8)Co(0.2)As(2) single crystals below T(c)=22 K, as demonstrated by resistivity, magnetic susceptibility, and specific heat data. Hall data indicate that the dominant carriers are electrons, as expected from simple chemical reasoning. This is the first example of superconductivity induced by electron doping in this family of materials. In contrast with cuprates, the BaFe(2)As(2) system appears to tolerate considerable disorder in the FeAs planes. First principles calculations for BaFe(1.8)Co(0.2)As(2) indicate the interband scattering due to Co is weak. C1 [Sefat, Athena S.; Jin, Rongying; McGuire, Michael A.; Sales, Brian C.; Singh, David J.; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 NR 30 TC 769 Z9 780 U1 11 U2 115 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 117004 DI 10.1103/PhysRevLett.101.117004 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700054 PM 18851319 ER PT J AU Shim, Y Borovikov, V Uberuaga, BP Voter, AF Amar, JG AF Shim, Yunsic Borovikov, Valery Uberuaga, Blas P. Voter, Arthur F. Amar, Jacques G. TI Vacancy formation and strain in low-temperature Cu/Cu(100) growth SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILM GROWTH; INFREQUENT EVENTS; METAL-FILMS; DYNAMICS; SIMULATION AB The development of compressive strain in metal thin films grown at low temperature has recently been revealed via x-ray diffraction and explained by the assumption that a large number of vacancies were incorporated into the growing films. The results of our molecular dynamics and parallel temperature-accelerated dynamics simulations suggest that the experimentally observed strain arises from an increased nanoscale surface roughness caused by the suppression of thermally activated events at low temperature combined with the effects of shadowing due to off-normal deposition. C1 [Shim, Yunsic; Borovikov, Valery; Amar, Jacques G.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Uberuaga, Blas P.; Voter, Arthur F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shim, Y (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. OI Voter, Arthur/0000-0001-9788-7194 FU NSF [DMR-0606307]; Ohio Supercomputer Center; NCSA; DOE Office of Basic Energy Sciences; Los Alamos National Security, LLC; U. S. DOE [DE-AC52-06NA25396] FX The authors gratefully acknowledge fruitful discussions with Paul Miceli. This work was supported by NSF grant DMR-0606307 as well as by grants of computer time from the Ohio Supercomputer Center and NCSA. Work at Los Alamos National Laboratory (LANL) was supported by the DOE Office of Basic Energy Sciences and by the LDRD program. LANL is operated by Los Alamos National Security, LLC, for the NNSA of the U. S. DOE under Contract No. DE-AC52-06NA25396. NR 16 TC 23 Z9 23 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 12 PY 2008 VL 101 IS 11 AR 116101 DI 10.1103/PhysRevLett.101.116101 PG 4 WC Physics, Multidisciplinary SC Physics GA 348CN UT WOS:000259188700036 PM 18851301 ER PT J AU Kim, JS LaGrange, T Reed, BW Taheri, ML Armstrong, MR King, WE Browning, ND Campbell, GH AF Kim, Judy S. LaGrange, Thomas Reed, Bryan W. Taheri, Mitra L. Armstrong, Michael R. King, Wayne E. Browning, Nigel D. Campbell, Geoffrey H. TI Imaging of transient structures using nanosecond in situ TEM SO SCIENCE LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; AL; FOILS; NI; KINETICS; GROWTH; CARBON; PHASE AB The microstructure and properties of a material depend on dynamic processes such as defect motion, nucleation and growth, and phase transitions. Transmission electron microscopy (TEM) can spatially resolve these nanoscale phenomena but lacks the time resolution for direct observation. We used a photoemitted electron pulse to probe dynamic events with "snapshot" diffraction and imaging at 15- nanosecond resolution inside of a dynamic TEM. With the use of this capability, the moving reaction front of reactive nanolaminates is observed in situ. Time- resolved images and diffraction show a transient cellular morphology in a dynamically mixing, self- propagating reaction front, revealing brief phase separation during cooling, and thus provide insights into the mechanisms driving the self- propagating high- temperature synthesis. C1 [Kim, Judy S.; LaGrange, Thomas; Reed, Bryan W.; Taheri, Mitra L.; Armstrong, Michael R.; King, Wayne E.; Browning, Nigel D.; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Livermore, CA 94550 USA. [Kim, Judy S.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Kim, JS (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Livermore, CA 94550 USA. EM kim46@llnl.gov RI Campbell, Geoffrey/F-7681-2010; Taheri, Mitra/F-1321-2011; Reed, Bryan/C-6442-2013; Armstrong, Michael/I-9454-2012; OI Browning, Nigel/0000-0003-0491-251X FU Office of Science; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering of the DOE [DE-AC52-07NA27344]; Lawrence Scholar Program at LLNL FX This work was performed under the auspices of the U. S. Department of Energy (DOE) by LLNL and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the DOE under contract DE-AC52-07NA27344. J.S.K. is supported by the Lawrence Scholar Program at LLNL. The authors thank K.J.M. Blobaum and T.W. Barbee for valuable discussions, P. Ramsey for materials fabrication, and R.M. Shuttlesworth and B.J. Pyke for their support and expertise in mechanical and laser technologies. NR 25 TC 142 Z9 144 U1 15 U2 153 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 12 PY 2008 VL 321 IS 5895 BP 1472 EP 1475 DI 10.1126/science.1161517 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 347DW UT WOS:000259121800035 PM 18787163 ER PT J AU Russell, CA Jones, TC Barr, IG Cox, NJ Garten, RJ Gregory, V Gust, ID Hampson, AW Hay, AJ Hurt, AC de Jong, JC Kelso, A Klimov, AI Kageyama, T Komadina, N Lapedes, AS Lin, YP Mosterin, A Obuchi, M Odagiri, T Osterhaus, ADME Rimmelzwaan, GF Shaw, MW Skepner, E Stohri, K Tashiro, M Fouchier, RAM Smith, DJ AF Russell, Colin A. Jones, Terry C. Barr, Ian G. Cox, Nancy J. Garten, Rebecca J. Gregory, Vicky Gust, Ian D. Hampson, Alan W. Hay, Alan J. Hurt, Aeron C. de Jong, Jan C. Kelso, Anne Klimov, Alexander I. Kageyama, Tsutomu Komadina, Naomi Lapedes, Alan S. Lin, Yi P. Mosterin, Ana Obuchi, Masatsugu Odagiri, Takato Osterhaus, Albert D. M. E. Rimmelzwaan, Guus F. Shaw, Michael W. Skepner, Eugene Stohri, Klaus Tashiro, Masato Fouchier, Ron A. M. Smith, Derek J. TI Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses SO VACCINE LA English DT Article DE influenza; Vaccine strain selection; Seasonal influenza viruses ID SURVEILLANCE; INFECTIONS; EPIDEMIC AB Annual influenza epidemics in humans affect 5-15% of the population, causing an estimated half million deaths worldwide per year [Stohr K. Influenza-WHO cares. Lancet Infectious Diseases 2002;2(9):517]. The virus can infect this proportion of people year after year because the virus has an extensive capacity to evolve and thus evade the immune response. For example, since the influenza A(H3N2) subtype entered the human population in 1968 the A(H3N2) component of the influenza vaccine has had to be updated almost 30 times to track the evolution of the viruses and remain effective. The World Health Organization Global Influenza Surveillance Network (WHO GISN) tracks and analyzes the evolution and epidemiology of influenza viruses for the primary purpose of vaccine strain selection and to improve the strain selection process through studies aimed at better understanding virus evolution and epidemiology. Here we give an overview of the strain selection process and outline recent investigations into the global migration of seasonal influenza viruses. (c) 2008 Published by Elsevier Ltd. C1 [Russell, Colin A.; Jones, Terry C.; de Jong, Jan C.; Mosterin, Ana; Osterhaus, Albert D. M. E.; Rimmelzwaan, Guus F.; Skepner, Eugene; Fouchier, Ron A. M.; Smith, Derek J.] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England. [Jones, Terry C.; de Jong, Jan C.; Osterhaus, Albert D. M. E.; Rimmelzwaan, Guus F.; Fouchier, Ron A. M.; Smith, Derek J.] Erasmus MC, Dept Virol, Rotterdam, Netherlands. [Jones, Terry C.; Mosterin, Ana] Univ Pompeu Fabra, Barcelona, Spain. [Barr, Ian G.; Gust, Ian D.; Hampson, Alan W.; Hurt, Aeron C.; Kelso, Anne; Komadina, Naomi] WHO, Collaborating Ctr Reference & Res Influenza, Melbourne, Vic, Australia. [Cox, Nancy J.; Garten, Rebecca J.; Klimov, Alexander I.; Shaw, Michael W.] WHO, Collaborating Ctr Influenza, Ctr Dis Control & Prevent, Atlanta, GA USA. [Gregory, Vicky; Hay, Alan J.; Lin, Yi P.] WHO, Collaborating Ctr Influenza, Natl Inst Med Res, London, England. [Kageyama, Tsutomu; Obuchi, Masatsugu; Odagiri, Takato; Tashiro, Masato] WHO, Collaborating Ctr Influenza, Natl Inst Infect Dis, Tokyo, Japan. [Lapedes, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Stohri, Klaus] Novartis Vaccines & Diagnost, Cambridge, MA USA. RP Smith, DJ (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. RI Fouchier, Ron/A-1911-2014; OI Fouchier, Ron/0000-0001-8095-2869; Osterhaus, Albert/0000-0002-6074-1172; Russell, Colin/0000-0002-2113-162X; Hurt, Aeron/0000-0003-1826-4314 FU NIH Director's Pioneer Award [DP1-OD000490-01]; NIAID-NIH [HHSN266200700010C]; De Nederlandse Organisatie voor Wetenschappelijk Onderzoek Netherlands Influenza Vaccine Research Centre; Australian Government Department of Health and Ageing; The Medical Research Council (UK) FX We are thankful for the enormous contributions of individuals throughout the WHO Global Influenza Surveillance Network, particularly those in National Influenza Centers. This work was supported by an NIH Director's Pioneer Award to DJS, part of the NIH roadmap for medical research, through grant number DP1-OD000490-01. RAMF is supported by NIAID-NIH contract HHSN266200700010C, and the De Nederlandse Organisatie voor Wetenschappelijk Onderzoek Netherlands Influenza Vaccine Research Centre. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health and Ageing. The WHO Collaborating Centre for Influenza, NIMR, UK is funded by The Medical Research Council (UK). The conclusions presented in this paper are those of the authors and do not necessarily reflect those of the funding agencies. NR 17 TC 112 Z9 117 U1 3 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-410X J9 VACCINE JI Vaccine PD SEP 12 PY 2008 VL 26 SU 4 BP D31 EP D34 DI 10.1016/j.vaccine.2008.07.078 PG 4 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA 362NO UT WOS:000260204600008 PM 19230156 ER PT J AU Gao, LL Chen, B Wang, JY Alp, EE Zhao, JY Lerche, M Sturhahn, W Scott, HP Huang, F Ding, Y Sinogeikin, SV Lundstrom, CC Bass, JD Li, J AF Gao, Lili Chen, Bin Wang, Jingyun Alp, Esen E. Zhao, Jiyong Lerche, Michael Sturhahn, Wolfgang Scott, Henry P. Huang, Fang Ding, Yang Sinogeikin, Stanislav V. Lundstrom, Craig C. Bass, Jay D. Li, Jie TI Pressure-induced magnetic transition and sound velocities of Fe(3)C: Implications for carbon in the Earth's inner core SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID IRON; TEMPERATURE; GPA; GIGAPASCALS; COMPRESSION; CEMENTITE; EQUATION; STATE AB We have carried out nuclear resonant scattering measurements on (57)Fe-enriched Fe(3)C between 1 bar and 50 GPa at 300 K. Synchrotron Mossbauer spectra reveal a pressure-induced magnetic transition in Fe3C between 4.3 and 6.5 GPa. On the basis of our nuclear resonant inelastic X-ray scattering spectra and existing equation-of-state data, we have derived the compressional wave velocity V(P) and shear wave velocity VS for the high-pressure nonmagnetic phase, which can be expressed as functions of density (rho): V(P)(km/s) = -3.99 + 1.29 rho(g/cm(3)) and V(S)(km/s) = 1.45 + 0.24 rho(g/cm(3)). The addition of carbon to iron-nickel alloy brings density, V(P) and V(S) closer to seismic observations, supporting carbon as a principal light element in the Earth's inner core. C1 [Gao, Lili; Chen, Bin; Wang, Jingyun; Huang, Fang; Lundstrom, Craig C.; Bass, Jay D.; Li, Jie] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Gao, Lili; Alp, Esen E.; Zhao, Jiyong; Lerche, Michael; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Scott, Henry P.] Indiana Univ, Dept Phys & Astron, South Bend, IN 46634 USA. [Lerche, Michael; Ding, Yang] Carnegie Inst Washington, High Pressure Synerget Consortium, Argonne, IL USA. [Ding, Yang; Sinogeikin, Stanislav V.] Carnegie Inst Washington, HPCAT & Geophys Lab, Argonne, IL USA. RP Gao, LL (reprint author), Univ Illinois, Dept Geol, Urbana, IL 61801 USA. EM liligao2@uiuc.edu RI Chen, Bin/A-5980-2008; Bass, Jay/G-2599-2013; Ding, Yang/K-1995-2014 OI Ding, Yang/0000-0002-8845-4618 FU DOE-BES [DE-AC02-06CH11357]; NSF [EAR0337612, EAR0609639] FX We thank Dave Mao, Brian Toby, Jun Wang, Vitali Prakapenka, Peter Liermann, and Viktor Struzhkin for scientific discussions and technical assistance; HPCAT, XOR/BESSRC, and GSECARS at APS of Argonne National Laboratory for sample preparation, x-ray diffraction, and ruby fluorescence facilities. We also thank anonymous reviewers for their thorough and constructive comments. Use of the APS was supported by DOE-BES, under contract DE-AC02-06CH11357. This work is supported by NSF grants EAR0337612 and EAR0609639. NR 27 TC 39 Z9 40 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 11 PY 2008 VL 35 IS 17 AR L17306 DI 10.1029/2008GL034817 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 348GT UT WOS:000259199700001 ER PT J AU Minschwaner, K Kalnajs, LE Dubey, MK Avallone, LM Sawaengphokai, PC Edens, HE Winn, WP AF Minschwaner, K. Kalnajs, L. E. Dubey, M. K. Avallone, L. M. Sawaengphokai, P. C. Edens, H. E. Winn, W. P. TI Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ICE HYDROMETEORS; NITROGEN-OXIDES; THUNDERSTORMS; O-3; NOX; EFFICIENCY; FIELD; AIR AB Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O-3 a(-1) with a range between 40 and 180 Tg O-3 a(-1). This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources. C1 [Minschwaner, K.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Dubey, M. K.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Kalnajs, L. E.; Avallone, L. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Minschwaner, K (reprint author), New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Socorro, NM 87801 USA. EM krm@kestrel.nmt.edu RI Dubey, Manvendra/E-3949-2010 OI Dubey, Manvendra/0000-0002-3492-790X FU Los Alamos National Laboratory [LDRD 20050014DR]; New Mexico Tech's Geophysical Research Center FX This work was supported in part by the Los Alamos National Laboratory's Directed Research Project Resolving the Aerosol-Climate-Water Puzzle (LDRD 20050014DR). Facilities and equipment support was also provided by New Mexico Tech's Geophysical Research Center. We thank Jacquelyn Witte and Owen Cooper for providing results of their back-trajectory and transport model calculations, and Anne Thompson for useful discussions and expert leadership as PI of the IONS-06 field campaign. The manuscript benefited from insightful comments and suggestions by three anonymous reviewers and from the editor Steve Gahn. NR 42 TC 7 Z9 7 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 11 PY 2008 VL 113 IS D17 AR D17208 DI 10.1029/2007JD009500 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 348HB UT WOS:000259200500001 ER PT J AU Poskrebyshev, GA Shafirovich, V Lymar, SV AF Poskrebyshev, Gregory A. Shafirovich, Vladimir Lymar, Sergei V. TI Disproportionation pathways of aqueous hyponitrite radicals (HN2O2 center dot/N2O2 center dot-) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; NITRIC-OXIDE; INFRARED-SPECTRA; SOLID NEON; NITROXYL ANION; RATE CONSTANTS; NO DIMER; DECOMPOSITION; (NO)(2)(-); REDUCTION AB Pulse radiolysis and flash photolysis are used to generate the hyponitrite radicals (HN O,'/N,O,-) by one-electron oxidation of the hyponitrite in aqueous solution. Although the radical decay conforms to simple second-order kinetics, its mechanism is complex, comprising a short chain ofNO release-consumption steps. In the first, rate-determining step, two N2O2 center dot- radicals disproportionate with the rate constant 2k = (8.2 +/- 0.5) x 10(7) M-1 s(-1) (at zero ionic strength) effectively in a redox reaction regenerating N2O22- and releasing two NO. This occurs either by electron transfer or, more likely, through radical recombination-dissociation. Each NO so-produced rapidly adds to another N2O2 center dot-, yieldin,, the N3O3- ion, which slowly decomposes at 300 s(-1) to the final N2O + NO2- products. The N2O2 center dot- radical protonates with pK(a) = 5.6 +/- 0.3. The neutral HN2O2 center dot radical decays by an analogous mechanism but much more rapidly with the apparent second-order rate constant 2k = (1.1 +/- 0.1) x 10(9) M-1 s(-1). The N2O2 center dot- radical shows surprisingly low reactivity toward O-2 and O-2(center dot-), with the corresponding rate constants below 1 x 10(6) and 5 x 10(1) M-1 s(-1). The previously reported rapid dissociation of N2O2 center dot- into N2O and O center dot- does not occur. The thermocherilistry of HN2O2 center dot-)/N2O2 center dot- is discussed in the context of these new kinetic and mechanistic results. C1 [Poskrebyshev, Gregory A.; Lymar, Sergei V.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Shafirovich, Vladimir] NYU, Dept Chem, New York, NY 10003 USA. [Shafirovich, Vladimir] NYU, Radiat & Solid State Lab, New York, NY 10003 USA. RP Lymar, SV (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM lymar@bnl.gov RI Poskrebyshev, Gregory/I-9122-2016 OI Poskrebyshev, Gregory/0000-0002-8920-7037 FU Research at Brookhaven National Laboratory; U.S. Department of Energy [DE-AC02-98CH 10886]; Division of Chemical Sciences, Office of Basic Energy Sciences FX Research at Brookhaven National Laboratory was carried out under the auspices of the U.S. Department of Energy under Contract DE-AC02-98CH 10886 from the Division of Chemical Sciences, Office of Basic Energy Sciences. Helpful comments from Drs. Norman Sutin and Harold Schwarz are appreciated. NR 36 TC 13 Z9 13 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 11 PY 2008 VL 112 IS 36 BP 8295 EP 8302 DI 10.1021/jp803230c PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 345FE UT WOS:000258980700012 PM 18707066 ER PT J AU Jiang, DE Luo, W Tiago, ML Dai, S AF Jiang, De-en Luo, Weidong Tiago, Murilo L. Dai, Sheng TI In search of a structural model for a thiolate-protected Au-38 cluster SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GOLD NANOCLUSTERS; ELECTRONIC-STRUCTURE; NANOPARTICLES AB The structure of thiolate-protected gold cluster Au-38(SR)(24) has not been experimentally determined, and the best available signature is its measured optical spectrum. Using this signature and energetic stability as criteria and SCH3 for SR, we compare four candidate structures: two from others and two we obtained. Our models are distinct from others' in that thiolate groups form monomers and dimers of the staple motif (a nearly linear RS-Au-SR bonding unit). We examine the energetics and electronic structures of the four structures with density functional theory (DFT) and compute their optical spectra with time-dependent DFT. We show that our dimer-dominated model is over 2.6 eV lower in energy than the two models from others and 1.3 eV lower than our previous monomer-dominated model. The dimer-dominated model also presents good agreement with experiment for optical absorption. C1 [Luo, Weidong; Tiago, Murilo L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiiang@oml.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015; Luo, Weidong/A-8418-2009 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931; Luo, Weidong/0000-0003-3829-1547 FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH 11231] FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank Professors H. Hakkinen and I. L. Garzon for providing structural files for Au38(SCH3)24. The authors are grateful to Professor T. Tsukuda for providing experimental optical absorption spectra and helpful discussion. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH 11231. NR 21 TC 54 Z9 54 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 11 PY 2008 VL 112 IS 36 BP 13905 EP 13910 DI 10.1021/jp802766w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 345EZ UT WOS:000258980200017 ER PT J AU Rosenberg, RA Shenoy, GK Kim, PSG Sham, TK AF Rosenberg, R. A. Shenoy, G. K. Kim, P. -S. G. Sham, T. K. TI Temporal- and site-specific determination of the origin of the luminescent bands in silicon nanowires SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-ABSORPTION; TIME-RESOLVED PHOTOLUMINESCENCE; EXCITED OPTICAL LUMINESCENCE; LIGHT-INDUCED LUMINESCENCE; POROUS SILICON; SYNCHROTRON-RADIATION; ELECTRONIC-PROPERTIES; LOCAL-STRUCTURE; LASER-ABLATION; NANOCRYSTALS AB We have performed temporally resolved X-ray excited optical luminescence measurements on Si nanowires. By performing Si K edge X-ray excitation measurements we have determined that the short-lifetime components have primarily Si character, while the long-lifetime component stems from the SiO(2) shell and SiO(2)-Si interface. The lifetime of the short-lifetime component decreases with increasing luminescence energy, i.e., as the size of the nanosilicon species decreases. C1 [Kim, P. -S. G.; Sham, T. K.] Univ Western Ontario, London, ON N6A 5B7, Canada. [Rosenberg, R. A.; Shenoy, G. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Rosenberg, RA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Rosenberg, Richard/K-3442-2012 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, [DE-AC02-06CH11357] FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 45 TC 7 Z9 7 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 11 PY 2008 VL 112 IS 36 BP 13943 EP 13946 DI 10.1021/jp8036457 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 345EZ UT WOS:000258980200024 ER PT J AU Fernandez, CA Hoppes, EM Bekhazi, JG Wang, C Wiacek, RJ Warner, MG Fryxell, GE Bays, JT Addleman, RS AF Fernandez, Carlos A. Hoppes, Emily M. Bekhazi, Jacky G. Wang, Chongmin Wiacek, Robert J. Warner, Marvin G. Fryxell, Glen E. Bays, John T. Addleman, R. Shane TI Tuning and quantifying the dispersibility of gold nanocrystals in liquid and supercritical solvents SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON-DIOXIDE MICROEMULSION; STERIC STABILIZATION; NANOPARTICLE SYNTHESIS; SILVER NANOPARTICLES; COATED NANOCRYSTALS; RAPID EXPANSION; METAL; FLUID; CO2; NANOWIRES AB The application of nanomaterials relies on the ability to synthesize, purify, transport, and deposit them in a controllable fashion. The capacity to adjust the density, and thus the solvent strength, of a supercritical or near-critical fluid can be used to tune reaction and separation processes as well as to assemble nanomaterials in a controllable fashion. Herein we demonstrate and quantify density-tunable and reversible size-dependent dispersibility of octanethiol-stabilized gold nanocrystals with a size of 3.7 +/- 2.2 nm in near-critical and supercritical solvents as a way to show the significant potential of these fluids for nanomaterials processing. This study introduced discrete variations on the pressure of nanocrystal dispersions in compressed ethane and propane at temperatures of 25, 45, and 65 degrees C until they reached a saturation region, at which point actual measurement,, of nanocrystal dispersibility were obtained using UV-vis absorption spectroscopy. Transmission electron microscopy (TEM) was employed to correlate the dispersibility results with the actual size of the nanoparticle fractions at different densities. The results showed that stable dispersions of nanocrystals could be obtained at pressures as low as 50 atm in both solvents. Compressed ethane in its liquid or supercritical state was found to provide better dynamic tunability, whereas propane provided higher dispersibility of these nanocrystals under the studied pressure-temperature conditions. Two theoretical models, the total interaction theory and Chrastil equation, are briefly presented as a means of interpreting the experimental observations. It was determined that dispersibility depends strongly on the nanocrystal size, solvent density, and carbon chain length of the solvent. These results clearly show that selected supercritical fluids can be remarkably effective for the manipulation of nanoparticles. C1 [Fernandez, Carlos A.; Hoppes, Emily M.; Bekhazi, Jacky G.; Wang, Chongmin; Wiacek, Robert J.; Warner, Marvin G.; Fryxell, Glen E.; Bays, John T.; Addleman, R. Shane] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Addleman, RS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Raymond.Addleman@pnl.gov FU Safer Nanomaterials Nanomanufacturing Initiative (SNNI); Ore-on Nanoscience and Microtechnologies Institute (ONAMI); Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC06-67RLO 1830] FX Funding for this work was provided by the Safer Nanomaterials Nanomanufacturing Initiative (SNNI) of the Ore-on Nanoscience and Microtechnologies Institute (ONAMI) and Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under contract DE-AC06-67RLO 1830. