FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Kass, MD Lewis, SA Swartz, MM Huff, SP Lee, DW Wagner, RM Storey, JME AF Kass, M. D. Lewis, S. A., Sr. Swartz, M. M. Huff, S. P. Lee, D. -W. Wagner, R. M. Storey, J. M. E. TI UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL SO TRANSACTIONS OF THE ASABE LA English DT Article DE Biodiesel; Combustion; Diesel; Efficiency; Emissions; Emulsion; NOx; Particulates AB A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear; but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study, water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low-sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500 rpm and at loads of 68 and 102 Nm (50 and 75 ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100 while maintaining fuel efficiency when operating at 0% and 27% EGR; however, NOx emissions were observed to increase slightly for the emulsified fuel when the engine load was raised to 102 Nm (75 ft-lbs). The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared to the ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion. C1 [Kass, M. D.; Lewis, S. A., Sr.; Huff, S. P.; Wagner, R. M.; Storey, J. M. E.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Kass, MD (reprint author), Oak Ridge Natl Lab, NTRC Bldg,2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM kassmd@ornl.gov NR 13 TC 9 Z9 10 U1 1 U2 1 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0001-2351 J9 T ASABE JI Trans. ASABE PD JAN-FEB PY 2009 VL 52 IS 1 BP 5 EP 13 PG 9 WC Agricultural Engineering SC Agriculture GA 421NY UT WOS:000264366800001 ER PT J AU Tartakovsky, AM Meakin, P Ward, AL AF Tartakovsky, Alexandre M. Meakin, Paul Ward, Andy L. TI Smoothed Particle Hydrodynamics Model of Non-Aqueous Phase Liquid Flow and Dissolution SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Smoothed particle hydrodynamics; NAPL; DNAPL; Multiphase flow; Dissolution; Transport ID POROUS-MEDIA; RESIDUAL SATURATION; SIMULATION; FRACTURES; DIFFUSION; SPH AB A smoothed particle hydrodynamics model was developed to simulate the flow of mixtures of aqueous and non-aqueous phase liquids in porous media and the dissolution of the non-aqueous phase in the aqueous phase. The model was used to study the effects of pore-scale heterogeneity and anisotropy on the steady state dense non-aqueous phase liquid (DNAPL) saturation when gravity driven DNAPL displaces water from initially water saturated porous media. Pore-scale anisotropy was created by using co-oriented non-overlapping elliptically shaped grains to represent the porous media. After a steady state DNAPL saturation was reached, water was injected until a new steady state DNAPL saturation was reached. The amount of trapped DNAPL was found to be greater when DNAPL is displaced in the direction of the major axes of the soil grains than when it is displaced in the direction of the minor axes of the soil grains. The amount of trapped DNAPL was also found to increase with decreasing initial saturation of the continuous DNAPL phase. For the conditions used in our simulations, the saturation of the trapped DNAPL with a smaller initial DNAPL saturation was more than 3 times larger than the amount of trapped DNAPL with a larger initial saturation. These simulations were carried out assuming that the DNAPL did not dissolve in water. Simulations including the effect of dissolution of DNAPL in the aqueous phase were also performed, and effective (macroscopic) mass transfer coefficients were determined. C1 [Tartakovsky, Alexandre M.; Ward, Andy L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Meakin, Paul] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, POB 999,MSK1-85, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov; Paul.Meakin@inl.gov; andy.ward@pnl.gov FU Multiscale Mathematics Research and Education program; Advanced Scientific Computing Research; Environmental Management Science Program; U. S. Department of Energy, Office of Science [DE-AC06-76RLO 1830, DE-AC07-05ID14517] FX This research was supported by the Multiscale Mathematics Research and Education program, Advanced Scientific Computing Research, and the Environmental Management Science Program, U. S. Department of Energy, Office of Science DE-AC06-76RLO 1830. Paul Meakin was partially supported by the Environmental Management Science Program of the Office of Science, U. S. Department of Energy under contract DE-AC07-05ID14517. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute and the Idaho National Laboratory is operated by the Battelle Energy Alliance. NR 32 TC 9 Z9 9 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD JAN PY 2009 VL 76 IS 1 BP 11 EP 34 DI 10.1007/s11242-008-9230-z PG 24 WC Engineering, Chemical SC Engineering GA 397TP UT WOS:000262685300001 ER PT J AU Gaines, LL Hartman, CJB Solomon, M AF Gaines, Linda L. Hartman, Christie-Joy Brodrick Solomon, Matthew TI Energy Use and Emissions of Idling-Reduction Options for Heavy-Duty Diesel Trucks A Comparison SO TRANSPORTATION RESEARCH RECORD LA English DT Article AB Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere. C1 [Gaines, Linda L.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Hartman, Christie-Joy Brodrick] James Madison Univ, Harrisonburg, VA 22807 USA. [Solomon, Matthew] NESCAUM, Boston, MA 02114 USA. RP Gaines, LL (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lgaines@anl.gov FU Office of Vehicle Technologies, U.S. Department of Energy; SHENAIR FX The foundation for this analysis is the idle-reduction model produced by Matt Solomon in his master's thesis at the University of California, Davis. Ann Albrecht and Matt Fenzel of James Madison University conducted much of the modeling. Dan Santini of Argonne National Laboratory provided significant conceptual guidance. The authors acknowledge the support of the Office of Vehicle Technologies, U.S. Department of Energy, and the SHENAIR Initiative. This work was prepared by the University of Chicago, Argonne, LLC, for the U.S. Department of Energy. NR 21 TC 1 Z9 1 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0361-1981 J9 TRANSP RES RECORD JI Transp. Res. Record PY 2009 IS 2123 BP 8 EP 16 DI 10.3141/2123-02 PG 9 WC Engineering, Civil; Transportation; Transportation Science & Technology SC Engineering; Transportation GA 544SL UT WOS:000273679500002 ER PT J AU Lee, DW Zietsman, J Farzaneh, M Li, WW Olvera, HA Storey, JME Kranendonk, L AF Lee, Doh-Won Zietsman, Josias Farzaneh, Mohamadreza Li, Wen-Whai Olvera, Hector A. Storey, John M. E. Kranendonk, Laura TI In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop SO TRANSPORTATION RESEARCH RECORD LA English DT Article AB At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers' health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions. C1 [Lee, Doh-Won; Zietsman, Josias] Texas A&M Univ Syst, Texas Transportat Inst, College Stn, TX 77843 USA. [Farzaneh, Mohamadreza] Texas A&M Univ Syst, Texas Transportat Inst, Austin, TX 78723 USA. [Li, Wen-Whai; Olvera, Hector A.] Univ Texas El Paso, Dept Civil Engn, El Paso, TX 79968 USA. [Storey, John M. E.; Kranendonk, Laura] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Lee, DW (reprint author), Texas A&M Univ Syst, Texas Transportat Inst, 3135 TAMU, College Stn, TX 77843 USA. EM leedw@tamu.edu OI De Cicco, Laura/0000-0002-3915-9487 FU Center of International Intelligent Transportation FX This project was funded through the Center of International Intelligent Transportation. The researchers thank J. Vega of Mesilla Valley Transportation for providing the test vehicle. In addition, the researchers thank Carol Doty of TSE Technologies Corporation for providing electrified units for the test and Jose Paniagua and his crewmembers at the test site for their excellent support. Finally, the researchers thank the following students at the University of Texas at El Paso for their efforts on data collection: Athur Eujanda, Jorge Urquidi, Nancy Garcia, Jessica Gamez, Jorge Sias, Mario Garcia, D. Joseph Baca, and Amit Raysoni. NR 9 TC 0 Z9 0 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0361-1981 J9 TRANSP RES RECORD JI Transp. Res. Record PY 2009 IS 2123 BP 17 EP 25 DI 10.3141/2123-03 PG 9 WC Engineering, Civil; Transportation; Transportation Science & Technology SC Engineering; Transportation GA 544SL UT WOS:000273679500003 ER PT J AU Mintz, M Elgowainy, A Gardiner, M AF Mintz, Marianne Elgowainy, Amgad Gardiner, Monterey TI Rethinking Hydrogen Fueling Insights from Delivery Modeling SO TRANSPORTATION RESEARCH RECORD LA English DT Article; Proceedings Paper CT 88th Annual Meeting of the Transportation-Research-Board CY JAN 11-15, 2009 CL Washington, DC SP Transportat Res Board AB Over the past century gasoline fueling has evolved from being performed by a variety of informal, diverse methods to being performed through the use of a standardized, highly automated system that exploits the fuel's benefits and mitigates its hazards. Any effort to transition to another fuel with different properties-with both advantages and disadvantages-must make similar adjustments. This paper discusses the existing gasoline refueling infrastructure and its evolution. It then describes the hydrogen delivery scenario analysis model, an Excel-based tool that calculates the levelized cost of delivering hydrogen from a central production facility to a vehicle by the use of currently available technologies and a typical profile of vehicle use and fueling demand. The results are shown for a status quo, or gasoline-centric case, in which demand reflects the current gasoline-based system and supply responds accordingly, and a hydrogen-centric case, in which some of those patterns are altered. The paper highlights fueling requirements that are particularly problematic for hydrogen and concludes with a discussion of alternative fueling paradigms. C1 [Mintz, Marianne; Elgowainy, Amgad] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Gardiner, Monterey] US DOE, Off Hydrogen Fuel Cells & Infrastruct Technol, Washington, DC 20585 USA. RP Mintz, M (reprint author), Argonne Natl Lab, Ctr Transportat Res, ESD-362 E329,9700 S Cass Ave, Argonne, IL 60439 USA. EM mmintz@anl.gov NR 11 TC 2 Z9 2 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0361-1981 EI 2169-4052 J9 TRANSPORT RES REC JI Transp. Res. Record PY 2009 IS 2139 BP 46 EP 54 DI 10.3141/2139-06 PG 9 WC Engineering, Civil; Transportation; Transportation Science & Technology SC Engineering; Transportation GA 545XC UT WOS:000273769300007 ER PT J AU Vyas, AD Santini, DJ Johnson, LR AF Vyas, Anant D. Santini, Danilo J. Johnson, Larry R. TI Potential of Plug-In Hybrid Electric Vehicles to Reduce Petroleum Use Issues Involved in Developing Reliable Estimates SO TRANSPORTATION RESEARCH RECORD LA English DT Article; Proceedings Paper CT 88th Annual Meeting of the Transportation-Research-Board CY JAN 11-15, 2009 CL Washington, DC SP Transportat Res Board AB This paper delineates the various issues involved in developing reliable estimates of the petroleum use reduction that would result from the widespread introduction of plug-in hybrid electric vehicles (PHEVs). Travel day data from the 2001 National Household Travel Survey (NHTS) were analyzed to identify the share of vehicle miles of travel (VMT) that could be transferred to grid electricity. Various PHEV charge-depleting (CD) ranges were evaluated, and 100% CD mode and potential blended modes were analyzed. The NHTS data were also examined to evaluate the potential for PHEV battery charging multiple times a day. Data from the 2005 American Housing Survey (AHS) were analyzed to evaluate the availability of garages and carports for at-home charging of the PHEV battery. The AHS data were also reviewed by census region and household location within or outside metropolitan statistical areas. To illustrate the lag times involved, the historical new vehicle market share increases for the diesel power train in France (a highly successful case) and the emerging hybrid electric vehicles in the United States were examined. A new vehicle technology substitution model is applied to illustrate a historically plausible successful new PHEV market share expansion. The trends in U.S. light-duty vehicle sales and light-duty vehicle stock were evaluated to estimate the time required for hypothetical successful new PHEVs to achieve the ultimately attainable share of the existing vehicle stock. Only when such steps have been accomplished will the full oil savings potential for the nation be achieved. C1 [Vyas, Anant D.; Santini, Danilo J.; Johnson, Larry R.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Vyas, AD (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM avyas@anl.gov NR 16 TC 19 Z9 19 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0361-1981 J9 TRANSP RES RECORD JI Transp. Res. Record PY 2009 IS 2139 BP 55 EP 63 DI 10.3141/2139-07 PG 9 WC Engineering, Civil; Transportation; Transportation Science & Technology SC Engineering; Transportation GA 545XC UT WOS:000273769300008 ER PT B AU Schlegel, M Meissner, S Metz, A AF Schlegel, M. Meissner, S. Metz, A. BE Giuseppe, C Marco, C Delia, H Paolo, L TI CORRELATION FUNCTIONS IN HARD AND (SEMI-)INCLUSIVE PROCESSES SO TRANSVERSITY 2008 LA English DT Proceedings Paper CT 2nd Workshop on Transverse Polarization Phenomena in Hard Processes CY MAY 28-31, 2008 CL Ferrara, ITALY SP MIUR, VI QCD, INFN DE Wigner function; GTMD ID GENERALIZED PARTON DISTRIBUTIONS; SPIN PRODUCTION ASYMMETRIES; IMPACT PARAMETER SPACE; SINGLE-SPIN; SCATTERING; LEPTOPRODUCTION; NUCLEON; HADRONS AB Possible relations between two a priori different classes of parton distributions, the Generalized Parton Distributions (GPDs) and the Transverse Momentum Dependent parton distributions (TMDs), are discussed in this note. Although these relations were proven to hold exactly only in simple models they imply an appealingly simple and intuitive explanation for single-spin asymmetries in semi-inclusive deep-inelastic scattering. In this context we perform a first classification of common mother functions of GPDs and TMDs, so-called Generalized Transverse Momentum Dependent parton distributions (GTMDs), investigate their GPD- and TMD-limits, and gain new insight into the nature of these relations. C1 [Schlegel, M.] Ctr Theory, Jefferson Lab, Newport News, VA 23608 USA. RP Schlegel, M (reprint author), Ctr Theory, Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23608 USA. NR 34 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4277-77-8 PY 2009 BP 80 EP 87 DI 10.1142/9789814277785_0010 PG 8 WC Physics, Applied; Physics, Nuclear SC Physics GA BKC95 UT WOS:000267793200009 ER PT B AU Bacchetta, A Boer, D Diehl, M Mulders, PJ AF Bacchetta, A. Boer, D. Diehl, M. Mulders, P. J. BE Giuseppe, C Marco, C Delia, H Paolo, L TI DIS AT LOW AND HIGH TRANSVERSE MOMENTUM: MATCHES AND MISMATCHES SO TRANSVERSITY 2008 LA English DT Proceedings Paper CT 2nd Workshop on Transverse Polarization Phenomena in Hard Processes CY MAY 28-31, 2008 CL Ferrara, ITALY SP MIUR, VI QCD, INFN ID DEEP-INELASTIC SCATTERING; LEPTOPRODUCTION; QCD AB This talk reports on recent work where we studied the connection between the description of semi-inclusive DIS at high transverse momentum (based on collinear factorization) and low transverse momentum (based on transverse-momentum-dependent factorization). We used power counting to determine the leading behavior of the structure functions at intermediate transverse momentum in the two descriptions. When the power behaviors are different, two distinct mechanisms are present and there can be no matching between them. When the power behavior is the same, the two descriptions must match. An explicit calculation however shows that for some observables this is not the case, suggesting that the transverse-momentum-dependent-factorization description beyond leading twist is incomplete. C1 [Bacchetta, A.] Jefferson Lab, Newport News, VA 23606 USA. RP Bacchetta, A (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4277-77-8 PY 2009 BP 203 EP 210 DI 10.1142/9789814277785_0025 PG 8 WC Physics, Applied; Physics, Nuclear SC Physics GA BKC95 UT WOS:000267793200024 ER PT B AU Avakian, H Efremov, AV Schweitzer, P Yuan, F AF Avakian, H. Efremov, A. V. Schweitzer, P. Yuan, F. BE Giuseppe, C Marco, C Delia, H Paolo, L TI PRETZELOSITY DISTRIBUTION FUNCTION h(1T)(perpendicular to) SO TRANSVERSITY 2008 LA English DT Proceedings Paper CT 2nd Workshop on Transverse Polarization Phenomena in Hard Processes CY MAY 28-31, 2008 CL Ferrara, ITALY SP MIUR, VI QCD, INFN DE semi-inclusive deep inelastic scattering (SIDIS); single spin asymmetry (SSA); transverse momentum dependent distribution function (TMD) ID DRELL-YAN PROCESSES; PARTON DISTRIBUTION-FUNCTIONS; FINAL-STATE INTERACTIONS; TRANSVERSE-MOMENTUM; FRAGMENTATION FUNCTIONS; QUARK DISTRIBUTION; SPIN ASYMMETRIES; SINGLE-SPIN; BAG MODEL; HADRON AB The 'pretzelosity' distribution h(1T)(perpendicular to) is discussed. Theoretical properties, model results, and perspectives to access experimental information on this leading twist, transverse momentum dependent parton distribution function are reviewed. Its relation to helicity and transversity distributions is highlighted. C1 [Avakian, H.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Avakian, H (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. NR 66 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4277-77-8 PY 2009 BP 211 EP 218 DI 10.1142/9789814277785_0026 PG 8 WC Physics, Applied; Physics, Nuclear SC Physics GA BKC95 UT WOS:000267793200025 ER PT B AU Avakian, H AF Avakian, H. CA CLAS6 Collaboration CLAS12 Collaboration BE Giuseppe, C Marco, C Delia, H Paolo, L TI TMD MEASUREMENTS AT CLAS6 AND CLAS12 SO TRANSVERSITY 2008 LA English DT Proceedings Paper CT 2nd Workshop on Transverse Polarization Phenomena in Hard Processes CY MAY 28-31, 2008 CL Ferrara, ITALY SP MIUR, VI QCD, INFN DE SSA; SIDIS; polarized electroproduction ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; SINGLE-SPIN ASYMMETRIES; DRELL-YAN PROCESS; PARTON DISTRIBUTIONS; PION ELECTROPRODUCTION; AZIMUTHAL ASYMMETRIES; TRANSVERSE-MOMENTUM; POLARIZED NUCLEONS; SEMIINCLUSIVE DIS AB We present recent results on studies of spin orbit correlations using the Jefferson Lab CLAS detector and discuss both near term and long-term future plans with CLAS, including measurements with longitudinally and transversely polarized targets. Single Spin Asymmetries (SSAs) were measured with CLAS for unpolarized and longitudinally polarized targets using a longitudinally polarized beam. Measurements of SSA for charged and neutral pions indicate that there are significant spin and azimuthal asymmetries, which can be interpreted in terms of transverse momentum dependent (TMD) distributions. C1 [Avakian, H.] Jefferson Lab, Newport News, VA 23601 USA. RP Avakian, H (reprint author), Jefferson Lab, Newport News, VA 23601 USA. NR 61 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4277-77-8 PY 2009 BP 260 EP 269 DI 10.1142/9789814277785_0032 PG 10 WC Physics, Applied; Physics, Nuclear SC Physics GA BKC95 UT WOS:000267793200031 ER PT J AU Ronnov-Jessen, L Bissell, MJ AF Ronnov-Jessen, Lone Bissell, Mina J. TI Breast cancer by proxy: can the microenvironment be both the cause and consequence? SO TRENDS IN MOLECULAR MEDICINE LA English DT Review ID TUMOR-ASSOCIATED MACROPHAGES; MAMMARY-GLAND; BONE-MARROW; MAMMOGRAPHIC DENSITY; GENE-EXPRESSION; 3-DIMENSIONAL CULTURE; GENOMIC INSTABILITY; MALIGNANT PHENOTYPE; EPITHELIAL-CELLS; DUCTAL CARCINOMA AB Breast cancer is one of the most clear-cut examples of a solid tumor in which systemic cues play a decisive part in its development. The breast tissue is constantly subjected to changes in hormone levels and modifications in the microenvironment. This scenario is even more striking during tumor development because of the dramatic loss or aberration of basement membrane (BM) and myoepithelial cells and the gain of peritumoral myofibroblasts. We suggest that the microenvironment, defined here as all components of the mammary gland other than luminal and/or tumor epithelial cells, might be instrumental in maintaining organ integrity and in promoting, and at times even initiating, breast cancer development. As such, the tumor microenvironment and its constituents, alone or in combination, might serve as promising targets for therapy. C1 [Ronnov-Jessen, Lone] Univ Copenhagen, Dept Biol, DK-2100 Copenhagen, Denmark. [Bissell, Mina J.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Ronnov-Jessen, L (reprint author), Univ Copenhagen, Dept Biol, Univ Pk 13, DK-2100 Copenhagen, Denmark. EM lronnov-jessen@bio.ku.dk RI Ronnov-Jessen OR Ronnovjessen, Lone/A-5981-2013 FU NCI NIH HHS [R01 CA064786-10, R01 CA064786, R01CA064786, U54 CA126552, U54 CA126552-03, U54CA126552] NR 81 TC 59 Z9 59 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1471-4914 J9 TRENDS MOL MED JI Trends Mol. Med PD JAN PY 2009 VL 15 IS 1 BP 5 EP 13 DI 10.1016/j.molmed.2008.11.001 PG 9 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA 406QI UT WOS:000263309600002 PM 19091631 ER PT B AU Smartt, HB Pace, DP Larsen, ED McJunkin, TR Nichol, CI Clark, DE Skinner, KL Clark, ML Kaser, TG Tolle, CR AF Smartt, H. B. Pace, D. P. Larsen, E. D. McJunkin, T. R. Nichol, C. I. Clark, D. E. Skinner, K. L. Clark, M. L. Kaser, T. G. Tolle, C. R. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI Robotic Welding and Inspection System SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc AB This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories. C1 [Smartt, H. B.; Pace, D. P.; Larsen, E. D.; McJunkin, T. R.; Nichol, C. I.; Clark, D. E.; Skinner, K. L.; Clark, M. L.; Kaser, T. G.; Tolle, C. R.] Idaho Natl Lab, Idaho Falls, ID USA. RP Smartt, HB (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM Herschel.Smartt@INL.gov; Herschel.Smartt@INL.gov RI McJunkin, Timothy/G-8385-2011 OI McJunkin, Timothy/0000-0002-4987-9170 NR 10 TC 0 Z9 0 U1 1 U2 1 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 121 EP 125 DI 10.1361/cp2008twr121 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100018 ER PT B AU Tolle, CR White, TA Miller, KS Clark, DE Smartt, HB AF Tolle, Charles R. White, Timothy A. Miller, Karen S. Clark, Denis E. Smartt, Herschel B. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI Experimental Investigation of Material Flows Within FSWs Using 3D Tomography SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc ID LACUNARITY; ALGORITHM; COVER AB There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphous-silicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm(3) voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed. C1 [Tolle, Charles R.; White, Timothy A.; Miller, Karen S.; Clark, Denis E.; Smartt, Herschel B.] Idaho Natl Lab, Idaho Falls, ID USA. RP Tolle, CR (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM Charles.Tolle@inl.gov NR 17 TC 0 Z9 0 U1 1 U2 5 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 126 EP 132 DI 10.1361/cp2008twr126 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100019 ER PT B AU Miller, KS Tolle, CR Clark, DE Nichol, CI McJunkin, TR Smartt, HB AF Miller, K. S. Tolle, C. R. Clark, D. E. Nichol, C. I. McJunkin, T. R. Smartt, H. B. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI Investigation into Interface Lifting Within FSW Lap Welds SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc AB Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant non-bonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed. C1 [Miller, K. S.; Tolle, C. R.; Clark, D. E.; Nichol, C. I.; McJunkin, T. R.; Smartt, H. B.] Idaho Natl Lab, Idaho Falls, ID USA. RP Miller, KS (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM Charles.Tolle@inl.gov RI McJunkin, Timothy/G-8385-2011 OI McJunkin, Timothy/0000-0002-4987-9170 NR 4 TC 0 Z9 0 U1 1 U2 8 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 133 EP 139 DI 10.1361/cp2008twr133 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100020 ER PT B AU Woo, W Feng, Z Hubbard, CR David, SA Wang, XL Clausen, B Ungar, T AF Woo, W. Feng, Z. Hubbard, C. R. David, S. A. Wang, X-L. Clausen, B. Ungar, T. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI In-situ Time-Resolved Neutron Diffraction Measurements of Microstructure Variations during Friction Stir Welding in a 6061-T6 Aluminum Alloy SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc ID PROFILE ANALYSIS; MECHANICAL-PROPERTIES; GRAIN-STRUCTURE; PRECIPITATION; STRENGTH; DUCTILITY; CRYSTALS; CONTRAST; BEHAVIOR AB The microstructure change is one of the most important research areas in the field of friction stir welding (FSW). However, in-situ observation of microstructure changes has been extremely challenging because many measurement techniques are not applicable. Recently developed in-situ time-resolved neutron diffraction method, which drastically improves the temporal resolution of neutron diffraction, enables observervation of the transient microstructure changes during FSW. A portable FSW system was installed in the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at Los Alamos Neutron Science Center and the FSW was made on 6.35mm-thickness 6061-T6 Al alloy plate. At the same time, the neutron beam was centered on the mid-plane of the Al plate at 8 mm from the tool center (underneath the tool shoulder). The diffraction peak was continuously measured during welding. The peak broadening analysis has been performed using the Williamson-Hall Method. The result shows that the dislocation density of about 3.2 x 10(15) m(-2) in that position duing FSW, which is a significant increse compared to before FSW (4.5 x 10(14) m(-2)) and after FSW (4.0 x 10(14) m(-2)). This quantitatively analysis of the grain structure can provide an insight to understand the transient variation of the microstructure during FSW. C1 [Woo, W.; Feng, Z.; Hubbard, C. R.; David, S. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RP Woo, W (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RI Wang, Xun-Li/C-9636-2010; Feng, Zhili/H-9382-2012; Clausen, Bjorn/B-3618-2015; OI Wang, Xun-Li/0000-0003-4060-8777; Feng, Zhili/0000-0001-6573-7933; Clausen, Bjorn/0000-0003-3906-846X; WOO, Wanchuck/0000-0003-0350-5357 NR 30 TC 0 Z9 0 U1 0 U2 7 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 407 EP 412 DI 10.1361/cp2008twr407 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100062 ER PT B AU Knorovsky, GA Norris, JT Perricone, MJ AF Knorovsky, G. A. Norris, J. T. Perricone, M. J. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI Shear Testing of Laser Spotwelds SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc AB A shear test was used to investigate the effect of shielding gas (Argon, Nitrogen and none) on the properties of laser spot welds in Fe-28Ni-17Co alloy (Kovar). The load vs. displacement curves obtained, while superficially resembling those of a standard tensile test, were non-reproducible, and obscured the differences due to process conditions. Fractographic examination of the samples and analysis of the testing conditions led to significant conclusions about how to correctly interpret the shear test results, which in turn enabled a better determination of the effect of changing shielding gas. Several different types of fracture morphology were noted, depending upon where the fracture surface propagated relative to the weld faying surface. This resulted in the disparate nature of the load-displacement curves. The results of the shear testing, fractography, a finite element analysis and metallography will be used to interpret the differences found. C1 [Knorovsky, G. A.; Norris, J. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knorovsky, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 5 TC 1 Z9 1 U1 2 U2 2 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 588 EP 597 DI 10.1361/cp2008twr588 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100089 ER PT B AU Puskar, JD Goods, SH Cadden, CH AF Puskar, J. D. Goods, S. H. Cadden, C. H. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI High Strength Diffusion Bonding of Beryllium to CuCrZr for ITER Applications SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc ID 1ST WALL; COMPONENTS; ALLOY AB Samples of nuclear grade beryllium, S65C, were diffusion bonded to a copper, chrome, zirconium alloy, C18150, using hot isostatic pressing. Metallization films of titanium, copper and gold were used to promote bonding, and inhibit the formation of undesirable beryllium copper intermetallics as well as prevent oxide formation before the bonding process commenced. The samples were bonded at 580C and 100 MPa for two hours. All of the samples formed bonds that had shear strength values that approached that of the S65C base metal. HIP bonding resulted in the formation of stoichiometric intermetallic layers between the copper and titanium films including TiCu and Ti(2)Cu. A much thinner intermetallic layer was also observed between the titanium film and the beryllium substrate, possibly Be(2)Ti. Shear specimens were used to measure the strength of the interfaces with peak strengths between 127 and 191 MPa were measured. Failure was found to occur predominately along one of the TiCu intermetallic layers. C1 [Puskar, J. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Puskar, JD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 10 TC 0 Z9 0 U1 0 U2 3 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 604 EP 609 DI 10.1361/cp2008twr604 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100091 ER PT B AU Robino, CV Boyce, BL AF Robino, C. V. Boyce, B. L. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI Constitutive Properties of Dissimilar Metal Laser Welds SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc ID DIGITAL IMAGE CORRELATION; RESISTANCE-SPOT-WELD; FRICTION STIR WELDS; HEAT-AFFECTED ZONE; MECHANICAL-PROPERTIES; BEHAVIOR; DEFORMATION; AA2024 AB Digital image correlation (DIC) methods have been developed and used to determine the constitutive tensile stress-strain response in laser welds between PH 13-8 Mo and 304L stainless steels. Both continuous-wave (CW) and pulsed laser welds were examined. Testing was conducted in the transverse (cross-weld) orientation and samples were ground smooth to eliminate geometric effects (weld root notch) and lightly bead blasted to provide image speckling. The DIC method provided quantitative 2-dimensional strain maps of the deformation field throughout tensile testing, and local stress-strain response was extracted from various weld regions. As expected, steep strain gradients were observed in the test welds, but constitutive relationships could nevertheless be extracted from the important weld zones. Metallographic analysis, electron backscattered analysis, and hardness testing were used to further quantify the microstructure and its relationship to the constitutive properties. Mixing in the CW weld appeared to be less complete than in the pulsed weld, and the CW weld likely contained both martensitic and ferritic regions as well as austenite, while the pulsed weld appeared to be predominantly ferritic with some residual austenite. Although additional refinement of the technique is needed to fully characterize the differences between these CW and pulsed welds, DIC has been shown to be a powerful technique for assessing the mechanical behavior of dissimilar metal laser welds. C1 [Robino, C. V.; Boyce, B. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Robino, CV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Boyce, Brad/H-5045-2012 OI Boyce, Brad/0000-0001-5994-1743 NR 17 TC 0 Z9 0 U1 1 U2 12 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 610 EP 616 DI 10.1361/cp2008twr610 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100092 ER PT B AU Burgardt, P Hochanadel, PW Duffield, AN Kautz, DD AF Burgardt, P. Hochanadel, P. W. Duffield, A. N. Kautz, D. D. BE David, SA DebRoy, T DuPont, JN Koseki, T Smartt, HB TI Electron Beam Welding of 21-6-9 Stainless Steel Using Both Circle Deflection and Defocus Settings SO TRENDS IN WELDING RESEARCH LA English DT Proceedings Paper CT 8th Interntional Conference on Trends in Welding Research CY JUN 01-06, 2008 CL Pine Mountain, GA SP ASTM Int, Japan Welding Soc, Assoc Iron & Steel Technol, Welding Inst, Amer Welding Soc AB Three different heats of type 21-6-9 stainless steel were welded using the electron beam welding (EBW) process. Both circle deflection and utilization of defocus settings were used to characterize the weldability in terms of porosity and cracking. The electron beams were characterized with a modified faraday cup beam. This characterization provided information on true sharp focus settings at the accelerating voltage and beam currents. The beam profiling also quantified the peak power densities and beam sizes as a function of the focus settings. The circle diameter was verified by measuring the circle diameters as a function of the circle deflection settings. It was found that, for the three heats of material investigated, no significant difference in weldability was observed. No appreciable cracking was observed, but significant porosity was found to be likely in welds made at sharp focus (no deflection) and many of the welds made using circle deflection, especially in welds made at low and intermediate circle deflection frequencies (between 10 and 700 Hz settings). Porosity was found to be much less of an issue in the welds made by defocusing the beam. Only slight defocus was found to eliminate porosity (welds at sharp focus +/- 6 increments were found have porosity, welds at sharp focus +/- 13 increments and beyond did not). The weld depth of penetration was found to vary as a function of both defocus settings and circle frequency, as expected. In addition, the weld depth of penetration at low frequency was nearly the same as when welding at sharp focus and no deflection. The average porosity density (average area per cross-sectional view) was strongly dependent upon processing parameters, but not upon the material composition for the materials investigated. The welds made with defocus settings were found to be similar in terms of aspect ratio when compared to those made at higher circle deflection frequency. C1 [Burgardt, P.; Hochanadel, P. W.; Duffield, A. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Burgardt, P (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. NR 10 TC 0 Z9 0 U1 3 U2 7 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-002-6 PY 2009 BP 631 EP 638 DI 10.1361/cp2008twr631 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA BTU97 UT WOS:000288153100095 ER PT J AU Scharf, TW Diercks, DR Gorman, BP Prasad, SV Dugger, MT AF Scharf, T. W. Diercks, D. R. Gorman, B. P. Prasad, S. V. Dugger, M. T. TI Atomic Layer Deposition of Tungsten Disulphide Solid Lubricant Nanocomposite Coatings on Rolling Element Bearings SO TRIBOLOGY TRANSACTIONS LA English DT Article DE Tribology; Torque; Rolling Element Bearings; Solid Lubricants; Coatings; Focused Ion Beam; Transmission Electron Microscopy ID CHEMICAL-VAPOR-DEPOSITION; NEAR-INTERFACE STRUCTURE; MOS2 THIN-FILMS; TRIBOLOGICAL PERFORMANCE; FRICTION BEHAVIOR; GROWTH; WEAR; SPECTROSCOPY; ORIENTATION; MECHANISMS AB Atomic layer deposition (ALD) has the potential to provide highly conformal coatings with precise control of thickness. This article describes the application of ALD nanocomposite containing ZnF2 in WS2 matrix solid lubricant coatings on fully assembled rolling element bearings. The torque behavior of the coated bearings was studied during oscillatory contacts and after exposure to vibration. The coatings exhibited a hexagonal layered structure with predominant preferentially orientated (002) basal planes. These basal planes when sheared imparted very low running torque values of 0.5 mN m in dry nitrogen. The outer race, inner race, and ball surfaces showed WS2 transfer film protection on the native coating necessary to achieve low torque in dry nitrogen. Structural (re)ordering of the basal and prismatic planes with multiple random and branched orientations was observed through the thickness of the transfer films. There was no evidence of uniformly aligned c-axis perpendicular-orientated basal planes on the transfer film surface. The unique advantages of ALD to apply solid lubricant coatings on rolling elements of fully assembled miniature bearings are compared with conventional solid lubrication techniques. C1 [Scharf, T. W.; Diercks, D. R.; Gorman, B. P.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Prasad, S. V.; Dugger, M. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Scharf, TW (reprint author), Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. RI Gorman, Brian/F-4999-2011 OI Gorman, Brian/0000-0002-1837-564X NR 36 TC 9 Z9 9 U1 5 U2 44 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1040-2004 J9 TRIBOL T JI Tribol. Trans. PY 2009 VL 52 IS 3 BP 284 EP 292 AR PII 908607913 DI 10.1080/10402000802369747 PG 9 WC Engineering, Mechanical SC Engineering GA 410JX UT WOS:000263574400002 ER PT S AU Nettles, JH Downing, KH AF Nettles, James H. Downing, Kenneth H. BE Carlomagno, T TI The Tubulin Binding Mode of Microtubule Stabilizing Agents Studied by Electron Crystallography SO TUBULIN-BINDING AGENTS: SYNTHETIC, STRUCTURAL AND MECHANISTIC INSIGHTS SE Topics in Current Chemistry LA English DT Review; Book Chapter DE Diffraction; Dynamics; Electron crystallography; Epothilone; Laulimalide; Microtubules; Modeling; Paclitaxel; SAR; Taxol; Tubulin ID ZINC-INDUCED SHEETS; ALPHA-BETA-TUBULIN; SIDE-CHAIN; BIOLOGICAL EVALUATION; CHEMICAL-SYNTHESIS; EPOTHILONE-A; COMMON PHARMACOPHORE; NATURAL-PRODUCTS; 12,13-CYCLOBUTYL EPOTHILONES; MOLECULAR-DYNAMICS AB Since tubulin was discovered in 1967, drug probes have been used to manipulate mechanisms of microtubule polymerization and disassembly. In parallel, advances in optical imagery, electron microscopy, along with both electron and X-ray diffraction have provided ability to "see" the molecular underpinning of these machines. Nanoscale mapping of different tubulin polymers formed in the presence of different drugs and cofactors; provide a context for examining the dynamic features relevant to their biological activity. Models built from EM maps have been used to understand the binding of stabilizing drugs such as taxanes and epothilones, to predict more effective molecules, and to explain mutation based resistance. Here, we discuss drug binding in the context of different polymeric forms and propose a trigger mechanism associated with microtubules' dynamic instability. C1 [Nettles, James H.] Emory Univ, Sch Med, Dept Pediat, VA Med Ctr Med Res,Lab Biochem Pharmacol LOBP, Decatur, GA 30033 USA. [Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab 112, Berkeley, CA 94720 USA. RP Nettles, JH (reprint author), Emory Univ, Sch Med, Dept Pediat, VA Med Ctr Med Res,Lab Biochem Pharmacol LOBP, 151 H-5A-146 1670 Clairmont Rd, Decatur, GA 30033 USA. EM jnettle@emory.edu NR 81 TC 19 Z9 19 U1 2 U2 6 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0340-1022 BN 978-3-540-69036-8 J9 TOP CURR CHEM JI Top. Curr. Chem. PY 2009 VL 286 BP 209 EP 257 DI 10.1007/128_2008_24 D2 10.1007/978-3-540-69039-9 PG 49 WC Chemistry, Multidisciplinary SC Chemistry GA BKX20 UT WOS:000269519500005 PM 23563614 ER PT B AU Kirkil, G Constantinescu, G AF Kirkil, G. Constantinescu, G. BE Hanjalic, K Nagano, Y Jakirlic, S TI A study of vertical non-uniformity of flow and mass exchange processes in a shallow mixing layer SO TURBULENCE, HEAT AND MASS TRANSFER 6 LA English DT Proceedings Paper CT 6th International Symposium on Turbulence, Heat and Mass Transfer CY SEP 14-18, 2009 CL Rome, ITALY SP Sapienza Univ Rome, Delft Univ Technol, Nagoya Inst Technol, EU Marie Curie Act, Assoc Termotecnica Italiana, Sezione Lazio, AVL-List GmbH, ANSYS GmbH AB The dynamics of a shallow mixing layer developing between two parallel streams in a long open channel with flat bed is investigated numerically using Detached Eddy Simulation (DES). The simulation captures the expected decrease in the rate of growth of the mixing layer in the streamwise direction and the shift of its centerline toward the low-speed side observed in laboratory studies. Though in the mean flow the values of the bed shear stress beneath the mixing layer are lower than those recorded beneath the high-velocity stream, in the instantaneous flow fields the large-scale eddies convected in the near-bed region induce values of the bed shear stress in the mixing layer region that are significantly higher than those observed beneath the two streams. This means that the scour processes downstream of the confluence between the two streams are driven by the passage of the mixing layer eddies. This is one of the main mechanisms that explain the formation of large scour holes at river confluences. C1 [Kirkil, G.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. RP Kirkil, G (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, POB 808,L-103, Livermore, CA 94551 USA. EM kirkill@llnl.gov; sconstan@engineering.uiowa.edu RI Kirkil, Gokhan/D-8481-2014 NR 5 TC 0 Z9 0 U1 0 U2 0 PU BEGELL HOUSE, INC PI NEW YORK PA 145 MADISON AVE, NEW YORK, NY 10016 USA BN 978-1-56700-262-1 PY 2009 BP 459 EP 462 PG 4 WC Engineering, Mechanical SC Engineering GA BDD94 UT WOS:000312877800098 ER PT B AU Gundogdu, K Lucovsky, G Chung, KB Kim, J Nordlund, D AF Gundogdu, K. Lucovsky, G. Chung, K-B Kim, J. Nordlund, D. BE Mantl, S Lemme, M Schubert, J Albrecht, W TI Detection of Strain Minimization in Hf-based Gate Dielectrics by X-ray Absorption and Non-Linear Optical Second Harmonic Generation Spectroscopy SO ULIS 2009: 10TH INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION OF SILICON LA English DT Proceedings Paper CT 10th International Conference on Ultimate Integration on Silicon CY MAR 18-20, 2009 CL Aachen, GERMANY SP IEEE Electron Devices Soc, IEEE, Julich, JARA FIT, Aachen Univ, Nanosil, Oxford Instruments, Aixtron, Centrotherm, oerlikon syst ID ELEMENTAL OXIDES; DEFECTS AB In order to move circuits and systems on a chip to higher levels of integration as required by ULSI technology, it becomes increasing more important to minimize local bond and macroscopic strain in CMOS and advanced CMOS devices. This paper combines linear and non-linear spectroscopic methods and theory to study strain minimization in non-crystalline and nanocrystalline Hf-based high-k dielectrics. C1 [Gundogdu, K.; Lucovsky, G.; Chung, K-B; Kim, J.] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nordlund, D.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Gundogdu, K (reprint author), North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU AFSOR in a MURI administered through Vanderbilt University; SRC; DTRA; NSF FX The authors also acknowledge support from AFSOR in a MURI administered through Vanderbilt University, and SRC, DTRA and the NSF. NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-3705-4 PY 2009 BP 201 EP + DI 10.1109/ULIS.2009.4897571 PG 3 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BJL48 UT WOS:000266761300048 ER PT S AU Kadavanich, AV Shim, SH Meyer, HM Savas, SE Lara-Curzio, E AF Kadavanich, Andreas V. Shim, Sang Hoon Meyer, Harry M., III Savas, Stephen E. Lara-Curzio, Edgar BE Mertens, P Meuris, M Heyns, M TI Chemical and Mechanical Analysis of HDIS Residues using Auger Electron Spectroscopy and Nanoindentation SO ULTRA CLEAN PROCESSING OF SEMICONDUCTOR SURFACES IX: UCPSS 2008-9TH INTERNATIONAL SYMPOSIUM ON ULTRA CLEAN PROCESSING OF SEMICONDUCTOR SURFACES (UCPSS) SE Solid State Phenomena LA English DT Proceedings Paper CT 9th International Symposium on Ultra Clean Processing of Semiconductor Surfaces (UCPSS) CY SEP 22-24, 2008 CL Bruges, BELGIUM SP POSAS, PALL, HORIBA, AIR PRODUCTS, SEMICOND PRODUCT SYST, SONOSYS, FSI, ProSys, Entegris, SEMITOOL, axcelis, SemiNeedle, GeMeTec, Qcept Technol DE HDIS; High-Dose Implant Strip; Residue; photoresist stripping; AES; Nanoindentation ID IMPLANTED PHOTORESIST C1 [Kadavanich, Andreas V.; Savas, Stephen E.] Mattson Technol Inc, 47131 Bayside Pkwy, Fremont, CA 94538 USA. [Shim, Sang Hoon; Meyer, Harry M., III; Lara-Curzio, Edgar] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kadavanich, AV (reprint author), Mattson Technol Inc, 47131 Bayside Pkwy, Fremont, CA 94538 USA. EM andreas.kadavanich@mattson.com; shims@ornl.gov; meyerhmiii@ornl.gov; stephen.savas@mattson.com; laracurzioe@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX Research sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. NR 3 TC 3 Z9 3 U1 0 U2 0 PU TRANS TECH PUBLICATIONS LTD PI DURNTEN-ZURICH PA KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND SN 1012-0394 J9 SOLID STATE PHENOMEN PY 2009 VL 145-146 BP 261 EP + PG 3 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA BJE61 UT WOS:000265210900059 ER PT S AU Armstrong, MR Crowhurst, JC Reed, EJ Zaug, JM AF Armstrong, Michael R. Crowhurst, Jonathan C. Reed, Evan J. Zaug, Joseph M. BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE shock waves; acoustic waves; ultrafast phenomena; picosecond acoustics; nanoscale acoustics ID STRUCTURAL RELAXATION; REFRACTIVE-INDEX; METHANOL; COMPRESSION; ETHANOL; TIME AB We describe experiments demonstrating the generation of ultrafast, high strain rate acoustic waves in a precompressed transparent medium at static pressure up to 24 GPa. We also observe shock waves in precompressed aluminum with transient pressures above 40 GPa under precompression. Using ultrafast interferometry, we determine parameters such as the shock pressure and acoustic wave velocity using multiple and single shot methods. These methods form the basis for material experiments under extreme conditions which are challenging to access using other techniques. C1 [Armstrong, Michael R.; Crowhurst, Jonathan C.; Reed, Evan J.; Zaug, Joseph M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Armstrong, MR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM armstrong30@llnl.gov RI Armstrong, Michael/I-9454-2012 NR 17 TC 1 Z9 1 U1 1 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 P SOC PHOTO-OPT INS PY 2009 VL 7214 AR 721407 DI 10.1117/12.809363 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700005 ER PT S AU Azad, AK Chen, HT Taylor, AJ O'Hara, JF Han, JG Lu, XC Zhang, WL AF Azad, Abul K. Chen, Hou-Tong Taylor, Antoinette J. O'Hara, John F. Han, Jiaguang Lu, Xinchao Zhang, Weili BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE Subwavelength metallic hole arrays; Surface Plasmon; Terahertz spectroscopy; Optical pump terahertz probe ID METALLIC HOLE ARRAYS; ENHANCED TRANSMISSION; OPTICAL-TRANSMISSION; SURFACE; APERTURES; GRATINGS; RADIATION AB The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays made from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottky diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices. C1 [Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; O'Hara, John F.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Azad, AK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM aazad@lanl.gov; weili.zhang@okstate.edu RI Azad, Abul/B-1163-2011; OI Azad, Abul/0000-0002-7784-7432; Chen, Hou-Tong/0000-0003-2014-7571 NR 36 TC 0 Z9 0 U1 1 U2 10 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 P SOC PHOTO-OPT INS PY 2009 VL 7214 AR 72140Z DI 10.1117/12.811194 PG 15 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700022 ER PT S AU Chen, HT O'Hara, JF Azad, A Padilla, WJ Averitt, RD Taylor, AJ AF Chen, Hou-Tong O'Hara, John F. Azad, Abul K. Padilla, Willie J. Averitt, Richard D. Taylor, Antoinette J. BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI Terahertz metamaterials SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE Terahertz; metamaterials; modulation ID NANOISLAND SUPERLATTICES; PERMITTIVITY; RESONATORS; REFRACTION; DYNAMICS; INDEX; GAAS AB In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications. C1 [Chen, Hou-Tong; O'Hara, John F.; Azad, Abul K.; Taylor, Antoinette J.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Padilla, Willie/A-7235-2008; Chen, Hou-Tong/C-6860-2009; Azad, Abul/B-1163-2011; OI Padilla, Willie/0000-0001-7734-8847; Chen, Hou-Tong/0000-0003-2014-7571; Azad, Abul/0000-0002-7784-7432 NR 30 TC 2 Z9 2 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 P SOC PHOTO-OPT INS PY 2009 VL 7214 AR 721417 DI 10.1117/12.812052 PG 13 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700027 ER PT S AU Choi, H Norris, TB Faist, J Capasso, F AF Choi, Hyunyong Norris, Theodore B. Faist, Jerome Capasso, Federico BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI Ultrafast electronic transport in low dimensional semiconductor nanostructures SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE Ultrafast phenomena; time-resolved experiments; quantum cascade lasers ID QUANTUM-CASCADE LASERS; INTERSUBBAND; PLASMA AB Ultrafast time-resolved pump-probe measurements are used to study low energy excitations and dynamics of electronic transport in various semiconductor nanostructures. In quantum cascade lasers, we observe ultrafast gain recovery dynamics due to electronic transport in the structures. In particular, the nature of electronic transport had been addressed by using ultrafast optical techniques. Sub-picosecond resonant tunneling injection from the quantum cascade laser injector ground state into the upper lasing state was found to be incoherent due to strong dephasing in the active subband. We also observed the strong coupling of the electronic transport to the intra-cavity photon density, which we term "photon-driven transport". Note that this invited paper reviews the details of our recent observations (H. Choi et al., Phys. Rev. Lett., 100, 167401, 2008 and H. Choi, et al., Appl. Phys. Lett. 92, 122114 (2008)). C1 [Choi, Hyunyong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Choi, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Faist, Jerome/A-7339-2013 OI Faist, Jerome/0000-0003-4429-7988 NR 24 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 P SOC PHOTO-OPT INS PY 2009 VL 7214 AR 721416 DI 10.1117/12.808529 PG 9 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700026 ER PT S AU Hurley, DH Wright, OB Matsuda, O McCandless, BE Shinde, S AF Hurley, D. H. Wright, O. B. Matsuda, O. McCandless, Brian E. Shinde, Subhash BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI Imaging carrier and phonon transport in Si using ultrashort optical pulses SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE Thermal transport; phonon; electron transport; recombination; surface acoustic wave; grain boundary ID GENERATION; SILICON AB A series of experiments have been conducted that microscopically image thermal diffusion and surface acoustic phonon propagation within a single crystallite of a polycrystalline Si sample. The experimental approach employs ultrashort optical pulses to generate an electron-hole plasma and a second probe pulse is used to image the evolution of the plasma. By decomposing the signal into a component that varies with delay time and a steady state component that varies with pump modulation frequency, the respective influence of carrier recombination and thermal diffusion are identified. Additionally, the coherent surface acoustic phonon component to the signal is imaged using a Sagnac interferometer to monitor optical phase. C1 [Hurley, D. H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hurley, DH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM david.hurley@inl.gov NR 19 TC 0 Z9 0 U1 0 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 PROC SPIE PY 2009 VL 7214 AR 721406 DI 10.1117/12.808212 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700004 ER PT S AU Reed, EJ Armstrong, MR Kim, KY Glownia, JH Howard, WM Piner, EL Roberts, JC AF Reed, Evan J. Armstrong, Michael R. Kim, Ki-Yong Glownia, James H. Howard, William M. Piner, Edwin L. Roberts, John. C. BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI A new mechanism for observation of THz acoustic waves: Coherent THz radiation emission SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE THz radiation; acoustic wave; shock wave; GaN; AlN; heterostructure ID INDUCED ELECTRICAL-POLARIZATION; MOLECULAR-DYNAMICS; SHOCK; GENERATION; CRYSTAL; PHONONS AB Our simulations and experiments demonstrate a new physical mechanism for detecting acoustic waves of THz frequencies. We find that strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. By considering AlN/GaN heterostructures, we show that the radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with potentially sub-picosecond, nearly atomic time and space resolution. This mechanism is distinct from optical approaches to strain wave measurement. We demonstrate this phenomenon within the context of high amplitude THz frequency strain waves that spontaneously form at the front of shock waves in GaN crystals. We also show how the mechanism can be utilized to determine the layer thicknesses in thin film GaN/AlN heterostructures. C1 [Reed, Evan J.; Armstrong, Michael R.; Howard, William M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reed, EJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM reed23@llnl.gov RI Armstrong, Michael/I-9454-2012; Piner, Edwin/B-5359-2016 NR 33 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 P SOC PHOTO-OPT INS PY 2009 VL 7214 AR 72140P DI 10.1117/12.809326 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700014 ER PT S AU Wang, J Cotoros, I Chemla, DS Liu, X Furdyna, JK Chovan, J Perakis, IE AF Wang, J. Cotoros, I. Chemla, D. S. Liu, X. Furdyna, J. K. Chovan, J. Perakis, I. E. BE Tsen, KT Song, JJ Betz, M Elezzabi, AY TI Memory Effects in Femtosecond Collective Spin Rotation in Ferromagnetic Semiconductors SO ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII CY JAN 25-28, 2009 CL San Jose, CA SP SPIE, PolarOnyx Inc DE femtosecond magnetization dynamics; spin reorientation; ferromagnetic semiconductors; GaMnAs; magnetic memory ID ULTRAFAST MAGNETOOPTICS; NICKEL AB We report a femtosecond response in photoinduced magnetization rotation in the ferromagnetic semiconductor GaMnAs, which allows for detection of a four-state magnetic memory at the femtosecond time scale. The temporal profile of this cooperative magnetization rotation exhibits a discontinuity that reveals two distinct temporal regimes, marked by the transition from a highly non-equilibrium, carrier-mediated regime within the first 200 fs, to a thermal, lattice-heating picosecond regime. C1 [Wang, J.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Wang, J (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM jwang@ameslab.gov NR 27 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7460-5 J9 P SOC PHOTO-OPT INS PY 2009 VL 7214 AR 721412 DI 10.1117/12.809945 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Spectroscopy SC Engineering; Science & Technology - Other Topics; Optics; Spectroscopy GA BST69 UT WOS:000285750700023 ER PT S AU Thoniann, I Lock, R Sharma, V Gagnon, E Pratt, ST Kapteyn, HC Murnane, MM Li, W AF Thoniann, I. Lock, R. Sharma, V. Gagnon, E. Pratt, S. T. Kapteyn, H. C. Murnane, M. M. Li, W. BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Direct Measurement of Angle-Dependent Single Photon Ionization of N-2 and CO2 SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc ID FIELD AB We present a novel method for determining the angular dependence of molecular photoionization, by measuring time-dependent ionization yields from transiently aligned molecules. This method allows us to map the angular dependence of nondissociative single-photon ionization for molecules (N-2 and CO2) for the first time. C1 [Thoniann, I.; Lock, R.; Sharma, V.; Gagnon, E.; Kapteyn, H. C.; Murnane, M. M.; Li, W.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Pratt, S. T.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Thoniann, I (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM wli@jila.colorado.edu RI Kapteyn, Henry/H-6559-2011 OI Kapteyn, Henry/0000-0001-8386-6317 FU NSF; DOE FX We thank C. La-O-Vorakiat and A. Sandhu for their assistance on the experiment. We gratefully acknowledge NSF and DOE for financial support. NR 5 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 72 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000024 ER PT S AU Huse, N Kim, TK Khalil, M Jamula, L McCusker, JK Schoenlein, RW Smeigh, AL AF Huse, Nils Kim, Tae Kyu Khalil, Munira Jamula, Lindsey McCusker, James K. Schoenlein, Robert W. Smeigh, Amanda L. BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Probing Reaction Dynamics of Transition-Metal Complexes in Solution via Time-Resolved Soft X-ray Spectroscopy SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc AB We report the first time-resolved soft x-ray measurements of solvated transition-metal complexes. L-edge spectroscopy directly probes dynamic changes in ligand-field splitting of 3d orbitals associated with the spin transition. and mediated by changes in ligand-bonding. C1 [Huse, Nils] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Khalil, Munira] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kim, Tae Kyu] Pusan Natl Univ, Dept Chem, Pusan 609735, South Korea. [Jamula, Lindsey; McCusker, James K.; Smeigh, Amanda L.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Schoenlein, Robert W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Huse, N (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM nhuse@lbl.gov FU Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Department of Energy under Contract No. DE-AC02-05CH11231. NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 125 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000041 ER PT S AU Rini, M Tobey, R Wall, S Zhu, Y Tomioka, Y Tokura, Y Cavalleri, A Schoenlein, RW AF Rini, M. Tobey, R. Wall, S. Zhu, Y. Tomioka, Y. Tokura, Y. Cavalleri, A. Schoenlein, R. W. BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Time-resolved X-ray Absorption Spectroscopy of Photoinduced Insulator-Metal Transition in a Colossal Magnetoresistive Manganite SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc AB We studied the ultrafast insulator-metal transition in a manganite by means of picosecond X-ray absorption at the O K- and Mn L-edges, probing photoinduced changes in O-2p and Mn-3d electronic states near the Fermi level. C1 [Rini, M.; Zhu, Y.; Schoenlein, R. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tobey, R.; Wall, S.; Cavalleri, A.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Tomioka, Y.; Tokura, Y.] AIST, Correlated Elect Res Ctr, Tsukuba, Ibaraki 3058562, Japan. RP Rini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mrini@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 191 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000062 ER PT S AU Prasankumar, RP Choi, SG Wang, GT Upadhya, PC Trugman, SA Picraux, ST Taylor, AJ AF Prasankumar, R. P. Choi, S. G. Wang, G. T. Upadhya, P. C. Trugman, S. A. Picraux, S. T. Taylor, A. J. BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Ultrafast Carrier Dynamics in Semiconductor Nanowires SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc ID GERMANIUM; GROWTH AB Ultrafast wavelength-tunable optical measurements on semiconductor nanowires allow us to independently probe the dynamics of electrons, holes, and defect states. These investigations reveal the influence of two-dimensional confinement on carrier dynamics in these nanosystems. C1 [Prasankumar, R. P.; Choi, S. G.; Upadhya, P. C.; Trugman, S. A.; Picraux, S. T.; Taylor, A. J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. [Wang, G. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov FU Center for Integrated Nanotechnologies; US Department of Energy,Office of Basic Energy Sciences user facility; NNSA's Laboratory Directed Research and Development Program; Department of Energy [AC52-06NA25396] FX We would like to thank S. T. Picraux, G. T. Wang, J. A. Hollingsworth, N. Smith, Q. Li, S. G. Choi, S. A. Trugman, A. A. Talin, A. J. Fischer, and H. Htoon for sample fabrication and informative discussions.Wewould also like our colleagues whose work is reviewed here for allowing us to use figures from their publications. This work was performed at the Center for Integrated Nanotechnologies, a US Department of Energy,Office of Basic Energy Sciences user facility and also partially supported by the NNSA's Laboratory Directed Research and Development Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US. Department of Energy under contract DE-AC52-06NA25396. This work was also supported by the Department of Energy, Office of Basic Energy Sciences. NR 8 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 271 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000088 ER PT S AU Chen, HT Azad, AK O'Hara, JF Taylor, AJ Padilla, WJ Averitt, RD AF Chen, H. T. Azad, Abul K. O'Hara, J. F. Taylor, A. J. Padilla, W. J. Averitt, R. D. BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Dynamic Metamaterials at Terahertz Frequencies SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc ID NEGATIVE-INDEX AB Metamaterials fabricated for operation at terahertz frequencies are presented. Optical excitation enables control of the metamaterial resonance amplitude and frequency. C1 [Chen, H. T.; Azad, Abul K.; O'Hara, J. F.; Taylor, A. J.] Los Alamos Natl Lab, MPA CINT, MS K771, Los Alamos, NM 87545 USA. [Padilla, W. J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA. [Averitt, R. D.] Boston Univ, Dept Phys & Photon Ctr, Boston, MA 02215 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, MPA CINT, MS K771, Los Alamos, NM 87545 USA. EM raveritt@physics.bu.edu NR 15 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 645 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000209 ER PT S AU Wen, HD Wiczer, M Lindenberg, A AF Wen, Haidan Wiczer, M. Lindenberg, Aaron BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Ultrafast Electron Cascades Driven by Intense Femtosecond THz Pulses SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc AB A table-top THz source has been employed to study the nonlinear response of semiconductors to near-half-cycle intense femtosecond pulses. We report nonlinear field-induced changes in the far infrared absorption coefficient, associated with THz-induced impact ionization processes occurring within the THz pulse. C1 [Wen, Haidan; Lindenberg, Aaron] Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA. [Wiczer, M.] Univ Illinois, Dept Phys, Chicago, IL 60680 USA. [Lindenberg, Aaron] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Wen, HD (reprint author), Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA. EM hwen@slac.stanford.edu; mwiczer2@uiuc.edu; aaronl@stanford.edu NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 654 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000212 ER PT S AU An, J Kim, D Dawson, JW Messerly, MJ Barty, CPJ AF An, Jungkwuen Kim, Dongeon Dawson, Jay W. Messerly, Michael J. Barty, Christopher P. J. BA Schoenlein, RW BF Schoenlein, RW BE Corkum, P DeSilvestri, S Nelson, KA Riedle, E TI Generation of High Energy Pulses from a Fiber-based Femtosecond Oscillator SO ULTRAFAST PHENOMENA XVI SE Springer Series in Chemical Physics LA English DT Proceedings Paper CT 16th International Conference on Ultrafast Phenomena CY JUN 09-13, 2008 CL European Phys Soc, Stresa, ITALY HO European Phys Soc AB The high energy pulse can be achieved by exploiting self-similar prapagation regime. In this regime, mode-lock pulse can be generated without dispersive optics such as gratings or prisms in the cavity. C1 [An, Jungkwuen; Kim, Dongeon] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.] Lawrence Livermore Natl Lab, Photon Sci & App Program, Livermore, CA 94550 USA. RP An, J (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. EM kimd@postech.ac.kr FU Korean Science and Engineering Foundation (KOSEF); Korean Research Foundation (KRF); Core Technology Development Program; Ministry of Commerce, Industry and Energy of Korea FX This work was performed under the auspices of the U.S.Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. J. An and D. Kim also acknowledge the support of the National Research Laboratory project (No. M10500000066-06J0000-06610) funded by Korean Science and Engineering Foundation (KOSEF), Brain Korea 21 project funded by Korean Research Foundation (KRF), and Core Technology Development Program funded by the Ministry of Commerce, Industry and Energy of Korea. NR 2 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0172-6218 BN 978-3-540-95945-8 J9 SPRINGER SER CHEM PH PY 2009 VL 92 BP 765 EP + PG 2 WC Chemistry, Physical SC Chemistry GA BQY70 UT WOS:000282108000248 ER PT J AU Molina, SI Sales, DL Galindo, PL Fuster, D Gonzalez, Y Alen, B Gonzalez, L Varela, M Pennycook, SJ AF Molina, S. I. Sales, D. L. Galindo, P. L. Fuster, D. Gonzalez, Y. Alen, B. Gonzalez, L. Varela, M. Pennycook, S. J. TI Column-by-column compositional mapping by Z-contrast imaging SO ULTRAMICROSCOPY LA English DT Article DE High-resolution electron microscopy; Z-contrast imaging; Compositional mapping ID TRANSMISSION ELECTRON-MICROSCOPY; STEM ANALYSIS; RESOLUTION; INTERFACES; IMAGES AB A phenomenological method is developed to determine the composition of materials, with atomic column resolution, by analysis of integrated intensities of aberration-corrected Z-contrast scanning transmission electron microscopy images. The method is exemplified for InAs(x)P(1-x) alloys using epitaxial thin films with calibrated compositions as standards. Using this approach we have determined the composition of the two-dimensional wetting layer formed between self-assembled InAs quantum wires on InP(0 0 1) substrates. (C) 2008 Elsevier B.V. All rights reserved. C1 [Molina, S. I.; Sales, D. L.] Univ Cadiz, Fac Ciencias, Dept Ciencia Mat & IM & QI, Cadiz 11510, Spain. [Galindo, P. L.] Univ Cadiz, CASEM, Dept Languajes & Sist Informat, Cadiz 11510, Spain. [Fuster, D.; Gonzalez, Y.; Alen, B.; Gonzalez, L.] CSIC, CNM, Inst Microelect, Madrid 28760, Spain. [Varela, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Molina, SI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sergio.molina@uca.es RI Molina, Sergio/A-8241-2008; Gonzalez, Luisa/E-6990-2010; Varela, Maria/H-2648-2012; Gonzalez, Yolanda/C-5234-2011; Microelectronica de Madrid, Instituto de/D-5173-2013; Fuster, David/A-7295-2014; Varela, Maria/E-2472-2014; Sales, David/K-9453-2014; GALINDO, PEDRO/L-6183-2014; Alen, Benito/G-3712-2012 OI Molina, Sergio/0000-0002-5221-2852; Gonzalez, Luisa/0000-0002-8745-7673; Gonzalez, Yolanda/0000-0002-7581-7328; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045; Fuster, David/0000-0002-8809-697X; Varela, Maria/0000-0002-6582-7004; Sales, David/0000-0001-6652-514X; GALINDO, PEDRO/0000-0003-0892-8113; Alen, Benito/0000-0003-3939-1611 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US DOE; SANDiE European Network of Excellence [NMP4-CT-2004-500101]; Spanish MEC [TEC2005-05781-CO3-01 y 02, NAN2004-09109-CO4-01]; Consolider-Ingenio [CSD2006-00019]; CAM [S 0505ESP 0200]; Junta de Andalucia [TEP-120, TIC-145, PA105-TEP-00383] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US DOE (MV and SJP), the SANDiE European Network of Excellence (Contract No NMP4-CT-2004-500101), the Spanish MEC (TEC2005-05781-CO3-01 y 02, NAN2004-09109-CO4-01, Consolider-Ingenio 2010 CSD2006-00019), the CAM (S 0505ESP 0200) and the Junta de Andalucia (PAI research groups TEP-120 and TIC-145; project No PA105-TEP-00383). NR 24 TC 43 Z9 43 U1 1 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JAN PY 2009 VL 109 IS 2 BP 172 EP 176 DI 10.1016/j.ultramic.2008.10.008 PG 5 WC Microscopy SC Microscopy GA 405IR UT WOS:000263217000006 PM 19062188 ER PT J AU Li, CP Huang, LJ Duric, N Zhang, HJ Rowe, C AF Li, Cuiping Huang, Lianjie Duric, Nebojsa Zhang, Haijiang Rowe, Charlotte TI An improved automatic time-of-flight picker for medical ultrasound tomography SO ULTRASONICS LA English DT Article DE Automatic time-of-flight picker; Clinical ultrasound tomography; Akaike information criterion; Model inference ID PHASE PICKING; RECORDINGS; ALGORITHM; ARRAYS; SCALE AB Objective and motivation Time-of-flight (TOF) tomography used by a clinical ultrasound tomography device can efficiently and reliably produce sound-speed images of the breast for cancer diagnosis. Accurate picking of TOFs of transmitted ultrasound signals is extremely important to ensure high-resolution and high-quality ultrasound sound-speed tomograms. Since manually picking is time-consuming for large datasets, we developed an improved automatic TOF picker based on the Akaike information criterion (AIC), as described in this paper. Methods We make use of an approach termed multi-model inference (model averaging), based on the calculated AIC values, to improve the accuracy of TOF picks. By using multi-model inference, our picking method incorporates all the information near the TOF of ultrasound signals. Median filtering and reciprocal pair comparison are also incorporated in our AIC picker to effectively remove outliers. Results We validate our AIC picker using synthetic ultrasound waveforms, and demonstrate that our automatic TOF picker can accurately pick TOFs in the presence of random noise with absolute amplitudes up to 80% of the maximum absolute signal amplitude. We apply the new method to 1160 in vivo breast ultrasound waveforms, and compare the picked TOFs with manual picks and amplitude threshold picks. The mean value and standard deviation between our TOF picker and manual picking are 0.4 mu s and 0.29 mu s, while for amplitude threshold picker the values are 1.02 mu s and 0.9 mu s, respectively. Tomograms for in vivo breast data with high signal-to-noise ratio (SNR) (similar to 25 dB) and low SNR (similar to 18 dB) clearly demonstrate that our AIC picker is much less sensitive to the SNRs of the data, compared to the amplitude threshold picker. Discussion and conclusions The picking routine developed here is aimed at determining reliable quantitative values, necessary for adding diagnostic information to our clinical ultrasound tomography device-CURE. It has been successfully adopted into CURE, and allows us to generate such values reliably. We demonstrate that in vivo sound-speed tomograms with our TOF picks significantly improve the reconstruction accuracy and reduce image artifacts. (C) 2008 Elsevier B.V. All rights reserved. C1 [Li, Cuiping; Duric, Nebojsa] Wayne State Univ, Hudson Webber Canc Res Ctr, Karmanos Canc Inst, Detroit, MI 48201 USA. [Zhang, Haijiang] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Huang, Lianjie; Rowe, Charlotte] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, CP (reprint author), Wayne State Univ, Hudson Webber Canc Res Ctr, Karmanos Canc Inst, 110 E Warren, Detroit, MI 48201 USA. EM lic@karmanos.org OI Rowe, Charlotte/0000-0001-5803-0147 FU Karmanos Cancer Institute; US DOE Laboratory-Directed Research and Development program at Los Alamos National Laboratory FX The work was supported through the Karmanos Cancer Institute and the US DOE Laboratory-Directed Research and Development program at Los Alamos National Laboratory. NR 21 TC 42 Z9 43 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD JAN PY 2009 VL 49 IS 1 BP 61 EP 72 DI 10.1016/j.ultras.2008.05.005 PG 12 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 385SP UT WOS:000261834200011 PM 18620723 ER PT S AU Podar, M Keller, M Hugenholtz, P AF Podar, Mircea Keller, Martin Hugenholtz, Philip BE Epstein, SS TI Single Cell Whole Genome Amplification of Uncultivated Organisms SO UNCULTIVATED MICROORGANISMS SE Microbiology Monographs LA English DT Article; Book Chapter ID HIGH-THROUGHPUT; GEN. NOV.; IN-SITU; MICROBIAL COMMUNITIES; ACTIVATED-SLUDGE; BACTERIAL PHYLUM; DIVISION TM7; MICROORGANISMS; RECONSTRUCTION; IDENTIFICATION AB Whole genome amplification of single cells is emerging as a powerful technique for accessing the genomes of individual members of microbial communities without the complication of identifying the source of sequence data posed by shotgun sequencing of environmental samples (metagenomics). This method holds particular promise for the molecular unveiling of uncultivated organisms that comprise the bulk of the microbial diversity and functionality on our planet. C1 [Hugenholtz, Philip] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA. [Podar, Mircea; Keller, Martin] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Hugenholtz, P (reprint author), DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA. EM phugenholtz@lbl.gov RI Hugenholtz, Philip/G-9608-2011; OI Podar, Mircea/0000-0003-2776-0205 NR 52 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1862-5576 BN 978-3-540-85464-7 J9 MICROBIOL MONOGR JI Microbiol. Monogr. PY 2009 VL 10 BP 83 EP 99 DI 10.1007/7171_2008_10 D2 10.1007/978-3-540-85465-4 PG 17 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA BLJ99 UT WOS:000270340400005 ER PT S AU Schmidt, TM Konopka, AE AF Schmidt, Thomas M. Konopka, Allan E. BE Epstein, SS TI Physiological and Ecological Adaptations of Slow-Growing, Heterotrophic Microbes and Consequences for Cultivation SO UNCULTIVATED MICROORGANISMS SE Microbiology Monographs LA English DT Article; Book Chapter ID UNCULTURED SOIL BACTERIA; MARINE-BACTERIA; BACTERIOPLANKTON COMMUNITIES; DILUTION CULTURE; INCUBATION-TIME; ORGANIC-MATTER; FLOW-CYTOMETRY; PURE CULTURE; COPY NUMBER; GROWTH AB There is a large discrepancy between the number of microbes that can be visualized in samples from most natural environments and the small number that grows readily in the laboratory. This anomaly hinders opportunities to advance our understanding of the vast metabolic and evolutionary diversity of microbes, and imposes severe limitations on our capacity to link patterns of ecological diversity with the functioning of microbial communities. This chapter focuses on slow-growing, heterotrophic microbes as a potential source of cultures to represent the remarkable phylogenetic diversity of the microbial world. Despite the obvious advantages conferred upon microbes that leave the most progeny per unit time, chronic limitation of nutrients in many environments selects for microbes that are able to survive and use resources efficiently, even if it involves a trade-off for faster growth when resources are abundant. Understanding the ecological strategies of slow-growing microbes and adjusting expectations for cultivation to match the physiological capabilities of these microbes offer an opportunity to narrow the tremendous gap between the microscopically visible microbes and those that are readily cultivated. C1 [Schmidt, Thomas M.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Konopka, Allan E.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Schmidt, TM (reprint author), Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. EM tschmidt@msu.edu; allan.konopka@pnl.gov NR 77 TC 4 Z9 4 U1 0 U2 5 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1862-5576 BN 978-3-540-85464-7 J9 MICROBIOL MONOGR JI Microbiol. Monogr. PY 2009 VL 10 BP 101 EP 120 DI 10.1007/7171_2008_11 D2 10.1007/978-3-540-85465-4 PG 20 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA BLJ99 UT WOS:000270340400006 ER PT B AU Roeper, DF Chidambaram, D AF Roeper, Donald F. Chidambaram, Dev BE Wolfe, GH TI DEVELOPMENT AND CHARACTERIZATION OF AN ENVIRONMENTALLY FRIENDLY COATING TO PROTECT DEPLETED URANIUM-0.75 WT. % TITANIUM ALLOY SO URANIUM: COMPOUNDS, ISOTOPES AND APPLICATIONS LA English DT Article; Book Chapter ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CHROMATE CONVERSION COATINGS; CORROSION-RESISTANT COATINGS; MOLYBDENUM OXIDE CATALYSTS; MICRO-RAMAN SPECTROSCOPY; DISSOLUTION MECHANISM; AQUEOUS-SOLUTION; STEEL SURFACES; WATER REACTION AB A coating that uses benign chemicals and an environmentally-friendly process has been developed to mitigate the corrosion of the depleted uranium (DU) - 0.75 wt. % titanium alloy. We describe the various stages, the method of selecting candidate materials, and the logical decisions that led to the development of a molybdate-based protective coating. We hope this chapter will be used by corrosion scientists as a model to formulate new coating materials from scratch. In addition to the coating, we have also extensively studied the alloy surface to enhance of understanding of the surface chemistry and the electrochemical behavior of the alloy at various stages of the coating process. The surface chemistry and morphology of the alloy was studied using scanning electron microscopy, energy dispersive spectroscopy and optical microscopy. The alloy surface revealed an acicular martensitic microstructure after chemical etching. Several impurities in the alloy have been identified and their prevalence has been found to vary from sample to sample, but they do not appear to affect the ability to form the coating. The electrochemistry of the alloy was studied using open circuit potential measurements and potentiodynamic polarization techniques. The coatings were also studied using scanning electron microscopy, energy dispersive spectroscopy and optical microscopy. Surface activation of the alloy by nitric acid was found to yield a more robust coating than by other techniques that had been tested. The acid-activated surface also forms a coating that offers corrosion protection after a period of aging. The corrosion protection ability of the coatings was evaluated by potentiodynamic polarization testing in quiescent 0.05 M NaCl. Electrochemical impedance spectroscopic analysis of the coating was compared with that of the untreated DU alloy. While the as-made coating yielded Nyquist plots that were similar to the untreated samples which contained capacitive and inductive loops, the aged coating exhibited significantly different behavior and was modeled with an equivalent circuit containing four elements. During the aging process, the component ions of the coating recombine to form the protective layer. Raman and Infrared spectroscopies have been performed to examine the chemistry during aging. Raman indicates that the coating has an octamolybdate structure and FTIR shows that uranyl hydroxide is present in the as-made coating but no longer apparent in the aged coatings, supporting the proposed mechanism describing the aging process of the coating. X-ray photoelectron spectroscopy revealed that the protective coating is primarily a polymolybdate bound to a uranyl ion. This technique of forming the appropriate coating constituents and allowing them to recombine into a protective coating during an aging process can be applied to other metals and alloys. A review of prior work on corrosion and corrosion control is also presented. C1 [Roeper, Donald F.] USN, Res Lab, Washington, DC 20375 USA. [Chidambaram, Dev] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Roeper, DF (reprint author), USN, Res Lab, Chem Div Code 6130, Washington, DC 20375 USA. NR 172 TC 0 Z9 0 U1 0 U2 0 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60692-573-7 PY 2009 BP 1 EP 44 PG 44 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BLV13 UT WOS:000271126300001 ER PT B AU Balasubramanian, K Siekhaus, WJ McLean, W AF Balasubramanian, K. Siekhaus, Wigbert J. McLean, William, II BE Wolfe, GH TI URANIUM HYDRIDING: MECHANISMS, TRENDS AND INFLUENCE OF IMPURITIES SO URANIUM: COMPOUNDS, ISOTOPES AND APPLICATIONS LA English DT Article; Book Chapter ID POTENTIAL-ENERGY SURFACES; MATRIX INFRARED-SPECTRA; ELECTRONIC-STRUCTURE; SOLID ARGON; IR-SPECTRA; HYDROGEN; MOLECULES; KINETICS; METAL; INSERTION AB We have reviewed the mechanisms and trends with particular emphasis on the role of impurities in the uranium hydriding reaction, an important process that causes corrosion of the uranium material. Recent experimental and computational studies have shown that certain elemental impurity sites in the material could act as the sites that initiate hydriding and initiate the process. In recent times, ion-implantation studies have also been carried out, and these studies have provided substantial insight into which elemental impurities are critical to initiating the hydriding reactions. We have reviewed the recent results of relativistic quantum chemical modeling studies that have provided considerable insight into uranium hydriding. The potential energy surfaces have yielded the activation energy barriers for the uranium hydriding reactions, thus providing a platform for comparison of the activation barriers with and without impurities. Moreover, Laplacian topographies of charge densities are shown to provide significant new insights into the hydriding sites and the role of impurities in causing the hydriding reaction. In conformity with experimental findings, recent computational studies indicate that the UH(3) product can catalyze further hydriding. This is inferred computationally through the depleted charge peak at the uranium hydride site. We have developed a comprehensive relative assessment of various impurities in either promoting hydriding or slowing down the hydriding reaction. It is shown that such trends can be derived through 3D charge topographic characteristics from relativistic quantum modeling. C1 [Balasubramanian, K.; Siekhaus, Wigbert J.; McLean, William, II] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. RP Balasubramanian, K (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. NR 65 TC 1 Z9 1 U1 0 U2 1 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60692-573-7 PY 2009 BP 71 EP 93 PG 23 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BLV13 UT WOS:000271126300003 ER PT B AU Wellman, DM Pierce, EM Vermeul, VR Mattigod, SV Richards, EL Williams, MD Fruchter, JS Icenhower, JP AF Wellman, D. M. Pierce, E. M. Vermeul, V. R. Mattigod, S. V. Richards, E. L. Williams, M. D. Fruchter, J. S. Icenhower, J. P. BE Wolfe, GH TI IN SITU URANIUM STABILIZATION THROUGH POLYPHOSPHATE REMEDIATION: DEVELOPMENT AND DEMONSTRATION AT THE HANFORD SITE 300 AREA, WASHINGTON STATE SO URANIUM: COMPOUNDS, ISOTOPES AND APPLICATIONS LA English DT Article; Book Chapter ID CALCIUM-PHOSPHATE PRECIPITATION; HYDROTHERMAL ION-EXCHANGE; GIBBS FREE-ENERGIES; CRYSTAL-GROWTH; DISSOLUTION KINETICS; APATITE DISSOLUTION; HYDROXYAPATITE DISSOLUTION; SODIUM TRIPOLYPHOSPHATE; CONTAMINATED SEDIMENTS; OCTACALCIUM PHOSPHATE AB The Hanford Site, in southeastern Washington State, is a former nuclear defense production facility. A groundwater plume containing uranium, originating from a combination of purposeful discharges of wastewater to cribs, trenches, and ponds, along with some accidental leaks and spills with nuclear fuel fabrication activities, has persisted beneath the Hanford Site 300 Area for many years. The uranium plume is just upstream of the city of Richland municipal water supply intake on the Columbia River. Despite the cessation of uranium releases and the removal of shallow vadose zone source materials, the remedial action objective to lower the concentration of groundwater uranium to the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 30 mu g/L has not been achieved within the anticipated 10-year time period. Despite several decades of studies, effective uranium cleanup strategies remain elusive for contamination in deep subsurface settings that prevail at a number of U.S. Department of Energy (DOE) sites in the western United States. Numerous strategies have been proposed including iron barriers, soluble reductive agents, microbial stabilization via reduction and precipitation, and emplacement of solid phosphate barriers. While these all have merit, each encounters limitations for deep subsurface remediation in an oxidative environment (Peterson et al. 2005; Wellman et al. 2005b; Wellman et al. 2006c; McGrail and Mattigod 1999; DOE 2005a; DOE. 2005b). Polyphosphate technology has been demonstrated to delay the precipitation of phosphate phases for controlled in situ formation of stabile phosphate phases which control the long-term fate of uranium (Wellman et al. 2005b; Wellman et al. 2006c). Precipitation of phosphate minerals occurs when phosphate compounds degrade in water to yield the orthophosphate molecule (PO(4)(3-)). Accordingly, a detailed understanding of polyphosphate degradation and reaction kinetics, in the context of site-specific information, allows the technology to be tailored as a time-released source of phosphate for direct subsurface treatment without a drastic change in hydraulic conductivity of the target aquifer. A site-specific treatability test was conducted to optimize polyphosphate remediation technology for implementation through a pilot-scale field technology demonstration to accelerate monitored natural attenuation of the uranium plume within the Hanford 300 Area aquifer. A focused application of polyphosphate was conducted in a source or "hot spot" area to reduce the inventory of available uranium that contributes to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite acting as a long-term sorbent for uranium. The general treatability testing approach consisted of initial site characterization and setup, a polyphosphate injection test, and post-treatment performance assessment. Fundamental science studies were conducted with site- specific sediment and groundwater to develop an effective remediation scheme for deployment of polyphosphate technology. In addition to remediating a portion of the plume, the data from this test provide valuable information for designing a full-scale remediation of uranium in the aquifer at the 300 Area of the Hanford Site. Results provide a detailed understanding of the fundamental underpinnings necessary to evaluate the efficacy and potential use of polyphosphate technology at other sites with varying geochemical and hydrodynamic conditions. C1 [Wellman, D. M.; Pierce, E. M.; Vermeul, V. R.; Mattigod, S. V.; Richards, E. L.; Williams, M. D.; Fruchter, J. S.; Icenhower, J. P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wellman, DM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 143 TC 0 Z9 0 U1 1 U2 9 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60692-573-7 PY 2009 BP 473 EP 551 PG 79 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BLV13 UT WOS:000271126300014 ER PT J AU Kim, KH Norton, DP Christen, DK Cantoni, C Paranthaman, M Aytug, T AF Kim, K. H. Norton, D. P. Christen, D. K. Cantoni, C. Paranthaman, M. Aytug, T. TI Epitaxial growth of MgO/TiN multilayers on Cu SO VACUUM LA English DT Article DE Oxides; Epitaxy; Pulsed-laser deposition; Superconductivity; Diffusion barriers; Copper; Titanium nitride; Magnesium oxide ID CRITICAL-CURRENT DENSITY; BIAXIALLY TEXTURED NI; COATED CONDUCTOR APPLICATIONS; COPPER METALLIZATION; RABITS APPROACH; YBCO FILMS; METALS; DEPOSITION; DIFFUSION; TAPES AB The growth of epitaxial MgO/TiN multilayer films on (001) Cu has been investigated. In particular, epitaxial structures were grown on (001) Cu layers that were epitaxial on (001) SrTiO(3). X-ray diffraction and reflection high-energy electron diffraction indicate that the multilayer structures are epitaxial on the (001) Cu surface. The motivation is the use of crystalline MgO/TiN multilayers as a diffusion barrier to both copper and oxygen. MgO/TiN multilayers are potentially useful as diffusion barriers for Cu interconnects on semiconductors as well as for superconducting wires based on the epitaxial growth of cuprate superconductors on biaxially textured copper. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kim, K. H.; Norton, D. P.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kim, K. H.; Christen, D. K.; Cantoni, C.; Aytug, T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Paranthaman, M.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Norton, DP (reprint author), Univ Florida, Dept Mat Sci & Engn, POB 116400, Gainesville, FL 32611 USA. EM dnort@mse.ufl.edu RI Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013 OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni, Claudia/0000-0002-9731-2021 FU National Science Foundation [CHE-0304810]; U.S. Department of Energy; UT-Battelle, LLC FX This work was partially supported by the National Science Foundation under grant CHE-0304810. The ORNL research was sponsored by the U.S. Department of Energy under contract with UT-Battelle, LLC. NR 31 TC 5 Z9 5 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD JAN 1 PY 2009 VL 83 IS 5 BP 897 EP 901 DI 10.1016/j.vacuum.2008.10.002 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 389ZG UT WOS:000262133500023 ER PT S AU Serkland, DK Keeler, GA Geib, KM Peake, GM AF Serkland, Darwin K. Keeler, Gordon A. Geib, Kent M. Peake, Gregory M. BE Choquette, KD Lei, C TI Narrow Linewidth VCSELs for High-Resolution Spectroscopy SO VERTICAL-CAVITY SURFACE-EMITTING LASERS XIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Vertical-Cavity Surface-Emitting Lasers XIII CY JAN 28-29, 2009 CL San Jose, CA SP SPIE DE VCSEL; vertical-cavity surface-emitting laser; linewidth; linewidth enhancement factor; spectroscopy; cesium; atomic clock AB A future generation of high-performance low-power atomic systems is expected to require VCSEL linewidths below 10 MHz for compatibility with the natural atomic linewidth (5 MHz for cesium) that is realized with atomic beams, trapped atoms, and trapped ions. This paper describes initial efforts at Sandia to reduce VCSEL linewidth by increasing the effective cavity length of an 850-nm monolithic VCSEL. In particular, two aspects of VCSEL design will be discussed: the Q of the VCSEL cavity, and the linewidth enhancement factor of the active region material. We report a factor of two linewidth reduction, from 50 MHz for our standard oxide-aperture VCSEL to 23 MHz for an extended-cavity VCSEL. C1 [Serkland, Darwin K.; Keeler, Gordon A.; Geib, Kent M.; Peake, Gregory M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Serkland, DK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM DKSERKL@sandia.gov NR 12 TC 1 Z9 1 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7475-9 J9 PROC SPIE PY 2009 VL 7229 AR 722907 DI 10.1117/12.809455 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BST80 UT WOS:000285776400006 ER PT S AU Hlawitschka, M Weber, GH Anwander, A Carmichael, OT Hamann, B Scheuermann, G AF Hlawitschka, Mario Weber, Gunther H. Anwander, Alfred Carmichael, Owen T. Hamann, Bernd Scheuermann, Gerik BE Laidlaw, D Weickert, J TI Interactive Volume Rendering of Diffusion Tensor Data SO VISUALIZATION AND PROCESSING OF TENSOR FIELDS: ADVANCES AND PERSPECTIVES SE Mathematics and Visualization LA English DT Article; Book Chapter ID WHITE-MATTER STRUCTURE; MRI; BRAIN AB As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions. advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Therefore, we present techniques for multimodal volume rendering of medical data sets with a focus on visualization of diffusion tensor images. The techniques presented allow interactive filtering of information based of importance, directional information, and user-defined areas. By influencing the blending between the data sets, contextual information around the selected structures is preserved. C1 [Hlawitschka, Mario; Scheuermann, Gerik] Univ Leipzig, Inst Informat, D-04009 Leipzig, Germany. [Hlawitschka, Mario; Hamann, Bernd] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Hlawitschka, Mario; Hamann, Bernd] Univ Calif Davis, Inst Data Anal & Visualizat IDAV, Davis, CA 95616 USA. [Weber, Gunther H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Anwander, Alfred] Max Planck Inst Human Cognit & Brain Sci, Dept Cort Networks & Cognit Funct, D-04103 Leipzig, Germany. [Carmichael, Owen T.] Univ Calif Davis, Dept Neurol, Davis, CA 95616 USA. [Carmichael, Owen T.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA. RP Hlawitschka, M (reprint author), Univ Leipzig, Inst Informat, PF 100920, D-04009 Leipzig, Germany. EM hlawitschka@informatik.uni-leipzig.de; ghweber@lbl.gov; anwander@cbs.mpg.de; ocarmichael@ucdavis.edu; hamann@cs.ucdavis.edu; scheuermann@informatik.uni-leipzig.de RI Anwander, Alfred/B-5874-2011 OI Anwander, Alfred/0000-0002-4861-4808 NR 30 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1612-3786 BN 978-3-540-88377-7 J9 MATH VIS PY 2009 BP 161 EP 176 DI 10.1007/978-3-540-88378-4_8 D2 10.1007/978-3-540-88378-4 PG 16 WC Computer Science, Artificial Intelligence; Mathematics, Applied; Imaging Science & Photographic Technology SC Computer Science; Mathematics; Imaging Science & Photographic Technology GA BJU86 UT WOS:000267219100008 ER PT S AU Mezei, F Russina, M Chen, G Frauenfelder, H Fenimore, PW Falus, P Farago, B AF Mezei, F. Russina, M. Chen, G. Frauenfelder, H. Fenimore, P. W. Falus, P. Farago, B. BE Bellissent-Funel, MC Dore, J TI Dynamic transition and glassy behaviour in hydrated proteins SO WATER INTERFACES IN PHYSICS CHEMISTRY AND BIOLOGY: A MULTI-DISCIPLINARY APPROACH SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Conference on Water Interfaces In Physics, Chemistry and Biology - A Multi-Disciplinary Approach CY DEC 08-13, 2007 CL Univ Innsbruck, Innsbruck, AUSTRIA HO Univ Innsbruck C1 [Mezei, F.; Chen, G.; Frauenfelder, H.; Fenimore, P. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mezei, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mezei@lanl.gov RI Farago, Bela/H-4544-2012; Russina, Margarita/E-9886-2016 OI Russina, Margarita/0000-0003-2067-606X NR 3 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 177 AR 012011 DI 10.1088/1742-6596/177/1/012011 PG 2 WC Physics, Atomic, Molecular & Chemical SC Physics GA BSV38 UT WOS:000285915700011 ER PT J AU Stringfellow, W Herr, J Litton, G Brunell, M Borglin, S Hanlon, J Chen, C Graham, J Burks, R Dahlgren, R Kendall, C Brown, R Quinn, N AF Stringfellow, William Herr, Joel Litton, Gary Brunell, Mark Borglin, Sharon Hanlon, Jeremy Chen, Carl Graham, Justin Burks, Remie Dahlgren, Randy Kendall, Carol Brown, Russ Quinn, Nigel TI Investigation of river eutrophication as part of a low dissolved oxygen total maximum daily load implementation SO WATER SCIENCE AND TECHNOLOGY LA English DT Article DE algae; central valley; dissolved oxygen; eutrophication; lowland river; phytoplankton; TMDL ID SAN-JOAQUIN RIVER; CALIFORNIA; DEMAND AB In the United States, environmentally impaired rivers are subject to regulation under total maximum daily load (TMDL) regulations that specify watershed wide water quality standards. In California, the setting of TMDL standards is accompanied by the development of scientific and management plans directed at achieving specific water quality objectives. The San Joaquin River (SJR) in the Central Valley of California now has a TMDL for dissolved oxygen (DO). Low DO conditions in the SJR are caused in part by excessive phytoplankton growth (eutrophication) in the shallow, upstream portion of the river that create oxygen demand in the deeper estuary. This paper reports on scientific studies that were conducted to develop a mass balance on nutrients and phytoplankton in the SJR. A mass balance model was developed using WARMF, a model specifically designed for use in TMDL management applications. It was demonstrated that phytoplankton biomass accumulates rapidly in a 88 km reach where plankton from small, slow moving tributaries are diluted and combined with fresh nutrient inputs in faster moving water. The SJR-WARMF model was demonstrated to accurately predict phytoplankton growth in the SJR. Model results suggest that modest reductions in nutrients alone will not limit algal biomass accumulation, but that combined strategies of nutrient reduction and algal control in tributaries may have benefit. The SJR-WARMF model provides stakeholders a practical, scientific tool for setting remediation priorities on a watershed scale. C1 [Stringfellow, William; Litton, Gary; Brunell, Mark; Borglin, Sharon; Hanlon, Jeremy; Graham, Justin; Burks, Remie] Univ Pacific, Sch Engn & Comp Sci, Environm Engn Res Program, Stockton, CA 95211 USA. [Stringfellow, William; Borglin, Sharon; Hanlon, Jeremy; Quinn, Nigel] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA USA. [Herr, Joel; Chen, Carl] Systech Engn Inc, San Ramon, CA 94583 USA. [Dahlgren, Randy] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Kendall, Carol] US Geol Survey, Menlo Pk, CA 94025 USA. [Brown, Russ] Jones & Stokes, Sacramento, CA 95818 USA. RP Stringfellow, W (reprint author), Univ Pacific, Sch Engn & Comp Sci, Environm Engn Res Program, Sears Hall,3601 Pacific Ave, Stockton, CA 95211 USA. EM wstringfellow@lbl.gov RI Stringfellow, William/O-4389-2015; Borglin, Sharon/I-1013-2016; Quinn, Nigel/G-2407-2015 OI Stringfellow, William/0000-0003-3189-5604; Quinn, Nigel/0000-0003-3333-4763 NR 16 TC 13 Z9 13 U1 0 U2 28 PU I W A PUBLISHING PI LONDON PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND SN 0273-1223 J9 WATER SCI TECHNOL JI Water Sci. Technol. PY 2009 VL 59 IS 1 BP 9 EP 14 DI 10.2166/wst.2009.739 PG 6 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 400JG UT WOS:000262863300002 PM 19151480 ER PT J AU Ho, CK AF Ho, C. K. TI Evaluation of reflection and refraction in simulations of ultraviolet disinfection using the discrete ordinates radiation model SO WATER SCIENCE AND TECHNOLOGY LA English DT Article DE CFD; discrete ordinates; reflection; refraction; UV disinfection AB Simulations of UV disinfection systems require accurate models of UV radiation within the reactor. Processes such as reflection and refraction at surfaces within the reactor can impact the intensity of the simulated radiation field, which in turn impacts the simulated dose and performance of the UV reactor. This paper describes a detailed discrete ordinates radiation model and comparisons to a test that recorded the UV radiation distribution around a low pressure UV lamp in a water-filled chamber with a UV transmittance of 88%. The effects of reflection and refraction at the quartz sleeve were investigated, along with the impact of wall reflection from the interior surfaces of the chamber. Results showed that the inclusion of wall reflection improved matches between predicted and measured values of incident radiation throughout the chamber. The difference between simulations with and without reflection ranged from several percent near the lamp to nearly 40% further away from the lamp. Neglecting reflection and refraction at the quartz sleeve increased the simulated radiation near the lamp and reduced the simulated radiation further away from the lamp. However, the distribution and trends in the simulated radiation field both with and without the effects of reflection and refraction at the quartz sleeve were consistent with the measured data distributions. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ho, CK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov NR 8 TC 4 Z9 7 U1 2 U2 4 PU I W A PUBLISHING PI LONDON PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND SN 0273-1223 J9 WATER SCI TECHNOL JI Water Sci. Technol. PY 2009 VL 59 IS 12 BP 2421 EP 2428 DI 10.2166/wst.2009.260 PG 8 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 465EW UT WOS:000267565800015 PM 19542648 ER PT J AU Gautesen, A Zernov, V Fradkin, L AF Gautesen, A. Zernov, V. Fradkin, L. TI Diffraction coefficients of a semi-infinite planar crack embedded in a transversely isotropic space SO WAVE MOTION LA English DT Article DE Diffraction coefficients; Transversely isotropic medium; Elastic waves ID ANISOTROPIC MEDIUM; WAVES AB We have considered a semi-infinite crack embedded in a transversely isotropic medium and studied two special cases, one, in which the axis of symmetry is normal to the crack face and the wave incidence is arbitrary and another, in which the axis lies in the crack plane normal to the edge and the incident wave vector is also normal to the edge. The problem is of interest in Non-Destructive Evaluation, because austenitic steels that are found in claddings and other welds in the nuclear reactors are often modeled as transversely isotropic. In both cases, we have expressed the scattered field in a closed form and computed the corresponding diffraction coefficients. An extended version of the article, which contains representative plots of the magnitudes of some such coefficients, can be found on http://arxiv.org/pdf/0802.0460. (C) 2008 Elsevier B.V. All rights reserved. C1 [Zernov, V.; Fradkin, L.] London S Bank Univ, Fac Engn Sci & Built Environm, Dept Elect Comp & Commun Engn, Waves & Fields Res Grp, London SE1 0AA, England. [Gautesen, A.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Gautesen, A.] Ames Lab, Ames, IA 50011 USA. RP Zernov, V (reprint author), London S Bank Univ, Fac Engn Sci & Built Environm, Dept Elect Comp & Commun Engn, Waves & Fields Res Grp, London SE1 0AA, England. EM zernovv@lsbu.ac.uk FU CEA/SACLAY [4 000 192 510 P7 533] FX Partial support for this work has been provided under the CEA/SACLAY Contract No. 4 000 192 510 P7 533. We are grateful to Professor Borovikov for many useful comments. NR 23 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2125 J9 WAVE MOTION JI Wave Motion PD JAN PY 2009 VL 46 IS 1 BP 29 EP 46 DI 10.1016/j.wavemoti.2008.07.003 PG 18 WC Acoustics; Mechanics; Physics, Multidisciplinary SC Acoustics; Mechanics; Physics GA 386TE UT WOS:000261904700003 ER PT B AU Marzoukand, OA Huckaby, ED AF Marzoukand, Osama A. Huckaby, E. David BE Ao, SI Douglas, C Grundfest, WS Burgstone, J TI Effects of Turbulence Modeling and Parcel Approach on Dispersed Two-Phase Swirling Flow SO WCECS 2009: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, VOLS I AND II SE Lecture Notes in Engineering and Computer Science LA English DT Proceedings Paper CT World Congress on Engineering and Computer Science CY OCT 20-22, 2009 CL San Francisco, CA SP Int Assoc Engineers DE two-phase flow; swirl; turbulence model; particle; parcel ID LARGE-EDDY SIMULATION; PARTICLE-LADEN FLOWS; COMBUSTION; EXPANSION AB Several numerical simulations of a coaxial particle-laden swirling air flow in a vertical circular pipe were performed. The air flow was modeled using the unsteady Favre-averaged Navier-Stokes equations. A Lagrangian model was used for the particle motion. The gas and particles are coupled through two-way momentum exchange. The results of the simulations using three versions of the k - epsilon turbulence model (standard, re-normalization group (RNG), and realizable) are compared with experimental mean velocity profiles. The standard model achieved the best overall performance. The realizable model was unable to satisfactorily predict the radial velocity; it is also the most computationally-expensive model. The simulations using the RNG model predicted additional recirculation zones. We also compared the particle and parcel approaches in solving the particle motion. In the latter, multiple similar particles are grouped in a single parcel, thereby reducing the amount of computation. C1 [Marzoukand, Osama A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Marzoukand, OA (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM omarzouk@vt.edu; E.David.Huckaby@NETL.DOE.gov NR 30 TC 0 Z9 0 U1 0 U2 0 PU INT ASSOC ENGINEERS-IAENG PI HONG KONG PA UNIT1, 1-F, 37-39 HUNG TO ROAD, KWUN TONG, HONG KONG, 00000, PEOPLES R CHINA BN 978-988-17012-6-8 J9 LECT NOTES ENG COMP PY 2009 BP 972 EP 982 PG 11 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BPZ34 UT WOS:000280421400181 ER PT J AU Zhang, W Yang, YP AF Zhang, W. Yang, Y-P. TI DEVELOPMENT AND APPLICATION OF ON-LINE WELD MODELLING TOOL SO WELDING IN THE WORLD LA English DT Article DE Computation; Deformation; Distortion; Finite element analysis; Microstructure; Reference list; Residual stresses; Welding ID FLUID-FLOW; STEEL; HEAT AB On-line software tool, E-Weld Predictor, has been developed to predict temperature, microstructure, stress, and distortion for arc welding processes by combining the power of numerical weld modelling and high performance computational hardware. It provides users with easy access to advanced modelling tools over the internet to quickly explore various welding scenarios. This paper reveals the underlying mathematical equations implemented in E-Weld Predictor and discusses several applications of E-Weld Predictor. One application is to understand the effect of heat input on the resulting microstructure, residual stresses and distortion for a U-groove X-65 steel butt joint. Results show that a larger heat input is likely to result in higher heat build-up, larger residual stresses and larger distortion. Another application is to calculate the cooling rates for a narrow groove X-100 steel weld. The results show that increase of preheating temperature reduces the cooling rate. It is hoped that by providing easy-to-use and accessible advanced weld models, the usage of the computational models will be increased by welding and design engineers in the industrial companies. C1 [Zhang, W.; Yang, Y-P.] Edison Welding Inst Inc, Columbus, OH USA. RP Zhang, W (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. FU Edison Technology and Industry Center Services FX EWI acknowledges the contribution of the State of Ohio, Department of Development and Thomas Edison Program, which provided funding in support of Edison Technology and Industry Center Services. The content reflects the views of EWI and does not purport to reflect the views of the State of Ohio. The authors are grateful to Dr. S. S. Babu, J. Xu, W. Gan, S. R Khurana and C. Conrardy for their support. The authors also sincerely thank Ohio Supercomputer Center for implementing of the front-end and hosting the E-Weld Predictor. NR 24 TC 2 Z9 2 U1 0 U2 8 PU INT INST WELDING PI 95942 ROISSY CH DE GAULLE CEDEX PA BP 51362, 95942 ROISSY CH DE GAULLE CEDEX, 00000, FRANCE SN 0043-2288 J9 WELD WORLD JI Weld. World PD JAN-FEB PY 2009 VL 53 IS 1-2 BP 67 EP 75 PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 568AE UT WOS:000275492200007 ER PT B AU Divone, LV AF Divone, Louis V. BE Spera, DA TI Evolution of Modern Wind Turbines Part A: 1940 to 1994 SO WIND TURBINE TECHNOLOGY: FUNDAMENTAL CONCEPTS OF WIND TURBINE ENGINEERING, SECOND EDITION LA English DT Article; Book Chapter C1 US DOE, Washington, DC USA. RP Divone, LV (reprint author), US DOE, Washington, DC USA. NR 66 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-0260-1 PY 2009 BP 105 EP 170 DI 10.1115/1.802601.ch3a D2 10.1115/1.802601 PG 66 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BGT44 UT WOS:000324080100003 ER PT B AU Thresher, RW Robinson, M Musial, W Veers, PS AF Thresher, Robert W. Robinson, Michael Musial, Walter Veers, Paul S. BE Spera, DA TI Evolution of Modern Wind Turbines Part B: 1988 to 2008 SO WIND TURBINE TECHNOLOGY: FUNDAMENTAL CONCEPTS OF WIND TURBINE ENGINEERING, SECOND EDITION LA English DT Article; Book Chapter C1 [Thresher, Robert W.; Robinson, Michael; Musial, Walter] Natl Renewable Energy Lab, Golden, CO USA. [Veers, Paul S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Thresher, RW (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 34 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-0260-1 PY 2009 BP 171 EP 201 DI 10.1115/1.802601.ch3b D2 10.1115/1.802601 PG 31 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BGT44 UT WOS:000324080100004 ER PT B AU Schreck, S AF Schreck, Scott BE Spera, DA TI Wind Turbine Aerodynamics Part B: Turbine Blade Flow Fields SO WIND TURBINE TECHNOLOGY: FUNDAMENTAL CONCEPTS OF WIND TURBINE ENGINEERING, SECOND EDITION LA English DT Article; Book Chapter ID DYNAMIC STALL; MODEL; PREDICTION; FLIGHT; ROTOR; LOADS C1 Natl Renewable Energy Lab, Golden, CO USA. RP Schreck, S (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 56 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-0260-1 PY 2009 BP 351 EP 371 DI 10.1115/1.802601.ch5b D2 10.1115/1.802601 PG 21 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BGT44 UT WOS:000324080100007 ER PT B AU Thresher, RW Mirandy, LP Carne, TG Lobitz, DW James, GH AF Thresher, Robert W. Mirandy, Louis P. Carne, Thomas G. Lobitz, Donald W. James, George H., III BE Spera, DA TI Structural Dynamic Behavior of Wind Turbines SO WIND TURBINE TECHNOLOGY: FUNDAMENTAL CONCEPTS OF WIND TURBINE ENGINEERING, SECOND EDITION LA English DT Article; Book Chapter ID BLADE C1 [Thresher, Robert W.] Natl Renewable Energy Lab, Golden, CO USA. [Mirandy, Louis P.] GE Co, King Of Prussia, PA USA. [Carne, Thomas G.; Lobitz, Donald W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [James, George H., III] NASA Johnson Space Ctr, Houston, TX USA. RP Thresher, RW (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 41 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-0260-1 PY 2009 BP 605 EP 662 DI 10.1115/1.802601.ch11 D2 10.1115/1.802601 PG 58 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BGT44 UT WOS:000324080100013 ER PT B AU Wright, AD AF Wright, Alan D. BE Spera, DA TI Wind Turbine Control Systems SO WIND TURBINE TECHNOLOGY: FUNDAMENTAL CONCEPTS OF WIND TURBINE ENGINEERING, SECOND EDITION LA English DT Article; Book Chapter ID PITCH CONTROL C1 Natl Renewable Energy Lab, Golden, CO USA. RP Wright, AD (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 56 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-0260-1 PY 2009 BP 741 EP 757 DI 10.1115/1.802601.ch14 D2 10.1115/1.802601 PG 17 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BGT44 UT WOS:000324080100016 ER PT B AU Sandberg, T AF Sandberg, Tami BE Spera, DA TI Bibliography of Wind Energy Conference Proceedings SO WIND TURBINE TECHNOLOGY: FUNDAMENTAL CONCEPTS OF WIND TURBINE ENGINEERING, SECOND EDITION LA English DT Bibliography; Book Chapter C1 Natl Renewable Energy Lab, Golden, CO USA. RP Sandberg, T (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-0260-1 PY 2009 BP 761 EP 773 D2 10.1115/1.802601 PG 13 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BGT44 UT WOS:000324080100018 ER PT B AU Labov, S Slezak, T AF Labov, Simon Slezak, Tom BE Maurer, SM TI The Indispensable Technology: Detectors for Nuclear, Biological, and Chemical WMD SO WMD TERRORISM: SCIENCE AND POLICY CHOICES LA English DT Article; Book Chapter C1 [Labov, Simon; Slezak, Tom] Lawrence Livermore Natl Lab, Global Secur Program, Livermore, CA 94550 USA. RP Labov, S (reprint author), Lawrence Livermore Natl Lab, Global Secur Program, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA BN 978-0-262-01298-0 PY 2009 BP 139 EP 167 PG 29 WC Planning & Development; Public Administration SC Public Administration GA BPL40 UT WOS:000279133000006 ER PT B AU Nacht, M Henriquez, BP AF Nacht, Michael Henriquez, Blas Perez BE Maurer, SM TI Securing America's Borders and Ports SO WMD TERRORISM: SCIENCE AND POLICY CHOICES LA English DT Article; Book Chapter C1 [Nacht, Michael] UC Berkeley, Goldman Sch Publ Policy, Berkeley, CA USA. [Nacht, Michael] Lawrence Livermore Natl Lab, Livermore, CA USA. [Nacht, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nacht, M (reprint author), UC Berkeley, Goldman Sch Publ Policy, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA BN 978-0-262-01298-0 PY 2009 BP 169 EP 189 PG 21 WC Planning & Development; Public Administration SC Public Administration GA BPL40 UT WOS:000279133000007 ER PT B AU Edmunds, T Wheeler, R AF Edmunds, Thomas Wheeler, Richard BE Maurer, SM TI Setting Priorities: Assessing Threats and Identifying Cost-Effective Responses to WMD Terrorism SO WMD TERRORISM: SCIENCE AND POLICY CHOICES LA English DT Article; Book Chapter C1 [Edmunds, Thomas; Wheeler, Richard] Lawrence Livermore Natl Lab, Nonproliferat Arms Control & Int Secur Program, Livermore, CA 94550 USA. RP Edmunds, T (reprint author), Lawrence Livermore Natl Lab, Nonproliferat Arms Control & Int Secur Program, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA BN 978-0-262-01298-0 PY 2009 BP 191 EP 209 PG 19 WC Planning & Development; Public Administration SC Public Administration GA BPL40 UT WOS:000279133000008 ER PT J AU Siantar, CH Taylor, TP Coleman, CN AF Siantar, Christine Hartmann Taylor, Tammy P. Coleman, C. Norman BE Maurer, SM TI Recovering from Nuclear and Radiological Attacks SO WMD TERRORISM: SCIENCE AND POLICY CHOICES LA English DT Article; Book Chapter C1 [Siantar, Christine Hartmann] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, C. Norman] Natl Canc Inst, Radiat Oncol Sci Program, Bethesda, MD 20892 USA. RP Siantar, CH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA BN 978-0-262-01298-0 PY 2009 BP 329 EP 364 PG 36 WC Planning & Development; Public Administration SC Public Administration GA BPL40 UT WOS:000279133000013 ER PT J AU Raber, E Carlsen, T Kirvel, R AF Raber, Ellen Carlsen, Tina Kirvel, Robert BE Maurer, SM TI Remediation Following Chemical and Biological Attacks SO WMD TERRORISM: SCIENCE AND POLICY CHOICES LA English DT Article; Book Chapter C1 [Raber, Ellen] Lawrence Livermore Natl Lab, Environm Protect Dept, Livermore, CA 94550 USA. RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Environm Protect Dept, Livermore, CA 94550 USA. NR 0 TC 4 Z9 4 U1 0 U2 0 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA BN 978-0-262-01298-0 PY 2009 BP 365 EP 388 PG 24 WC Planning & Development; Public Administration SC Public Administration GA BPL40 UT WOS:000279133000014 ER PT B AU Ball, DY Hair, LM McVey, T Nacht, M AF Ball, Deborah Yarsike Hair, Lucy M. McVey, Thomas Nacht, Michael BE Maurer, SM TI Preventing WMD Terrorism SO WMD TERRORISM: SCIENCE AND POLICY CHOICES LA English DT Article; Book Chapter C1 [Ball, Deborah Yarsike] Lawrence Livermore Natl Lab, Global Secur Directorate, Dynam Network Assessment Grp, Livermore, CA 94550 USA. [Ball, Deborah Yarsike] Lawrence Livermore Natl Lab, Global Secur Directorate, Polit Sci Grp, Livermore, CA USA. [Nacht, Michael] UC Berkeley, Goldman Sch Publ Policy, Berkeley, CA USA. [Nacht, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ball, DY (reprint author), Lawrence Livermore Natl Lab, Global Secur Directorate, Dynam Network Assessment Grp, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA BN 978-0-262-01298-0 PY 2009 BP 483 EP 510 PG 28 WC Planning & Development; Public Administration SC Public Administration GA BPL40 UT WOS:000279133000018 ER PT S AU Kim, YK AF Kim, Young-Kee BE Hartline, BK Horton, KR Kaicher, CM TI Extreme Physics: Where Small and Big Things Meet SO WOMEN IN PHYSICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd IUPAP International Conference on Women in Physics CY OCT 08-10, 2008 CL Seoul, SOUTH KOREA DE particle physics AB The profound discovery of Einstein a century ago, that particles can both be made from energy and disappear back into energy, inspires the experiments that provide our knowledge of the smallest building blocks of matter and the interactions among them. Experiments, done at enormous accelerators, have led to a consistent theory of the origins of our world up to a certain point. However, at an energy scale not far above what we can attain at existing accelerators, this picture is predicted to break down. Moreover, the theory of the very small is intimately connected to cosmology-the ultimate cause and structure of our universe. Cosmological observations again point to the need for a new theory in this energy range. With new tools and technologies, scientists in the field of particle physics are taking the next step toward understanding the nature of space and time. C1 [Kim, Young-Kee] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0645-2 J9 AIP CONF PROC PY 2009 VL 1119 BP 33 EP 36 PG 4 WC Education & Educational Research; Education, Scientific Disciplines; Physics, Multidisciplinary; Women's Studies SC Education & Educational Research; Physics; Women's Studies GA BJV60 UT WOS:000267264900006 ER PT J AU Menendez, CC Amick, BC Chang, CH Harrist, RB Jenkins, M Robertson, M Janowitz, I Rempel, DM Katzh, JN Dennerlein, JT AF Menendez, Cammie Chaumont Amick, Benjamin C., III Chang, Che-Hsu (Joe) Harrist, Ronald B. Jenkins, Mark Robertson, Michelle Janowitz, Ira Rempel, David M. Katzh, Jeffrey N. Dennerlein, Jack T. TI Evaluation of two posture survey instruments for assessing computing postures among college students SO WORK-A JOURNAL OF PREVENTION ASSESSMENT & REHABILITATION LA English DT Article DE Computer use; musculoskeletal symptoms; posture; college student ID MUSCULOSKELETAL SYMPTOMS; RISK-FACTORS; DISORDERS; USERS AB Objective: To determine agreement between two posture assessment survey instruments and which, if any, were correlated with experiencing upper extremity musculoskeletal symptoms. Methods: Thirty undergraduate participants had three postural assessment surveys completed, one each for three separate 7-day data collection periods during a semester. Two observation assessment tools were used, a modified Rapid Upper Limb Assessment (mRULA) for computer users for the right and left limbs and the University of California Computer Use Checklist. Concurrently, upper extremity musculoskeletal symptom experience paired to each postural assessment was measured. Lin's concordance correlation coefficient evaluated survey agreement and multi-level statistical models described associations between survey responses and symptoms. Results: There was no agreement between the two postural assessment tool scores (p > 0.85). In adjusted models, the UC Computer Use Checklist was positively associated with symptoms occurrence (OR = 1.4, 90% CI 1.2-1.6 for any symptoms; OR = 1.3, 90% CI 1.0-1.6 for moderate or greater symptoms). Associations with mRULA scores were inconsistent in that they were sometimes protective and sometimes indicators of risk, depending on the covariates included in the models. Conclusion: The mRULA for computer users and the UC Computer Use Checklist were independent of each other; however, due to the inconsistent associations with symptoms we cannot conclude one instrument is superior to the other. Our data do suggest the UC Computer Use Checklist demonstrates a traditional relationship with symptoms, where increasing scores signifiy greater risk. We observed a nontraditional relatioship with symptoms for the mRULA for computer users that needs to be further examined. This is a pilot study and, thus, findings should be interpreted as exploratory. Associations observed in the current study will be used to test hypotheses in the cohort study recently conducted. C1 [Menendez, Cammie Chaumont; Amick, Benjamin C., III; Harrist, Ronald B.] Univ Texas Houston, Sch Publ Hlth, Houston, TX USA. [Amick, Benjamin C., III] Inst Work & Hlth, Toronto, ON, Canada. [Chang, Che-Hsu (Joe); Dennerlein, Jack T.] Harvard Univ, Sch Publ Hlth, Cambridge, MA 02138 USA. [Jenkins, Mark] Rice Univ, Houston, TX 77251 USA. [Robertson, Michelle] Liberty Mutual Res Inst Safety, Hopkinton, MA USA. [Janowitz, Ira] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rempel, David M.] Univ Calif San Francisco, Dept Med, San Francisco, CA USA. [Katzh, Jeffrey N.] Harvard Univ, Sch Med, Dept Orthoped Surg, Brigham & Womens Hosp,Orthopaed & Arthrit Ctr Out, Boston, MA 02115 USA. [Katzh, Jeffrey N.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Rheumatol Allergy & Immunol, Boston, MA 02115 USA. RP Menendez, CC (reprint author), 1095 Willowdale Rd,MS 1811, Morgantown, WV 26505 USA. EM CMenendez@cdc.gov RI Rempel, David/E-8424-2013; OI Dennerlein, Jack/0000-0001-7703-643X NR 23 TC 2 Z9 2 U1 0 U2 0 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1051-9815 J9 WORK JI Work PY 2009 VL 34 IS 4 BP 421 EP 430 DI 10.3233/WOR-2009-0942 PG 10 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 545SE UT WOS:000273756200005 ER PT B AU McCuaig, J MacInnes, J Wright, W AF McCuaig, Judi MacInnes, Joe Wright, William BE Smith, CAP Kisiel, KW Morrison, JG TI The Cognitive Playground: Fostering Critical and Creative Thinking with Synthetic Worlds SO WORKING THROUGH SYNTHETIC WORLDS LA English DT Article; Book Chapter AB This chapter explores the potential of synthetic worlds to help individuals learn and practice higher order thinking skills including critical and creative thinking. Such skills are difficult to teach in traditional educational settings and are rarely addressed in common simulation-based training programs. The potential is explored first through a fictional account of a day in the life of Tara Defarge, an eco-detective in the year 2025 and her interactions with the Cognitive Playground. Present day understandings about teaching, learning and virtual worlds are used to show that synthetic worlds naturally consist of appropriate metaphors and capabilities to foster critical thinking. An assessment of the state of intelligent interfaces and adaptive systems informs a discussion of the technological challenges that must be met before a Cognitive Playground can be realized. C1 [McCuaig, Judi] Pacific NW Natl Lab, Dept Energys, Richland, WA 99352 USA. [MacInnes, Joe; Wright, William] Oculus Info Inc, Toronto, ON, Canada. RP McCuaig, J (reprint author), Univ Guelph, Guelph, ON N1G 2W1, Canada. RI MacInnes, Joseph/J-1941-2015 OI MacInnes, Joseph/0000-0002-5134-1601 NR 12 TC 0 Z9 0 U1 0 U2 0 PU ASHGATE PUBLISHING LTD PI ALDERSHOT PA GOWER HOUSE, CROFT ROAD, ALDERSHOT GU11 3HR, ENGLAND BN 978-0-7546-9430-4; 978-0-7546-7712-3 PY 2009 BP 347 EP 362 PG 16 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications SC Computer Science GA BA7LE UT WOS:000337623700021 ER PT S AU Karnowski, TP Aykac, D Chaum, E Giancardo, L Li, Y Tobin, KW Abramoff, MD AF Karnowski, T. P. Aykac, D. Chaum, E. Giancardo, L. Li, Y. Tobin, K. W., Jr. Abramoff, M. D. BE Dossel, O Schlegel, WC TI Evaluating the Accuracy of Optic Nerve Detections in Retina Imaging Using Complementary Methods SO WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 11: BIOMEDICAL ENGINEERING FOR AUDIOLOGY, OPHTHALMOLOGY, EMERGENCY AND DENTAL MEDICINE SE IFMBE Proceedings LA English DT Proceedings Paper CT 11th International Congress of the IUPESM/World Congress on Medical Physics and Biomedical Engineering CY SEP 07-12, 2009 CL Munich, GERMANY SP IUPESM, Int Org Med Phys (IOMP) DE Retina; optic disk; optic nerve; telemedicine ID DIABETIC-RETINOPATHY; FUNDUS PHOTOGRAPHS; SEGMENTATION; POPULATION; DISC AB The detection of the optic nerve in retina images is a key element of detecting the anatomical structure of the retina. In this work we report on the fusion of two complementary optic nerve detection methods. The methods are complementary in the sense that they use different fundamental queues for locating the optic nerve. By fusing the methods through applying simple distance-based threshold, a confidence level may be assigned to the quality of the optic nerve detection. In a practical screening system this metric can be used to determine if the images should be immediately reviewed by a physician or if further automatic processing is feasible. We report on the results for two different data sets and show that the use of the threshold improves detection quality. C1 [Karnowski, T. P.; Aykac, D.; Giancardo, L.; Tobin, K. W., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chaum, E.; Li, Y.] Univ Tennessee Hlth Sci Ctr, Hamilton Eye Inst, Memphis, TN USA. [Abramoff, M. D.] Univ Iowa, Iowa City, IA USA. RP Karnowski, TP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU National Eye Institute of the National Institutes of Health [R01-EY017065]; Research to Prevent Blindness, New York, NY; Plough Foundation, Memphis TN; Delta Health Alliance, Stoneville MS; OAK RIDGE NATIONAL LABORATORY [37831-6285]; LLC for the US DEPARTMENT OF ENERGY [DE-AC05-00OR22725] FX This work was supported in part by the National Eye Institute of the National Institutes of Health (R01-EY017065), the Research to Prevent Blindness, New York, NY, the Plough Foundation, Memphis TN, and the Delta Health Alliance, Stoneville MS. This paper was prepared by the OAK RIDGE NATIONAL LABORATORY, Oak Ridge, Tennessee, USA, 37831-6285, operated by UTBATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725. NR 18 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1680-0737 BN 978-3-642-03890-7 J9 IFMBE PROC PY 2009 VL 25 IS 11 BP 160 EP + PG 2 WC Engineering, Biomedical SC Engineering GA BQW96 UT WOS:000282043200043 ER PT S AU Giancardo, L Chaum, E Karnowski, TP Meriaudeau, F Tobin, KW Li, Y AF Giancardo, L. Chaum, E. Karnowski, T. P. Meriaudeau, F. Tobin, K. W. Li, Y. BE Dossel, O Schlegel, WC TI Bright Retinal Lesions Detection using Color Fundus Images Containing Reflective Features SO WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 11: BIOMEDICAL ENGINEERING FOR AUDIOLOGY, OPHTHALMOLOGY, EMERGENCY AND DENTAL MEDICINE SE IFMBE Proceedings LA English DT Proceedings Paper CT 11th International Congress of the IUPESM/World Congress on Medical Physics and Biomedical Engineering CY SEP 07-12, 2009 CL Munich, GERMANY SP IUPESM, Int Org Med Phys (IOMP) DE computer-aided diagnosis; exudates; segmentation; LBP; NFL ID PHOTOGRAPHS; RETINOPATHY; DIAGNOSIS AB Recently, the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is increasing among the young population. Retina fundus images of patients younger than 20 years old present a high amount of reflectance due to the Nerve Fibre Layer (NFL). Generally, the younger the patient the more the reflectance is visible. We are not aware of algorithms able to explicitly deal with this type of artifact. This paper presents a technique to detect bright lesions in patients with a high degree of reflective NFL. First, the candidate bright lesions are detected using image equalization and histogram analysis. Then, a classifier is trained using texture descriptors (Multi-scale Local Binary Patterns) and other statistical features in order to remove the false positives in the lesion detection. Finally, the area of the lesions is used to diagnose diabetic retinopathy. Our database consists of 33 images from a telemedicine network currently under active development. When determining moderate to severe diabetic retinopathy using the bright lesions detected, the algorithm achieves a sensitivity of 100% at a specificity of 100% with a leave-one-out test. C1 [Giancardo, L.; Karnowski, T. P.; Tobin, K. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Giancardo, L.; Meriaudeau, F.] Univ Burgundy, Burgundy, France. [Chaum, E.; Li, Y.] Hamilton Eye Inst, U Tennessee Health Sci Ctr, Memphis, TN USA. RP Giancardo, L (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU National Eye Institute of the National Institutes of Health [R01-EY017065]; Research to Prevent Blindness, New York; Plough Foundation; Delta Health Alliance FX This work was supported in part by the National Eye Institute of the National Institutes of Health (R01-EY017065), the Research to Prevent Blindness, New York, NY, the Plough Foundation, Memphis TN and the Delta Health Alliance. NR 13 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1680-0737 BN 978-3-642-03890-7 J9 IFMBE PROC PY 2009 VL 25 IS 11 BP 292 EP + PG 2 WC Engineering, Biomedical SC Engineering GA BQW96 UT WOS:000282043200078 ER PT S AU Schroder, L Meldrum, T Smith, M Schilling, F Denger, P Zapf, S Wemmer, D Pines, A AF Schroeder, Leif Meldrum, Tyler Smith, Monica Schilling, Franz Denger, Philipp Zapf, Sina Wemmer, David Pines, Alexander BE Dossel, O Schlegel, WC TI Xenon Biosensors for Multi-Purpose Molecular Imaging SO WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 13 SE IFMBE Proceedings LA English DT Proceedings Paper CT 11th International Congress of the IUPESM/World Congress on Medical Physics and Biomedical Engineering CY SEP 07-12, 2009 CL Munich, GERMANY SP IUPESM, Int Org Med Phys (IOMP) DE Biosensors; Hyper-CEST; xenon; hyperpolarization; molecular imaging ID FUNCTIONALIZED XENON; POLARIZED XE-129; NMR; MRI AB Hyperpolarized xenon is an exquisite NMR probe for sensing molecular environments of the noble gas in solution. By trapping it in molecular cages like cryptophane-A, Xe-129 can report information about molecular-specific binding events or resolve multiple signals simultaneously from different micro-environments in a lipid emulsion a macroscopically-homogeneous phase that mimics properties of biological relevance. The Hyper-CEST detection scheme can be used in this context to pair significant signal enhancement with high specificity of xenon NMR resonances. Hyper-CEST can reduce the measurement time by a factor of up to 16 million and is currently able to detect biosensor concentrations as low as 1.4 nM. When combined with highly frequency-selective pulses, it also allows for demonstration of multiplexing potential using a single cage type as contrast agent for different environments in NMR imaging. This molecular imaging approach enables a switchable contrast that includes also temperature-sensitive imaging with molecular sensors that can be functionalized with various targeting molecules to bind, e.g., specifically to receptors of cancer cells. C1 [Schroeder, Leif; Meldrum, Tyler; Smith, Monica; Schilling, Franz; Wemmer, David; Pines, Alexander] Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Schroeder, Leif; Meldrum, Tyler; Smith, Monica; Schilling, Franz; Wemmer, David; Pines, Alexander] Leibniz Institut Molekulare pharamakologie, Berlin, Germany. [Meldrum, Tyler; Smith, Monica; Wemmer, David; Pines, Alexander] Univ Calif Berkeley, qb3 Inst Quantitative Biosci, Dept Chem, Berkeley, CA 94720 USA. [Schilling, Franz; Zapf, Sina] Julius Maximilians Universitat, Experimentelle Physik 5, Wurzburg, Germany. [Denger, Philipp] Deutsches Krebsforschungszent, Abteilung Medizinische Physik Radiologie, Heidelberg, Germany. RP Schroder, L (reprint author), Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA USA.; Schroder, L (reprint author), Leibniz Institut Molekulare pharamakologie, Berlin, Germany. RI Meldrum, Tyler/P-7420-2015; OI Meldrum, Tyler/0000-0002-5954-0795; Schroder, Leif/0000-0003-4901-0325 FU Director, Office of Science,Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231.]; Deutsche Forschungsgemeinschaft [SCHR 995/1-1, SCHR 995/2-1]; Studienstiftung des Deutschen Volkes(F.S.); Deutsche Akademischer Austausch Dienst (S.Z.) FX L.S. gratefully acknowledges the IOMP executive committee for awarding the 2009 IUPAP Young Scientist Award in Medical Physics to this project. Research and experiments were supported by the Director, Office of Science,Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Further funding was provided by the Deutsche Forschungsgemeinschaft (grants SCHR 995/1-1 and SCHR 995/2-1 for L.S.), the Studienstiftung des Deutschen Volkes (F.S.) and the Deutsche Akademischer Austausch Dienst (S.Z.) NR 13 TC 1 Z9 1 U1 2 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1680-0737 BN 978-3-642-03894-5 J9 IFMBE PROC PY 2009 VL 25 IS 13 BP 176 EP + PG 2 WC Engineering, Biomedical; Materials Science, Biomaterials; Physics, Applied SC Engineering; Materials Science; Physics GA BQW99 UT WOS:000282043700051 ER PT S AU Habs, D Henig, A Jung, D Kiefer, D Horlein, R Gross, M Schreiber, J Liechtenstein, VK Hegelich, BM Karsch, S Yan, XQ Meyer-ter-Vehn, J Tajima, T AF Habs, D. Henig, A. Jung, D. Kiefer, D. Hoerlein, R. Gross, M. Schreiber, J. Liechtenstein, V. Kh. Hegelich, B. M. Karsch, S. Yan, X. Q. Meyer-ter-Vehn, J. Tajima, T. BE Dossel, O Schlegel, WC TI Laser-driven particle acceleration utilizing nm-thin diamond foils: Improved ion acceleration for cancer therapy, improved electron acceleration and potentially ultra-brilliant X-ray beams for medical diagnostics SO WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 2 - DIAGNOSTIC IMAGING SE IFMBE Proceedings LA English DT Proceedings Paper CT 11th International Congress of the IUPESM/World Congress on Medical Physics and Biomedical Engineering CY SEP 07-12, 2009 CL Munich, GERMANY SP IUPESM, Int Org Med Phys (IOMP) DE Laser acceleration; DLC foils; brilliant X-ray beams; cancer therapy; medical diagnostics ID DESIGN CONSIDERATIONS; GAMMA-RAY; GENERATION AB Compared to former laser ion acceleration schemes like target normal sheath acceleration (TNSA) [1], the laser acceleration from ultra-thin diamond-like carbon (DLC) foils is more efficient and for the high-power short-pulse laser ATLAS proton energies up to 100 MeV are expected [2]. Also for the generation of very dense relativistic electron bunches the use of ultra-thin diamond foils leads to much better results [3] than for laser bubble acceleration [4]. By reflection of coherent electromagnetic fields from these relativistic electron bunches it seems possible to generate brilliant, intense X-ray beams [5]. In the longer term we plan to use the laser-driven ion beams for cancer therapy and the X-ray beams in medical diagnostics. We describe the present status and the expected beam properties for the upgraded ATLAS laser at MPQ (Garching) and the setup of our medical beam line. C1 [Habs, D.; Henig, A.; Jung, D.; Kiefer, D.; Gross, M.; Schreiber, J.; Hegelich, B. M.; Karsch, S.; Tajima, T.] Ludwig Maximilians Univ Munchen, Fak Phys, Coulombwall 1, D-85748 Garching, Germany. [Habs, D.; Henig, A.; Jung, D.; Kiefer, D.; Hoerlein, R.; Karsch, S.; Yan, X. Q.; Meyer-ter-Vehn, J.] Max Planck Inst Quantum Opt, Garching, Germany. [Schreiber, J.] Imperial Coll, Blackett Lab, London SW7 2AZ, England. [Liechtenstein, V. Kh.] Kurchatov Inst, Inst Nucl Fusion, Moscow 123182, Russia. [Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos 87545, NM USA. [Yan, X. Q.] Beijing Univ, State Key Lab Nuclear Phys & Technol, Beijing 100871, Peoples R China. [Tajima, T.] Photo Med Res Ctr, Kizu, Kyoto 6190215, Japan. RP Habs, D (reprint author), Ludwig Maximilians Univ Munchen, Fak Phys, Coulombwall 1, D-85748 Garching, Germany. EM Dietrich.Habs@physik.uni-muenchen.de RI Hegelich, Bjorn/J-2689-2013 FU Deutsche Forschungsgemeinschaft through the DFG-Cluster of Excellence Munich-Centre for Advanced Photonics (MAP); [SFB Transregio TR18] FX This work was supported by Deutsche Forschungsgemeinschaft through the DFG-Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) and SFB Transregio TR18. NR 13 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1680-0737 BN 978-3-642-03878-5; 978-3-642-03879-2 J9 IFMBE PROC PY 2009 VL 25 BP 304 EP 307 PN 2 PG 4 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA BAY37 UT WOS:000306060900086 ER PT S AU Nilsen, J Cheng, KT Johnson, WR AF Nilsen, Joseph Cheng, K. T. Johnson, Walter R. BE Lewis, CLS Riley, D TI Advances in Understanding the Anomalous Dispersion of Plasmas in the X-Ray Regime SO X-RAY LASERS 2008, PROCEEDINGS SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 11th International Conference on X-Ray Lasers CY AUG 17-22, 2008 CL Queens Univ Belfast, Belfast, NORTH IRELAND SP Andor Technol, Coherent, Off Depot, Inst Phys, Belfast Visitor & Convent Bur HO Queens Univ Belfast ID BOUND-ELECTRON CONTRIBUTION; INTERFEROMETRY; REFRACTION; LASER; INDEX; DIAGNOSTICS; SPECTRUM; MODEL AB Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main computational tool has been the average atom code AVATOMKG that enables us to calculate the index of refraction for any plasma at any wavelength. In the last year we have improved this code to take into account many-atomic collisions. This allows the code to converge better at low frequencies. In this paper we present our search for plasmas with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. We discuss the calculations of anomalous dispersion in Na vapor and Ne plasmas near 47 nm where we predict large effects. We also discuss higher Z plasmas such as Cc and Yb plasmas that look very interesting near 47 rim. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in another year we use the average atom code to explore plasmas at higher X-ray energy to identify potential experiments for the future. In particular we look near the K shell lines of near solid carbon plasmas and predict strong effects. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. C1 [Nilsen, Joseph; Cheng, K. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Johnson, Walter R.] Univ Notre Dame, Notre Dame, IN 46556 USA. RP Nilsen, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU US Department of Energy [DE-AC52-07NA27344]; NSF [PHY-, 0456828] FX Work performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work of one author (WRJ) was supported in part by NSF Grant No. PHY- 0456828. NR 23 TC 1 Z9 1 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0930-8989 BN 978-1-4020-9923-6 J9 SPRINGER PROC PHYS PY 2009 VL 130 BP 211 EP + PG 3 WC Optics; Physics, Applied SC Optics; Physics GA BMO57 UT WOS:000273130100024 ER PT S AU Dunn, J Beiersdorfer, P Brown, GV Magee, EW AF Dunn, J. Beiersdorfer, P. Brown, G. V. Magee, E. W. BE Lewis, CLS Riley, D TI Calibration of a High Resolution Soft X-Ray Spectrometer SO X-RAY LASERS 2008, PROCEEDINGS SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 11th International Conference on X-Ray Lasers CY AUG 17-22, 2008 CL Queens Univ Belfast, Belfast, NORTH IRELAND SP Andor Technol, Coherent, Off Depot, Inst Phys, Belfast Visitor & Convent Bur HO Queens Univ Belfast ID BEAM ION-TRAP AB A high resolution grating spectrometer (HRGS) with 2400 line/mm variable line spacing grating for the 10 - 50 angstrom wavelength range has been designed For laser-produced plasma experiments at the Lawrence Livermore National Laboratory (LLNL). The spectrometer has a large radius of curvature, R=44.3 ill, is operated at a 2 degrees grazing angle and call record high signal-to-noise spectra when used with a low-noise, cooled, charge-coupled device detector. The instrument call be operated with a 10 - 25 mu m wide slit to achieve the best spectral resolving power oil laser plasma sources, approaching 2000, or in slitless mode with a small symmetrical emission source. Results will be presented for the spectral response of the spectrometer cross-calibrated at the LLNL Electron Beam Ion Trap facility using the broadband x-ray energy EBIT Calorimeter Spectrometer (ECS). C1 [Dunn, J.; Beiersdorfer, P.; Brown, G. V.; Magee, E. W.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94551 USA. RP Dunn, J (reprint author), Lawrence Livermore Natl Lab, Phys Sci Directorate, POB 5508, Livermore, CA 94551 USA. NR 8 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0930-8989 BN 978-1-4020-9923-6 J9 SPRINGER PROC PHYS PY 2009 VL 130 BP 461 EP 467 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA BMO57 UT WOS:000273130100054 ER PT S AU Marconi, MC Wachulak, PW Brewer, C Brizuela, F Bartels, R Menoni, CS Rocca, JJ Anderson, E Chao, W AF Marconi, M. C. Wachulak, P. W. Brewer, C. Brizuela, F. Bartels, R. Menoni, C. S. Rocca, J. J. Anderson, E. Chao, W. BE Lewis, CLS Riley, D TI Resolution and Feature Size Assessment in Soft X-Ray Microscopy Images SO X-RAY LASERS 2008, PROCEEDINGS SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 11th International Conference on X-Ray Lasers CY AUG 17-22, 2008 CL Queens Univ Belfast, Belfast, NORTH IRELAND SP Andor Technol, Coherent, Off Depot, Inst Phys, Belfast Visitor & Convent Bur HO Queens Univ Belfast ID DIFFRACTIVE OPTICS; LASER AB Soft X-ray microscopy images of nanostructures where analyzed with a method developed to simultaneously determine the object feature size and image resolution. This method is based on the correlation between the image and a set of templates of known resolution obtained from the original image. The analysis was applied to images obtained with a Fresnel zone plate microscope that uses 13.2 nm wavelength laser light for illumination. The object feature size and the resolution obtained with this method are shown to be in very good agreement with independent measurements of both magnitudes. C1 [Marconi, M. C.; Wachulak, P. W.; Brewer, C.; Brizuela, F.; Bartels, R.; Menoni, C. S.; Rocca, J. J.] Colorado State Univ, NSF Engn Res Ctr Extreme Ultraviolet Sci & Techno, Ft Collins, CO 80523 USA. [Anderson, E.; Chao, W.] Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA USA. RP Marconi, MC (reprint author), Colorado State Univ, NSF Engn Res Ctr Extreme Ultraviolet Sci & Techno, Ft Collins, CO 80523 USA. RI Menoni, Carmen/B-4989-2011 NR 11 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0930-8989 BN 978-1-4020-9923-6 J9 SPRINGER PROC PHYS PY 2009 VL 130 BP 483 EP + PG 3 WC Optics; Physics, Applied SC Optics; Physics GA BMO57 UT WOS:000273130100057 ER PT S AU Escala, A AF Escala, A. BE Magris, G Bruzual, G Carigi, L TI FUELING-CONTROLLED THE GROWTH OF MASSIVE BLACK HOLES SO XII IAU REGIONAL LATIN AMERICAN MEETING SE REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, SERIE DE CONFERENCIAS LA English DT Proceedings Paper CT 12th IAU Regional Latin American Meeting of Astronomy CY OCT 22-26, 2007 CL Isla Margarita, VENEZUELA SP IAU DE black hole physics; galaxies: formation; quasars: general ID GALACTIC NUCLEI; HOST SPHEROIDS; GAS AB We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR, numerical simulations, we analyze how gas is transported into the nuclear (central kpc)regions of galaxies. We study gas fueling onto the inner accretion disk (sub-pc scale) and star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulations of gas fueling, which is mainly depleted by star formation, naturally satisfy the,'M(BH) - M(virial)' relation, with a scatter considerably less than that observed. We find that a, generalized version of the Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate ((M)over dot(gas) = (M)over dot(BH) + (M)over dot(SF)) scales as M(gas)/t(orbital). See Escala (2007) for more details about this work. C1 Stanford Univ, KIPAC, SLAC, Stanford, CA 94305 USA. RP Escala, A (reprint author), Stanford Univ, KIPAC, SLAC, Stanford, CA 94305 USA. EM an-dres@slac.stanford.edu NR 11 TC 0 Z9 0 U1 0 U2 0 PU UNIVERSIDAD NACIONAL AUTONOMA MEXICO INSTITUTO ASTRONOMIA PI MEXICO CITY PA APARTADO POSTAL 70-264, MEXICO CITY 04510, MEXICO SN 1405-2059 BN 978-970-32-5298-5 J9 REV MEX AST ASTR PY 2009 VL 35 BP 156 EP 157 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BMA08 UT WOS:000271630600057 ER PT S AU Barberio, E Boudreau, J Butler, B Cheung, SL Dell'Acqua, A Di Simone, A Ehrenfeld, E Gallas, MV Marshall, Z Mueller, J Placakyte, R Rimoldi, A Savard, P Tsulaia, V Waugh, A Young, CC AF Barberio, E. Boudreau, J. Butler, B. Cheung, S. L. Dell'Acqua, A. Di Simone, A. Ehrenfeld, E. Gallas, M. V. Marshall, Z. Mueller, J. Placakyte, R. Rimoldi, A. Savard, P. Tsulaia, V. Waugh, A. Young, C. C. BE Fraternali, M Livan, M Gaudio, G TI Fast Simulation of Electromagnetic Showers in the ATLAS calorimeter: Frozen Showers SO XIII INTERNATIONAL CONFERENCE ON CALORIMETRY IN HIGH ENERGY PHYSICS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 13th International Conference on Calorimetry in High Energy Physics CY MAY 26-30, 2008 CL Pavia, ITALY SP CAEN, HAMAMATSU Photonis Italia, Iseg Spezialelektrinik GmbH, Wiener, Univ Studi Pavia, Dipartimento Fis Nucl & Teor, Ist Nazl Fis Nucl, Sezione Pavia AB One of the most time consuming process simulating pp interactions in the ATLAS detector at LHC is the simulation of electromagnetic showers in the calorimeter. In order to speed up the event simulation several parametrisation methods are available in ATLAS. In this paper we present a short description of a frozen shower technique, together with some recent benchmarks and comparison with full simulation. C1 [Barberio, E.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Boudreau, J.; Mueller, J.; Tsulaia, V.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Butler, B.; Young, C. C.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Cheung, S. L.; Savard, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Dell'Acqua, A.; Di Simone, A.; Gallas, M. V.] CERN, European Lab Particle Phys, Geneva, Switzerland. [Ehrenfeld, E.] Univ Hamburg, Inst Experimentalphys, D-22761 Hamburg, Germany. [Ehrenfeld, E.; Placakyte, R.] DESY, D-22603 Hamburg, Germany. [Marshall, Z.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Marshall, Z.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. Univ Pavia, Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Waugh, A.] Univ Sydney, Sch Phys, Falkiner High Energy Phys Grp, Sydney, NSW 2006, Australia. RP Barberio, E (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. EM ringaile@mail.desy.de NR 6 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 160 AR UNSP 012082 DI 10.1088/1742-6596/160/1/012082 PG 6 WC Physics, Particles & Fields SC Physics GA BME51 UT WOS:000272020000082 ER PT S AU Repond, J AF Repond, Jose BE Fraternali, M Livan, M Gaudio, G TI Tests of a Digital Hadron Calorimeter SO XIII INTERNATIONAL CONFERENCE ON CALORIMETRY IN HIGH ENERGY PHYSICS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 13th International Conference on Calorimetry in High Energy Physics CY MAY 26-30, 2008 CL Pavia, ITALY SP CAEN, HAMAMATSU Photonis Italia, Iseg Spezialelektrinik GmbH, Wiener, Univ Studi Pavia, Dipartimento Fis Nucl & Teor, Ist Nazl Fis Nucl, Sezione Pavia AB We present the concept of a Digital Hadron Calorimeter with Resistive Plate Chambers as active elements for use in a detector optimized for the application of Particle Flow Algorithms to the measurement of hadronic jets. We report on tests of a small scale prototype calorimeter using muons, positrons and pions from the Fermilab test beam. The results are compared to Monte Carlo simulations of the set-up and provide a first validation of the concept of a Digital Hadron Calorimeter. We conclude with a progress report on the construction of a larger prototype section. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@hep.anl.gov NR 7 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 160 AR 012066 DI 10.1088/1742-6596/160/1/012066 PG 9 WC Physics, Particles & Fields SC Physics GA BME51 UT WOS:000272020000066 ER PT S AU Musson, LC Pawlowski, RP Salinger, AG Madden, TJ Hewett, KB AF Musson, Lawrence C. Pawlowski, Roger P. Salinger, Andrew G. Madden, Timothy J. Hewett, Kevin B. BE Vilar, R Conde, O Fajardo, M Silva, LO Pires, M Utkin, A TI Multiphase Reacting Flow Modeling of Singlet Oxygen Generators for Chemical Oxygen Iodine Lasers SO XVII INTERNATIONAL SYMPOSIUM ON GAS FLOW, CHEMICAL LASERS, AND HIGH-POWER LASERS SE Proceedings of SPIE LA English DT Proceedings Paper CT 17th International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers CY SEP 15-19, 2008 CL Lisbon, PORTUGAL SP INOV, SPIRICON Laser Beam Diagnost, Multiwave Photon, Amplitude Syst DE Singlet Oxygen generator; chemical oxygen iodine laser; sog; coil; multiphase; gfem; reacting flow AB Singlet oxygen generators are multiphase flow chemical reactors that produce energetic oxygen to be used as a fuel for chemical oxygen iodine lasers. In this paper, a theoretical model of the generator is presented that consists of a two-phase reacting flow model that treats both the gas phase and dispersed ( liquid droplet) phase. The model includes the discretization over droplet size distribution as well. Algorithms for the robust solution of the large set of coupled, nonlinear, partial differential equations enable the investigation of a wide range of operating conditions and even geometric design choices. C1 [Musson, Lawrence C.; Pawlowski, Roger P.; Salinger, Andrew G.] Sandia Natl Labs, Ctr Computat Comp Informat & Math, Albuquerque, NM 87185 USA. RP Musson, LC (reprint author), Sandia Natl Labs, Ctr Computat Comp Informat & Math, POB 5800, Albuquerque, NM 87185 USA. EM lcmusso@sandia.gov NR 4 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7365-3 J9 PROC SPIE PY 2009 VL 7131 AR 71310J DI 10.1117/12.816415 PG 8 WC Chemistry, Physical; Optics; Physics, Applied SC Chemistry; Optics; Physics GA BSS82 UT WOS:000285717000019 ER PT S AU Polyanskiy, MN Pogorelsky, IV Yakimenko, VE Platonenko, VT AF Polyanskiy, Mikhail N. Pogorelsky, Igor V. Yakimenko, Vitaly E. Platonenko, Victor T. BE Vilar, R Conde, O Fajardo, M Silva, LO Pires, M Utkin, A TI Development of a picosecond CO(2) laser system for a high-repetition gamma-source SO XVII INTERNATIONAL SYMPOSIUM ON GAS FLOW, CHEMICAL LASERS, AND HIGH-POWER LASERS SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT 17th International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers CY SEP 15-19, 2008 CL Lisboa, PORTUGAL SP INOV, SPIRICON Laser Beam Diagnost, Multiwave Photon, Amplitude Systems DE Picosecond CO(2) laser; gamma-source; Compton backscattering ID AMPLIFIERS; MULTILINE AB The concept of a high-repetition-rate, high-average power gamma-source is based on Compton backscattering from the relativistic electron beam inside a picosecond CO(2) laser cavity. Proof-of-principle experiments combined with computer simulations allow evaluating the promise of this approach for novel applications in science and technology. C1 [Polyanskiy, Mikhail N.; Pogorelsky, Igor V.; Yakimenko, Vitaly E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Polyanskiy, MN (reprint author), Brookhaven Natl Lab, Bldg 820M, Upton, NY 11973 USA. EM polyanskiy@bnl.gov RI Polyanskiy, Mikhail/E-8406-2010 NR 12 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7365-3 J9 P SOC PHOTO-OPT INS PY 2009 VL 7131 AR 71310K DI 10.1117/12.816684 PG 7 WC Chemistry, Physical; Optics; Physics, Applied SC Chemistry; Optics; Physics GA BSS82 UT WOS:000285717000020 ER PT S AU Adaniya, H Rudek, B Osipov, T Belkacem, A AF Adaniya, H. Rudek, B. Osipov, T. Belkacem, A. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI Experimental study for dissociative electron attachment to water molecule in the (2)B(1) resonance SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID ENERGY AB The dynamics of the dissociative electron attachment(DEA)to water via the first resonances, (2)B(1), is investigated by using a modified Coltrims spectrometer for imaging dissociation dynamics. The dissociation channel of H(-) ion is found to be H(-) + OH((2)II), and the negative ions are observed to be ejected out perpendicular to the incident electron direction, which agree with previously reported measurements. For the channel of O(-) ion, however, the ion yields are found to be an order of magnitude smaller than what have been reported in the literature. C1 [Adaniya, H.; Rudek, B.; Osipov, T.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Adaniya, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM ABelkacem@lbl.gov RI Rudek, Benedikt/A-5100-2017 NR 6 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR 012031 DI 10.1088/1742-6596/194/1/012031 PG 6 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600031 ER PT S AU Feist, J Pazourek, R Nagele, S Persson, E Schneider, BI Collins, LA Burgdorfer, J AF Feist, J. Pazourek, R. Nagele, S. Persson, E. Schneider, B. I. Collins, L. A. Burgdoerfer, J. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI Ab initio calculations of two-electron emission by attosecond pulses SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID DIFFERENTIAL CROSS-SECTIONS; 2-PHOTON DOUBLE-IONIZATION; PHOTO-DOUBLE-IONIZATION; HIGH-HARMONIC-GENERATION; HELIUM; SINGLE; HE; PHOTOIONIZATION; LASER; COLLISIONS AB Recent experimental developments of high-intensity, short-pulse XUV light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime ((h) over barw > 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow to not only probe but also to induce angular and energy correlations of the emitted electrons. Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons. The final momentum distribution reveals regions dominated by the Wannier ridge break-up scenario and by post-collision interaction. In addition, we find evidence for an interference between direct ("nonsequential") and indirect ("sequential") double photo-ionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. C1 [Feist, J.; Pazourek, R.; Nagele, S.; Persson, E.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Schneider, B. I.] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. [Schneider, B. I.] Natl Inst Stand & Technol, Electron & Atom Phys Div, Gaithersburg, MD 20899 USA. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Feist, J (reprint author), Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. EM johannes.feist@tuwien.ac.at RI Nagele, Stefan/E-6938-2011; Feist, Johannes/J-7394-2012 OI Nagele, Stefan/0000-0003-1213-0294; Feist, Johannes/0000-0002-7972-0646 NR 56 TC 2 Z9 2 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR UNSP 012010 DI 10.1088/1742-6596/194/1/012010 PG 8 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600010 ER PT S AU Gagnon, E Sharma, V Li, W Santra, R Ho, P Ranitovic, P Cocke, CL Murnane, MM Kapteyn, HC Sandhu, AS AF Gagnon, Etienne Sharma, Vandana Li, Wen Santra, Robin Ho, Phay Ranitovic, Predrag Cocke, C. L. Murnane, Margaret M. Kapteyn, Henry C. Sandhu, Arvinder S. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI Autoionization dynamics and Feshbach resonances: Femtosecond EUV study of O-2 excitation and dissociation SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID SPECTROSCOPY; STATES; DECAY AB In this work, we present a time-domain study of the complex, multi-step, evolution of highly excited states of oxygen (O-2) that result from EUV photoionization. By monitoring the dissociation of molecular oxygen ions, we show that autoionization cannot occur until the internuclear separation is 30 angstrom or greater. As the ion and excited neutral atom separate, we directly observe the transformation of electronically bound states of the molecular ion into Feshbach resonances of the neutral oxygen atom. We achieve this by using laser high-harmonics in a femtosecond EUV-IR pump-probe scheme, combined with a triple coincidence reaction microscope measurement. Finally, we show control of the dissociation pathway through IR pulse induced ionization. C1 [Gagnon, Etienne; Sharma, Vandana; Li, Wen; Murnane, Margaret M.; Kapteyn, Henry C.; Sandhu, Arvinder S.] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA. [Santra, Robin; Ho, Phay] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ranitovic, Predrag; Cocke, C. L.] Kansas State Univ, Dept Phys, J R Macdonald Lab, Manhattan, KS 66506 USA. [Sandhu, Arvinder S.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Gagnon, E (reprint author), Univ Colorado, NIST, JILA, Boulder, CO 80309 USA. EM sandhu@physics.arizona.edu RI Kapteyn, Henry/H-6559-2011; ranitovic, predrag/A-2282-2014 OI Kapteyn, Henry/0000-0001-8386-6317; FU NSF; U.S. Department of Energy FX We thankfully acknowledge support from the NSF and U.S. Department of Energy. NR 13 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR UNSP 012014 DI 10.1088/1742-6596/194/1/012014 PG 6 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600014 ER PT S AU Miyabe, S McCurdy, CW Orel, AE Rescigno, TN AF Miyabe, S. McCurdy, C. W. Orel, A. E. Rescigno, T. N. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI Asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2; a theoretical study SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ AB We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO2, and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO+ and O+ ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identified a dissociative state of the CO2++ dication that is likely populated following Auger decay. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. C1 [Miyabe, S.; McCurdy, C. W.; Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci, Berkeley, CA 94720 USA. [Miyabe, S.; McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [McCurdy, C. W.; Orel, A. E.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Miyabe, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci, Berkeley, CA 94720 USA. EM smiyabe@ucdavis.edu FU US Department of Energy; University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. DOE Office of Basic Energy Sciences, Division of Chem- ical Sciences; National Science Foundation [PHY-0604628, PHY-05-55401] FX This work was performed under the auspices of the US Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 and was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chem- ical Sciences. CWM acknowledges support from the National Science Foundation (Grant No. PHY-0604628). AEO acknowledges support from the National Science Foundation (Grant No. PHY-05-55401). NR 7 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR UNSP 012008 DI 10.1088/1742-6596/194/1/012008 PG 6 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600008 ER PT S AU Rohringer, N AF Rohringer, Nina BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI An Atomic Inner-Shell Laser Pumped with an X-Ray Free-Electron Laser SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID RADIATION; COHERENT AB Focusing an x-ray free electron laser (XFEL) pulse into a gas target, a plasma of transiently core-excited ions can be created within a few femtoseconds, building a pathway to an inner-shell keV atomic x-ray laser. Varying the XFEL parameters, a wide variety of pulse structures can be created with comparable peak-intensities to XFELs: isolated pulses of sub-femtosecond duration, trains of pulses with increased temporal coherence, and trains of femtosecond pulses of different wavelengths. We present self-consistent gain and amplification calculations, tailored to predict first experiments on lasing on neon pumped by the Linac Coherent Light Source at Stanford. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rohringer, N (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM rohringer1@llnl.gov RI Rohringer, Nina/N-3238-2014 OI Rohringer, Nina/0000-0001-7905-3567 NR 27 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR 012012 DI 10.1088/1742-6596/194/1/012012 PG 8 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600012 ER PT S AU Schultz, DR Macek, JH Sternberg, JB Ovchinnikov, SY Lee, TG AF Schultz, D. R. Macek, J. H. Sternberg, J. B. Ovchinnikov, S. Yu. Lee, T-G. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI Origin, evolution, and imaging of vortices in proton-hydrogen collisions SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID OPTIMIZED DYNAMICAL REPRESENTATION; DEPENDENT QUANTUM PROBLEMS; ION-ATOM COLLISIONS; ELECTRON; DISTRIBUTIONS; IONIZATION; HE AB Using a novel computational approach, we have elucidated the origin of unexpected vortices in the electronic wavefunction during ion-atom collisions. It is shown how they could be observed in experiments and how they play a new and wide ranging role in angular momentum transfer and other atomic processes. C1 [Schultz, D. R.; Macek, J. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Schultz, DR (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM schultzd@ornl.gov RI Ovchinnikov, Serguei/C-4994-2014 NR 25 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR 012041 DI 10.1088/1742-6596/194/1/012041 PG 6 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600041 ER PT S AU Stuart, SJ Fallet, M Krstic, PS Reinhold, CO AF Stuart, Steven J. Fallet, Marcel Krstic, Predrag S. Reinhold, Carlos O. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI Evolution of carbon surfaces under simulated bombardment by deuterium SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID MOLECULAR-DYNAMICS SIMULATION; ATJ GRAPHITE; HYDROGENATED CARBON; METHANE PRODUCTION; AMORPHOUS-CARBON; D-IONS; HYDROCARBONS; IMPACT; ATOMS; FILMS AB The bombardment of both graphite and deuterated amorphous carbon surfaces with 20 eV D atoms has been performed using molecular dynamics simulation. The primary purpose of these simulations is to determine whether the eventual state of the surface, once it has reached a steady state, is independent of the starting structure. It is found that while independently realized amorphous carbon structures give rise to similar impact-modified surfaces, the graphitic surface evolves towards a somewhat different structure. Including or neglecting a realistic treatment of the nonbonded interactions in the graphite bombardment does not result in large differences in the impact-modified structure, although the penetration depth is considerably less when nonbonded interactions are included. C1 [Stuart, Steven J.; Fallet, Marcel] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Krstic, Predrag S.; Reinhold, Carlos O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Stuart, SJ (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM ss@clemson.edu OI Reinhold, Carlos/0000-0003-0100-4962 FU NSF [CHE-0239448]; DoD [47539-CH-MUR]; US DOE; OFES; BES through ORNL; UT-Battelle, LLC [DE-AC05-00OR22725] FX Financial support for this work by the NSF (CHE-0239448) and the DoD (47539-CH-MUR) is gratefully acknowledged by SJS. PSK and COR acknowledge support from the US DOE, OFES and BES through ORNL, managed by UT-Battelle, LLC (DE-AC05-00OR22725). NR 27 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR UNSP 012059 DI 10.1088/1742-6596/194/1/012059 PG 8 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600059 ER PT S AU van Tilborg, J Allison, TK Wright, TW Hertlein, MP Liu, Y Merdji, H Falcone, RW Belkacem, A AF van Tilborg, J. Allison, T. K. Wright, T. W. Hertlein, M. P. Liu, Y. Merdji, H. Falcone, R. W. Belkacem, A. BE Orel, AE Starace, AF Nikolic, D Berrah, N Gorczyca, TW Kamber, EY Tanis, JA TI EUV-driven femtosecond dynamics in ethylene SO XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 26th International Conference on Photonic, Electronic and Atomic Collisions CY JUL 22-28, 2009 CL Western Michigan Univ, Kalamazoo, MI SP CRYOGENIC Ltd, IOP, Kalamazoo Cty Convent & Visitors Bur, Natl Electrostat Corp, PhysMath Cent, RoentDek Handels GmbH, Taylor & Francis Grp, WIENER Corp, WMU, Dept Phys, WMU, Coll Arts & Sci, WMU, Off Vice President Res, WMU, Grad Coll, WMU, Diether H Haenicke Inst Global Educ HO Western Michigan Univ ID CONICAL INTERSECTIONS; MOLECULAR-DYNAMICS; AB-INITIO; PHOTOCHEMISTRY; VALENCE; REGION; STATES AB We studied ion fragment yields from EUV-pump NIR-probe experiments performed on ethylene molecules (C2H4). Through study of the ion yields as a function of pump-probe delay we resolve molecular dynamics on the excited electronic states of the ion. The breakup channel yielding CH+ and CH3+ indicated photo-isomerization to the ethylidene configuration (HCCH3)(+) on an ultrafast timescale. This configuration is predicted to be a transient configuration for electronic relaxation. We observed this channel, and found that it takes the excited cation (C2H(4)(+))* 50 +/- 25 fs to reach the ethylidene configuration. The transient ion yield of C2H42+ at zero delay (in combination with independent synchrotron experiments) indicates other ultra-fast dynamics in short-lived intermediate states are present. C1 [van Tilborg, J.; Allison, T. K.; Wright, T. W.; Hertlein, M. P.; Liu, Y.; Falcone, R. W.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Allison, T. K.; Falcone, R. W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Merdji, H.] CEA Saclay, Serv Photons Atomes Mol, F-91191 Gif Sur Yvette, France. RP van Tilborg, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM JvanTilborg@lbl.gov FU U.S. Department of Energy; DOE Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-05CH11231]; DOE SSAA [DE-FG52-06NA26212]; UC Berkeley's France-Berkeley fund FX We thank T. Osipov, F. Salmassi, and A. Aquila for their assistance. This work was performed under the auspices of the U.S. Department of Energy and was supported by the DOE Office of Basic Energy Sciences, Chemical Sciences Division under contract # DE-AC02-05CH11231. T. K. Allison was supported by the DOE SSAA under grant # DE-FG52-06NA26212. We also acknowledge financial support from UC Berkeleys France-Berkeley fund. NR 17 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 194 AR UNSP 012015 DI 10.1088/1742-6596/194/1/012015 PG 6 WC Physics, Atomic, Molecular & Chemical SC Physics GA BQW80 UT WOS:000282024600015 ER PT J AU Hore, S Dinnebier, R Wen, W Hanson, J Maier, J AF Hore, Sarmimala Dinnebier, Robert Wen, Wen Hanson, Johnathan Maier, Joachim TI Structure of Plastic Crystalline Succinonitrile: High-Resolution in situ Powder Diffraction SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Succinonitrile; Plastic Crystal; Phase Transition; Crystal structures; Ion Conductor ID FAST-ION CONDUCTION; SELF-DIFFUSION; POLYMER ELECTROLYTES; LATTICE DEFECTS; PYRAZOLIUM IMIDES; ORGANIC SOLIDS; FUEL-CELL; DYNAMICS; LIQUIDS; PHASE AB The temperature dependent (150-290 K) crystal structure of the low-temperature cc-phase. and high temperature beta-phase, of succinonitrile hits been determined by high resolution it) situ powder diffraction. The alpha-phase has a monoclinic unit cell that contains four gauche molecules and belongs to the P2(1)/a space group. The crystal undergoes a reversible first-order phase transition at 233 K into the high temperature beta-phase. The lattice parameters increase with temperature and the phase transition leads to an abrupt 6.7% increase in volume. The beta-phase crystallizes into it bcc-structure that belongs to the Im (3) over barm space group. The high temperature phase however, is a highly disordered plastic crystal at room temperature that contains both gauche and trans molecules. The non-linearity in the overall isotropic temperature-factor indicates other possible phase transitions in the temperature range of 233-250 K. C1 [Hore, Sarmimala; Dinnebier, Robert; Maier, Joachim] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Wen, Wen; Hanson, Johnathan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Hore, S (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM S.Hore@fkf.mpg.de; R.Dinnebier@fkf.mpg.de RI Dinnebier, Robert/B-5642-2015; Hanson, jonathan/E-3517-2010 OI Dinnebier, Robert/0000-0003-2778-2113; FU Max Planck Society; ENERCHEM project FX We thank Dr. Johan M. Carlsson and Dr. Imad Belabbas for discussion. S. H and. J. M wish to thank the Max Planck Society and acknowledge Support in the framework of the ENERCHEM project. NR 75 TC 15 Z9 15 U1 2 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0044-2313 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PY 2009 VL 635 IS 1 BP 88 EP 93 DI 10.1002/zaac.200800404 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 398NJ UT WOS:000262738500012 ER PT J AU Herzmann, N Gupta, S Corbett, JD AF Herzmann, Nina Gupta, Shalabh Corbett, John D. TI Reduced Ternary Rare-Earth-Transition Metal Tellurides for the Smaller Rare-Earth Elements. An Exploration and an Explanation of the Marked Stability Differentiation among the Rare-Earth Elements in These Phases SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Solid-state reactions; Rare earth compounds; Phase stabilities; Stability trends; Metal interstitials ID NI; CO; FE; RU; CHALCOGENIDES; HALIDES; MN; OS; CLUSTERS; YTTRIUM AB The existence of further metal-rich condensed cluster compounds in R-Z-Te systems has been synthetically explored for R = Sc, Y, Pr, Dy, Er, Tm, Yb, Lu and, mainly, Z = Ru, Rh, Pd, Ag, Ir, Pt, An. Ten new examples of orthorhombic Er(7)Ni(2)Te-type (Imm2) have been identified and that for Dy(7)Ir(2)Te(2), has been refined. Seven new examples or other ternary structure types plus X-ray powder pattern evidence for 14 unknown phases have also been identified. To date the family of ternary R-Z-Te phases appears to be limited to those for R = Sc, Y. and Dy-Lu, a trend that is parallel to but more emphatic than those variations found among parallel cluster halide systems. Stability trends among the halide and especially the telluride series follow the I1 + I2 sums for the R elements well, the larger values of which are considered to reflect better mixing of R and Z valence d orbitals in the more stable phases. C1 [Gupta, Shalabh; Corbett, John D.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Gupta, Shalabh; Corbett, John D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Herzmann, Nina] Univ Cologne, Inst Inorgan Chem, D-50939 Cologne, Germany. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab, 353 Spedding Hall, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Gupta, Shalabh/H-6214-2012 FU University of Koln; Office of Basic Energy Sciences, Materials Sciences Division, US. Department of Energy (DOE); Iowa State University [DE-AC02-07Ch11358] FX We thank Professor Gerd Aleyer for the support of N. H. provided by the University of Koln. Partial support (S. G.) came from the Office of Basic Energy Sciences, Materials Sciences Division, US. Department of Energy (DOE). The work was performed in the Ames Laboratory, which is operated for DOE by Iowa State University under Contract No. DE-AC02-07Ch11358. NR 30 TC 5 Z9 5 U1 1 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0044-2313 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PY 2009 VL 635 IS 6-7 BP 848 EP 854 DI 10.1002/zaac.200801399 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 452QS UT WOS:000266556900008 ER PT J AU Misra, S Poweleit, ET Miller, GJ AF Misra, Sumohan Poweleit, Eric T. Miller, Gordon J. TI On the Crystal Structure, Metal Atom Site Preferences and Magnetic Properties of Nd(5-x)Er(x)Tt(4) (Tt = Si or Ge) SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Magnetocaloric compounds; Site preferences; Rare earth compounds; Magnetic properties ID NANOSCALE ZIPPERS; GD-5(SIXGE1-X)(4); DISTANCES AB A crystallographic Study of the Nd/Er site preferences in the Nd(5-x)Er(x)Tt(4) (Ti = Si, Ge) series prepared by high-temperature methods is presented. For Nd5-xErxSi4, phases with x <= 1.0 adopt the tetragonal Zr5Si4-type structure. On the other hand, phases in the composition range of 2.0 <= x <= 5.0 exhibits the Gd5Si4-type Structure. For all silicides, all silicon atoms belong to Si-Si dimers. In the Nd5-xErxGe4 system, phases with x < 3.2 and x = 4.0 adopt the orthorhombic Sm5Ge4-type Structure. For the composition range of 3.2 <= x <= 4.0, a monoclinic U2Mo3Si4-type structure (space group P2(1)/c) Occurs as the majority phase. This monoclinic Structure, until recently, wits not reported for similar RE5T4 systems, and differs from the known monoclinic Gd5Si2Ge2-type (space group P2(1)/a) because till Ge center dot center dot center dot Ge contacts between slabs tire equivalent. The structural relationships between the Zr5Si4-type, Gd5Si4-type, Sm5Ge4-type, and U2Mo3Si4-type structures tire discussed. Single crystal refinements of the metal atom occupancies for the three different metal sites in the asymmetric unit of all structure types reveal a partially ordered nonstatistical arrangement of neodymium and erbium atoms. The magnetic properties of some Nd5-xErxGe4 phases are also reported. Nd4ErGe4 shows an anti-ferromagnetic-type transition similar to Gd5Ge4. As the erbium concentration increases (2 <= x <= 4), these phases exhibit, at least, ferromagnetic-type ordering. C1 [Misra, Sumohan; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Misra, Sumohan; Miller, Gordon J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Poweleit, Eric T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, 321 Spedding Hall, Ames, IA 50011 USA. EM gmiller@iastate.edu FU Iowa State University [DE-AC02-07CH11358]; Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy FX The authors thank Prof. Vitalij Pecharsky. for using the Lakeshore Magnetometer. E.T.P. acknowledges support from the Science Undergraduate Laboratory Internship (SULI) from the U.S. DOE. We also thank the reviewers for their valuable comments. This work was carried out at the Ames Laboratory, which is operated for the US. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy. NR 31 TC 8 Z9 8 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0044-2313 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PY 2009 VL 635 IS 6-7 BP 889 EP 897 DI 10.1002/zaac.200801353 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 452QS UT WOS:000266556900014 ER PT J AU Thimmaiah, S Weber, J Miller, GJ AF Thimmaiah, Srinivasa Weber, Josh Miller, Gordon J. TI Vacancies and Insertions in the RE10Ni9+xIn20 Series (RE = Ho-Tm, Lu) SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Intermetallic compounds; Phase width; X-ray diffraction; Rare-earth compounds; Nickel ID HEAVY-FERMION SYSTEM; CRYSTAL-CHEMISTRY; INTERGROWTH STRUCTURE; METALLIC PHASE; QUASI-CRYSTAL; INDIDES; TB; INTERMETALLICS; PECULIARITIES; TRANSITION AB The intermetallic compounds RE10Ni9+xIn20 (RE = Ho-Tm, Lu) have been studied experimentally as well as theoretically. Lu10Ni9.8In19.2(1) crystallizes in the tetragonal Ho10Ni9In20-type structure [space group P4/nmm, a = 13.114(2) angstrom and c = 8.993(2) angstrom] with vacant 2b positions and mixed In/Ni occupancies at one indium site that creates the refined composition. Moreover, the atomic positions and the displacement parameters for the holmium, erbium, thulium, and lutetium phases, which are missing in previous Studies, are now refined. TB-LMTO-ASA electronic calculations indicates that Lu10Ni9.8In19.2(1) prefers the centrosymmetric Ho10Ni9In20-type rather than a noncenctrosymmetric defect-HfNiGa2-type structure (I4mm). According to Our theoretical investigations, the HfNiGa2-type structure is preferred when the 2b position is fully occupied; however, the Ho10Ni9In20-type structure is preferred when vacancies are present on 2b position. C1 [Thimmaiah, Srinivasa; Weber, Josh; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thimmaiah, Srinivasa; Weber, Josh; Miller, Gordon J.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gmiller@iastate.edu RI Thimmaiah, Srinivasa/H-1049-2012 FU U.S. Department of Energy FX This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. J.W. acknowledges support from the Science Undergraduate Laboratory Internship (SULI) from the U.S. DOE. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy. NR 52 TC 2 Z9 2 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0044-2313 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PY 2009 VL 635 IS 12 BP 1831 EP 1839 DI 10.1002/zaac.200900222 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 516XB UT WOS:000271575500016 ER PT J AU Brommer, P de Boissieu, M Euchner, H Francoual, S Gahler, F Johnson, M Parlinski, K Schmalzl, K AF Brommer, Peter de Boissieu, Marc Euchner, Holger Francoual, Sonia Gaehler, Franz Johnson, Mark Parlinski, Krzysztof Schmalzl, Karin TI Vibrational properties of MgZn2 SO ZEITSCHRIFT FUR KRISTALLOGRAPHIE LA English DT Article; Proceedings Paper CT 10th International Conference on Quasicrystals (ICQ10) CY JUL 06-11, 2008 CL ETH, Zurich, SWITZERLAND HO ETH DE Complex metallic alloys; Molecular dynamics; Neutron scattering; Dynamical structure factor ID MOLECULAR-DYNAMICS; POTENTIALS; PACKAGE AB We present here simulation results on the dynamical structure factor of the C14 Laves Phase of MgZn2, the simplest of the Mg-(Al,Zn) Frank-Kasper alloy phases. The dynamical structure factor was determined in two ways. Firstly, the dynamical matrix was obtained in harmonic approximation from ab-initio forces. The dynamical structure factor can then be computed from the eigenvalues of the dynamical matrix. Alternatively, Molecular Dynamics simulations of a larger sample were used to measure the correlation function corresponding to the dynamical structure factor. Both results are compared to data from neutron scattering experiments. This comparison also includes the intensity distribution, which is a very sensitive test. We find that the dynamical structure factor determined with either method agrees reasonably well with the experiment. In particular, the intensity transfer from acoustic to optic phonon modes can be reproduced correctly. This shows that simulation studies can complement phonon dispersion measurements. C1 [Brommer, Peter; Euchner, Holger; Gaehler, Franz] Univ Stuttgart, Inst Theoret & Angew Phys, D-70550 Stuttgart, Germany. [de Boissieu, Marc] UJF, CNRS, INP Grenoble, F-38402 St Martin Dheres, France. [Francoual, Sonia] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Johnson, Mark] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Parlinski, Krzysztof] Pedag Univ, Inst Technol, PL-30084 Krakow, Poland. [Schmalzl, Karin] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. RP Brommer, P (reprint author), Univ Stuttgart, Inst Theoret & Angew Phys, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. EM peter.brommer@itap.uni-stuttgart.de RI Brommer, Peter/B-5533-2008 OI Brommer, Peter/0000-0001-7312-9954 NR 9 TC 4 Z9 5 U1 3 U2 15 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0044-2968 J9 Z KRISTALLOGR JI Z. Kristall. PY 2009 VL 224 IS 1-2 BP 97 EP 100 DI 10.1524/zkri.2009.1085 PG 4 WC Crystallography SC Crystallography GA 433DK UT WOS:000265184300025 ER PT J AU von Dreele, RB AF von Dreele, R. B. TI Characterization of proteins by powder diffraction SO ZEITSCHRIFT FUR KRISTALLOGRAPHIE LA English DT Article DE protein powder diffraction; Rietveld refinement; structure solution ID N-ACETYLGLUCOSAMINE; CRYSTAL-STRUCTURE; HUMAN INSULIN; LYSOZYME; RESOLUTION; CRYSTALLIZATION; REFINEMENT; RIETVELD; BINDING AB A simulation of a protein powder diffraction pattern was stunning in the apparent amount of information that was seen. A subsequent experiment on metmyoglobin gave a powder diffraction pattern that showed very little sample broadening; the peak widths were essentially limited by the instrument resolution. The challenge is to make use of this in protein structure analysis. This talk will recall some of those early experiments and data analyses as well as an overview of current progress and future possibilities. C1 Argonne Natl Lab, XSD, Argonne, IL 60439 USA. RP von Dreele, RB (reprint author), Argonne Natl Lab, XSD, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vondreele@anl.gov FU US Department of Energy/Office of Science/Basic Energy Sciences [DE-AC-02-06CH11357] FX Supported by US Department of Energy/Office of Science/Basic Energy Sciences under Contract No. DE-AC-02-06CH11357. NR 19 TC 1 Z9 1 U1 1 U2 3 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0044-2968 J9 Z KRISTALLOGR JI Z. Kristall. PY 2009 SU 30 BP 27 EP 32 DI 10.1524/zksu.2009.0004 PN 1 PG 6 WC Crystallography SC Crystallography GA 557DS UT WOS:000274650000006 ER PT J AU Doebbler, JA von Dreele, RB AF Doebbler, J. A. von Dreele, R. B. TI Macromolecular powder diffraction: Structure solution via molecular replacement SO ZEITSCHRIFT FUR KRISTALLOGRAPHIE LA English DT Article DE molecular replacement; protein; powder diffraction ID PROTEIN CRYSTAL-STRUCTURE; REFINEMENT; RESOLUTION; CRYSTALLOGRAPHY; RIETVELD AB Macromolecular powder diffraction is a burgeoning technique for protein structure solution-ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer. To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: ILZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques. C1 [Doebbler, J. A.; von Dreele, R. B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Doebbler, JA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM vondreele@anl.gov FU DOE/OS/BES [W-31-109-ENG-38] FX Use of the APS was supported by the DOE/OS/BES under contract number W-31-109-ENG-38. NR 18 TC 0 Z9 0 U1 1 U2 5 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0044-2968 J9 Z KRISTALLOGR JI Z. Kristall. PY 2009 SU 30 BP 33 EP 37 DI 10.1524/zksu.2009.0005 PN 1 PG 5 WC Crystallography SC Crystallography GA 557DS UT WOS:000274650000007 ER PT J AU Leineweber, A Mittemeijer, EJ Lawson, AC Roberts, JA Valdez, JA Kreher, WS AF Leineweber, A. Mittemeijer, E. J. Lawson, A. C. Roberts, J. A. Valdez, J. A. Kreher, W. S. TI Thermally induced microstrain broadening in polycrystalline hexagonal zinc SO ZEITSCHRIFT FUR KRISTALLOGRAPHIE LA English DT Article DE thermal microstresses; line-broadening analysis; zinc; plastic deformation ID X-RAY-DIFFRACTION AB Neutron powder-diffraction experiments on polycrystalline hexagonal zinc (powder specimen with internally polycrystalline powder particles) show considerable temperature-dependent line broadening. Whereas as-received zinc exhibits narrow reflections at 300 K, during cooling to a minimum temperature of 10 K considerable line-broadening appears, which largely disappears during reheating. The line broadening can be ascribed to microstrains induced by thermal microstresses due to the intrinsic anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the observed microstrains and theoretical predictions considering elastic deformation of the thermally strained grains can be explained by additional effects as plastic deformation and surface relaxation. C1 [Leineweber, A.; Mittemeijer, E. J.] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Lawson, A. C.; Roberts, J. A.; Valdez, J. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kreher, W. S.] Tech Univ Dresden, Inst Mat Sci, D-8027 Dresden, Germany. RP Leineweber, A (reprint author), Max Planck Inst Met Res, D-70569 Stuttgart, Germany. EM a.leineweber@mf.mpg.de NR 11 TC 4 Z9 4 U1 0 U2 0 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0044-2968 J9 Z KRISTALLOGR JI Z. Kristall. PY 2009 SU 30 BP 97 EP 102 DI 10.1524/zksu.2009.0014 PN 1 PG 6 WC Crystallography SC Crystallography GA 557DS UT WOS:000274650000016 ER PT J AU Ari-Gur, P Kimmel, G Richardson, JW Huq, A AF Ari-Gur, P. Kimmel, G. Richardson, J. W. Huq, A. TI Application of neutron powder diffraction for the study of non-stoichiometric Ni2MnGa based alloys SO ZEITSCHRIFT FUR KRISTALLOGRAPHIE LA English DT Article; Proceedings Paper CT 11th European Powder Diffraction Conference CY SEP 19-22, 2008 CL Warsaw Univ Technol, Warsaw, POLAND SP Bruker AXS GmbH, PANalytical B V, Int Ctr Diffract Data, Int Union Crystallog, European Crystallog Assoc, Polish Acad Sci, Comm Crystallog HO Warsaw Univ Technol DE Ni-Mn-Ga alloys; neutron diffraction; powder diffraction; thermal treatment ID NI-MN-GA AB Ni2MnGa has been the focus of multiple studies due to its unique ferromagnetic, magnetostrictive, thermal and magnetically controlled shape memory properties. At room temperature, the alloy has a Heusler alloy L2(1) type structure. A martensitic phase transition occurs upon cooling. It is highly desirable to develop and study the properties of alloys that exhibit the MSM effect at ambient conditions. In Ni-Mn-Ga compounds the exchange between Mn and Ga reduces the degree of order which makes neutron diffraction more sensitive to the crystallographic characterization and an ideal tool to study the effect of different thermal treatments on the structure. In this work the crystallography of several non-stoichiometric polycrystalline alloys synthesized and thermally treated were studied at several temperatures using pulsed neutron source at Argonne National Laboratory. The alloys were Ni2Mn1+xGa1-x compositions with x=-0.08, 0.0, 0.08 and 0.16. The sample were arc melted pellets and were studied as-cast and after several combinations of thermal treatments including isothermal annealing at 900 and 700 degrees C and cooling to room temperatures. It was found that the Mn rich non stoichiometric alloys (x=0.08 and 0.16) are unstable at 700 degrees C and fast cooling from 900 degrees C is essential in order to retain a homogeneous solid solution. These single-phase structures were found to have high level of chemical order, for that reason, ordering treatment is not necessary. C1 [Ari-Gur, P.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Kimmel, G.] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel. [Richardson, J. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Huq, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ari-Gur, P (reprint author), Western Michigan Univ, Kalamazoo, MI 49008 USA. EM kimmel@bgu.ac.il RI Huq, Ashfia/J-8772-2013 OI Huq, Ashfia/0000-0002-8445-9649 NR 12 TC 0 Z9 0 U1 0 U2 5 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0044-2968 J9 Z KRISTALLOGR JI Z. Kristall. PY 2009 SU 30 BP 277 EP 282 DI 10.1524/zksu.2009.0040 PN 2 PG 6 WC Crystallography SC Crystallography GA 513MF UT WOS:000271325700009 ER PT S AU Daum, RS Majumdar, S Billone, MC AF Daum, Robert S. Majumdar, Saurin Billone, Michael C. BE Kammenzind, B Limback, M TI Experimental and Analytical Investigation of the Mechanical Behavior of High-Burnup Zircaloy-4 Fuel Cladding SO ZIRCONIUM IN THE NUCLEAR INDUSTRY: 15TH INTERNATIONAL SYMPOSIUM SE American Society for Testing and Materials Special Technical Publications LA English DT Proceedings Paper CT 15th International Symposium on Zirconium in the Nuclear Industry CY JUN 24-28, 2007 CL Sunriver, OR SP Amer Soc Testing & Mat Comm B 10 React & Refract Met & Alloys DE cladding; high burnup; Zircaloy-4; hydrides; hydride rim; reorientation; radial hydride; oxide; finite element modeling; ring compression; embrittlement; ductility ID HYDRIDE EMBRITTLEMENT; REORIENTATION; FAILURE AB Sufficient mechanical ductility of high-burnup Zircaloy-4 fuel cladding is important to prevent large-opening ruptures and significant fuel dispersal during postulated in-reactor and spent-fuel processing accidents. The effect of irradiation, oxidation, and hydriding at high fuel burnup may degrade cladding ductility to the extent that such large ruptures are possible under severe loadings. To understand this susceptibility to failure, this study focused on mechanical testing coupled with detailed finite-element modeling and analyses. Under ring-compression-type loading at room temperature, tensile cracks form within the corrosion-induced oxide layer under elastic loading. The oxide crack then propagates into the cladding wall under additional loading with little to no measurable plastic strain, as confirmed by both experiment and analyses of plastic hoop strain in the ring. For cladding with the oxide removed prior to testing at <= 1 %/s, cracking of the underlying hydride rim comprised of circumferentially oriented hydrides occurs at low plastic hoop strain (<= 3 %), whereas the finite-element analysis suggests that the base alloy with a relatively small amount of hydrides appears to fail at higher strain (>8 %). At even higher strain rates (approximate to 400 %/s), cracking within the hydride rim occurs at near-zero ductility, but the base alloy continues to remain highly ductile. These room-temperature results indicate that the hydride rim is sensitive to strain rate, whereas the base alloy is relatively not. With the precipitation of approximate to 100 % radially oriented hydrides, the cladding exhibits near-zero ductility at room temperature and approximate to 0.1 %/s. This study suggests that the ring-compression test coupled with finite-element modeling and analysis may be used to estimate crack-initiation strains in irradiated cladding materials with susceptible microstructures and under various deformation rates. C1 [Daum, Robert S.; Majumdar, Saurin; Billone, Michael C.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Daum, RS (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 33 TC 1 Z9 1 U1 3 U2 11 PU AMERICAN SOCIETY TESTING AND MATERIALS PI W CONSHOHOCKEN PA 100 BARR HARBOR DRIVE, W CONSHOHOCKEN, PA 19428-2959 USA SN 1040-1695 BN 978-0-8031-4514-6 J9 AM SOC TEST MATER PY 2009 VL 1505 BP 119 EP 140 DI 10.1520/STP48133S PG 22 WC Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing; Nuclear Science & Technology SC Metallurgy & Metallurgical Engineering; Materials Science; Nuclear Science & Technology GA BKI65 UT WOS:000268223100007 ER PT J AU Wilson, RJ Tokar, RL Henderson, MG Hill, TW Thomsen, MF Pontius, DH AF Wilson, R. J. Tokar, R. L. Henderson, M. G. Hill, T. W. Thomsen, M. F. Pontius, D. H., Jr. TI Cassini plasma spectrometer thermal ion measurements in Saturn's inner magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID COROTATION; ENCELADUS AB [1] Plasma data from the Cassini Plasma Spectrometer experiment are analyzed using a robust forward modeling technique for dayside equatorial orbits within the range 5.5 to 11 Saturn radii (1 R-S = 60,268 km). It is assumed the measured ion data may be represented by two anisotropic Maxwellian distributed species, H+ and a water group ion, W+. Saturn's magnetospheric plasma is shown to subcorotate by 15-30% below rigid corotation within this region, with a minimum in fractional lag between 7 and 9 RS. There is a suggestion of a small radial outflow, but the selection of data for this study precluded the inclusion of interchange injection events. Ion densities are in excellent agreement with the Cassini plasma wave instrument, giving confidence in the forward modeling technique. Plasma moments including density, temperatures, and velocities are presented, along with empirical models for density and azimuthal velocity. Water group temperature anisotropies T-perpendicular to/T-parallel to have values between 3 and 8 near 5.5 RS, becoming less anisotropic as distance increases, but are still not isotropic by 10 RS. The implications of these results for mass loading in the Saturnian magnetosphere are discussed, with the conclusion that an important fraction of the plasma source is located inside of the 5.5 RS boundary of this study. C1 [Wilson, R. J.; Tokar, R. L.; Henderson, M. G.; Thomsen, M. F.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, ISR 1, Los Alamos, NM 87545 USA. [Hill, T. W.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Pontius, D. H., Jr.] Birmingham So Coll, Dept Phys, Birmingham, AL 35254 USA. RP Wilson, RJ (reprint author), Los Alamos Natl Lab, Space & Atmospher Sci Grp, ISR 1, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM rjw@lanl.gov RI Wilson, Rob/C-2689-2009; Henderson, Michael/A-3948-2011 OI Wilson, Rob/0000-0001-9276-2368; Henderson, Michael/0000-0003-4975-9029 FU NASA; JPL [1243218] FX The work at Los Alamos was performed under the auspices of the U. S. DOE and was supported by the NASA Cassini program. The ion mass spectrometer is a component of the Cassini Plasma Spectrometer and was supported by JPL contract 1243218 with Southwest Research Institute. Cassini is managed by the Jet Propulsion Laboratory for NASA. NR 32 TC 92 Z9 92 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 31 PY 2008 VL 113 IS A12 AR A12218 DI 10.1029/2008JA013486 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 390OY UT WOS:000262174800006 ER PT J AU Batchelor, JD Doucleff, M Lee, CJ Matsubara, K De Carlo, S Heideker, J Lamers, MH Pelton, JG Wemmer, DE AF Batchelor, Joseph D. Doucleff, Michaeleen Lee, Chul-Jin Matsubara, Koshi De Carlo, Sacha Heideker, Johanna Lamers, Meindert H. Pelton, Jeffrey G. Wemmer, David E. TI Structure and Regulatory Mechanism of Aquifex aeolicus NtrC4: Variability and Evolution in Bacterial Transcriptional Regulation SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE transcriptional activator; response regulator; sigma-54; two-component signal transduction; enhancer-binding protein ID ENHANCER-BINDING PROTEIN; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; RECEIVER DOMAIN; KINASE-II; BORRELIA-BURGDORFERI; SIGNAL-TRANSDUCTION; ELECTRON-MICROSCOPY; TERMINAL DOMAIN; SIGMA-FACTOR AB Genetic changes lead gradually to altered protein function, making deduction of the molecular basis for activity from a sequence difficult. Comparative studies provide insights into the functional consequences of specific changes. Here we present structural and biochemical studies of NtrC4, a sigma-54 activator from Aquifex aeolicus, and compare it with NtrC1 (a paralog) and NtrC (a homolog from Salmonella enterica) to provide insight into how a substantial change in regulatory mechanism may have occurred. Activity assays show that assembly of NtrC4's active oligomer is repressed by the N-terminal receiver domain, and that BeF(3)(-) addition (mimicking phosphorylation) removes this repression. Observation of assembly without activation for NtrC4 indicates that it is much less strongly repressed than NtrC1. The crystal structure of the unactivated receiver-ATPase domain combination shows a partially disrupted interface. NMR structures of the regulatory domain show that its activation mechanism is very similar to that of NtrC1. The crystal structure of the NtrC4 DNA-binding domain shows that it is dimeric and more similar in structure to NtrC than NtrC1. Electron microscope images of the ATPase-DNA-binding domain combination show formation of oligomeric rings. Sequence alignments provide insights into the distribution of activation mechanisms in this family of proteins. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Batchelor, Joseph D.; Wemmer, David E.] Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA. [Batchelor, Joseph D.; Doucleff, Michaeleen; Lee, Chul-Jin; Matsubara, Koshi; Heideker, Johanna; Pelton, Jeffrey G.; Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Batchelor, Joseph D.; Doucleff, Michaeleen; Lee, Chul-Jin; Matsubara, Koshi; Heideker, Johanna; Pelton, Jeffrey G.; Wemmer, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [De Carlo, Sacha; Lamers, Meindert H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Wemmer, DE (reprint author), Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA. EM DEWemmer@lbl.gov FU National Institutes of Health (NIH) [R01 GM 62163, RR15756, GM68933]; Department of Energy Genomes to Life program; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [BBS 87-20134, BBS 01-19304] FX We would like to acknowledge support from the National Institutes of Health (NIH; through grant R01 GM 62163 to D.E.W.) and the Department of Energy Genomes to Life program (to S.D.C. via Eva Nogales). We also thank Prof. Tracy Nixon for discussions and for the model shown ill Fig. 8; Prof. Sydney Kustu for discussions and encouragement; Prof. Eva Nogales for use of her microscopes; Dr. Ann E. Maris and Dr. Debanu Das for help with crystallography; Prof. John Kuriyan for helpful discussions; and the Advanced Light Source beam-line staff for help and advice. The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract no. DE-AC02-05CH11231. NIH funding for NMR instrumentation came from the NIH (grants RR15756 and GM68933) and National Science Foundation (grants BBS 87-20134 and BBS 01-19304). NR 84 TC 37 Z9 37 U1 0 U2 5 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD DEC 31 PY 2008 VL 384 IS 5 BP 1058 EP 1075 DI 10.1016/j.jmb.2008.10.024 PG 18 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 388JR UT WOS:000262016600005 PM 18955063 ER PT J AU Dahl, C Schulte, A Stockdreher, Y Hong, C Grimm, F Sander, J Kim, R Kim, SH Shin, DH AF Dahl, Christians Schulte, Andrea Stockdreher, Yvonne Hong, Connie Grimm, Frauke Sander, Johannes Kim, Rosalind Kim, Sung-Hou Shin, Dong Hae TI Structural and Molecular Genetic Insight into a Widespread Sulfur Oxidation Pathway SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE DsrEFH; dissimilatory sulfur oxidation; crystal structure; anoxygenic phototrophic sulfur bacteria YchN fold; dissimilatory sulfite reductase ID ALLOCHROMATIUM-VINOSUM; CHROMATIUM-VINOSUM; ESCHERICHIA-COLI; DSRMKJOP COMPLEX; BACTERIUM; SYSTEM; MUTAGENESIS; PROTEINS; CLONING; EXPRESSION AB Many environmentally important photo- and chemolithoautotrophic bacteria accumulate globules of polymeric, water-insoluble sulfur as a transient product during oxidation of reduced sulfur compounds. Oxidation of this sulfur requires the concerted action of Dsr proteins. However, individual functions and interplay of these proteins are largely unclear. We proved with a Delta dsrE mutant experiment that the cytoplasmic alpha(2)beta(2)gamma(2)-structured protein DsrEFH. is absolutely essential for the oxidation of sulfur stored in the intracellular sulfur globules of the purple sulfur bacterial model organism Allochromatium vinosum. The ability to degrade stored sulfur was fully regained upon complementation with dsrEFH in trans. The crystal structure of DsrEFH was determined at 2.5 angstrom resolution to assist functional assignment in detail. In conjunction with phylogenetic analyses, two different types of putative active sites were identified in DsrE and DsrH and shown to be characteristic for sulfur-oxidizing bacteria. Conserved Cys78 of A. vinosum DsrE corresponds to the active cysteines of Escherichia coli YchN and TusD. TusBCD and the protein TusE are parts of sulfur relay system involved in thiouridine biosynthesis. DsrEFH interacts with DsrC, a TusE homologue encoded in the same operon. The conserved penultimate cysteine residue in the carboxy-terminus of DsrC is essential for the interaction. Here, we show that Cys78 of DsrE is strictly required for interaction with DsrC while Cys20 in the putative active site of DsrH is dispensable for that reaction. In summary, our findings point at the occurrence of sulfur transfer reactions during sulfur oxidation via the Dsr proteins. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Shin, Dong Hae] Ewha Womans Univ, Coll Pharm, Seoul 120750, South Korea. [Dahl, Christians; Schulte, Andrea; Stockdreher, Yvonne; Grimm, Frauke; Sander, Johannes] Univ Bonn, Inst Mikrobiol & Biotechnol, D-53115 Bonn, Germany. [Hong, Connie; Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Rosalind; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Shin, DH (reprint author), Ewha Womans Univ, Coll Pharm, Seoul 120750, South Korea. EM dhshin55@ewha.ac.kr OI Dahl, Christiane/0000-0001-8288-7546 FU Deutsche Forschungsgemeinschaft [Da 351/3-3, 3-4, 3-5]; Korea Research Foundation Grant funded by the Korean Government (Ministry of Education and Human Resource Development, Basic Research Promotion Fund [KRF-2007-313-C00618]; Ministry of Science and Technology and Korea Science and Engineering Foundation through the Center for Cell Signaling and Drug Discovery Research at Ewha Womans University [R15-2006-020]; National Institutes of Health [GM 62412] FX Skillful technical assistance by Hisao Yokota, Jaru Jancarik, and Birgitt Huttig is gratefully acknowledged. The biochemical and genetic parts of this research were supported by the Deutsche Forschungsgemeinschaft (grants Da 351/3-3, 3-4, and 3-5 to C.D.). The crystallographic part described here was supported by the Korea Research Foundation Grant funded by the Korean Government (Ministry of Education and Human Resource Development, Basic Research Promotion Fund, :KRF-2007-313-C00618), by Grant No. R15-2006-020 from the National Core Research Center program of the Ministry of Science and Technology and Korea Science and Engineering Foundation through the Center for Cell Signaling and Drug Discovery Research at Ewha Womans University, and by the Protein Structure Initiative grant from National Institutes of Health GM 62412. NR 56 TC 35 Z9 35 U1 1 U2 11 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD DEC 31 PY 2008 VL 384 IS 5 BP 1287 EP 1300 DI 10.1016/j.jmb.2008.10.016 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 388JR UT WOS:000262016600022 PM 18952098 ER PT J AU Jasti, R Bhattacharjee, J Neaton, JB Bertozzi, CR AF Jasti, Ramesh Bhattacharjee, Joydeep Neaton, Jeffrey B. Bertozzi, Carolyn R. TI Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DERIVATIVES; 3,6-DIMETHOXY-3,6-DIMETHYLCYCLOHEXA-1,4-DIENE; REACTIVITY; ARYLATION; ETHERS; BELTS AB The first synthesis and characterization of [9]-, (12]-, and [18]cycloparaphenylene was demonstrated utilizing a novel aromatization reaction. We refer to these fascinating structures as "carbon nanohoops" due to their structural similarity to carbon nanotubes. Additionally, we have utilized computational methods to understand the unique properties of these fully conjugated macrocycles. C1 [Jasti, Ramesh; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Jasti, Ramesh; Bhattacharjee, Joydeep; Neaton, Jeffrey B.