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 65 TC 10 Z9 10 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 11 PY 2008 VL 112 IS 36 BP 13947 EP 13957 DI 10.1021/jp8038237 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 345EZ UT WOS:000258980200025 ER PT J AU Pint, CL Nicholas, N Pheasant, ST Duque, JG Nicholas, A Parra-Vasquez, G Eres, G Pasquali, M Hauge, RH AF Pint, Cary L. Nicholas, Nolan Pheasant, Sean T. Duque, Juan G. Nicholas, A. Parra-Vasquez, G. Eres, Gyula Pasquali, Matteo Hauge, Robert H. TI Temperature and gas pressure effects in vertically aligned carbon nanotube growth from Fe-Mo catalyst SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; X-RAY PHOTOEMISSION; CVD SYNTHESIS; ARRAY GROWTH; WALL; FILMS; DECOMPOSITION; NANOPARTICLES; OPTIMIZATION; SPECTROSCOPY AB Vertically aligned carbon nanotubes are grown from Al2O3-supported Fe-Mo catalyst in a hot filament chemical vapor deposition apparatus. We compare the effect of carbon nanotube growth on deposition of 0.5 and 1 nm thick Fe catalyst layers before and after deposition of 0.1 and 0.2 nm thick layers of Mo. We observe that the order of deposition plays a role in the height of the nanotube arrays, especially evident during growth at elevated reaction pressures where carbon flux is higher. We investigate the role of temperature and pressure on features of the nanotube arrays such as height, alignment, quality, volumetric density, and diameter distribution for each of the catalyst thicknesses and for each case of Fe/Mo and Mo/Fe. We compare our results to those obtained from carpets grown from pure Fe catalyst, and observe that a Mo cocatalyst call be advantageous regardless of how it is deposited. However, we find that the order of deposition plays a key role in the temperature and pressure range in which optimal single-walled carbon nanotube growth occurs. C1 [Pheasant, Sean T.; Pasquali, Matteo; Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Pint, Cary L.; Nicholas, Nolan] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Pint, Cary L.; Nicholas, Nolan; Pheasant, Sean T.; Duque, Juan G.; Nicholas, A.; Parra-Vasquez, G.; Pasquali, Matteo; Hauge, Robert H.] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Duque, Juan G.; Nicholas, A.; Pasquali, Matteo] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Eres, Gyula] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. RP Hauge, RH (reprint author), Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA. EM hauge@rice.edu RI Pint, Cary/C-5053-2009; Duque, Juan/G-2657-2010; Hauge, Robert/A-7008-2011; Pasquali, Matteo/A-2489-2008; Parra-Vasquez, Nicholas/E-9001-2013; Pint, Cary/I-6785-2013; Eres, Gyula/C-4656-2017 OI Hauge, Robert/0000-0002-3656-0152; Pasquali, Matteo/0000-0001-5951-395X; Eres, Gyula/0000-0003-2690-5214 FU AFOSR [FA9550-06-1-0207]; Welch Foundation [C-1668]; NASA [NN106H125A]; Division of Materials Sciences and Engineering, Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX Special thanks to Guille Bozzolo, Erik Haroz, Carter Kittrell, Jim Tour, and Chris Crouse for discussions, and Pamela Fleming for technical assistance. This project was partially Supported by AFOSR Grant FA9550-06-1-0207. the Air Force Research Laboratory, the Robert A. Welch Foundation (C-1668), and NASA Prime Contract NN106H125A. The contribution by GE was supported by the Division of Materials Sciences and Engineering, Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725. NR 50 TC 37 Z9 39 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 11 PY 2008 VL 112 IS 36 BP 14041 EP 14051 DI 10.1021/jpS025539 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 345EZ UT WOS:000258980200039 ER PT J AU Mugarza, A Shimizu, TK Cabrera-Sanfelix, P Sanchez-Portal, D Arnau, A Salmeron, M AF Mugarza, Aitor Shimizu, Tomoko K. Cabrera-Sanfelix, Pepa Sanchez-Portal, Daniel Arnau, Andres Salmeron, Miquel TI Adsorption of water on O(2x2)/Ru(0001): Thermal stability and inhibition of dissociation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING TUNNELING MICROSCOPE; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; FUNDAMENTAL-ASPECTS; SOLID-SURFACES; RU(0001); CU(110); INTACT; TRANSITION; COVERAGE AB The effect of preadsorbed oxygen on the subsequent adsorption and reactions of water on Ru(0001) has been studied using low temperature scanning tunneling microscopy and DFT calculations. Experiments were carried out for O coverages close to 0.25 ML. It was found that no dissociation of water takes place up to the desorption temperature of similar to 180-230 K. DFT calculations show that intact water on 0(2 x 2)/Ru(0001) is similar to 0.49 eV more stable than the dissociation products, H and OH, at their preferred fee and top adsorption sites. C1 [Mugarza, Aitor; Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cabrera-Sanfelix, Pepa] DIPC, San Sebastian 20018, Spain. [Sanchez-Portal, Daniel; Arnau, Andres] UPV, Ctr Mixto CSIC, Unidad Fis Mat, San Sebastian 20018, Spain. [Arnau, Andres] Univ Basque Country, Fac Quim, Dept Fis Mat, EHU, E-20080 San Sebastian, Spain. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov RI Shimizu, Tomoko/A-6780-2010; Sanchez-Portal, Daniel /E-5858-2010; mugarza, aitor/B-6871-2012; CSIC-UPV/EHU, CFM/F-4867-2012; arnau, andres/H-7901-2012; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 OI mugarza, aitor/0000-0002-2698-885X; arnau, andres/0000-0001-5281-3212; FU U.S. Department of Energy [DE-AC02-05CH11231]; Marie Curie Outgoing International Foundation [514412] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division. of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.M. was financed by the Marie Curie Outgoing International Foundation, Project No. 514412, through the Institut de Ciencia de Materials de Barcelona-CSIC. San Sebastian authors acknowledge support from the Basque Government and Diputacion de Gipuzkoa (Etortek program), the UPV/EHU (Grant No. IT-366-07) and the Spanish MEC (Grant No. FIS2007-66711-C02-00). NR 38 TC 10 Z9 10 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 11 PY 2008 VL 112 IS 36 BP 14052 EP 14057 DI 10.1021/jp8026622 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 345EZ UT WOS:000258980200040 ER PT J AU Barrio, FE Jarvis, MJ Rawlings, S Bauer, A Croft, S Hill, GJ Manchado, A McLure, RJ Smith, DJB Targett, TA AF Barrio, F. Eugenio Jarvis, Matt J. Rawlings, Steve Bauer, Amanda Croft, Steve Hill, Gary J. Manchado, Arturo McLure, Ross J. Smith, Daniel J. B. Targett, Thomas A. TI A young, dusty, compact radio source within a Ly alpha halo SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : active; galaxies : haloes; galaxies : high-redshift; quasars : individual : J004929+351025 ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; HIGH-REDSHIFT; ABSORBING HALOES; REDDENED QUASARS; STEEP-SPECTRUM; DATA RELEASE; GALAXIES; EMISSION; RED AB We report here on the discovery of a red quasar, J004929.4+351025.7 at a redshift of z = 2.48, situated within a large Ly alpha emission-line halo. The radio spectral energy distribution implies that the radio jets were triggered < 10(4) yr prior to the time at which the object is observed, suggesting that the jet triggering of the active galactic nucleus is recent. The loosely biconical structure of the emission-line halo suggests that it is ionized by photons emitted by the central quasar nucleus and that the central nucleus is obscured by a dusty torus with A(V) similar to 3.0. The large spatial extent of the Ly alpha halo relative to the radio emission means this could only have occurred if the radio jets emerged from an already established highly accreting black hole. This suggests that the radio jet triggering is delayed with respect to the onset of accretion activity on to the central supermassive black hole. C1 [Barrio, F. Eugenio; Jarvis, Matt J.; Rawlings, Steve; Smith, Daniel J. B.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Jarvis, Matt J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Bauer, Amanda; Hill, Gary J.] Univ Texas Austin, Austin, TX 78712 USA. [Bauer, Amanda] AURA, So Operat Ctr, Gemini Observ, La Serena, Chile. [Croft, Steve] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Croft, Steve] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Croft, Steve] UC Merced, Merced, CA 95344 USA. [Manchado, Arturo] Inst Astrofis Canarias, Tenerife 38205, Spain. [McLure, Ross J.; Targett, Thomas A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Smith, Daniel J. B.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. RP Barrio, FE (reprint author), Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. EM febm@astro.ox.ac.uk; m.j.jarvis@herts.ac.uk FU European Commission; Research Council UK; US Department of Energy [W-7405-ENG-48]; NASA [HST # 10127, SST # 1264353, SST # 1265551, SST # 1279182]; Spanish Ministerio de Educacion y Ciencia [AYA 2004-3136]; US Government [NAG W-2166]; National Science Foundation (USA); Science and Technology Facilities Council (UK); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministrio da Cincia e Tecnologia (Brazil); SECYT (Argentina) FX FEB was funded by SISCO research training network part of European Commission's 5th Framework Improving Human Potential programme. MJJ is supported by a Research Council UK fellowship. The work of SC was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. SC acknowledges support for radio galaxy studies at UC Merced, including the work reported here, with the Hubble Space Telescope and Spitzer Space Telescope via NASA grants HST # 10127, SST # 1264353, SST # 1265551 and SST # 1279182. AM acknowledges support from grant AYA 2004-3136 from the Spanish Ministerio de Educacion y Ciencia. The UKIRT is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK, some of the data reported here were obtained as part of the UKIRT Service Programme. The WHT and the INT are operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under US Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia e Tecnologia (Brazil) and SECYT (Argentina). NR 54 TC 9 Z9 9 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2008 VL 389 IS 2 BP 792 EP 798 DI 10.1111/j.1365-2966.2008.13576.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 347NW UT WOS:000259149300020 ER PT J AU Eggleton, PP Tokovinin, AA AF Eggleton, P. P. Tokovinin, A. A. TI A catalogue of multiplicity among bright stellar systems SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries : close; stars : statistics ID TRIPLE-SYSTEMS; RADIAL-VELOCITIES; TIDAL FRICTION; DOUBLE STAR; BINARY; ORBITS; HIPPARCOS; COMPANIONS; EVOLUTION; ARCTURUS AB We consider the multiplicity of stellar systems with (combined) magnitude brighter than 6.00 in Hipparcos magnitudes. We identify 4559 such bright systems (including the Sun), and the frequencies of multiplicities 1, 2, ... , 7 are found to be 2718, 1437, 285, 86, 20, 11 and 2. We discuss the uncertainties, which are substantial. We also consider the distributions of periods of orbits and suborbits. We note that for even more restricted set of 478 systems with V(H) <= 4.00, the proportions of higher multiples up to sextuple are progressively larger (213, 179, 54, 19, 8, 5), suggesting substantial incompleteness in even the reasonably well studied larger sample. This sample can be seen as relatively thoroughly studied for multiplicity, and reasonably representative of stars more massive than the Sun. But the restriction to V(H) <= 6 means that our sample contains hardly any systems where all components are low-mass main-sequence stars (K or M). Data on multiplicity are important as a constraint on (i) the star formation problem, (ii) the problem of the evolution of the Galactic stellar population and (iii) the interaction of dynamics and evolution through the effect of Kozai cycles. We discuss these topics briefly. C1 [Eggleton, P. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Tokovinin, A. A.] Cerro Tololo Interamer Observ, La Serena, Chile. RP Eggleton, PP (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM eggleton1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed partly under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We gratefully acknowledge the help of the Centre des Donnees Stellaires (Strassbourg) and the Astronomical Data System. NR 44 TC 81 Z9 81 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2008 VL 389 IS 2 BP 869 EP 879 DI 10.1111/j.1365-2966.2008.13596.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 347NW UT WOS:000259149300025 ER PT J AU Harford, AG Hamilton, AJS Gnedin, NY AF Harford, A. Gayler Hamilton, Andrew J. S. Gnedin, Nickolay Y. TI Intergalactic baryon-rich regions at high redshift SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : high-redshift; intergalactic medium; cosmology : theory; dark matter; large scale structure of Universe ID LYMAN-ALPHA FOREST; LARGE-SCALE STRUCTURE; GRAVITATIONAL COLLAPSE; COSMIC WEB; GALAXIES; UNIVERSE; HYDRODYNAMICS; REIONIZATION; MODEL; SIMULATIONS AB Using a high-resolution cosmological simulation of reionization, we have examined the differing structures formed by gas and dark matter at a redshift of 5.1. Baryon-rich regions form a small number of filaments, which connect the largest galaxies in the simulation. More detailed examination of the 10 largest galaxies reveals long, slender gaseous filaments about five proper kpc in width radiating from the galaxy centers. Extending out from each filament are a few smooth, thin, nearly planar gaseous sheets. By contrast, the dark matter concentrates into quasi-spherical bodies. The results have implications for our understanding of structure formation in the early Universe and of the Lyman alpha forest. C1 [Harford, A. Gayler; Hamilton, Andrew J. S.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Hamilton, Andrew J. S.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Gnedin, Nickolay Y.] Ctr Particle Astrophys, Fermilab, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Harford, AG (reprint author), Univ Colorado, JILA, Box 440, Boulder, CO 80309 USA. EM andrew.hamilton@colorado.edu FU DOE; NASA [NAG 5-10842]; NSF [AST-0134373, AST-0507596]; National Computational Science Alliance [AST-020018N]; National Center for Supercomputing Applications (NCSA); San Diego Supercomputer Center (SDSC) FX This work was supported, in part, by the DOE and NASA grant NAG 5-10842 at Fermilab, by NSF grants AST-0134373 and AST-0507596, and by the National Computational Science Alliance grant AST-020018N, and utilized IBM P690 arrays at the National Center for Supercomputing Applications (NCSA) and the San Diego Supercomputer Center (SDSC). NR 36 TC 8 Z9 8 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2008 VL 389 IS 2 BP 880 EP 888 DI 10.1111/j.1365-2966.2008.13608.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 347NW UT WOS:000259149300026 ER PT J AU Parker, S Da Via, C Deile, M Hansen, TE Hasi, J Kenney, C Kok, A Watts, S AF Parker, Sherwood Da Via, Cinzia Deile, Mario Hansen, Thor-Erik Hasi, Jasmine Kenney, Christopher Kok, Angela Watts, Stephen TI Dual readout: 3D direct/induced-signals pixel systems SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE detectors; radiation detectors; 3D silicon sensors; 3D silicon detectors; pixel detectors; detector readout ID EFFECTIVE TRAPPING TIMES; SILICON DETECTORS; IRRADIATED SILICON; CHARGE COLLECTION; RADIATION HARDNESS; SENSORS; ARCHITECTURE; PERFORMANCE; DEPENDENCE; ELECTRONS AB In this paper, 3D-electrode pixel detectors are described, in which the bias electrode systems have additional elements. Adding resistors between the bias supply line and each bias electrode together with a signal electrode readout that can measure pulse heights of both polarities could simultaneously provide lower capacitance and improved spatial resolution in both directions. A separate paper ("Dual-readout-strip/pixel systems") covers an alternative-pixels with an added strip readout in one direction which could be used with either planar or 3D-electrodes, and could simultaneously provide a fast trigger and significantly increase the spatial resolution in both directions. (C) 2008 Published by Elsevier B.V. C1 [Parker, Sherwood] Univ Hawaii, Honolulu, HI 96822 USA. [Da Via, Cinzia; Hasi, Jasmine; Watts, Stephen] Univ Manchester, Manchester M13 9PL, Lancs, England. [Deile, Mario] CERN, CH-1211 Geneva 23, Switzerland. [Hansen, Thor-Erik; Kok, Angela] SINTEF, N-0314 Oslo, Norway. [Kenney, Christopher] Mol Biol Consortium, Chicago, IL 60612 USA. RP Parker, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 6222,Bldg 50B, Berkeley, CA 94720 USA. EM sher@slac.stanford.edu FU US Department of Energy [DE-FG02-04ER41291, DE-FG02-05ER41387]; UK [R103277]; National Science Foundation [ECS-9731293] FX This work was supported, in part, by the US Department of Energy through grants DE-FG02-04ER41291 and DE-FG02-05ER41387 (ADR), and by the UK under STFC grant no. R103277. The work was performed in part at the Stanford Nanofabrication Facility (a member of the National Nanotechnology Infrastructure Network), which is supported by the National Science Foundation under grant ECS-9731293. The data for the scatter plots in Fig. 4 were taken in a run with the TOTEM collaboration on the X5 beam line at CERN [16]. We would like to thank them for their help during that run. NR 39 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2008 VL 594 IS 3 BP 332 EP 338 DI 10.1016/j.nima.2008.06.018 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 357MC UT WOS:000259848900003 ER PT J AU Mocko, M Muhrer, G Ino, T Ooi, M Daemen, LL Kiyanagi, Y AF Mocko, M. Muhrer, G. Ino, T. Ooi, M. Daemen, L. L. Kiyanagi, Y. TI Monte Carlo study of the neutron time emission spectra at the Manuel Lujan Jr. Neutron Scattering Center SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron moderator; neutron time emission spectrum; MCNPX validation; Monte Carlo simulation ID BEAM CHARACTERISTICS AB A campaign of neutron-beam characterization measurements was carried out in 2001-2002 at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) at the Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory. These experiments provided a valuable comprehensive data set to define the neutron-beam characteristics of the Lujan Center's target-moderator-reflector-shield assembly. To validate the current computer models of the target assembly, we carried out multiple Monte Carlo calculations of the neutron time emission pulses. The results of our simulations are directly compared with the experimental data characterizing five of the six moderators installed in the Lujan target-moderator-reflector-shield system. Our results not only present an important benchmark test of the MCNPX Monte Carlo transport model of the target assembly, but also show the capabilities of the MCNPX code in designing upgrade and future spallation neutron sources. Published by Elsevier B.V. C1 [Mocko, M.; Muhrer, G.; Daemen, L. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ino, T.] High Energy Accelerator Res Org, Inst Mat Struct Sci, Neutron Sci Lab, Tsukuba, Ibaraki 3050801, Japan. [Ooi, M.; Kiyanagi, Y.] Hokkaido Univ, Sapporo, Hokkaido 0608628, Japan. RP Mocko, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mmocko@lanl.gov RI Mocko, Michal/B-1794-2010; Kiyanagi, Yoshiaki/D-7132-2012; Lujan Center, LANL/G-4896-2012; OI Mocko, Michael/0000-0003-0447-4687 NR 12 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2008 VL 594 IS 3 BP 373 EP 381 DI 10.1016/j.nima.2008.07.034 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 357MC UT WOS:000259848900009 ER PT J AU Adamova, D Agakichiev, G Antonczyk, D Appelshauser, H Belaga, V Bielcikova, J Braun-Munzinger, P Busch, O Cherlin, A Damjanovic, S Dietel, T Dietrich, L Drees, A Dubitzky, W Esumi, SI Filimonov, K Fomenko, K Fraenkel, Z Garabatos, C Glassel, P Holeczek, J Kushpil, V Maas, A Marin, A Milosevic, J Milov, A Miskowiec, D Panebrattsev, Y Petchenova, O Petracek, V Pfeiffer, A Rak, J Ravinovich, I Rehak, P Sako, H Schmitz, W Sedykh, S Shimansky, S Stachel, J Sumbera, M Tilsner, H Tserruya, I Wessels, JP Wienold, T Wurm, JP Xie, W Yurevich, S Yurevich, V AF Adamova, D. Agakichiev, G. Antonczyk, D. Appelshaeuser, H. Belaga, V. Bielcikova, J. Braun-Munzinger, P. Busch, O. Cherlin, A. Damjanovic, S. Dietel, T. Dietrich, L. Drees, A. Dubitzky, W. Esumi, S. I. Filimonov, K. Fomenko, K. Fraenkel, Z. Garabatos, C. Glaessel, P. Holeczek, J. Kushpil, V. Maas, A. Marin, A. Milosevic, J. Milov, A. Miskowiec, D. Panebrattsev, Yu. Petchenova, O. Petracek, V. Pfeiffer, A. Rak, J. Ravinovich, I. Rehak, P. Sako, H. Schmitz, W. Sedykh, S. Shimansky, S. Stachel, J. Sumbera, M. Tilsner, H. Tserruya, I. Wessels, J. P. Wienold, T. Wurm, J. P. Xie, W. Yurevich, S. Yurevich, V. TI Modification of the rho meson detected by low-mass electron-positron pairs in central Pb-Au collisions at 158A GeV/c SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; CERN-SPS; CHIRAL-SYMMETRY; MATTER; MANIFESTATION; RESTORATION; DILEPTONS AB We present a measurement of e(+) e(-) pair production in central Pb-Au collisions at 158A GeV/c. As reported earlier, a significant excess of the e(+) e(-) pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the p spectral function over a density-dependent shift of the p pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to the observed modifications of the rho meson at SPS energy. (C) 2008 Elsevier B.V. All rights reserved. C1 [Appelshaeuser, H.] Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. [Adamova, D.; Kushpil, V.; Sumbera, M.] Nucl Phys Inst ASCR, Rez 25068, Czech Republic. [Agakichiev, G.; Antonczyk, D.; Braun-Munzinger, P.; Busch, O.; Garabatos, C.; Holeczek, J.; Maas, A.; Marin, A.; Miskowiec, D.; Sako, H.; Sedykh, S.] Gesell Schwerionenforsch GSI, D-64291 Darmstadt, Germany. [Belaga, V.; Filimonov, K.; Panebrattsev, Yu.; Petchenova, O.; Shimansky, S.; Yurevich, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bielcikova, J.; Damjanovic, S.; Dietel, T.; Dietrich, L.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Glaessel, P.; Milosevic, J.; Petracek, V.; Schmitz, W.; Stachel, J.; Tilsner, H.; Wienold, T.; Yurevich, S.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Cherlin, A.; Fraenkel, Z.; Milov, A.; Ravinovich, I.; Tserruya, I.; Xie, W.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Drees, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Pfeiffer, A.] CERN, CH-1211 Geneva 23, Switzerland. [Rak, J.; Wurm, J. P.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Rehak, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wessels, J. P.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. RP Appelshauser, H (reprint author), Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. EM appels@ikf.uni-frankfurt.de RI Sumbera, Michal/O-7497-2014; Adamova, Dagmar/G-9789-2014; OI Sumbera, Michal/0000-0002-0639-7323; Maas, Axel/0000-0002-4621-2151 FU GSI; German BMBF; Virtual Institute VI-SIM of the German Helmholtz Association; Israel Science Foundation; Minerva Foundation; Grant Agency and Ministry of Education of the Czech Republic FX This work was supported by GSI, the German BMBF, the Virtual Institute VI-SIM of the German Helmholtz Association, the Israel Science Foundation, the Minerva Foundation and by the Grant Agency and Ministry of Education of the Czech Republic. We wish to thank Ralf Rapp for calculations and numerous discussions. NR 32 TC 63 Z9 63 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 11 PY 2008 VL 666 IS 5 BP 425 EP 429 DI 10.1016/j.physletb.2008.07.104 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 355NS UT WOS:000259716200003 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burkes, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Golovanovai, GA Gomezh, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grilnendahl, S Gruenewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Lashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, DE Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenkon, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemanny, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skachkov, NB Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Straus, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tillery, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van de Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burkes, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Golovanovai, G. A. Gomezh, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grilnendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Lashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, D. E. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenkon, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemanny, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero Y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skachkov, N. B. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Straus, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tillery, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Measurement of the differential cross section for the production of an isolated photon with associated jet in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID GLUON DISTRIBUTION; QCD; PHOTOPRODUCTION; SCATTERING; COLLIDER; NUCLEON; EVENTS; ENERGY; HERA AB The process p (p) over bar -> gamma + jet + X is studied using 1.0 fb(-1) of data collected by the DO detector at the Fermilab Tevatron p (p) over bar collider at a center-of-mass energy root s = 1.96 TeV. Photons are reconstructed in the central rapidity region vertical bar y(gamma)vertical bar < 1.0 with transverse momenta in the range 30 < p(T)(gamma) < 400 GeV while jets are reconstructed in either the central vertical bar y(jet)vertical bar < 0.8 or forward 1.5 < vertical bar y(jet)vertical bar < 2.5 rapidity intervals with P-T(jet) > 15 GeV. The differential cross section d(3 sigma)/dp(T)(gamma) dy(gamma) dy(jet) is measured as a function of p(T)(gamma) in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and p(T)(gamma) dependence of the cross section in the four measured regions. Published by Elsevier B.V. C1 [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomezh, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, IN2P3, CNRS, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemanny, T.; Otero Y Garzon, G. J.; Schaile, D.; Stroehmer, R.; Tillery, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanovai, G. A.; Kharzheev, Y. M.; Korablev, D. E.; Malyshev, V. L.; Skachkov, N. B.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenkon, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burkes, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.; Strom, D.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Grilnendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Lashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Straus, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Bandurin, DV (reprint author), Kansas State Univ, Manhattan, KS 66506 USA. EM dmv@cv.jinr.ru RI De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013 OI De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311 FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; Marie Curie Program FX We are very thankful to R Aurenche, M. Fontannaz, J.R Guillet, and M. Werlen for providing the JETPHOX package, useful discussions and assistance with theoretical calculations. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program. NR 42 TC 25 Z9 25 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 11 PY 2008 VL 666 IS 5 BP 435 EP 445 DI 10.1016/j.physletb.2008.06.076 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 355NS UT WOS:000259716200005 ER PT J AU Airapetian, A Akopov, N Akopov, Z Andrus, A Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetissian, E Belostotski, S Bianchi, N Blok, HP Bottcher, H Bonomo, C Borissov, A Brull, A Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R Demey, M De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Dreschler, J Duren, M Ehrenfried, M Elalaoui-Moulay, A Elbakian, G Ellinghaus, F Elschenbroich, U Fabbri, R Fantoni, A Felawka, L Frullani, S Funel, A Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, F Gliske, S Gregor, IM Guler, H Hadjidakis, C Hasch, D Hasegawa, T Hesselink, WHA Hill, G Hillenbrand, A Hoek, M Holler, Y Hommez, B Hristova, I Iarygin, G Imazu, Y Ivanilov, A Izotov, A Jackson, HE Jgoun, A Joosten, S Kaiser, R Keri, T Kinney, E Kisselev, A Kobayashi, T Kopytin, M Korotkov, V Kozlov, V Kravchenko, P Krivokhijine, VG Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Liebing, P Linden-Levy, LA Ruiz, AL Lorenzon, W Lu, S Lu, XR Ma, BQ Mahon, D Maiheu, B Makins, NCR Manfre, L Mao, Y Marianski, B Marukyan, H Mexner, V Miller, CA Miyachi, Y Muccifora, V Murray, M Mussgiller, A Nagaitsev, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Osborne, A Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reggiani, D Reimer, PE Reischl, A Reolon, AR Riedl, C Rith, K Rock, SE Rosner, G Rostomyan, A Rubacek, L Rubin, J Ryckbosch, D Salomatin, Y Sanjiev, I Schaefer, A Schnell, G Schuler, KP Seitz, B Shearer, C Shibata, TA Shutov, V Stancari, M Statera, M Steffens, E Steijger, JJM Stenzel, H Stewart, J Stinzing, F Streit, J Tait, P Taroian, S Tchuiko, B Terkulov, A Trzcinski, A Tytgat, M Vandenbroucke, A van der Nat, PB van der Steenhoven, G van Haarlem, Y van Hulse, C Varanda, M Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, H Ye, Y Ye, Z Yen, S Yu, W Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Andrus, A. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetissian, E. Belostotski, S. Bianchi, N. Blok, H. P. Boettcher, H. Bonomo, C. Borissov, A. Bruell, A. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. Demey, M. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dreschler, J. Dueren, M. Ehrenfried, M. Elalaoui-Moulay, A. Elbakian, G. Ellinghaus, F. Elschenbroich, U. Fabbri, R. Fantoni, A. Felawka, L. Frullani, S. Funel, A. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, F. Gliske, S. Gregor, I. M. Guler, H. Hadjidakis, C. Hasch, D. Hasegawa, T. Hesselink, W. H. A. Hill, G. Hillenbrand, A. Hoek, M. Holler, Y. Hommez, B. Hristova, I. Iarygin, G. Imazu, Y. Ivanilov, A. Izotov, A. Jackson, H. E. Jgoun, A. Joosten, S. Kaiser, R. Keri, T. Kinney, E. Kisselev, A. Kobayashi, T. Kopytin, M. Korotkov, V. Kozlov, V. Kravchenko, P. Krivokhijine, V. G. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Liebing, P. Linden-Levy, L. A. Ruiz, A. Lopez Lorenzon, W. Lu, S. Lu, X-R. Ma, B. -Q. Mahon, D. Maiheu, B. Makins, N. C. R. Manfre, L. Mao, Y. Marianski, B. Marukyan, H. Mexner, V. Miller, C. A. Miyachi, Y. Muccifora, V. Murray, M. Mussgiller, A. Nagaitsev, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Osborne, A. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reggiani, D. Reimer, P. E. Reischl, A. Reolon, A. R. Riedl, C. Rith, K. Rock, S. E. Rosner, G. Rostomyan, A. Rubacek, L. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanjiev, I. Schaefer, A. Schnell, G. Schueler, K. P. Seitz, B. Shearer, C. Shibata, T. -A. Shutov, V. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, F. Streit, J. Tait, P. Taroian, S. Tchuiko, B. Terkulov, A. Trzcinski, A. Tytgat, M. Vandenbroucke, A. van der Nat, P. B. van der Steenhoven, G. van Haarlem, Y. van Hulse, C. Varanda, M. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, H. Ye, Y. Ye, Z. Yen, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, P. CA HERMES Collaboration TI Measurement of parton distributions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron SO PHYSICS LETTERS B LA English DT Article ID ELECTRON STORAGE-RING; OPPOSITE-SIGN DIMUONS; ORDER QCD ANALYSIS; LEADING-ORDER; NEUTRINO; HERA; BREAKING; EVENTS; PROTON AB The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K+/- multiplicities, and from K+/- and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the a and a quarks. In the region of measurement 0.02 < x < 0.6 and Q(2) > 1.0 GeV2, the helicity distribution is zero within experimental uncertainties. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ellinghaus, F.; Kinney, E.] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Elalaoui-Moulay, A.; Jackson, H. E.; Sanjiev, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Sez Bari, Ist Nazl Fis Nucl, I-70124 Bari, Italy. [Ma, B. -Q.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ye, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [De Nardo, L.; Gavrilov, G.; Holler, Y.; Rock, S. E.; Rostomyan, A.; Schueler, K. P.; Varanda, M.; Ye, Z.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Boettcher, H.; Fabbri, R.; Gabbert, D.; Gregor, I. M.; Guler, H.; Hristova, I.; Kopytin, M.; Liebing, P.; Negodaev, M.; Nowak, W. -D.; Stewart, J.] DESY, D-15738 Zeuthen, Germany. [Iarygin, G.; Krivokhijine, V. G.; Nagaitsev, A.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Diefenthaler, M.; Hillenbrand, A.; Ruiz, A. Lopez; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Reggiani, D.; Rith, K.; Steffens, E.; Stinzing, F.; Tait, P.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Sez Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Avetissian, E.; Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Funel, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Riedl, C.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bruell, A.; Elschenbroich, U.; Hommez, B.; Joosten, S.; Maiheu, B.; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; van Haarlem, Y.; van Hulse, C.; Zihlmann, B.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Dueren, M.; Ehrenfried, M.; Keri, T.; Lu, S.; Perez-Benito, R.; Rubacek, L.; Stenzel, H.; Streit, J.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany. [Borissov, A.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Osborne, A.; Rosner, G.; Seitz, B.; Shearer, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Andrus, A.; Kisselev, A.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Deconinck, W.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Dreschler, J.; Mexner, V.; Reischl, A.; Steijger, J. J. M.; van der Nat, P. B.; van der Steenhoven, G.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Gavrilov, G.; Izotov, A.; Jgoun, A.; Kisselev, A.; Kravchenko, P.; Naryshkin, Y.; Sanjiev, I.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.; Tchuiko, B.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Ist Nazl Fis Nucl, Sez Rome 1, Grp Sanita & Phys Lab, I-00161 Rome, Italy. [De Nardo, L.; Felawka, L.; Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hasegawa, T.; Imazu, Y.; Kobayashi, T.; Lu, X-R.; Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.; Hesselink, W. H. A.] Free Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. [Akopov, N.; Akopov, Z.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Kinney, E (reprint author), Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. EM edward.kinney@colorado.edu RI Deconinck, Wouter/F-4054-2012; Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; El Alaoui, Ahmed/B-4638-2015; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015; Cisbani, Evaristo/C-9249-2011; Lyu, Xiao-Rui/H-4080-2014; OI Lagamba, Luigi/0000-0002-0233-9812; Deconinck, Wouter/0000-0003-4033-6716; Cisbani, Evaristo/0000-0002-6774-8473; Lyu, Xiao-Rui/0000-0001-5689-9578; Hoek, Matthias/0000-0002-1893-8764 FU DESY management FX We gratefully acknowledge the DESY management for its support, the staff at DESY and the collaborating institutions for their significant effort, and our national funding agencies for their financial support. We thank D. de Florian, R. Sassot, and M. Stratmann for discussions and the early use of their programs for calculating PDFs and fragmentation functions. NR 38 TC 98 Z9 98 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 11 PY 2008 VL 666 IS 5 BP 446 EP 450 DI 10.1016/j.physletb.2008.07.090 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 355NS UT WOS:000259716200006 ER PT J AU Guo, Y Shi, DL Cho, HS Dong, ZY Kulkarni, A Pauletti, GM Wang, W Lian, J Liu, W Ren, L Zhang, QQ Liu, GK Huth, C Wang, LM Ewing, RC AF Guo, Yan Shi, Donglu Cho, Hoonsung Dong, Zhongyun Kulkarni, Amit Pauletti, Giovanni M. Wang, Wei Lian, Jie Liu, Wen Ren, Lei Zhang, Qiqing Liu, Guokui Huth, Christopher Wang, Lumin Ewing, Rodney C. TI In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID ULTRATHIN POLYMER-FILMS; SEMICONDUCTOR NANOCRYSTALS; AL2O3 NANOPARTICLES; FLUORESCENCE; DELIVERY; CYTOTOXICITY; PACLITAXEL; DEPOSITION; CHEMISTRY; FULLERENE AB A specially designed carbon nanotube (CNT) is developed for use in the early detection and treatment of cancer. The key functionalities for biomedical diagnosis and drug delivery are incorporated into the CNTs. In vivo imaging of live mice is achieved by intravenously injecting quantum dot (QD)-conjugated CNT for the first time. With near infrared emission around 752 nm, the CNT with surface-conjugated QD (CNT-QD) exhibit a strong luminescence for non-invasive optical in vivo imaging. CNT surface modification is achieved by a plasma polymerization approach that deposited ultra-thin acrylic acid or poly(lactic-co-glycolic acid) (PLGA) films (similar to 3 nm) onto the nanotubes. The anticancer agent paclitaxel is loaded at 11.2 +/- 5.8 mu g mg(-1) to PLGA-coated CNT. Cytotoxicity of this novel drug delivery system is evaluated in vitro using PC-3MM2 human prostate carcinoma cells and quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The in vivo distribution determined by inductively coupled plasma mass spectrometry (ICP-MS) indicates CNT-QD uptake in various organs of live animals. C1 [Guo, Yan; Shi, Donglu; Cho, Hoonsung; Wang, Wei; Huth, Christopher] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Shi, Donglu] Shanghai Jiao Tong Univ, Res Inst Micro Nano Sci & Technol, Shanghai 200092, Peoples R China. [Shi, Donglu] Tongji Univ, Coll Mat Sci & Engn, Shanghai 200092, Peoples R China. [Dong, Zhongyun] Univ Cincinnati, Coll Med, Dept Internal Med, Cincinnati, OH 45267 USA. [Kulkarni, Amit; Pauletti, Giovanni M.] Univ Cincinnati, James L Winkle Coll Pharm, Cincinnati, OH 45221 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Liu, Wen; Ren, Lei; Zhang, Qiqing] Xiamen Univ, Biomed Engn Res Ctr, Coll Med, Xiamen 361005, Fujian, Peoples R China. [Liu, Guokui] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Guo, Y (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM shid@email.uc.edu RI Lian, Jie/A-7839-2010; Zhang, QQ/G-3361-2010; ren, lei/G-3459-2010; Pauletti, Giovanni M./I-5468-2015 OI ren, lei/0000-0003-2131-1601; Pauletti, Giovanni M./0000-0002-0053-4964 FU UC Institute for Nanoscale Science and Technology; U.S. Department of Energy [W-31-109-ENG-38]; NSF NIRT [EAR-0403732] FX The work at University of Cincinnati (UC) was supported by a grant from UC Institute for Nanoscale Science and Technology. The work at Argonne National Laboratory was performed under the auspices of the Office of Basic Energy Science, Division of Chemical Sciences, U.S. Department of Energy, under Contract No. W-31-109-ENG-38. The TEM analyses were conducted at the Electron Microbeam Analysis Laboratory at the University of Michigan and supported by an NSF NIRT grant (EAR-0403732). NR 42 TC 88 Z9 92 U1 6 U2 87 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 10 PY 2008 VL 18 IS 17 BP 2489 EP 2497 DI 10.1002/adfm.200800406 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 352TZ UT WOS:000259521600005 ER PT J AU Fabris, L Dante, M Nguyen, TQ Tok, JBH Bazan, GC AF Fabris, Laura Dante, Mark Nguyen, Thuc-Quyen Tok, Jeffrey B. -H. Bazan, Guillermo C. TI SERS aptatags: New responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; RHODAMINE 6G MOLECULES; STRANDED-DNA MOLECULES; APTAMER-BASED SENSOR; IN-VITRO SELECTION; ELECTROCHEMICAL DETECTION; SILVER ELECTRODE; AU NANOPARTICLES; SINGLE-MOLECULE; HUMAN THROMBIN AB We report here "aptatags," which consist of aptamer-modified silver nanoparticles (NPs) held together by an optical reporter. It is possible to use these materials to design a heterogeneous method for protein identification that takes advantage of the Raman signal enhancement by metallic nanostructures and the recognition capabilities of aptamers. Aptatags are formed by linking silver NPs with an organic dithiol molecule, followed by surface modification with thiolated single-stranded DNA (ssDNA) corresponding to the sequence of the aptamer probe. The sensing surface involves a silver layer containing the thiolated capturing aptamer and mercaptohexadecanoic acid to minimize nonspecific binding. The overall process provides excellent selectivity and sensitivity. Detailed characterization of the sensing surface by SERS maps and atomic force microscopy was carried out to understand how structural features lead to signal generation. C1 [Fabris, Laura; Dante, Mark; Nguyen, Thuc-Quyen; Bazan, Guillermo C.] Univ Calif Santa Barbara, Dept Chem, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA. [Fabris, Laura; Dante, Mark; Nguyen, Thuc-Quyen; Bazan, Guillermo C.] Univ Calif Santa Barbara, Dept Biochem & Mat, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA. [Tok, Jeffrey B. -H.] Lawrence Livermore Natl Lab, BioSecur & NanoSci Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. RP Fabris, L (reprint author), Univ Calif Santa Barbara, Dept Chem, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA. EM bazan@chem.ucsb.edu RI Bazan, Guillermo/B-7625-2014 FU Lawrence Livermore National Labs [URP-06-019]; NSF [DMR-0097611]; NIH [A1065359]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This work was supported by Lawrence Livermore National Labs (URP-06-019) and the NSF (DMR-0097611). J. B. T. acknowledges the partial support of NIH Grant A1065359. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Supporting Information is available online from Wiley InterScience or from the author. NR 61 TC 52 Z9 53 U1 9 U2 80 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 10 PY 2008 VL 18 IS 17 BP 2518 EP 2525 DI 10.1002/adfm.200800301 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 352TZ UT WOS:000259521600008 ER PT J AU Kulatilaka, WD Patterson, BD Frank, JH Settersten, TB AF Kulatilaka, Waruna D. Patterson, Brian D. Frank, Jonathan H. Settersten, Thomas B. TI Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames SO APPLIED OPTICS LA English DT Article ID STIMULATED-EMISSION; FLAT FLAMES; O-ATOMS; SPECTROSCOPY; OXYGEN; 2-COLOR; PHOTODISSOCIATION; ABSORPTION AB Two-photon laser-induced fluorescence (TP-LIF) line imaging of atomic hydrogen was investigated in a series of premixed CH4/O-2/N-2, H-2/O-2, and H-2/O-2/N-2 flames using excitation with either picosecond or nanosecond pulsed lasers operating at 205 nm. Radial TP-LIF profiles were measured for a range of pulse fluences to determine the maximum interference-free signal levels and the corresponding picosecond and nanosecond laser fluences in each of 12 flames. For an interference-free measurement, the shape of the TP-LIF profile is independent of laser fluence. For larger fluences, distortions in the profile are attributed to photodissociation of H2O, CH3, and/or other combustion intermediates, and stimulated emission. In comparison with the nanosecond laser, excitation with the picosecond laser can effectively reduce the photolytic interference and produces approximately an order of magnitude larger interfierence-free signal in CH4/O-2/N-2 flames with equivalence ratios in the range of 0.5 <= Phi <= 1.4, and in H-2/O-2 flames with 0.3 <= Phi <= 1.2. Although photolytic interference limits the nanosecond laser fluence in all flames, stimulated emission, occurring between the laser-excited level, H(n = 3), and H(n = 2), is the limiting factor for picosecond excitation in the flames with the highest H atom concentration. Nanosecond excitation is advantageous in the richest (Phi = 1.64) CH4/O-2/N-2 flame and in H-2/O-2/N-2 flames. The optimal excitation pulse width for interference-free H atom detection depends on the relative concentrations of hydrogen atoms and photolytic precursors, the flame temperature, and the laser path length within the flame. (C) 2008 Optical Society of America C1 [Kulatilaka, Waruna D.; Patterson, Brian D.; Frank, Jonathan H.; Settersten, Thomas B.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM tbsette@sandia.gov RI Settersten, Thomas/B-3480-2009 OI Settersten, Thomas/0000-0002-8017-0258 FU U.S. Department of Energy; Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Funding for this research was provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 39 TC 16 Z9 16 U1 2 U2 29 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD SEP 10 PY 2008 VL 47 IS 26 BP 4672 EP 4683 DI 10.1364/AO.47.004672 PG 12 WC Optics SC Optics GA 360OB UT WOS:000260065700001 PM 18784770 ER PT J AU Smith, AV Do, BT AF Smith, Arlee V. Do, Binh T. TI Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm SO APPLIED OPTICS LA English DT Article ID NONLINEAR REFRACTIVE-INDEX; STIMULATED BRILLOUIN-SCATTERING; FEMTOSECOND OPTICAL-BREAKDOWN; FUSED-SILICA; IMPACT IONIZATION; PHASE MODULATION; DIELECTRICS; SIO2; FIBERS; DEPENDENCE AB We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.75 +/- 0.25 kW/mu m(2). The threshold is approximately three times higher for 14 ps pulses. For 8 ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish. (C) 2008 Optical Society of America C1 [Smith, Arlee V.] Sandia Natl Labs, Dept 1128, Albuquerque, NM 87185 USA. [Do, Binh T.] Ball Aerosp & Technol Corp, Albuquerque, NM 87106 USA. RP Smith, AV (reprint author), Sandia Natl Labs, Dept 1128, POB 5800, Albuquerque, NM 87185 USA. EM arlee.smith@as-photonics.com FU United States Department of Energy (DOE) [DE-AC04-94AL85000] FX We thank Alpine Research Optics and D. Collier and R. Schuster for supplying windows with different surface polishes. We also thank A. Mlgo of Sandia National Laboratories for advice and assistance on silica polishing. This work was supported by the United States Department of Energy (DOE) under contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. NR 65 TC 94 Z9 97 U1 3 U2 41 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD SEP 10 PY 2008 VL 47 IS 26 BP 4812 EP 4832 DI 10.1364/AO.47.004812 PG 21 WC Optics SC Optics GA 360OB UT WOS:000260065700018 PM 18784787 ER PT J AU Abbasi, RU Abu-Zayyad, T Allen, M Amann, JF Archbold, G Belov, K Belz, JW Ben Zvi, SY Bergman, DR Biesiadecka, A Blake, SA Boyer, JH Brusova, OA Burt, GW Cannon, C Cao, Z Deng, W Fedorova, Y Findlay, J Finley, CB Gray, RC Hanlon, WF Hoffman, CM Holzscheiter, MH Hughes, G Huntemeyer, P Ivanov, D Jones, BF Jui, CCH Kim, K Kirn, MA Knapp, BC Loh, EC Maestas, MM Manago, N Mannel, EJ Marek, LJ Martens, K Matthews, JAJ Matthews, JN Moore, SA O'Neill, A Painter, CA Perera, L Reil, K Riehle, R Roberts, MD Rodriguez, D Sasaki, M Schnetzer, SR Scott, LM Seman, M Sinnis, G Smith, JD Snow, R Sokolsky, P Song, C Springer, RW Stokes, BT Stratton, SR Thomas, JR Thomas, SB Thomson, GB Tupa, D Wiencke, LR Zech, A Zhang, X AF Abbasi, R. U. Abu-Zayyad, T. Allen, M. Amann, J. F. Archbold, G. Belov, K. Belz, J. W. Ben Zvi, S. Y. Bergman, D. R. Biesiadecka, A. Blake, S. A. Boyer, J. H. Brusova, O. A. Burt, G. W. Cannon, C. Cao, Z. Deng, W. Fedorova, Y. Findlay, J. Finley, C. B. Gray, R. C. Hanlon, W. F. Hoffman, C. M. Holzscheiter, M. H. Hughes, G. Huentemeyer, P. Ivanov, D. Jones, B. F. Jui, C. C. H. Kim, K. Kirn, M. A. Knapp, B. C. Loh, E. C. Maestas, M. M. Manago, N. Mannel, E. J. Marek, L. J. Martens, K. Matthews, J. A. J. Matthews, J. N. Moore, S. A. O'Neill, A. Painter, C. A. Perera, L. Reil, K. Riehle, R. Roberts, M. D. Rodriguez, D. Sasaki, M. Schnetzer, S. R. Scott, L. M. Seman, M. Sinnis, G. Smith, J. D. Snow, R. Sokolsky, P. Song, C. Springer, R. W. Stokes, B. T. Stratton, S. R. Thomas, J. R. Thomas, S. B. Thomson, G. B. Tupa, D. Wiencke, L. R. Zech, A. Zhang, X. TI An upper limit on the electron-neutrino flux from the HiRes detector SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; large; scale structure of universe; neutrinos ID ENERGY NEUTRINOS AB Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultra-high-energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular data set has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron neutrinos. C1 [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Wiencke, L. R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Wiencke, L. R.] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA. [Amann, J. F.; Hoffman, C. M.; Holzscheiter, M. H.; Marek, L. J.; Painter, C. A.; Sinnis, G.; Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Belz, J. W.; Kirn, M. A.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Ben Zvi, S. Y.; Boyer, J. H.; Finley, C. B.; Knapp, B. C.; Mannel, E. J.; O'Neill, A.; Seman, M.; Song, C.; Zhang, X.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Ben Zvi, S. Y.; Boyer, J. H.; Finley, C. B.; Knapp, B. C.; Mannel, E. J.; O'Neill, A.; Seman, M.; Song, C.; Zhang, X.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Bergman, D. R.; Biesiadecka, A.; Ivanov, D.; Perera, L.; Schnetzer, S. R.; Scott, L. M.; Stratton, S. R.; Thomson, G. B.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Manago, N.; Sasaki, M.] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Roberts, M. D.