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM crb@berkeley.edu RI Neaton, Jeffrey/F-8578-2015 OI Neaton, Jeffrey/0000-0001-7585-6135 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0634750] FX This work was performed at the Molecular Foundry, Experimental work Was Supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under (Contract No. DE-AC02-05CH11231. Theoretical work was supported by the National Science Foundation through the Network for Computational Nanotechnology, Grant EEC-0634750. NR 21 TC 288 Z9 289 U1 6 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 31 PY 2008 VL 130 IS 52 BP 17646 EP + DI 10.1021/ja807126u PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 406UR UT WOS:000263320900008 PM 19055403 ER PT J AU Graetz, J Wegrzyn, J Reilly, JJ AF Graetz, Jason Wegrzyn, James Reilly, James J. TI Regeneration of Lithium Aluminum Hydride SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR ASSOCIATION; METAL-HYDRIDES; CONDUCTANCE; SOLVENTS; LIALH4 AB Lithium aluminum hydride (LiAlH(4)) is a promising compound for hydrogen storage, with a high gravimetric and volumetric hydrogen density and a low decomposition temperature. Similar to other metastable hydrides, LiAlH(4) does not form by direct hydrogenation at reasonable hydrogen pressures; therefore, there is considerable interest in developing new routes to regenerate the material from the dehydrogenated products LiH and Al. Here we demonstrate a low-energy route to regenerate LiAlH(4) from LiH and. Ti-catalyzed Al. The initial hydrogenation occurs in a tetrahydrofuran slurry and forms the adduct LiAlH(4)center dot 4THF. The thermodynamics of this reversible reaction were investigated by measuring pressure-composition isotherms, and the free energy was found to be small and slightly negative (Delta G = -1.1 kJ/mol H(2)) suggesting an equilibrium hydrogen pressure of just under 1 bar at 300 K. We also demonstrate that the adduct LiAlH(4)center dot 4THF can be desolvated at low temperature to yield crystalline LiAlH(4). C1 [Graetz, Jason; Wegrzyn, James; Reilly, James J.] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11933 USA. RP Graetz, J (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11933 USA. EM graetz@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH1-886] FX This work was supported through the Metal Hydrides Center of Excellence, Office of Energy Efficiency and Renewable Energy, and the Hydrogen Fuel Initiative, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-98CH1-886. The authors thank John Johnson, Yusuf Celebi, and Weimin Zhou for their assistance in the laboratory. NR 18 TC 42 Z9 45 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 31 PY 2008 VL 130 IS 52 BP 17790 EP 17794 DI 10.1021/ja805353w PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 406UR UT WOS:000263320900036 PM 19053465 ER PT J AU Zhang, H Siegrist, K Plusquellic, DF Gregurick, SK AF Zhang, Hailiang Siegrist, Karen Plusquellic, David F. Gregurick, Susan K. TI Terahertz Spectra and Normal Mode Analysis of the Crystalline VA Class Dipeptide Nanotubes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELF-CONSISTENT-FIELD; VIBRATIONAL WAVE-FUNCTIONS; VALYL-L-ALANINE; AB-INITIO; DYNAMICS CALCULATIONS; COLLOCATION METHOD; FORCE-FIELDS; SPECTROSCOPY; WATER; MOLECULES AB Terahertz (THz) vibrational modes are characterized by nonlocal, collective molecular motions which are relevant to conformational changes and molecular functions in biological systems. We have investigated the THz spectra of a set of small bionanotubes which can serve as very simple models of membrane pores, and have examined the character of the THz modes which can impact transport processes. In this work, THz spectra of the crystalline VA class dipeptide nanotubes were calculated at both the harmonic and vibrational self-consistent field (VSCF) level using the CHARMM22 force field with periodic boundary conditions. Comparison of the calculated THz spectra against the experimental spectra revealed that the VSCF corrections generally improved the predictions in the low-frequency region. The improvements were especially manifested in the overall blue-shifts of the VSCF frequencies relative to the harmonic values, and blue shifts were attributed to the overall positive coupling strengths in all systems. Closer examination of the motions in the most significantly coupled normal mode pairs leads us to propose that, when two similar side-chain squeezing modes are coupled, the rapidly increased van der Waals interactions can lead to a stiffening of the effective potential, which in turn leads to the observed blue-shifts. However, we also noted that when the side-chain atoms become unphysically proximate and the van der Waals repulsion becomes too large, the VSCF calculations tend to deviate in the high frequency region and for the system Of L-isoleucyl-L-valine. In addition, normal-mode analysis revealed a series of channel-breathing motions in all systems except L-valyl-L-alanine. We show that the inner products of the backbone vibrations between these channel-breathing motions divided the remaining VA class dipeptide systems into two subgroups. It is suggested that these modes may facilitate a pathway for the guest molecule absorption, substitution and removal in the VA class dipeptide nanotubes. Normal mode analysis also demonstrated that the THz motions may contribute to the pore permeability either directly by changing the pore size, or indirectly by affecting the solvent-host effective potentials. C1 [Zhang, Hailiang; Gregurick, Susan K.] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA. [Siegrist, Karen; Plusquellic, David F.] NIST, Phys Lab, Biophys Grp, Gaithersburg, MD 20899 USA. RP Gregurick, SK (reprint author), Off Biol & Environm Res, US Dept Energy, Germantown, MD 20874 USA. EM greguric@umbc.edu RI Zhang, Hailiang/F-8325-2010 NR 60 TC 21 Z9 21 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 31 PY 2008 VL 130 IS 52 BP 17846 EP 17857 DI 10.1021/ja805581n PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 406UR UT WOS:000263320900042 PM 19055402 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ Lo Secco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Lopes Pegna, D Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. Lo Secco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Lopes Pegna, D. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. YSche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of the Branching Fractions of (B)over-bar -> D**l(-)(v)over-bar(l) Decays in Events Tagged by a Fully Reconstructed B Meson SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-MODEL; PHYSICS AB We report a measurement of the branching fractions of B -> D**l(-)(v) over bar (l) decays based on 417 fb(-1) of data collected at the Y(4S) resonance with the BABAR detector at the PEP-II e(+) e(-) storage rings. Events are selected by fully reconstructing one of the B mesons in a hadronic decay mode. A fit to the invariant mass differences m(D-(*())pi) - (m(D-(*())) is performed to extract the signal yields of the different D** states. We observe the (B) over bar -> D**l(-)(v) over bar (l) decay modes corresponding to the four D** states predicted by heavy quark symmetry with a significance greater than 5 standard deviations including systematic uncertainties. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, D-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Kerth, L. T.; Sundermann, J. E.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Lynch, H. L.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.; Miyashita, T. S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Soffer, A.; Toki, W. H.; Wilson, R. J.] Univ Colorado, Boulder, CO 80309 USA. [Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Univ Genoa, I-16146 Genoa, Italy. [Marks, J.; Schenk, S.; Uwer, U.] Harvard Univ, Cambridge, MA 02138 USA. [Klose, V.; Lacker, H. M.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Prencipe, E.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Rosenberg, E. I.; Rubin, A. E.] Univ Iowa, Iowa City, IA 52242 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Iowa State Univ, Ames, IA 50011 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Davis, C. L.] Bedford New Coll, Egham TW20 0EX, Surrey, England. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Louisville, Louisville, KY 40292 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] Univ Massachusetts, Amherst, MA 01003 USA. [Patel, P. M.; Robertson, S. H.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lazzaro, A.; Lombardo, V.; Palombo, F.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; Lo Secco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Lu, C.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Padua, I-35131 Padua, Italy. [Gladney, L.] Univ Paris 06, CNRS, IN2P3, Univ Paris 07,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Morandin, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Perugia, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Univ Pisa, I-56127 Pisa, Italy. [Morganti, M.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Schroeder, T.; Ebert, M.; Hartmann, T.; Waldi, R.] Princeton Univ, Princeton, NJ 08544 USA. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Ist Nazl Fis Nucl, Sez Roma, Dipartimento Fis, I-00185 Rome, Italy. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Zito, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ Rostock, D-18051 Rostock, Germany. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] Univ S Carolina, Columbia, SC 29208 USA. [Spanier, S. M.; Wogsland, B. J.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Yarritu, A. K.; Eckmann, R.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Stanford Univ, Stanford, CA 94305 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] SUNY Albany, Albany, NY 12222 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Tennessee, Knoxville, TN 37996 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Texas Austin, Austin, TX 78712 USA. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Turin, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Trieste, I-34127 Trieste, Italy. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Raven, Gerhard/0000-0002-2897-5323; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU SLAC; DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MIST (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 19 TC 21 Z9 21 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 261802 DI 10.1103/PhysRevLett.101.261802 PG 7 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100022 PM 19113769 ER PT J AU Bondino, F Magnano, E Malvestuto, M Parmigiani, F McGuire, MA Sefat, AS Sales, BC Jin, R Mandrus, D Plummer, EW Singh, DJ Mannella, N AF Bondino, F. Magnano, E. Malvestuto, M. Parmigiani, F. McGuire, M. A. Sefat, A. S. Sales, B. C. Jin, R. Mandrus, D. Plummer, E. W. Singh, D. J. Mannella, N. TI Evidence for Strong Itinerant Spin Fluctuations in the Normal State of CeFeAsO0.89F0.11 Iron-Oxypnictide Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-ABSORPTION; RESONANT PHOTOEMISSION; FE; 3S; SILICIDES; SPECTRA; ENERGY; METAL; XPS AB The electronic structure in the normal state of CeFeAsO0.89F0.11 oxypnictide superconductors has been investigated with x-ray absorption and photoemission spectroscopy. All of the data exhibit signatures of Fe d-electron itinerancy. Exchange multiplets appearing in the Fe 3s core level indicate the presence of itinerant spin fluctuations. These findings suggest that the underlying physics and the origin of superconductivity in these materials are likely to be quite different from those of the cuprate high-temperature superconductors. These materials provide opportunities for elucidating the role of magnetic fluctuations in high-temperature superconductivity. C1 [Jin, R.; Plummer, E. W.; Mannella, N.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bondino, F.; Magnano, E.; Parmigiani, F.] CNR INFM, Lab Nazl TASC, I-34012 Trieste, Italy. [Malvestuto, M.] Sincrotrone Trieste SCpA, I-34012 Trieste, Italy. [Parmigiani, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [McGuire, M. A.; Sefat, A. S.; Sales, B. C.; Jin, R.; Mandrus, D.; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mannella, N (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM nmannell@utk.edu RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Malvestuto, Marco/I-4821-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016; OI McGuire, Michael/0000-0003-1762-9406; Malvestuto, Marco/0000-0003-4418-035X; Sefat, Athena/0000-0002-5596-3504; Parmigiani, Fulvio/0000-0001-9529-7406; Bondino, Federica/0000-0001-6505-9319 FU Division of Materials Science and Engineering; Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. Discussions with G. M. Stocks and I. I. Mazin are gratefully acknowledged. NR 29 TC 78 Z9 78 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 267001 DI 10.1103/PhysRevLett.101.267001 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100063 PM 19113783 ER PT J AU Bussmann, E Bockenhauer, S Himpsel, FJ Swartzentruber, BS AF Bussmann, E. Bockenhauer, S. Himpsel, F. J. Swartzentruber, B. S. TI One-Dimensional Defect-Mediated Diffusion of Si Adatoms on the Si(111)-(5x2)-Au Surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-DIFFUSION; SILICON; ATOMS AB Using scanning tunneling microscopy, we determine that the one-dimensional diffusion of Si adatoms along the Si(111)-(5x2)-Au surface reconstruction occurs by a defect-mediated mechanism. Distinctive diffusion statistics, especially correlations between sequential adatom displacements, imply that the displacements are triggered by an interaction with a defect that is localized to the adatom. The defect is intrinsic and thermally activated. The measured diffusion statistics are modeled accurately by a Monte Carlo simulation. The measured adatom diffusion activation barrier is 1.24 +/- 0.08 eV. C1 [Bussmann, E.; Swartzentruber, B. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bockenhauer, S.; Himpsel, F. J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Bussmann, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC04-94AL85000]; Center for Integrated Nanotechnologies; NSF [DMR-0705145] FX We thank N. C. Bartelt, G. L. Kellogg, P. J. Feibelman, R. Stumpf, and I. Barke for useful discussions. The work performed at Sandia was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, and was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. DOE-BES user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. F. J. H. and S. B. acknowledge support by the NSF under DMR-0705145. NR 23 TC 15 Z9 15 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 266101 DI 10.1103/PhysRevLett.101.266101 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100046 PM 19113776 ER PT J AU Kasper, JC Lazarus, AJ Gary, SP AF Kasper, J. C. Lazarus, A. J. Gary, S. P. TI Hot Solar-Wind Helium: Direct Evidence for Local Heating by Alfven-Cyclotron Dissipation SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-IONS; COULOMB COLLISIONS; MINOR IONS; CORONA; ACCELERATION; SCATTERING; LATITUDE; ULYSSES; SPEED; WAVES AB A study of solar-wind hydrogen and helium temperature observations collected by the Wind spacecraft offers compelling evidence of heating by an Alfven-cyclotron dissipation mechanism. Observations are sorted by the rate of Coulomb interactions, or collisional age, in the plasma and the differential flow between the two species. We show that helium is preferentially heated perpendicular to the magnetic field direction by more than a factor of 6 when the flow between the species is small relative to the Alfven wave speed and collisions are infrequent. These signatures are consistent with predictions of dissipation in the presence of multiple ion species. We also report an unexpected result: observations of efficient heating of helium parallel to the magnetic field for large differential flow relative to the sound speed. C1 [Kasper, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lazarus, A. J.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Gary, S. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kasper, JC (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jkasper@cfa.harvard.edu RI Kasper, Justin/D-1152-2010 OI Kasper, Justin/0000-0002-7077-930X FU NASA [NNX08AW07G] FX Analysis of Wind/SWE observations at SAO is supported by NASA Grant NNX08AW07G. NR 25 TC 98 Z9 99 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 261103 DI 10.1103/PhysRevLett.101.261103 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100016 PM 19113766 ER PT J AU Lee, KS Kim, SK Yu, YS Choi, YS Guslienko, KY Jung, H Fischer, P AF Lee, Ki-Suk Kim, Sang-Koog Yu, Young-Sang Choi, Youn-Seok Guslienko, Konstantin Yu. Jung, Hyunsung Fischer, Peter TI Universal Criterion and Phase Diagram for Switching a Magnetic Vortex Core in Soft Magnetic Nanodots SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS AB The universal criterion for ultrafast vortex-core switching between the up- and down-core bistates in soft magnetic nanodots is investigated by micromagnetic simulations along with vortex-core switching that occurs whenever the velocity of vortex-core motion reaches its critical velocity, v(cri) = (1.66 +/- 0.18)gamma root A(ex) (e.g., v(cri) 330 +/- 37 m/s for Permalloy), with the exchange stiffness A(ex) and the gyromagnetic ratio gamma. On the basis of the universality of v(cri), phase diagrams for the vortex-core switching event and switching time with respect to both the amplitude and frequency of a circularly rotating magnetic field are calculated. C1 [Lee, Ki-Suk; Kim, Sang-Koog; Yu, Young-Sang; Choi, Youn-Seok; Guslienko, Konstantin Yu.; Jung, Hyunsung] Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. [Lee, Ki-Suk; Kim, Sang-Koog; Yu, Young-Sang; Choi, Youn-Seok; Guslienko, Konstantin Yu.; Jung, Hyunsung] Seoul Natl Univ, Dept Mat Sci & Engn, Nanospin Lab, Seoul 151744, South Korea. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Kim, SK (reprint author), Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. EM sangkoog@snu.ac.kr RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012; Kim, Sang-Koog/J-4638-2014 OI Fischer, Peter/0000-0002-9824-9343; FU Creative Research Initiatives (ReC-SDSW) of MEST/KOSEF; U.S. Department of Energy FX We thank H. Stoll for fruitful discussions. This work was supported by Creative Research Initiatives (ReC-SDSW) of MEST/KOSEF. P. F. was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy. NR 33 TC 69 Z9 72 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 267206 DI 10.1103/PhysRevLett.101.267206 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100074 PM 19437670 ER PT J AU Luhman, DR Pan, W Tsui, DC Pfeiffer, LN Baldwin, KW West, KW AF Luhman, D. R. Pan, W. Tsui, D. C. Pfeiffer, L. N. Baldwin, K. W. West, K. W. TI Observation of a Fractional Quantum Hall State at nu=1/4 in a Wide GaAs Quantum Well SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-DIMENSIONAL ELECTRON-SYSTEMS; LAYER; FERMIONS AB We report the observation of an even-denominator fractional quantum Hall state at nu=1/4 in a high quality, wide GaAs quantum well. The sample has a quantum well width of 50 nm and an electron density of n(e)=2.55x10(11) cm(-2). We have performed transport measurements at T similar to 35 mK in magnetic fields up to 45 T. When the sample is perpendicular to the applied magnetic field, the diagonal resistance displays a kink at nu=1/4. Upon tilting the sample to an angle of theta=20.3 degrees a clear fractional quantum Hall state emerges at nu=1/4 with a plateau in the Hall resistance and a strong minimum in the diagonal resistance. C1 [Luhman, D. R.; Tsui, D. C.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87195 USA. [Pfeiffer, L. N.; Baldwin, K. W.; West, K. W.] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA. RP Luhman, DR (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. FU NSF [DMR-0084173]; State of Florida; DOE; U. S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000, DE-FG-02-98ER45683] FX We would like to thank G. Jones, E. Palm, T. Murphy, D. Freeman, and J. Pucci for experimental assistance. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the DOE. W. P. was supported by the DOE/BES at Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC0494AL85000. The work at Princeton University was funded by DOE Grant No. DE-FG-02-98ER45683. NR 21 TC 34 Z9 34 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 266804 DI 10.1103/PhysRevLett.101.266804 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100062 PM 19437661 ER PT J AU Rolles, D Prumper, G Fukuzawa, H Liu, XJ Pesic, ZD Fink, RF Grum-Grzhimailo, AN Dumitriu, I Berrah, N Ueda, K AF Rolles, D. Pruemper, G. Fukuzawa, H. Liu, X. -J. Pesic, Z. D. Fink, R. F. Grum-Grzhimailo, A. N. Dumitriu, I. Berrah, N. Ueda, K. TI Molecular-Frame Angular Distributions of Resonant CO:C(1s) Auger Electrons SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE PHOTOIONIZATION; CARBON-MONOXIDE; DECAY SPECTRA; CO MOLECULES; DOUBLE-SLIT; PHOTOELECTRON; N-2; LOCALIZATION; ION; HF AB The molecular-frame angular distributions of resonantly excited CO:C(1s)->pi(*) Auger electrons were determined using angle-resolved electron-ion coincidence spectroscopy in combination with a novel transformation procedure. Our new methodology yields full three-dimensional electron angular distributions with high energy resolution from the measurement of electrons at only two angles. The experimentally determined distributions are well reproduced by calculations performed in a simple one-center approximation, allowing an unambiguous identification of several overlapping Auger lines. C1 [Rolles, D.; Pesic, Z. D.; Dumitriu, I.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Rolles, D.; Pesic, Z. D.; Dumitriu, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Pruemper, G.; Fukuzawa, H.; Liu, X. -J.; Grum-Grzhimailo, A. N.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Fink, R. F.] Univ Wurzburg, Inst Phys Chem, D-97074 Wurzburg, Germany. [Grum-Grzhimailo, A. N.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119991, Russia. RP Rolles, D (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM ueda@tagen.tohoku.ac.jp RI Grum-Grzhimailo, Alexei/D-6274-2012; Fink, Reinhold/A-3239-2016 OI Fink, Reinhold/0000-0002-8288-924X FU BES; DOE; Chemical Sciences, Geosciences, Biosciences Division; Japanese Society for the Promotion of Science (JSPS); Japanese Ministry of Education, Culture, Sports, Science and Technology; Alexander von Humboldt foundation; Tohoku University FX This work was supported by BES, DOE, Chemical Sciences, Geosciences, Biosciences Division, Grants-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (JSPS), and the Japanese Ministry of Education, Culture, Sports, Science and Technology. The authors are grateful to R. Lucchese for discussions on the frame transformation algorithm, and to T. Young, E. Ahrenholz, A. Aguilar, R. Bilodeau, and D. Kilcoyne, for their help during the experiment. D. R. acknowledges support from the Alexander von Humboldt foundation, X. J. L. acknowledges support from JSPS, and A.N.G. acknowledges JSPS and Tohoku University for support and Tohoku University for hospitality. NR 43 TC 12 Z9 12 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 263002 DI 10.1103/PhysRevLett.101.263002 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100027 PM 19437639 ER PT J AU Yan, KK Walker, D Maslov, S AF Yan, Koon-Kiu Walker, Dylan Maslov, Sergei TI Fluctuations in Mass-Action Equilibrium of Protein Binding Networks SO PHYSICAL REVIEW LETTERS LA English DT Article ID NOISE; PROPAGATION; EXPRESSION; DATABASE; YEAST AB We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker's yeast, with empirical protein concentrations. C1 [Yan, Koon-Kiu; Walker, Dylan] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Yan, KK (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Yan, Koon-Kiu/A-5940-2009; OI Maslov, Sergei/0000-0002-3701-492X FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Division of Material Science; U.S. Department of Energy FX Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886, Division of Material Science, U.S. Department of Energy. NR 15 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 31 PY 2008 VL 101 IS 26 AR 268102 DI 10.1103/PhysRevLett.101.268102 PG 4 WC Physics, Multidisciplinary SC Physics GA 391QF UT WOS:000262247100083 PM 19437675 ER PT J AU Kiyanagi, R Richardson, JW Sakamoto, N Yoshimura, M AF Kiyanagi, Ryoji Richardson, James W., Jr. Sakamoto, Naonori Yoshimura, Masahiro TI Free oxygen ions and cage deformation in the nanoporous material 12CaO center dot 7Al(2)O(3): A temperature-dependent neutron powder diffraction study SO SOLID STATE IONICS LA English DT Article DE C12A7; Crystal structure; Neutron diffraction ID MAXIMUM-ENTROPY-METHOD; HFO2-AL2O3-GDALO3 SYSTEM; CHARGE-DENSITY; CRYSTAL; FABRICATION; CERAMICS; RADICALS; CA12AL14O33; GLASS; MELT AB Neutron powder diffraction was used to investigate the detailed structure of the novel nanoporous oxide 12CaO center dot 7Al(2)O(3) (C12A7) over a wide temperature range. The position of the free oxygen ion captured in the cage structure of C12A7 was confirmed to be displaced from the center of the cage as well as from the S-4 axis running through the two calcium ions at the top and the bottom of the cage. The calcium ions were also found to move off of the S4 axis and shift toward the center of the cage when the free oxygen ion is present inside the cage. Examination of the structure revealed three types of aluminum-oxygen bonds which are characterized as short, medium and long. The distance between the free oxygen ion and the oxygen ion forming the longest bond with an aluminum ion becomes shorter as the temperature increases. suggesting promotion of exchange of the oxygen ions between the two sites. A possible migration path of the oxygen ion is examined from the obtained structural configuration. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kiyanagi, Ryoji; Richardson, James W., Jr.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Sakamoto, Naonori] Shizuoka Univ, Naka Ku, Hamamatsu, Shizuoka 4328561, Japan. [Yoshimura, Masahiro] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Kiyanagi, R (reprint author), Tohoku Univ, IMRAM, Sendai, Miyagi 980, Japan. EM kiyanagi@tagen.tohoku.ac.jp RI Yoshimura, Masahiro/H-5938-2011 OI Yoshimura, Masahiro/0000-0003-1810-0301 FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank Dr. A. J. Schultz for fruitful discussion. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 32 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD DEC 31 PY 2008 VL 179 IS 40 BP 2365 EP 2371 DI 10.1016/j.ssi.2008.09.026 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 400UV UT WOS:000262895600007 ER PT J AU Zhang, HS Endrino, JL Anders, A AF Zhang, H. -S. Endrino, J. L. Anders, A. TI Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver SO APPLIED SURFACE SCIENCE LA English DT Article DE Diamond-like carbon nanocomposite; Nano-scratching; Coefficient of friction; Adhesion ID PULSED-LASER DEPOSITION; CATHODIC VACUUM-ARC; AMORPHOUS-CARBON; DLC COATINGS; FRICTION; ADHESION; ENERGY; CONTACT; HYBRIDIZATION; SILICON AB In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp(2)-sp(3) hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping. Published by Elsevier B. V. C1 [Zhang, H. -S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Endrino, J. L.] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. [Endrino, J. L.; Anders, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, HS (reprint author), Univ Calif Berkeley, Dept Mech Engn, 5119 Etcheverry Hall, Berkeley, CA 94720 USA. EM hszhang@me.berkeley.edu RI Endrino, Jose/G-1103-2011; Anders, Andre/B-8580-2009; OI Anders, Andre/0000-0002-5313-6505; Endrino, Jose/0000-0002-3084-7910 FU U.S. Department of Energy [DE-AC02-05CH11231]; Marie Curie Outgoing Fellowship [MOIF-CT-2005-021951] FX Work at Lawrence Berkeley National Laboratory was supported by U.S. Department of Energy under contract no. DE-AC02-05CH11231. Financial support from the Marie Curie Outgoing Fellowship Grant MOIF-CT-2005-021951 to one of the authors (J.L.E.) is gratefully acknowledged. NR 34 TC 101 Z9 101 U1 3 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD DEC 30 PY 2008 VL 255 IS 5 BP 2551 EP 2556 DI 10.1016/j.apsusc.2008.07.193 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 378CR UT WOS:000261299200001 ER PT J AU Giuliani, SE Frank, AM Collart, FR AF Giuliani, Sarah E. Frank, Ashley M. Collart, Frank R. TI Functional Assignment of Solute-Binding Proteins of ABC Transporters Using a Fluorescence-Based Thermal Shift Assay SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI K-12; HIGH-THROUGHPUT; LIGAND SPECIFICITY; DRUG DISCOVERY; RECOMBINANT PROTEINS; PERIPLASMIC LYSINE; CRYSTAL-STRUCTURES; GENOME ANNOTATION; SCREENING METHODS; ARGININE-BINDING AB We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity and to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families. C1 [Giuliani, Sarah E.; Frank, Ashley M.; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Collart, FR (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fcollart@anl.gov OI Collart, Frank/0000-0001-6942-4483 NR 57 TC 27 Z9 27 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD DEC 30 PY 2008 VL 47 IS 52 BP 13974 EP 13984 DI 10.1021/bi801648r PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 388PV UT WOS:000262032600025 PM 19063603 ER PT J AU Weber, AZ AF Weber, Adam Z. TI Effective diffusion-medium thickness for simplified polymer-electrolyte-fuel-cell modeling SO ELECTROCHIMICA ACTA LA English DT Article DE Polymer-electrolyte fuel cell; Mathematical modeling; Conformal mapping; Gas-diffusion layer; Diffusion medium ID TRANSPORT; CATHODE; TRANSFORMATION; MIGRATION; FLOW AB In this manuscript, conformal mapping is applied to a rib/channel domain of a polymer-electrolyte-fuel-cell diffusion medium. The analysis leads to the calculation of an effective diffusion-medium thickness, which can subsequently be used in 1 D simulations to account for the average rib/channel 2D geometric effect. Extensions of the analysis to anisotropic and multilayer diffusion media are also given. Both equations and figures show the impact on a given variable at the catalyst layer of having a combined conducting/nonconducting boundary across from it. (c) 2008 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA 94720 USA. EM azweber@lbl.gov OI Weber, Adam/0000-0002-7749-1624 NR 20 TC 7 Z9 7 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 30 PY 2008 VL 54 IS 2 BP 311 EP 315 DI 10.1016/j.electacta.2008.07.084 PG 5 WC Electrochemistry SC Electrochemistry GA 406GG UT WOS:000263282400023 ER PT J AU Shin, JH Basak, P Kerr, JB Cairns, EJ AF Shin, J. -H. Basak, P. Kerr, J. B. Cairns, E. J. TI Rechargeable Li/LiFePO4 cells using N-methyl-N-butyl pyrrolidinium bis(trifluoromethane sulfonyl)imide-LiTFSI electrolyte incorporating polymer additives SO ELECTROCHIMICA ACTA LA English DT Article DE Ionic liquid; Lithium batteries; Lithium electrode; LiFePO4; Pyrrolidinium; PEGDME; TEGDME ID IONIC LIQUIDS; SOLVENT-FREE; BATTERIES; CATHODE AB We have incorporated polymer additives such as poly(ethylene glycol) dimethyl ether (PEGDME) and tetra(ethylene glycol) dimethyl ether (TEGDME) into N-methyl-N-butylpyrrolidinium bis(trifluoromethane sulfonyl)imide (PYR14TFSI)-LiTFSI mixtures. The resulting PYR14TFSI + LiTFSI + polymer additive ternary electrolyte exhibited relatively high ionic conductivity as well as remarkably low viscosity over a wide temperature range compared to the PYR14TFSI + LiTFSI binary electrolytes. The charge/discharge cyclability of Li/LiFePO4 cells containing the ternary electrolytes was investigated. We found that Li/PYR14TFSI + LiTFSI + PEGDME (or TEGDME)/LiFePO4 cells containing the two different polymer additives showed very similar discharge capacity behavior, with very stable cyclability at room temperature (RT). Li/PYR14TFSI + LiTFSI + TEGDME/LiFePO4 cells can deliver about 127 mAh/g of LiFePO4 (74.7% of theoretical capacity) at 0.054 mA/cm(2) (0.2C rate) at RT and about 108 mAh/g of LiFePO4 (63.4% of theoretical capacity) at 0.023 mA/cm(2) (0.1 C rate) at -1 degrees C for the first discharge. The cell exhibited a capacity fading rate of approximately 0.09-0.15% per cycle over 50 cycles at RT. Consequently, the PYR14TFSI + LiTFSI + polymer additive ternary mixture is a promising electrolyte for cells using lithium metal electrodes such as the Li/LiFePO4 cell reported here. These cells showed the capability of operating over a significant temperature range (similar to 0-similar to 30 degrees C). (c) 2008 Elsevier Ltd. All rights reserved. C1 [Cairns, E. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Shin, J. -H.; Basak, P.; Kerr, J. B.; Cairns, E. J.] Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Cairns, EJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, 201 Gilman Hall, Berkeley, CA 94720 USA. EM ejcairns@lbl.gov RI Cairns, Elton/E-8873-2012 OI Cairns, Elton/0000-0002-1179-7591 FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract DE-AC03-76SF00098. The authors express great appreciation to Dr. Stefano Passerini of ENEA and Prof. Wesley Henderson of North Carolina State University for generously providing the samples of the ionic liquids used in this work. NR 18 TC 27 Z9 28 U1 2 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 30 PY 2008 VL 54 IS 2 BP 410 EP 414 DI 10.1016/j.electacta.2008.07.062 PG 5 WC Electrochemistry SC Electrochemistry GA 406GG UT WOS:000263282400039 ER PT J AU Kang, SH Abraham, DP Yoon, WS Nam, KW Yang, XQ AF Kang, Sun-Ho Abraham, Daniel P. Yoon, Won-Sub Nam, Kyung-Wan Yang, Xiao-Qing TI First-cycle irreversibility of layered Li-Ni-Co-Mn oxide cathode in Li-ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE First-cycle irreversibility; Li-ion batteries; Li-Ni-Co-Mn oxide ID X-RAY-ABSORPTION; ELECTROCHEMICAL PROPERTIES; CAPACITY LOSS; LITHIUM; ELECTRODES; LICO1/3NI1/3MN1/3O2; COPRECIPITATION; REVERSIBILITY; MECHANISM; SYSTEM AB The first-cycle irreversibility of Li(1.048)(Ni(1/3)CO(1/3)Mn(1/3))(0.952)O(2) (LiMO(2)) cathode material in lithium and lithium-ion cells has been studied using galvanostatic cycling and in situ synchrotron X-ray diffraction. The so-called "lost capacity"of a Li/LiMO(2) cell observed during initial cycle in conventional voltage ranges (e.g., 3.0-4.3 V) could be completely recovered by discharging the cell to low voltages (<2 V). During the deep discharge, the lithium cell exhibited an additional voltage plateau, which is believed to result from the formation of Li(2)MO(2)-like phase on the oxide particle surface due to very sluggish lithium diffusion in Li(1-Delta)MO(2) with Delta -> O (i.e., near the end of discharge). Voltage relaxation curve and in situ X-ray diffraction patterns, measured during relaxation of the lithium cell after deep discharge to obtain 100% cycle efficiency, suggested that the oxide cathode returned to its original state after the following two-step relaxation processes: relatively quick disappearance of the Li(2)MO(2)-like phase on the particle surface, followed by slow lithium diffusion in the layered structure. Experiments conducted in Li(4)Ti(5)O(12)/LiMO(2) lithium-ion cells confirmed that the physical loss of lithium (via surface film formation or parasitic electrochemical reactions, etc.) from LiMO(2) was negligible up to an oxide voltage of 4.3 V vs. Li(+)/Li. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kang, Sun-Ho; Abraham, Daniel P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Yoon, Won-Sub] Kookmin Univ, Sch Adv Mat Eng, Seoul 136702, South Korea. [Nam, Kyung-Wan; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Kang, SH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sunho.kang@anl.gov RI Kang, Sun-Ho/E-7570-2010; Nam, Kyung-Wan Nam/G-9271-2011; Yoon, Won-Sub/H-2343-2011; Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369 FU U.S. Department of Energy, Office of FreedomCar and Vehicle Technologies [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 25 TC 34 Z9 35 U1 8 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 30 PY 2008 VL 54 IS 2 BP 684 EP 689 DI 10.1016/j.electacta.2008.07.007 PG 6 WC Electrochemistry SC Electrochemistry GA 406GG UT WOS:000263282400081 ER PT J AU Wu, JW Johnson, CD Jiang, YL Gemmen, RS Liu, XB AF Wu, Junwei Johnson, Christopher D. Jiang, Yinglu Gemmen, Randall S. Liu, Xingbo TI Pulse plating of Mn-Co alloys for SOFC interconnect applications SO ELECTROCHIMICA ACTA LA English DT Article DE Interconnect; SOFC; Pulse plating; Charge and discharge; Off-time ID FERRITIC STAINLESS-STEEL; HYDROGEN EVOLUTION REACTION; SPINEL PROTECTION LAYERS; ELECTROCHEMICAL DEPOSITION; CU ALLOYS; COATINGS; ELECTRODEPOSITION; COPPER; NICKEL; MULTILAYERS AB (Mn,CO)(3)O(4) Spinel is a promising coating for SOFC interconnect applications due to its high conductivity and good chromium retention capability. Electroplating of alloys followed by oxidation offers a cost effective method to produce the desired spinels. Pulse plating is always considered as a better method than direct current (DC) plating in the formation of alloys. In this research. cyclic voltammetry is used to characterize dissolution potential of each element. Mn begins to dissolve at -1.4 V(SCE), and cobalt begins to dissolve at -0.7 V(SCE). By means of pulse analysis, charge and discharge times are obtained, which are found to be much shorter than the on- and off-time applied at peak current density of 300 mA/cm(2). Two segments of charge periods show up at this peak current density. By comparing charge times at different peak current density, one segment can be attributed to the double layer charge and another to the uniform hydrogen bubble layer. During pulse plating, Mn content decreases with increasing off-time, and surface morphologies change from Hake like structures to crystalline structures. This resulted from increased Mn dissolution into the solution and hydrogen bubble release from the coating during increased off-time. Long-term (1200h) ASR measurements demonstrate stable ASR with slight increase. The ASR value at 40,000 h was predicted to be 0.0460 Omega cm(2). Almost no Cr was spotted on the surface. Further, more Mn was found on the conditioned surface than the as-deposited surface which further proves faster diffusion of Mn than Cr. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Wu, Junwei; Jiang, Yinglu; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Wu, Junwei; Johnson, Christopher D.; Jiang, Yinglu; Gemmen, Randall S.; Liu, Xingbo] Dept Energy, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Liu, XB (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM Xingbo.liu@mail.wvu.edu NR 32 TC 44 Z9 51 U1 4 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 30 PY 2008 VL 54 IS 2 BP 793 EP 800 DI 10.1016/j.electacta.2008.06.057 PG 8 WC Electrochemistry SC Electrochemistry GA 406GG UT WOS:000263282400097 ER PT J AU Lavraud, B Borovsky, JE AF Lavraud, Benoit Borovsky, Joseph E. TI Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Review ID INTERPLANETARY MAGNETIC-FIELD; TRANSPOLAR POTENTIAL SATURATION; KELVIN-HELMHOLTZ INSTABILITY; HIGH-LATITUDE MAGNETOPAUSE; EARTHS MAGNETOSPHERE; DAYSIDE MAGNETOPAUSE; GEOTAIL OBSERVATIONS; MAGNETOSHEATH FLOW; MHD SIMULATION; BOUNDARY-LAYER AB We illustrate some fundamental alterations of the solar wind-magnetosphere interaction that occur during low Mach number solar wind. We first show that low Mach number solar wind conditions are often characteristic of coronal mass ejections (CMEs) and magnetic clouds in particular. We then illustrate the pivotal role of the magnetosheath. This comes from the fact that low Mach number solar wind leads to the formation of a low thermal beta magnetosheath downstream of the bow shock. This property influences magnetic forces and currents, in particular, and in turn alters magnetosheath-magnetosphere coupling. The implications of this unusual regime of interaction have generally been overlooked. Potentially affected phenomena include the following: (1) asymmetric magnetosheath flows (with substantial enhancements), (2) asymmetric magnetopause and magnetotail shapes, (3) changes in the development of the Kelvin-Helmholtz instability and giant spiral auroral features, (4) variations in the controlling factors of dayside magnetic reconnection, (5) cross polar cap potential saturation and Alfven wings, and (6) global sawtooth oscillations. Here we examine these phenomena, primarily by use of global magnetohydrodynamic simulations, and discuss the mechanisms that rule such an altered interaction. We emphasize the fact that all these effects tend to occur simultaneously so as to render the solar wind-magnetosphere interaction drastically different from the more typical high Mach number case. In addition to the more extensively studied inner magnetosphere and magnetotail processes, these effects may have important implications during CME-driven storms at Earth, as well as at other astronomical bodies such as Mercury. C1 [Lavraud, Benoit; Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lavraud, Benoit] Univ Toulouse, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Lavraud, Benoit] CNRS, UMR5187, F-31028 Toulouse 4, France. RP Lavraud, B (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM benoit.lavraud@cesr.fr FU NSF FX The authors thank J. Birn, M. Denton, T. Phan, J. Drake, M. Thomsen, A. Ridley, J. Raeder, T. Pulkkinen, R. Skoug, and R. Lopez for fruitful discussions. We also especially thank J. Kozyra for the use of the list of spiral auroral features during intense storms. We are most grateful to the Community Coordinated Modeling Center at NASA Goddard Space Flight Center (http://ccmc.gsfc.nasa.gov/) and especially to M. Kuznetsova, A. Chulaki, L. Rastaetter, and M. Hesse for their help with some special runs used in this study. We also thank OMNIWeb for the use of OMNI solar wind data and the National Geophysical Data Center for the use of F10.7 data. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy, with support from NSF (Geospace Environment Modeling and National Space Weather Program) and NASA programs (Guest Investigator and Living With a Star Targeted Research and Technology). We also thank the reviewers for their constructive comments. NR 138 TC 75 Z9 77 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 30 PY 2008 VL 113 AR A00B08 DI 10.1029/2008JA013192 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 390OT UT WOS:000262174300001 ER PT J AU Liu, FJ Bales, RC Conklin, MH Conrad, ME AF Liu, Fengjing Bales, Roger C. Conklin, Martha H. Conrad, Mark E. TI Streamflow generation from snowmelt in semi-arid, seasonally snow-covered, forested catchments, Valles Caldera, New Mexico SO WATER RESOURCES RESEARCH LA English DT Article ID PONDEROSA PINE HILLSLOPE; HYDROGRAPH SEPARATIONS; MIXING MODELS; SOIL-WATER; FLOW; TRACER; USA; CHEMISTRY; UNCERTAINTY; TRANSPORT AB Streamflow generation in the semiarid, seasonally snow-covered, and forested mountain catchments of the Valles Caldera, New Mexico, was investigated using chemical tracers. Samples were collected from snow, subsurface flow from hillslopes, and streamflow at Redondo and La Jara Creeks from December 2004 to July 2005. A new modeling procedure was developed by combining diagnostic tools of mixing models and end-member mixing analysis to evaluate the assumptions of mixing models. This procedure was successfully used to determine conservative chemical tracers, identify the number of end-members that contribute to streamflow, and evaluate eligibility of end-members. The results show that streamflow at Redondo Creek was generated from two end-members: lateral subsurface flow (similar to 80%) and thermal meteoric water (similar to 20%). Streamflow at La Jara Creek was primarily from lateral subsurface flow alone. Overland flow of snowmelt was not a significant contributor to streamflow in either catchment. Lateral subsurface flow is an important process of streamflow generation in semiarid environments in the southwest United States and should play a critical role in regulating biogeochemical cycles. C1 [Liu, Fengjing; Bales, Roger C.; Conklin, Martha H.] Univ Claif, Sierra Nevada Res Inst, Merced, CA 95344 USA. [Liu, Fengjing; Bales, Roger C.; Conklin, Martha H.] Univ Claif, Sch Engn, Merced, CA 95344 USA. [Conrad, Mark E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Liu, FJ (reprint author), Univ Claif, Sierra Nevada Res Inst, Merced, CA 95344 USA. EM fliu@ucmerced.edu RI Conrad, Mark/G-2767-2010 FU National Science Foundation [NSF EAR9876800]; Lawrence Berkeley National Laboratory; U. S. Department of Energy [DE-AC02-05CH11231] FX The authors thank J. Kostrzewski, R. Parmenter, S. Gifford, J. Gamlin, and M. Frisbee for their assistance in stream sampling; K. Anne, S. May, and G. Shaw for their assistance in sample analysis; and Tom Painter for processing of the remote sensing data. Funding was provided by National Science Foundation's Center for the Sustainability of Semiarid Hydrology and Riparian Areas (SAHRA) (NSF EAR9876800). Research at Lawrence Berkeley National Laboratory was supported by the Director, Office of Energy Research, Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract DE-AC02-05CH11231. NR 39 TC 25 Z9 25 U1 0 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 30 PY 2008 VL 44 IS 12 AR W12443 DI 10.1029/2007WR006728 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 390PM UT WOS:000262176200001 ER PT J AU Braun, A Richter, J Harvey, AS Erat, S Infortuna, A Frei, A Pomjakushina, E Mun, BS Holtappels, P Vogt, U Conder, K Gauckler, LJ Graule, T AF Braun, A. Richter, J. Harvey, A. S. Erat, S. Infortuna, A. Frei, A. Pomjakushina, E. Mun, Bongjin S. Holtappels, P. Vogt, U. Conder, K. Gauckler, L. J. Graule, T. TI Electron hole-phonon interaction, correlation of structure, and conductivity in single crystal La0.9Sr0.1FeO3-delta SO APPLIED PHYSICS LETTERS LA English DT Article DE electrical conductivity; electron-phonon interactions; lanthanum compounds; photoelectron spectra; solid-state phase transformations; strontium compounds; valence bands; X-ray absorption spectra ID MAGNETIC-PROPERTIES; PHOTOEMISSION; LA1-XSRXFEO3; IRON AB The conductivity and structure of the hole-doped polaron conductor La0.9Sr0.1FeO3-delta are reported for elevated temperatures. The conductivity increases exponentially with temperature to a maximum and decreases for T>700 K following a power law, accompanied by a shift of spectral weight in the photoemission valence band. The conductivity decrease is accompanied by a phase transformation, due to the reduction of Fe, as evidenced by x-ray absorption spectra. Additional fine structures in the conductivity are correlated with a strong decrease in valence band intensity near E-F and with the onset of a corresponding structural transition. C1 [Braun, A.; Richter, J.; Erat, S.; Holtappels, P.; Vogt, U.; Graule, T.] Empa Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Harvey, A. S.; Erat, S.; Infortuna, A.; Gauckler, L. J.] ETH, Swiss Fed Inst Technol, Dept Nonmet Inorgan Mat, CH-8037 Zurich, Switzerland. [Frei, A.] Paul Scherrer Inst, Solar Technol Lab, CH-5232 Villigen, Switzerland. [Pomjakushina, E.; Conder, K.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Pomjakushina, E.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Mun, Bongjin S.] Hanyang Univ, Dept Appl Phys, Ansan 426791, Kyunggi Do, South Korea. [Mun, Bongjin S.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Braun, A (reprint author), Empa Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, Uberlandstr 129, CH-8600 Dubendorf, Switzerland. EM artur.braun@alumni.ethz.ch RI Gauckler, Ludwig/C-2784-2009; BRAUN, Artur/A-1154-2009; OI Gauckler, Ludwig/0000-0003-4668-4025; BRAUN, Artur/0000-0002-6992-7774; Richter, Jorg/0000-0003-1808-6415 FU E. U. MIRG [CT-2006-042095]; Swiss NSF [200021-116688]; CCMX NANCER; CCEM/OneBat; Director, Office of Science/BES, of the U. S. DoE, [DE-AC02-05CH11231] FX Funding by the E. U. MIRG No. CT-2006-042095, the Swiss NSF No. 200021-116688, CCMX NANCER and CCEM/OneBat. The ALS is supported by the Director, Office of Science/BES, of the U. S. DoE, No. DE-AC02-05CH11231. ESRF and C. Prestipino are acknowledged for experiment No. HE2469. NR 14 TC 12 Z9 12 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2008 VL 93 IS 26 AR 262103 DI 10.1063/1.3049614 PG 3 WC Physics, Applied SC Physics GA 391HZ UT WOS:000262225700036 ER PT J AU Brown, GF Ager, JW Walukiewicz, W Schaff, WJ Wu, J AF Brown, G. F. Ager, J. W., III Walukiewicz, W. Schaff, W. J. Wu, J. TI Probing and modulating surface electron accumulation in InN by the electrolyte gated Hall effect SO APPLIED PHYSICS LETTERS LA English DT Article DE buffer layers; electrolytes; electron-hole recombination; Hall effect; III-V semiconductors; indium compounds; magnesium; multilayers; photoluminescence; radiative lifetimes; semiconductor thin films; surface conductivity; wide band gap semiconductors AB The surface contribution to the electrical transport properties of InN was directly measured and modulated by the electrolyte gated Hall effect. Undoped and Mg-doped films show different behaviors that can be effectively described by a multilayer model, taking into account the conduction contribution from both the surface and interface with the buffer layer. Gated photoluminescence experiments further show the surface accumulation layer enhances radiative electron-hole recombination in undoped InN. C1 [Brown, G. F.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Brown, G. F.; Ager, J. W., III; Walukiewicz, W.; Wu, J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaff, W. J.] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. RP Brown, GF (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011; OI Wu, Junqiao/0000-0002-1498-0148; Ager, Joel/0000-0001-9334-9751 FU National Science Foundation [EEC-0425914]; Lawrence Berkeley National Laboratory; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U. S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to J.W. Beeman, M. Mayer, Dr. L. A. Reichertz, and Dr. K. M. Yu for technical assistance. This work was supported in part by National Science Foundation under Grant No. EEC-0425914 and a LDRD grant from the Lawrence Berkeley National Laboratory. J.W. A. was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 20 Z9 20 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2008 VL 93 IS 26 AR 262105 DI 10.1063/1.3062856 PG 3 WC Physics, Applied SC Physics GA 391HZ UT WOS:000262225700038 ER PT J AU Cho, YJ Yu, KM Liu, X Walukiewicz, W Furdyna, JK AF Cho, Y. J. Yu, K. M. Liu, X. Walukiewicz, W. Furdyna, J. K. TI Effects of donor doping on Ga1-xMnxAs SO APPLIED PHYSICS LETTERS LA English DT Article DE Curie temperature; ferromagnetic materials; gallium arsenide; hole mobility; III-V semiconductors; impurity states; magnetic semiconductors; magnetic thin films; manganese compounds; semiconductor doping; semiconductor thin films; wide band gap semiconductors ID SEMICONDUCTORS; TEMPERATURE; FERROMAGNETISM; MAGNETIZATION; DEFECTS; GAAS AB We investigate the effect compensating Mn acceptors in Ga1-xMnxAs films by doping with Si donors. For Ga1-xMnxAs with low Mn content (e.g., x < 0.033), doping by Si decreases the Curie temperature T-C compared to undoped Ga1-xMnxAs. At high values of x, however (e.g., x>0.10), Si doping is found to increase T-C. We ascribe this to an increase in the hole mobility in high x samples due to changes in the relative occupancy of the hole impurity band associated with compensation by the Si donors. C1 [Cho, Y. J.; Liu, X.; Furdyna, J. K.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Yu, K. M.; Walukiewicz, W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cho, YJ (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM ychol@nd.edu RI Fonseca, James/G-1018-2011; Yu, Kin Man/J-1399-2012; Cho, YongJin/A-1143-2013 OI Yu, Kin Man/0000-0003-1350-9642; FU National Science Foundation [DMR06-03752]; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy [DE-AC02-05CH11231] FX The work at Notre Dame was supported by the National Science Foundation Grant No. DMR06-03752. Work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 10 Z9 10 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2008 VL 93 IS 26 AR 262505 DI 10.1063/1.3063046 PG 3 WC Physics, Applied SC Physics GA 391HZ UT WOS:000262225700045 ER PT J AU Fan, C Chen, D Liaw, PK Choo, H Benmore, C Siewenie, J Chen, GL Xie, JX Liu, CT AF Fan, Cang Chen, D. Liaw, P. K. Choo, H. Benmore, C. Siewenie, J. Chen, G. L. Xie, J. X. Liu, C. T. TI Influence of molten status on nanoquasicrystalline-forming Zr-based metallic glasses SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium alloys; annealing; cooling; copper alloys; crystallisation; glass transition; metallic glasses; nanostructured materials; neutron diffraction; platinum alloys; quasicrystals; quenching (thermal); zirconium alloys ID NANOCRYSTALLINE COMPOSITES; TOTAL SCATTERING; ALLOYS; PHASE; ORDER AB Quasicrystals, formed during the primary crystallization stage of annealing Zr70-XCu25Pt5AlX metallic glasses, decrease in size from 100 to 5 nm as the Al content is increased from 8 to 10 at. %. The glass transition and crystallization processes during annealing at fixed heating rate were found to be influenced by the thermal history of the melt. Pair distribution function analyses of neutron scattering data revealed that the broad peak from the nearest atomic pairs separates into multiple peaks with lower melt quenching temperatures (T-L). These results suggest that the short-range order is enhanced with decreased T-L. Such ordered regions remain in the glass upon quenching and contribute to nanoquasicrystal formation upon heating. C1 [Fan, Cang; Chen, D.] Hunan Univ, Sch Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China. [Fan, Cang; Liaw, P. K.; Choo, H.; Liu, C. T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Benmore, C.; Siewenie, J.] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Chen, G. L.; Xie, J. X.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. RP Fan, C (reprint author), Hunan Univ, Sch Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China. EM cfan@utk.edu RI Choo, Hahn/A-5494-2009; 鼎, 陈/D-1695-2009; 陈(chen), 鼎(ding)/O-5087-2015; OI Choo, Hahn/0000-0002-8006-8907; 鼎, 陈/0000-0001-6422-4597; 陈(chen), 鼎(ding)/0000-0003-0407-7542; Benmore, Chris/0000-0001-7007-7749 NR 14 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2008 VL 93 IS 26 AR 261905 DI 10.1063/1.3046118 PG 3 WC Physics, Applied SC Physics GA 391HZ UT WOS:000262225700026 ER PT J AU Tsuchiya, M Shutthanandan, V Engelhard, MH Ramanathan, S AF Tsuchiya, Masaru Shutthanandan, Vaithiyalingam Engelhard, Mark H. Ramanathan, Shriram TI Direct measurement of oxygen incorporation into thin film oxides at room temperature upon ultraviolet photon irradiation SO APPLIED PHYSICS LETTERS LA English DT Article DE nanostructured materials; nuclear chemical analysis; thin films; ultraviolet radiation effects; yttrium compounds; zirconium compounds ID OZONE OXIDATION; GATE DIELECTRICS; STOICHIOMETRY; SRTIO3; MAGNETORESISTANCE; YBA2CU3O7-DELTA; DIFFUSION; SUBSTRATE; STACKS; MODEL AB Minute changes in oxygen concentration in complex oxides even of the order of similar to 0.001% can significantly influence functional properties ranging from the onset of superconductivity to colossal dielectric constant and ferroic response. We report on direct experimental measurement of enhanced oxygen incorporation into ultrathin oxide films at room temperature under gentle UV photon exposure. Oxygen concentration changes in nanoscale yttria doped zirconia (YDZ) films grown on Ge substrate were quantified using the (16)O(d,p)(17)O nuclear reaction. The oxygen concentration was consistently similar to 3% larger in UV irradiated YDZ films compared to as-grown YDZ films. Possible incorporation mechanisms are discussed. C1 [Tsuchiya, Masaru; Ramanathan, Shriram] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Shutthanandan, Vaithiyalingam; Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Tsuchiya, M (reprint author), Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM tsuchiya@fas.harvard.edu RI Engelhard, Mark/F-1317-2010 OI Engelhard, Mark/0000-0002-5543-0812; FU Global Climate and Energy Project; Department of Energy FX M. T. and S. R. acknowledge funding from the Global Climate and Energy Project that supported this work. NRA and XPS experiments were performed using EMSL, sponsored by the Department of Energy. NR 27 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2008 VL 93 IS 26 AR 263109 DI 10.1063/1.3058691 PG 3 WC Physics, Applied SC Physics GA 391HZ UT WOS:000262225700061 ER PT J AU Wilson, MJ Xiang, G Sheu, BL Schiffer, P Samarth, N May, SJ Bhattacharya, A AF Wilson, M. J. Xiang, G. Sheu, B. L. Schiffer, P. Samarth, N. May, S. J. Bhattacharya, A. TI Substrate orientation dependence of ferromagnetism in (Ga,Mn)As SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; antisite defects; Curie temperature; ferromagnetic materials; gallium arsenide; III-V semiconductors; magnetic epitaxial layers; magnetic semiconductors; magnetisation; manganese compounds; semiconductor epitaxial layers ID GA1-XMNXAS; GAAS AB We describe a comprehensive study of the properties of both ordered and random alloy Ga(1-x)Mn(x)As grown on (001), (311), (201), and (110) GaAs substrates. Magnetization measurements show a systematic variation in the Curie temperature with epitaxial orientation in both types of samples, even for the same average Mn concentrations. Electrical characterization and thermal annealing of the random alloy Ga(1-x)Mn(x)As samples suggest that the density of As antisite defects depends on the growth surface, providing an extrinsic origin for the observed dependence of Curie temperature on substrate orientation. C1 [Wilson, M. J.; Xiang, G.; Sheu, B. L.; Schiffer, P.; Samarth, N.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Wilson, M. J.; Xiang, G.; Sheu, B. L.; Schiffer, P.; Samarth, N.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [May, S. J.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wilson, MJ (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. EM nsamarth@psu.edu RI Schaff, William/B-5839-2009; Schiffer, Peter/F-3227-2011; Bhattacharya, Anand/G-1645-2011; May, Steven/D-8563-2011; Samarth, Nitin/C-4475-2014; Xiang, Gang/J-3433-2015 OI Schiffer, Peter/0000-0002-6430-6549; Bhattacharya, Anand/0000-0002-6839-6860; May, Steven/0000-0002-8097-1549; Samarth, Nitin/0000-0003-2599-346X; Xiang, Gang/0000-0002-5060-975X FU DARPA/ARO (Penn State) [W911NF-06-1-0207]; DOE (Argonne) [DE-AC02-06CH11357] FX We thank Alex Zunger for motivating this study and for stimulating discussions. This work was supported by DARPA/ARO Grant No. W911NF-06-1-0207 (Penn State) and DOE Contract No. DE-AC02-06CH11357 (Argonne). NR 14 TC 4 Z9 4 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2008 VL 93 IS 26 AR 262502 DI 10.1063/1.3058758 PG 3 WC Physics, Applied SC Physics GA 391HZ UT WOS:000262225700042 ER PT J AU Niklasson, AMN AF Niklasson, Anders M. N. TI A note on the Pulay force at finite electronic temperatures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; chemical potential; density functional theory; electronic structure; HF calculations; quantum theory ID BINDING MOLECULAR-DYNAMICS; AB-INITIO CALCULATION; EQUILIBRIUM GEOMETRIES; POLYATOMIC-MOLECULES; ORBITALS; CONSTANTS; ENERGY AB Pulay's original expression for the basis-set dependent adjustment term to the Hellmann-Feynman force in electronic structure theory, which occurs for nonorthogonal local basis-set representations, is based on the idempotency condition of a pure ensemble. At finite electronic temperatures with a fractional occupation of the states, the conventional expression of the Pulay force is therefore no longer valid. Here we derive a simple and computationally efficient expression for a generalized Pulay force, which is suitable for large-scale ab initio simulations at finite electronic temperatures using local nonorthogonal basis-set representations. The generalized Pulay force expression is given in terms of the temperature-dependent density matrix. For the construction of the density matrix, we propose a recursive Fermi operator expansion algorithm that automatically converges to the correct chemical potential. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Niklasson, AMN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM amn@lanl.gov NR 33 TC 15 Z9 15 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2008 VL 129 IS 24 AR 244107 DI 10.1063/1.3036203 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 391IK UT WOS:000262226800009 PM 19123495 ER PT J AU Shimizu, TK Mugarza, A Cerda, JI Salmeron, M AF Shimizu, Tomoko K. Mugarza, Aitor Cerda, Jorge I. Salmeron, Miquel TI Structure and reactions of carbon and hydrogen on Ru(0001): A scanning tunneling microscopy study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorption; atom-molecule reactions; carbon; density functional theory; hydrogen; hydrogenation; ruthenium; scanning electron microscopy ID ELECTRON-ENERGY-LOSS; ADSORPTION; SURFACE; SPECTROSCOPY; MOLECULES; SITES; IDENTIFICATION; DECOMPOSITION; DISSOCIATION; REFLECTION AB The interaction between carbon and hydrogen atoms on a Ru(0001) surface was studied using scanning tunneling microscopy (STM), density functional theory (DFT) and STM image calculations. Formation of CH species by reaction between adsorbed H and C was observed to occur readily at 100 K. When the coverage of H increased new complexes of the form of CH+nH (n=1, 2, and 3) were observed. These complexes, never observed before, might be precursors for further hydrogenation reactions. DFT analysis reveals that a considerable energy barrier exists for the CH+H -> CH(2) reaction. C1 [Shimizu, Tomoko K.; Mugarza, Aitor; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mugarza, Aitor] CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain. [Cerda, Jorge I.] CSIC, ICMM, E-28040 Madrid, Spain. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Shimizu, Tomoko/A-6780-2010; Cerda, Jorge/F-4043-2010; mugarza, aitor/B-6871-2012 OI Cerda, Jorge/0000-0001-6176-0191; mugarza, aitor/0000-0002-2698-885X FU Department of Energy [DE-AC02-05CH11231]; Spanish Ministry of Science and Technology [MAT2007-66719-C03-02, NAN2004-09125-C0706]; Marie Curie Outgoing International Fellowship [514412] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the (U.S). Department of Energy under Contract No. DE-AC02-05CH11231, and by the Spanish Ministry of Science and Technology under Project Nos. MAT2007-66719-C03-02 and NAN2004-09125-C0706. The work of A. M. was financed by the Marie Curie Outgoing International Fellowship, Project No. 514412. NR 34 TC 8 Z9 8 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2008 VL 129 IS 24 AR 244103 DI 10.1063/1.2991434 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 391IK UT WOS:000262226800005 PM 19123491 ER PT J AU Berhe, AA Harden, JW Torn, MS Harte, J AF Berhe, Asmeret Asefaw Harden, Jennifer W. Torn, Margaret S. Harte, John TI Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID PROCESS-BASED MODEL; SEDIMENT TRANSPORT; CYCLE; CONTAMINATION; TURNOVER; FORESTS; POOLS; DEPTH; AMS AB Recently, the potential for terrestrial carbon (C) sequestration by soil erosion and deposition has received increased interest. Erosion and deposition constitute a sink for atmospheric carbon dioxide relative to a preerosional state or a noneroding scenario, if the posterosion watershed C balance is increased due to (1) partial replacement of eroded C by new photosynthate in the eroded site; and (2) preservation from decomposition of at least some eroded soil organic carbon (SOC) arriving in depositional settings. Little is known, however, about differences in C dynamics at different erosional and depositional landform positions within the same eroding system. We determined the contribution of different landform positions to erosion-induced terrestrial C sequestration by measuring rates of net primary productivity (NPP), replacement of eroded C, and decomposition of organic matter (OM) at four categorically different landform positions within a naturally eroding toposequence in northern California. We found that eroded C is replaced by NPP 15 times over in the summit of the site studied and 5 times over in the slope. Profile-averaged, long-term rate constant for SOM decomposition was 2 to 14 times slower in the depositional settings compared with that in eroding slopes. As a result, the inventory of C in the depositional settings was 2 to 3 times larger than that of the eroding positions. Owing to both C replacement at eroding sites and reduced rates of OM decomposition in depositional sites, soil erosion constitutes a C sink from the atmosphere at our study site. C1 [Berhe, Asmeret Asefaw] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Harden, Jennifer W.] US Geol Survey, Geol Div, Menlo Pk, CA 94025 USA. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Torn, Margaret S.; Harte, John] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Berhe, AA (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 307 McCone Hall 4767, Berkeley, CA 94720 USA. EM aaberhe@berkeley.edu RI Berhe, Asmeret Asefaw/D-4179-2011; Torn, Margaret/D-2305-2015 OI Berhe, Asmeret Asefaw/0000-0002-6986-7943; FU USDA Cooperative State Research, Education, and Extension Service [2003-35107-13601]; USGS Earth Surface Dynamics Program; Office of Science; U.S. Department of Energy [DE-AC02-05CH11231]; University of California, Berkeley; NASA Earth System Science fellowship FX The authors wish to thank Garrison Sposito, James Kirchner, Kristof Van Oost, and the editors and two anonymous reviewers for comments on earlier versions of this manuscript, Mark Harmon for allowing us to use his spreadsheet to calculate decay rate constant for litter decomposition in accordance with his double exponential model of organic matter decomposition, and Daniel Keck, Lee Pruett, and Renata Mendieta for help in the laboratory. This project was supported by National Research Initiative Competitive grant 2003-35107-13601 from the USDA Cooperative State Research, Education, and Extension Service, by the USGS Earth Surface Dynamics Program, by the Office of Science, U.S. Department of Energy, under contract DE-AC02-05CH11231, and a University of California, Berkeley, Chancellor's Predoctoral fellowship and a NASA Earth System Science fellowship to A.A.B. NR 38 TC 35 Z9 38 U1 9 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD DEC 27 PY 2008 VL 113 IS G4 AR G04039 DI 10.1029/2008JG000751 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 388TT UT WOS:000262042800003 ER PT J AU Williams, RS Williams, GJ Tainer, JA AF Williams, R. Scott Williams, Gareth J. Tainer, John A. TI A Charged Performance by gp17 in Viral Packaging SO CELL LA English DT Editorial Material ID DNA; ATPASE; REPAIR; MOTOR AB Packaging of viral genomes into virus capsids requires powerful motors to overcome the repulsive force that builds as the nucleic acids are compressed. Through structural analyses of the T4 bacteriophage packaging motor gp17, Sun et al. (2008) now propose a packaging mechanism in which electrostatic forces cause the motor to alternate between tensed and relaxed conformational states. C1 [Williams, R. Scott; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Williams, R. Scott; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Williams, Gareth J.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. EM jat@scripps.edu RI Williams, Robert/A-6059-2015 NR 8 TC 1 Z9 1 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD DEC 26 PY 2008 VL 135 IS 7 BP 1169 EP 1171 DI 10.1016/j.cell.2008.12.011 PG 4 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 387ZJ UT WOS:000261989800008 PM 19109888 ER PT J AU Gonciarz, MD Whitby, FG Eckert, DM Kieffer, C Heroux, A Sundquist, WI Hill, CP AF Gonciarz, Malgorzata D. Whitby, Frank G. Eckert, Debra M. Kieffer, Collin Heroux, Annie Sundquist, Wesley I. Hill, Christopher P. TI Biochemical and Structural Studies of Yeast Vps4 Oligomerization SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE Vps4; AAA ATPase; oligomerization; multivesicular body pathway; X-ray crystallography ID MAMMALIAN-CELLS; SACCHAROMYCES-CEREVISIAE; MULTIVESICULAR BODY; CRYSTAL-STRUCTURE; MACROMOLECULAR STRUCTURES; SUBSTRATE TRANSLOCATION; ANISOTROPIC REFINEMENT; MEMBRANE ASSOCIATION; PROTEIN INTERACTIONS; MOLECULAR CHAPERONE AB The ESCRT (endosomal sorting complexes required for transport) pathway functions in vesicle formation at the multivesicular body, the budding of enveloped RNA viruses such as HIV-1, and the final abscission stage of cytokinesis. As the only known enzyme in the ESCRT pathway, the AAA ATPase (ATPase associated with diverse cellular activities) Vps4 provides the energy required for multiple rounds of vesicle formation. Like other Vps4 proteins, yeast Vps4 cycles through two states: a catalytically inactive disassembled state that we show here is a dimer and a catalytically active higher-order assembly that we have modeled as a dodecamer composed of two stacked hexameric rings. We also report crystal structures of yeast Vps4 proteins in the apo- and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)]-bound states. In both cases, Vps4 subunits assembled into continuous helices with 6-fold screw axes that are analogous to helices seen previously in other Vps4 crystal forms. The helices are stabilized by extensive interactions between the large and small AAA ATPase domains of adjacent Vps4 subunits, suggesting that these contact surfaces may be used to build both the catalytically active dodecamer and catalytically inactive dimer. Consistent with this model, we have identified interface mutants that specifically inhibit Vps4 dimerization, dodecamerization, or both. Thus, the Vps4 dimer and dodecamer likely form distinct but overlapping interfaces. Finally, our structural studies have allowed us to model the conformation of a conserved loop (pore loop 2) that is predicted to form an arginine-rich pore at the center of one of the Vps4 hexameric rings. Our mutational analyses demonstrate that pore loop 2 residues Arg241 and Arg251 are required for efficient HIV-1 budding, thereby supporting a role for this "arginine collar" in Vps4 function. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Gonciarz, Malgorzata D.; Whitby, Frank G.; Eckert, Debra M.; Kieffer, Collin; Sundquist, Wesley I.; Hill, Christopher P.] Univ Utah, Dept Biochem, Salt Lake City, UT 84112 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Hill, CP (reprint author), Univ Utah, Dept Biochem, 15 N Med Dr,Room 4100, Salt Lake City, UT 84112 USA. EM wes@biochem.utah.edu FU Offices of Biological and Environmental Research and of Basic Energy Sciences of theUS Department of Energy; National Center for Research Resources of the National Institutes of Health; National Institutes of Health [AI51174, P50GM082545] FX We thank lan Huggins for help with protein purification, Heidi Schubert for advice with crystallography, and a reviewer for suggesting the assignment of electron density as an ethylene glycol molecule. We gratefully acknowledge the DNA Synthesis and Sequencing Core Facilities at the University of Utah. Data for this study were measured at beamline X25 of the National Synchrotron Light Source. Financial support comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the National Institutes of Health. This work was supported by National Institutes of Health Grants AI51174 (to W.I.S.) and P50GM082545 (to W.I.S. and C.P.H.). NR 70 TC 36 Z9 37 U1 0 U2 5 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD DEC 26 PY 2008 VL 384 IS 4 BP 878 EP 895 DI 10.1016/j.jmb.2008.09.066 PG 18 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 385JW UT WOS:000261811500011 PM 18929572 ER PT J AU Dartevelle, S Valentine, GA AF Dartevelle, S. Valentine, G. A. TI Multiphase magmatic flows at Yucca Mountain, Nevada SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID VOLUME BASALTIC VOLCANOS; SOUTHERN NEVADA; CRATER FLAT; GEOTHERMAL BOREHOLE; PLUMBING SYSTEMS; GAS SEGREGATION; USA; CONE; REPOSITORY; NAMAFJALL AB The proposed Yucca Mountain radioactive waste repository is sited in southern Nevada in a region that has experienced sporadic basaltic volcanism since the late Miocene. Volcanic risk assessment for the proposed repository requires estimating the consequences of a new monogenetic volcano intersecting the underground facility during its 10(4)-10(6) year performance period. We report numerical studies aimed at understanding the range of processes and dynamic parameter values that could accompany intersection of an open repository drift by a volatile-rich trachybasaltic magma as it ascends in a dike. We focus on one end-member type of magmatic behavior, namely, a fragmented magmatic mixture under pressure interacting with an underground cavity. Initial and boundary conditions are based upon field data and previous modeling studies of the interaction between vertically propagating dikes and a repository opening. The calculations are two-dimensional and time-dependent and are conducted with the multiphase hydrodynamics code GMFIX. Calculations indicate that gas-particle mixtures, as they rise from below and interact with horizontal openings, form complex flow patterns involving varying degrees of recirculation and deposition of pyroclasts. Dynamic pressures are up to 10(6) Pa but are more typically on the order of 10(3) to 10(4) Pa. The geometry and number of outlets play a key role in determining the types of flow patterns, as do volatile contents and the degree of fragmentation. The detailed numerical simulations provide information that will be used to confirm the adequacy of simplified probabilistic consequence models used in risk assessments. C1 [Dartevelle, S.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Valentine, G. A.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. RP Dartevelle, S (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS D443, Los Alamos, NM 87545 USA. EM sdart@lanl.gov; gav4@buffalo.edu NR 50 TC 2 Z9 2 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD DEC 25 PY 2008 VL 113 IS B12 AR B12209 DI 10.1029/2007JB005367 PG 37 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 388UE UT WOS:000262043900001 ER PT J AU Wang, XB Xing, XP Wang, LS AF Wang, Xue-Bin Xing, Xiao-Peng Wang, Lai-Sheng TI Observation of H-2 Aggregation onto a Doubly Charged Anion in a Temperature-Controlled Ion Trap SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID METAL-ORGANIC FRAMEWORKS; HYDROGEN-STORAGE; PHOTOELECTRON-SPECTROSCOPY; PROTONATED TRYPTOPHAN; CLUSTERS; BINDING; STATE; DIHYDROGEN; COMPLEXES; DIANIONS AB Hydrogen is the second most difficult gas to be condensed due to its weak intermolecular interactions. Here we report observation of H-2 aggregation onto a doubly charged anion, -O2C(CH2)(12)CO2-(DC2-). Weakly bound DC2- (H-2)(n) clusters were formed in a temperature-controlled ion trap and studied using photoelectron spectroscopy. The onset of clustering was observed at 30 K, whereas extensive condensation was observed at 12 K with n up to 12. Photoelectron spectra were obtained for DC2-(H-2)(n) (n = 0-6) at 193 and 266 nm. The spectra of DC2- (H-2)(n) were observed to be identical to that of the bare DC2- dianion except a slight blue shift, indicating the weak interactions between H, and the parent dianion. The blue shift on average amounts to similar to 34 meV (3.3 kJ/mol) per H-2, which represents the lower limit of the H-2 binding energy to DC2-. C1 [Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. NR 39 TC 17 Z9 17 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 25 PY 2008 VL 112 IS 51 BP 13271 EP 13274 DI 10.1021/jp808769m PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 388KO UT WOS:000262018900003 PM 19053552 ER PT J AU Neumark, DM AF Neumark, Daniel M. TI Slow Electron Velocity-Map Imaging of Negative Ions: Applications to Spectroscopy and Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID KINETIC-ENERGY SPECTROSCOPY; AB-INITIO CALCULATIONS; THRESHOLD PHOTODETACHMENT SPECTROSCOPY; ANION PHOTOELECTRON-SPECTROSCOPY; LASER-INDUCED FLUORESCENCE; METAL-CLUSTER ANIONS; BORN-OPPENHEIMER APPROXIMATION; TRANSITION-STATE SPECTROSCOPY; JAHN-TELLER; GAS-PHASE AB Anion photoelectron spectroscopy (PES) has become one of the most versatile techniques in chemical physics. This article briefly reviews the history of anion PES and some of its applications. It describes efforts to improve the resolution of this technique, including anion zero electron kinetic energy (ZEKE) and the recently developed method of slow electron velocity-map imaging (SEVI). Applications of SEVI to studies of vibronic coupling in open-shell systems and the spectroscopy of prereactive van der Waals complexes are then discussed. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Air Force Office of Scientific Research [F496290-03-10085] FX This research is supported by the Air Force Office of Scientific Research under Grant No. F496290-03-10085. D.M.M. thanks Andreas Osterwalder, Matthew Nee, Jia Zhou, Etienne Garand, and Tara Yacovitch for their contributions to this project. NR 200 TC 106 Z9 106 U1 14 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 25 PY 2008 VL 112 IS 51 BP 13287 EP 13301 DI 10.1021/jp807182q PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 388KO UT WOS:000262018900006 PM 19032143 ER PT J AU Bahng, MK Macdonald, RG AF Bahng, Mi-Kyung Macdonald, R. Glen TI Determination of the Rate Constant for the NH2((XB1)-B-2) + NH2((XB1)-B-2) Reaction at Low Pressure and 293 K SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID THERMAL UNIMOLECULAR REACTIONS; STATE THEORY CALCULATIONS; 193 NM PHOTOLYSIS; AB-INITIO; AMMONIA; KINETICS; MECHANISM; TEMPERATURE; HYDRAZINE; HYDROGEN AB The rate constant for the reaction NH2((XB1)-B-2) + NH2((XB1)-B-2) -> products was measured in CF4, N-2 and Ar carrier gases at 293 +/- 2 K over a pressure range from 2 to 10 Torr. The NH2 radical was produced by the 193 nm photolysis of NH3 dilute in the carrier gas. Both the loss of NH3 and its subsequent recovery and the production of NH2 and subsequent reaction were monitored simultaneously following the photolysis laser pulse. Both species were detected using quantitative time-resolved high-resolution absorption spectroscopy. The NH3 molecule was monitored in the N1R using a rotation transition of the v(1) + v(3) first combination band near 1500 nm, and the NH2 radical was monitored using the (1)2(21) <- (1)3(31) rotational transition of the (0,7,0)A(2)A(1) <- (0,0,0) (XB1)-B-2 band near 675 nm. The low-pressure rate constant showed a linear dependence on pressure. The slope of the pressure dependence was dominated by a recombination rate constant for NH2 + NH2 given by (8.0 +/- 0.5) x 10(-29), (5.7 +/- 0.7) x 10(-29), and (3.9 +/- 0.4) x 10(-29) cm(6) molecule(-2) s(-1) in CF4, N-2, and Ar bath gases, respectively, where the uncertainties are +/- 2 sigma in the scatter of the measurements. The average of the three independent measurements of the sum of the disproportionation rate constants (the zero pressure rate constant) was (3.4 +/- 6) x 10(-13) cm(3) molecule(-1)s(-1), where the uncertainty is +/- 2 sigma in the scatter of the measurements. C1 [Bahng, Mi-Kyung; Macdonald, R. Glen] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Macdonald, RG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rgmacdonald@anl.gov NR 56 TC 7 Z9 7 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 25 PY 2008 VL 112 IS 51 BP 13432 EP 13443 DI 10.1021/jp8083524 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 388KO UT WOS:000262018900022 PM 19093818 ER PT J AU Meloni, G Selby, TM Osborn, DL Taatjes, CA AF Meloni, Giovanni Selby, Talitha M. Osborn, David L. Taatjes, Craig A. TI Enol Formation and Ring-Opening in OH-Initiated Oxidation of Cycloalkenes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOIONIZATION MASS-SPECTROMETRY; SET MODEL CHEMISTRY; VINYL ALCOHOL; GAS-PHASE; SPECTROSCOPIC DETECTION; PEROXY-RADICALS; CROSS-SECTIONS; FLAMES; THERMOCHEMISTRY; CH2=CHOH AB Photolytic OH-initiated oxidation of cyclopentene, cyclohexene, and 1,4-cyclohexadiene have been investigated by using tunable synchrotron photoionization mass spectrometry. Electronic structure calculations (CBS-QB3) are employed in Franck-Condon (FC) spectral simulations of the photoionization efficiency curves (AIE) of the observed products. Cyclopentenol (cyclopenten-1-ol, 1-c-C(5)H(7)OH) and, its isomers cyclopenten-2-ol (2-c-C(5)H(7)OH) and cyclopentanone (c-C(5)H(8)=O), are detected from OH-initiated cyclopentene oxidation. The measured adiabatic ionization energy (AIE) of 1-C-C(5)H(7)OH is 8.4(+/- 0.1) eV, and that of 2-c-C(5)H(7)OH is 9.5(+/- 0.1) eV. The calculated AIE of possible cyclopentene oxidation products cis-1,2-epoxycyclopentane and 2,3-epoxycyclopentanol is 9.97 and 9.44 eV, respectively. Product spectra from OH-initiated oxidation of cyclohexene and cyclohexa-1,4-diene show a substantial contribution from linear aldehydes, indicating a prominent role for ring opening. Implications for the oxidation chemistry of cycloalkenes are briefly discussed. C1 [Meloni, Giovanni] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. [Selby, Talitha M.; Osborn, David L.; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Meloni, G (reprint author), Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. EM gmeloni@usfca.edu; cataatj@sandia.gov RI Osborn, David/A-2627-2009 NR 43 TC 10 Z9 10 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 25 PY 2008 VL 112 IS 51 BP 13444 EP 13451 DI 10.1021/jp808015f PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 388KO UT WOS:000262018900023 PM 19032052 ER PT J AU Weber, R Sen, S Youngman, RE Hart, RT Benmore, CJ AF Weber, Richard Sen, Sabyasachi Youngman, Randall E. Hart, Robert T. Benmore, Chris J. TI Structure of High Alumina Content Al2O3-SiO2 Composition Glasses SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SIO2-AL2O3 GLASSES; HIGH-RESOLUTION; SYSTEM SIO2-AL2O3; NMR; DYNAMICS; LIQUIDS; ALUMINOSILICATE; COORDINATION; SPECTROSCOPY; DIFFRACTION AB The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution Al-27 NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of similar to 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively. C1 [Weber, Richard] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Sen, Sabyasachi] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Youngman, Randall E.] Corning Inc, Corning, NY 14831 USA. [Hart, Robert T.] Shepherd Chem Co, Norwood, OH 45212 USA. [Weber, Richard; Benmore, Chris J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Weber, R (reprint author), Mat Dev Inc, Arlington Hts, IL 60004 USA. EM info@matsdev.com OI Benmore, Chris/0000-0001-7007-7749 FU U.S. Department of Energy; Argonne National Laboratory [DE-AC02-06CH11357] FX We thank Mr. Thomas Key and Ms. Kirsten Hiera. for their assistance with the glass synthesis experiments and Mr. Ron Parysek at Coming for performing SEM on the samples. R.T.H. thanks The Shepherd Chemical Company for use of resources toward this project. This work was supported by the U.S. Department of Energy, at the XSD and IPNS Divisions, Argonne National Laboratory, under contract No. DE-AC02-06CH11357. NR 36 TC 15 Z9 15 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 25 PY 2008 VL 112 IS 51 BP 16726 EP 16733 DI 10.1021/jp807964u PG 8 WC Chemistry, Physical SC Chemistry GA 385SY UT WOS:000261835100061 PM 19053688 ER PT J AU Shaw, WJ Ferris, K AF Shaw, Wendy J. Ferris, Kim TI Structure, Orientation, and Dynamics of the C-Terminal Hexapeptide of LRAP Determined Using Solid-State NMR SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LEUCINE-RICH AMELOGENIN; ENAMEL-MATRIX PROTEINS; DOUBLE-RESONANCE NMR; HYDROXYAPATITE CRYSTALS; TRANSLATION PRODUCT; ROTATIONAL-ECHO; PEPTIDE; PHENOTYPE; GROWTH; INHIBITION AB Amelogenin is the predominant protein found during enamel development and has been shown to be essential to proper enamel formation. Leucine-rich amelogenin peptide (LRAP) is a naturally occurring splice variant that preserves the charged N- and C-termini of full length amelogenin, regions thought to be crucial in interacting with hydroxaypatite. Particularly, the highly charged C-terminal hexapeptide (KREEVD) is thought to be the region most intimately interacting with hydroxyapatite (HAP). The structure of this charged region was investigated, along with the proximity to the surface and the mobility of two,of the residues. The structure was found to be consistent with a random coil or more extended structure, as has been seen for more internalized residues in the C-terminus. The backbone K(54)((13)C'), V(58)((13)C'), and V(58)((15)N) were all found to be close to the surface of HAP, similar to 6.0 angstrom from the nearest (31)P atom, suggesting a strong interaction and emphasizing the importance of these residues in interacting with HAP. However, both ends of the hexapeptide at residues K54 and V58 experience significant mobility under hydrated conditions, implying that another portion of the protein helps to stabilize the strong LRAP-HAP interaction. Interestingly, the backbone of the C-terminal third of the protein is consistently 6.0 angstrom from the HAP surface, providing a model in this region of the protein lying flat on the surface with no three-dimensional folding. The combination of these features, that is, a random coil structure, a significant mobility, and a lack of three-dimensional folding in this region of the protein, may have an important functional role, possibly allowing maximum crystal inhibition at low protein concentrations. C1 [Shaw, Wendy J.; Ferris, Kim] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wendy.shaw@pnl.gov FU NIH-NIDCR [DE-015347] FX This work was supported by NIH-NIDCR Grant DE-015347 and was performed at Pacific Northwest National Laboratory, operated by Battelle for the US-DOE. NR 42 TC 24 Z9 24 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 25 PY 2008 VL 112 IS 51 BP 16975 EP 16981 DI 10.1021/jp808012g PG 7 WC Chemistry, Physical SC Chemistry GA 385SY UT WOS:000261835100090 PM 19368031 ER PT J AU Guo, QX Zhao, YS Wang, ZW Skrabalak, SE Lin, ZJ Xia, YN AF Guo, Qixun Zhao, Yusheng Wang, Zhongwu Skrabalak, Sara E. Lin, Zhijun Xia, Younan TI Size Dependence of Cubic to Trigonal Structural Distortion in Silver Micro- and Nanocrystals under High Pressure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; PHASE-TRANSFORMATION; NANOPARTICLES; CALIBRATION; WURTZITE; GAUGE; ZNS; PD AB Silver micro- and nanocrystals with sizes of similar to 2-3.5 mu m and similar to 50-100 nm were uniaxially compressed under nonhydrostatic pressures (strong deviatoric stress) up to similar to 30 GPa at room temperature in a symmetric diamond-anvil cell and studied in situ using angle-dispersive synchrotron X-ray diffraction. A cubic to trigonal structural distortion along a 3-fold rotational axis was discovered by careful and comprehensive analysis of the apparent lattice parameter and full width at half-maximum, which are strongly dependent upon the Miller index and crystal size. C1 [Guo, Qixun; Zhao, Yusheng; Lin, Zhijun] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Wilson Lab, Ithaca, NY 14853 USA. [Skrabalak, Sara E.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Xia, Younan] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. RP Guo, QX (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663, Los Alamos, NM 87545 USA. EM qxguo@lanl.gov RI Lujan Center, LANL/G-4896-2012; Xia, Younan/E-8499-2011; Lin, Zhijun/A-5543-2010 FU NSF [DMR-0451788]; LDRD Program at LANL [DE-AC52-06NA25396]; NIH/NIGMS [DMR-0225180] FX Y.X. is supported by the NSF (DMR-0451788). This work was supported by the LDRD Program at LANL, which is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. CHESS is supported by the NSF and NIH/NIGMS via NSF award DMR-0225180. NR 19 TC 11 Z9 11 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 25 PY 2008 VL 112 IS 51 BP 20135 EP 20137 DI 10.1021/jp809177n PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 385SX UT WOS:000261835000008 ER PT J AU Vela, J Prall, BS Rastogi, P Werder, DJ Casson, JL Williams, DJ Klimov, VI Hollingsworth, JA AF Vela, Javier Prall, Bradley S. Rastogi, Pawan Werder, Donald J. Casson, Joanna L. Williams, Darrick J. Klimov, Victor I. Hollingsworth, Jennifer A. TI Sensitization and Protection of Lanthanide Ion Emission in In2O3:Eu Nanocrystal Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXIDE NANOPARTICLES; PYROLYSIS; EU3+ AB Lanthanide ions are visible to near-infrared ultranarrowband emitters with long luminescence lifetimes and thus have potential applications in lasing, up-conversion, and bioimaging. However, lanthanide ions have specific and narrow absorption bands characterized by small cross sections, and their luminescence is vibrationally quenched in common solvents. To address these limitations, lanthanide ions were incorporated into a semiconductor nanocrystal quantum dot host matrix, where the semiconductor matrix can sensitize the lanthanide ions toward absorption and reduce solvent quenching effects. Specifically, functional, colloidal europium-doped indium(III) oxide nanocrystal quantum dots were synthesized and characterized structurally and optically. Incorporation of the dopant ions into the matrix, rather than simple adhesion to the quantum dot surfaces, was demonstrated by applying a novel chemical extraction procedure utilizing ethylenediaminetetraacetic acid followed by quantitative elemental analysis. Sensitization and protection of europium ion emission by the indium(III) oxide semiconductor host were confirmed using photoluminescence excitation and time-resolved photoluminescence spectroscopies, respectively. C1 [Vela, Javier; Prall, Bradley S.; Werder, Donald J.; Casson, Joanna L.; Klimov, Victor I.; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Rastogi, Pawan; Williams, Darrick J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM jenn@lanl.gov RI Vela, Javier/I-4724-2014; OI Vela, Javier/0000-0001-5124-6893; Klimov, Victor/0000-0003-1158-3179 FU DOE Center for Integrated Nanotechnologies; LANL Director's Postdoctoral Fellowships; Science Undergraduate Laboratory Internship Program FX Research support included the DOE Center for Integrated Nanotechnologies (J.A.H., V.I.K.), LANL Director's Postdoctoral Fellowships (J.V., B.S.P.), and the Science Undergraduate Laboratory Internship Program (P.R.). NR 26 TC 34 Z9 35 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 25 PY 2008 VL 112 IS 51 BP 20246 EP 20250 DI 10.1021/jp8074749 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 385SX UT WOS:000261835000026 ER PT J AU Piech, M Sounart, TL Liu, J AF Piech, Martin Sounart, Thomas L. Liu, Jun TI Influence of Surface Morphology on the Wettability of Microstructured ZnO-Based Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SUPER-HYDROPHOBIC SURFACES; CARBON NANOTUBE FORESTS; SUPERHYDROPHOBIC SURFACES; SOLID-SURFACES; FILMS; FABRICATION; LOTUS; WATER; NANOSTRUCTURES; PARTICLES AB The effect of sample microstructure on water dynamic wetting behavior was examined for superhydrophobic ZnO films. Surface morphology ranging from needle arrays to overlapping platelets was controlled through judicious choice of hydrothermal reaction conditions. Structure modification with alkyl and perfluoroalkyl chains yielded films characterized by advancing contact angles that ranged from 159 degrees to 171 degrees. Contact angle hysteresis was less than 2 degrees with needles (tip diameter <30 nm) and less than 11 degrees for rods (diameter <250 nm). Relatively thick (diameter similar to 600 nm) structures were still characterized by advancing contact angles exceeding 165 degrees and hysteresis <30 degrees. Formation of manometer-scale roughness on top of the microstructure via silica deposition significantly enhanced the surface superhydrophobicity. Similarly, following perfluoroalkane treatment, all examined microstructures exhibited advancing contact angles > 169 degrees and hysteresis <7 degrees. C1 [Piech, Martin; Sounart, Thomas L.; Liu, Jun] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Piech, M (reprint author), United Technol Res Ctr, 411 Silver Ln, E Hartford, CT 06108 USA. EM piechm@utrc.utc.com; thomas.l.sounart@intel.com; jun.liu@pnl.gov FU U.S. Department of Energy; Sandia National Laboratories [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 44 TC 11 Z9 12 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 25 PY 2008 VL 112 IS 51 BP 20398 EP 20405 DI 10.1021/jp804815x PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 385SX UT WOS:000261835000048 ER PT J AU Luo, HM Lin, Y Wang, H Chou, CY Suvorova, NA Hawley, ME Mueller, AH Ronning, F Bauer, E Burrell, AK McCleskey, TM Jia, QX AF Luo, Hongmei Lin, Y. Wang, H. Chou, Chia-Yun Suvorova, N. A. Hawley, M. E. Mueller, A. H. Ronning, F. Bauer, E. Burrell, A. K. McCleskey, T. Mark Jia, Q. X. TI Epitaxial GaN Thin Films Prepared by Polymer-Assisted Deposition SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NITROGEN-BASED PRECURSORS; SAPPHIRE; LAYERS; EVOLUTION; ROUTES; OXYGEN; MOCVD AB Epitaxial GaN thin films have been deposited on (0001) sapphire substrates by a chemical solution approach of polymer-assisted deposition. The films are smooth with no detectable cracks or pores, as observed by scanning electron microscopy and atomic force microscopy. Microstructural studies by X-ray diffraction and transmission electron microscopy show that the GaN films have a hexagonal structure with an epitaxial relationship between the film and the substrate of (0001)(GaN)parallel to(0001)(Al2O3), and [11 (2) over bar0](GaN)parallel to[10 (1) over bar0](Al2O3). The films with a room temperature resistivity of around 0.13 Omega center dot cm exhibit photoluminescence characteristic of wurtzite hexagonal GaN. C1 [Luo, Hongmei; Ronning, F.; Bauer, E.; Burrell, A. K.; McCleskey, T. Mark; Jia, Q. X.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Lin, Y.] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China. [Wang, H.; Chou, Chia-Yun] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Suvorova, N. A.; Hawley, M. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Mueller, A. H.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Luo, HM (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM hluo@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; McCleskey, Thomas/J-4772-2012; Wang, Haiyan/P-3550-2014; lin, yuan/B-9955-2013; OI Mccleskey, Thomas/0000-0003-3750-3245; Wang, Haiyan/0000-0002-7397-1209; Ronning, Filip/0000-0002-2679-7957 FU U.S. Department of Energy (DOE) through the LANL/ LDRD Program; DOE EE-RE Solid State Lighting Program; NSF/DMR Ceramic Program [NSF 0709831] FX We gratefully acknowledge the support of the U.S. Department of Energy (DOE) through the LANL/ LDRD Program, DOE EE-RE Solid State Lighting Program, and NSF/DMR Ceramic Program (NSF 0709831). NR 29 TC 6 Z9 6 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 25 PY 2008 VL 112 IS 51 BP 20535 EP 20538 DI 10.1021/jp807793p PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 385SX UT WOS:000261835000064 ER PT J AU Pauleau, Y Mayrhofer, P Erdemir, A Inspektor, A Ramanath, G AF Pauleau, Yves Mayrhofer, Paul Erdemir, Ali Inspektor, Aharon Ramanath, Ganapathiraman TI 2008 ICMCTF Preface SO SURFACE & COATINGS TECHNOLOGY LA English DT Editorial Material C1 [Pauleau, Yves] CNRS GEEL, Grenoble Inst Technol Grenoble INP, F-38042 Grenoble 9, France. [Mayrhofer, Paul] Univ Leoben, A-8700 Leoben, Austria. [Erdemir, Ali] Argonne Natl Lab, Argonne, IL 60439 USA. [Inspektor, Aharon] Corp Technol Ctr, Kennametal Inc, Latrobe, PA 15650 USA. [Ramanath, Ganapathiraman] Rensselaer Polytech Inst, Dept MSE, Troy, NY 12180 USA. RP Pauleau, Y (reprint author), CNRS GEEL, Grenoble Inst Technol Grenoble INP, 25 Rue Martyrs,BP 166, F-38042 Grenoble 9, France. EM yves.pauleau@grenoble.cnrs.fr RI Mayrhofer, Paul/A-9640-2011; Ramanath, Ganpati/C-1157-2011 OI Mayrhofer, Paul/0000-0001-7328-9333; Ramanath, Ganpati/0000-0002-8718-9760 NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2008 VL 203 IS 5-7 BP 399 EP 400 DI 10.1016/j.surfcoat.2008.09.026 PG 2 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 383DK UT WOS:000261654100001 ER PT J AU Haynes, JA Pint, BA Zhang, Y Wright, IG AF Haynes, J. A. Pint, B. A. Zhang, Y. Wright, I. G. TI The effect of Pt content on gamma-gamma ' NiPtAl coatings SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 35th International Conference on Metallurgical Coatings and Thin Films CY APR 28-MAY 02, 2008 CL San Diego, CA SP Amer Vacuum Soc, Adv Surf Engn Div DE Aluminide coatings; Platinum coatings; Bond coatings; High temperature oxidation; Platinum effect; TBC ID THERMALLY GROWN OXIDE; OXIDATION BEHAVIOR; CYCLIC OXIDATION; BOND COATS; NI-AL; PLATINUM AB This Study investigated the impact of Pt content on the coating composition and subsequent oxidation behavior of gamma-gamma' NiPtAl diffusion coatings. Coatings were fabricated by vacuum annealing electroplated Pt on single-crystal and directionally-solidified superalloy substrates. Specimens with 7 and 12 mu m thick layers of electroplated Pt were annealed at 1100 or 1175 degrees C. Coating compositions were characterized to evaluate the distribution of Pt and Al as a function of annealing temperature and Pt thickness. Selected coatings were evaluated in cyclic oxidation at 1100 and 1150 degrees C. Coatings with higher Pt contents showed improvements in spallation resistance, particularly at 1100 degrees C for a directionally-solidified superalloy substrate with higher Hf and S contents. (C) 2008 Elsevier B.V. All rights reserved. C1 [Haynes, J. A.; Pint, B. A.; Wright, I. G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Y.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. RP Haynes, JA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM z15@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 16 TC 26 Z9 26 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2008 VL 203 IS 5-7 BP 413 EP 416 DI 10.1016/j.surfcoat.2008.08.063 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 383DK UT WOS:000261654100004 ER PT J AU Zhang, Y Stacy, JP Pint, BA Haynes, JA Hazel, BT Nagaraj, BA AF Zhang, Y. Stacy, J. P. Pint, B. A. Haynes, J. A. Hazel, B. T. Nagaraj, B. A. TI Interdiffusion behavior of Pt-diffused gamma plus gamma ' coatings on Ni-based superalloys SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 35th International Conference on Metallurgical Coatings and Thin Films CY APR 28-MAY 02, 2008 CL San Diego, CA SP Amer Vacuum Soc, Adv Surf Engn Div DE Interdiffusion; Platinum; gamma plus -gamma ' coating; Thermal barrier coating; Superalloy ID THERMAL BARRIER COATINGS; AL-BASED ALLOYS; OXIDATION BEHAVIOR; BOND COATINGS; GAS-TURBINES; PLATINUM; COEFFICIENTS; INSTABILITY; SYSTEMS; ISSUES AB Platinum-diffused),gamma+gamma' coatings (similar to 20 at.% Al, similar to 22 at.% Pt) were synthesized on Rene 142 and Rene N5 Ni-based superalloys by electroplating the substrates with similar to 7 mu m of Pt, followed by an annealing treatment in vacuum at 1175 degrees C. In order to Study the compositional and microstructural evolution of these coatings at elevated temperatures, interdiffusion experiments were carried out on coated specimens in the temperature range of 900-1050 degrees C for various durations. Composition profiles of the alloying elements in the gamma+-gamma' coatings before and after diffusion experiments were determined by electron probe microanalysis. Although the change of the Al content in the coatings was minimal under these interdiffusion conditions, the decrease of the Pt content and increase of the diffusion depth of Pt into the substrate alloys were significant. A preliminary diffusion model was used to estimate the Pt penetration depth after diffusion. (C) 2008 Elsevier B.V. All rights reserved. C1 [Zhang, Y.; Stacy, J. P.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. [Pint, B. A.; Haynes, J. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Hazel, B. T.; Nagaraj, B. A.] GE Aviat Engines, Cincinnati, OH 45215 USA. RP Zhang, Y (reprint author), Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. EM yzhang@tntech.edu RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 28 TC 21 Z9 22 U1 4 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2008 VL 203 IS 5-7 BP 417 EP 421 DI 10.1016/j.surfcoat.2008.08.053 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 383DK UT WOS:000261654100005 ER PT J AU Eryilmaz, OL Erdemir, A AF Eryilmaz, O. L. Erdemir, A. TI On the hydrogen lubrication mechanism(s) of DLC films: An imaging TOF-SIMS study SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 35th International Conference on Metallurgical Coatings and Thin Films CY APR 28-MAY 02, 2008 CL San Diego, CA SP Amer Vacuum Soc, Adv Surf Engn Div DE DLC; Friction and wear; Mechanism; TOF-SIMS ID DIAMOND-LIKE CARBON; FRICTION; SURFACES; TESTS AB In this study, we explored the effect of hydrogen on sliding friction and wear behavior of a hydrogen-free DLC film in dry nitrogen. More specifically, we subjected this film to a very brief (similar to 3 min) hydrogen plasma treatment in a sputter ion plating system to determine if the friction and wear behavior would change. All tests were performed in dry nitrogen using a pin-on-disk machine under a 0.5 N load and at 0.1 m/s sliding velocity. The friction coefficient of as-deposited DLC film was high and unsteady (varying between 0.1 and 0.8) and it could only last for a sliding distance of similar to 12 m. However, after the hydrogen plasma treatment, the same film was able to provide a friction coefficient of less than 0.01 and lasted for a sliding distance of more than 450 m. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to elucidate the nature and extent of the chemical changes that occurred during hydrogen plasma treatment. 2- and 3-D TOF-SIMS images of such surfaces revealed the formation of a hydrogen-rich top surface layer during the hydrogenplasma treatment. Based on the combined results of tribological and surface analytical studies, we provided a mechanistic explanation for the very critical role of hydrogen on friction and wear of DLC films. (C) 2008 Elsevier B.V. All rights reserved. C1 [Eryilmaz, O. L.; Erdemir, A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Erdemir, A (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM erdemir@anl.gov NR 17 TC 28 Z9 28 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2008 VL 203 IS 5-7 BP 750 EP 755 DI 10.1016/j.surfcoat.2008.06.156 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 383DK UT WOS:000261654100073 ER PT J AU Reagan, MT Moridis, GJ AF Reagan, Matthew T. Moridis, George J. TI Dynamic response of oceanic hydrate deposits to ocean temperature change SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID GULF-OF-MEXICO; GAS-HYDRATE; METHANE HYDRATE; CONTINENTAL-SLOPE; MARINE-SEDIMENTS; CLIMATE-CHANGE; WATER COLUMN; BLAKE RIDGE; RESERVOIRS; PALEOCENE AB Vast quantities of methane are trapped in oceanic hydrate deposits. Because methane is a powerful greenhouse gas (about 26 times more effective than CO2), there is considerable concern that a rise in the temperature of the oceans will induce dissociation of oceanic hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Such a release could have dramatic climatic consequences because it could amplify atmospheric and oceanic warming and possibly accelerate dissociation of the remaining hydrates. This study assesses the stability of three types of hydrates (case I, deep-ocean deposits; case II, shallow, warm deposits; and case III, shallow, cold deposits) and simulates the dynamic behavior of these deposits under the influence of moderate ocean temperature increases. The results indicate that deep-ocean hydrates are stable under the influence of moderate increases in ocean temperature; however, shallow deposits can be very unstable and release significant quantities of methane under the influence of as little as 1 degrees C of seafloor temperature increase. Less permeable sediments, or burial underneath layers of hydrate-free sediment, affect both the rate of hydrate dissociation and methane transport to the seafloor but may not prevent methane release. Higher-saturation deposits can produce larger methane fluxes with the thermodynamics of hydrate dissociation retarding the rate of recession of the upper hydrate interface. These results suggest possible worst case scenarios for climate-change-induced methane release and point toward the need for detailed assessment of the hydrate hazard and the coupling of hydrate-derived methane to regional and global ecosystems. C1 [Reagan, Matthew T.; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Reagan, MT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mtreagan@lbl.gov RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Laboratory Directed Research and Development (LDRD); Director, Office of Science, of the U. S. Department of Energy (DoE) [DE-AC02-05CH11231]; Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology FX This research has been supported by the Laboratory Directed Research and Development (LDRD) program at Lawrence Berkeley National Laboratory; by the Director, Office of Science, of the U. S. Department of Energy (DoE) under contract DE-AC02-05CH11231; and by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory (NETL). The authors would like to thank John Apps, Yongkoo Seol, and Scott Elliott for their insightful reviews and comments. NR 61 TC 35 Z9 36 U1 2 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD DEC 24 PY 2008 VL 113 IS C12 AR C12023 DI 10.1029/2008JC004938 PG 21 WC Oceanography SC Oceanography GA 388TV UT WOS:000262043000002 ER PT J AU Braskie, MN Wilcox, CE Landau, SM O'Neil, JP Baker, SL Madison, CM Kluth, JT Jagust, WJ AF Braskie, Meredith N. Wilcox, Claire E. Landau, Susan M. O'Neil, James P. Baker, Suzanne L. Madison, Cindee M. Kluth, Jennifer T. Jagust, William J. TI Relationship of Striatal Dopamine Synthesis Capacity to Age and Cognition SO JOURNAL OF NEUROSCIENCE LA English DT Review DE FMT; PET; normal aging; striatum; cognition; aromatic amino acid decarboxylase; DOPA decarboxylase; caudate; putamen; basal ganglia; prefrontal; upregulation ID POSITRON-EMISSION-TOMOGRAPHY; AMINO-ACID DECARBOXYLASE; HUMAN PREFRONTAL CORTEX; COMT VAL(108/158) MET; RHESUS-MONKEY BRAIN; PARKINSONS-DISEASE; WORKING-MEMORY; IN-VIVO; NERVE-TERMINALS; DEPENDENT DECLINE AB Past research has demonstrated that performance on frontal lobe-dependent tasks is associated with dopamine system integrity and that various dopamine system deficits occur with aging. The positron emission tomography (PET) radiotracer 6-[(18)F]fluoro-L-m-tyrosine (FMT) is a substrate of the dopamine-synthesizing enzyme, aromatic amino acid decarboxylase (AADC). Studies using 6-[(18)F]fluorodopa (FDOPA) (another AADC substrate) to measure how striatal PET signal and age relate have had inconsistent outcomes. The varying results occur in part from tracer processing that renders FDOPA signal subject to aspects of postrelease metabolism, which may themselves change with aging. In contrast, FMT remains a purer measure of AADC function. We used partial volume-corrected FMT PET scans to measure age-related striatal dopamine synthesis capacity in 21 older (mean, 66.9) and 16 younger (mean, 22.8) healthy adults. We also investigated how striatal FMT signal related to a cognitive measure of frontal lobe function. Older adults showed significantly greater striatal FMT signal than younger adults. Within the older group, FMT signal in dorsal caudate (DCA) and dorsal putamen was greater with age, suggesting compensation for deficits elsewhere in the dopamine system. In younger adults, FMT signal in DCA was lower with age, likely related to ongoing developmental processes. Younger adults who performed worse on tests of frontal lobe function showed greater FMT signal in right DCA, independent of age effects. Our data suggest that higher striatal FMT signal represents nonoptimal dopamine processing. They further support a relationship between striatal dopamine processing and frontal lobe cognitive function. C1 [Braskie, Meredith N.; Wilcox, Claire E.; Landau, Susan M.; Madison, Cindee M.; Kluth, Jennifer T.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Braskie, Meredith N.; Landau, Susan M.; O'Neil, James P.; Baker, Suzanne L.; Kluth, Jennifer T.; Jagust, William J.] Lawrence Berkeley Natl Lab, Dept Funct Imaging, Berkeley, CA 94720 USA. [Wilcox, Claire E.] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA. RP Braskie, MN (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall,MC 3190, Berkeley, CA 94720 USA. EM mbraskie@berkeley.edu RI Wilcox, Claire/D-3960-2013 FU National Institute on Aging [AG027984] FX This work was supported by National Institute on Aging Grant AG027984. NR 114 TC 36 Z9 37 U1 2 U2 9 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD DEC 24 PY 2008 VL 28 IS 52 BP 14320 EP 14328 DI 10.1523/JNEUROSCI.3729-08.2008 PG 9 WC Neurosciences SC Neurosciences & Neurology GA 387XW UT WOS:000261985900030 PM 19109513 ER PT J AU Jin, P Dalgarno, SJ Barnes, C Teat, SJ Atwood, JL AF Jin, Ping Dalgarno, Scott J. Barnes, Charles Teat, Simon J. Atwood, Jerry L. TI Ion Transport to the Interior of Metal-Organic Pyrogallol[4]arene Nanocapsules SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUPRAMOLECULAR HOST; COORDINATION CAGES; HYDROGEN-BONDS; CAPSULES; 1,3-ALTERNATE; COMPLEXATION; POLYHEDRA; LIGANDS AB Metal ions or ion pairs (silver nitrate shown) are transported to the interior of metal-organic pyrogallol[4]arene nanocapsules via aqueous "gates". This transport has been studied by X-ray crystallography and shows the affinity of the ions to reside deep in the polyaromatic regions of the assemblies. C1 [Dalgarno, Scott J.] Heriot Watt Univ, Sch Engn & Phys Sci Chem, Edinburgh EH14 4AS, Midlothian, Scotland. [Jin, Ping; Barnes, Charles; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Teat, Simon J.] Adv Light Source, Berkeley Lab, Berkeley, CA 94720 USA. RP Dalgarno, SJ (reprint author), Heriot Watt Univ, Sch Engn & Phys Sci Chem, Edinburgh EH14 4AS, Midlothian, Scotland. EM S.J.Dalgarno@hw.ac.uk; AtwoodJ@missouri.edu RI Dalgarno, Scott/A-7358-2010 OI Dalgarno, Scott/0000-0001-7831-012X FU National Science Foundation; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the National Science Foundation for financial support of this work. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 31 Z9 32 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 24 PY 2008 VL 130 IS 51 BP 17262 EP + DI 10.1021/ja807983t PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 406UO UT WOS:000263320600029 PM 19053219 ER PT J AU Hrbek, J Hoffmann, FM Park, JB Liu, P Stacchiola, D Hoo, YS Ma, S Nambu, A Rodriguez, JA White, MG AF Hrbek, Jan Hoffmann, Friedrich M. Park, Joon B. Liu, Ping Stacchiola, Dario Hoo, Yon Soo Ma, Shuguo Nambu, Akira Rodriguez, Jose A. White, Michael G. TI Adsorbate-Driven Morphological Changes of a Gold Surface at Low Temperatures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-MONOXIDE; CO OXIDATION; CATALYSTS; ADSORPTION; NANOPARTICLES; AU(111); REACTIVITY; STATES; SITES; NOBLE AB Using STM, infrared absorption reflection spectroscopy experiments and density functional calculations we show that low temperature adsorption of CO on gold surfaces modified by vacancy islands leads to morphological changes and the formation of nanosized Au particles. These results demonstrate a dynamic response of a surface during adsorption with consequences for the surface reactivity. C1 [Hrbek, Jan; Hoffmann, Friedrich M.; Park, Joon B.; Liu, Ping; Stacchiola, Dario; Hoo, Yon Soo; Ma, Shuguo; Nambu, Akira; Rodriguez, Jose A.; White, Michael G.] Brookhaven Natl Lab, Chem Dept 555, Upton, NY 11973 USA. RP Hrbek, J (reprint author), Brookhaven Natl Lab, Chem Dept 555, Upton, NY 11973 USA. EM hrbek@bnl.gov RI Stacchiola, Dario/B-1918-2009; Hrbek, Jan/I-1020-2013 OI Stacchiola, Dario/0000-0001-5494-3205; FU Brookhaven National Laboratory; US DOE [DF-AC02-98CH10886] FX This research was carried out at Brookhaven National Laboratory and supported by the US DOE (Chemical Sciences Division, Grant DF-AC02-98CH10886). NR 23 TC 39 Z9 39 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 24 PY 2008 VL 130 IS 51 BP 17272 EP + DI 10.1021/ja8081268 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 406UO UT WOS:000263320600034 PM 19049274 ER PT J AU Chi, YG Scroggins, ST Boz, E Frechet, JMJ AF Chi, Yonggui Scroggins, Steven T. Boz, Emine Frechet, Jean M. J. TI Control of Aldol Reaction Pathways of Enolizable Aldehydes in an Aqueous Environment with a Hyperbranched Polymeric Catalyst SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WATER; ORGANOCATALYSIS; HYDROLYSIS AB A fundamental chemoselectivity challenge that remains intrinsically unsolved in aldol-type reactions is the suppression of self-aldol reactions with enolizable aldehydes in reactions such as cross-aldol processes. Contrasting with the usual practice of using large excesses of one component to compete with the undesired self-aldehyde condensation reactions, we have developed an enzyme-like polymer catalyst consisting of a hyperbranched polyethyleneimine derivative and proline that can eliminate the self-aldol reactions by suppressing an irreversible aldol condensation pathway. Control experiments and preliminary mechanistic studies suggest that the polymer catalyst provides an optimum environment for the aldol reaction to proceed selectively in water, and the catalytic conditions provided by the polymer are difficult to duplicate with typical small molecule analogues. This polymer catalyst system or its modified version has potential applications in developing a new or more efficient synthesis, as demonstrated in a dynamic catalytic process for the preparation of a,p-unsaturated ketones using cross ketone/aldehyde reactions without the need for excess substrates. C1 [Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Chi, Yonggui Robin/H-9607-2013; Chi, Yonggui Robin/B-7023-2011; OI Chi, Yonggui Robin/0000-0003-0573-257X; Frechet, Jean /0000-0001-6419-0163 FU DOE-BES [DE-AC02-05CH11231] FX Financial Support from DOE-BES (DE-AC02-05CH11231) is acknowledged with thanks. NR 31 TC 35 Z9 36 U1 0 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 24 PY 2008 VL 130 IS 51 BP 17287 EP + DI 10.1021/ja806584q PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 406UO UT WOS:000263320600040 PM 19032033 ER PT J AU Gilbert, PUPA Metzler, RA Zhou, D Scholl, A Doran, A Young, A Kunz, M Tamura, N Coppersmith, SN AF Gilbert, P. U. P. A. Metzler, Rebecca A. Zhou, Dong Scholl, Andreas Doran, Andrew Young, Anthony Kunz, Martin Tamura, Nobumichi Coppersmith, Susan N. TI Gradual Ordering in Red Abalone Nacre SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MAGNETIC LINEAR DICHROISM; MOLLUSK-SHELL PROTEINS; ORGANIC MATRIX LAYERS; CRYSTAL ORIENTATION; FLAT PEARLS; MECHANICAL-PROPERTIES; EDGE SPECTRA; X-RAYS; GROWTH; BIOMINERALIZATION AB Red abalone (Haliotis rufescens) nacre is a layered composite biomineral that contains crystalline aragonite tablets confined by organic layers. Nacre is intensely studied because its biologically controlled microarchitecture gives rise to remarkable strength and toughness, but the mechanisms leading to its formation are not well understood. Here we present synchrotron spectromicroscopy experiments revealing that stacks of aragonite tablet crystals in nacre are misoriented with respect to each other. Quantitative measurements of crystal orientation, tablet size, and tablet stacking direction show that orientational ordering occurs not abruptly but gradually over a distance of 50 mu m. Several lines of evidence indicate that different crystal orientations imply different tablet growth rates during nacre formation. A theoretical model based on kinetic and gradual selection of the fastest growth rates produces results in qualitative and quantitative agreement with the experimental data and therefore demonstrates that ordering in nacre is a result of crystal growth kinetics and competition either in addition or to the exclusion of templation by acidic proteins as previously assumed. As in other natural evolving kinetic systems, selection of the fastest-growing stacks of tablets occurs gradually in space and time. These results suggest that the self-ordering of the mineral phase, which may occur completely independently of biological or organic-molecule control, is fundamental in nacre formation. C1 [Gilbert, P. U. P. A.; Metzler, Rebecca A.; Zhou, Dong; Coppersmith, Susan N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Scholl, Andreas; Doran, Andrew; Young, Anthony; Kunz, Martin; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gilbert, PUPA (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM pupa@physics.wisc.edu RI Zhou, Dong/A-2675-2011; Kunz, Martin/K-4491-2012; Scholl, Andreas/K-4876-2012; Gilbert, Pupa/A-6299-2010; OI Kunz, Martin/0000-0001-9769-9900; Gilbert, Pupa/0000-0002-0139-2099; Doran, Andrew/0000-0001-5158-4569 FU NSF [CHEDMR-0613972, DN4R0209630, DMR-0537588]; DOE [DE-FG02-07ER15899, DE-AC02-05CH11231]; UW-Graduate School Vilas Award FX This work was supported by NSF award CHE&DMR-0613972, DOE award DE-FG02-07ER15899, UW-Graduate School Vilas Award to PUPAG, and NSF award DN4R0209630 to SNC. The experiments were performed at the UWSRC, supported by NSF award DMR-0537588, and the ALS, supported by the DOE under contract DE-AC02-05CH11231. We thank an anonymous reviewer for his/her useful suggestions and in-depth knowledge of 40 years of nacre literature. NR 64 TC 62 Z9 62 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 24 PY 2008 VL 130 IS 51 BP 17519 EP 17527 DI 10.1021/ja8065495 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 406UO UT WOS:000263320600068 PM 19049281 ER PT J AU Cantat, T Graves, CR Jantunen, KC Burns, CJ Scott, BL Schelter, EJ Morris, DE Hay, PJ Kiplinger, JL AF Cantat, Thibault Graves, Christopher R. Jantunen, Kimberly C. Burns, Carol J. Scott, Brian L. Schelter, Eric J. Morris, David E. Hay, P. Jeffrey Kiplinger, Jaqueline L. TI Evidence for the Involvement of 5f Orbitals in the Bonding and Reactivity of Organometallic Actinide Compounds: Thorium(IV) and Uranium(IV) Bis(hydrazonato) Complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-STRUCTURE; ELECTRONIC-STRUCTURE; MOLECULAR-STRUCTURE; HYDROGEN-BONDS; BIS(CYCLOPENTADIENYL) COMPLEXES; CRYSTAL-STRUCTURE; CARBON-MONOXIDE; F-ELEMENT; CHEMISTRY; INSERTION AB Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C5Me5)(2)AnR(2) yields the first f-element bis(hydrazonato) complexes (C5Me5)(2)An[eta(2)-(N,N')-R-N-N=CPh2](2) [An = Th, R = CH3 (18), PhCH2 (15), Ph (16); An = U, R = CH3 (17), PhCH2 (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an eta(2)-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C5H5)(2)Zr(CH3)(2) or (C5Me5)(2)Hf(CH3)(2) with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C5R5)(2)M[eta(2)-(N,N')-CH3-N-N=CPh2](CH3) (M = Zr, R = H or M = Hf, R = CH3). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C5H5)(2)M[eta(2)-(N,N')-CH3-N-N=CH2](2) (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C5H5)(2)ML3 species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C5H5)(2)ML4. DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the sigma and pi electrons of the two eta(2)-coordinated hydrazonato ligands, In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities of the group 4 metal and actinide complexes does not arise on thermodynamic grounds but is primarily of kinetic origin. Unfavorable steric factors have been ruled out as the sole influence to explain these different behaviors, and electronic factors were shown to govern the reactivity. For the actinides, both the C5H5, and more realistic C5Me5 ligands have been taken into account in computing the energy surface. The reaction profile for the C5Me5 system differs from that with the C5H5 ligand by a uniform shift of similar to 5 kcal/mol in the relative energies of the transition state and products. The insertion of a second diazoalkane molecule into the sole metal-carbon bond in the mono(hydrazonato) complexes involves a high energy barrier (similar to 20 kcal/mol) for the zirconium(IV) system, whereas the actinides can facilitate the approach of the diazoalkane by coordination (formation of an adduct) and its insertion into the An-C bond with a very ow barrier on the potential energy surface. C1 [Cantat, Thibault; Graves, Christopher R.; Jantunen, Kimberly C.; Burns, Carol J.; Scott, Brian L.; Schelter, Eric J.; Morris, David E.; Hay, P. Jeffrey; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Cantat, Thibault/A-8167-2010; Schelter, Eric/E-2962-2013; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Cantat, Thibault/0000-0001-5265-8179; Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU LANL; U.S. Department of Fnergy [DE-AC5206NA25396] FX This work is dedicated to Dr. P. Jeffrey Hay on the occasion of his retirement from Los Alamos National Laboratory. For financial support of this work, we acknowledge LANL (Director's PD Fellowships to T.C., C.R.G., and E.J.S.; Frederick Reines PD Fellowship to E.J.S.), the LANL G. T. Seaborg Institute for Transactinium Science (PD Fellowships to C.R.G. and E.J.S.; summer graduate student fellowship to K.C.J.), the Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program, and the LANL Laboratory Directed Research & Development program. J.L.K. acknowledges support as a Frederick Reines Postdoctoral Fellow at Los Alamos during the initial stages of this work. Finally, we thank Dr. Kevin D. John (LANL) for assistance with establishing the atom connectivity in complex 14. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Fnergy at Los Alamos National Laboratory under Contract DE-AC5206NA25396. NR 81 TC 60 Z9 60 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 24 PY 2008 VL 130 IS 51 BP 17537 EP 17551 DI 10.1021/ja8067287 PG 15 WC Chemistry, Multidisciplinary SC Chemistry GA 406UO UT WOS:000263320600070 PM 19053455 ER PT J AU Halder, GJ Chapman, KW Neville, SM Moubaraki, B Murray, KS Letard, JF Kepert, CJ AF Halder, Gregory J. Chapman, Karena W. Neville, Suzanne M. Moubaraki, Bouiemaa Murray, Keith S. Letard, Jean-Francois Kepert, Cameron J. TI Elucidating the Mechanism of a Two-Step Spin Transition in a Nanoporous Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-DIFFRACTION; COORDINATION POLYMERS; CROSSOVER COMPLEXES; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; PRUSSIAN BLUE; PHOTOMAGNETIC PROPERTIES; CRITICAL-TEMPERATURE; IRON(II) COMPLEXES; PHASE-TRANSITIONS AB The nanoporous metal-organic framework, Fe(bpe)(2)(NCS)(2)center dot 3(acetone), SCOF-4(Ac) (where bpe is 1,2-bis(4'-pyridyl)ethane), displays a two-step spin crossover (SCO) transition (65-155 K) that is sensitive to the presence of acetone guest molecules. Structural analyses have revealed a structural phase transition, from tetragonal (P (4) over bar2(1)c) to orthorhombic (P2(1)2(1)2), associated with the spin transition that defines a checkerboard-like ordering of spin sites at the high-spin:low-spin plateau. The reversible desorption of the acetone guest species is accompanied by a complex series of structural phase transitions that describe a dramatic flexing of the structure. The thermal trapping of a metastable state with similar to 20-25% high-spin character was observed both magnetically and structurally upon rapid quenching of SCOF-4(Ac) to 10 and 25 K, respectively. The light-induced excited spin state trapping (LIESST) effects for SCOF-4(Ac) show a 55% excitation of a metastable HIS state at 10 K and a characteristic T(LIESST) value of 52 K. C1 [Halder, Gregory J.; Kepert, Cameron J.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Halder, Gregory J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chapman, Karena W.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Neville, Suzanne M.; Moubaraki, Bouiemaa; Murray, Keith S.] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. [Letard, Jean-Francois] Univ Bordeaux 1, ICMCB, CNRS, Lab Sci Mol,UPR 9048, F-33608 Pessac, France. RP Kepert, CJ (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM c.kepert@chem.usyd.edu.au RI Chapman, Karena/G-5424-2012; neville, suzanne/B-4531-2013; Halder, Gregory/C-5357-2013; neville, suzanne/B-2254-2016; OI neville, suzanne/0000-0003-4237-4046; Kepert, Cameron/0000-0002-6105-9706 FU ARC [DP0557000]; Commonwealth of Australia; U.S. Department of Energy [DE-AC02-06CH11357]; Aquitaine Region; French-Australia Science & Technology (FAST) [FR050129] FX This work was supported by an ARC Discovery Project Grant (C.J.K. and K.S.M.; DP0557000) and the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. Work done at Argonne National Laboratory and use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Peter L. Lee for beamline support. The photomagnetic effect studies were supported by the Aquitaine Region and by the French-Australia Science & Technology (FAST) Program (FR050129). NR 70 TC 113 Z9 113 U1 1 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 24 PY 2008 VL 130 IS 51 BP 17552 EP 17562 DI 10.1021/ja8068038 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 406UO UT WOS:000263320600071 PM 19053411 ER PT J AU Manson, JL Conner, MM Schlueter, JA McConnell, AC Southerland, HI Malfant, I Lancaster, T Blundell, SJ Brooks, ML Pratt, FL Singleton, J McDonald, RD Lee, C Whangbo, MH AF Manson, Jamie L. Conner, Marianne M. Schlueter, John A. McConnell, Amber C. Southerland, Heather I. Malfant, Isabelle Lancaster, Tom Blundell, Stephen J. Brooks, Michael L. Pratt, Francis L. Singleton, John McDonald, Ross D. Lee, Changhoon Whangbo, Myung-Hwan TI Experimental and Theoretical Characterization of the Magnetic Properties of CuF2(H2O)(2)(pyz) (pyz = pyrazine): A Two-Dimensional Quantum Magnet Arising from Supersuperexchange Interactions through Hydrogen Bonded Paths SO CHEMISTRY OF MATERIALS LA English DT Article ID SPIN-EXCHANGE INTERACTIONS; CUPRIC FLUORIDE DIHYDRATE; CRYSTAL-STRUCTURE; COORDINATION POLYMERS; MOLECULAR MAGNETS; DESIGNER MAGNETS; COMPLEXES; DENSITY; ANTIFERROMAGNETISM; SUSCEPTIBILITY AB The structural. electronic, and magnetic properties of the new linear chain coordination polymer CuF2(H2O)(2)(pyz) (pyz = pyrazine) were determined by single crystal X-ray diffraction at various temperatures, SQUID magnetometry, pulsed-field magnetization, ESR, muon-spin relaxation (mu SR), and electronic structure calculations. Each Cu2+ ion of CuF2(H2O)(2)(pyz) is located at a distorted CuF2O2N2 octahedron with axial elonclation along the Cu-N bonds. These octahedra are tethered to-ether by strong F center dot center dot center dot H-O hydrogen bonds to yield two-dimensional (2D) square nets in the bc-plane that are linked alone, the a-direction by pyrazine linkages. Measurements of the g-factor by ESR along with first principles density functional theory electronic structure calculations show that the magnetic orbital of the Cu2+ ion lies in the CuF2O2 plane thus forming a 2D antiferromagnetic square lattice. A broad maximum observed in chi(T) at 10 K indicates a modest spin exchange interaction through the Cu-F center dot center dot center dot H-O-Cu supersuperexchange paths, and a theoretical fit of chi(T) to a 2D square model gives J(2D)/k(B) = -5.58(1) K (in the convention where J rather than 2J is used for spin exchange). At lower temperatures, chi(T) shows a sharp peak at similar to 2.6 K. which si-nals a transition to a lon-ran-e maonetic orderine, as confirmed by coherent precession of implanted muons. Isothermal M(B) measurements made at 0.5 K on an aligned single crystal reveal magnetic saturation, M-sat at 28.8 T (B parallel to a) while a higher field of 33.1 T is required to saturate the spins when B is applied perpendicular to the a-axis thus showing clear anisotropy in these orientations. The presence of strong hydrogen bonds in CuF2(H2O)(2)(pyz) causes the chains to adopt a tilted packing arrangement, thus leading to a novel ground-state likely characterized by spin-canting within the 2D layers and a markedly increased critical temperature relative to the well-known Cu(NO3)(2)(pyz) polymer chain compound. C1 [Manson, Jamie L.; Conner, Marianne M.; McConnell, Amber C.; Southerland, Heather I.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Malfant, Isabelle] Maitre Conf Univ Paul Sabatier, CNRS, Chim Coordinat Lab, UPR 8241, F-31077 Toulouse, France. [Lancaster, Tom; Blundell, Stephen J.; Brooks, Michael L.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Pratt, Francis L.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Singleton, John; McDonald, Ross D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Lee, Changhoon; Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. EM jmanson@ewu.edu RI McDonald, Ross/H-3783-2013; OI McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739 FU Research Corporation; UChicago Argonne, LLC; U.S. Department of Energy Office of Science Laboratory [De-AC02-06CH11357]; Office of Basic Energy Sciences, Division of Materials Sciences of the U.S. Department of Energy [DE-FG02-86ER45259]; EPSRC; Royal Commission FX This research was supported by an award from Research Corporation (J.L.M.). Work supported by UChicago Argonne, LLC, operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under contract No. De-AC02-06CH11357. Research performed at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences of the U.S. Department of Energy under Grant DE-FG02-86ER45259, respectively. We are grateful to P. King (ISIS) and L. Vendier (LCC) for technical assistance. This work was also supported by the EPSRC. T.L. acknowledges support from the Royal Commission for the exhibition of 1851 (U.K.). NR 47 TC 41 Z9 41 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD DEC 23 PY 2008 VL 20 IS 24 BP 7408 EP 7416 DI 10.1021/cm8016566 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 385FS UT WOS:000261800700009 ER PT J AU Wang, HR Song, YJ Wang, ZC Medforth, CJ Miller, JE Evans, L Li, P Shelnuttt, JA AF Wang, Haorong Song, Yujiang Wang, Zhongchun Medforth, Craig J. Miller, James E. Evans, Lindsey Li, Peng Shelnuttt, John A. . TI Silica-Metal Core-Shells and Metal Shells Synthesized by Porphyrin-Assisted Photocatalysis SO CHEMISTRY OF MATERIALS LA English DT Article ID METALLODIELECTRIC PHOTONIC CRYSTALS; GOLD NANOSHELLS; POLYSTYRENE MICROSPHERES; SILVER NANOPARTICLES; PLATINUM NANOSHELLS; SPHERES; FABRICATION; REDUCTION; NANOSPHERES; DEPOSITION AB Uniform silica beads modified with a positively charged tin porphyrin (SnT(NMe4Py)P) adsorbed onto their surface are used as photocatalytically active templates to synthesize platinum and palladium shell and core-shell nanostructures. The cationic porphyrin SnT(NMe4Py)P serves a dual function, acting as both a photocatalyst to reduce metal ions and nucleate growth sites and as a surface modifier that promotes binding of platinum metal to the surface of the nanospheres. Hollow platinum nanoshells can then be produced by removing the silica cores using hydrofluoric acid. Magnetic silica-platinum core-shell spheres can also be prepared starting from silica spheres containing magnetite nanoparticles. The silica-porphyrin-platinum nanocomposites contain all the components necessary to produce hydrogen gas via a tin porphyrin-mediated reductive photocatalytic process using a sacrificial electron donor. However,. due to instability of the SnT(NMe4Py)P, hydrogen production can only be realized when a degradation-resistant water-soluble tin porphyrin photocatalyst (SnTPPS) is added to a solution containing the nanocomposites and an electron donor. C1 [Wang, Haorong; Song, Yujiang; Wang, Zhongchun; Miller, James E.; Evans, Lindsey; Shelnuttt, John A. .] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Wang, Haorong] Univ New Mexico, NSF, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Medforth, Craig J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Li, Peng] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Shelnuttt, John A. .] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Shelnuttt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA. EM jasheln@unm.edu RI Song, Yujiang/A-8700-2009; Miller, James/C-1128-2011; Medforth, Craig/D-8210-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Miller, James/0000-0001-6811-6948; Medforth, Craig/0000-0003-3046-4909; FU Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under Contract No. DEAC04-94AL85000. NR 36 TC 19 Z9 19 U1 2 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD DEC 23 PY 2008 VL 20 IS 24 BP 7434 EP 7439 DI 10.1021/cm802143d PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 385FS UT WOS:000261800700012 ER PT J AU Cai, T Wang, GN Thompson, S Marquez, M Hu, ZB AF Cai, Tong Wang, Guonan Thompson, Samuel Marquez, Manuel Hu, Zhibing TI Photonic Hydrogels with Poly(ethylene glycol) Derivative Colloidal Spheres as Building Blocks SO MACROMOLECULES LA English DT Article ID 2-(2-METHOXYETHOXY)ETHYL METHACRYLATE; OPTICAL-PROPERTIES; PHASE-BEHAVIOR; POLYMERS; POLYMERIZATION; MICROGELS; CRYSTALS; ROUTE; LIGHT; GELS C1 [Cai, Tong; Wang, Guonan; Thompson, Samuel; Hu, Zhibing] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Marquez, Manuel] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. [Marquez, Manuel] NIST Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA. [Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Hu, ZB (reprint author), Univ N Texas, Dept Phys, POB 311427, Denton, TX 76203 USA. EM zbhu@unt.edu FU National Science Foundation [DMR-0805089] FX We gratefully acknowledge support from the National Science Foundation through Grant DMR-0805089. NR 25 TC 43 Z9 44 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 23 PY 2008 VL 41 IS 24 BP 9508 EP 9512 DI 10.1021/ma802035d PG 5 WC Polymer Science SC Polymer Science GA 384TP UT WOS:000261767400003 ER PT J AU Hernandez, R Weksler, J Padsalgikar, A Choi, T Angelo, E Lin, JS Xu, LC Siedlecki, CA Runt, J AF Hernandez, Rebeca Weksler, Jadwiga Padsalgikar, Ajay Choi, Taeyi Angelo, Elena Lin, J. S. Xu, Li-Chong Siedlecki, Christopher A. Runt, James TI A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities SO MACROMOLECULES LA English DT Article ID ANGLE X-RAY; POLY(ETHER URETHANE) BIODEGRADATION; MULTIPLE MELTING ENDOTHERMS; BLOCK CONTENT POLYURETHANE; SILOXANE UREA COPOLYMERS; MICROPHASE SEPARATION; ORGANOSILOXANE COPOLYMERS; POLY(CARBONATE URETHANE); RHEOLOGICAL PROPERTIES; MECHANICAL-PROPERTIES AB Three series of chemically well-defined polyurethanes were synthesized with the same hard segments but different soft-segment chemistries of interest in biomedical applications. The multiblock polyurethanes have soft segments composed of either an aliphatic polycarbonate [poly(1,6-hexyl 1,2-ethyl carbonate)], polytetramethylenoxide, or a mixed macrodiol of polyhexamethylenoxide and hydroxyl-terminated poly(dimethylsiloxane) and the same hard-segment chemistry [4,4'-methylenediplienyl diisocyanate and 1,4-butanediol]. Analysis using small-angle X-ray scattering and other methods demonstrates that demixing of the hard and soft segments varies greatly between the three series of copolymers. For example, the PDMS/PHMO-based copolymers exhibit a three-phase, core-shell morphology, while the other two series exhibit a typical two-phase structure. In addition to quantitative measurements of hard/soft-segment demixing for the two-phase copolymers, FTIR spectroscopy was used to assess inter- and intracomponent hydrogen bonding, and tapping mode AFM was used to characterize the nanoscale morphology. C1 [Hernandez, Rebeca; Choi, Taeyi; Angelo, Elena; Runt, James] Penn State Univ, Dept Mat Sci & Engn, Ctr Study Polymer Syst, University Pk, PA 16802 USA. [Weksler, Jadwiga; Padsalgikar, Ajay] AorTech Biomat, Scoresby, Vic 3179, Australia. [Lin, J. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Xu, Li-Chong; Siedlecki, Christopher A.] Milton S Hershey Med Ctr, Dept Surg, Hershey, PA 17033 USA. [Xu, Li-Chong; Siedlecki, Christopher A.] Milton S Hershey Med Ctr, Dept Bioengn, Hershey, PA 17033 USA. RP Runt, J (reprint author), Penn State Univ, Dept Mat Sci & Engn, Ctr Study Polymer Syst, University Pk, PA 16802 USA. EM runt@matse.psu.edu RI He, Yong/F-8752-2012; HERNANDEZ, REBECA/C-3189-2014 OI HERNANDEZ, REBECA/0000-0001-7332-0134 NR 48 TC 93 Z9 94 U1 9 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 23 PY 2008 VL 41 IS 24 BP 9767 EP 9776 DI 10.1021/ma8014454 PG 10 WC Polymer Science SC Polymer Science GA 384TP UT WOS:000261767400038 ER PT J AU Cheng, G Melnichenko, YB Wignall, GD Hua, FJ Hong, K Mays, JW AF Cheng, Gang Melnichenko, Yuri B. Wignall, George D. Hua, Fengjun Hong, Kunlun Mays, Jimmy W. TI Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length SO MACROMOLECULES LA English DT Article ID MOLECULAR BOTTLE-BRUSHES; SIDE-CHAIN LENGTH; X-RAY-SCATTERING; AQUEOUS-SOLUTIONS; POLY(ETHYLENE OXIDE); PERSISTENCE LENGTH; POLYMER-SOLUTIONS; MAIN-CHAIN; PHASE; TRANSITION AB The conformation and clusterization of comblike polymers of polystyrene densely grafted with oligo(ethylene glycol) (OEG) side chains in 1.0 wt % solutions of D(2)O, toluene-d(g), and rnethanol-d(4) was investigated as a function of the degree of polymerization (DP) of the backbone by small angle neutron scattering (SANS). Each side chain had four EG repeat units, and the DP of the polystyrene backbone varied from 8 to 85. The global conformation of the polymers in toluene and methanol was shown to assume ellipsoidal, rigid cylindrical, or wormlike morphologies with increasing DP of the polystyrene backbone. At the same time, in D(2)O, the polymer conformation was described by the form factor of rigid cylinders. The second viral coefficient A(2) was measured for the polymer with a DP of 85 in all three solvents, and the solvent quality of: toluene, methanol, and D(2)O was identified to be good, marginal, and poor, respectively, for this polymer. Because of a poor solvent quality, the PS backbone (DP = 85) is partially collapsed in D(2)O, whereas it is moderately expanded in toluene and methanol. Polymers with a DP of 8 were found to form clusters in all three solvents, with the characteristic size between 100 and 200 angstrom and a fractal dimension of 2. With the increase in the DP, the Clusters diminished in D(2)O and completely disappeared in toluene and methanol. This observation suggests that the clusterization of these short side-chain polymers is caused by end-group and hydrogen bonding interactions between different chains. C1 [Cheng, Gang; Melnichenko, Yuri B.; Wignall, George D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hua, Fengjun; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hua, Fengjun; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Cheng, G (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM chengg@ornl.gov; hongkq@ornl.gov RI Hong, Kunlun/E-9787-2015; OI Hong, Kunlun/0000-0002-2852-5111; Wignall, George/0000-0002-3876-3244 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725]; Division of Scientific User Facilities; ORNL Postdoctoral Research Associates Program; National Science Foundation [DMR-0454672]; NIST Center for Neutron Research FX G.C. thanks Dr. Boualem Hammouda (NIST) for helpful discussions throughout the experiment at NIST. We thank Dr. Melissa Sharp and Dr. Vasyl Haramus (GKSS) for the help with SANS experiments. Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Division of Scientific User Facilities, U.S. Department of Energy. G.C. and F.H. were partially supported by an appointment to the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Associated Universities. This work is based on activities Supported in part by the National Science Foundation Linder agreement no. DMR-0454672 to the NIST Center for Neutron Research. NR 47 TC 26 Z9 28 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 23 PY 2008 VL 41 IS 24 BP 9831 EP 9836 DI 10.1021/ma801370q PG 6 WC Polymer Science SC Polymer Science GA 384TP UT WOS:000261767400047 ER PT J AU Budzien, J Rottach, DR Curro, JG Lo, CS Thompson, AP AF Budzien, Joanne Rottach, Dana R. Curro, John G. Lo, Chi S. Thompson, Aidan P. TI A New Constitutive Model for the Chemical Aging of Rubber Networks in Deformed States SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CROSS-LINKING NETWORKS; STRESS-RELAXATION; POLYMER NETWORKS; PERMANENT SET; ELASTICITY; STRAIN; ELASTOMERS; SCISSION AB This paper describes the finite element implementation of a recently developed constitutive model for the chemical aging of rubber in deformed states. The model was developed from molecular dynamics simulations that investigated two stage networks. The model includes the effects of multiple stages of cross-linking and scission while the sample is deformed and the effects of physical entanglements. Given the deformation and chemical history of a sample, finite element calculations using this model are shown to make quantitative predictions of permanent set for two sample experimental systems. C1 [Budzien, Joanne; Curro, John G.; Lo, Chi S.; Thompson, Aidan P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rottach, Dana R.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. RP Budzien, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jlbudzi@sandia.gov RI Budzien, Joanne/E-8315-2011; Rottach, Dana/E-8350-2010 OI Rottach, Dana/0000-0003-0459-5980 FU United States Department of Energy's National Nuclear Security Adnlinistration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Adnlinistration under Contract DE-AC04-94AL85000. NR 21 TC 10 Z9 10 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 23 PY 2008 VL 41 IS 24 BP 9896 EP 9903 DI 10.1021/ma801373z PG 8 WC Polymer Science SC Polymer Science GA 384TP UT WOS:000261767400056 ER PT J AU Sebastian, SE Harrison, N Sengupta, P Batista, CD Francoual, S Palm, E Murphy, T Marcano, N Dabkowska, HA Gaulin, BD AF Sebastian, Suchitra E. Harrison, N. Sengupta, P. Batista, C. D. Francoual, S. Palm, E. Murphy, T. Marcano, N. Dabkowska, H. A. Gaulin, B. D. TI Fractalization drives crystalline states in a frustrated spin system SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Hofstadter butterfly; magnetization plateaus; quantum magnet ID SHASTRY-SUTHERLAND MODEL; DIMER GROUND-STATE; MAGNETIZATION PLATEAUS; SRCU2(BO3)(2); WAVE AB The fractalized Hofstadter butterfly energy spectrum predicted for magnetically confined fermions diffracted by a crystal lattice has remained beyond the reach of laboratory-accessible magnetic fields. We find the geometrically frustrated spin system SrCu2(BO3)(2) to provide a sterling demonstration of a system in which bosons confined by a magnetic and lattice potential mimic the behavior of fermions in the extreme quantum limit, giving rise to a sequence of plateaus at all magnetization m(z)/m(sat) =1/q ratios 9 >= q >= 2 and p/q =2/9 (m(sat) is the saturation magnetization) in magnetic fields up to 85 T and temperatures down to 29 mK, within the sequence of previously identified plateaus at 1/8, 1/4, and 1/3 of the saturated magnetization. We identify this hierarchy of plateaus as a consequence of confined bosons in SrCu2(BO3)(2) mimicking the high magnetic field fractalization predicted by the Hofstadter butterfly for fermionic systems. Such an experimental realization of the Hofstadter problem for interacting fermions has not been previously achieved in real materials, given the unachievably high magnetic flux densities or large lattice periods required. By a theoretical treatment that includes short-range repulsion in the Hofstadter treatment, stripe-like spin density-modulated phases are revealed in SrCu2(BO3)(2) as emergent from a fluidic fractal spectrum. C1 [Sebastian, Suchitra E.; Marcano, N.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Harrison, N.; Francoual, S.] Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Sengupta, P.; Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Palm, E.; Murphy, T.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Dabkowska, H. A.; Gaulin, B. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, Madingley Rd, Cambridge CB3 0HE, England. EM suchitra@phy.cam.ac.uk RI Piper, Walter/B-7908-2009; Marcano Aguado, Noelia/F-9446-2010; Sengupta, Pinaki/B-6999-2011; Batista, Cristian/J-8008-2016; OI Marcano Aguado, Noelia/0000-0002-5331-9758; Harrison, Neil/0000-0001-5456-7756 FU National Science Foundation Division of Materials Research; Department of Energy; State of Florida; Natural Sciences and Engineering Research Council; Canadian Institute for Advanced Research; Spanish Ministerio de Educacion y Ciencia; Trinity College (Cambridge); Institute for Complex Adaptive Matter FX We acknowledge useful discussions with S. M. Girvin, S. A. Kivelson, and S. Todadri. Experiments performed at the National High Magnetic Field Laboratory were supported by the National Science Foundation Division of Materials Research, the Department of Energy, and the State of Florida. B. D. G. is supported by the Natural Sciences and Engineering Research Council and the Canadian Institute for Advanced Research. N. M. is supported by a postdoctoral fellowship from the Spanish Ministerio de Educacion y Ciencia. S. E. S. received support from Trinity College (Cambridge) and the Institute for Complex Adaptive Matter. NR 30 TC 48 Z9 48 U1 0 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 23 PY 2008 VL 105 IS 51 BP 20157 EP 20160 DI 10.1073/pnas.0804320105 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 388BP UT WOS:000261995600033 PM 19074281 ER PT J AU Toriello, NM Douglas, ES Thaitrong, N Hsiao, SC Francis, MB Bertozzi, CR Mathies, RA AF Toriello, Nicholas M. Douglas, Erik S. Thaitrong, Numrin Hsiao, Sonny C. Francis, Matthew B. Bertozzi, Carolyn R. Mathies, Richard A. TI Integrated microfluidic bioprocessor for single-cell gene expression analysis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE lab-on-a-chip; microfabrication; RNAi; stochastic gene expression AB An integrated microdevice is developed for the analysis of gene expression in single cells. The system captures a single cell, transcribes and amplifies the mRNA, and quantitatively analyzes the products of interest. The key components of the microdevice include integrated nanoliter metering pumps, a 200-nL RT-PCR reactor with a single-cell capture pad, and an affinity capture matrix for the purification and concentration of products that is coupled to a microfabricated capillary electrophoresis separation channel for product analysis. Efficient microchip integration of these processes enables the sensitive and quantitative examination of gene expression variation at the single-cell level. This microdevice is used to measure siRNA knockdown of the GAPDH gene in individual Jurkat cells. Single-cell measurements suggests the presence of 2 distinct populations of cells with moderate (approximate to 50%) or complete (approximate to 0%) silencing. This stochastic variation in gene expression and silencing within single cells is masked by conventional bulk measurements. C1 [Toriello, Nicholas M.; Douglas, Erik S.; Mathies, Richard A.] Univ Calif Berkeley, Joint Grad Grp Bioengn, Univ Calif San Francisco, Berkeley, CA 94720 USA. [Thaitrong, Numrin; Hsiao, Sonny C.; Francis, Matthew B.; Bertozzi, Carolyn R.; Mathies, Richard A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Mathies, RA (reprint author), Univ Calif Berkeley, Joint Grad Grp Bioengn, Univ Calif San Francisco, Berkeley, CA 94720 USA. EM rich@zinc.cchem.berkeley.edu RI Thaitrong, Numrin/H-1434-2011 FU National Science Foundation; National Institutes of Health Molecular Biophysics [T32GM08295]; Physical Biosciences, Materials, and Chemical Sciences Divisions of the U.S. Department of Energy Divisions of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [HG003329] FX We thank Eric Chu for assistance with microfabrication and James Yang, Palani Kumaresean, Terry Johnson, Teris Liu, and Robert Blazej for valuable discussions. This work was supported by National Institutes of Health Grant HG003329 and by the Physical Biosciences, Materials, and Chemical Sciences Divisions of the U.S. Department of Energy Divisions of the U.S. Department of Energy under Contract DE-AC02-05CH11231. N.M.T. was supported by National Institutes of Health Molecular Biophysics Training Grant T32GM08295. E.S.D. was supported by a National Science Foundation fellowship. NR 34 TC 128 Z9 131 U1 3 U2 52 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 23 PY 2008 VL 105 IS 51 BP 20173 EP 20178 DI 10.1073/pnas.0806355106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 388BP UT WOS:000261995600100 PM 19075237 ER PT J AU Di, ZF Wang, YQ Nastasi, M Rossi, F Shao, L Thompson, PE AF Di, Z. F. Wang, Y. Q. Nastasi, M. Rossi, F. Shao, L. Thompson, P. E. TI Effect of temperature on layer separation by plasma hydrogenation SO APPLIED PHYSICS LETTERS LA English DT Article DE diffusion; elemental semiconductors; Ge-Si alloys; high-temperature effects; hydrogenation; molecular beam epitaxial growth; plasma materials processing; point defects; semiconductor heterojunctions; semiconductor materials; silicon ID MOLECULAR-BEAM EPITAXY; SINGLE-CRYSTAL SILICON; DIFFUSION; DEFECTS; SURFACE AB We have studied hydrogen diffusion in plasma hydrogenated Si/SiGe/Si heterostructure at different temperatures. At low temperature, intrinsic point defects in the molecular beam epitaxy grown Si capping layer are found to compete with the buried strain SiGe layer for hydrogen trapping. The interaction of hydrogen with point defects affects the hydrogen long-range diffusion, and restricts the amount of hydrogen available for trapping by the SiGe layer. However, hydrogen trapping by the capping layer is attenuated with increasing hydrogenation temperature allowing more hydrogen to be trapped in the strain SiGe layer with subsequent surface blister formation. A potential temperature window for plasma hydrogenation induced layer separation is identified based on the combined considerations of trap-limited diffusion at low temperature and outdiffusion of H(2) molecule together with the dissociation of Si-H bonds inside of H platelet at high temperature. C1 [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rossi, F.] European Comm, Joint Res Ctr, I-21020 Ispra, Va, Italy. [Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Thompson, P. E.] USN, Res Lab, Washington, DC 20375 USA. RP Di, ZF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dizengfeng@hotmail.com RI di, zengfeng/B-1684-2010; OI Rossi, Francois/0000-0003-3090-1398 NR 26 TC 4 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 22 PY 2008 VL 93 IS 25 AR 254104 DI 10.1063/1.3054643 PG 3 WC Physics, Applied SC Physics GA 388GQ UT WOS:000262008700056 ER PT J AU Baer, M Mathias, G Kuo, IFW Tobias, DJ Mundy, CJ Marx, D AF Baer, Marcel Mathias, Gerald Kuo, I-Feng W. Tobias, Douglas J. Mundy, Christopher J. Marx, Dominik TI Spectral Signatures of the Pentagonal Water Cluster in Bacteriorhodopsin SO CHEMPHYSCHEM LA English DT Article DE bacteriorhodopsin; hydrogen bonds; molecular dynamics; protonation; vibrational spectroscopy ID SPACE GAUSSIAN PSEUDOPOTENTIALS; DENSITY-FUNCTIONAL CALCULATIONS; PROTEIN STRUCTURAL-CHANGES; SCHIFF-BASE REGION; PROTON-TRANSFER; IR-SPECTRA; FTIR; MOLECULES; SPECTROSCOPY; NETWORKS C1 [Baer, Marcel; Mathias, Gerald; Marx, Dominik] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. [Kuo, I-Feng W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tobias, Douglas J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Mundy, Christopher J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Baer, M (reprint author), Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. EM marcel.baer@theochem.rub.de RI Baer, Marcel/K-7664-2012; Tobias, Douglas/B-6799-2015 NR 37 TC 25 Z9 25 U1 0 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD DEC 22 PY 2008 VL 9 IS 18 BP 2703 EP 2707 DI 10.1002/cphc.200800473 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 392IR UT WOS:000262296900008 PM 19025752 ER PT J AU Paschek, D Puhse, M Perez-Goicochea, A Gnanakaran, S Garcia, AE Winter, R Geiger, A AF Paschek, Dietmar Puehse, Matthias Perez-Goicochea, Arnold Gnanakaran, S. Garcia, Angel E. Winter, Roland Geiger, Alfons TI The Solvent-Dependent Shift of the Amide I Band of a Fully Solvated Peptide as a Local Probe for the Solvent Composition in the Peptide/Solvent Interface SO CHEMPHYSCHEM LA English DT Article DE hydrogen bonds; IR spectroscopy; molecular dynamics; peptides; water chemistry ID MOLECULAR-DYNAMICS SIMULATIONS; EDITED INFRARED-SPECTROSCOPY; UNITED-ATOM DESCRIPTION; ALANINE-BASED PEPTIDES; HELICAL PEPTIDES; FORCE-FIELD; VIBRATIONAL SPECTROSCOPY; TRANSFERABLE POTENTIALS; FTIR SPECTROSCOPY; N-METHYLACETAMIDE AB We determine the shift and line shape of the amide I band of a model AK peptide from molecular dynamics (MD) simulations of the peptide dissolved in methanol/water mixtures with varying composition. The IR spectra are determined from a transition dipole coupling exciton model. A simplified empirical model Hamiltonian is employed, which takes into account both the effect of hydrogen bonding and the intramolecular vibrational coupling. We consider a single isolated AK peptide in a mostly helical conformation, while the solvent is represented by 2600 methanol or water molecules, simulated for a pressure of I bar and a temperature of 300 K. Over the course of the simulations, minor reversible conformational changes at the termini are observed, which are found to only slightly affect the calculated spectral properties. Over the entire composition range, which varies from pure water to the pure methanol solvent, a monotonous shift towards higher frequency of the IR amide I bond of about 8 wavenumbers is observed. This shift towards higher frequency is comparable to the shift found in preliminary experimental data also presented here on the amide I' band. The shift is found to be caused by two counter-compensating effects. An intramolecular red shift of about 1.2 wavenumbers occurs, due to stronger intramolecular hydrogen bonding in a methanol-rich environment. Dominating, however, is the intermolecular solvent-dependent shift towards higher frequency of about 10 wavenumbers, which is attributed to the less effective hydrogen-bond-donor capabilities of methanol compared to water. The importance of the solvent contribution to the IR shift, as well as the significantly different hydrogen formation capabilities of water and methanol, makes the amide / band sensitive to composition changes in the local environment close to the peptide/solvent interface. This allows, in principle, an experimental determination of the composition of the solvent in close proximity to the peptide surface. For the AK peptide case, we observe at low methanol concentrations a significantly enhanced methanol concentration at the peptide/solvent interface, supposedly promoted by the partially hydrophobic character of the AK peptide's solvent-accessible surface. C1 [Paschek, Dietmar; Puehse, Matthias; Perez-Goicochea, Arnold; Winter, Roland; Geiger, Alfons] TU Dortmund, Fak Chem, D-44227 Dortmund, Germany. [Paschek, Dietmar] TU Dortmund, Fak Bio & Chem Ingn, Lehrstuhl Thermodynam, D-44227 Dortmund, Germany. [Gnanakaran, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Garcia, Angel E.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Paschek, D (reprint author), TU Dortmund, Fak Chem, Otto Hahn Str 6, D-44227 Dortmund, Germany. EM dietmar.paschek@uni-dortmund.de RI Paschek, Dietmar/D-2949-2009; OI Winter, Roland/0000-0002-3512-6928; Gnanakaran, S/0000-0002-9368-3044 FU Deutsche Forschungsgemeinschaft [Forschergruppe 436]; National Science Foundation [MCB-0543769]; Max-Planck Society FX The AK peptide was kindly provided by Prof. Sean M. Decatur. A.G., R.W., and D.P gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (Forschergruppe 436). A.E.G. has been supported by the National Science Foundation (MCB-0543769). A.P-G. gratefully acknowledges an IMPRS scholarship from the Max-Planck Society. We thank the ITMC at TU Dortmund for providing computer resources on LiDO. NR 69 TC 8 Z9 8 U1 2 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD DEC 22 PY 2008 VL 9 IS 18 BP 2742 EP 2750 DI 10.1002/cphc.200800540 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 392IR UT WOS:000262296900014 PM 19035605 ER PT J AU Le, KQ Godoy-Rubio, R Bienstman, P Hadley, GR AF Le, Khai Q. Godoy-Rubio, R. Bienstman, Peter Hadley, G. Ronald TI The complex Jacobi iterative method for three-dimensional wide-angle beam propagation (vol 16, pg 17021, 2008) SO OPTICS EXPRESS LA English DT Correction AB An erratum is presented to correct the definition of coefficient xi* in Eq. (12) in our paper. (C) 2008 Optical Society of America C1 [Le, Khai Q.; Bienstman, Peter] Univ Ghent, IMEC, Dept Informat Technol, B-9000 Ghent, Belgium. [Godoy-Rubio, R.] Univ Malaga, Dept Ingn Comunicac, E-29071 Malaga, Spain. [Hadley, G. Ronald] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Le, KQ (reprint author), Univ Ghent, IMEC, Dept Informat Technol, St Pietersnieuwstr 4, B-9000 Ghent, Belgium. EM khai.le@intec.ugent.be NR 1 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 22 PY 2008 VL 16 IS 26 BP 21942 EP 21942 DI 10.1364/OE.16.021942 PG 1 WC Optics SC Optics GA 390YX UT WOS:000262200700081 ER PT J AU Hu, GC He, KL Xie, SJ Saxena, A AF Hu, Guichao He, Keliang Xie, Shijie Saxena, Avadh TI Spin-current rectification in an organic magnetic/nonmagnetic device SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE diodes; electron spin polarisation; magnetoelectronics; organic compounds; rectification ID GIANT MAGNETORESISTANCE; MOLECULAR DIODES; HETEROSTRUCTURES; SEMICONDUCTOR; FERROMAGNET; RECTIFIERS; MONOLAYER; TRANSPORT; OLIGOMERS; SOLITONS AB We propose a spin diode based on an organic magnetic co-oligomer or a magnetic/nonmagnetic heterojunction structure. The current and its spin polarization in the device are calculated with the spin-dependent Landauer-Buttiker formula. It is found that, by reversing the applied bias, the charge current and the spin current (SC) may be rectified at the same time or separately. A normal charge-current rectification usually takes place if the spatial electric structure is asymmetric. While a spin-current rectification may appear in two forms or their combination: one is that the spin-polarized orientation keeps unchanged but the magnitude of the SC is asymmetric with the bias; another is that only the spin orientation of the SC flips when the bias is reversed. By designing a suitable organic spin device, either of the two kinds of spin-current rectifications is obtained in our calculations. Finally, the effects of the properties of the organic interlayer and the structural asymmetry on the rectification are discussed. C1 [Hu, Guichao; He, Keliang; Xie, Shijie] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Hu, Guichao] Shandong Normal Univ, Coll Phys & Elect, Jinan 250014, Peoples R China. [He, Keliang; Xie, Shijie] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Xie, SJ (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. EM xsj@sdu.edu.cn RI He, Keliang/F-1942-2013 OI He, Keliang/0000-0002-1113-2354 FU National Natural Science Foundation of China [10874100, 10847151, 2009CB929200] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 10874100 and 10847151) and the 973 project (No. 2009CB929200). Helpful discussions with Professor Jianhua Wei are also appreciated. NR 37 TC 24 Z9 24 U1 6 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 21 PY 2008 VL 129 IS 23 AR 234708 DI 10.1063/1.3041773 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 386QC UT WOS:000261896700035 PM 19102553 ER PT J AU Lin, Y Mao, WL Drozd, V Chen, JH Daemen, LL AF Lin, Yu Mao, Wendy L. Drozd, Vadym Chen, Jiuhua Daemen, Luke L. TI Raman spectroscopy study of ammonia borane at high pressure SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ammonium compounds; bending; high-pressure effects; hydrogen bonds; hydrogen storage; Raman spectra; vibrational modes ID CHEMICAL HYDROGEN STORAGE; THERMAL-DECOMPOSITION; INFRARED-SPECTRA; AMINE BORANES; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; DIHYDROGEN BOND; DEHYDROGENATION; BH3NH3; NMR AB Ammonia borane, NH3BH3, has attracted significant interest as a promising candidate material for hydrogen storage. The effect of pressure on the bonding in NH3BH3 was investigated using Raman spectroscopy to over 20 GPa in a diamond anvil cell, and two new transitions were observed at approximately 5 and 12 GPa. Vibrational frequencies for the modes of the NH3 proton donor group exhibited negative pressure dependence, which is consistent with the behavior of conventional hydrogen bonds, while the vibrational frequencies of the BH3 proton acceptor group showed positive pressure dependence. The observed behavior of these stretching modes supports the presence of dihydrogen bonding at high pressure. In addition, the BH3 and NH3 bending modes showed an increase in spectral complexity with increasing pressure together with a discontinuity in d nu/dP which suggests rotational disorder in this molecule. These results may provide guidance for understanding and developing improved hydrogen storage materials. C1 [Lin, Yu; Mao, Wendy L.] Stanford Univ, Stanford, CA 94305 USA. [Lin, Yu; Mao, Wendy L.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Drozd, Vadym; Chen, Jiuhua] Florida Int Univ, Miami, FL 33174 USA. [Daemen, Luke L.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Lin, Y (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM lyforest@stanford.edu RI Drozd, Vadym/B-2518-2009; Mao, Wendy/D-1885-2009; Lujan Center, LANL/G-4896-2012 FU Department of Energy (DOE) [DE-FG02-07ER46461]; Stanford Institute for Materials and Energy Science [DE-AC02-76SF00515]; DOE-NNSA (CDAC); DOE-BES; DOE-NNSA; NSF; W. M. Keck Foundation; DOE-BES [DE-AC02-06CH11357] FX This work was supported by the Department of Energy (DOE) under Award No. DE-FG02-07ER46461, the Stanford Institute for Materials and Energy Science under Contract No. DE-AC02-76SF00515, and DOE-NNSA (CDAC). Raman measurements were carried out at HPCAT (Sector 16) of the Advanced Photon Source (APS), Argonne National Laboratory. HPCAT was supported by the DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. APS was supported by the DOE-BES, under Contract No. DE-AC02-06CH11357. NR 44 TC 48 Z9 50 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 21 PY 2008 VL 129 IS 23 AR 234509 DI 10.1063/1.3040276 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 386QC UT WOS:000261896700022 PM 19102540 ER PT J AU Wang, Q Hanson, JC Frenkel, AI AF Wang, Qi Hanson, Jonathan C. Frenkel, Anatoly I. TI Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE catalysts; cerium compounds; copper; EXAFS; oxidation; principal component analysis; reaction kinetics; reduction (chemical); spectrochemical analysis; time resolved spectra ID PRINCIPAL COMPONENT ANALYSIS; CYTOCHROME-C-OXIDASE; GAS SHIFT REACTION; IN-SITU; ACTIVE-SITE; O-VACANCIES; REDUCTION; WATER; EXAFS; SPECIATION AB We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed. C1 [Wang, Qi; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Frenkel, AI (reprint author), Yeshiva Univ, Dept Phys, New York, NY 10016 USA. EM anatoly.frenkel@yu.edu RI Frenkel, Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Hanson, jonathan/E-3517-2010 OI Frenkel, Anatoly/0000-0002-5451-1207; FU U. S. DOE [DE-FG02-03ER15476, DE-FG02-03ER15688, DE-AC02-98CH10886]; Materials and Chemical Sciences of U. S. DOE FX We acknowledge the U. S. DOE Grant No. DE-FG02-03ER15476 (A.I.F. and Q.W.) for financial support of this work. Work at the NSLS was supported by the U. S. DOE Grant Nos. DE-FG02-03ER15688 (A.I.F.) and DE-AC02-98CH10886 (J.C.H.). The NSLS is supported by the divisions of Materials and Chemical Sciences of U. S. DOE. NR 50 TC 39 Z9 40 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 21 PY 2008 VL 129 IS 23 AR 234502 DI 10.1063/1.3040271 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 386QC UT WOS:000261896700015 PM 19102533 ER PT J AU Oyaizu, H Lima, M Cunha, CE Lin, H Frieman, J AF Oyaizu, Hiroaki Lima, Marcos Cunha, Carlos E. Lin, Huan Frieman, Joshua TI PHOTOMETRIC REDSHIFT ERROR ESTIMATORS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: distances and redshifts; galaxies: photometry ID DIGITAL SKY SURVEY; DEEP-FIELD-NORTH; DATA RELEASE; GALAXIES; CATALOG; REQUIREMENTS; EVOLUTION AB Photometric redshift (photo-z) estimates are playing an increasingly important role in extragalactic astronomy and cosmology. Crucial to many photo-z applications is the accurate quantification of photometric redshift errors and their distributions, including identification of likely catastrophic failures in photo-z estimates. We consider several methods of estimating photo-z errors, and propose new training-set based error estimators based on spectroscopic training set data. Using data from the Sloan Digital Sky Survey and simulations of the Dark Energy Survey as examples, we show that this method provides a robust, relatively unbiased estimate of photo-z errors. We show that culling objects with large, accurately estimated photo-z errors from a sample can reduce the incidence of catastrophic photo-z failures. C1 [Oyaizu, Hiroaki; Cunha, Carlos E.; Frieman, Joshua] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Oyaizu, Hiroaki; Lima, Marcos; Cunha, Carlos E.; Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Lima, Marcos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lin, Huan; Frieman, Joshua] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Oyaizu, H (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Lima, Marcos/E-8378-2010 FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Kavli Foundation; founder Fred Kavli; NSF [AST 02-39759, AST 05-07666, AST 07-08154]; Department of Energy; DOE; Fermi Research Alliance; LLC [DE-AC02-07CH11359]; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We would like to thank Erin Sheldon for insightful and useful discussions, as well as Dinoj Surendran and Mark SubbaRao for introducing the authors to a fast method of nearest neighbor search using Cover-Trees. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. H.O. was also supported by the NSF grants AST 02-39759, AST 05-07666, and AST 07-08154 at the University of Chicago. M. L. was also supported by the Department of Energy grant to the University of Chicago and Fermilab. Support for CC is made available through the contract between DOE and Fermi Research Alliance, LLC, contract DE-AC02-07CH11359.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSSWeb Site is http:// www.sdss.org. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, theMax- Planck- Institute for Astronomy (MPIA), the Max-Planck- Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 32 TC 35 Z9 35 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2008 VL 689 IS 2 BP 709 EP 720 DI 10.1086/592591 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 376NF UT WOS:000261189600005 ER PT J AU Skillman, SW O'Shea, BW Hallman, EJ Burns, JO Norman, ML AF Skillman, Samuel W. O'Shea, Brian W. Hallman, Eric J. Burns, Jack O. Norman, Michael L. TI COSMOLOGICAL SHOCKS IN ADAPTIVE MESH REFINEMENT SIMULATIONS AND THE ACCELERATION OF COSMIC RAYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; cosmology: theory; hydrodynamics; methods: numerical ID LARGE-SCALE STRUCTURE; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; PARTICLE-ACCELERATION; ASTROPHYSICAL FLOWS; GALAXY CLUSTERS; RADIO-EMISSION; DARK-MATTER; HYDRODYNAMICS; WAVES AB We present new results characterizing cosmological shocks within adaptive mesh refinement N-body/hydrodynamic simulations that are used to predict nonthermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of low Mach number shocks by a factor of similar to 3. We then apply our new technique to a large, 512 h(-1) Mpc)(3), cosmological volume and study the shock Mach number M) distribution as a function of preshock temperature, density, and redshift. Because of the large volume of the simulation, we have superb statistics that result from having thousands of galaxy clusters. We find that the Mach number evolution can be interpreted as a method to visualize large-scale structure formation. Shocks with M < 5 typically trace mergers and complex flows, while 5 < M 20 and M 20 generally follow accretion onto filaments and galaxy clusters, respectively. By applying results from nonlinear diffusive shock acceleration models using the first-order Fermi process, we calculate the amount of kinetic energy that is converted into cosmic-ray protons. The acceleration of cosmic-ray protons is large enough that in order to use galaxy clusters as cosmological probes, the dynamic response of the gas to the cosmic rays must be included in future numerical simulations. C1 [Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Skillman, Samuel W.; O'Shea, Brian W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [O'Shea, Brian W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Skillman, SW (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA. NR 51 TC 87 Z9 87 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2008 VL 689 IS 2 BP 1063 EP 1077 DI 10.1086/592496 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 376NF UT WOS:000261189600029 ER PT J AU Lee, TG Balakrishnan, N Forrey, RC Stancil, PC Shaw, G Schultz, DR Ferland, GJ AF Lee, T. -G. Balakrishnan, N. Forrey, R. C. Stancil, P. C. Shaw, G. Schultz, D. R. Ferland, G. J. TI ROTATIONAL QUENCHING RATE COEFFICIENTS FOR H(2) IN COLLISIONS WITH H(2) FROM 2 TO 10,000 K SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: molecules; molecular data; molecular processes ID MOLECULAR-HYDROGEN EMISSION; SPITZER OBSERVATIONS; ASTROPHYSICAL MEDIA; H2-H2 COLLISIONS; INTERSTELLAR GAS; EXCITATION; RELAXATION; HD-34078; CLOUDY AB Rate coefficients for rotational transitions in H(2) induced by H(2) impact are presented. Extensive quantum mechanical coupled-channel calculations based on a recently published (H(2))(2) potential energy surface were performed. The potential energy surface used here has been demonstrated to be more reliable than surfaces used in previous work. Rotational transition cross sections with initial levels of J <= 8 were computed for collision energies ranging between 10(-4) and 2.5 eV, and the corresponding rate coefficients were calculated for the temperature range 2 <= T <= 10, 000 K. In general, agreement with earlier calculations, which were limited to 100-6000 K, is good, although discrepancies are found at the lowest and highest temperatures. Low-density-limit cooling functions due to para-and ortho-H(2) collisions are obtained from the collisional rate coefficients. Implications of the new results for nonthermal H(2) rotational distributions in molecular regions are also investigated. C1 [Lee, T. -G.; Ferland, G. J.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Lee, T. -G.; Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Balakrishnan, N.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Forrey, R. C.] Penn State Univ, Dept Phys, Reading, PA 19610 USA. [Stancil, P. C.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Stancil, P. C.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Shaw, G.] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. RP Lee, TG (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RI Lee, Teck Ghee/D-5037-2012; OI Lee, Teck Ghee/0000-0001-9472-3194; Ferland, Gary/0000-0003-4503-6333 FU NASA [NNG05GD81G, NNG06GC94G]; Spitzer Space Telescope Theoretical Research Program; NSF [PHY-0555565, AST-0607524, AST-0607733] FX We acknowledge support from NASA grant NNG05GD81G (T.-G. L., G. J. F.), the Spitzer Space Telescope Theoretical Research Program (T.-G. L., R. C. F., G. J. F.), NSF grants PHY-0555565 and AST-0607524 (N. B.), NASA grant NNG06GC94G (N. B.), NSF grant PHY-0554794 (R. C. F.), and NSF grant AST-0607733 (P. C. S.). We thank the NSF-funded Institute for Theoretical Atomic, Molecular, and Optical Physics at the Harvard-Smithsonian Center for Astrophysics for travel support. NR 36 TC 16 Z9 16 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2008 VL 689 IS 2 BP 1105 EP 1111 DI 10.1086/592560 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 376NF UT WOS:000261189600033 ER PT J AU Gehrels, N Barthelmy, SD Burrows, DN Cannizzo, JK Chincarini, G Fenimore, E Kouveliotou, C O'Brien, P Palmer, DM Racusin, J Roming, PWA Sakamoto, T Tueller, J Wijers, RAMJ Zhang, B AF Gehrels, N. Barthelmy, S. D. Burrows, D. N. Cannizzo, J. K. Chincarini, G. Fenimore, E. Kouveliotou, C. O'Brien, P. Palmer, D. M. Racusin, J. Roming, P. W. A. Sakamoto, T. Tueller, J. Wijers, R. A. M. J. Zhang, B. TI CORRELATIONS OF PROMPT AND AFTERGLOW EMISSION IN SWIFT LONG AND SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Review DE gamma rays: bursts ID SPECTRAL-ENERGY CORRELATIONS; X-RAY; OPTICAL AFTERGLOW; LIGHT CURVES; HOST GALAXY; XRT DATA; MULTIWAVELENGTH AFTERGLOW; COMPREHENSIVE ANALYSIS; CHROMATIC BREAKS; SHALLOW DECAY AB Correlation studies of prompt and afterglow emission from gamma-ray bursts (GRBs) between different spectral bands have been difficult to do in the past because few bursts had comprehensive and comparable afterglow measurements. In this paper we present a large and uniform data set for correlation analysis based on bursts detected by the Swift mission. For the first time, short and long bursts can be analyzed and compared. It is found for both classes that the optical, X-ray, and gamma-ray emission are linearly correlated, but with a large spread about the correlation line; stronger bursts tend to have brighter afterglow, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Short bursts are, on average, weaker in both prompt and afterglow emission. No short bursts are seen with extremely low optical Y to YX-ray ratios, as occurs for "dark'' long bursts. Although statistics are still poor for short bursts, there is no evidence yet for a subgroup of short bursts with high extinction, as there is for long bursts. Long bursts are detected in the dark category in the same fraction as pre-Swift bursts. Interesting cases of long bursts that are detected in the optical, and yet have a low enough optical Y to YX-ray ratio to be classified as dark, are discovered. For the prompt emission, short and long bursts have different average tracks on flux versus fluence plots. In Swift, GRB detections tend to be fluence-limited for short bursts and flux-limited for long events. C1 [Gehrels, N.; Barthelmy, S. D.; Cannizzo, J. K.; Sakamoto, T.; Tueller, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Burrows, D. N.; Racusin, J.; Roming, P. W. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cannizzo, J. K.; Sakamoto, T.] Univ Maryland Baltimore Cty, CRESST, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Chincarini, G.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Chincarini, G.] Univ Milan, I-20126 Milan, Italy. [Fenimore, E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kouveliotou, C.] NSSTC, NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [O'Brien, P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, Fac Sci, NL-1098 SJ Amsterdam, Netherlands. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Gehrels, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM neil.gehrels@nasa.gov RI Racusin, Judith/D-2935-2012; Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; OI Wijers, Ralph/0000-0002-3101-1808 NR 119 TC 65 Z9 66 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2008 VL 689 IS 2 BP 1161 EP 1172 DI 10.1086/592766 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 376NF UT WOS:000261189600038 ER PT J AU Aspden, AJ Bell, JB Day, MS Woosley, SE Zingale, M AF Aspden, A. J. Bell, J. B. Day, M. S. Woosley, S. E. Zingale, M. TI TURBULENCE-FLAME INTERACTIONS IN TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE conduction; hydrodynamics; methods: numerical; nuclear reactions, nucleosynthesis, abundances; supernovae: general; turbulence; white dwarfs ID RAYLEIGH-TAYLOR INSTABILITY; DELAYED-DETONATION MODEL; NUCLEAR FLAMES; WHITE-DWARFS; THERMONUCLEAR SUPERNOVAE; NUMERICAL SIMULATIONS; DEFLAGRATION; EXPLOSIONS; TRANSITION; PROPAGATION AB The large range of time and length scales involved in Type Ia supernovae (SNe Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider in this paper high-resolution, three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, (1-8); 10(7) g cm(-3), spans the transition from the laminar flamelet regime to the distributed burning regime where small-scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SNe Ia, we find a transition density between 1 and 3 x 10(7) g cm(-3), where the nature of the burning changes qualitatively. By 1 x 10(7) g cm(-3), energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis number approaches unity. That is, the flame resembles a laminar flame but is turbulently broadened with an effective diffusion coefficient, D-T similar to u'l, where u' is the turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed. C1 [Aspden, A. J.; Bell, J. B.; Day, M. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Zingale, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Aspden, AJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA. RI Aspden, Andy/A-7391-2017; OI Aspden, Andy/0000-0002-2970-4824; Zingale, Michael/0000-0001-8401-030X FU Seaborg Fellowship at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U. S Department of Energy [DE-AC0205CH11231]; NASA Theory Program [NNG05GG08G]; DOE SciDAC Program [DE-FC02-06ER41438]; [DE-FG02-06ER41448 t] FX The authors thank F. X. Timmes for making his equation of state and conductivity routines available online. Support for A. J. A. was provided by a Seaborg Fellowship at Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231. Support for J. B. B. and M. S. D. was provided by the SciDAC Programof the Office of Advanced Scientific Computing Resarch of the U. S Department of Energy under contract DE-AC0205CH11231. At UCSC this research has been supported by the NASA Theory Program NNG05GG08G and the DOE SciDAC Program (DE-FC02-06ER41438). M. Z. was supported by a DOE/Office of Nuclear Physics Outstanding Junior Investigator award, grant DE-FG02-06ER41448 to SUNY Stony Brook. The computations presented here were performed on the Jaguar XT4 at ORNL as part of an INCITE award and on the ATLAS Linux Cluster at LLNL as part of a Grand Challenge Project. NR 41 TC 38 Z9 38 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2008 VL 689 IS 2 BP 1173 EP 1185 DI 10.1086/592726 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 376NF UT WOS:000261189600039 ER PT J AU Saumon, D Marley, MS AF Saumon, D. Marley, Mark S. TI THE EVOLUTION OF L AND T DWARFS IN COLOR-MAGNITUDE DIAGRAMS SO ASTROPHYSICAL JOURNAL LA English DT Review DE stars: atmospheres; stars: evolution; stars: low-mass, brown dwarfs ID LOW-MASS STARS; EXTRASOLAR GIANT PLANETS; COLLISION-INDUCED ABSORPTION; BROWN DWARFS; STELLAR ATMOSPHERES; SUBSTELLAR OBJECTS; L/T TRANSITION; INFRARED PHOTOMETRY; THERMAL STRUCTURE; ULTRACOOL DWARFS AB We present new evolution sequences for very low mass stars, brown dwarfs, and giant planets and use them to explore a variety of influences on the evolution of these objects. While the predicted adiabatic evolution of luminosity with time is very similar to results of previous work, the remaining disagreements reveal the magnitude of current uncertainty in brown dwarf evolution theory. We discuss the sources of those differences and argue for the importance of the surface boundary condition provided by atmosphere models including clouds. The L- to T-type ultracool dwarf transition can be accommodated within the Ackerman and Marley cloud model by varying the cloud sedimentation parameter. We develop a simple model for the evolution across the L/T transition. By combining the evolution calculation and our atmosphere models, we generate colors and magnitudes of synthetic populations of ultracool dwarfs in the field and in Galactic clusters. We focus on near-infrared color-magnitude diagrams (CMDs) and on the nature of the "second parameter'' that is responsible for the scatter of colors along the T(eff) sequence. Instead of a single second parameter we find that variations in metallicity and cloud parameters, unresolved binaries, and possibly a relatively young population all play a role in defining the spread of brown dwarfs along the cooling sequence. We also find that the transition from cloudy L dwarfs to cloudless T dwarfs slows down the evolution and causes a pileup of substellar objects in the transition region, in contradiction with previous studies. However, the same model is applied to the Pleiades brown dwarf sequence with less success. Taken at face value, the present Pleiades data suggest that the L/T transition occurs at lower T(eff) for lower gravity objects, such as those found in young Galactic clusters. The simulated populations of brown dwarfs also reveal that the phase of deuterium burning produces a distinctive feature in CMDs that should be detectable in similar to 50-100 Myr old clusters. C1 [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Saumon, D (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop F663, Los Alamos, NM 87545 USA. EM dsaumon@lanl.gov; mark.s.marley@nasa.gov RI Marley, Mark/I-4704-2013 NR 105 TC 218 Z9 218 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2008 VL 689 IS 2 BP 1327 EP 1344 DI 10.1086/592734 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 376NF UT WOS:000261189600051 ER PT J AU Kang, KS Keyes, DE AF Kang, K. S. Keyes, D. E. TI Implicit symmetrized streamfunction formulations of magnetohydrodynamics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE incompressible MHD; streamfunction; finite element; multigrid method ID FINITE-ELEMENT; NEWTON; SOLVER AB We apply the finite element method to the classic tilt instability problem of two-dimensional incompressible magnetohydrodynamics using a streamfunction approach to enforce the divergence-free conditions on the magnetic and velocity fields. We compare two formulations of the governing equations the standard one based on streamfunctions and a hybrid formulation with velocities and magnetic field components. We use a finite element discretization on unstructured meshes and an implicit time discretization scheme. We use the PETSc library with index sets for parallelization. To solve the nonlinear problems on each time step we compare two nonlinear Gauss-Seidel-type methods and Newton's method with several time-step sizes. We use GMRES and PETSc with multigrid preconditioning to solve the linear subproblems within the nonlinear solvers. We also study the scalability of this simulation on cluster. Copyright (c) 2008 John Wiley & Sons Ltd. C1 [Kang, K. S.; Keyes, D. E.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Keyes, D. E.] Columbia Univ, New York, NY 10027 USA. RP Kang, KS (reprint author), Brookhaven Natl Lab, Computat Sci Ctr, Bldg 463,Room 255, Upton, NY 11973 USA. EM kskang@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886, DE-FC02-04ER25595] FX Contract/grant sponsor: U.S. Department of Energy: contract/grant numbers: DE-AC02-98CH10886. DE-FC02-04ER25595 NR 33 TC 6 Z9 6 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD DEC 20 PY 2008 VL 58 IS 11 BP 1201 EP 1222 DI 10.1002/fld.1755 PG 22 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 381NG UT WOS:000261542600002 ER PT J AU Goretta, KC Singh, D Chen, N Gutierrez-Mora, F Lorenzo-Martin, MD Dominguez-Rodriguez, A Routbort, JL AF Goretta, K. C. Singh, D. Chen, Nan Gutierrez-Mora, F. de la Cinta Lorenzo-Martin, M. Dominguez-Rodriguez, A. Routbort, J. L. TI Microstructure and properties of ceramics and composites joined by plastic deformation SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 2nd International Conference on Recent Advances in Composite Materials CY FEB 20-23, 2007 CL New Delhi, INDIA SP India Habitat Ctr DE Ceramics; Joining; Plastic deformation ID SILICON-NITRIDE CERAMICS; HIGH-TEMPERATURE APPLICATIONS; JOINING ADVANCED CERAMICS; STABILIZED ZIRCONIA; Y-TZP; SUPERPLASTIC FLOW; GREEN STATE; CARBIDE; INTERLAYERS; BEHAVIOR AB A review is presented of the design of suitable materials systems for joining by high-temperature plastic deformation, details of the joining techniques, microstructures and properties of the resulting composite bodies, and prospects and limitation for this type of joining technology. joining parameters and resulting forms are discussed for Al2O3/mullite particulate composites, Y2O3-stabilized ZrO2 particulate/Al2O3 particulate and whisker-reinforced composites, hydroxyapatite bioceramics, La0.85Sr0.15MnO3 electronic ceramics, MgF2 optical ceramics, and Ni3Al intermetallics. Results are contrasted with those obtained by other methods of joining brittle, high-temperature materials, with special focus on durability and mechanical properties. Published by Elsevier B.V. C1 [Goretta, K. C.; Singh, D.; Chen, Nan; Gutierrez-Mora, F.; de la Cinta Lorenzo-Martin, M.; Routbort, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gutierrez-Mora, F.; de la Cinta Lorenzo-Martin, M.; Dominguez-Rodriguez, A.] Univ Seville, Seville 41080, Spain. RP Goretta, KC (reprint author), AOARD, Tokyo 1060032, Japan. EM ken.goretta@aoard.af.mil RI Gutierrez-Mora, Felipe/H-4625-2015 OI Dominguez-Rodriguez, Arturo/0000-0003-1598-5669; Gutierrez-Mora, Felipe/0000-0003-3632-7163 NR 75 TC 4 Z9 5 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD DEC 20 PY 2008 VL 498 IS 1-2 SI SI BP 12 EP 18 DI 10.1016/j.msea.2007.11.149 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 379UA UT WOS:000261420500004 ER PT J AU Woo, W Balogh, L Ungar, T Choo, H Feng, Z AF Woo, Wanchuck Balogh, Levente Ungar, Tamas Choo, Hahn Feng, Zhili TI Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Friction-stir welding; Aluminum alloy; X-ray diffraction; Dislocation density; Grain size; Strain hardening ID MECHANICAL-PROPERTIES; NEUTRON-DIFFRACTION; MICROSTRUCTURE; PRECIPITATION; STRENGTH; DUCTILITY; CRYSTALS; CONTRAST; BEHAVIOR AB The dislocation density and grain structure of a friction-stir welded 6061-T6 aluminum alloy were determined as a function of distance from the weld centerline using high-resolution micro-beam X-ray diffraction. The results of the X-ray peak profile analysis show that the dislocation density is about 1.2 x 10(14) m(-2) inside and 4.8 x 10(14) m(-2) outside of the weld region. The average subgrain size is about 180 nm in both regions. Compared to the base material, the dislocation density was significantly decreased in the dynamic recrystallized zone of the friction-stir welds, which is in good correlation with the TEM observations. The influence of the dislocation density on the strain hardening behavior during tensile deformation is also discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Woo, Wanchuck; Choo, Hahn; Feng, Zhili] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Balogh, Levente; Ungar, Tamas] Eotvos Lorand Univ, Dept Gen Phys, H-1518 Budapest, Hungary. [Choo, Hahn] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Woo, W (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 229 Bldg 4508,MS 6096,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM woowc@ornl.gov RI Choo, Hahn/A-5494-2009; Feng, Zhili/H-9382-2012; Balogh, Levente/S-1238-2016; OI Choo, Hahn/0000-0002-8006-8907; Feng, Zhili/0000-0001-6573-7933; WOO, Wanchuck/0000-0003-0350-5357 FU Laboratory Directed Research and Development programme of Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725]; NSF [DMR-0231320]; Hungarian National Science Foundation [71594, 67692]; Oak Ridge National Laboratory; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, FX This research is sponsored by the Laboratory Directed Research and Development programme of Oak Ridge National Laboratory, managed by UTBattelle, LLC for the US Department of Energy under Contract no. DE-AC05-00OR22725. This work is also supported by the NSF International Materials Institutes Program under contract DMR-0231320. TU and LB are grateful to the Hungarian National Science Foundation OTKA no. 71594 and no. 67692. Research at the Oak Ridge National Laboratory SHaRE User Center supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Authors would like to thank E.A. Kenik, S.Y. Lee, Y. Yamanoto, RK. Liaw and IA. Sisneros for their help. NR 25 TC 61 Z9 62 U1 2 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD DEC 20 PY 2008 VL 498 IS 1-2 BP 308 EP 313 DI 10.1016/j.msea.2008.08.007 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 379UA UT WOS:000261420500044 ER PT J AU Bednarcik, J Venkataraman, S Khvostikova, O Franz, H Sordelet, DJ Eckert, J AF Bednarcik, J. Venkataraman, S. Khvostikova, O. Franz, H. Sordelet, D. J. Eckert, J. TI Microstructural changes induced by thermal treatment in Cu(47)Ti(33)Zr(11)Ni(8)Si(1) metallic glass SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Metallic glass; Synchrotron light; Thermal treatment; DSC; XRD ID X-RAY-DIFFRACTION; SHORT-RANGE ORDER; AMORPHOUS-ALLOYS; FREE-VOLUME; CU; CRYSTALLIZATION; TEMPERATURE; TRANSITION; RADIATION; LIQUIDS AB The influence of thermal treatment on structural changes in the Cu(47)Ti(33)Zr(11)Ni(8)Si(1) metallic glass has been monitored using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Additionally, the short-range order structure has been investigated by XRD using synchrotron radiation. The changes observed in the calorimetric behaviour cannot be quantified using conventional XRD. Small changes are, however, visible in the total structure factor S (Q) primarily in terms of amplitude of the oscillations, which tend to increase with increasing thermal treatment temperature. Real-space analysis of the pair distribution function suggests that the first coordination shell consists of three peaks, which can be modelled using Gaussian distributions. Furthermore, the synchrotron data also reveal changes in the local structure that occur during structural relaxation and early formation of nanocrystals at temperatures close to the experimentally determined crystallization temperature. (C) 2008 Elsevier B.V. All rights reserved C1 [Venkataraman, S.; Khvostikova, O.; Eckert, J.] Inst Komplexe Mat, IFW Dresden, D-01069 Dresden, Germany. [Bednarcik, J.; Franz, H.] DESY, HASYLAB, D-22603 Hamburg, Germany. [Sordelet, D. J.] Iowa State Univ, Ames Lab, Mat & Engn Phys Program, USDOE, Ames, IA 50011 USA. [Eckert, J.] Inst Werkstoffwissensch, TU Dresden, D-01062 Dresden, Germany. RP Venkataraman, S (reprint author), Inst Komplexe Mat, IFW Dresden, Helmholtzstr 20, D-01069 Dresden, Germany. EM s.venkataraman@ifw-dresden.de FU German Research Foundation [Ec 111/10]; U.S. Department of Energy; Basic Energy Sciences; Iowa State University [W7405-ENG-82] FX Funding for this work was provided by the German Research Foundation under grant no. Ec 111/10. The synthesis efforts by DJS were supported by the U.S. Department of Energy, Basic Energy Sciences, through Iowa State University under Contract No. W7405-ENG-82. NR 40 TC 4 Z9 4 U1 2 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD DEC 20 PY 2008 VL 498 IS 1-2 SI SI BP 335 EP 340 DI 10.1016/j.msea.2008.08.016 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 379UA UT WOS:000261420500048 ER PT J AU Evans, ND Maziasz, PJ Shingledecker, JP Yamamoto, Y AF Evans, Neal D. Maziasz, Philip J. Shingledecker, John P. Yamamoto, Yukinori TI Microstructure evolution of alloy 625 foil and sheet during creep at 750 degrees C SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Austenitic steels; Creep; Phase transformations; Phase field modeling; Analytical electron microscopy ID SERVICE-EXPOSED ALLOY-625; MU-PHASE; MECHANICAL-PROPERTIES; STAINLESS-STEEL; PRECIPITATION; SUPERALLOY; BEHAVIOR; ENVIRONMENTS; RESISTANCE; STABILITY AB Foil and sheet forms of the nickel-based superalloy 625 have been examined in an 'as-processed' condition and following creep-rupture testing in air at 750 degrees C and 100 Mpa. Both scanning and transmission electron microscopies were employed to correlate microstructures with creep behavior, and indicate the additional processing required to achieve foil form reduces creep life compared to thicker-section wrought product forms. Prior to creep testing, the microstructure consists of gamma phase with M(6)C precipitates. This microstructure changes during creep into one consisting of orthorhombic delta phase extending across the gamma grains, and grain boundaries dominated by the presence of rhombohedral mu phase, delta phase, and a Si-rich variant of diamond-cubic M(6)C (eta phase), Thermodynamic modeling was also used to calculate the stable temperature ranges and compositions of equilibrium phases. The phases predicted by modeling and their compositions generally agree with those observed within alloy 625 after creep testing. (c) 2008 Elsevier B.V. All rights reserved. C1 [Evans, Neal D.; Maziasz, Philip J.; Shingledecker, John P.; Yamamoto, Yukinori] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Evans, ND (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Bldg 4500S,MS 6115, Oak Ridge, TN 37831 USA. EM evansnd@ornl.gov RI Evans, Neal/F-5955-2011; OI Maziasz, Philip/0000-0001-8207-334X FU DOE's Office of Electricity Delivery and Energy Reliability; SHaRE User Facility at Oak Ridge National Laboratory; Division of Scientific User Facilities; Office of Basic Energy Sciences; U.S. Department of Energy; UT-Battelle, LLC [AC05-00OR22725] FX This research was supported by DOE's Office of Electricity Delivery and Energy Reliability, and the SHaRE User Facility at Oak Ridge National Laboratory, sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy, Linder contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors wish to acknowledge the contributions of Robert Swindeman who initiated some of this testing before his retirement from ORNL, and fruitful discussions with J. Bentley, E. A. Kenik, and D. T. Hoelzer of ORNL. NR 48 TC 13 Z9 17 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD DEC 20 PY 2008 VL 498 IS 1-2 SI SI BP 412 EP 420 DI 10.1016/j.msea.2008.08.017 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 379UA UT WOS:000261420500058 ER PT J AU Behrangi, A Khakbaz, B Vrugt, JA Duan, QY Sorooshian, S AF Behrangi, Ali Khakbaz, Behnaz Vrugt, Jasper A. Duan, Qingyun Sorooshian, Soroosh TI Comment on "Dynamically dimensioned search algorithm for computationally efficient watershed model calibration" by Bryan A. Tolson and Christine A. Shoemaker SO WATER RESOURCES RESEARCH LA English DT Editorial Material ID GLOBAL OPTIMIZATION C1 [Behrangi, Ali; Khakbaz, Behnaz; Sorooshian, Soroosh] Univ Calif Irvine, Henry Samueli Sch Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA. [Duan, Qingyun] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Dept, Livermore, CA 94550 USA. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Behrangi, A (reprint author), Univ Calif Irvine, Henry Samueli Sch Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA. EM abehrang@uci.edu RI Vrugt, Jasper/C-3660-2008; sorooshian, soroosh/B-3753-2008; Duan, Qingyun/C-7652-2011 OI sorooshian, soroosh/0000-0001-7774-5113; Duan, Qingyun/0000-0001-9955-1512 NR 5 TC 10 Z9 10 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 20 PY 2008 VL 44 IS 12 AR W12603 DI 10.1029/2007WR006429 PG 3 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 386NK UT WOS:000261889700002 ER PT J AU Wohling, T Vrugt, JA AF Woehling, Thomas Vrugt, Jasper A. TI Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models SO WATER RESOURCES RESEARCH LA English DT Article ID HYDROLOGIC-MODELS; VADOSE ZONE; CONDUCTIVITY; PARAMETERS; FLOW; ALGORITHM; EQUATION AB Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multiobjective optimization and Bayesian model averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multiobjective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM and used to generate four different model ensembles. These ensembles are postprocessed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multiobjective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models. C1 [Woehling, Thomas] Lincoln Ventures Ltd, Lincoln Environm Res, Ruakura Res Ctr, Hamilton 3240, New Zealand. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Wohling, T (reprint author), Lincoln Ventures Ltd, Lincoln Environm Res, Ruakura Res Ctr, Private Bag 3062, Hamilton 3240, New Zealand. EM woehling@lvlham.lincoln.ac.nz RI Vrugt, Jasper/C-3660-2008 FU New Zealand Foundation for Research, Science and Technology (FRST); LVL's Groundwater Quality Protection Programme [8137-ASXS-LVL]; LANL FX Thomas Wohling likes to thank the New Zealand Foundation for Research, Science and Technology (FRST) for funding this work as part of LVL's Groundwater Quality Protection Programme (8137-ASXS-LVL). Jasper A. Vrugt is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. We would like to thank the constructive reviews by the Associate Editor, Jirka Simunek, and three reviewers including Ty Ferre and Ming Ye that have improved the final version of this paper. NR 37 TC 32 Z9 33 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 20 PY 2008 VL 44 IS 12 AR W12432 DI 10.1029/2008WR007154 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 386NK UT WOS:000261889700006 ER PT J AU Aalseth, CE Barbeau, PS Cerdeno, DG Colaresi, J Collar, JI de Lurgio, P Drake, G Fast, JE Greenberg, CH Hossbach, TW Kephart, JD Marino, MG Miley, HS Orrell, JL Reyna, D Robertson, RGH Talaga, RL Tench, O Van Wechel, TD Wilkerson, JF Yocum, KM AF Aalseth, C. E. Barbeau, P. S. Cerdeno, D. G. Colaresi, J. Collar, J. I. de Lurgio, P. Drake, G. Fast, J. E. Greenberg, C. H. Hossbach, T. W. Kephart, J. D. Marino, M. G. Miley, H. S. Orrell, J. L. Reyna, D. Robertson, R. G. H. Talaga, R. L. Tench, O. Van Wechel, T. D. Wilkerson, J. F. Yocum, K. M. TI Experimental Constraints on a Dark Matter Origin for the DAMA Annual Modulation Effect SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIMITS; DAMA/LIBRA; RECOIL AB A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of weakly interacting massive particles as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars might lead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular, to next-to-minimal supersymmetric model candidates. C1 [Barbeau, P. S.; Collar, J. I.; Greenberg, C. H.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Barbeau, P. S.; Collar, J. I.; Greenberg, C. H.