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Abbasi, RU (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. RI Song, Chihwa/A-3455-2008; Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013 OI Tupa, Dale/0000-0002-6265-5016; FU US NSF [PHY-9100221, PHY-9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY-0073057, PHY-0098826, PHY-0140688, PHY-0245428, PHY-0305516, PHY-0307098, PHY-0649681, PHY-0703893]; DOE [FG03-92ER40732] FX We would like to thank Steve Barwick for useful discussions and recommendations while writing this paper. This work was supported by US NSF grants PHY-9100221, PHY-9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY-0073057, PHY-0098826, PHY-0140688, PHY-0245428, PHY-0305516, PHY-0307098, PHY-0649681, and PHY-0703893, and by the DOE grant FG03-92ER40732. We gratefully acknowledge the contributions from the technical staffs of our home institutions. The cooperation of Colonels E. Fischer, G. Harter and G. Olsen, the US Army, and the Dugway Proving Ground staff is greatly appreciated. NR 31 TC 32 Z9 32 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2008 VL 684 IS 2 BP 790 EP 793 DI 10.1086/590335 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 343XH UT WOS:000258889000002 ER PT J AU Eisenhardt, PRM Brodwin, M Gonzalez, AH Stanford, SA Stern, D Barmby, P Brown, MJI Dawson, K Dey, A Doi, M Galametz, A Jannuzi, BT Kochanek, CS Meyers, J Morokuma, T Moustakas, LA AF Eisenhardt, Peter R. M. Brodwin, Mark Gonzalez, Anthony H. Stanford, S. Adam Stern, Daniel Barmby, Pauline Brown, Michael J. I. Dawson, Kyle Dey, Arjun Doi, Mamoru Galametz, Audrey Jannuzi, B. T. Kochanek, C. S. Meyers, Joshua Morokuma, Tomoki Moustakas, Leonidas A. TI Clusters of galaxies in the first half of the universe from the IRAC shallow survey SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : clusters : general; surveys ID SPITZER-SPACE-TELESCOPE; COLOR-MAGNITUDE RELATION; BAND LUMINOSITY FUNCTION; INFRARED ARRAY CAMERA; PROBE WMAP OBSERVATIONS; STAR-FORMING GALAXIES; ESO IMAGING SURVEY; WIDE-FIELD SURVEY; X-RAY SURVEY; RED-SEQUENCE AB We have identified 335 galaxy cluster and group candidates, 106 of which are at z > 1, using a 4.5 mu m-selected sample of objects from a 7.25 deg(2) region in the Spitzer Infrared Array Camera (IRAC) Shallow Survey. Clusters were identified as three-dimensional overdensities using a wavelet algorithm, based on photometric redshift probability distributions derived from IRAC and NOAO Deep Wide-Field Survey data. We estimate only similar to 10% of the detections are spurious. To date 12 of the z > 1 candidates have been confirmed spectroscopically, at redshifts from 1.06 to 1.41. Velocity dispersions of similar to 750 km s(-1) for two of these argue for total cluster masses well above 10(14) M-circle dot, as does the mass estimated from the rest-frame near-infrared stellar luminosity. Although not selected to contain a red sequence, some evidence for red sequences is present in the spectroscopically confirmed clusters, and brighter galaxies are systematically redder than the mean galaxy color in clusters at all redshifts. The mean I - [3.6] color for cluster galaxies up to z similar to 1 is well matched by a passively evolving model in which stars are formed in a 0.1 Gyr burst starting at redshift z(f) = 3. At z > 1, a wider range of formation histories is needed, but higher formation redshifts (i.e., z(f) > 3) are favored for most clusters. C1 [Eisenhardt, Peter R. M.; Stern, Daniel; Galametz, Audrey; Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brodwin, Mark; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Stanford, S. Adam] Univ Calif Davis, Davis, CA 95618 USA. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Barmby, Pauline] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Brown, Michael J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Dawson, Kyle; Meyers, Joshua] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Doi, Mamoru; Morokuma, Tomoki] Univ Tokyo, Inst Astron, Grad Sch Sci, Mitaka, Tokyo 1810015, Japan. [Galametz, Audrey] Observ Astron, F-67000 Strasbourg, France. [Kochanek, C. S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Meyers, Joshua] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Morokuma, Tomoki] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. RP Eisenhardt, PRM (reprint author), CALTECH, Jet Prop Lab, MS 169-327,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM peter.eisenhardt@jpl.nasa.gov RI Brown, Michael/B-1181-2015; Barmby, Pauline/I-7194-2016; OI Brown, Michael/0000-0002-1207-9137; Barmby, Pauline/0000-0003-2767-0090; Moustakas, Leonidas/0000-0003-3030-2360 FU National Optical Astronomy Observatory (NOAO); NASA; W. M. Keck Foundation; University of California, Lawrence Livermore National Laboratory [W-7405Eng-48]; Office of Science, Department of Energy [DE-AC02-05CH11231] FX We thank Mark Dickinson, Emily MacDonald, and Hyron Spinrad for generously making time available on their scheduled nights for the DEIMOS observations reported here. Naoki Yasuda, Naohiro Takanashi, Yutaka Ihara, Kohki Konishi, and Hiroyuki Utsunomiya assisted with observations at the Subaru Telescope. Roberto De Propris provided the integrated luminosity for Coma Cluster galaxies. Thoughtful comments from the anonymous referee improved the presentation of this work. The IRAC Shallow Survey was executed using guaranteed observing time contributed by G. Fazio, G. Rieke, M. Rieke, M. Werner, and E. Wright. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work made use of images and data products provided by the NOAO Deep Wide-Field Survey, which is supported by the National Optical Astronomy Observatory (NOAO). NOAO is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the data presented were collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. The work of SAS was performed under the auspices of the US Department of Energy, National Nuclear Security Administration, by the University of California, Lawrence Livermore National Laboratory, under contract W-7405Eng-48. The work of K. D. and J.M. was partially supported by the Director, Office of Science, Department of Energy, under grant DE-AC02-05CH11231. NR 88 TC 155 Z9 155 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2008 VL 684 IS 2 BP 905 EP 932 DI 10.1086/590105 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 343XH UT WOS:000258889000014 ER PT J AU Xue, XX Rix, HW Zhao, G Fiorentin, PR Naab, T Steinmetz, M van den Bosch, FC Beers, TC Lee, YS Bell, EF Rockosi, C Yanny, B Newberg, H Wilhelm, R Kang, X Smith, MC Schneider, DP AF Xue, X. X. Rix, H. W. Zhao, G. Fiorentin, P. Re Naab, T. Steinmetz, M. van den Bosch, F. C. Beers, T. C. Lee, Y. S. Bell, E. F. Rockosi, C. Yanny, B. Newberg, H. Wilhelm, R. Kang, X. Smith, M. C. Schneider, D. P. TI The Milky Way's circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of similar to 2400 SDSS blue horizontal-branch stars SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies : individual (MilkyWay); Galaxy : halo; stars : horizontal-branch; stars : kinematics ID DIGITAL SKY SURVEY; PARTICLE HYDRODYNAMICS SIMULATIONS; A-TYPE STARS; MILKY-WAY; GALACTIC HALO; DATA RELEASE; RADIAL-VELOCITIES; DISK GALAXIES; HOT STARS; SPECTROSCOPY AB We derive new constraints on the mass of the Milky Way's dark matter halo, based on 2401 rigorously selected blue horizontal-branch halo stars from SDSS DR6. This sample enables construction of the full line-of-sight velocity distribution at different galactocentric radii. To interpret these distributions, we compare them to matched mock observations drawn from two different cosmological galaxy formation simulations designed to resemble the Milky Way. This procedure results in an estimate of the Milky Way's circular velocity curve to similar to 60 kpc, which is found to be slightly falling from the adopted value of 220 km s(-1) at the Sun's location, and impliesM(< 60 kpc) (4.0 +/- 0.7); 10(11) M-circle dot. The radial dependence of V-cir(r), derived in statistically independent bins, is found to be consistent with the expectations from an NFW dark matter halo with the established stellar mass components at its center. If we assume that an NFW halo profile of characteristic concentration holds, we can use the observations to estimate the virial mass of the Milky Way's dark matter halo, M-vir = 1.0(-0.2)(+0.3) x 10(12) M-circle dot, which is lower than many previous estimates. We have checked that the particulars of the cosmological simulations are unlikely to introduce systematics larger than the statistical uncertainties. This estimate implies that nearly 40% of the baryons within the virial radius of the Milky Way's dark matter halo reside in the stellar components of our Galaxy. A value for M-vir of only similar to 1 x 10(12) M-circle dot also (re) opens the question of whether all of the Milky Way's satellite galaxies are on bound orbits. C1 [Xue, X. X.; Zhao, G.] CAS, Natl Astron Observ, Beijing 100012, Peoples R China. [Xue, X. X.; Rix, H. W.; Fiorentin, P. Re; van den Bosch, F. C.; Bell, E. F.; Kang, X.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Xue, X. X.] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Fiorentin, P. Re] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Naab, T.] Univ Sternwarte, D-81679 Munich, Germany. [Steinmetz, M.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Beers, T. C.; Lee, Y. S.] Michigan State Univ, CSCE, Dept Phys & Astron, E Lansing, MI 48824 USA. [Beers, T. C.; Lee, Y. S.] Michigan State Univ, JINA, E Lansing, MI 48824 USA. [Rockosi, C.] Univ Calif Santa Cruz, Lick Observ, Santa Cruz, CA 95060 USA. [Yanny, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Newberg, H.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Wilhelm, R.] Texas Tech Univ, Dept Phys & Astron, Lubbock, TX 79409 USA. [Smith, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Xue, XX (reprint author), CAS, Natl Astron Observ, 20A Datun Rd, Beijing 100012, Peoples R China. OI Re Fiorentin, Paola/0000-0002-4995-0475; Bell, Eric/0000-0002-5564-9873 NR 63 TC 380 Z9 388 U1 0 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2008 VL 684 IS 2 BP 1143 EP 1158 DI 10.1086/589500 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 343XH UT WOS:000258889000027 ER PT J AU Acciari, VA Aliu, E Beilicke, M Benbow, W Bottcher, M Bradbury, SM Buckley, JH Bugaev, V Butt, Y Celik, O Cesarini, A Ciupik, L Chow, YCK Cogan, P Colin, P Cui, W Daniel, MK Ergin, T Falcone, AD Fegan, SJ Finley, JP Finnegan, G Fortin, P Fortson, LF Furniss, A Gall, D Gillanders, GH Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, DB Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Lee, K Maier, G McCann, A McCutcheon, M Moriarty, P Mukherjee, R Nagai, T Niemiec, J Ong, RA Pandel, D Perkins, JS Petry, D Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Toner, JA Vassiliev, VV Wagner, R Wakely, SP Ward, JE Weekes, TC Weinstein, A White, RJ Williams, DA Wissel, SA Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Beilicke, M. Benbow, W. Boettcher, M. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Celik, O. Cesarini, A. Ciupik, L. Chow, Y. C. K. Cogan, P. Colin, P. Cui, W. Daniel, M. K. Ergin, T. Falcone, A. D. Fegan, S. J. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. F. Furniss, A. Gall, D. Gillanders, G. H. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. B. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Lee, K. Maier, G. McCann, A. McCutcheon, M. Moriarty, P. Mukherjee, R. Nagai, T. Niemiec, J. Ong, R. A. Pandel, D. Perkins, J. S. Petry, D. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Toner, J. A. Vassiliev, V. V. Wagner, R. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. White, R. J. Williams, D. A. Wissel, S. A. Wood, M. Zitzer, B. TI VERITAS discovery of > 200 GeV gamma-ray emission from the intermediate-frequency-peaked BL Lacertae object W Comae SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects : individual (W Comae); gamma rays : observations ID HIGH-ENERGY EMISSION; RADIO-SOURCES; EGRET; ASTRONOMY; SPECTRA; BLAZARS AB We report the detection of very high energy gamma- ray emission from the intermediate- frequency- peaked BL Lacertae object W Comae (z = 0.102) by VERITAS. The source was observed between 2008 January and April. A strong outburst of gamma-ray emission was measured in the middle of March, lasting for only 4 days. The energy spectrum measured during the two highest flare nights is fit by a power law and is found to be very steep, with a differential photon spectral index of Gamma = 3.81 +/- 0.35(stat) +/- 0.34(syst). The integral photon flux above 200 GeV during those two nights corresponds to roughly 9% of the flux from the Crab Nebula. Quasi-simultaneous Swift observations at X-ray energies were triggered by the VERITAS observations. The spectral energy distribution of the flare data can be described by synchrotron self-Compton (SSC) or external Compton (EC) leptonic jet models. C1 [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.; Lee, K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Ergin, T.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.; Smith, A. W.; White, R. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Hays, E.; Horan, D.; Wagner, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Celik, O.; Chow, Y. C. K.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Ciupik, L.; Fortson, L. F.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Konopelko, A.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Niemiec, J.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Humensky, T. B.; Reyes, L. C.; Swordy, S. P.; Wakely, S. P.; Wissel, S. A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Colin, P.; Finnegan, G.; Hui, C. M.; Kieda, D. B.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 2, Ireland. [Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland Univ Coll Galway, Dept Phys, Galway, Ireland. [Falcone, A. D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Butt, Y.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Petry, D.] Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. [Boettcher, M.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Acciari, V. A.; Benbow, W.; Cesarini, A.; Hays, E.; Perkins, J. S.; Smith, A. W.; Toner, J. A.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. RP Beilicke, M (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. EM beilicke@physics.wustl.edu RI Hays, Elizabeth/D-3257-2012; OI Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586 FU US Department of Energy; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; PPARC in the UK FX This research is supported by grants from the US Department of Energy, the US National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by PPARC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. We acknowledge the efforts of the Swift team for providing the UVOT/XRT observations. We thank James Bedient of the AAVSO for his V- and I-band data on W Com. NR 30 TC 67 Z9 67 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2008 VL 684 IS 2 BP L73 EP L77 DI 10.1086/592244 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 345RS UT WOS:000259014700005 ER PT J AU Liu, W Li, H Li, ST Hsu, SC AF Liu, Wei Li, Hui Li, Shengtai Hsu, Scott C. TI Long-term evolution of magnetized bubbles in galaxy clusters SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies : jets; magnetic fields; methods : numerical; MHD ID TRANS-ALFVENIC JETS; RADIO BUBBLES; INTRACLUSTER MEDIUM; TOWER JETS; X-RAY; ATMOSPHERES; SIMULATIONS; CONDUCTION; EMISSION; DYNAMICS AB We have performed nonlinear ideal magnetohydrodynamic simulations of the long-term evolution of a magnetized low-density "bubble" plasma formed by a radio galaxy in a stratified cluster medium. It is found that about 3.5% of the initial magnetic energy remains in the bubble after similar to 8 x 10(9) yr, and the initial magnetic bubble expansion is adiabatic. The bubble can survive for at least 8 x 10(9) yr due to the stabilizing effect of the bubble magnetic field on Rayleigh-Taylor and Kelvin-Helmholtz instabilities, possibly accounting for "ghost cavities" as observed in Perseus A. A filament structure spanning about 500 kpc is formed along the path of bubble motion. The mean value of the magnetic field inside this structure is similar to 0.88 mu G at similar to 8 x 10(9) yr. Finally, the initial bubble momentum and rotation have limited influence on the long-term evolution of the bubble. C1 [Liu, Wei; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hsu, Scott C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Liu, W (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM wliu@lanl.gov; hli@lanl.gov; sli@lanl.gov; scotthsu@lanl.gov OI Hsu, Scott/0000-0002-6737-4934; Liu, Wei/0000-0003-0935-3999 NR 25 TC 6 Z9 6 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2008 VL 684 IS 2 BP L57 EP L60 DI 10.1086/592147 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 345RS UT WOS:000259014700001 ER PT J AU Buttari, A Langou, J Kurzak, J Dongarra, J AF Buttari, Alfredo Langou, Julien Kurzak, Jakub Dongarra, Jack TI Parallel tiled QR factorization for multicore architectures SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE multicore; linear algebra; QR factorization ID PERFORMANCE; SOFTWARE AB As multicore systems continue to gain ground in the high-performance computing world, linear algebra algorithms have to he reformulated or new algorithms have to he developed in order to take advantage of the architectural features on these new processors. Fine-grain parallelism becomes a major requirement and introduces the necessity of loose synchronization in the parallel execution of an operation. This paper presents an algorithm for the QR factorization where the operations can he represented as a sequence of small tasks that operate on square blocks of data (referred to as 'tiles'). These tasks can he dynamically scheduled for execution based on the dependencies among them and on the availability of computational resources. This may result in an out-of-order execution of the tasks that will completely hide the presence of intrinsically sequential tasks in the factorization. performance comparisons are presented with the LAPACK algorithm for QR factorization where parallelism can be exploited only at the level of the BLAS operations and with vendor implementations. Copyright (E) 2008 John Wiley & Sons, Ltd. C1 [Buttari, Alfredo; Kurzak, Jakub; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37916 USA. [Langou, Julien] Univ Colorado, Dept Math Sci, Denver, CO 80202 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester, Lancs, England. RP Dongarra, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37916 USA. EM dongarra@eecs.utk.edu RI Langou, Julien/G-5788-2013; Dongarra, Jack/E-3987-2014 NR 25 TC 51 Z9 51 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD SEP 10 PY 2008 VL 20 IS 13 BP 1573 EP 1590 DI 10.1002/cpe.1301 PG 18 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 341UM UT WOS:000258740600004 ER PT J AU Kanarska, Y Maderich, V AF Kanarska, Y. Maderich, V. TI Modelling of seasonal exchange flows through the Dardanelles Strait SO ESTUARINE COASTAL AND SHELF SCIENCE LA English DT Article DE the Dardanelles Strait; water exchange; Froude number; mixing ID MAXIMAL 2-LAYER EXCHANGE; WATER EXCHANGE; BLACK-SEA; AEGEAN SEA; BOSPORUS; VARIABILITY; CONTRACTION; TRANSPORT; MANDAB; LEVEL AB The Dardanelles Strait is a remarkable example of a long, narrow, shallow, and strongly stratified strait with bidirectional exchange that is governed by both baroclinic and barotropic forcing with a wide spectrum of variability. A three-dimensional free surface primitive equation model is applied to study seasonal hydrodynamics variability in this strait. The calculated vertical structure of temperature, salinity, and velocity fields agrees well with available survey data. Seasonal monthly values of the volume exchange at the Aegean and Marmara exits are estimated. It is found that the seasonal exchange dynamics is governed by the turbulent friction and entrainment at the Nara Passage area. The mean annual water transport in the upper layer is increased by 80% after the Nara Passage. About 25% of water entering in the Dardanelles bottom layer reaches the Marmara Sea in winter, and 50% reaches it in summer. The estimate of the Dardanelles hydrodynamics according to hydraulic and viscous-advective-diffusive regime classification shows significant deviation from the two-layer hydraulic asymptotic. However, according to three-layer hydraulic theory, the flow is found to be critical in the Nara Passage area. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kanarska, Y.; Maderich, V.] Inst Math Machines & Syst Problems, UA-03187 Kiev, Ukraine. RP Kanarska, Y (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-206, Livermore, CA 94550 USA. EM kanarska1@llnl.gov OI Maderich, Vladimir/0000-0003-3143-0727 FU INTAS [YS 2002-127] FX This study was performed during Ph.D. of Yuliya Kanarska at IMMSP and partially was supported by INTAS Fellowship YS 2002-127. We greatly appreciate the help and suggestions of Dr. V. Zervakis during the preparation of an early version of this manuscript. We thank all reviewers for their suggestions for improving the manuscript. NR 45 TC 22 Z9 22 U1 2 U2 5 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0272-7714 J9 ESTUAR COAST SHELF S JI Estuar. Coast. Shelf Sci. PD SEP 10 PY 2008 VL 79 IS 3 BP 449 EP 458 DI 10.1016/j.ecss.2008.04.019 PG 10 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 355TP UT WOS:000259731900011 ER PT J AU Lykken, J Spiropulu, M AF Lykken, Joseph Spiropulu, Maria TI LHC DISCOVERIES UNFOLDED SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE LHC ID SUPERSYMMETRY; PROGRAM AB With the LHC (Large Hadron Collider) data arriving soon, carrying discoveries, we discuss a strategy for synthesizing a set of early measurements illuminating the dark matter of the universe. C1 [Lykken, Joseph] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Lykken, J (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM lykken@fnal.gov; Maria.Spiropulu@cern.ch FU Fermi Research Alliance LLC [DE-AC02-07CH11359] FX We thank our collaborators Jay Hubisz and Maurizio Pierini for many of the insights presented here. Fermilab is operated by the Fermi Research Alliance LLC under contract DE-AC02-07CH11359 with the U.S. Department of Energy. NR 28 TC 1 Z9 1 U1 2 U2 5 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 10 PY 2008 VL 23 IS 22 BP 3441 EP 3459 DI 10.1142/S0217751X08042298 PG 19 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 358NM UT WOS:000259924700002 ER PT J AU Moxley, G Zhu, ZG Zhang, YHP AF Moxley, Geoffrey Zhu, Zhiguang Zhang, Y. -H. Percival TI Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE biomass; biorefinery; cellulose solvent; cellulosic waste; enzymatic cellulose hydrolysis; lignocellulose fractionation ID CANNABIS-SATIVA L.; CLOSTRIDIUM-THERMOCELLUM; CORN STOVER; PRETREATMENT TECHNOLOGIES; IONIC LIQUIDS; DISSOLUTION; BIOFUELS; BIOMASS; BATCH; ACID AB Efficient liberation of fermentable soluble sugars from lignocellulosic biomass waste not only decreases solid waste handling but also produces value-added biofuels and biobased products. Industrial hemp, a special economic crop, is cultivated for its high-quality fibers and high-value seed oil, but its hollow stalk cords (hurds) are a cellulosic waste. The cellulose-solvent-based lignocellulose fractionation (CSLF) technology has been developed to separate lignocellulose components under modest reaction conditions (Zhang, Y.-H. P.; Ding, S.-Y.; Mielenz, J. R.; Elander, R.; Laser, M.; Himmel, M.; McMillan, J. D.; Lynd, L. R. Biotechnol. Bioeng. 2007, 97 (2), 214-223). Three pretreatment conditions (acid concentration, reaction temperature, and reaction time) were investigated to treat industrial hemp hurds for a maximal sugar release: a combinatorial result of a maximal retention of solid cellulose and a maximal enzymatic cellulose hydrolysis. At the best treatment condition (84.0% H3PO4 at 50 degrees C for 60 min), the glucan digestibility was 96% at hour 24 at a cellulase loading of 15 filter paper units of cellulase per gram of glucan. The scanning electron microscopic images were presented for the CSLF-pretreated biomass for the first time, suggesting that CSLF can completely destruct the plant cell-wall structure, in a good agreement with the highest enzymatic cellulose digestibility and fastest hydrolysis rate. It was found that phosphoric acid only above a critical concentration (83%) with a sufficient reaction time can efficiently disrupt recalcitrant lignocellulose structures. C1 [Moxley, Geoffrey; Zhu, Zhiguang; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] BioEnergy Sci Ctr, Dept Energy, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI Zhu, Zhiguang/I-3936-2016; OI Moxley, Geoffrey/0000-0002-2499-0008 FU Biological Systems Engineering Department of Virginia Tech, USDA-CSREES [2006-38909-03484]; Equator Group FX This work was made possible by the Support of the Biological Systems Engineering Department of Virginia Tech, USDA-CSREES (2006-38909-03484) and the Equator Group. NR 44 TC 74 Z9 74 U1 4 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD SEP 10 PY 2008 VL 56 IS 17 BP 7885 EP 7890 DI 10.1021/jf801303f PG 6 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 344OU UT WOS:000258938000045 PM 18702466 ER PT J AU King, DL Strohm, JJ Wang, XQ Roh, HS Wang, CM Chin, YH Wang, Y Lin, YB Rozmiarek, R Singh, P AF King, David L. Strohm, James J. Wang, Xianqin Roh, Hyun-Seog Wang, Chongmin Chin, Ya-Heui Wang, Yong Lin, Yuanbo Rozmiarek, Robert Singh, Prabhakar TI Effect of nickel microstructure on methane steam-reforming activity of Ni-YSZ cermet anode catalyst SO JOURNAL OF CATALYSIS LA English DT Article DE methane reforming; Ni-YSZ; anode; solid oxide fuel cell; sintering; exolution; Ni microstructure ID OXIDE FUEL-CELLS; YTTRIA-STABILIZED ZIRCONIA; CARBON DEPOSITION; PHASE-STABILITY; NATURAL-GAS; SOFC ANODES; KINETICS; SYSTEMS; TEMPERATURE; TRANSPORT AB The activity of nickel-yttria stabilized zirconia (Ni-YSZ) solid oxide fuel cell (SOFC) cermet anodes for the steam-reforming of methane has been investigated in the absence of electrochemical effects. The cermet was prepared by co-milling and sintering NiO and 5YSZ powders at 1375 degrees C in air. During the high-temperature sintering step, NiO dissolved into the YSZ particles to form a solid NiO-YSZ solution. During the subsequent catalyst reduction step, Ni exolved from the YSZ. As a result, many small Ni particles on the order of 10-20 nm formed at the surface of the YSZ. These small particles contributed significantly to the overall reforming activity, along with the large bulk Ni particles within the Ni-YSZ cermet. We observed high initial activity that decreased by as much as an order of magnitude with time on stream, until the anode catalyst reached a stable steady-state activity. The time to reach this stable activity was a function of the pretreatment and reaction conditions. Initial and lined-out activities and average turnover frequencies were obtained for both Ni-YSZ and bulk Ni, based on a rate expression that was first-order in methane and zero-order in steam. Comparative tests at 750 degrees C showed high initial activity on a per-Ni site basis with both materials, but these turnover rates declined over a period of a few hours. After lineout, there appeared to be a negligible effect of Ni particle size on turnover rate. These results indicate the presence of structure-sensitivity for methane reforming, but only with freshly calcined and reduced catalysts that may contain highly coordinatively unsaturated sites. There was an apparent structure-insensitivity with aged catalysts in which Ni particle sizes were generally >= 30 nm. Under reaction conditions with high space velocities and low methane conversions, the water-gas shift reaction did not establish thermodynamic equilibrium. (C) 2008 Elsevier Inc. All rights reserved. C1 [King, David L.; Strohm, James J.; Wang, Xianqin; Roh, Hyun-Seog; Wang, Chongmin; Chin, Ya-Heui; Wang, Yong; Lin, Yuanbo; Rozmiarek, Robert; Singh, Prabhakar] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP King, DL (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM david.king@pnl.gov RI Wang, Yong/C-2344-2013; Singh, Prabhakar/M-3186-2013 FU US Department of Energy; Office of Fossil Energy; US Department of Energy's Office of Biological and Environmental Research FX Support for this work by the US Department of Energy, Office of Fossil Energy, through the Solid State Energy Conversion Alliance (SECA) program is gratefully acknowledged. A portion this work was performed in the PNNL Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research. We thank Vince Sprenkle, Kerry Meinhardt, and Jeff Bonnett at PNNL for supplying the Ni-YSZ samples and engaging in fruitful discussions. NR 39 TC 40 Z9 40 U1 1 U2 43 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD SEP 10 PY 2008 VL 258 IS 2 BP 356 EP 365 DI 10.1016/j.jcat.2008.06.031 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 351FL UT WOS:000259409800008 ER PT J AU Medvinsky, M Turkel, E Hetmaniuk, U AF Medvinsky, M. Turkel, E. Hetmaniuk, U. TI Local absorbing boundary conditions for elliptical shaped boundaries SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Helmholtz equation; absorbing boundary conditions; Mathieu functions ID SURFACE RADIATION CONDITION; CONVEX ARTIFICIAL BOUNDARIES; ACOUSTIC SCATTERING PROBLEMS; FINITE-ELEMENT SOLUTION; UNBOUNDED-DOMAINS; WAVE-EQUATION; HELMHOLTZ-EQUATION; INFINITE ELEMENT; PERFORMANCE; COMPUTATION AB We compare several local absorbing boundary conditions for solving the Helmholtz equation, by a finite difference or finite element method, exterior to a general scatterer. These boundary conditions are imposed on an artificial elliptical or prolate spheroid outer surface. In order to compare the computational solution with an analytical solution, we consider, as an example, scattering about an ellipse. We solve the Helmholtz equation with both finite differences and finite elements. We also introduce a new boundary condition for ail ellipse based on a modal expansion. (c) 2008 Elsevier Inc. All rights reserved. C1 [Medvinsky, M.; Turkel, E.] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel. [Hetmaniuk, U.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Turkel, E (reprint author), Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel. EM turkel@post.tau.ac.il; ulhetma@sandia.gov RI Turkel, Eli/F-6297-2011 OI Turkel, Eli/0000-0003-4273-0303 NR 44 TC 14 Z9 14 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 10 PY 2008 VL 227 IS 18 BP 8254 EP 8267 DI 10.1016/j.jcp.2008.05.010 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 345BW UT WOS:000258972000002 ER PT J AU Taatjes, CA Meloni, G Selby, TM Trevitt, AJ Osborn, DL Percival, CJ Shallcross, DE AF Taatjes, Craig A. Meloni, Giovanni Selby, Talitha M. Trevitt, Adam J. Osborn, David L. Percival, Carl J. Shallcross, Dudley E. TI Direct observation of the gas-phase Criegee intermediate (CH2OO) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DIMETHYL-SULFOXIDE; CARBONYL OXIDES; OZONOLYSIS; OZONE; PHOTOIONIZATION; COMBUSTION; DIOXIRANE; OXIDATION; IDENTIFICATION; SPECTROSCOPY C1 [Taatjes, Craig A.; Meloni, Giovanni; Selby, Talitha M.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Trevitt, Adam J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Trevitt, Adam J.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Percival, Carl J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Shallcross, Dudley E.] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. RP Taatjes, CA (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM cataatj@sandia.gov RI Osborn, David/A-2627-2009; Trevitt, Adam/A-2915-2009; Percival, Carl/B-9353-2012; OI Trevitt, Adam/0000-0003-2525-3162; percival, carl/0000-0003-2525-160X FU Division of Chemical Sciences, Geosciences. and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy (DOE); National Aeronautics and Space Administration [NAGS-13339]; NERC; National Nuclear Security Administration [DE-AC04-94-AL85000]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank Mr. Howard Johnsen (Sandia) for technical assistance. This work is Supported by the Division of Chemical Sciences, Geosciences. and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy (DOE). A.J.T. is Supported by the National Aeronautics and Space Administration (grant NAGS-13339). D.E.S. and C.J.P. thank NERC for funding. Sandia is it multiprogram laboratory operated by Sandia Corporation. a Lockheed Martin Company. for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. The Advanced Light Source is Supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the DOE under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 31 TC 98 Z9 99 U1 12 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 10 PY 2008 VL 130 IS 36 BP 11883 EP 11885 DI 10.1021/ja804165q PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 344TP UT WOS:000258950500024 PM 18702490 ER PT J AU Asaoka, S Takeda, N Lyoda, T Cook, AR Miller, JR AF Asaoka, Sadayuki Takeda, Norihiko Lyoda, Tornokazu Cook, Andrew R. Miller, John R. TI Electron and hole transport to trap groups at the ends of conjugated polyfluorenes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PICOSECOND PULSE-RADIOLYSIS; DIFFUSION-LIMITED REACTIONS; FIELD-EFFECT TRANSISTORS; HIGHLY MOBILE ELECTRONS; CHARGE-TRANSPORT; REGIOREGULAR POLYTHIOPHENE; INTERCHAIN INTERACTIONS; OPTICAL-ABSORPTION; MOLECULAR-WEIGHT; ISOLATED CHAINS AB Polyfluorenes (pF) were synthesized having anthraquinone (AQ) or naphtylimide (NI) end caps that trap electrons or di-p-tolylaminophenyl (APT(2)) caps that trap holes. The average lengths of the pF chains in these molecules varied from 7 to 30 nm. End capping was found not to be complete in these molecules so that some were without caps. Electrons or holes were injected into these polymers in solution by pulse radiolysis. Following attachment, the charges migrated to the end cap traps in times near 2 ns in pF(12)AQ or 5 ns in pF(35)NI. From these observations, electron mobilities for transport along single chains to the end caps in THF solution were determined to be smaller by a factor of 100 than those observed by microwave conductivity. Despite this, the mobilities were sufficiently large to provide encouragement to the use of such single chains in solar photovoltaics. Most charges were observed to transport over substantial distances in these polymers, but 23, 18, and 37% of the charges attached to pFNI, pFAQ, and pFAPT(2), respectively, were trapped in the pF chains and decayed by slower bimolecular reactions. For pFAQ and pFAPT(2), all of the trapped charges were accounted for by estimates of the fraction of molecules having no end cap traps. For pF(35)NI, 23% of the attached electrons were found to be trapped in the chains, but only 4% of chains were expected to have no end caps. This could indicate some trapping by kinks or other defects but may just reflect uncertainties in the capping of this long polymer. When the charges reach the trap groups, their spectra have no features of pF(center dot-) or pF(center dot+), nor do the principal bands of the trapped ions resemble spectra of the radical ions of isolated trap molecules. The optical absorption spectra are rather dominated by new bands identified as charge-transfer transitions, which probably reinject electrons or holes into the pF chains. The energies of those bands correlate well with measured redox potentials. C1 [Asaoka, Sadayuki; Takeda, Norihiko; Lyoda, Tornokazu; Cook, Andrew R.; Miller, John R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Miller, JR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jrmiller@bnl.gov RI Iyoda, Tomokazu/F-4731-2015; OI Iyoda, Tomokazu/0000-0002-9393-5387; Cook, Andrew/0000-0001-6633-3447 FU U.S. Department of Energy; Office of Basic Energy Sciences; Division of Chemical Sciences [DE-AC02-98-CH10886] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences. under Contract DE-AC02-98-CH10886. We also acknowledge Paiboon Sreearunothai and James Wishart for valuable discussions. NR 64 TC 49 Z9 49 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 10 PY 2008 VL 130 IS 36 BP 11912 EP 11920 DI 10.1021/ja800426z PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 344TP UT WOS:000258950500029 PM 18698770 ER PT J AU Graciani, J Nambu, A Evans, J Rodriguez, JA Sanz, JF AF Graciani, Jesus Nambu, Akira Evans, Jaime Rodriguez, Jose A. Sanz, Javier Fdez. TI Au <-> N synergy and N-doping of metal oxide-based photocatalysts SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; TIO2 110 SURFACE; WAVE BASIS-SET; TITANIUM-DIOXIDE; 1ST PRINCIPLES; NANOPARTICLES; ADSORPTION; RUTILE; GOLD; WATER AB N-doping of titania makes photocatalytic activity possible for the splitting of water, and other reactions, under visible light. Here, we show from both theory and experiment that Au preadsorption on TiO2 surfaces significantly increases the reachable amount of N implanted in the oxide. The stabilization of the embedded N is due to an electron transfer from the Au 6s levels toward the N 2p levels, which also increases the Au-surface adhesion energy. Theoretical calculations predict that Au can also stabilize embedded N in other metal oxides with photocatalytic activity, such as SrTiO3 and ZnO, producing new states above the valence band or below the conduction band of the oxide. In experiments, the Au/TiNxO2-y system was found to be more active for the dissociation of water than TiO2, Au/TiO2, or TiO2-y. Furthermore, the Au/TiNxO2-y surfaces were able to catalyze the production of hydrogen through the water-gas shift reaction (WGS) at elevated temperatures (575-625 K), displaying a catalytic activity superior to that of pure copper (the most active metal catalysts for the WGS) or Cu nanoparticles supported on ZnO. C1 [Graciani, Jesus; Sanz, Javier Fdez.] Univ Seville, Dept Quim Fis, Fac Quim, E-41012 Seville, Spain. [Nambu, Akira; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020 A, Venezuela. RP Sanz, JF (reprint author), Univ Seville, Dept Quim Fis, Fac Quim, E-41012 Seville, Spain. EM sanz@us.es RI Graciani, Jesus/B-1136-2009 FU Ministerio de Educacion y Ciencia, MEC, from Spain [MAT2005-01872]; Junta de Andalucia [FQM-132]; U.S. Department of Energy; Division of Chemical Sciences [DE-AC02-98CH10886]; INTEVEP FX This work was funded by the Ministerio de Educacion y Ciencia, MEC, from Spain (project MAT2005-01872), and the Junta de Andalucia (project FQM-132). J.G. also gratefully acknowledges the MEC for a predoctoral grant. We also thank the computational resources provided by the Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (Spain). The work done at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Division of Chemical Sciences (DE-AC02-98CH10886). J.E. thanks INTEVEP for a travel grant that made possible a part of this project. J.G. and J.F.S. thanks Prof. M.A. Alvarez for her continuous and enthusiastic support. NR 46 TC 75 Z9 76 U1 6 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 10 PY 2008 VL 130 IS 36 BP 12056 EP 12063 DI 10.1021/ja802861u PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 344TP UT WOS:000258950500045 PM 18700756 ER PT J AU Shaw, G Gan, JH Zhou, YN Zhi, HJ Subburaman, P Zhang, RG Joachimiak, A Jin, DJ Ji, XH AF Shaw, Gary Gan, Jianhua Zhou, Yan Ning Zhi, Huijun Subburaman, Priadarsini Zhang, Rongguang Joachimiak, Andrzej Jin, Ding Jun Ji, Xinhua TI Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription SO STRUCTURE LA English DT Article ID CHROMATIN-REMODELING COMPLEXES; ESCHERICHIA-COLI; CRYSTAL-STRUCTURES; BACTERIAL HOMOLOG; SNF2 FAMILY; DNA-REPAIR; RESOLUTION; HELICASES; BINDING; CRYSTALLOGRAPHY AB RapA, as abundant as sigma(70) in the cell, is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein with ATPase activity. It stimulates RNAP recycling during transcription. We report a structure of RapA that is also a full-length structure for the entire Swi2/Snf2 family. RapA contains seven domains, two of which exhibit novel protein folds. Our model of RapA in complex with ATP and double-stranded DNA (dsDNA) suggests that RapA may bind to and translocate on dsDNA. Our kinetic template-switching assay shows that RapA facilitates the release of sequestered RNAP from a posttranscrption/posttermination complex for transcription reinitiation. Our in vitro competition experiment indicates that RapA binds to core RNAP only but is readily displaceable by sigma(70). RapA is likely another general transcription factor, the structure of which provides a framework for future studies of this bacterial Swi2/Snf2 protein and its important roles in RNAP recycling during transcription. C1 [Shaw, Gary; Gan, Jianhua; Zhou, Yan Ning; Zhi, Huijun; Subburaman, Priadarsini; Jin, Ding Jun; Ji, Xinhua] NCI, Ctr Canc Res, NIH, Frederick, MD 21702 USA. [Zhang, Rongguang; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Jin, DJ (reprint author), NCI, Ctr Canc Res, NIH, Frederick, MD 21702 USA. EM djjin@helix.nih.gov; jix@ncifcrf.gov RI Ji, Xinhua/C-9664-2012 OI Ji, Xinhua/0000-0001-6942-1514 FU NIH; National Cancer Institute FX We thank Jack Simpson and Robert Fisher for help with mass spectrometry; Di Xia and Lothar Esser for help with cryoprotection; Michelle Andrykovitch for help with crystallization; Brian Austin and David Waugh for help with cloning; and Donald Court, Mikhail Kashlev, and Lucyna Lubkowski for discussion and review of the manuscript. X-ray diffraction and initial phasing were performed at the 19-ID beamline of SBC-CAT and the 22-ID beamline of SERCAT, Advanced Photon Source, Argonne National Laboratory. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. NR 47 TC 30 Z9 30 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD SEP 10 PY 2008 VL 16 IS 9 BP 1417 EP 1427 DI 10.1016/j.str.2008.06.012 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 347TR UT WOS:000259164500017 PM 18786404 ER PT J AU Beel, AJ Mobley, CK Kim, HJ Tian, F Hadziselimovic, A Jap, B Prestegard, JH Sanders, CR AF Beel, Andrew J. Mobley, Charles K. Kim, Hak Jun Tian, Fang Hadziselimovic, Arina Jap, Bing Prestegard, James H. Sanders, Charles R. TI Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): Does APP function as a cholesterol sensor? SO BIOCHEMISTRY LA English DT Article ID ALPHA-SECRETASE CLEAVAGE; HELICAL MEMBRANE-PROTEINS; GROWTH-FACTOR RECEPTOR; GAMMA-SECRETASE; BETA-PROTEIN; ALZHEIMERS-DISEASE; LIPID RAFTS; INTRAMEMBRANE CLEAVAGE; EXTRACELLULAR DOMAIN; JUXTAMEMBRANE DOMAIN AB The amyloid precursor protein (APP) is subject I to alternative pathways of proteolytic processing, leading either to production of the amyloid-beta (A beta) peptides or to non-amyloidogenic fragments. Here, we report the first structural study of C99, the 99-residue transmembrane C-terminal domain of APP liberated by beta-secretase cleavage. We also show that cholesterol, an agent that promotes the amyloidogenic pathway, specifically binds to this protein. C99 was purified into model membranes where it was observed to homodimerize. NMR data show that the transmembrane domain of C99 is an (x-helix that is flanked on both sides by mostly disordered extramembrane domains, with two exceptions. First, there is a short extracellular surface-associated helix located just after the site of alpha-secretase cleavage that helps to organize the connecting loop to the transmembrane domain, which is known to be essential for A production. Second, there is a surface-associated helix located at the cytosolic C-terminus, adjacent to the YENPTY motif that plays critical roles in APP trafficking and protein-protein interactions. Cholesterol was seen to participate in saturable interactions with C99 that are centered at the critical loop connecting the extracellular helix to the transmembrane domain. Binding of cholesterol to C99 and, most likely, to APP may be critical for the trafficking of these proteins to cholesterol-rich membrane domains, which leads to cleavage by beta- and gamma-secretase and resulting amyloid-beta production. It is proposed that APP may serve as a cellular cholesterol sensor that is linked to mechanisms for suppressing cellular cholesterol uptake. C1 [Beel, Andrew J.; Mobley, Charles K.; Kim, Hak Jun; Hadziselimovic, Arina; Sanders, Charles R.] Vanderbilt Univ, Dept Biochem, Nashville, TN 37232 USA. [Beel, Andrew J.; Mobley, Charles K.; Kim, Hak Jun; Hadziselimovic, Arina; Sanders, Charles R.] Vanderbilt Univ, Struct Biol Ctr, Nashville, TN 37232 USA. [Tian, Fang; Prestegard, James H.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Jap, Bing] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Sanders, CR (reprint author), Vanderbilt Univ, Dept Biochem, Nashville, TN 37232 USA. EM chuck.sanders@vanderbilt.edu FU NIH [R21 AG236581, PO1 GM80513]; Alzheimer's Association [IIRG-07-59379, IIRG-05-14222]; University of Georgia [5P41GM066340-05] FX This work was supported by NIH Grants R21 AG236581 and PO1 GM80513 and by Alzheimer's Association Grants IIRG-07-59379 and IIRG-05-14222. 900 MHz NMR data were collected at the NMR facility of the University of Georgia, which is supported in part by Grant 5P41GM066340-05. NR 99 TC 86 Z9 88 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 9 PY 2008 VL 47 IS 36 BP 9428 EP 9446 DI 10.1021/bi800993c PG 19 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 343PT UT WOS:000258866700009 PM 18702528 ER PT J AU Legler, PM Kumaran, D Swaminathan, S Studier, FW Millard, CB AF Legler, Patricia M. Kumaran, Desigan Swaminathan, Subramanyam Studier, F. William Millard, Charles B. TI Structural characterization and reversal of the natural organophosphate resistance of a D-type esterase, Saccharomyces cerevisiae S-formylglutathione hydrolase SO BIOCHEMISTRY LA English DT Article ID AMINO-ACID SUBSTITUTION; HUMAN BUTYRYLCHOLINESTERASE; SPONTANEOUS REACTIVATION; CRYSTAL-STRUCTURE; REDOX REGULATION; SULFENIC ACID; ACTIVE-SITE; ACETYLCHOLINESTERASE; PURIFICATION; SERUM AB Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 angstrom resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W 197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold (k(i)(W1911) = 16 +/- 2 mM(-1) h(-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W 1971 variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/WI971 variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W1971/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon (k(i) = 42 or 80 mM(-1) h(-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity. C1 [Legler, Patricia M.; Millard, Charles B.] Walter Reed Army Inst Res, Div Biochem, Silver Spring, MD 20910 USA. [Kumaran, Desigan; Swaminathan, Subramanyam; Studier, F. William] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Millard, CB (reprint author), Walter Reed Army Inst Res, Div Biochem, 503 Robert Grant Ave, Silver Spring, MD 20910 USA. EM charles.b.millard@us.army.mil FU U.S. Defense Threat Reduction Agency JSTO Award [1.DO015_06_WR_C]; National Institutes of Health; New York Structural Genomics Research Consortium; Office of Biological and Environmental Research of the U.S. Department of Energy FX This work was funded by the U.S. Defense Threat Reduction Agency JSTO Award 1.DO015_06_WR_C (C.B.M.), by the Protein Structure Initiative of the National Institutes of Health as part of the New York Structural Genomics Research Consortium, and by the Office of Biological and Environmental Research of the U.S. Department of Energy. NR 47 TC 15 Z9 15 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 EI 1943-295X J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 9 PY 2008 VL 47 IS 36 BP 9592 EP 9601 DI 10.1021/bi8010016 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 343PT UT WOS:000258866700025 PM 18707125 ER PT J AU Benedek, R Thackeray, MM van de Walle, A AF Benedek, R. Thackeray, M. M. van de Walle, A. TI Free energy for protonation reaction in lithium-ion battery cathode materials SO CHEMISTRY OF MATERIALS LA English DT Article ID WAVE BASIS-SET; MANGANESE OXIDES; X-RAY; STRUCTURAL-CHARACTERIZATION; LOCAL-STRUCTURE; SPINEL; LI2MNO3; DIFFRACTION; EXCHANGE; ELECTRODES AB Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn2 O-4, and olivine LiFePO4 are considered. Protonation is most favorable energetically in layered systems, such as Li-2 MnO3 and LiCoO2. Less favorable are ion-exchange in spinel LiMn2 O-4 and LiV3 O-8. Unfavorable is the Substitution of protons for Li in olivine LiFePO4, because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction. C1 [Benedek, R.; Thackeray, M. M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [van de Walle, A.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Benedek, R (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM benedek@anl.gov RI van de Walle, Axel/L-5676-2013 OI van de Walle, Axel/0000-0002-3415-1494 FU U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation; vided by NCSA; SDSC [DMR060011N]; National Energy Research Supercomputer Center; Lawrence Berkeley Laboratory FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was supported at Argonne by the Office of FreedomCar and Vehicle Technologies (Batteries for Advanced Transportation Technologies (BATT) Program), U.S. Department of Energy. A.v.d.W. was supported by the National Science Foundation through TeraGrid computing resources provided by NCSA and SDSC under grant DMR060011N. Grants of computer time at the National Energy Research Supercomputer Center, Lawrence Berkeley Laboratory are gratefully acknowledged. NR 53 TC 23 Z9 24 U1 10 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 9 PY 2008 VL 20 IS 17 BP 5485 EP 5490 DI 10.1021/cm703042r PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 344QC UT WOS:000258941400006 ER PT J AU Zhang, F Sfeir, MY Misewich, JA Wong, SS AF Zhang, Fen Sfeir, Matthew Y. Misewich, James A. Wong, Stanislaus S. TI Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods SO CHEMISTRY OF MATERIALS LA English DT Review ID SCHEELITE-TYPE COMPOUNDS; ELECTROCHEMICAL METHOD; OPTICAL-PROPERTIES; SOLUTION FILMS; DEPENDENT PHOTOLUMINESCENCE; SOLUTION PHOTOCATALYSTS; SOLVOTHERMAL SYNTHESIS; ALLOYED NANOCRYSTALS; CAWO4 NANOPARTICLES; DIRECTED SYNTHESIS AB The current report describes the systematic synthesis of single-crystalline alkali ne-earth-metal tungstate AWO(4) (A = Ca, Sr, Ba) nanorods as well as a series of their crystalline solid-solution analogues Sr1-xCaxWO4 and Ba1-xSrxWO4 (0 < x < 1) with controllable chemical composition and morphology using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanorods has been performed using diffraction, X-ray photoelectron spectroscopy, electron microscopy, and optical spectroscopy. The composition-modulated luminescence properties of these alkaline-earth-metal tungstate solid-solution nanorods provide for a fundamental understanding of the intrinsic optical and optoelectronic properties of these systems, suggesting, therefore, the possibility of their rational incorporation into functional nanoscale devices. C1 [Zhang, Fen; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Sfeir, Matthew Y.; Misewich, James A.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Zhang, Fen/G-5015-2010; OI Sfeir, Matthew/0000-0001-5619-5722 FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [DMR-0348239]; Alfred P. Sloan Foundation [2006-2008] FX We acknowledge the U.S. Department of Energy (DE-AC02-98CH10886) for facility and personnel support. Lifetime data were collected using instrumentation located at the Center for Functional Nanomaterials at Brookhaven National Laboratory. D. Hirt (Materials Research Laboratories, Inc.) is acknowledged for his work with the XPS measurements. We also thank the National Science Foundation (CAREER Award DMR-0348239) and the Alfred P. Sloan Foundation (2006-2008) for PI support and experimental supplies. Moreover, we are grateful to D. Wang (Boston College) as well as to H. Zhou, S. van Horn, and J. Quinn (SUNY Stony Brook) for their assistance with electron microscopy. NR 103 TC 49 Z9 49 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 9 PY 2008 VL 20 IS 17 BP 5500 EP 5512 DI 10.1021/cm800011j PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 344QC UT WOS:000258941400008 ER PT J AU Rabuffetti, FA Kim, HS Enterkin, JA Wang, YM Lanier, CH Marks, LD Poeppelmeier, KR Stair, PC AF Rabuffetti, Federico A. Kim, Hack-Sung Enterkin, James A. Wang, Yingmin Lanier, Courtney H. Marks, Laurence D. Poeppelmeier, Kenneth R. Stair, Peter C. TI Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature SO CHEMISTRY OF MATERIALS LA English DT Article ID FERROELECTRIC PHASE-TRANSITION; THIN-FILMS; STRONTIUM-TITANATE; HYDROTHERMAL SYNTHESIS; MICROWAVE DEVICES; CERAMIC POWDERS; KTAO3; NANOPARTICLES; SPECTRUM; MICROREGIONS AB Raman spectroscopy was used to demonstrate that the lattice dynamics of SrTiO3 (STO) nanoparticles strongly depends on their microstructure, which is in turn determined by the synthetic approach employed. First-order Raman modes are observed at room temperature in STO single-crystal line nanocubes with average edge lengths of 60 and 120 nm, obtained via sol-precipitation coupled with hydrothermal synthesis and a molten salt procedure, respectively. First-order Raman scattering arises from local loss of inversion symmetry caused by surface frozen dipoles, oxygen vacancies, and impurities incorporated into the host lattice. The presence of polar domains is suggested by the pronounced Fano asymmetry of the peak corresponding to the TO2 polar phonon, which does not vanish at room temperature. These noncentrosymmetric domains will likely influence the dielectric response of these nanoparticles. C1 [Rabuffetti, Federico A.; Kim, Hack-Sung; Enterkin, James A.; Poeppelmeier, Kenneth R.; Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wang, Yingmin; Lanier, Courtney H.; Marks, Laurence D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Rabuffetti, Federico A.; Kim, Hack-Sung; Enterkin, James A.; Wang, Yingmin; Lanier, Courtney H.; Marks, Laurence D.; Poeppelmeier, Kenneth R.; Stair, Peter C.] Northwestern Univ, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. [Kim, Hack-Sung; Stair, Peter C.] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI Marks, Laurence/B-7527-2009 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-03-ER15457]; Materials Research Center of Northwestern University [DMR-0520513]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Award DE-FG02-03-ER15457). This work made use of the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-0520513) at the Materials Research Center of Northwestern University. The electron imaging and diffraction work was performed in the EPIC facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. NR 46 TC 60 Z9 60 U1 8 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 9 PY 2008 VL 20 IS 17 BP 5628 EP 5635 DI 10.1021/cm801192t PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 344QC UT WOS:000258941400022 ER PT J AU Einsla, ML Kim, YS Hawley, M Lee, HS McGrath, JE Liu, BJ Guiver, MD Pivovar, BS AF Einsla, Melinda L. Kim, Yu Seung Hawley, Marilyn Lee, Hae-Seung McGrath, James E. Liu, Baijun Guiver, Michael D. Pivovar, Bryan S. TI Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity SO CHEMISTRY OF MATERIALS LA English DT Article ID POLY(ARYLENE ETHER SULFONE); FUEL-CELLS; POLYMER ELECTROLYTE; NAFION MEMBRANES; COPOLYMERS; TRANSPORT; WATER; PERFORMANCE; IONOMERS; BEHAVIOR AB Three sulfonated aromatic polymers with different sequence lengths were studied in order to better understand the relationship between molecular structure, morphology, and properties of proton exchange membranes as a function of relative humidity. A random copolymer with a statistical distribution of sulfonic acid groups had very small domain sizes, whereas an alternating polymer with sulfonic acid,groups spaced evenly along the polymer chain was found to have larger, but quite isolated, domains. The multiblock copolymer studied herein showed highly phase-separated hydrophilic and hydrophobic domains, with good long-range connectivity. Scanning force microscopy as a function of relative humidity was used to observe water absorption and swelling of the hydrophilic domains in each of the three membranes. The conductivity, water sorption kinetics. and fuel cell performance, especially at low relative humidity, were found to be highly dependent upon the morphology. The multiblock copolymer outperformed both the random and alternating systems at 100 degrees C and 40% RH fuel cell operating conditions and showed similar performance to Nation. C1 [Einsla, Melinda L.; Kim, Yu Seung; Hawley, Marilyn; Pivovar, Bryan S.] Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. [Lee, Hae-Seung; McGrath, James E.] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Liu, Baijun; Guiver, Michael D.] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. RP Kim, YS (reprint author), Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. EM yskim@lanl.gov RI Guiver, Michael/I-3248-2016 OI Guiver, Michael/0000-0003-2619-6809 FU U.S. Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies [DE-FG36-06G016038]; National Research Council of Canada [49156] FX The work was supported by the U.S. Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies (DE-FG36-06G016038). The collaboration between Los Alamos National Laboratory and the National Research Council of Canada is under the International Partnership on the Hydrogen Economy (IPHE). The work (NRCC No. 49156) conducted at the National Research Council of Canada was partially Supported by the Technology and Innovation Fuel Cell Horizontal Program. NR 32 TC 147 Z9 148 U1 5 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 9 PY 2008 VL 20 IS 17 BP 5636 EP 5642 DI 10.1021/cm801198d PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 344QC UT WOS:000258941400023 ER PT J AU Tung, SH Kalarickal, NC Mays, JW Xu, T AF Tung, Shih-Huang Kalarickal, Nisha C. Mays, Jimmy W. Xu, Ting TI Hierarchical assemblies of block-copolymer-based supramolecules in thin films SO MACROMOLECULES LA English DT Article ID 2 LENGTH SCALES; MICROPHASE SEPARATION; DIBLOCK COPOLYMERS; MICRODOMAIN ORIENTATION; POLYMERIC MATERIALS; ELECTRIC-FIELDS; PHASE-BEHAVIOR; COMB COPOLYMER; ALIGNMENT; ARRAYS AB The hierarchical assemblies of supramolecules, which consisted of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) with 3-pentadecyl phenol (PDP) hydrogen-bonded to the 4VP, were investigated in thin films after solvent annealing in a chloroform atmosphere. The synergistic coassembly of PS-b-P4VP and PDP was utilized to generate oriented hierarchical structures in thin films. Hierarchical assemblies, including lamellae-within-lamellae and cylinders-within-lamellae, were simultaneously ordered and oriented from a few to several tens of nanometers over macroscopic length scales. The macroscopic orientation of supramolecular assembly depends on the P4VP(PDP) fraction and can be tailored by varying the PDP to P4VP ratio without interfering with the supramolecular morphologies. The lamellar and cylindrical microdomains, with a periodicity of similar to 40 nm, could be oriented normal to the Surface, while the assembly of comb blocks, P4VP(PDP), with a periodicity of similar to 4 nm, were oriented parallel to the surface. Furthermore, using one PS-b-P4VP copolymer, thin films with different hierarchical structures, i.e., lamellae-within-lamellae and cylinders-within-lamellae, were obtained by varying the ratio of PDP to 4VP units. The concepts described in these studies can be potentially applied to other BCP-based supramolecular thin films, thus creating an avenue to functional, hierarchically ordered thin films. C1 [Tung, Shih-Huang; Kalarickal, Nisha C.; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Tung, Shih-Huang; Kalarickal, Nisha C.; Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Tung, Shih-Huang/C-6832-2013; OI Tung, Shih-Huang/0000-0002-6787-4955 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Army Research Office at Department of Defense under [W911NF-07-1-0653]; University of California Energy Institute (UCEI) [023205] FX We thank Thomas Schilling and Evangeline Wong for help with initial construction of supramolecules and scattering experiments. We acknowledge Dr. Alexander Hexemer and Mr. Eliot Gann at ALS for facilitating SAXS and GISAXS experiments. We thank Dr. Michael Sprung and Dr. Jin Wang at APS (Argonne, IL) for facilitating the GISAXS experiments. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The dPS-b-P4VP was provided by CNMS-ORNL, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank Dr. David Uhrig, Dr. Deanna Pickel, and Dr. Jamie Messman for their assistance in polymer synthesis. This work was supported by the Short-term Innovative Research Grant from Army Research Office at Department of Defense under Contract W911NF-07-1-0653 and the University of California Energy Institute (UCEI) under Grant 023205. NR 46 TC 75 Z9 75 U1 4 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 9 PY 2008 VL 41 IS 17 BP 6453 EP 6462 DI 10.1021/ma800726r PG 10 WC Polymer Science SC Polymer Science GA 344EL UT WOS:000258909000028 ER PT J AU Liu, HZ Wang, LH Xiao, XH De Carlo, F Feng, J Mao, HK Hemley, RJ AF Liu, Haozhe Wang, Luhong Xiao, Xianghui De Carlo, Francesco Feng, Ji Mao, Ho-kwang Hemley, Russell J. TI Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE crystallization; volume expansion; equation of state; phase transition; metastability ID ISOTHERMAL CRYSTALLIZATION KINETICS; PHASE-TRANSFORMATIONS; GRADIENT APPROXIMATION; ELECTRONIC-PROPERTIES; RAMAN-SPECTROSCOPY; SIO2 GLASS; TRANSITION; SE; SOLIDS; ICE AB The high-pressure behavior of amorphous selenium has been investigated with time-resolved diamond anvil cell synchrotron x-ray diffraction and computed microtomography techniques. A two-step dynamic crystallization process is observed in which the monoclinic phase crystallized from the amorphous selenium and gradually converted to the trigonal phase, thereby explaining previously observed anomalous changes in electrical conductivity of the material under pressure. The crystallization of this elemental system involves local topological fluctuations and results in an unusual pressure-induced volume expansion. The metastability of the phases involved in the transition accounts for this phenomenon. The results demonstrate the use of pressure to control and directly monitor the relative densities and energetics of phases to create new phases from highly metastable states. The microtomographic technique developed here represents a method for determination of the equations of state of amorphous materials at extreme pressures and temperatures. C1 [Liu, Haozhe; Wang, Luhong] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Nat Sci Res Ctr, Harbin 150080, Peoples R China. [Xiao, Xianghui; De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Feng, Ji] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Mao, Ho-kwang; Hemley, Russell J.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Liu, HZ (reprint author), Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Nat Sci Res Ctr, Harbin 150080, Peoples R China. EM haozhe@hit.edu.cn; hemley@gl.ciw.edu RI Feng, Ji/B-6775-2009; Liu, Haozhe/E-6169-2011; Wang, Luhong/E-6234-2011 OI Feng, Ji/0000-0003-1944-718X; FU Harbin Institute of Technology; Department of Energy-Basic Energy Sciences (DOE-BES); DOE-National Nuclear Security Administration (Carnegie-DOE Alliance Center); National Science Foundation; W. M. Keck Foundation; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank P. Chow for helpful discussion and W. A. Bassett and J. Chen for the constructive reviews of the manuscript. H. L. and L. W. thank the Excellent Team program of Harbin Institute of Technology for support. The High Pressure Collaborative Access Team facility is supported by the Department of Energy-Basic Energy Sciences (DOE-BES), DOE-National Nuclear Security Administration (Carnegie-DOE Alliance Center), the National Science Foundation, and the W. M. Keck Foundation. The Advanced Photon Source is supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 58 TC 31 Z9 33 U1 2 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 9 PY 2008 VL 105 IS 36 BP 13229 EP 13234 DI 10.1073/pnas.0806857105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 349AR UT WOS:000259251700012 PM 18768800 ER PT J AU Wu, Y Kondrashkina, E Kayatekin, C Matthews, CR Bilsel, O AF Wu, Ying Kondrashkina, Elena Kayatekin, Can Matthews, C. Robert Bilsel, Osman TI Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE FRET; microsecond mixing; misfolding; small-angle x-ray scattering ID GLOBAL ANALYSIS HIGHLIGHTS; SINGLE-MOLECULE FRET; TRYPTOPHAN SYNTHASE; ALPHA-SUBUNIT; ESCHERICHIA-COLI; OFF-PATHWAY; DISTANCE DISTRIBUTIONS; HYDROGEN-EXCHANGE; GLOBULAR-PROTEINS; MECHANISM AB The earliest kinetic folding events for (beta alpha)(8) barrels reflect the appearance of off-pathway intermediates. Continuous-flow micro-channel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Forster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative (beta alpha)(8) barrel protein. Within 150 mu s, the alpha-subunit of Trp synthase (alpha TS) experiences a global collapse and the partial formation of secondary structure. The time resolution of the folding reaction was enhanced with trFRET and trFLAN to show that, within 30 mu s, a distinct and autonomous partially collapsed structure has already formed in the N-terminal and central regions but not in the C-terminal region. A distance distribution analysis of the trFRET data confirmed the presence of a heterogeneous ensemble that persists for several hundreds of microseconds. Ready access to locally folded, stable substructures may be a hallmark of repeat-module proteins and the source of early kinetic traps in these very common motifs. Their folding free-energy landscapes should be elaborated to capture this source of frustration. C1 [Wu, Ying; Kayatekin, Can; Matthews, C. Robert; Bilsel, Osman] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA. [Kondrashkina, Elena] Argonne Natl Lab, BioCAT, Argonne, IL 60439 USA. RP Bilsel, O (reprint author), Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, 346 Plantat St,LRB 919, Worcester, MA 01605 USA. EM osman.bilsel@umassmed.edu RI Kayatekin, Can/B-6618-2009; ID, BioCAT/D-2459-2012 FU National Institutes of Health (NIH) [GM23303]; National Science Foundation [MCB0327504, MCB0721312]; NIH-supported Research Center [RR-08630]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38] FX We thank J. Zitzewitz, R. Vadrevu, and T. Irving (BioCAT) for many helpful discussions; R. Heurich, M. Vukonich, and D. Gore of BioCATfor technical assistance with SAXS; S. Kathuria for technical assistance with continuous-flow CD experiments; T. Partington and A. Allard (University of Massachusetts Medical School Machine Shop) and D. Sachs (TEAM Specialty Products, Albecluerque, NM) for machining many mixer components and numerous helpful design suggestions. This work was supported by National Institutes of Health (NIH) Grant GM23303 and National Science Foundation Grants MCB0327504 and MCB0721312. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract No. W-31-109-ENG-38. BioCAT is a NIH-supported Research Center (RR-08630). NR 52 TC 44 Z9 44 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 9 PY 2008 VL 105 IS 36 BP 13367 EP 13372 DI 10.1073/pnas.0802788105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 349AR UT WOS:000259251700036 PM 18757725 ER PT J AU Shankaran, H Wiley, HS AF Shankaran, Harish Wiley, H. Steven TI Smad Signaling Dynamics: Insights from a Parsimonious Model SO SCIENCE SIGNALING LA English DT Article AB The molecular mechanisms that transmit information from cell surface receptors to the nucleus are exceedingly complex; thus, much effort has been expended in developing computational models to understand these processes. A recent study on modeling the nuclear-cytoplasmic shuttling of Smad2-Smad4 complexes in response to transforming growth factor-beta (TGF-beta) receptor activation has provided substantial insight into how this signaling network translates the degree of TGF-beta receptor activation (input) into the amount of nuclear Smad2-Smad4 complexes (output). The study addressed this question by combining a simple, mechanistic model with targeted experiments, an approach that proved particularly powerful for exploring the fundamental properties of a complex signaling network. The mathematical model revealed that Smad nuclear-cytoplasmic dynamics enables a proportional but time-delayed coupling between the input and the output. As a result, the output can faithfully track gradual changes in the input while the rapid input fluctuations that constitute signaling noise are dampened out. C1 [Shankaran, Harish; Wiley, H. Steven] Pacific NW Natl Lab, Syst Biol Program, Richland, WA 99352 USA. [Wiley, H. Steven] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Syst Biol Program, Richland, WA 99352 USA. EM steven.wiley@pnl.gov OI Wiley, Steven/0000-0003-0232-6867 NR 23 TC 4 Z9 4 U1 0 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD SEP 9 PY 2008 VL 1 IS 36 AR pe41 DI 10.1126/scisignal.136pe41 PG 3 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA V10XJ UT WOS:000207496400001 PM 18780891 ER PT J AU Narasimhan, TN AF Narasimhan, T. N. TI Laplace equation and Faraday's lines of force SO WATER RESOURCES RESEARCH LA English DT Article AB Boundary-value problems involve two dependent variables: a potential function and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions. Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach and Maxwell's global approach each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Narasimhan, TN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 210 Hearst Min Bldg, Berkeley, CA 94720 USA. EM tnnarasimhan@lbl.gov FU U. S. Department of Energy [DE-AC03-76SF00098]; Division of Natural Resources, University of California FX I would like to thank Andrea Cortis, Stefan Finsterle, Teamrat Ghezzehei, and Dmitriy Silin for critical comments on the manuscript. I am grateful to Lawrence Craig Evans for insightful discussions on differential equations, and to Anvar Kacimov for discussions on solving novel groundwater flow problems. Emil Frind's meticulous review and suggestions have helped improve the paper in significant ways. This work was supported partly by the Director, Office of Energy Research, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098 through the Earth Sciences Division of Ernest Orlando Lawrence Berkeley National Laboratory, and partly by the Agricultural Extension Service, through the Division of Natural Resources, University of California. NR 13 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 9 PY 2008 VL 44 IS 9 AR W09412 DI 10.1029/2007WR006221 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 348JB UT WOS:000259205700001 ER PT J AU Acremann, Y Yu, XW Tulapurkar, AA Scherz, A Chembrolu, V Katine, JA Carey, MJ Siegmann, HC Stohr, J AF Acremann, Y. Yu, X. W. Tulapurkar, A. A. Scherz, A. Chembrolu, V. Katine, J. A. Carey, M. J. Siegmann, H. C. Stohr, J. TI An amplifier concept for spintronics SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIZATION REVERSAL; SPIN AB Typical spin-dependent devices proposed for information processing lack one of the most important features provided by charge based logic: they do not provide gain. In this letter we show the basic concept of a spin amplifier and propose ways to amplify a spin current at room temperature. (C) 2008 American Institute of Physics. C1 [Acremann, Y.; Scherz, A.; Siegmann, H. C.] Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA. [Yu, X. W.; Chembrolu, V.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Tulapurkar, A. A.; Stohr, J.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Katine, J. A.; Carey, M. J.] Hitachi Global Storage Technol, San Jose, CA 95135 USA. RP Acremann, Y (reprint author), Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA. EM acremann@slac.stanford.edu FU U.S. Department of Energy, Office of Basic Energy Sciences; Western Institute of Nanoelectronics FX The work was carried out with support from the U.S. Department of Energy, Office of Basic Energy Sciences, and the Western Institute of Nanoelectronics. We would like to thank J. P. Strachan for fruitful discussions. NR 13 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 8 PY 2008 VL 93 IS 10 AR 102513 DI 10.1063/1.2977964 PG 3 WC Physics, Applied SC Physics GA 356SD UT WOS:000259797000066 ER PT J AU Chiaramonti, AN Schreiber, DK Egelhoff, WF Seidman, DN Petford-Long, AK AF Chiaramonti, A. N. Schreiber, D. K. Egelhoff, W. F. Seidman, David N. Petford-Long, A. K. TI Effects of annealing on local composition and electrical transport correlations in MgO-based magnetic tunnel junctions SO APPLIED PHYSICS LETTERS LA English DT Article ID ATOM-PROBE TOMOGRAPHY; BARRIERS AB The effects of annealing on the electrical transport behavior of CoFe/MgO/CoFe magnetic tunnel junctions have been studied using a combination of site-specific in situ transmission electron microscopy and three-dimensional atom-probe tomography. Annealing leads to an increase in the resistance of the junctions. A shift in the conductance curve (dI/dV) minimum from 0 V for the as-grown specimen correlates with a sharply defined layer of CoFe oxide at the lower ferromagnetic interface. Annealing decreases the asymmetry in the conductance by making the interfaces more diffuse and the tunnel barrier more chemically homogeneous. (c) 2008 American Institute of Physics. C1 [Chiaramonti, A. N.; Schreiber, D. K.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Schreiber, D. K.; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Egelhoff, W. F.] NIST, Magnet Mat Grp, Gaithersburg, MD 20899 USA. [Seidman, David N.] Northwestern Univ, Ctr Atom Probe Tomog, Evanston, IL 60208 USA. RP Chiaramonti, AN (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chiaramonti@anl.gov RI Seidman, David/B-6697-2009; Chiaramonti, Ann/E-7459-2013; Petford-Long, Amanda/P-6026-2014 OI Chiaramonti, Ann/0000-0001-9933-3267; Petford-Long, Amanda/0000-0002-3154-8090 FU Argonne National Laboratory [DE-AC02-06CH11357] FX Argonne National Laboratory is operated under Contract No. DE-AC02-06CH11357 by U. S. DOE. The electron microscopy was accomplished in the Argonne National Laboratory Electron Microscopy Center for Materials Research. The APT analyses were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom-probe tomograph was purchased with funding from the National Science Foundation and the Office of Naval Research. NR 18 TC 23 Z9 23 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 8 PY 2008 VL 93 IS 10 AR 103113 DI 10.1063/1.2970964 PG 3 WC Physics, Applied SC Physics GA 356SD UT WOS:000259797000087 ER PT J AU Di, ZF Wang, YQ Nastasi, M Shao, L Lee, JK Theodore, ND AF Di, Z. F. Wang, Y. Q. Nastasi, M. Shao, L. Lee, J. K. Theodore, N. D. TI Evidence for ion irradiation induced dissociation and reconstruction of Si-H bonds in hydrogen-implanted silicon SO APPLIED PHYSICS LETTERS LA English DT Article ID C-H; MECHANISM; ENERGETICS; DEFECTS; VACANCY; GROWTH; LAYERS; MODEL AB We observe that H-related chemical bonds formed in H-implanted Si will evolve under subsequent ion irradiation. During ion irradiation hydrogen is inclined to dissociate from simple H-related defect complexes (i.e., VH(x) and IH(x)), diffuse, and attach to vacancy-type defects resulting in new platelet formation, which facilitate surface blistering after annealing, a process completely inhibited in the absence of ion irradiation. The understanding of our results provides insight into the structure and stability of hydrogen-related defects in silicon. (c) 2008 American Institute of Physics. C1 [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Lee, J. K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Theodore, N. D.] Freescale Semicond Inc, Analog & Mixed Signal Technol, Tempe, AZ 85284 USA. RP Di, ZF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zengfeng@lanl.gov RI di, zengfeng/B-1684-2010 FU Department of Energy; Office of Basic Energy Science FX This work is supported by the Department of Energy, Office of Basic Energy Science. Discussions with John Hirth, Richard Hoagland, Andy Shreve, and Alain Claverie are acknowledged. NR 28 TC 17 Z9 17 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 8 PY 2008 VL 93 IS 10 AR 104103 DI 10.1063/1.2979686 PG 3 WC Physics, Applied SC Physics GA 356SD UT WOS:000259797000117 ER PT J AU Picard, YN McDonald, JP Friedmann, TA Yalisove, SM Adams, DP AF Picard, Yoosuf N. McDonald, Joel P. Friedmann, Thomas A. Yalisove, Steven M. Adams, David P. TI Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates SO APPLIED PHYSICS LETTERS LA English DT Article ID COMBUSTION SYNTHESIS; MULTILAYER FILMS; PROPAGATION; FOILS AB Thresholds for optically igniting self-propagating reactions are quantified for energetic Ni/Ti, Co/Al, and Al/Pt nanolaminates, where smaller enthalpy material pairs required larger laser ignition fluences. The threshold fluences (J/cm(2)) for ignition by 30 ns laser pulses focused to similar to 8 mu m spot size varied from 720 to 15 000 J/cm(2) for Ni/Ti, 8.6 to 380 J/cm(2) for Co/Al, and 3.2 to 27 J/cm(2) for Al/Pt. Conversely, smaller enthalpy nanolaminates exhibited reduced steady-state propagation speeds ranging from 0.05 to 0.9 m/s for Ni/Ti, 0.6 to 8.5 m/s for Co/Al, and 24 to 73 m/s for Al/Pt. Increasing the laser spot diameter tenfold reduced the ignition threshold fluence by as much as two orders of magnitude. (c) 2008 American Institute of Physics. C1 [Picard, Yoosuf N.; Yalisove, Steven M.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [McDonald, Joel P.; Friedmann, Thomas A.; Adams, David P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Picard, YN (reprint author), Naval Res Lab, Washington, DC USA. EM yoosuf.picard@nrl.navy.mil; dpadams@sandia.gov OI Picard, Yoosuf/0000-0002-2853-5213 FU NSF [DMR03070400]; MURI/AFOSR [A955005-1-0416]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the NSF (Grant No. DMR03070400) and the MURI/AFOSR (Grant No. A955005-1-0416). We gratefully acknowledge the assistance of E. Jones, Jr., V. C. Hodges, and D. Wackerbarth. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 17 TC 12 Z9 12 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 8 PY 2008 VL 93 IS 10 AR 104104 DI 10.1063/1.2981570 PG 3 WC Physics, Applied SC Physics GA 356SD UT WOS:000259797000118 ER PT J AU Tayebi, N Narui, Y Chen, RJ Collier, CP Giapis, KP Zhang, YG AF Tayebi, Noureddine Narui, Yoshie Chen, Robert J. Collier, C. Patrick Giapis, Konstantinos P. Zhang, Yuegang TI Nanopencil as a wear-tolerant probe for ultrahigh density data storage SO APPLIED PHYSICS LETTERS LA English DT Article ID WALLED CARBON NANOTUBES; FORCE MICROSCOPY; TIPS AB A dielectric-sheathed carbon nanotube probe, resembling a "nanopencil," has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent "sharpening" to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube electrode size, while avoiding bending and buckling issues encountered with naked or polymer-coated carbon nanotube probes. Since the effective electrode diameter of the probe would not change even after significant wear, it is capable of long-lasting read/write operations in contact mode with a bit size of several nanometers. (c) 2008 American Institute of Physics. C1 [Tayebi, Noureddine; Chen, Robert J.; Zhang, Yuegang] Intel Corp, Santa Clara, CA 95054 USA. [Narui, Yoshie; Collier, C. Patrick; Giapis, Konstantinos P.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. RP Zhang, YG (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM yzhang5@1b1.gov RI Zhang, Y/E-6600-2011; OI Zhang, Y/0000-0003-0344-8399; Collier, Charles/0000-0002-8198-793X NR 18 TC 15 Z9 15 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 8 PY 2008 VL 93 IS 10 AR 103112 DI 10.1063/1.2981641 PG 3 WC Physics, Applied SC Physics GA 356SD UT WOS:000259797000086 ER PT J AU Schlagel, DL McCallum, RW Lograsso, TA AF Schlagel, D. L. McCallum, R. W. Lograsso, T. A. TI Influence of solidification microstructure on the magnetic properties of Ni-Mn-Sn Heusler alloys SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Heusler alloy; Ni-Mn-Sn; magnetostructural transformation; shape memory alloy ID SHAPE-MEMORY ALLOYS; FIELD-INDUCED STRAIN; MARTENSITIC-TRANSFORMATION; SINGLE-CRYSTALS; GA; PHASE; MAGNETOSTRICTION AB There have been many investigations to identify new alloys exhibiting large magnetic field-induced strain and more recently, the giant magnetocaloric effect. For any particular alloy system, it is necessary to adjust composition to alter the magnetic ordering and structural transformation temperatures to achieve the desired field-induced response. For the Ni-Mn-Sn alloy system, this compositional tuning has dramatic effects on microstructural development significantly affecting both transitions. Solidification induced chemical variations, when not fully equilibrated, have been found to mask the intrinsic magonetostructural behavior in Ni(50)Mn(37)Sn(13). The use of a phase purity criterion was found to be an insufficient descriptor for determining homogeneity. When both structural and chemical homogenization are achieved, the nature and sequence of the transitions were found to be: (1) austenite paramagnetic to ferromagnetic transition, (2) Coupled ferromagnetic austenite to paramagnetic martensite magnetostructural transition, and (3) paramagnetic to ferromagnetic martensite transition with Curie-Weiss behavior on heating above its Curie temperature. Published by Elsevier B.V. C1 [Schlagel, D. L.; McCallum, R. W.; Lograsso, T. A.] Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Lograsso, TA (reprint author), Iowa State Univ, Ames Lab, Mat & Engn Phys Program, 124 Met Dev, Ames, IA 50011 USA. EM lograsso@ameslab.gov FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science. The research was performed at Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 23 TC 24 Z9 25 U1 1 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 8 PY 2008 VL 463 IS 1-2 BP 38 EP 46 DI 10.1016/j.jallcom.2007.09.049 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 341EP UT WOS:000258697300011 ER PT J AU Sawyer, KR Glascoe, EA Cahoon, JF Schlegel, JP Harris, CB AF Sawyer, Karma R. Glascoe, Elizabeth A. Cahoon, James F. Schlegel, Jacob P. Harris, Charles B. TI Mechanism for iron-catalyzed alkene isomerization in solution SO ORGANOMETALLICS LA English DT Article ID TRANSIENT INFRARED-SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; HYDROGEN BOND ACTIVATION; CORRELATION-ENERGY; TRANSITION-STATES; ORGANIC-SYNTHESIS; HARTREE-FOCK; COMPLEXES; PHOTOCHEMISTRY AB Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO)(4)(eta(2)-1-hexene), in neat 1-hexene solution. UV photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO)(3)(eta(2)-1-hexene), in a singlet spin state. This CO-loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO)(3)(eta(3)-C6H11), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO-loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers Fe(CO)(3)(eta(2)-1-hexene)(eta(2)-2-hexene) and Fe(CO)(3)(eta(2)- 1-hexene)(2). Because of the thermodynamic stability of Fe(CO)(3)(eta(2)-1-hexene)(eta(2)-2-hexene) over Fe(CO)(3)(eta(2)- 1-hexene)(2) (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU The National Science Foundation; Office of Basic Energy Sciences; Chemical Sciences Division; U.S. Department of Energy [DE-AC02-05CH11231] FX The National Science Foundation is acknowledged for funding and the Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under contract DE-AC02-05CH11231 for the use of some specialized equipment. The National Energy Research Scientific Computing Center is acknowledged for computational time. Special thanks to Heinz Frei for use of the step-scan FTIR spectrometer and to Matthew Zoerb, Eric Muller, and Aram Yang for helpful discussions. NR 56 TC 24 Z9 24 U1 3 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD SEP 8 PY 2008 VL 27 IS 17 BP 4370 EP 4379 DI 10.1021/om800481r PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 344AT UT WOS:000258898300014 ER PT J AU Liu, SN Govind, N Pedersen, LG AF Liu, Shubin Govind, Niranjan Pedersen, Lee G. TI Exploring the origin of the internal rotational barrier for molecules with one rotatable dihedral angle SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; HUNDS MULTIPLICITY RULE; SIGNAL-TRANSDUCTION PATHWAYS; TRIPLET ENERGY DIFFERENCES; FERMI HOLE; ELECTRON-DENSITY; PAULI ENERGY; HOMOGENEOUS FUNCTIONALS; STAGGERED CONFORMATION; LOCALIZED ORBITALS AB Continuing our recent endeavor, we systematically investigate in this work the origin of internal rotational barriers for small molecules using the new energy partition scheme proposed recently by one of the authors [S. B. Liu, J. Chem. Phys. 126, 244103 (2007)], where the total electronic energy is decomposed into three independent components, steric, electrostatic, and fermionic quantum. Specifically, we focus in this work on six carbon, nitrogen, and oxygen containing hydrides, CH(3)CH(3), CH(3)NH(2), CH(3)OH, NH(2)NH(2), NH(2)OH, and H(2)O(2), with only one rotatable dihedral angle angle H-X-Y-H (X,Y=C,N,O). The relative contributions of the different energy components to the total energy difference as a function of the internal dihedral rotation will be considered. Both optimized-geometry (adiabatic) and fixed-geometry (vertical) differences are examined, as are the results from the conventional energy partition and natural bond orbital analysis. A wealth of strong linear relationships among the total energy difference and energy component differences for different systems have been observed but no universal relationship applicable to all systems for both cases has been discovered, indicating that even for simple systems such as these, there exists no omnipresent, unique interpretation on the nature and origin of the internal rotation barrier. Different energy components can be employed for different systems in the rationalization of the barrier height. Confirming that the two differences, adiabatic and vertical, are disparate in nature, we find that for the vertical case there is a unique linear relationship applicable to all the six molecules between the total energy difference and the sum of the kinetic and electrostatic energy differences. For the adiabatic case, it is the total potential energy difference that has been found to correlate well with the total energy difference except for ethane whose rotation barrier is dominated by the quantum effect. (C) 2008 American Institute of Physics. C1 [Liu, Shubin] Univ N Carolina, Renaissance Comp Inst, Chapel Hill, NC 27599 USA. [Liu, Shubin] Univ N Carolina, Ctr Res Comp, Chapel Hill, NC 27599 USA. [Govind, Niranjan] Pacific NW Natl Lab, Wiliam R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Pedersen, Lee G.] NIEHS, Struct Biol Lab, Res Triangle Pk, NC 27709 USA. [Pedersen, Lee G.] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. RP Liu, SN (reprint author), Univ N Carolina, Renaissance Comp Inst, Chapel Hill, NC 27599 USA. EM shubin@email.unc.edu; lee_pedersen@unc.edu RI Liu, Shubin/B-1502-2009; pedersen, lee/A-8567-2009; Govind, Niranjan/D-1368-2011; Pedersen, Lee/E-3405-2013 OI Liu, Shubin/0000-0001-9331-0427; Pedersen, Lee/0000-0003-1262-9861 FU U. S. Department of Energy [DE-AC06-76RLO 1830]; DOE's Office of Biological and Environmental Research; National Institutes of Health [HL-06350]; NSF [ITP/APS-0121361] FX The authors are grateful to Robert G. Parr of the University of North Carolina and Paul W. Ayers of McMaster University, Canada, for their valuable comments and suggestions. The work at Pacific Northwest National Laboratory (PNNL) was supported by the U. S. Department of Energy under Contract No. DE-AC06-76RLO 1830 (Office of Biological and Environmental Research, Environmental Molecular Sciences Laboratory operations). The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute. The Environmental Molecular Sciences Laboratory operations are supported by the DOE's Office of Biological and Environmental Research. This work was partly supported by the National Institutes of Health (Grant No. HL-06350) and NSF (Grant No. ITP/APS-0121361). We acknowledge the use of the computational resources provided by ITS/RENCI at UNC-CH and the Biomedical Unit of the PSC. NR 67 TC 30 Z9 30 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2008 VL 129 IS 9 AR 094104 DI 10.1063/1.2976767 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 345DJ UT WOS:000258976000006 PM 19044862 ER PT J AU MacLaren, DA Huang, C Levi, AC Allison, W AF MacLaren, D. A. Huang, C. Levi, A. C. Allison, W. TI Coverage-dependent quantum versus classical scattering of thermal neon atoms from Li/Cu(100) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SURFACE SCATTERING; ELASTIC-SCATTERING; METAL-SURFACES; GAS ATOMS; NOBLE-GAS; CU(001); HE; DIFFRACTION; HELIUM; ADSORPTION AB We show that subtle variations in surface structure can enhance quantum scattering and quench atom-surface energy transfer. The scattering of thermal energy neon atoms from a lithium overlayer on a copper substrate switches between a classical regime, dominated by multiphonon interactions, and a quantum regime, dominated by elastic diffraction. The transition is achieved by simple tailoring of the lithium coverage and quantum scattering dominates only in the narrow coverage range of theta=0.3-0.6 ML. The results are described qualitatively using a modified Debye-Waller model that incorporates an approximate quantum treatment of the adsorbate-substrate vibration. (C) 2008 American Institute of Physics. C1 [MacLaren, D. A.; Huang, C.; Allison, W.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [MacLaren, D. A.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Huang, C.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Levi, A. C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. RP MacLaren, DA (reprint author), Univ Cambridge, Cavendish Lab, JJ Thompson Ave, Cambridge CB3 0HE, England. EM dmaclaren@physics.org RI MacLaren, D/A-5568-2010; Huang, Congcong/A-6374-2011 OI MacLaren, D/0000-0003-0641-686X; NR 33 TC 6 Z9 6 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2008 VL 129 IS 9 AR 094706 DI 10.1063/1.2976766 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 345DJ UT WOS:000258976000029 PM 19044885 ER PT J AU Lipniacki, T Hat, B Faeder, JR Hlavacek, WS AF Lipniacki, Tomasz Hat, Beata Faeder, James R. Hlavacek, William S. TI Stochastic effects and bistability in T cell receptor signaling SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE T cell activation; mathematical model; kinetic proofreading; hysteresis; ordinary differential equations; stochastic simulations ID TYROSINE-PROTEIN-KINASE; IMMUNOLOGICAL SYNAPSE; BIOCHEMICAL NETWORKS; LIGAND RECOGNITION; ACTIVATION; LCK; TCR; TRANSDUCTION; ANTIGEN; DISCRIMINATION AB The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical model intended to capture kinetic proofreading (sensitivity to ligand-receptor binding kinetics) and negative and positive feedback regulation mediated, respectively, by the phosphatase SHP1 and the MAP kinase ERK. The model incorporates protein-protein interactions involved in initiating TCR-mediated cellular responses and reproduces several experimental observations about the behavior of TCR signaling, including robust responses to as few as a handful of ligands (agonist peptide-MHC complexes on an antigen-presenting cell), distinct responses to ligands that bind TCR with different lifetimes, and antagonism. Analysis of the model indicates that TCR signaling dynamics are marked by significant stochastic fluctuations and bistability, which is caused by the competition between the positive and negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ qualitatively from the trajectory predicted in the deterministic approximation of the dynamics. Because of bistability, the average of single-cell trajectories differs markedly from the deterministic trajectory. Bistability combined with stochastic fluctuations allows for switch-like responses to signals, which may aid T cells in making committed cell-fate decisions. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Lipniacki, Tomasz; Hat, Beata] Inst Fundamental Technol Res, PL-00049 Warsaw, Poland. [Faeder, James R.] Univ Pittsburgh, Dept Computat Biol, Sch Med, Pittsburgh, PA 15260 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Theoret Biol & Biolphys Grp, Div Theoret, Los Alamos, NM 87545 USA. RP Lipniacki, T (reprint author), Inst Fundamental Technol Res, Swietokrzyska 21, PL-00049 Warsaw, Poland. EM tomek@rice.edu OI Lipniacki, Tomasz/0000-0002-3488-2561; Hlavacek, William/0000-0003-4383-8711 FU NIGMS NIH HHS [R01 GM076570, R01 GM076570-02] NR 44 TC 43 Z9 43 U1 0 U2 9 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD SEP 7 PY 2008 VL 254 IS 1 BP 110 EP 122 DI 10.1016/j.jtbi.2008.05.001 PG 13 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 344OW UT WOS:000258938200012 PM 18556025 ER PT J AU Castelnau, O Blackman, DK Lebensohn, RA Castaneda, PP AF Castelnau, O. Blackman, D. K. Lebensohn, R. A. Castaneda, P. Ponte TI Micromechanical modeling of the viscoplastic behavior of olivine SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID INCORPORATING FIELD FLUCTUATIONS; EFFECTIVE MECHANICAL-PROPERTIES; LATTICE PREFERRED ORIENTATION; ORIENTED SINGLE-CRYSTALS; SELF-CONSISTENT APPROACH; HIGH-TEMPERATURE CREEP; NONLINEAR COMPOSITES; UPPER-MANTLE; PLASTIC-DEFORMATION; SEISMIC ANISOTROPY AB Efforts to couple mantle flow models with rheological theories of mineral deformation typically ignore the effect of texture development on flow evolution. The fact that there are only three easy slip systems for dislocation glide in olivine crystals leads to strong mechanical interactions between the grains as the deformation proceeds, and subsequent development of large viscoplastic anisotropy in polycrystals exhibiting pronounced Lattice Preferred Orientations. Using full-field simulations for creep in dry polycrystalline olivine at high temperature and low pressure, it is shown that very large stress and strain rate intragranular heterogeneities can build up with deformation, which increase dramatically with the strength of the hard slip system (included for the purpose of enabling general deformations). Compared with earlier nonlinear extensions of the Self-Consistent mean-field theory to simulate polycrystal deformation, the "Second-Order'' method is the only one capable of accurately describing the effect of intraphase stress heterogeneities on the macroscopic flow stress, as well as on the local stress-and strain rate fluctuations in the material. In particular, this approach correctly predicts that olivine polycrystals can deform with only four independent slip systems. The resistance of the fourth system (or accommodation mechanism), which is likely provided by dislocation climb or grain boundary processes as has been observed experimentally, may essentially determine the flow stress of olivine polycrystals. We further show that the "tangent'' model, which had been used extensively in prior geophysical studies of the mantle, departs significantly from the full-field reference solutions. C1 [Castelnau, O.] Univ Paris 13, CNRS, Lab Proprietes Mecan & Thermodynam Mat, F-93430 Villetaneuse, France. [Castelnau, O.; Blackman, D. K.] Univ Calif San Diego, Scripps Inst Oceanog, Inst Geophys & Planetary Phys, La Jolla, CA 92093 USA. [Lebensohn, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Castaneda, P. Ponte] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. RP Castelnau, O (reprint author), Univ Paris 13, CNRS, Lab Proprietes Mecan & Thermodynam Mat, Av JB Clement, F-93430 Villetaneuse, France. EM oc@lpmtm.univ-paris13.fr; dblackman@ucsd.edu; lebenso@lanl.gov; ponte@seas.upenn.edu RI Lebensohn, Ricardo/A-2494-2008; Ponte Castaneda, Pedro/B-1834-2008; castelnau, olivier/E-7789-2011 OI Lebensohn, Ricardo/0000-0002-3152-9105; Ponte Castaneda, Pedro/0000-0003-2565-8899; castelnau, olivier/0000-0001-7422-294X FU CNRS; Green Foundation at IGPP/SIO; NSF [CMS-02-01454] FX The authors are grateful to Pierre Gilormini (CNRS-ENSAM, France) and Nicolas Rupin (Ecole Polytechnique, France) for their initial help in the computation of the VAR estimate, and to Thorsten Becker (Univ. Southern Cal., USA) for his fruitful comments. We greatly appreciated the very interesting comments of J. Weertman on climb and glide mechanisms, and the constructive remarks of an anonymous reviewer. The sabbatical leave of O. Castelnau at IGPP was funded by CNRS and the Green Foundation at IGPP/SIO. The work of P. Ponte Castaneda was supported by NSF grant CMS-02-01454. NR 86 TC 36 Z9 36 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD SEP 5 PY 2008 VL 113 IS B9 AR B09202 DI 10.1029/2007JB005444 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 345NP UT WOS:000259003800004 ER PT J AU Harada, H Thalji, RK Bergman, RG Ellman, JA AF Harada, Hitoshi Thalji, Reema K. Bergman, Robert G. Ellman, Jonathan A. TI Enantioselective intramolecular hydroarylation of alkenes via directed C-H bond activation SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID ASYMMETRIC CONJUGATE ADDITION; AROMATIC IMINES; ORTHO-ALKYLATION; PHOSPHORAMIDITE LIGANDS; CYCLIZATION REACTIONS; CHIRAL LIGANDS; HYDROACYLATION; FUNCTIONALIZATION; COMPLEXES; EFFICIENT AB Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe)(2)](2) and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities > 90% ee for each substrate class. Cyclization of substrates with 7 alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer. C1 [Bergman, Robert G.; Ellman, Jonathan A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; Director and Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC03-76SF00098]; Eisai Co., Ltd. FX This work was supported by NIH Grant No. GM069559 (to J.A.E.) and the Director and Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy, under Contract DE-AC03-76SF00098 (to R,G.B.). Support for H.H. by Eisai Co., Ltd., is also gratefully acknowledged. We thank Dr. Frederick J. Hollander of the UC Berkeley CHEXray facility for solving the X-ray crystal structures of the N-sulfinyl imine (SS,R)-33 and hydrazone (2R,3R)-34 used to determine the absolute configurations of (R)-19 and (2R,3R)-30, respectively. NR 40 TC 71 Z9 71 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD SEP 5 PY 2008 VL 73 IS 17 BP 6772 EP 6779 DI 10.1021/jo801098z PG 8 WC Chemistry, Organic SC Chemistry GA 344ED UT WOS:000258908000037 PM 18681407 ER PT J AU Piontti, ALPY La Rocca, CE Toroczkai, Z Braunstein, LA Macri, PA Lopez, E AF Pastore y Piontti, Ana L. La Rocca, Cristian E. Toroczkai, Zoltan Braunstein, Lidia A. Macri, Pablo A. Lopez, Eduardo TI Using relaxational dynamics to reduce network congestion SO NEW JOURNAL OF PHYSICS LA English DT Article AB We study the effects of relaxational dynamics on congestion pressure in scale-free (SF) networks by analyzing the properties of the corresponding gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from surface-growth physics as single-step load-balancing dynamics, we show that the congestion pressure considerably drops on SF networks when compared with the same dynamics on random graphs. This is due to a structural transition of the corresponding gradient network clusters, which self-organize so as to reduce the congestion pressure. This reduction is enhanced when lowering the value of the connectivity exponent lambda towards 2. C1 [Pastore y Piontti, Ana L.; La Rocca, Cristian E.; Braunstein, Lidia A.; Macri, Pablo A.] Univ Nacl Mar del Plata, CONICET, Fac Ciencias Exactas & Nat, Dept Fis,Inst Invest Fis Mar del Plata, RA-7600 Mar Del Plata, Argentina. [Toroczkai, Zoltan] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Toroczkai, Zoltan] Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA. [Toroczkai, Zoltan; Lopez, Eduardo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Braunstein, Lidia A.] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. [Lopez, Eduardo] Univ Oxford, Dept Phys, Oxford OX1 2DF, England. [Lopez, Eduardo] Univ Oxford, CABDyN Complex Cluster, Oxford OX1 2DF, England. RP Piontti, ALPY (reprint author), Univ Nacl Mar del Plata, CONICET, Fac Ciencias Exactas & Nat, Dept Fis,Inst Invest Fis Mar del Plata, Funes 3350, RA-7600 Mar Del Plata, Argentina. EM apastore@mdp.edu.ar RI Pastore y Piontti, Ana/M-6624-2014 NR 28 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 5 PY 2008 VL 10 AR 093007 DI 10.1088/1367-2630/10/9/093007 PG 9 WC Physics, Multidisciplinary SC Physics GA 344LK UT WOS:000258928300004 ER PT J AU Bodwin, GT Tormo, XGI Lee, J AF Bodwin, Geoffrey T. Garcia i Tormo, Xavier Lee, Jungil TI Factorization theorems for exclusive heavy-quarkonium production SO PHYSICAL REVIEW LETTERS LA English DT Article ID VACUUM POLARIZATION DIAGRAMS; ANNIHILATION PROCESSES; MASS DIVERGENCES; QCD; DECAYS AB We outline the proofs of the factorization theorems for exclusive two-body charmonium production in B-meson decay and e(+)e(-) annihilation to all orders in perturbation theory in quantum chromodynamics. We find that factorized expressions hold up to corrections of order m(c)/m(b) in B-meson decay and corrections of order m(c)(2)/s in e(+)e(-) annihilation, where m(c) is the charm-quark mass, m(b) is the bottom-quark mass, and root s is the e(+)e(-) center-of-momentum energy. C1 [Bodwin, Geoffrey T.; Garcia i Tormo, Xavier] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lee, Jungil] Korea Univ, Dept Phys, Seoul 139701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U. S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; KOSEF [R01-2008-000-10378-0] FX We thank Kuang-Ta Chao, Jianwei Qiu, George Sterman, and Yu-Jie Zhang for helpful discussions. The work of G. T. B. and X. G. T. was supported by the U. S. Department of Energy, Division of High Energy Physics, under Contract DE-AC02-06CH11357. J.L. was supported by KOSEF under Contract R01-2008-000-10378-0. NR 26 TC 24 Z9 24 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 102002 DI 10.1103/PhysRevLett.101.102002 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100013 PM 18851207 ER PT J AU Chen, R Hochbaum, AI Murphy, P Moore, J Yang, PD Majumdar, A AF Chen, Renkun Hochbaum, Allon I. Murphy, Padraig Moore, Joel Yang, Peidong Majumdar, Arun TI Thermal conductance of thin silicon nanowires SO PHYSICAL REVIEW LETTERS LA English DT Article ID ONE-DIMENSIONAL NANOSTRUCTURES; CARBON NANOTUBE; CONDUCTIVITY; GROWTH; INTEGRATION; SIMULATION; DEVICE AB The thermal conductance of individual single crystalline silicon nanowires with diameters less than 30 nm has been measured from 20 to 100 K. The observed thermal conductance shows unusual linear temperature dependence at low temperatures, as opposed to the T(3) dependence predicted by the conventional phonon transport model. In contrast to previous models, the present study suggests that phonon-boundary scattering is highly frequency dependent, and ranges from nearly ballistic to completely diffusive, which can explain the unexpected linear temperature dependence. C1 [Chen, Renkun; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Hochbaum, Allon I.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Murphy, Padraig; Moore, Joel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yang, Peidong; Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Moore, Joel; Yang, Peidong; Majumdar, Arun] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu RI Chen, Renkun/J-2400-2014; Moore, Joel/O-4959-2016 OI Chen, Renkun/0000-0001-7526-4981; Moore, Joel/0000-0002-4294-5761 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; DOE; ITRI-Taiwan; NSF-IGERT FX This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. The authors would like to thank Professor Deyu Li and Dr. Chih-Wei Chang for helpful discussion. R. C. and A. I. H. wish to thank ITRI-Taiwan and the NSF-IGERT programs, respectively, for support. The authors also thank the National Center for Electron Microscopy and the UC Berkeley Microlab for use of their facilities. NR 33 TC 207 Z9 208 U1 12 U2 87 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 105501 DI 10.1103/PhysRevLett.101.105501 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100029 PM 18851223 ER PT J AU Jang, HW Baek, SH Ortiz, D Folkman, CM Das, RR Chu, YH Shafer, P Zhang, JX Choudhury, S Vaithyanathan, V Chen, YB Felker, DA Biegalski, MD Rzchowski, MS Pan, XQ Schlom, DG Chen, LQ Ramesh, R Eom, CB AF Jang, H. W. Baek, S. H. Ortiz, D. Folkman, C. M. Das, R. R. Chu, Y. H. Shafer, P. Zhang, J. X. Choudhury, S. Vaithyanathan, V. Chen, Y. B. Felker, D. A. Biegalski, M. D. Rzchowski, M. S. Pan, X. Q. Schlom, D. G. Chen, L. Q. Ramesh, R. Eom, C. B. TI Strain-induced polarization rotation in epitaxial (001) BiFeO(3) thin films SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROELECTRICITY; CRYSTAL AB Direct measurement of the remanent polarization of high quality (001)-oriented epitaxial BiFeO(3) thin films shows a strong strain dependence, even larger than conventional (001)-oriented PbTiO(3) films. Thermodynamic analysis reveals that a strain-induced polarization rotation mechanism is responsible for the large change in the out-of-plane polarization of (001) BiFeO(3) with biaxial strain while the spontaneous polarization itself remains almost constant. C1 [Jang, H. W.; Baek, S. H.; Ortiz, D.; Folkman, C. M.; Das, R. R.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Chu, Y. H.; Shafer, P.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Y. H.; Shafer, P.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhang, J. X.; Choudhury, S.; Vaithyanathan, V.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Chen, Y. B.; Pan, X. Q.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Felker, D. A.; Rzchowski, M. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Biegalski, M. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM eom@engr.wisc.edu RI Choudhury, Samrat/B-4115-2009; Ying-Hao, Chu/A-4204-2008; Eom, Chang-Beom/I-5567-2014; Jang, Ho Won/D-9866-2011; Zhang, Jingxian/B-2253-2010; Baek, Seung-Hyub/B-9189-2013; Schlom, Darrell/J-2412-2013; Chen, LongQing/I-7536-2012 OI Ying-Hao, Chu/0000-0002-3435-9084; Jang, Ho Won/0000-0002-6952-7359; Shafer, Padraic/0000-0001-9363-2557; Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781 FU National Science Foundation [ECCS-0708759, DMR-0507146, DMR-0820404]; Office of Naval Research [N0001407-1-0215, N00014-04-1-0426]; Department of Energy [DE-FG02-07ER46417]; Division of Scientific User Facilities, Basic Energy Sciences, US DOE FX The authors gratefully acknowledge the financial support of the National Science Foundation through Grants Nos. ECCS-0708759, DMR-0507146, and DMR-0820404; the Office of Naval Research through Grants Nos. N0001407-1-0215 and N00014-04-1-0426; and the Department of Energy under Grant No. DE-FG02-07ER46417. We also acknowledge the support of the Division of Scientific User Facilities, Basic Energy Sciences, US DOE. NR 19 TC 139 Z9 143 U1 7 U2 103 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 107602 DI 10.1103/PhysRevLett.101.107602 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100062 PM 18851256 ER PT J AU Nunez, M Nardelli, MB AF Nunez, Matias Nardelli, M. Buongiorno TI Onset of ferrielectricity and the hidden nature of nanoscale polarization in ferroelectric thin films SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE AB Using calculations from first principles and the concept of layer polarization, we have elucidated the nanoscale organization and local polarization in ferroelectric thin films between metallic contacts. The profile of the local polarization for different film thicknesses unveils a peculiar spatial pattern of atomic layers with uncompensated dipoles in what was originally thought to be a ferroelectric domain. This effectively ferrielectric behavior is induced by the dominant roles of the interfaces at such reduced dimensionality and can be interpreted using a simple classical model where the latter are explicitly taken into account. C1 [Nunez, Matias; Nardelli, M. Buongiorno] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Nunez, Matias; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, CCS CSM, Oak Ridge, TN 37831 USA. RP Nunez, M (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. RI Buongiorno Nardelli, Marco/C-9089-2009 FU NSF; BES DOE FX The authors wish to acknowledge discussions with Arrigo Calzolari, Andrea Ferretti, and Mara Granada. We also thank Marco Fornari for his critical reading of the manuscript. This work has been supported in part by NSF and BES DOE. Calculations have been carried out at NCCS-ORNL and NCSU-HPC. NR 21 TC 10 Z9 10 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 107603 DI 10.1103/PhysRevLett.101.107603 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100063 PM 18851257 ER PT J AU Sasmal, K Lv, B Lorenz, B Guloy, AM Chen, F Xue, YY Chu, CW AF Sasmal, Kalyan Lv, Bing Lorenz, Bernd Guloy, Arnold M. Chen, Feng Xue, Yu-Yi Chu, Ching-Wu TI Superconducting fe-based compounds (A(1-x)Sr(x))Fe(2)As(2) with A=K and cs with transition temperatures up to 37 k SO PHYSICAL REVIEW LETTERS LA English DT Article AB New high-T(c) Fe-based superconducting compounds, AFe(2)As(2) with A=K, Cs, K/Sr, and Cs/Sr, were synthesized. The T(c) of KFe(2)As(2) and CsFe(2)As(2) is 3.8 and 2.6 K, respectively, which rises with partial substitution of Sr for K and Cs and peaks at 37 K for 50%-60% Sr substitution, and the compounds enter a spin-density-wave state with increasing electron number (Sr content). The compounds represent p-type analogs of the n-doped rare-earth oxypnictide superconductors. Their electronic and structural behavior demonstrate the crucial role of the (Fe(2)As(2)) layers in the superconductivity of the Fe-based layered systems, and the special feature of having elemental A layers provides new avenues to superconductivity at higher T(c). C1 [Sasmal, Kalyan; Lv, Bing; Lorenz, Bernd; Guloy, Arnold M.; Chen, Feng; Xue, Yu-Yi; Chu, Ching-Wu] Univ Houston, TCSUH, Houston, TX 77204 USA. [Sasmal, Kalyan; Lorenz, Bernd; Chen, Feng; Xue, Yu-Yi; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lv, Bing; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, Ching-Wu] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, Ching-Wu] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Sasmal, K (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. RI Lv, Bing/E-3485-2010 FU NSF [CHE0616805]; R. A. Welch Foundation FX This work is supported in part by the T. L. L. Temple Foundation, the J. J. and R. Moores Endowment, the State of Texas through TCSUH, the USAF Office of Scientific Research, and the LBNL through the U. S. DOE. A. M. G. and B. L. acknowledge the support from the NSF (CHE0616805) and the R. A. Welch Foundation. We also thank Zhongjia Tang for help with crystallographic calculations. NR 16 TC 507 Z9 521 U1 7 U2 66 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 107007 DI 10.1103/PhysRevLett.101.107007 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100056 PM 18851250 ER PT J AU Simakov, AN Chacon, L AF Simakov, Andrei N. Chacon, L. TI Quantitative, comprehensive, analytical model for magnetic reconnection in hall magnetohydrodynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONLESS AB Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d(i), has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d(i). It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d(i). C1 [Simakov, Andrei N.; Chacon, L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153; Chacon, Luis/0000-0002-4566-8763 FU Laboratory Directed Research and Development; Los Alamos National Laboratory [DE-AC52-06NA-25396] FX This research was supported by a Laboratory Directed Research and Development grant at Los Alamos National Laboratory under contract No. DE-AC52-06NA-25396. NR 14 TC 39 Z9 39 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 105003 DI 10.1103/PhysRevLett.101.105003 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100027 PM 18851221 ER PT J AU Thomas, AW AF Thomas, Anthony W. TI Interplay of spin and orbital angular momentum in the proton SO PHYSICAL REVIEW LETTERS LA English DT Article ID BAG MODEL; PARTON DISTRIBUTIONS; NUCLEON; ASYMMETRY; BREAKING; LIMIT AB We derive the consequences of the Myhrer-Thomas explanation of the proton spin problem for the distribution of orbital angular momentum on the valence and sea quarks. After QCD evolution, these results are found to be in very good agreement with both recent lattice QCD calculations and the experimental constraints from Hermes and JLab. C1 [Thomas, Anthony W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Thomas, Anthony W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Thomas, AW (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU DOE [DE-AC050-6OR23177] FX It is a pleasure to acknowledge the hospitality of Derek Leinweber and Anthony Williams during a visit to the CSSM, during which much of this work was performed. This work was supported by DOE Contract No. DE-AC050-6OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. NR 40 TC 68 Z9 68 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 5 PY 2008 VL 101 IS 10 AR 102003 DI 10.1103/PhysRevLett.101.102003 PG 4 WC Physics, Multidisciplinary SC Physics GA 345DB UT WOS:000258975100014 PM 18851208 ER PT J AU Chakraborty, S Ahmed, M Jackson, TL Thiemens, MH AF Chakraborty, Subrata Ahmed, Musahid Jackson, Teresa L. Thiemens, Mark H. TI Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO SO SCIENCE LA English DT Article ID CARBON-MONOXIDE; SOLAR-SYSTEM; ACCIDENTAL PREDISSOCIATION; OXYGEN ISOTOPES; INTERSTELLAR CO; DIPOLE-MOMENTS; FRACTIONATION; STATES; TRANSITION; NEBULA AB Self- shielding of carbon monoxide ( CO) within the nebular disk has been proposed as the source of isotopically anomalous oxygen in the solar reservoir and the source of meteoritic oxygen isotopic compositions. A series of CO photodissociation experiments at the Advanced Light Source show that vacuum ultraviolet ( VUV) photodissociation of CO produces large wavelength- dependent isotopic fractionation. An anomalously enriched atomic oxygen reservoir can thus be generated through CO photodissociation without self- shielding. In the presence of optical self- shielding of VUV light, the fractionation associated with CO dissociation dominates over self- shielding. These results indicate the potential role of photochemistry in early solar system formation and may help in the understanding of oxygen isotopic variations in Genesis solar- wind samples. C1 [Chakraborty, Subrata; Jackson, Teresa L.; Thiemens, Mark H.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Thiemens, MH (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM mthiemens@ucsd.edu RI Ahmed, Musahid/A-8733-2009 FU NASA [NNX07AJ81G]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by NASA grant NNX07AJ81G under Origins and by the director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under contract DE-AC02-05CH11231. Three reviewers are thanked for helpful suggestions that improved the manuscript. NR 34 TC 41 Z9 43 U1 2 U2 28 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 5 PY 2008 VL 321 IS 5894 BP 1328 EP 1331 DI 10.1126/science.1159178 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 344GG UT WOS:000258914300042 PM 18772432 ER PT J AU Prabhakar, S Visel, A Akiyama, JA Shoukry, M Lewis, KD Holt, A Plajzer-Frick, I Morrison, H FitzPatrick, DR Afzal, V Pennacchio, LA Rubin, EM Noonan, JP AF Prabhakar, Shyam Visel, Axel Akiyama, Jennifer A. Shoukry, Malak Lewis, Keith D. Holt, Amy Plajzer-Frick, Ingrid Morrison, Harris FitzPatrick, David R. Afzal, Veena Pennacchio, Len A. Rubin, Edward M. Noonan, James P. TI Human-specific gain of function in a developmental enhancer SO SCIENCE LA English DT Article ID NONCODING SEQUENCES; GENE-EXPRESSION; HUMAN GENOME; EVOLUTION; ADAPTATION; VERTEBRATE; ELEMENTS; MICE AB Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human- specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81- base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human- specific limb expression domain. C1 [Prabhakar, Shyam; Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak; Lewis, Keith D.; Holt, Amy; Plajzer-Frick, Ingrid; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.; Noonan, James P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Morrison, Harris; FitzPatrick, David R.] Western Gen Hosp, MRC, Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland. [Pennacchio, Len A.; Rubin, Edward M.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Rubin, EM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. EM emrubin@lbl.gov; james.noonan@yale.edu RI Visel, Axel/A-9398-2009; FitzPatrick, David/C-7301-2013; OI Visel, Axel/0000-0002-4130-7784; FitzPatrick, David R./0000-0003-4861-969X FU National Heart, Lung and Blood Institute [HL066681]; National Human Genome Research Institute [HG003988]; Agency for Science, Technology, and Research of Singapore; American Heart Association postdoctoral fellowship; NIH National Research Service Award fellowship [1-F32-GM074367]; Department of Genetics, Yale University School of Medicine FX We thank members of the Pennacchio and Rubin laboratories for critical comments on the manuscript. Research was done under Department of Energy Contract DE-AC02-05CH11231, University of California, E. O. Lawrence Berkeley National Laboratory, and supported by National Heart, Lung and Blood Institute grant HL066681 and National Human Genome Research Institute grant HG003988 (L.A.P.); the Agency for Science, Technology, and Research of Singapore (S.P.); an American Heart Association postdoctoral fellowship (A.V.); and NIH National Research Service Award fellowship 1-F32-GM074367 and the Department of Genetics, Yale University School of Medicine (J.P.N.). NR 25 TC 144 Z9 148 U1 4 U2 24 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 5 PY 2008 VL 321 IS 5894 BP 1346 EP 1350 DI 10.1126/science.1159974 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 344GG UT WOS:000258914300048 PM 18772437 ER PT J AU Isern-Fontanet, J Lapeyre, G Klein, P Chapron, B Hecht, MW AF Isern-Fontanet, Jordi Lapeyre, Guillaume Klein, Patrice Chapron, Bertrand Hecht, Matthew W. TI Three-dimensional reconstruction of oceanic mesoscale currents from surface information SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID NORTH-ATLANTIC; SEA; TEMPERATURE; MODEL; VARIABILITY; VELOCITIES; LAYER; CIRCULATION; TURBULENCE; DYNAMICS AB The ability to reconstruct the three-dimensional (3D) dynamics of the ocean by an effective version of Surface Quasi-Geostrophy (eSQG) is examined. Using the fact that surface density plays an analogous role as interior potential vorticity (PV), the eSQG method consists in inverting the QG PV generated by sea-surface density only. We also make the extra assumption that sea-surface temperature (SST) anomalies fully represent surface density anomalies. This approach requires a single snapshot of SST and the setup of two parameters: the mean Brunt-Vaisala frequency and a parameter that determines the energy level at the ocean surface. The validity of this approach is tested using an Ocean General Circulation Model simulation representing the North Atlantic in winter. It is shown that the method is quite successful in reconstructing the velocity field at the ocean surface for mesoscales (between 30 and 300 km). The eSQG framework can also be applied to reconstruct subsurface fields using surface information. Results show that the reconstruction of velocities and vorticity from surface fields is reasonably good for the upper 500 m and that the success of the method mainly depends on the quality of the SST as a proxy of the density anomaly at the base of the mixed layer. This situation happens after a mixed-layer deepening period. Therefore the ideal situation for the application of this method would be after strong wind events. C1 [Isern-Fontanet, Jordi; Klein, Patrice; Chapron, Bertrand] IFREMER, Dept Oceanog Phys & Spatiale, F-29280 Plouzane, France. [Hecht, Matthew W.] Los Alamos Natl Lab, Computat Phys Grp, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Lapeyre, Guillaume] Ecole Normale Super, Lab Meteorol Dynam, F-75005 Paris, France. RP Isern-Fontanet, J (reprint author), IFREMER, Dept Oceanog Phys & Spatiale, BP 70, F-29280 Plouzane, France. EM jisern@ifremer.fr; glapeyre@lmd.ens.fr; pklein@ifremer.fr; bchapron@ifremer.fr; mhecht@lanl.gov RI Isern-Fontanet, Jordi/B-6107-2009; Lapeyre, Guillaume/B-8871-2008; Klein, Patrice/M-4279-2015; Chapron, Bertrand/O-6527-2015; OI Isern-Fontanet, Jordi/0000-0002-9324-608X; Lapeyre, Guillaume/0000-0001-8187-8971; Hecht, Matthew/0000-0003-0946-4007 FU Intra-European Marie-Curie Fellowship [MEIF-CT2006- 041476] FX We would like to thank P.Y. Le Traon, P. Flament, and J. Ballabrera for various useful comments. Jordi Isern-Fontanet is supported by an Intra-European Marie-Curie Fellowship (MEIF-CT2006- 041476). Patrice Klein and Guillaume Lapeyre are supported by CNRS. NR 31 TC 46 Z9 46 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD SEP 4 PY 2008 VL 113 IS C9 AR C09005 DI 10.1029/2007JC004692 PG 17 WC Oceanography SC Oceanography GA 345MW UT WOS:000259001900005 ER PT J AU Suarez, IJ Rubio-Retama, J Sierra-Martin, B Nieves, FJDL Mecerreyes, D Lopez-Cabarcos, E Marquez, M Fernandez-Barbero, A AF Suarez, Ivan J. Rubio-Retama, Jorge Sierra-Martin, Benjamin Nieves, F. Javier de las Mecerreyes, David Lopez-Cabarcos, Enrique Marquez, Manuel Fernandez-Barbero, Antonio TI Ion-specific and reversible wetting of imidazolium-based minigels SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLYMER GELS; LIQUID; MICROGELS; BATTERIES; KINETICS; SALTS; CELLS; WATER AB Cross-linked imidazolium-based [poly(ViEtIm(+)Br(-))] microparticles were synthesized, and their wetting, properties were Studied by optical microscopy, after addition of aqueous Solutions of sodium halides. Particle wetting showed ion specificity due to counterion binding, described by Desnoyer's model. The interaction between anions and the microparticles allowed exchanging halogenides between them in a reversible way. A salt-independent characteristic wetting time was found as well as a decreasing power law with salt concentration, for the network diffusion coefficient. It modified the polymer network elasticity as ion concentration increased, making the network softer. C1 [Suarez, Ivan J.; Sierra-Martin, Benjamin; Nieves, F. Javier de las; Fernandez-Barbero, Antonio] Univ Almeria, Dept Appl Phys, Grp Complex Fluids Phys, Almeria 04120, Spain. [Rubio-Retama, Jorge] Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany. [Mecerreyes, David] CIDETEC, San Sebastian 20009, Spain. [Lopez-Cabarcos, Enrique] Univ Complutense Madrid, Dept Pharmaceut Chem Phys, E-28040 Madrid, Spain. [Marquez, Manuel] NIST, Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA. [Marquez, Manuel] Arizona State Univ, Dept Bioengn, Tempe, AZ 85287 USA. [Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Fernandez-Barbero, A (reprint author), Univ Almeria, Dept Appl Phys, Grp Complex Fluids Phys, Almeria 04120, Spain. EM afernand@ual.es RI Suarez, Ivan/B-9022-2011; Umlauf, Ursula/D-3356-2014; Mecerreyes, David/K-7541-2014; Rubio-Retama, Jorge/L-4262-2014; Lopez Cabarcos, Enrique /L-5802-2014; OI Suarez, Ivan/0000-0002-6327-2914; Mecerreyes, David/0000-0002-0788-7156; Rubio-Retama, Jorge/0000-0002-1785-5844; Lopez Cabarcos, Enrique /0000-0003-2939-4130; de las Nieves Lopez, Francisco Javier/0000-0003-1128-6123 FU Ministerio de Educacion y Ciencia (Spain) [MAT2006-13646-C03-02]; Junta de Andalucia under "Excellence Project" [FQM-02353]; WEST Group; Ramon Areces Foundation FX This work was supported by the Ministerio de Educacion y Ciencia (Spain) under project MAT2006-13646-C03-02 and Junta de Andalucia under "Excellence Project": FQM-02353. I.J.S. is thankful for a fellowship from the WEST Group. J.R.-R. thanks the Ramon Areces Foundation for a postdoc fellowship. NR 25 TC 1 Z9 1 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 4 PY 2008 VL 112 IS 35 BP 10815 EP 10820 DI 10.1021/jp802761y PG 6 WC Chemistry, Physical SC Chemistry GA 342RD UT WOS:000258800300011 PM 18683969 ER EF