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Aalseth, C. E.; Fast, J. E.; Hossbach, T. W.; Kephart, J. D.; Miley, H. S.; Orrell, J. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cerdeno, D. G.] Univ Autonoma Madrid, Dept Fis Teor C 11, E-28049 Madrid, Spain. [Cerdeno, D. G.] Univ Autonoma Madrid, CSIC, UAM, Inst Fis Teor, E-28049 Madrid, Spain. [Colaresi, J.; Tench, O.; Yocum, K. M.] CANBERRA Ind, Meriden, CT 06450 USA. [de Lurgio, P.; Drake, G.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Reyna, D.] Sandia Natl Labs, Livermore, CA 94550 USA. [Marino, M. G.; Robertson, R. G. H.; Van Wechel, T. D.; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Marino, M. G.; Robertson, R. G. H.; Van Wechel, T. D.; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Collar, JI (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM collar@uchicago.edu RI Orrell, John/E-9313-2015; OI Orrell, John/0000-0001-7968-4051; Wilkerson, John/0000-0002-0342-0217; Marino, Michael/0000-0003-1226-6036; Cerdeno, David G./0000-0002-7649-1956 FU NSF [PHY-0653605, PHY-0239812]; NNSA [DE-FG52-05NA25686]; Kavli Institute for Cosmological Physics through NSF [PHY-0114422]; Argonne and Pacific Northwest National Laboratory LDRD funds; Juan de la Cierva program of the Spanish MEC; Comunidad de Madrid FX We are indebted to M. Pospelov for pointing out the correct speed dependence of the pseudoscalar cross section, and to G. Raffelt for ensuing discussions. Our gratitude also goes to Tom Economou and to the Metropolitan Water Reclamation District of Greater Chicago for allowing access to the TARP underground facilities. This work was supported by NSF Grants No. PHY-0653605 and No. PHY-0239812, NNSA Grant No. DE-FG52-05NA25686, the Kavli Institute for Cosmological Physics through NSF Grant No. PHY-0114422, Argonne and Pacific Northwest National Laboratory LDRD funds, Juan de la Cierva program of the Spanish MEC and by the Comunidad de Madrid under project HEPHACOS. We would like to thank G. Gelmini, P. Gondolo, A. Kusenko and our colleagues within the MAJORANA collaboration for many useful exchanges. NR 40 TC 97 Z9 97 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 251301 DI 10.1103/PhysRevLett.101.251301 PG 4 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200009 PM 19113689 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Movilla Fernandez, P Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schall, I Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schall, I. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of the Single-Top-Quark Production Cross Section at CDF SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDER DETECTOR; FERMILAB TEVATRON; COLLISIONS; PHYSICS AB We report a measurement of the single-top-quark production cross section in 2.2 fb(-1) of p (p) over bar collision data collected by the Collider Detector at Fermilab at root s = 1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2(-0.6)(+0.7)(stat + syst) pb, extract the Cabibbo-Kobayashi-Maskawa matrix-element value vertical bar V(tb)vertical bar 0.88(-0.12)(+0.13)(stat + syst) +/- 0.07(theory), and set the limit vertical bar V(tb)vertical bar > 0.66 at the 95% C.L. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Giokaris, N.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Movilla Fernandez, P.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Liss, T. M.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Peiffer, T.; Richter, S.; Schall, I.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Williams, G.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmidt, A.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Group, Robert/0000-0002-4097-5254; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung; Alexander von Humboldt Foundation, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; Slovak Ramp; D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung and the Alexander von Humboldt Foundation, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R & D Agency; and the Academy of Finland. NR 35 TC 43 Z9 43 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 252001 DI 10.1103/PhysRevLett.101.252001 PG 8 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200017 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for the Higgs Boson Produced in Association with Z -> l(+) l(-) in p (p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID MASSLESS PARTICLES; STANDARD MODEL AB We present a search for the Higgs boson in the process q (q) over bar -> ZH -> l(+) l(-) b (b) over bar. The analysis uses an integrated luminosity of 1 fb(-1) of p (p) over bar collisions produced at root s = 1.96 TeV and accumulated by the upgraded Collider Detector at Fermilab (CDF II). We employ artificial neural networks both to correct jets mismeasured in the calorimeter and to distinguish the signal kinematic distributions from those of the background. We see no evidence for Higgs boson production, and set 95% C.L. upper limits on sigma B-ZH(H -> b (b) over bar), ranging from 1.5 to 1.2 pb for a Higgs boson mass (m(H)) of 110 to 150 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Giokaris, N.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Gresele, A.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Pianori, E.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Williams, G.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.; Volobouev, I.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-34100 Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Okusawa, T.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. A.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 32 TC 4 Z9 4 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 251803 DI 10.1103/PhysRevLett.101.251803 PG 7 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200016 PM 19113696 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Devlin, T di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glatzer, J Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, H Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sood, A Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Devlin, T. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glatzer, J. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sood, A. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for Supersymmetry in p (p)over-bar Collisions at root s=1.96 TeV Using the Trilepton Signature for Chargino-Neutralino Production SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLE PHYSICS AB We use the three lepton and missing energy trilepton signature to search for chargino-neutralino production with 2.0 fb(-1) of integrated luminosity collected by the CDF II experiment at the Tevatron p (p) over bar collider. We expect an excess of approximately 11 supersymmetric events for a choice of parameters of the mSUGRA model, but our observation of 7 events is consistent with the standard model expectation of 6.4 events. We constrain the mSUGRA model of supersymmetry and rule out chargino masses up to 145 GeV/c(2) for a specific choice of parameters. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Giokaris, N.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H.; Paramonov, A. A.; Schmidt, A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Williams, G.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Devlin, T.; Dube, S.; Glatzer, J.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Sood, A.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. We thank S. Thomas and M. Strassler for their help with the theoretical interpretation. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 24 TC 49 Z9 49 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 251801 DI 10.1103/PhysRevLett.101.251801 PG 7 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200014 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Assis Jesus, ACS Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for the Standard Model Higgs Boson in the Missing Energy and Acoplanar b-Jet Topology at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report a search for the standard model Higgs boson in the missing energy and acoplanar b-jet topology, using an integrated luminosity of 0.93 fb(-1) recorded by the D0 detector at the Fermilab Tevatron p (p) over bar Collider. The analysis includes signal contributions from p (p) over bar -> ZH -> v (v) over barb (b) over bar, as well as from WH production in which the charged lepton from the W boson decay is undetected. Neural networks are used to separate signal from background. In the absence of a signal, we set limits on sigma(p (p) over bar -> VH) x B(H -> b (b) over bar) at the 95% C.L. of 2.6-2.3 pb, for Higgs boson masses in the range 105-135 GeV, where V W, Z. The corresponding expected limits range from 2.8 to 2.0 pb. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Verdier, P.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, IN2P3,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Ochando, C.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Hensel, C.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Hensel, C.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A3, D-5100 Aachen, Germany. [Buescher, V.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Inst NIKHEF, FOM, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stolin, V.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Bertram, I.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Bertram, I.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Bertram, I.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Bertram, I.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Johnston, D.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Lam, D.; Parua, N.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Cammin, J.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hohlfeld, M.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Martin, B.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Hirosky, R.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012 OI Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Williams, Mark/0000-0001-5448-4213; Belanger-Champagne, Camille/0000-0003-2368-2617; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192 FU DOE and NSF ( USA); CEA and CNRS/ IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); Alexander von Humboldt Foundation ( Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/ IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 16 TC 2 Z9 2 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 251802 DI 10.1103/PhysRevLett.101.251802 PG 7 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200015 PM 19113695 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCDLB Callner, J Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kumar, A Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Pal, SK Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM De Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Y Xu, Z Yang, YY Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kumar, A. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. LeVine, M. J. Li, C. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X-H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Y. Yepes, P. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. TI System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider SO PHYSICAL REVIEW LETTERS LA English DT Article ID TIME PROJECTION CHAMBER; ELLIPTIC FLOW; ANISOTROPIC FLOW; COLLECTIVE FLOW; COLLISIONS; DEPENDENCE; ENERGY; STAR; DYNAMICS; NUCLEUS AB We measure directed flow (v(1)) for charged particles in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p(t)), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v(1) in different collision systems, and investigate possible explanations for the observed sign change in v(1)(p(t)). C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Laue, F.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Potekhin, M.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hughes, E. W.] CALTECH, Pasadena, CA 91125 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Ma, J. G.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Pachr, M.; Sumbera, M.] Inst Nucl Phys AS CR, Rez 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dietel, T.; Kollegger, T.; Lange, S.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Djawotho, P.; He, W.; Jacobs, W. W.; Qattan, I. A.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Rykov, V.; Subba, N. L.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y. Y.; Zhan, W.] Acad Sinica, Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Sandweiss, J.; Surrow, B.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Vander Molen, A. M.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.; van Leeuwen, M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, A.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Porile, N.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; de Moura, M. M.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X-H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Lin, X.; Liu, F.; Liu, L.; Shi, S. S.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Smirnov, N.; Witt, R.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Yang, Yanyun/B-9485-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; OI Yang, Yanyun/0000-0002-5982-1706; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Bhasin, Anju/0000-0002-3687-8179; van Leeuwen, Marco/0000-0002-5222-4888; Qattan, Issam/0000-0001-5079-9840 FU Offices of NP and HEP; U.S. DOE Office of Science; U.S. NSF; Sloan Foundation; DFG Excellence Cluster EXC153 of Germany; CNRS/IN2P3; RA; RPL; EMN of France; STFC; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Science and Technology; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the Netherlands; DAE,; DST; CSIR of the Government of India; Swiss NSF; Polish State Committee for Scientific Research; Slovak Research and Development Agency; Korea Science and Engineering Foundation FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG Excellence Cluster EXC153 of Germany, CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Science and Technology, the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, Swiss NSF, the Polish State Committee for Scientific Research, Slovak Research and Development Agency, and the Korea Science and Engineering Foundation. NR 41 TC 58 Z9 58 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 252301 DI 10.1103/PhysRevLett.101.252301 PG 6 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200019 PM 19113699 ER PT J AU Cohen, ML AF Cohen, Marvin L. TI Essay: Fifty Years of Condensed Matter Physics SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID FERMI LIQUID AB Since the birth of Physical Review Letters fifty years ago, condensed matter physics has seen considerable growth, and both the journal and the field have flourished during this period. In this essay, I begin with some general comments about condensed matter physics and then give some personal views on the conceptual development of the field and list some highlights. The focus is mostly on theoretical developments. C1 [Cohen, Marvin L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Cohen, Marvin L.] Lawrence Berkeley Lab, Berkeley, CA USA. RP Cohen, ML (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 14 TC 1 Z9 2 U1 6 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 250001 DI 10.1103/PhysRevLett.101.250001 PG 5 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200001 PM 19113681 ER PT J AU Huang, Q Qiu, Y Bao, W Green, MA Lynn, JW Gasparovic, YC Wu, T Wu, G Chen, XH AF Huang, Q. Qiu, Y. Bao, Wei Green, M. A. Lynn, J. W. Gasparovic, Y. C. Wu, T. Wu, G. Chen, X. H. TI Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAYERED QUATERNARY COMPOUND; PHASE-DIAGRAM; EARTH; METAL; INSTABILITY AB The recent discovery of superconductivity in (Ba,K)Fe2As2, which crystallizes in the ThCr2Si2 (122) structure as compared with the LnFeAsO (Ln is lanthanide) systems that possess the ZrCuSiAs (1111) structure, demonstrates the exciting potential of the FeAs-based materials for high-T-C superconductivity. Here we report neutron diffraction studies that show a tetragonal-to-orthorhombic distortion associated with the onset of q=(101) antiferromagnetic order in BaFe2As2, with a saturation moment 0.87(3)mu(B) per Fe that is orientated along the longer a axis of the ab planes. The simultaneous first-order structural and magnetic transition is in contrast with the separated transitions previously reported in the 1111-type materials. The orientational relation between magnetic alignment and lattice distortion supports a multiorbital nature for the magnetic order. C1 [Huang, Q.; Qiu, Y.; Green, M. A.; Lynn, J. W.; Gasparovic, Y. C.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.; Green, M. A.; Gasparovic, Y. C.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Bao, Wei] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. RP Bao, W (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM wbao@lanl.gov RI Bao, Wei/E-9988-2011 OI Bao, Wei/0000-0002-2105-461X FU U. S. DOE-OS-BES; Natural Science Foundation of China; Ministry of Science and Technology of China [2006CB601001]; National Basic Research Program of China [2006CB922005] FX Work at LANL is supported by U. S. DOE-OS-BES; at USTC by the Natural Science Foundation of China, Ministry of Science and Technology of China ( 973 Project No. 2006CB601001), and by National Basic Research Program of China ( 2006CB922005). NR 34 TC 589 Z9 595 U1 13 U2 150 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 257003 DI 10.1103/PhysRevLett.101.257003 PG 4 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200064 PM 19113744 ER PT J AU Maibaum, L AF Maibaum, Lutz TI Phase Transformation near the Classical Limit of Stability SO PHYSICAL REVIEW LETTERS LA English DT Article ID ISING-MODEL; METASTABLE STATES; NUCLEATION; SIMULATION; DYNAMICS; VAPOR AB Successful theories of phase transformation processes include classical nucleation theory, which envisions a local equilibrium between coexisting phases, and nonequilibrium kinetic cluster theories. Using computer simulations of the magnetization reversal of the Ising model in three different ensembles we make quantitative connections between these physical pictures. We show that the critical nucleus size of classical nucleation theory is strongly correlated with a dynamical measure of metastability, and that the metastable phase persists to thermodynamic conditions previously thought of as unstable. C1 [Maibaum, Lutz] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Maibaum, Lutz] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Maibaum, L (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. FU Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank P. L. Geissler for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 16 TC 25 Z9 25 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 256102 DI 10.1103/PhysRevLett.101.256102 PG 4 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200047 PM 19113727 ER PT J AU Qiu, Y Bao, W Huang, Q Yildirim, T Simmons, JM Green, MA Lynn, JW Gasparovic, YC Li, J Wu, T Wu, G Chen, XH AF Qiu, Y. Bao, Wei Huang, Q. Yildirim, T. Simmons, J. M. Green, M. A. Lynn, J. W. Gasparovic, Y. C. Li, J. Wu, T. Wu, G. Chen, X. H. TI Crystal Structure and Antiferromagnetic Order in NdFeAsO1-xFx (x=0.0 and 0.2) Superconducting Compounds from Neutron Diffraction Measurements SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAYERED QUATERNARY COMPOUND; 43 K; EARTH; METAL; LAO1-XFXFEAS AB The transition temperature T-C approximate to 26 K of the recently discovered superconductor LaFeAsO1-xFx is extremely sensitive to the lanthanide ion, reaching 55 K for the Sm containing oxypnictides. Therefore, it is important to determine how the moment on the lanthanide affects the overall magnetism in these systems. Here we report a neutron diffraction study of the Nd oxypnictides. Long-ranged antiferromagnetic order is apparent in NdFeAsO below 1.96 K. Rietveld refinement shows that both Fe and Nd magnetic ordering are required to describe the observed data with the staggered moment 1.55(4)mu(B)/Nd and 0.9(1)mu(B)/Fe at 0.3 K. The other structural properties such as the tetragonal-orthorhombic distortion are found to be very similar to those in LaFeAsO. Neither the magnetic ordering nor the structural distortion occur in the superconducting sample NdFeAsO0.80F0.20 at any temperatures down to 1.5 K. C1 [Qiu, Y.; Huang, Q.; Yildirim, T.; Simmons, J. M.; Green, M. A.; Lynn, J. W.; Gasparovic, Y. C.; Li, J.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.; Simmons, J. M.; Green, M. A.; Gasparovic, Y. C.; Li, J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Bao, Wei] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. RP Bao, W (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM wbao@lanl.gov RI yildirim, taner/A-1290-2009; Bao, Wei/E-9988-2011 OI Bao, Wei/0000-0002-2105-461X FU U. S. DOE-OS-BES; Natural Science Foundation of China; Ministry of Science and Technology of China [2006CB601001]; National Basic Research Program of China [2006CB922005] FX Work at LANL is supported by U. S. DOE-OS-BES, at USTC by the Natural Science Foundation of China, Ministry of Science and Technology of China ( 973 Project No. 2006CB601001), and by National Basic Research Program of China ( 2006CB922005). NR 32 TC 113 Z9 115 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 19 PY 2008 VL 101 IS 25 AR 257002 DI 10.1103/PhysRevLett.101.257002 PG 4 WC Physics, Multidisciplinary SC Physics GA 386NZ UT WOS:000261891200063 PM 19113743 ER PT J AU Knudson, MD Desjarlais, MP Dolan, DH AF Knudson, M. D. Desjarlais, M. P. Dolan, D. H. TI Shock-Wave Exploration of the High-Pressure Phases of Carbon SO SCIENCE LA English DT Article ID INITIO MOLECULAR-DYNAMICS; DIAGRAM; TEMPERATURES; COMPRESSION; NEPTUNE; DIAMOND; URANUS AB The high-energy density behavior of carbon, particularly in the vicinity of the melt boundary, is of broad scientific interest and of particular interest to those studying planetary astrophysics and inertial confinement fusion. Previous experimental data in the several hundred gigapascal pressure range, particularly near the melt boundary, have only been able to provide data with accuracy capable of qualitative comparison with theory. Here we present shock- wave experiments on carbon ( using a magnetically driven flyer- plate technique with an order of magnitude improvement in accuracy) that enable quantitative comparison with theory. This work provides evidence for the existence of a diamond-bc8-liquid triple point on the melt boundary. C1 [Knudson, M. D.; Desjarlais, M. P.; Dolan, D. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knudson, MD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdknuds@sandia.gov NR 26 TC 113 Z9 115 U1 5 U2 49 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD DEC 19 PY 2008 VL 322 IS 5909 BP 1822 EP 1825 DI 10.1126/science.1165278 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 385FF UT WOS:000261799400048 PM 19095937 ER PT J AU Varotsou, A Boscher, D Bourdarie, S Horne, RB Meredith, NP Glauert, SA Friedel, RH AF Varotsou, Athina Boscher, Daniel Bourdarie, Sebastien Horne, Richard B. Meredith, Nigel P. Glauert, Sarah A. Friedel, Reiner H. TI Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WHISTLER-MODE CHORUS; EARTHS INNER MAGNETOSPHERE; PITCH-ANGLE SCATTERING; ION-CYCLOTRON WAVES; RELATIVISTIC ELECTRONS; MAGNETIC STORM; GEOMAGNETIC STORMS; DIFFUSION-COEFFICIENT; GEOSYNCHRONOUS ORBIT; TRAPPED PARTICLES AB We present results from our three-dimensional (3-D) simulations using the Salammbo electron radiation belt physical model. We have run steady state and dynamic storm test case simulations to study the effect of electron-chorus resonant interactions on the radiation belt electron dynamics. When electron-chorus interactions are introduced in the code outside the plasmasphere, results show that a seed population with a kappa distribution and a characteristic energy of 2 keV is accelerated up to a few MeV in the outer radiation belt. MeV electron fluxes increase by an order of magnitude during high magnetic activity conditions especially near L* similar to 5 and for equatorial mirroring particles. We have also performed a parametric study of various important parameters to investigate how our results could be influenced by the uncertainty that characterizes their values. Results of this study show that if we consider higher values of the radial diffusion coefficients, different initial states, and different boundary conditions, we always observe a peak in the L* profile of the MeV electrons when electron-chorus interactions are included. C1 [Varotsou, Athina; Friedel, Reiner H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Boscher, Daniel; Bourdarie, Sebastien] Off Natl Etud & Rech Aerosp, DESP, F-31055 Toulouse 4, France. [Horne, Richard B.; Meredith, Nigel P.; Glauert, Sarah A.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. RP Varotsou, A (reprint author), Los Alamos Natl Lab, ISR-1 MS D466, Los Alamos, NM 87545 USA. EM avarotsou@gmail.com; daniel.boscher@oncert.fr; sebastien.bourdarie@onecert.fr; RH@bas.ac.uk; nmer@bas.ac.uk; sagl@bas.ac.uk; friedel@lanl.gov RI Friedel, Reiner/D-1410-2012; OI Friedel, Reiner/0000-0002-5228-0281; Meredith, Nigel/0000-0001-5032-3463; Horne, Richard/0000-0002-0412-6407 NR 75 TC 84 Z9 85 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 18 PY 2008 VL 113 IS A12 AR A12212 DI 10.1029/2007JA012862 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 386MR UT WOS:000261887800001 ER PT J AU George, SD Petrenko, T Neese, F AF George, Serena DeBeer Petrenko, Taras Neese, Frank TI Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSITION-METAL-COMPLEXES; PRE-EDGE; ELECTRONIC-STRUCTURE; LIGAND; APPROXIMATION; SPECTROSCOPY; CRYSTAL; ENERGY; XAS; RESOLUTION AB Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O(h) to T(d) geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed. C1 [George, Serena DeBeer] Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. [Petrenko, Taras; Neese, Frank] Univ Bonn, Inst Phys & Theoret Chem, D-53115 Bonn, Germany. RP George, SD (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. EM debeer@stanford.edu; neese@thch.uni-bonn.de RI DeBeer, Serena/G-6718-2012; Neese, Frank/J-4959-2014 OI Neese, Frank/0000-0003-4691-0547 FU Rheinische Friedrich-Wilhelms University of Bonn; Max-Planck Society (Max-Planck Fellowship for F.N. at the MPI for Bioinorganic Chemistry, Mulheim, Germany); Department of Energy, Office of Basic Energy Sciences; National Institutes of Health; National Center for Research Resources, Biomedical Technology Program FX We thank Britt Hedman, Keith Hodgson, and Ed Solomon for providing the experimental Fe K-edge data for comparison. T.P. and F.N. gratefully acknowledge financial support from the Rheinische Friedrich-Wilhelms University of Bonn and the Max-Planck Society (Max-Planck Fellowship for F.N. at the MPI for Bioinorganic Chemistry, Mulheim, Germany). SSRL operations are funded by the Department of Energy, Office of Basic Energy Sciences. The Structural Molecular Biology program is supported by the National Institutes of Health. National Center for Research Resources, Biomedical Technology Program, and the Department of Energy, Office of Biological and Environmental Research. It is our pleasure to dedicate this paper to Prof. Sason Shaik on the occasion of his 60th birthday and in recognition of his outstanding contributions to theoretical and computational chemistry. NR 45 TC 124 Z9 124 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 18 PY 2008 VL 112 IS 50 BP 12936 EP 12943 DI 10.1021/jp803174m PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 383CX UT WOS:000261652800027 PM 18698746 ER PT J AU Pierce, F Tsige, M Perahia, D Grest, GS AF Pierce, Flint Tsige, Mesfin Perahia, Dvora Grest, Gary S. TI Liquid-Liquid Interfaces of Semifluorinated Alkane Diblock Copolymers with Water, Alkanes, and Perfluorinated Alkanes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; SURFACE-TENSION; VAPOR INTERFACE; N-ALKANES; LIQUID/LIQUID INTERFACES; COMPUTER-SIMULATION; HYDROCARBON MONOLAYERS; TERNARY MIXTURES; CAPILLARY WAVES; FORCE-FIELDS AB The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F(3)C(CF(2))(n-1)-(CH(2))(m-1)CH(3) and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined. C1 [Pierce, Flint; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Tsige, Mesfin] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pierce, F (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM fpierce@clemson.edu; gsgrest@sandia.gov FU DOE [ER46456]; American Chemical Society Petroleum Research FX We thank A. E. Ismail for a critical reading of the manuscript. D.P., G.S.G., and F.P. thank the DOE for partial support of this work under Contract No. ER46456. M.T. would like to thank the Donors of the American Chemical Society Petroleum Research Fund for partial support of this project. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 90 TC 5 Z9 5 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 18 PY 2008 VL 112 IS 50 BP 16012 EP 16020 DI 10.1021/jp805574f PG 9 WC Chemistry, Physical SC Chemistry GA 383CY UT WOS:000261652900008 PM 19367794 ER PT J AU Ma, YZ Graham, MW Prantil, MA Van Tassle, AJ Fleming, GR AF Ma, Ying-Zhong Graham, Matthew W. Prantil, Matthew A. Van Tassle, Aaron J. Fleming, Graham R. TI Vibrational Spectra and Dynamics of Electronically Excited Semiconducting Single-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RAMAN-SPECTROSCOPY; PHOTOLUMINESCENCE AB Femtosecond mid-infrared spectroscopy was applied to study the vibrational spectra and dynamics in the electronic excited states of semiconducting single-walled carbon nanotubes (SWNTs). The experiments were performed by exciting SWNTs dispersed individually in polymethylmethacrylate and polyvinyl alcohol polymer films with 40 fs laser pulses at 800 nm, and the resulting responses were monitored with broadband mid-infrared pulses ranging from 1510 to 1670 cm(-1). The structured spectra observed show vibrational bands with up-shifted frequencies by similar to 10-50 cm(-1) with respect to their ground-state counterparts. The observation provides direct evidence for the theoretically predicted lattice distortions in the electronic excited state. Analysis of the kinetics probed in the mid- and near-infrared regions provide an estimate of the time scales for the vibrational relaxation. C1 [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Ma, Yingzhong/L-6261-2016 OI Ma, Yingzhong/0000-0002-8154-1006 FU NSF; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the NSF. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 2 Z9 2 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 18 PY 2008 VL 112 IS 50 BP 16030 EP 16034 DI 10.1021/jp805745k PG 5 WC Chemistry, Physical SC Chemistry GA 383CY UT WOS:000261652900010 PM 19367995 ER PT J AU Ohsawa, T Lyubinetsky, IV Henderson, MA Chambers, SA AF Ohsawa, Takeo Lyubinetsky, Igor V. Henderson, Michael A. Chambers, Scott A. TI Hole-Mediated Photodecomposition of Trimethyl Acetate on a TiO2(001) Anatase Epitaxial Thin Film Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FORMIC-ACID ADSORPTION; TITANIUM-DIOXIDE; ACETIC-ACID; TIO2(110); TIO2; REACTIVITY; COVERAGE AB Surfaces of titanium dioxide in both rutile and anatase polymorphs have attracted significant attention in catalysis and photochemistry. The (110) orientation of rutile, and to a lesser extent other rutile orientations, have been studied on an atomic scale, yielding information on surface structure and chemical reactivity. In contrast, the thermal and photochemistry of well-defined, single-crystal anatase surfaces has not been investigated, largely because of the metastable nature of anatase, as well as the lack of availability of high-quality surfaces. Here we describe a study of the adsorption and photoreactivity of an organic adlayer, trimethyl acetate (TMA), on structurally excellent anatase (001) epitaxial. thin films grown by oxygen plasma assisted molecular beam epitaxy (OPAMBE). High-resolution scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and photodesorption spectrometry have been used to study the chemisorption and ultraviolet (UV) light-induced photodecomposition of TMA in ultrahigh vacuum. UV light promotes hole-mediated photodecomposition of TMA, resulting in decarboxylation to yield tert-butyl radical and CO2. The photochemical rate constant is equal to that measured for OPAMBE grown rutile TiO2(110) surfaces. C1 [Ohsawa, Takeo; Henderson, Michael A.; Chambers, Scott A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Lyubinetsky, Igor V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM takeo.ohsawa@pnl.gov; sa.chambers@pnl.gov RI Ohsawa, Takeo/A-5373-2010 FU US Department of Energy, Office of Science, Division of Chemical Sciences FX This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This work was supported by the US Department of Energy, Office of Science, Division of Chemical Sciences. NR 28 TC 32 Z9 32 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 18 PY 2008 VL 112 IS 50 BP 20050 EP 20056 DI 10.1021/jp8077997 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 383CZ UT WOS:000261653000037 ER PT J AU Christianson, AD Goremychkin, EA Osborn, R Rosenkranz, S Lumsden, MD Malliakas, CD Todorov, IS Claus, H Chung, DY Kanatzidis, MG Bewley, RI Guidi, T AF Christianson, A. D. Goremychkin, E. A. Osborn, R. Rosenkranz, S. Lumsden, M. D. Malliakas, C. D. Todorov, I. S. Claus, H. Chung, D. Y. Kanatzidis, M. G. Bewley, R. I. Guidi, T. TI Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering SO NATURE LA English DT Article ID MAGNETIC EXCITATIONS; LAO1-XFXFEAS AB A new family of superconductors containing layers of iron arsenide(1-3) has attracted considerable interest because of their high transition temperatures (T-c), some of which are > 50 K, and because of similarities with the high-T-c copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping(4). A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase(5-9). This resonance, which has also been observed in several heavy- fermion superconductors(10-12), is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface(13), an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range(14). Angle- resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface(15). Here we report inelastic neutron scattering observations of a magnetic resonance below T-c in Ba0.6K0.4Fe2As2, a phase- sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors. C1 [Goremychkin, E. A.; Osborn, R.; Rosenkranz, S.; Malliakas, C. D.; Todorov, I. S.; Claus, H.; Chung, D. Y.; Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Christianson, A. D.; Lumsden, M. D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Goremychkin, E. A.; Bewley, R. I.; Guidi, T.] Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Facil, Didcot OX11 0QX, Oxon, England. [Malliakas, C. D.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Osborn, R (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rosborn@anl.gov RI Osborn, Raymond/E-8676-2011; Rosenkranz, Stephan/E-4672-2011; christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012 OI Osborn, Raymond/0000-0001-9565-3140; Rosenkranz, Stephan/0000-0002-5659-0383; christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660 FU Division of Materials Sciences; Engineering Division; Scientific User Facilities Division of the Office of Basic Energy Sciences; US Department of Energy Office of Science. FX We acknowledge discussions with M. Norman and C. Stock. This work was supported by the Division of Materials Sciences and Engineering Division and the Scientific User Facilities Division of the Office of Basic Energy Sciences, US Department of Energy Office of Science. NR 25 TC 423 Z9 425 U1 7 U2 61 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD DEC 18 PY 2008 VL 456 IS 7224 BP 930 EP 932 DI 10.1038/nature07625 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 384TY UT WOS:000261768300040 PM 19092931 ER PT J AU Merritt, WM Lin, YG Han, LY Kamat, AA Spannuth, WA Schmandt, R Urbauer, D Pennacchio, LA Cheng, J Nick, AM Deavers, MT Mourad-Zeidan, A Wang, H Mueller, P Lenburg, ME Gray, JW Mok, S Birrer, MJ Lopez-Berestein, G Coleman, RL Bar-Eli, M Sood, AK AF Merritt, William M. Lin, Yvonne G. Han, Liz Y. Kamat, Aparna A. Spannuth, Whitney A. Schmandt, Rosemarie Urbauer, Diana Pennacchio, Len A. Cheng, Jan-Fang Nick, Alpa M. Deavers, Michael T. Mourad-Zeidan, Alexandra Wang, Hua Mueller, Peter Lenburg, Marc E. Gray, Joe W. Mok, Samuel Birrer, Michael J. Lopez-Berestein, Gabriel Coleman, Robert L. Bar-Eli, Menashe Sood, Anil K. TI Dicer, Drosha, and Outcomes in Patients with Ovarian Cancer SO NEW ENGLAND JOURNAL OF MEDICINE LA English DT Article ID INTERFERING RNA DELIVERY; GENE-EXPRESSION; BREAST-CANCER; MICRORNAS; CARCINOMA; ADENOCARCINOMA; PROLIFERATION; INITIATION; PATHWAYS; ESTROGEN AB Background: We studied Dicer and Drosha, components of the RNA-interference machinery, in ovarian cancer. Methods: We measured messenger RNA (mRNA) levels of Dicer and Drosha in specimens of invasive epithelial ovarian cancer from 111 patients, using a quantitative reverse-transcriptase-polymerase-chain-reaction assay, and compared the results with clinical outcomes. Validation was performed with the use of published microarray data from cohorts of patients with ovarian, breast, and lung cancer. Mutational analyses of genomic DNA from the Dicer and Drosha genes were performed in a subgroup of ovarian-cancer specimens. Dicer-dependent functional assays were performed by means of in vitro transfection with small interfering RNA (siRNA) and short hairpin RNA (shRNA). Results: Levels of Dicer and Drosha mRNA correlated with the levels of expression of the corresponding protein and were decreased in 60% and 51% of ovarian-cancer specimens, respectively. Low Dicer expression was significantly associated with advanced tumor stage (P=0.007), and low Drosha expression with suboptimal surgical cytoreduction (P=0.02). Cancer specimens with both high Dicer expression and high Drosha expression were associated with increased median survival (>11 years, vs. 2.66 years for other subgroups; P<0.001). We found three independent predictors of reduced disease-specific survival in multivariate analyses: low Dicer expression (hazard ratio, 2.10; P=0.02), high-grade histologic features (hazard ratio, 2.46; P=0.03), and poor response to chemotherapy (hazard ratio, 3.95; P<0.001). Poor clinical outcomes among patients with low Dicer expression were validated in additional cohorts of patients. Rare missense mutations were found in the Dicer and Drosha genes, but their presence or absence did not correlate with the level of expression. Functional assays indicated that gene silencing with shRNA, but not siRNA, may be impaired in cells with low Dicer expression. Conclusions: Our findings indicate that levels of Dicer and Drosha mRNA in ovarian-cancer cells have associations with outcomes in patients with ovarian cancer. C1 [Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Nick, Alpa M.; Deavers, Michael T.; Mourad-Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.] Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, Unit 1362, Houston, TX 77230 USA. [Pennacchio, Len A.; Cheng, Jan-Fang; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pennacchio, Len A.; Cheng, Jan-Fang] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Lenburg, Marc E.] Boston Univ, Sch Med, Boston, MA 02118 USA. [Mok, Samuel] Brigham & Womens Hosp, Boston, MA 02115 USA. [Birrer, Michael J.] Ctr Canc Res, Bethesda, MD USA. RP Sood, AK (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, Unit 1362, POB 301439, Houston, TX 77230 USA. EM asood@mdanderson.org RI Lenburg, Marc/B-8027-2008 OI Lenburg, Marc/0000-0002-5760-4708 FU National Cancer Institute [CA101642]; Ovarian Cancer Research Fund Program Project Development; University of Texas M. D. Anderson Cancer Center Ovarian Cancer Specialized Program of Research Excellence [P50 CA083639]; National Institutes of Health [CA110793, CA109298, P50 CA58207, U54 CA112970]; Gynecologic Cancer Foundation; Zarrow Foundation; Betty Ann Asche Murray Distinguished Professorship; Marcus Foundation; U. S. Department of Energy; Office of Science; Office of Biological and Environmental Research [DE-AC03-76SF00098] FX Supported by grants from the National Cancer Institute (T32 Training Grant CA101642), the Ovarian Cancer Research Fund Program Project Development Grant, the University of Texas M. D. Anderson Cancer Center Ovarian Cancer Specialized Program of Research Excellence (P50 CA083639), the National Institutes of Health (CA110793, CA109298, P50 CA58207, and U54 CA112970), the Gynecologic Cancer Foundation, the Zarrow Foundation, the Betty Ann Asche Murray Distinguished Professorship, the Marcus Foundation, and the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research (contract DE-AC03-76SF00098).; Dr. Gray reports receiving consulting fees from Agendia and Sirna. No other potential conflict of interest relevant to this article was reported. NR 41 TC 394 Z9 421 U1 5 U2 27 PU MASSACHUSETTS MEDICAL SOC PI WALTHAM PA WALTHAM WOODS CENTER, 860 WINTER ST,, WALTHAM, MA 02451-1413 USA SN 0028-4793 J9 NEW ENGL J MED JI N. Engl. J. Med. PD DEC 18 PY 2008 VL 359 IS 25 BP 2641 EP 2650 DI 10.1056/NEJMoa0803785 PG 10 WC Medicine, General & Internal SC General & Internal Medicine GA 384PS UT WOS:000261757300004 PM 19092150 ER PT J AU Vetter, PA Clark, RM Dvorak, J Freedman, SJ Gregorich, KE Jeppesen, HB Mittelberger, D Wiedeking, M AF Vetter, P. A. Clark, R. M. Dvorak, J. Freedman, S. J. Gregorich, K. E. Jeppesen, H. B. Mittelberger, D. Wiedeking, M. TI Search for oscillation of the electron-capture decay probability of Pm-142 SO PHYSICS LETTERS B LA English DT Article ID BETA-DECAY; MODEL; AUTOIONIZATION AB We have searched for time modulation of the electron capture decay probability of Pm-142 in an attempt to confirm a recent claim from a group at the Gesellschaft fur Schwerionenforschung (GSI). We produced (142) Pm via the Sn-124(Na-23, 5n)Pm-142 reaction at the Berkeley 88-Inch Cyclotron with a bombardment time short compared to the reported modulation period. Isotope selection by the Berkeley Gas-filled Separator is followed by implantation and a long period of monitoring the Nd-142 K alpha x-rays from the daughter. The decay time spectrum of the x-rays is well-described by a simple exponential and the measured half-life of 40.68(53) seconds is consistent with the accepted value. We observed no oscillatory modulation at the proposed frequency at a level 31 times smaller than that reported by Litvinov et al. [Y.A. Litvinov, et al., Phys. Lett. B 664 (2008) 162]. A literature search for previous experiments that might have been sensitive to the reported modulation uncovered another example in Eu-142 electron-capture decay. A reanalysis of the published data shows no oscillatory behavior. (c) 2008 Elsevier B.V. All rights reserved. C1 [Vetter, P. A.; Clark, R. M.; Dvorak, J.; Freedman, S. J.; Gregorich, K. E.; Jeppesen, H. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Freedman, S. J.; Mittelberger, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Vetter, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pavetter@lbl.gov FU Office of Science; Office of Nuclear Physics,; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX We appreciate the assistance of the technical staff and operators at the 88-Inch Cyclotron. This work was supported by the Director, Office of Science, Office of Nuclear Physics, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this work was performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under contract DE-AC5207NA27344. NR 21 TC 17 Z9 17 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD DEC 18 PY 2008 VL 670 IS 3 BP 196 EP 199 DI 10.1016/j.physletb.2008.11.004 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 385EA UT WOS:000261794900006 ER PT J AU Gilstrap, RA Capozzi, CL Carson, CG Gerhardt, RA Borisevich, AY Summers, CJ AF Gilstrap, Richard A., Jr. Capozzi, Charles. L. Carson, Cantwell G. Gerhardt, Rosario A. Borisevich, Albina Y. Summers, Christopher J. TI Synthesis of Nonagglomerated Indium Tin Oxide Nanoparticle Dispersions (vol 20, pg 4163, 2008) SO ADVANCED MATERIALS LA English DT Correction C1 [Borisevich, Albina Y.] Oak Ridge Natl Lab, Div Engn & Mat Sci, Oak Ridge, TN 37831 USA. RI Borisevich, Albina/B-1624-2009; Gerhardt, Rosario/D-6573-2012 OI Borisevich, Albina/0000-0002-3953-8460; Gerhardt, Rosario/0000-0001-8774-0842 NR 1 TC 1 Z9 1 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 17 PY 2008 VL 20 IS 24 BP 4625 EP 4625 PG 1 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 392GW UT WOS:000262292200004 ER PT J AU Terenziani, F Katan, C Badaeva, E Tretiak, S Blanchard-Desce, M AF Terenziani, Francesca Katan, Claudine Badaeva, Ekaterina Tretiak, Sergei Blanchard-Desce, Mireille TI Enhanced Two-Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments SO ADVANCED MATERIALS LA English DT Review ID DENSITY-FUNCTIONAL-THEORY; OPTICAL-DATA STORAGE; PUSH-PULL CHROMOPHORES; STRUCTURE-PROPERTY RELATIONSHIPS; TRANSFER EXCITED-STATES; ABSORBING FLUORENE DERIVATIVES; INTRAMOLECULAR CHARGE-TRANSFER; STRONG COOPERATIVE ENHANCEMENT; TIME-RESOLVED SPECTROSCOPY; EXCITATION CROSS-SECTIONS AB Functional organic materials with enhanced two-photon absorption lead to new technologies in the fields of chemistry, biology, and photonics. In this article we review experimental and theoretical methodologies allowing detailed investigation and analysis of two-photon absorption properties of organic chromophores. This includes femtosecond two-photon excited fluorescence experimental setups and quantum-chemical methodologies based on time-dependent density functional theory. We thoroughly analyze physical phenomena and trends leading to large two-photon absorption responses of a few series of model chromophores focusing on the effects of symmetric and asymmetric donor/acceptor substitution and branching. C1 [Katan, Claudine; Blanchard-Desce, Mireille] Univ Rennes 1, CNRS, F-35042 Rennes, France. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Terenziani, Francesca] Univ Parma, Dipartimento Chim GIAF, I-43100 Parma, Italy. [Terenziani, Francesca] INSTM UdR Parma, I-43100 Parma, Italy. [Badaeva, Ekaterina] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Katan, C (reprint author), Univ Rennes 1, CNRS, Campus Beaulieu Case 1003, F-35042 Rennes, France. EM claudine.katan@univ-rennes1.fr; serg@lanl.gov RI Tretiak, Sergei/B-5556-2009; Terenziani, Francesca/K-2951-2015; KATAN, Claudine/I-9446-2012 OI Tretiak, Sergei/0000-0001-5547-3647; Terenziani, Francesca/0000-0001-5162-9210; KATAN, Claudine/0000-0002-2017-5823 NR 325 TC 261 Z9 261 U1 13 U2 156 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 17 PY 2008 VL 20 IS 24 BP 4641 EP 4678 DI 10.1002/adma.200800402 PG 38 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 392GW UT WOS:000262292200006 ER PT J AU Northen, TR Greving, MP Woodbury, NW AF Northen, Trent. R. Greving, Matthew P. Woodbury, Neal W. TI Combinatorial Screening of Biomimetic Protein Affinity Materials SO ADVANCED MATERIALS LA English DT Article ID SYNTHETIC PEPTIDE LIBRARY; SPOT SYNTHESIS; ARRAYS; MICROARRAYS; PRINCIPLES; MEDICINE; PARALLEL; BIOLOGY; TIME; GELS AB A patterned combinatorial library of peptide-grafted polymer affinity materials is screened for target protein binding. In situ light-directed synthesis is used to produce high-density libraries that allow for the screening in parallel within an area less than 1 cm(2). From these libraries, specific peptide/polymer combinations are identified with very high target protein affinity, enabling facile detection of the target at concentrations in the low picomolar range in the presence of excess competitor. C1 [Greving, Matthew P.; Woodbury, Neal W.] Arizona State Univ, Biodesign Inst, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Northen, Trent. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Woodbury, NW (reprint author), Arizona State Univ, Biodesign Inst, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM nwoodbury@asu.edu RI Northen, Trent/K-3139-2012; OI Northen, Trent/0000-0001-8404-3259 FU Biodesign Institute at Arizona State University, Department of Energy [DE-FC36-05GO15016, DE-AC02-05CH11231]; NSF [DGE-01 14434, CHE-0131222] FX T.R.N. and M.P.G. contributed equally to this work, and were both supported by NSF IGERT Fellowships. This work was funded by The Biodesign Institute at Arizona State University, Department of Energy (grant DE-FC36-05GO15016 and DE-AC02-05CH11231), NSF (grant DGE-01 14434), and NSF grant no. CHE-0131222 (mass spectrometer). We would also like to thank Paul Belcher for the SPR measurements, Rashaad Siclique, and the Center for Solid State Science at Arizona State University for SEM images. Supporting Information is available online from Wiley InterScience or from the authors. NR 28 TC 4 Z9 4 U1 0 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 17 PY 2008 VL 20 IS 24 BP 4691 EP + DI 10.1002/adma.200800567 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 392GW UT WOS:000262292200009 ER PT J AU Bauer, E Mueller, AH Usov, I Suvorova, N Janicke, MT Waterhouse, GLN Waterland, MR Jia, QX Burrell, AK McCleskey, TM AF Bauer, Eve Mueller, Alex H. Usov, Igor Suvorova, Natalya Janicke, Michael T. Waterhouse, Geoffrey L. N. Waterland, Mark R. Jia, Quanxi X. Burrell, Anthony K. McCleskey, T. Mark TI Chemical Solution Route to Conformal Phosphor Coatings on Nanostructures SO ADVANCED MATERIALS LA English DT Article ID POLYMER-ASSISTED DEPOSITION; YVO4 THIN-FILMS; PHOTONIC CRYSTALS; FABRICATION; EMISSION AB We have demonstrated the ability to apply thin conformal films onto pcomplex nanostructures using a polymer assisted deposition technique. Sequestering the metal by binding it to polymer results in a bottom-up growth deposition. We have deposited a thin film of the phosphor Eu:YVO(4) on 60 mu m thick anodiscs (R) with 200nm pores resulting in highly luminescent nanostructures. C1 [Bauer, Eve; Mueller, Alex H.; Usov, Igor; Suvorova, Natalya; Janicke, Michael T.; Jia, Quanxi X.; Burrell, Anthony K.; McCleskey, T. Mark] Los Alamos Natl Lab, MPA MC, Los Alamos, NM 87545 USA. [Waterhouse, Geoffrey L. N.] Univ Auckland, Dept Chem, Auckland, New Zealand. [Waterland, Mark R.] Massey Univ, Inst Fundamental Sci, Palmerston North 11222, New Zealand. RP McCleskey, TM (reprint author), Los Alamos Natl Lab, MPA MC, Mail Stop J514, Los Alamos, NM 87545 USA. EM tmark@lanl.gov RI Waterhouse, Geoffrey/G-1688-2011; McCleskey, Thomas/J-4772-2012; Jia, Q. X./C-5194-2008; OI Janicke, Michael/0000-0002-3139-2882; Waterhouse, Geoffrey/0000-0002-3296-3093; Mccleskey, Thomas/0000-0003-3750-3245 FU Laboratory Directed Research and Development program(LDRD) FX This work was supported by the Laboratory Directed Research and Development program(LDRD) at Los Alamos National Laboratory' Supporting Information is available online from Wiley InterScience or from the author. NR 19 TC 6 Z9 6 U1 1 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 17 PY 2008 VL 20 IS 24 BP 4704 EP + DI 10.1002/adma.200800798 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 392GW UT WOS:000262292200011 ER PT J AU Sirbuly, DJ Letant, SE Ratto, TV AF Sirbuly, Donald J. Letant, Sonia E. Ratto, Timothy V. TI Hydrogen Sensing with Subwavelength Optical Waveguides via Porous Silsesquioxane-Palladium Nanocomposites SO ADVANCED MATERIALS LA English DT Article ID THIN-FILMS; FIBER; SENSOR; NANOPARTICLES AB Subwavelengtb optical waveguides coated with porous silsesquioxane-palladium nanocomposites are used to detect hydrogen gas. This compact waveguide sensing platform shows extremely fast response times over short interaction lengths and can be reused by stripping/re-depositing the chemo-responsive nanoparticle coatings. C1 [Sirbuly, Donald J.; Letant, Sonia E.; Ratto, Timothy V.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Sirbuly, DJ (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM sirbuly2@llnl.gov; ratto7@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [AC52-07NA27344] FX D.J.S. acknowledges funding from the Harold C. Graboske Jr. Fellowship from LLNL. We thank Yong Han, Aleksandr Noy, Olgica Bakajin, Andrew Saab, and Robert Maxwell from LLNL for help with the experiments and discussion. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Supporting Information is available online from Wiley InterScience or from the authors. NR 21 TC 26 Z9 28 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 17 PY 2008 VL 20 IS 24 BP 4724 EP + DI 10.1002/adma.200800890 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 392GW UT WOS:000262292200015 ER PT J AU Monson, TC Lloyd, MT Olson, DC Lee, YJ Hsu, JWP AF Monson, Todd C. Lloyd, Matthew T. Olson, Dana C. Lee, Yun-Ju Hsu, Julia W. P. TI Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells SO ADVANCED MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC DEVICES; CONJUGATED POLYMERS; BAND-OFFSET; EFFICIENCY; OXIDE; JUNCTIONS; POLY(3-HEXYLTHIOPHENE); NANOPARTICLES AB Photocurrent enhancement and improvement in solar cell performance are found when the interface between ZnO and polythiophene layers is modified with insulating alkanethiol self-assembled monolayers. This result is correlated with increased structural order in the polymer and interchain contributions in the photocurrent, suggesting that improved exciton diffusion or reduced electron-hole recombination can outweigh the impedance in electron transfer at the heterojunction interface. C1 [Monson, Todd C.; Lloyd, Matthew T.; Olson, Dana C.; Lee, Yun-Ju; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hsu, JWP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwhsu@sandia.gov OI Monson, Todd/0000-0002-9782-7084 FU U.S. Department of Energy [DE-AC04-94AL85000] FX The authors wish to acknowledge N. Archuleta and E. Fish for their technical assistance. The work was supported by the Sandia LDRD program and by the Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract no. DE-AC04-94AL85000. Supporting Information is available online from Wiley InterScience or from the author. NR 35 TC 99 Z9 101 U1 1 U2 46 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 17 PY 2008 VL 20 IS 24 BP 4755 EP + DI 10.1002/adma.200801082 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 392GW UT WOS:000262292200021 ER PT J AU Ramkumar, SS Love, AH Sata, UR Koester, CJ Smith, WJ Keating, GA Hobbs, LW Cox, SB Lagna, WM Kendall, RJ AF Ramkumar, Seshadri S. Love, Adam H. Sata, Utkarsh R. Koester, Carolyn J. Smith, William J. Keating, Garrett A. Hobbs, Lawrence W. Cox, Stephen B. Lagna, William M. Kendall, Ronald J. TI Next-Generation Nonparticulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CARBON FABRICS AB New, nonparticulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising decontaminating materials has been developed using a needle-punching nonwoven process to construct a nonparticulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (HD or sulfur mustard). Gas chromatography/mass spectroscopy (GC/MS) results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than that of particulate activated carbon and was similar to the currently fielded U.S. military M291 kit. The nonwoven pad has several advantages over other materials, especially its nonparticulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent, and a mild oxidant (bleach). C1 [Ramkumar, Seshadri S.; Sata, Utkarsh R.; Cox, Stephen B.; Kendall, Ronald J.] Texas Tech Univ, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. [Love, Adam H.; Koester, Carolyn J.; Smith, William J.; Keating, Garrett A.] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA. [Hobbs, Lawrence W.] Hobbs Bonded Fibers, Waco, TX 76710 USA. [Lagna, William M.] USA, Edgewood Chem Biol Ctr, Res Dev & Engn Command, AMSRD ECB RT D, Aberdeen Proving Ground, MD 21010 USA. RP Ramkumar, SS (reprint author), Texas Tech Univ, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. EM s.ramkumar@ttu.edu RI Cox, Stephen/A-5037-2010 FU U.S. Department of Energy by University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; Food and Fibers Research Grant Program of Texas FX The evaluation of this composite wipe was part of a DHS-funded project, managed by the Technical Support Working Group (TSWG), to develop a Low-Cost Personal Decontamination System. The project was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory (under Contract W-7405-Eng-48). S.R. gratefully acknowledges the U.S. Army Research, the Development and Engineering Command of the U.S. Department of Defense, for broad-based support of his research on nonwoven fabrics for personal protection and decontamination. S.R. also acknowledges the Food and Fibers Research Grant Program of Texas, The CH Foundation of Lubbock, Cotton Foundation, South Plains Foundation, Lubbock, ICRC of CASNR-TTU and Plains Cotton Growers, Inc. for supporting his nonwovens research at Texas Tech University. Garfield Purdon and Andrew Burczyk of Defence Research and Development Canada-Suffield, Philip O'Dell of O'Dell Engineering, and Nayla Feghali of E-Z-EM, Inc., provided valuable insights into the design and performance requirements for the dry pad. NR 23 TC 7 Z9 7 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD DEC 17 PY 2008 VL 47 IS 24 BP 9889 EP 9895 DI 10.1021/ie801223b PG 7 WC Engineering, Chemical SC Engineering GA 382TU UT WOS:000261629100011 ER PT J AU Ilie, R Liemohn, MW Thomsen, MF Borovsky, JE Zhang, J AF Ilie, Raluca Liemohn, Michael W. Thomsen, Michelle F. Borovsky, Joseph E. Zhang, Jichun TI Influence of epoch time selection on the results of superposed epoch analysis using ACE and MPA data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA SHEET ACCESS; SOLAR-WIND; GEOSYNCHRONOUS ORBIT; GEOMAGNETIC-ACTIVITY; STORMS; MINIMUM; MAXIMUM; DST AB The influence of the reference time selection when conducting a superposed epoch analysis is examined for intense geomagnetic storms at solar maximum. The events were selected according to the minimum pressure-corrected Dst, Dst*, being less than -100 nT. Solar wind data from ACE are used, along with near-Earth data from the magnetospheric plasma analyzer (MPA) instruments on the Los Alamos National Laboratory-operated geosynchronous spacecraft. Numerous choices for the zero epoch time are used, ranging from the storm sudden commencement (SSC), the peak of the ring current enhancement ( minimum Dst* slope), to the time of the storm peak ( minimum Dst* value). When doing superposed epoch analysis ( SEA), the choice of the time stamp can be very important; for different choices, different storm characteristics are evident in the averaged data. In the superposed ACE data we find that when using the SSC as a time reference, the SSC-related jump in solar wind parameters is very well defined, but near the storm peak, B(z) does not apparently follow the well-known criteria for intense storms ( B(z) <= -10 nT for more than 3 h), even though this criterion is met by most of the individual storms selected for this study. When the zero epoch time is chosen near the storm peak, the jump in solar wind parameters is less distinct ( and eventually lost), but the criterion for B(z) is met. Regarding the MPA data, there are certain parameters that require the choice of a specific epoch time in order to produce a systematic behavior in the SEA analysis and others that are less sensitive to this choice of epoch time, since they appear to be less distinct in their temporal and spatial location. For instance, the nightside and morningside hot-ion density and temperature are main phase traits, and a zero epoch time near the peak of the ring current enhancement is required to make these features distinct. C1 [Ilie, Raluca; Liemohn, Michael W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Thomsen, Michelle F.; Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhang, Jichun] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Ilie, R (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM rilie@umich.edu RI Zhang, Jichun/A-6648-2009; Liemohn, Michael/H-8703-2012; Ilie, Raluca/A-9291-2013 OI Liemohn, Michael/0000-0002-7039-2631; FU NASA; NSF [NNG05GE02G, NNG05GM48G, NNG05GJ89G, ATM-0203163]; LANL IGPP; NASA LWS FX The Michigan authors would like to thank NASA and NSF for supporting this research ( specifically, grants NNG05GE02G, NNG05GM48G, NNG05GJ89G, and ATM-0203163) and also LANL IGPP for additional support of the graduate student involvement in this study. The authors would like to thank the National Space Science Data Center for providing the ACE data: MAG instrument (N.F. Ness) and SWEPAM instrument ( D. McComas). Work at Los Alamos was performed under the auspices of the U. S. Department of Energy, with partial support from the NASA LWS program. NR 33 TC 22 Z9 22 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 17 PY 2008 VL 113 AR A00A14 DI 10.1029/2008JA013241 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 386MN UT WOS:000261887400001 ER PT J AU Khan, M Gautam, B Pathak, A Dubenko, I Stadler, S Ali, N AF Khan, Mahmud Gautam, Bhoj Pathak, Arjun Dubenko, Igor Stadler, Shane Ali, Naushad TI Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NI2MNGA SINGLE-CRYSTALS; FIELD-INDUCED STRAINS; TRANSFORMATION; NIMNGA AB A series of Fe doped Ni(2)Mn(0.75-x)Fe(x)Cu(0.25)Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni(2)Mn(0.75)Cu(0.25)Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T(M), and an increase of the ferromagnetic transition temperature, T(C), resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni(2)Mn(0.75-x)Fe(x)Cu(0.25)Ga samples with x > 0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition. C1 [Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. RP Khan, M (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50010 USA. RI Dubenko, Igor/A-4219-2012 FU Research Corporation [RA0357]; Office of Basic Energy Sciences; Material Sciences Division of the US Department of Energy [DE-FG02-06ER46291] FX This research was supported by a Research Opportunity Award from the Research Corporation (RA0357), and by the Office of Basic Energy Sciences, Material Sciences Division of the US Department of Energy (contract No. DE-FG02-06ER46291). NR 20 TC 6 Z9 7 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 17 PY 2008 VL 20 IS 50 AR 505206 DI 10.1088/0953-8984/20/50/505206 PG 6 WC Physics, Condensed Matter SC Physics GA 376TB UT WOS:000261204800009 ER PT J AU Kimminau, G Nagler, B Higginbotham, A Murphy, WJ Park, N Hawreliak, J Kadau, K Germann, TC Bringa, EM Kalantar, DH Lorenzana, HE Remington, BA Wark, JS AF Kimminau, Giles Nagler, Bob Higginbotham, Andrew Murphy, William J. Park, Nigel Hawreliak, James Kadau, Kai Germann, Timothy C. Bringa, Eduardo M. Kalantar, Daniel H. Lorenzana, Hector E. Remington, Bruce A. Wark, Justin S. TI Simulating picosecond x-ray diffraction from shocked crystals using post-processing molecular dynamics calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID GLASS-LASER; STRENGTH; PLATES; WAVES AB Calculations of the patterns of x-ray diffraction from shocked crystals derived from the results of non-equilibrium molecular dynamics (NEMD) simulations are presented. The atomic coordinates predicted from the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A fast Fourier transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets. C1 [Kimminau, Giles; Nagler, Bob; Higginbotham, Andrew; Murphy, William J.; Wark, Justin S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Park, Nigel] AWE, Reading RG7 4PR, Berks, England. [Hawreliak, James; Kalantar, Daniel H.; Lorenzana, Hector E.; Remington, Bruce A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kadau, Kai; Germann, Timothy C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bringa, Eduardo M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. RP Kimminau, G (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM giles.kimminau@physics.ox.ac.uk RI Higginbotham, Andrew/F-7910-2011; Bringa, Eduardo/F-8918-2011; OI Germann, Timothy/0000-0002-6813-238X FU LLNL [B566832, DE-AC52-07NA27344]; EU Marie-Curie RTN; LDRD [06-SI-004]; AWE Aldermaston; Daresbury Laboratory under the auspices of the NorthWest Science Fund; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors are grateful to a number of organizations for support. GK is grateful for partial support for this work from LLNL under subcontract No. B566832. BN is supported by the EU Marie-Curie RTN 'FLASH'. JH, DK, HL and BR work under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. HL and JH also received partial support from LDRD programme Project No. 06-SI-004 at LLNL. WJM is grateful for support from AWE Aldermaston. A. H. has been generously supported by Daresbury Laboratory under the auspices of the NorthWest Science Fund. KK and TG work under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We also wish to thank P S Lomdahl and B L. Holian for valuable discussions. Simulations were performed on the QUEEG and ORAC machines at the Oxford Supercomputing Centre. NR 31 TC 12 Z9 12 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 17 PY 2008 VL 20 IS 50 AR 505203 DI 10.1088/0953-8984/20/50/505203 PG 8 WC Physics, Condensed Matter SC Physics GA 376TB UT WOS:000261204800006 ER PT J AU Zhang, Y Lagi, M Ridi, F Fratini, E Baglioni, P Mamontov, E Chen, SH AF Zhang, Y. Lagi, M. Ridi, F. Fratini, E. Baglioni, P. Mamontov, E. Chen, S. H. TI Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CALCIUM SILICATE HYDRATE; PORTLAND-CEMENT; SUPERCOOLED WATER; TRANSLATIONAL DYNAMICS; NEUTRON-SCATTERING; GLASSY WATER; MICROSTRUCTURE; MODEL; TRANSITION; LIQUIDS AB High resolution quasi-elastic neutron scattering is used to investigate the slow dynamics of hydration water confined in calcium silicate hydrate gel in an aged cement paste at supercooled temperatures. A super-Arrhenius to Arrhenius dynamic crossover of the average translational relaxation time as a function of the inverse temperature is observed at T(L) = 231 +/- 5 K, which coincides with a prominent peak in the differential scanning calorimetry cooling scan. The dynamic susceptibility chi(T)(t) calculated using the experimentally determined temperature dependence of the self-intermediate scattering function shows direct evidence of the enhanced dynamic fluctuations and the associated growth in size of the dynamic heterogeneity in the confined water on approaching T(L). C1 [Zhang, Y.; Lagi, M.; Chen, S. H.] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Lagi, M.; Ridi, F.; Fratini, E.; Baglioni, P.] Univ Florence, Dept Chem, I-50019 Florence, Italy. [Lagi, M.; Ridi, F.; Fratini, E.; Baglioni, P.] Univ Florence, CSGI, I-50019 Florence, Italy. [Mamontov, E.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sowhsin@mit.edu RI Lagi, Marco/A-4100-2008; Fratini, Emiliano/C-9983-2010; Baglioni, Piero/B-1208-2011; Zhang, Yang/A-7975-2012; Ridi, Francesca/F-2141-2013; Mamontov, Eugene/Q-1003-2015 OI Fratini, Emiliano/0000-0001-7104-6530; Baglioni, Piero/0000-0003-1312-8700; Zhang, Yang/0000-0002-7339-8342; Ridi, Francesca/0000-0002-6887-5108; Mamontov, Eugene/0000-0002-5684-2675 FU MIUR; CSGI; Scientific User Facilities Division; Office of Basic Energy Sciences; US Department of Energy; [DE-FG02-90ER45429] FX Research at MIT is supported by DE-FG02-90ER45429; at the University of Florence by MIUR and CSGI. The neutron scattering experiment at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We benefited from affiliation with the European Union Marie Curie Research and Training Network on Arrested Matter. Ketton white cement was obtained as a generous gift by Castle Cement, through the Nanocem Consortium. NR 33 TC 28 Z9 28 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 17 PY 2008 VL 20 IS 50 AR 502101 DI 10.1088/0953-8984/20/50/502101 PG 6 WC Physics, Condensed Matter SC Physics GA 376TB UT WOS:000261204800001 ER PT J AU Lee, SJ Cho, SH Mulfort, KL Tiede, DM Hupp, JT Nguyen, ST AF Lee, Suk Joong Cho, So-Hye Mulfort, Karen L. Tiede, David M. Hupp, Joseph T. Nguyen, SonBinh T. TI Cavity-Tailored, Self-Sorting Supramolecular Catalytic Boxes for Selective Oxidation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHIRAL MOLECULAR SQUARE; STRUCTURAL-CHARACTERIZATION; COORDINATION CHEMISTRY; COMPLEXES; PHOTOCHEMISTRY; PHOTOPHYSICS; DIFFRACTION; STATE; ACID AB Using a steric self-sorting strategy, the assembly of highly ordered and rigid supramolecular boxes possessing catalytic properties has been achieved in one step. The formation of these assemblies, comprising up to 18 porphyrin centers, was readily confirmed by sotution X-ray scattering in conjunction with fluorescent spectroscopy. Size-selective and enantioselective oxidation catalysis were both demonstrated. C1 [Lee, Suk Joong; Cho, So-Hye; Mulfort, Karen L.; Hupp, Joseph T.; Nguyen, SonBinh T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mulfort, Karen L.; Tiede, David M.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu; stn@northwestern.edu RI Hupp, Joseph/K-8844-2012; Nguyen, SonBinh/C-1682-2014 OI Hupp, Joseph/0000-0003-3982-9812; Nguyen, SonBinh/0000-0002-6977-3445 FU U.S. DOE [DE-FG02-ER15244, DE-AC02-06CH 11357]; AAUW fellow; Argonne Laboratory-Grad Fellow FX We gratefully acknowledge the U.S. DOE (Grant No. DE-FG02-ER15244 for initial support at NU and Contract DE-AC02-06CH 11357 for work at ANL). AFOSR and DTRA via ARO provided subsequent support at NU. S.H.C. was an AAUW fellow. K.L.M. is an Argonne Laboratory-Grad Fellow. NR 32 TC 105 Z9 105 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 17 PY 2008 VL 130 IS 50 BP 16828 EP + DI 10.1021/ja804014y PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 406UM UT WOS:000263320400002 PM 19053407 ER PT J AU Thallapally, PK Tian, J Kishan, MR Fernandez, CA Dalgarno, SJ McGrail, PB Warren, JE Atwood, JL AF Thallapally, Praveen K. Tian, Jian Kishan, Motkuri Radha Fernandez, Carlos A. Dalgarno, Scott J. McGrail, Peter B. Warren, John E. Atwood, Jerry L. TI Flexible (Breathing) Interpenetrated Metal-Organic Frameworks for CO2 Separation Applications SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE; LIGAND; GAS; TRANSFORMATION; SUBSTITUTION; ADSORPTION; CHEMISTRY; SORPTION; PORES AB A breathing 2-fold interpenetrated microporous metal-organic framework was synthesized with a flexible tetrahedral organic tinker and Zn-2 clusters that sorb CO2 preferably over N-2 and H-2 C1 [Thallapally, Praveen K.; Kishan, Motkuri Radha; Fernandez, Carlos A.; McGrail, Peter B.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Tian, Jian; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Dalgarno, Scott J.] Heriot Watt Univ, Dept Chem, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland. [Warren, John E.] Daresbury Sci & Innovat Campus, Warrington, Cheshire, England. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Praveen.Thallapally@pnl.gov RI Tian, Jian/I-8637-2012; thallapally, praveen/I-5026-2014; Dalgarno, Scott/A-7358-2010; Warren, John/B-5219-2008; Motkuri, Radha/F-1041-2014 OI thallapally, praveen/0000-0001-7814-4467; Dalgarno, Scott/0000-0001-7831-012X; Warren, John/0000-0002-8755-7981; Motkuri, Radha/0000-0002-2079-4798 FU U.S. Department of Energy [DE-AC05-76RL01830]; Office of Fossil Energy and Department of Defense FX This work was supported by Laboratory Directed Research and Development funding. In addition, portions of the work were supported by the U.S. Department of Energy, Office of Fossil Energy and Department of Defense. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 21 TC 298 Z9 300 U1 12 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 17 PY 2008 VL 130 IS 50 BP 16842 EP + DI 10.1021/ja806391k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 406UM UT WOS:000263320400009 PM 19053477 ER PT J AU Liu, P Ni, R Mehta, AK Childers, WS Lakdawala, A Pingali, SV Thiyagarajan, P Lynn, DG AF Liu, Peng Ni, Rong Mehta, Anil K. Childers, W. Seth Lakdawala, Ami Pingali, Sai Venkatesh Thiyagarajan, Pappannan Lynn, David G. TI Nucleobase-Directed Amyloid Nanotube Assembly SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SOLID-STATE NMR; BETA-SHEET; PEPTIDE; PROTEINS; FIBRILS; ACIDS; DNA; CONSTRAINTS; KINETICS; FRAGMENT AB Cytosine nucleobases were successfully incorporated into the side chain of the self-assembling amyloid peptide fragment HHQALVFFA to give ccAQLVFFA. At a pH range of 3-4, where cytosine is expected to be partially protonated, small-angle X-ray scattering analyses revealed the nucleobase peptide assembles to be well-defined nanotubes with an outer diameter of 24.8 nm and wall thicknesses of 3.3 nm. FT-IR and X-ray diffraction confirmed beta-sheet-rich assembly with the characteristic cross-beta architecture of amyloid. The beta-sheet registry, determined by measuring (13)CO-(13)CO backbone distances with solid-state NMR and linear dichroism, placed the cytosine bases roughly perpendicular to the nanotube axis, resulting in a model where the complementary interactions between the cytosine bases increases beta-sheet stacking to give the nanotube architecture. These scaffolds then extend the templates used to encode biological information beyond the nucleic acid duplexes and into covalent networks whose self-assembly is still defined by a precise complementarity of the side-chain registry. C1 [Liu, Peng; Ni, Rong; Mehta, Anil K.; Childers, W. Seth; Lakdawala, Ami; Lynn, David G.] Emory Univ, Dept Chem, Ctr Fundamental & Appl Mol Evolut, Atlanta, GA 30322 USA. [Liu, Peng; Ni, Rong; Mehta, Anil K.; Childers, W. Seth; Lakdawala, Ami; Lynn, David G.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Pingali, Sai Venkatesh; Thiyagarajan, Pappannan] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lynn, DG (reprint author), Emory Univ, Dept Chem, Ctr Fundamental & Appl Mol Evolut, 1515 Pierce Dr, Atlanta, GA 30322 USA. EM david.lynn@emory.edu OI Mehta, Anil/0000-0002-9867-151X; Pingali, Sai Venkatesh/0000-0001-7961-4176 FU NSF [CRC-CHE-0404677, CBC-CHE-0739189, DOE ER 15377]; U.S. DOE, BES [DE-AC02-06CH11357] FX We thank NSF for grants CRC-CHE-0404677, CBC-CHE-0739189, and DOE ER 15377 for support of these ideas and experiments, Prof. Dev Arya at Clemson University for use of LD spectropolarimeter, the Apkarian Microscopy Center of Emory University for EM analyses, and the use of IPNS and BESSRC-CAT at APS, funded by the U.S. DOE, BES under contract No. DE-AC02-06CH11357. NR 41 TC 27 Z9 27 U1 0 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 17 PY 2008 VL 130 IS 50 BP 16867 EP + DI 10.1021/ja807425h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 406UM UT WOS:000263320400020 PM 19053426 ER PT J AU Guan, YF Fowlkes, JD Retterer, ST Simpson, ML Rack, PD AF Guan, Yingfeng Fowlkes, Jason D. Retterer, Scott T. Simpson, Michael L. Rack, Philip D. TI Nanoscale lithography via electron beam induced deposition SO NANOTECHNOLOGY LA English DT Article ID MONTE-CARLO; GROWTH; FABRICATION; SIMULATION; PRECURSOR AB We demonstrate the resolution and characteristics of a nanolithography process utilizing electron beam induced deposition (EBID) of W(CO)(6) and C10H8 to define the imaging and masking layers. Lines and dot matrices were defined/written with various electron beam doses onto both polymethylmethacrylate (PMMA) coated silicon substrates (PMMA-Si) and bare silicon substrates (Si). The selectivity of the W(CO)(x) for the PMMA dry development process (no measurable etching) and the silicon (similar to 18:1) reactive ion etch was very good. C10H8 directly patterned on Si also provided good selectivity for the silicon etch process, 21:1. The pattern transfer of the EBID material patterns into the silicon had high fidelity. The resolution scaled with exposure dose and was correlated with the EBID broadening/scattering via a Monte Carlo simulation. Using the bi-layer approach, imaging layers on PMMA-Si, a silicon nanowire resolution of 13.5 nm and linewidth of 24.5 nm are demonstrated. Furthermore, using the single-layer approach, EBID directly on Si, a silicon nanowire resolution of 33 nm is demonstrated. C1 [Guan, Yingfeng; Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, Jason D.; Retterer, Scott T.; Simpson, Michael L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Retterer, Scott/A-5256-2011; Simpson, Michael/A-8410-2011; OI Retterer, Scott/0000-0001-8534-1979; Simpson, Michael/0000-0002-3933-3457; Rack, Philip/0000-0002-9964-3254 FU Semiconductor Research Corporation [1281]; University of Tennessee; US Department of Energy FX PDR would like to acknowledge support from the Semiconductor Research Corporation (grant 1281 managed by Dan Herr) and the Joint Directed Research and Development program sponsored by the Science Alliance at the University of Tennessee. PDR, JDF, STR and MLS acknowledge a portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. NR 25 TC 26 Z9 26 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD DEC 17 PY 2008 VL 19 IS 50 AR 505302 DI 10.1088/0957-4484/19/50/505302 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 376TK UT WOS:000261205700009 PM 19942766 ER PT J AU Vrugt, JA ter Braak, CJF Clark, MP Hyman, JM Robinson, BA AF Vrugt, Jasper A. ter Braak, Cajo J. F. Clark, Martyn P. Hyman, James M. Robinson, Bruce A. TI Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation SO WATER RESOURCES RESEARCH LA English DT Article ID ENSEMBLE KALMAN FILTER; RAINFALL-RUNOFF MODELS; STREAMFLOW SIMULATION; METROPOLIS ALGORITHM; PARAMETER-ESTIMATION; BAYESIAN-ESTIMATION; DATA ASSIMILATION; OPTIMIZATION; PREDICTION; CALIBRATION AB There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled differential evolution adaptive Metropolis (DREAM), that is especially designed to efficiently estimate the posterior probability density function of hydrologic model parameters in complex, high-dimensional sampling problems. This MCMC scheme adaptively updates the scale and orientation of the proposal distribution during sampling and maintains detailed balance and ergodicity. It is then demonstrated how DREAM can be used to analyze forcing data error during watershed model calibration using a five-parameter rainfall-runoff model with streamflow data from two different catchments. Explicit treatment of precipitation error during hydrologic model calibration not only results in prediction uncertainty bounds that are more appropriate but also significantly alters the posterior distribution of the watershed model parameters. This has significant implications for regionalization studies. The approach also provides important new ways to estimate areal average watershed precipitation, information that is of utmost importance for testing hydrologic theory, diagnosing structural errors in models, and appropriately benchmarking rainfall measurement devices. C1 [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [ter Braak, Cajo J. F.] Univ Wageningen & Res Ctr, NL-6700 AC Wageningen, Netherlands. [Clark, Martyn P.] NIWA, Christchurch, New Zealand. [Robinson, Bruce A.] Los Alamos Natl Lab, Civilian Nucl Program Off, Los Alamos, NM 87545 USA. RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov RI Vrugt, Jasper/C-3660-2008; Robinson, Bruce/F-6031-2010; ter Braak, Cajo/G-7006-2011; Clark, Martyn/A-5560-2015 OI ter Braak, Cajo/0000-0002-0414-8745; Clark, Martyn/0000-0002-2186-2625 FU J. Robert Oppenheimer Fellowship FX The first author is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. We gratefully acknowledge the ideas and comments of three reviewers and students and faculty at New Mexico Tech, Socorro, that have improved the current quality of this paper. Computer support, provided by the SARA center for parallel computing at the University of Amsterdam, Netherlands, is highly appreciated. NR 40 TC 202 Z9 204 U1 16 U2 123 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 17 PY 2008 VL 44 AR W00B09 DI 10.1029/2007WR006720 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 386ND UT WOS:000261889000001 ER PT J AU Buchko, GW Tarasevich, BJ Bekhazi, J Snead, ML Shaw, WJ AF Buchko, Garry W. Tarasevich, Barbara J. Bekhazi, Jacky Snead, Malcolm L. Shaw, Wendy J. TI A Solution NMR Investigation into the Early Events of Amelogenin Nanosphere Self-Assembly Initiated with Sodium Chloride or Calcium Chloride SO BIOCHEMISTRY LA English DT Article ID DYNAMIC LIGHT-SCATTERING; X-RAY-SCATTERING; RECOMBINANT AMELOGENIN; PROTEIN INTERACTIONS; PORCINE AMELOGENIN; MURINE AMELOGENIN; ESCHERICHIA-COLI; TERMINAL REGIONS; MATRIX PROTEINS; SECRETORY-STAGE AB Using solution-state NMR spectroscopy, new insights into the early events governing amelogenin supramolecular self-assembly have been identified using sodium chloride and calcium chloride to trigger the association. Two-dimensional (1)H-(15)N HSQC spectra were recorded for (15)N- and (13)C-labeled murine amelogenin as a function of increasing NaCl and CaCl(2) concentration beginning with solution conditions of 2% acetic acid at pH 3.0, where amelogenin was monomeric. Residue specific changes in molecular dynamics, manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross-peaks, were observed with the addition of either salt to the protein. With increasing NaCl concentrations, residues between T21 and R31 near the N-terminus were affected first, suggesting that these residues may initiate amelogenin dimerization, the first step in nanosphere assembly. At higher NaCl concentrations, more residues near the N-terminus (Y12-I51) were affected, and with further additions of NaCl, residues near the C-terminus (L141-T171) began to show a-similar change in molecular dynamics. With increasing CaCl2 concentrations, a similar stepwise change in molecular dynamics involving essentially the same set of amelogenin residues was observed. As the concentration of either salt was increased, a concomitant increase in the estimated overall rotational correlation time (tau(c)) was observed, consistent with assembly. Self-assembly into a dimer or trimer was established with dynamic light scattering studies under similar conditions that showed an increase in diameter of the smallest species from 4.1 nm in the absence of salt to similar to 10 nm in the presence of salt. These results suggest a possible stepwise interaction mechanism, starting with the N-terminus and followed by the C-terminus, leading to amelogenin nanosphere assembly. C1 [Buchko, Garry W.; Tarasevich, Barbara J.; Bekhazi, Jacky; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Snead, Malcolm L.] Univ So Calif, Ctr Craniofacial Mol Biol, Los Angeles, CA 90033 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Wendy.shaw@pnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIH-NIDCR [DE-015347]; U.S. DOE Biological and Environmental Research FX This work was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the U.S. Department of Energy and at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE Biological and Environmental Research program. NR 52 TC 25 Z9 25 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD DEC 16 PY 2008 VL 47 IS 50 BP 13215 EP 13222 DI 10.1021/bi8018288 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 381BT UT WOS:000261510500010 PM 19086270 ER PT J AU Alam, TM McIntyre, SK AF Alam, Todd M. McIntyre, Sarah K. TI Self-Assembly and Magnetic Alignment in Cetyltrimethylammonium Bromide/Sodium Perfluorooctanoate Surfactant Mixtures Investigated Using H-2 Nuclear Magnetic Resonance Spectroscopy SO LANGMUIR LA English DT Article ID ALKALINE LYOTROPIC SILICATE; LIQUID-CRYSTALLINE PHASES; MESOPOROUS SILICA; EQUILIBRIUM VESICLES; AQUEOUS MIXTURES; NMR; ORGANIZATION; BEHAVIOR; SPHERES; FIELD AB Deuterium nuclear magnetic resonance (H-2 NMR) spectroscopy has been used to investigate the phase behavior for mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the anionic surfactant sodium perfluorooctanoate (FC7) for total surfactant concentrations ranging from I to 25 wt %. The deuterated methyl of the quaternary methyl-ammonia group in CTAB-gamma-d(3) gives rise to a superposition of spectral components in the H-2 NMR spectra allowing for the identification and quantification of the different phases present. The CTAB/FC7 mixture exhibits a coexisting two-phase region composed of an isotropic (Iso) micelle/vesicle phase along with a lamellar (L,,) phase for all of the composition ranges investigated. The variation of the phase composition as a function of sample temperature, total wt % surfactant, and surfactant molar ratio are presented. In addition, the H-2 NMR reveals that the L, phase spontaneously aligns in the magnetic field, with the extent and distribution of magnetic alignment being determined. The H-2 NMR results are discussed in light of previously reported surfactant-templated material synthesis involving the CTAB/FC7 mixture. C1 [Alam, Todd M.; McIntyre, Sarah K.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87185 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Elect & Nanostruct Mat, POB 5800, Albuquerque, NM 87185 USA. FU Sandia Corporation, a Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000]; Basic Energy Sciences (BES); Department of Energy FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DEAC04-94AL85000. This work is supported entirely through the Basic Energy Sciences (BES) from the Department of Energy. NR 34 TC 12 Z9 12 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 16 PY 2008 VL 24 IS 24 BP 13890 EP 13896 DI 10.1021/la801681n PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 382UU UT WOS:000261631700015 PM 19053633 ER PT J AU Park, C Fenter, PA Sturchio, NC Nagy, KL AF Park, Changyong Fenter, Paul A. Sturchio, Neil C. Nagy, Kathryn L. TI Thermodynamics, Interfacial Structure, and pH Hysteresis of Rb+ and Sr2+ Adsorption at the Muscovite (001)-Solution Interface SO LANGMUIR LA English DT Article ID X-RAY REFLECTIVITY; ATOMIC-FORCE MICROSCOPY; HYDRATION FORCES; WATER INTERFACE; MICA SURFACES; EXCHANGE PROPERTIES; CHLORIDE SOLUTIONS; CATION-EXCHANGE; ION ADSORPTION; DOUBLE-LAYER AB The coverage and average height of adsorbed Rb+ and Sr2+ at the muscovite (001)-solution interface were measured with resonant anomalous X-ray reflectivity (RAXR) as a function of cation concentration (10(-8) < [Sr2+] < 10(-1) m, 10(-6) < [Rb+] < 10(-1) m at pH 5.5 and 3.5) and pH (1.5 to 5.5 at [Men+] = 10(-3) m) without background electrolyte. At pH 5.5, Rb+ uptake approximately follows a Langmuir isotherm with Delta G(Rb)(o) = -23.5 +/- 4.0 kJ . mol(-1) and a saturation coverage of Gamma(max) = 0.94 +/- 0.06 Rb+ per unit cell area, A(uc) = 46.72 angstrom(2), compensating the nominal surface charge density (1 e(-)/A(uc)). The Sr2+ isotherm has a saturation coverage of 0.47 +/- 0.05 Sr2+/A(uc) that also compensates the muscovite's charge, but the adsorption edge is both more abrupt and shifted significantly to lower concentration than that for Rb+. The uptake of Sr2+ is consistent with a Frumkin isotherm with an intrinsic adsorption constant, Delta G(Sr)(o) = -28.8 +/- 6.0 kJ . mol(-1) and a correlation energy, gamma(Sr) = -7.2 +/- 3.7 kJ . mol(-1). The average height of each adsorbed cation, corresponding to inner-sphere dominant Rb+ and coexisting inner- and outer-sphere Sr2+ distributions, was independent of ion coverage at pH 5.5. At pH 3.5, the adsorption edges of both ions shift to higher cation concentration, indicating competition with hydronium, and the shifts are accompanied by an irreversible reduction in the saturation coverage. The inner-sphere dominant mode of Rb+ adsorption did not change at pH 3.5, while that of Sr2+ changed to an outer-sphere dominant distribution. Hysteresis in both the amount and height of the adsorbed ion was observed as a function of the direction in which pH was changed, indicating that the intrinsic surface charge density decreased after reaction with acidic solutions. These results suggest new and unexpected interrelationships among the distribution of adsorbed ions, competitive adsorption of hydronium, and surface charge density at the mineral-solution interface. C1 [Park, Changyong; Fenter, Paul A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Sturchio, Neil C.; Nagy, Kathryn L.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. RP Park, C (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cypark@anl.gov RI Park, Changyong/A-8544-2008 OI Park, Changyong/0000-0002-3363-5788 FU University of Illinois at Chicago; U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH 11357]; Argonne National Laboratory FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH 11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work was performed under the auspices of the Geosciences Research Program, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC02-06CH 11357 to Argonne National Laboratory and Grants DE-FG02-03ER 15381 and DE-FG02-06ER] 5364 to the University of Illinois at Chicago. The X-ray reflectivity data were measured at beamlines 12-BM-B and 11-ID-D of the Basic Energy Sciences Synchrotron Radiation Center (BESSRC/XOR), Advanced Photon Source (APS). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH 11357 to UChicago Argonne, LLC as operator of Argonne National Laboratory. NR 62 TC 29 Z9 29 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 16 PY 2008 VL 24 IS 24 BP 13993 EP 14004 DI 10.1021/la802446m PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 382UU UT WOS:000261631700028 PM 19053665 ER PT J AU Kurtz, RE Toney, MF Pople, JA Lin, BH Meron, M Majewski, J Lange, A Fuller, GG AF Kurtz, Rachel E. Toney, Michael F. Pople, John A. Lin, Binhua Meron, Mati Majewski, Jaroslaw Lange, Arno Fuller, Gerald G. TI Langmuir Monolayers of Straight-Chain and Branched Hexadecanol and Eicosanol Mixtures SO LANGMUIR LA English DT Article ID BREWSTER-ANGLE MICROSCOPY; AIR-WATER-INTERFACE; ACID-ALCOHOL MIXTURES; X-RAY-DIFFRACTION; PHASE-TRANSITIONS; FATTY-ACID; OPTICAL MEASUREMENTS; VISUALIZATION; 1ST-ORDER; RHEOLOGY AB Langmuir monolayers of straight-chain and branched hexadecanol and eicosanol mixtures were previously studied using Surface pressure-area isotherms, Brewster angle microscopy, and interfacial rheology. In this paper, we investigate the structure of these fatty alcohol mixtures using these previous results together with X-ray diffraction and reflectivity measurements, which provide a better understanding of the structure of the monolayer in terms of the phase segregation and location of branched chains. For eicosanol below 25 mN/m, the branched chains are incorporated into the monolayer, yet they are phase-separated from the straight chains. At higher surface pressures, the branched chains are expelled from the monolayer and presumably form micelles or some other aggregate in the subphase. In contrast, the hexadecanol branched chains are not present in the monolayer at any surface pressure. These behaviors are interpreted with the help of the X-ray measurements and density profiles, and are explained in terms of straight-chain flexibility. We will discuss the effect of the monolayer structure on the surface shear viscosity. These studies provide a deeper understanding of the structure and behavior of amphiphilic mixtures, and will ultimately aid in developing models for lipids, micelle formation, and other important biological functions. C1 [Kurtz, Rachel E.; Fuller, Gerald G.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.; Pople, John A.] Stanford Linear Accelerator, Stanford Synchrotron Radiat Lab, Stanford, CA 94025 USA. [Lin, Binhua; Meron, Mati] Univ Chicago, Adv Photon Source, Argonne, IL 60439 USA. [Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Lange, Arno] BASF SE, D-67056 Ludwigshafen, Germany. RP Fuller, GG (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM ggf@stanford.edu RI Lujan Center, LANL/G-4896-2012 FU National Science Foundation/Department of Energy [CHE-0535644]; U.S. Department of Energy; Office of Basic Energy Sciences [W-31-109-Eng-38]; Stanford Synchrotron Radiation Laboratory; NSF [DMR-0213618] FX The authors gratefully acknowledge support from the National Science Foundation Division of CTS and BASF SE. ChemMatCARS Sector 15-ID-C is principally supported by the National Science Foundation/Department of Energy (CHE-0535644). The Advanced Photon Source is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (W-31-109-Eng-38). The authors thank John Kirkwood, Bridget Ingham, Alice Wong, and Martin Widenbrant for assistance with some of the X-ray diffraction and reflectivity measurements. The authors acknowledge David Schultz for his assistance in developing the Langmuir trough for X-ray studies and Jeff Gebhardt for his assistance at the beamline. Portions of this research were supported in part by the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This research was also facilitated in part by a National Physical Science Consortium Fellowship, by support from Los Alamos National Laboratory, as well as by support from NSF, Grant DMR-0213618. NR 26 TC 12 Z9 12 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 16 PY 2008 VL 24 IS 24 BP 14005 EP 14014 DI 10.1021/la802467e PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 382UU UT WOS:000261631700029 PM 19360939 ER PT J AU Brown, KH Schultz, IR Cloud, JG Nagler, JJ AF Brown, Kim H. Schultz, Irvin R. Cloud, J. G. Nagler, James J. TI Aneuploid sperm formation in rainbow trout exposed to the environmental estrogen 17 alpha-ethynylestradiol SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aneuploidy; EE2; xenoestrogens ID ENDOCRINE-DISRUPTING CHEMICALS; NUCLEOLUS ORGANIZER REGIONS; ONCORHYNCHUS-MYKISS; BISPHENOL-A; GERM-CELLS; MEIOTIC SEGREGATION; EMBRYONIC SURVIVAL; SALMO-GAIRDNERI; UNITED-KINGDOM; MALE-FERTILITY AB Environmental contaminants that mimic native estrogens (i.e., environmental estrogens) are known to significantly impact a wide range of vertebrate species and have been implicated as a source for increasing human male reproductive deficiencies and diseases. Despite the widespread occurrence of environmental estrogens and recognized detrimental effects on male vertebrate reproduction, no specific mechanism has been determined indicating how reduced fertility and/or fecundity is achieved. Previous studies show that male rainbow trout, Oncorhynchus mykiss, exposed to the environmental estrogen 17 alpha-ethynylestradiol (EE2) before gamete formation and fertilization produce progeny with significantly reduced embryonic survival. To determine whether this observed decrease results from sperm chromosome alterations during spermatogenesis, male rainbow trout were exposed to 10 ng of EE2/I for 50 days. After exposure, semen was collected and sperm aneuploidy levels analyzed with two chromosome markers by fluorescent in situ hybridization. In vitro fertilizations were also conducted by using control and exposed sperm crossed to eggs from an unexposed female for offspring analysis. Evaluations for nucleolar organizer region number and karyotype were performed on developing embryos to determine whether sperm aneuploidy translated into embryonic aneuploidy. Results conclusively show increased aneuploid sperm formation due to EE2 exposure. Additionally, embryonic cells from propagated progeny of individuals possessing elevated sperm aneuploidy display high levels of embryonic aneuploidy. This study concludes that EE2 exposure in sexually developing male rainbow trout increases levels of aneuploid sperm, providing a mechanism for decreased embryonic survival and ultimately diminished reproductive success in EE2 exposed males. C1 [Brown, Kim H.; Cloud, J. G.; Nagler, James J.] Univ Idaho, Dept Biol Sci, Moscow, ID 83844 USA. [Brown, Kim H.; Cloud, J. G.; Nagler, James J.] Univ Idaho, Ctr Reprod Biol, Moscow, ID 83844 USA. [Schultz, Irvin R.] Marine Sci Lab, Battelle Pacific NW Natl Lab, Sequim, WA 98382 USA. RP Nagler, JJ (reprint author), Univ Idaho, Dept Biol Sci, Life Sci Bldg Room 252,POB 443051, Moscow, ID 83844 USA. EM jamesn@uidaho.edu FU National Institute of Environmental Health Sciences [ES012446] FX We thank Mr. Paul Wheeler and Dr. Gary H. Thorgaard from Washington State University's Research Hatchery (Pullman, WA) for propagating the clonal Arlee male rainbow trout for this experiment and Troutlodge Inc. (Sumner, WA) for supplying unfertilized eggs. Research was supported by National Institute of Environmental Health Sciences Grant ES012446. NR 82 TC 14 Z9 15 U1 2 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 16 PY 2008 VL 105 IS 50 BP 19786 EP 19791 DI 10.1073/pnas.0808333105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 385GI UT WOS:000261802300040 PM 19066213 ER PT J AU Lee, AC Dai, ZY Chen, BW Wu, H Wang, J Zhang, AG Zhang, LR Lim, TM Lin, YH AF Lee, Ai-Cheng Dai, Ziyu Chen, Baowei Wu, Hong Wang, Jun Zhang, Aiguo Zhang, Lurong Lim, Tit-Meng Lin, Yuehe TI Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA SO ANALYTICAL CHEMISTRY LA English DT Article ID SIGNAL AMPLIFICATION ASSAY; RT-PCR; QUANTITATION; TRANSDUCTION; EXPRESSION; PROTEIN AB We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcripts in the population of messenger ribonucleic acid (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (AILP) tracers was used to amplify the target signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electro-active enzymatic product in the presence of 1-napthyl phosphate. The voltammetric characteristics of substrate and enzymatic product as well as the parameters of SWV analysis were systematically optimized. A detection limit of 1 fM (1 x 10(-19) mol of target transcripts in 100 mu L) and a 3-order-wide dynamic range of target concentration were achieved by the electrochemical bDNA assay. Such limit corresponded to similar to 17 fg of the p185 BCR-ABL fusion transcripts. The specificity and sensitivity of assay enabled direct detection of target transcripts in as little as 4.6 ng of mRNA population without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcripts in mRNA population. A mean transcript copy number of 62,900/ng of mRNA was determined, which was at least 50-fold higher than that of real-time quantitative PCR (qPCR). The finding was consistent with the underestimation of targets by qPCR reported earlier. In addition, the unique design based on bDNA technology increases the assay specificity as only the p185 BCR-ABL fusion transcripts will respond to the detection. The approach thus provides a simple, sensitive, accurate, and quantitative tool alternative to the qPCR for early disease diagnosis. C1 [Lee, Ai-Cheng; Lim, Tit-Meng] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. [Lee, Ai-Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Aiguo] Panomics Inc, Fremont, CA 94555 USA. [Zhang, Aiguo] DiaCarta LLC, Fremont, CA 94555 USA. [Zhang, Lurong] Univ Rochester, Med Ctr, Dept Radiat Oncol, Rochester, NY 14642 USA. RP Lim, TM (reprint author), Natl Univ Singapore, Dept Biol Sci, 14 Sci Dr 4, Singapore 117543, Singapore. EM dbsltm@nus.edu.sg; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research; DOE Biomass Program; Battelle for DOE [DE-AC05-76RL01830]; National University of Singapore (NUS) Postgraduate Research Scholarship and PNNL fellowship FX This work is supported by a laboratory directed research and development program at Pacific Northwest National Laboratory (PNNL). The research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research and the core R&D Laboratory of Fungal Biotechnology funded by the DOE Biomass Program, which are located at PNNL. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. A-C.L. gratefully acknowledges the awards of National University of Singapore (NUS) Postgraduate Research Scholarship and PNNL fellowship. The authors thank Dr. Allen Yeoh (NUS) and co-workers for providing helpful information on leukemia. NR 25 TC 19 Z9 21 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 15 PY 2008 VL 80 IS 24 BP 9402 EP 9410 DI 10.1021/ac801263r PG 9 WC Chemistry, Analytical SC Chemistry GA 384FE UT WOS:000261728900004 PM 19007191 ER PT J AU Thompson, MR Chourey, K Froelich, JM Erickson, BK Berkmoes, NC Hettich, RL AF Thompson, Melissa R. Chourey, Karuna Froelich, Jennifer M. Erickson, Brian K. Berkmoes, Nathan C. Hettich, Robert L. TI Experimental Approach for Deep Proteome Measurements from Small-Scale Microbial Biomass Samples SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; SHEWANELLA-ONEIDENSIS MR-1; LINEAR ION-TRAP; RHODOPSEUDOMONAS-PALUSTRIS; COMMUNITY PROTEOMICS; SHOTGUN PROTEOMICS; ESCHERICHIA-COLI; DIVERSITY; PROTEINS; IDENTIFICATION AB Many methods of microbial proteome characterizations require large quantities of cellular biomass (> 1-2 g) for sample preparation and protein identification. Our experimental approach differs from traditional techniques by providing the ability to identify the proteomic state of a microbe from a few milligrams of starting cellular material. The small-scale, guanidine lysis method minimizes sample loss by achieving cellular lysis and protein digestion in a single-tube experiment. For this experimental approach, the freshwater microbe Shewanella oneidensis MR-1 and the purple non-sulfur bacterium Rhodopseudomonas palustris CGA0010 were used as model organisms for technology development and evaluation. A 2-D LC-MS/MS comparison between a standard sonication lysis method and the small-scale guanidine lysis techniques demonstrates that the guanidine lysis method is more efficient with smaller sample amounts of cell pellet (i.e., down to 1 mg). The described methodology enables deeper proteome measurements from a few milliliters of confluent bacterial cultures. We also report a new protocol for efficient lysis from small amounts of natural biofilm samples for deep proteome measurements, which should greatly enhance the emerging field of environmental microbial community proteomics. This straightforward sample boiling protocol is complementary to the small-scale guanidine lysis technique, is amenable for small sample quantities, and requires no special reagents that might complicate the MS measurements. C1 [Thompson, Melissa R.; Chourey, Karuna; Erickson, Brian K.; Berkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Thompson, Melissa R.; Erickson, Brian K.] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37830 USA. [Froelich, Jennifer M.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Hettich, RL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008,MS 6131, Oak Ridge, TN 37831 USA. EM hettichrl@ornl.gov RI Hettich, Robert/N-1458-2016; OI Hettich, Robert/0000-0001-7708-786X; , /0000-0002-9216-3813 FU The U.S. Department of Energy, Office of Biological and Environmental Research, Environmental Remediation Sciences Program; University of Tennessee-Battelle LLC for the Department of Energy [DOE-AC05-00OR22725] FX This research was supported by The U.S. Department of Energy, Office of Biological and Environmental Research, Environmental Remediation Sciences Program. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy under contract DOE-AC05-00OR22725. M.R.T. and K.C. contributed equally to this work. NR 47 TC 25 Z9 25 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 15 PY 2008 VL 80 IS 24 BP 9517 EP 9525 DI 10.1021/ac801707s PG 9 WC Chemistry, Analytical SC Chemistry GA 384FE UT WOS:000261728900018 PM 19072265 ER PT J AU Kane, AS Hoffmann, A Baumgartel, P Seckler, R Reichardt, G Horsley, DA Schuler, B Bakajin, O AF Kane, Avinash S. Hoffmann, Armin Baumgaertel, Peter Seckler, Robert Reichardt, Gerd Horsley, David A. Schuler, Benjamin Bakajin, Olgica TI Microfluidic Mixers for the Investigation of Rapid Protein Folding Kinetics Using Synchrotron Radiation Circular Dichroism Spectroscopy SO ANALYTICAL CHEMISTRY LA English DT Article ID LOW REYNOLDS-NUMBERS; X-RAY-SCATTERING; CYTOCHROME-C; COLLAPSE; TIME; FLUORESCENCE; MICROCHANNEL; MICROMIXER; STEPS AB We have developed a microfluidic mixer optimized for rapid measurements of protein folding kinetics using synchrotron radiation circular dichroism (SRCD) spectroscopy. The combination of fabrication in fused silica and synchrotron radiation allows measurements at wavelengths below 220 nm, the typical limit of commercial instrumentation. At these wavelengths, the discrimination between the different types of protein secondary structure increases sharply. The device was optimized for rapid mixing at moderate sample consumption by employing a serpentine channel design, resulting in a dead time of less than 200 mu s. Here, we discuss the design and fabrication of the mixer and quantify the mixing efficiency using wide-field and confocal epi-fluorescence microscopy. We demonstrate the performance of the device in SRCD measurements of the folding kinetics of cytochrome c, a small, fast-folding protein. Our results show that the combination of SRCD with microfluidic mixing opens new possibilities for investigating rapid conformational changes in biological macromolecules that have previously been inaccessible. C1 [Hoffmann, Armin; Schuler, Benjamin] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland. [Kane, Avinash S.; Bakajin, Olgica] Lawrence Livermore Natl Lab, Chem Mat Life & Earth Sci Directorate, Livermore, CA 94550 USA. [Kane, Avinash S.; Horsley, David A.; Bakajin, Olgica] Univ Calif Davis, Sacramento, CA 95817 USA. [Baumgaertel, Peter; Seckler, Robert] Univ Potsdam, D-14476 Potsdam, Germany. [Reichardt, Gerd] Berliner Elektronenspeicherring Gesell Syncnchron, D-12489 Berlin, Germany. RP Schuler, B (reprint author), Univ Zurich, Inst Biochem, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM schuler@bioc.uzh.ch; Bakajin1@llnl.gov RI Schuler, Benjamin/E-7342-2011 OI Schuler, Benjamin/0000-0002-5970-4251 FU Human Frontier Science Program; Schweizerische Nationalfonds; Deutsche Forschungsgemeinschaft; Lawrence Livermore National Security, LLC, for the U.S. Department of Energy; National Nuclear Security Administration [DE-AC52-07NA27344]; Center for Biophotonics; NSF Science and Technology Center; University of California, Davis [PHY 0120999]; LLNL; Science Foundation I2CAM International Materials Institute Award [DMR-0645461]; German Federal Ministry of Education and Research (BMBF) [05 KS4IP1/2] FX We thank Shuhuai Yao and David Hertzog for technical assistance and discussions. This work has been supported by the Human Frontier Science Program (A.S.K., O.B., A.H., B.S.), the Schweizerische Nationalfonds (B.S.), and the Deutsche Forschungsgemeinschaft (R.S.). The work of O.B. and A.S.K. was performed at Lawrence Livermore National Laboratory with the support of the LDRD program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344 and partially supported by funding from the Center for Biophotonics, an NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. A.S.K. was also supported by the SEGPW Program at LLNL and his trips to Germany were supported by travel awards through U.S. National Science Foundation I2CAM International Materials Institute Award, Grant DMR-0645461. R.S., P.B., and the SRCD station at BESSY are supported by the German Federal Ministry of Education and Research (BMBF), Contract 05 KS4IP1/2. NR 35 TC 26 Z9 27 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 15 PY 2008 VL 80 IS 24 BP 9534 EP 9541 DI 10.1021/ac801764r PG 8 WC Chemistry, Analytical SC Chemistry GA 384FE UT WOS:000261728900020 PM 19072266 ER PT J AU Shvartsburg, AA Smith, RD AF Shvartsburg, Alexandre A. Smith, Richard D. TI Fundamentals of Traveling Wave Ion Mobility Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID MASS-SPECTROMETRY; GAS-PHASE; ELECTROSPRAY-IONIZATION; DROSOPHILA-MELANOGASTER; PLASMA CHROMATOGRAPHY; PROTEIN COMPLEXES; FIELD; SENSITIVITY; FAIMS; MS AB Traveling wave ion mobility spectrometry (TW IMS) is a new IMS method implemented in the Synapt IMS/mass spectrometry system (Waters). Despite its wide adoption, the foundations of TW IMS were only qualitatively understood and factors governing the ion transit time (the separation parameter) and resolution remained murky. Here we develop the theory of TW IMS using derivations and ion dynamics simulations. The key parameter is the ratio (c) of ion drift velocity at the steepest wave slope to wave speed. At low c, the ion transit velocity is proportional to the squares of mobility (K) and electric field intensity (E), as opposed to linear scaling in drift tube (DT) IMS and differential mobility analyzers. At higher c, the scaling deviates from quadratic in a way controlled by the waveform profile, becoming more gradual with the ideal triangular profile but first steeper and then more gradual for realistic profiles with variable E. At highest c, the transit velocity asymptotically approaches the wave speed. Unlike with DT IMS, the resolving power of TW IMS depends on mobility, scaling as K(1/2) in the low-c limit and less at higher c. A nonlinear dependence of the transit time on mobility means that the true resolving power of TW IMS differs from that indicated by the spectrum. A near-optimum resolution is achievable overan similar to 300-400% range of mobilities. The major predicted trends are in agreement with TW IMS measurements for peptide ions as a function of mobility, wave amplitude, and gas pressure. The issues of proper TW IMS calibration and ion distortion by field heating are also discussed. The new quantitative understanding of TW IMS separations allows rational optimization of instrument design and operation and improved spectral calibration. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-06, RR 18522] NR 53 TC 173 Z9 174 U1 19 U2 127 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 15 PY 2008 VL 80 IS 24 BP 9689 EP 9699 DI 10.1021/ac8016295 PG 11 WC Chemistry, Analytical SC Chemistry GA 384FE UT WOS:000261728900040 PM 18986171 ER PT J AU Zhang, Q Schepmoes, AA Brock, JWC Wu, S Moore, RJ Purvine, SO Baynes, JW Smith, RD Metz, TO AF Zhang, Qibin Schepmoes, Athena A. Brock, Jonathan W. C. Wu, Si Moore, Ronald J. Purvine, Samuel O. Baynes, John W. Smith, Richard D. Metz, Thomas O. TI Improved Methods for the Enrichment and Analysis of Glycated Peptides SO ANALYTICAL CHEMISTRY LA English DT Article ID ELECTRON-TRANSFER DISSOCIATION; MASS-SPECTROMETRY; PROTEINS; GLYCOSYLATION; SPECIFICITY; GLUCOSE; PLASMA; SITES AB Nonenzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron-transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an online wash of column-bound glycated peptides using 50 mM ammonium acetate, followed by elution with 100 mM acetic acid. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (>= 3) precursor ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. Acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number of glycated peptides and corresponding glycated proteins identified by LC-MS/MS. C1 [Zhang, Qibin; Schepmoes, Athena A.; Wu, Si; Moore, Ronald J.; Purvine, Samuel O.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Brock, Jonathan W. C.; Baynes, John W.] Univ S Carolina, Sch Publ Hlth, Dept Exercise Sci, Columbia, SC 29208 USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU National Center for Research Resources [RR018522]; DOE [DE-AC06-76RLO-1830] FX National Center for Research Resources (RR018522), and work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract DE-AC06-76RLO-1830. NR 19 TC 44 Z9 44 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 15 PY 2008 VL 80 IS 24 BP 9822 EP 9829 DI 10.1021/ac801704j PG 8 WC Chemistry, Analytical SC Chemistry GA 384FE UT WOS:000261728900058 PM 18989935 ER PT J AU Wells, NP Lessard, GA Werner, JH AF Wells, Nathan P. Lessard, Guillaume A. Werner, James H. TI Confocal, Three-Dimensional Tracking of Individual Quantum Dots in High-Background Environments SO ANALYTICAL CHEMISTRY LA English DT Article ID SINGLE-PARTICLE TRACKING; FLUORESCENCE INTERMITTENCY; MICROSCOPE; DIFFUSION; DYNAMICS; BLINKING; BEHAVIOR; SPECTROSCOPY; MOLECULES; LIFETIMES AB We demonstrate a custom confocal fluorescence-microscope that is capable of tracking individual quantum dots undergoing three-dimensional Brownian motion (diffusion coefficient similar to 0.5 mu m(2)/s) in environments with a signal-to-background ratio as low as 2: 1, significantly worse than observed in a typical cellular environment. By utilizing a pulsed excitation source and time-correlated single photon counting, the time-resolved photon stream can be used to determine changes in the emission lifetime as a function of position and positively identify single quantum dots via photon-pair correlations. These results indicate that this microscope will be capable of following protein and RNA transport throughout the full three-dimensional volume of a live cell for durations up to 15 s. C1 [Wells, Nathan P.; Lessard, Guillaume A.; Werner, James H.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol MPA CINT, Los Alamos, NM 87545 USA. RP Werner, JH (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM jwerner@lanl.gov RI Wells, Nathan/B-8744-2014; OI Werner, James/0000-0002-7616-8913 FU National Institutes of Health [R21AI07707]; National Nanotechnology Enterprise Development Center (NNEDC); U.S. Department of Energy [DE-AC52-06NA25396] FX This work is supported by the National Institutes of Health (No. R21AI07707) and the National Nanotechnology Enterprise Development Center (NNEDC). This work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We thank Peter Goodwin for advice and a critical reading of this manuscript. NR 35 TC 33 Z9 33 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 15 PY 2008 VL 80 IS 24 BP 9830 EP 9834 DI 10.1021/ac8021899 PG 5 WC Chemistry, Analytical SC Chemistry GA 384FE UT WOS:000261728900059 PM 19072277 ER PT J AU Bar, M Nishiwaki, S Weinhardt, L Pookpanratana, S Fuchs, O Blum, M Yang, W Denlinger, JD Shafarman, WN Heske, C AF Bar, M. Nishiwaki, S. Weinhardt, L. Pookpanratana, S. Fuchs, O. Blum, M. Yang, W. Denlinger, J. D. Shafarman, W. N. Heske, C. TI Depth-resolved band gap in Cu(In,Ga)(S,Se)(2) thin films SO APPLIED PHYSICS LETTERS LA English DT Article DE copper compounds; energy gap; gallium compounds; indium compounds; semiconductor thin films; solar cells; surface composition; ternary semiconductors; thin film devices ID ELECTRICAL-PROPERTIES; CHALCOPYRITE; CUINSE2 AB The surface composition of Cu(In,Ga)(S,Se)(2) ("CIGSSe") thin films intrinsically deviates from the corresponding bulk composition, which also modifies the electronic structure and thus the optical properties. We used a combination of photon and electron spectroscopies with different information depths to gain depth-resolved information on the band gap energy (E-g) in CIG(S)Se thin films. We find an increasing E-g with decreasing information depth, indicating the formation of a surface region with significantly higher E-g. This E-g-widened surface region extends further into the bulk of the sulfur-free CIGSe thin film compared to the CIGSSe thin film. C1 [Bar, M.; Weinhardt, L.; Pookpanratana, S.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas UNLV, Las Vegas, NV 89154 USA. [Nishiwaki, S.; Shafarman, W. N.] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA. [Fuchs, O.; Blum, M.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Yang, W.; Denlinger, J. D.] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Bar, M (reprint author), Univ Nevada, Dept Chem, Las Vegas UNLV, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA. EM baerm2@unlv.nevada.edu RI Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU National Renewable Energy Laboratory [XXL-544205-12, ADJ-1-30630-12]; DFG Emmy-Noether-Programm FX We acknowledge the funding from the National Renewable Energy Laboratory under Subcontract Nos. XXL-544205- 12 and ADJ-1-30630-12 and the sponsorship (of M.B.) from the DFG Emmy-Noether-Programm. NR 16 TC 39 Z9 40 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 244103 DI 10.1063/1.3046780 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400086 ER PT J AU Boatner, LA Wisniewski, D Neal, JS Ramey, JO Kolopus, JA Chakoumakos, BC Wisniewska, M Custelcean, R AF Boatner, L. A. Wisniewski, D. Neal, J. S. Ramey, J. O. Kolopus, J. A. Chakoumakos, B. C. Wisniewska, M. Custelcean, R. TI Single-crystal CeCl3(CH3OH)(4): A new metal-organic cerium chloride methanol adduct for scintillator applications SO APPLIED PHYSICS LETTERS LA English DT Article DE crystal growth from solution; gamma-ray detection; luminescence; neutron detection; organometallic compounds; photon counting; solid scintillation detectors; X-ray detection ID KH2PO4 AB A new scintillator material consisting of a methanol adduct of cerium trichloride with the composition CeCl3(CH3OH)(4) has been discovered and crystallized in the form of large single crystals by solution growth in methanol. The peak emission of the x-ray-excited luminescence spectrum occurs at similar to 364 nm. A light yield of up to similar to 16 600 photons/MeV and an energy resolution of 11.4% were obtained using 662 keV gamma-ray photons. The scintillator decay time for 662 keV gamma-ray excitation was measured using the time-correlated, single-photon-counting method, and a nominal value of 64.4 ns was obtained. The molecular adduct CeCl3(CH3OH)(4) represents the first example of a rare-earth, metal-organic scintillator that is applicable to gamma ray, x ray, and neutron detection. C1 [Boatner, L. A.; Wisniewski, D.; Neal, J. S.; Ramey, J. O.; Kolopus, J. A.; Wisniewska, M.] Oak Ridge Natl Lab, ORNL Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Chakoumakos, B. C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Custelcean, R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Boatner, LA (reprint author), Oak Ridge Natl Lab, ORNL Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. EM boatnerla@ornl.gov RI Custelcean, Radu/C-1037-2009; Chakoumakos, Bryan/A-5601-2016; Boatner, Lynn/I-6428-2013; Neal, John/R-8203-2016 OI Custelcean, Radu/0000-0002-0727-7972; Chakoumakos, Bryan/0000-0002-7870-6543; Boatner, Lynn/0000-0002-0235-7594; Neal, John/0000-0001-8337-5235 FU NNSA Office of Nonproliferation Research and Engineering (NA-22), U.S. DOE [DE-AC0500OR22725] FX Research carried out in the Center for Radiation Detection Materials and Systems at ORNL is supported by the NNSA Office of Nonproliferation Research and Engineering (NA-22), U.S. DOE. ORNL is operated by UT-Battelle, LLC for the U.S. DOE under Contract No. DE-AC0500OR22725. NR 9 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 244104 DI 10.1063/1.3049137 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400087 ER PT J AU Harris, JR Kendig, M Poole, B Sanders, DM Caporaso, GJ AF Harris, J. R. Kendig, M. Poole, B. Sanders, D. M. Caporaso, G. J. TI Electrical strength of multilayer vacuum insulators SO APPLIED PHYSICS LETTERS LA English DT Article DE dielectric materials; electric strength; flashover; metals; multilayers; vacuum arcs; vacuum insulation ID SURFACE FLASHOVER AB The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available. C1 [Harris, J. R.; Kendig, M.; Poole, B.; Sanders, D. M.; Caporaso, G. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Harris, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM harris89@llnl.gov FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 11 TC 10 Z9 12 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 241502 DI 10.1063/1.3054344 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400017 ER PT J AU Hu, XH Li, M Ye, Z Leung, WY Ho, KM Lin, SY AF Hu, Xinhua Li, Ming Ye, Zhuo Leung, Wai Y. Ho, Kai-Ming Lin, Shawn-Yu TI Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings SO APPLIED PHYSICS LETTERS LA English DT Article DE diffraction gratings; Fabry-Perot resonators; gold; light polarisation; mirrors; optical films; photodetectors ID INFRARED PHOTODETECTORS; QUANTUM DOTS AB We propose a metallic Fabry-Perot cavity with a Au grating and a Au film acting as two reflectors to enhance the field and absorption in the active detector region, leading to better performance of quantum-dot-based photodetectors at a wavelength of 10 mu m. One- and two-dimensional Au gratings are applied to achieve enhancement for polarized and unpolarized light, respectively. With optimizing grating parameters, the absorption can be enhanced by about 20 times in the active detector region compared to conventional photodetectors without the Au reflectors. C1 [Hu, Xinhua; Li, Ming; Ye, Zhuo; Leung, Wai Y.; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Hu, Xinhua; Li, Ming; Ye, Zhuo; Leung, Wai Y.; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Hu, Xinhua] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Leung, Wai Y.] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Lin, Shawn-Yu] Future Chips Constellat, Troy, NY 12180 USA. [Lin, Shawn-Yu] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Hu, XH (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50010 USA. EM huxh@fudan.edu.cn RI Hu, Xinhua/A-5930-2010; Ye, Zhuo/H-4027-2011; OI Hu, Xinhua/0000-0003-3153-7612; Ye, Zhuo/0000-0002-8958-5740 FU Director for Energy Research, Office of Basic Energy Sciences; The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University [W-7405-ENG-82]; AFOSR [FA95500610431] FX This work is supported by the Director for Energy Research, Office of Basic Energy Sciences. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. S.-Y. L. acknowledges support from AFOSR under Grant No. FA95500610431. NR 20 TC 19 Z9 19 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 241108 DI 10.1063/1.3052893 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400008 ER PT J AU Kronast, F Ovsyannikov, R Kaiser, A Wiemann, C Yang, SH Burgler, DE Schreiber, R Salmassi, F Fischer, P Durr, HA Schneider, CM Eberhardt, W Fadley, CS AF Kronast, F. Ovsyannikov, R. Kaiser, A. Wiemann, C. Yang, S. -H. Buergler, D. E. Schreiber, R. Salmassi, F. Fischer, P. Duerr, H. A. Schneider, C. M. Eberhardt, W. Fadley, C. S. TI Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt; gold; molybdenum compounds; multilayers; nanostructured materials; photoelectron microscopy; photoemission; silicon; silver; X-ray microscopy ID RESOLUTION; DYNAMICS AB We extend conventional laterally-resolved soft x-ray photoelectron emission microscopy to provide depth resolution along the surface normal down to a few angstroms. This is achieved by using standing-wave excitation. The sample is a Ag/Co/Au trilayer, grown on a Si/MoSi(2) multilayer mirror, with the bottom Ag layer in a wedge profile. Tuning the incident x-ray to the mirror Bragg angle sets up a standing x-ray wave field in the multilayer and the trilayer wedge structure. We demonstrate the resulting depth resolution by imaging the standing-wave fields as they move through the trilayer wedge structure. C1 [Kronast, F.; Ovsyannikov, R.; Duerr, H. A.; Eberhardt, W.] BESSY mbH, D-12489 Berlin, Germany. [Kaiser, A.; Wiemann, C.; Yang, S. -H.; Buergler, D. E.; Schneider, C. M.; Fadley, C. S.] Forschungszentrum Julich, D-52425 Julich, Germany. [Schreiber, R.] IBM Almaden Res Ctr, San Jose, CA 95138 USA. [Salmassi, F.; Fischer, P.; Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Fadley, C. S.] Univ Calif Davis, Davis, CA 95616 USA. RP Kronast, F (reprint author), BESSY mbH, Albert Einstein Str 15, D-12489 Berlin, Germany. EM kronast@bessy.de RI Fischer, Peter/A-3020-2010; Durr, Hermann/F-6205-2012; MSD, Nanomag/F-6438-2012; Buergler, Daniel/I-7408-2012; Ovsyannikov, Ruslan/H-7824-2014; Schneider, Claus/H-7453-2012 OI Fischer, Peter/0000-0002-9824-9343; Kronast, Florian/0000-0001-6048-480X; Buergler, Daniel/0000-0002-5579-4886; Ovsyannikov, Ruslan/0000-0001-6311-5516; Schneider, Claus/0000-0002-3920-6255 FU U. S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation; Helmholtz Association; BMBF [FK05 ES3XBA/5, 05KS7UK1]; DFG [SFB 491] FX C. S. F. and P. F. acknowledge support by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. C. S. F. also acknowledges support from the Alexander von Humboldt Foundation and the Helmholtz Association. The beamtime at BESSY was supported by the BMBF (Project Number FK05 ES3XBA/5 and 05KS7UK1) and the DFG (SFB 491).A. K. thanks the DFG for the financial support within Contract No. SFB 491. We are also grateful to E. Bauer, R. Belkhou, M. Kiskinova, I. Krug, A. Locatelli, T. O. Mentes, M. A. Nino, and A. Pavlovska for discussion and assistance during preliminary measurements at Elettra, Trieste. NR 14 TC 16 Z9 16 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 243116 DI 10.1063/1.3046782 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400069 ER PT J AU Siegel, DA Zhou, SY El Gabaly, F Fedorov, AV Schmid, AK Lanzara, A AF Siegel, D. A. Zhou, S. Y. El Gabaly, F. Fedorov, A. V. Schmid, A. K. Lanzara, A. TI Self-doping effects in epitaxially grown graphene SO APPLIED PHYSICS LETTERS LA English DT Article DE band structure; carbon; doping; electron microscopy; monolayers; nanostructured materials; photoelectron spectra; quasiparticles; surface morphology ID GRAPHITE; SUBSTRATE AB Self-doping in graphene has been studied by examining single-layer epitaxially grown graphene samples with differing characteristic lateral terrace widths. Low energy electron microscopy was used to gain real-space information about the graphene surface morphology, which was compared with data obtained by angle-resolved photoemission spectroscopy to study the effect of the monolayer graphene terrace width on the low energy dispersions. By altering the graphene terrace width, we report significant changes in the electronic structure and quasiparticle relaxation time of the material, in addition to a terrace width-dependent doping effect. C1 [Siegel, D. A.; Zhou, S. Y.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Siegel, D. A.; Zhou, S. Y.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [El Gabaly, F.; Schmid, A. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Siegel, DA (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM alanzara@lbl.gov RI Zhou, Shuyun/A-5750-2009 FU U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR03-49361] FX We thank D. H. Lee, A. Castro Neto, and J. Graf for useful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the National Science Foundation through Grant No. DMR03-49361. NR 19 TC 25 Z9 25 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 243119 DI 10.1063/1.3028015 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400072 ER PT J AU Tan, ZK Patel, V Liu, XQ Lukens, JE Likharev, KK Zhu, YM AF Tan, Zhongkui Patel, Vijay Liu, Xueqing Lukens, James E. Likharev, Konstantin K. Zhu, Yimei TI Aluminum-oxide tunnel barriers with high field endurance SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; current density; electric field effects; rapid thermal annealing; tunnelling ID NONVOLATILE MEMORY DEVICES AB We have measured transport properties of all-metallic tunnel junctions, fabricated using rf-plasma-grown aluminum oxide layers and rapid thermal postannealing, in particular, their endurance in electric fields in excess of 10 MV/cm. The results indicate that such junctions may combine high-field endurance (corresponding to at least 10(10) write/erase cycles in floating-gate memories) and high current density (corresponding to 30 ns scale write/erase time) at high voltages, with very low conductance (corresponding to similar to 0.1 s scale retention time) at low voltages. We discuss the improvements necessary for the use of such junctions in advanced floating-gate memories. C1 [Tan, Zhongkui; Patel, Vijay; Liu, Xueqing; Lukens, James E.; Likharev, Konstantin K.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tan, ZK (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM zhotan@ic.sunysb.edu FU US AFOSR FX This work was supported in part by US AFOSR. Useful discussions with H. A. Atwater, J. Brewer, E. Cimpoiasu, J. Cosgrove, D. Keitel-Schultz, T. P. Ma, J. P. Pekola, S. Tolpygo, J. Van Houdt, X. W. Wang, and A. Wild, as well as technical assistance by W. Chen, R. F. Klie, M. Ivanov, Yu. A. Polyakov, J. Wang, and L. Zhang, are gratefully acknowledged. NR 23 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 242109 DI 10.1063/1.3050453 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400038 ER PT J AU Tapalian, HC Langseth, J Chen, Y Anderegg, JW Shinar, J AF Tapalian, H. Charles Langseth, Jason Chen, Ying Anderegg, James W. Shinar, Joseph TI Ultrafast laser direct-write actuable microstructures SO APPLIED PHYSICS LETTERS LA English DT Article DE high-speed optical techniques; laser materials processing; micromechanical devices; optical modulation ID FEMTOSECOND LASER; PULSES; ELECTROLUMINESCENCE; DEGRADATION AB Actuable microelectromechanical systems (MEMS), fabricated by direct "writing" of deformable membranes on indium tin oxide/copper phthalocyanine (CuPc)/Al microstructures using 130 fs laser pulses, are described. The pulses locally ablate the CuPc without requiring micromachined release holes, demonstrating a novel material release mechanism. The direct-write procedure therefore requires fewer processing steps than traditional MEMS approaches. Using it, we fabricated optical modulators with phase modulation depths >pi, intensity modulation amplitudes >50%, and bandwidths >100 kHz, at 5-10 V drive voltage. Fabrication of numerous microstructures and nanostructures can be envisioned, including photonic crystals and optical phased-array gratings. C1 [Tapalian, H. Charles; Langseth, Jason; Chen, Ying; Anderegg, James W.; Shinar, Joseph] Univ Ind, Providence, RI 02940 USA. [Tapalian, H. Charles; Langseth, Jason] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA. [Chen, Ying; Anderegg, James W.; Shinar, Joseph] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Chen, Ying; Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tapalian, HC (reprint author), Univ Ind, POB 6684, Providence, RI 02940 USA. EM hctapalian@comcast.net; jshinar@iastate.edu FU AFRL/MNGI (Eglin AFB) [FA8651-04-C-0391]; Charles Stark Draper Laboratory; U.S. Department of Energy (USDOE) [DE-AC 02-07CH11358]; Director for Energy Research; Office of Basic Energy Science, USDOE FX This work was supported in part by AFRL/MNGI (Eglin AFB) (Contract No. FA8651-04-C-0391) and the Charles Stark Draper Laboratory. Ames Laboratory is operated by Iowa State University for the U.S. Department of Energy (USDOE) under Contract No. DE-AC 02-07CH11358. The work in Ames was partially supported by the Director for Energy Research, Office of Basic Energy Science, USDOE. NR 19 TC 4 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2008 VL 93 IS 24 AR 243304 DI 10.1063/1.2972116 PG 3 WC Physics, Applied SC Physics GA 386PZ UT WOS:000261896400077 ER PT J AU King, BV Pellin, MJ Burnett, DS AF King, B. V. Pellin, M. J. Burnett, D. S. TI Investigation of radiation enhanced diffusion of magnesium in substrates flown on the NASA genesis mission SO APPLIED SURFACE SCIENCE LA English DT Article DE SIMS; RIMS; Genesis; Magnesium; Silicon; Segregation ID SILICON AB The thermal diffusion of an Mg implant in Si has been measured with SIMS and compared to RIMS ( resonant ionisation mass spectrometry) measurements of Mg implantation and diffusion in Si wafers exposed to solar wind irradiation in the NASA Genesis mission. The Genesis samples show much more surface segregation that the samples annealed in the laboratory, due to diffusion and segregation of the implanted Mg to the heavily damaged near surface regions of the Genesis wafers. This Mg transport has been modeled by solving a set of stiff differential equations and found to agree with RIMS measurements for a Mg interstitial migration energy of 0.7 eV. (C) 2008 Elsevier B. V. All rights reserved. C1 [King, B. V.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [King, B. V.; Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Burnett, D. S.] CALTECH, Pasadena, CA 91125 USA. RP King, BV (reprint author), Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. EM bruce.king@newcastle.edu.au RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 11 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD DEC 15 PY 2008 VL 255 IS 4 BP 1455 EP 1457 DI 10.1016/j.apsusc.2008.05.158 PG 3 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 460UX UT WOS:000267217500064 ER PT J AU Chao, LY Rine, J Marletta, MA AF Chao, Lily Y. Rine, Jasper Marletta, Michael A. TI Spectroscopic and kinetic studies of Nor1, a cytochrome P450 nitric oxide reductase from the fungal pathogen Histoplasma capsulatum SO ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS LA English DT Article DE Histoplasma capsulatum; Nitric oxide; Nitric oxide detoxification; Cytochrome P450; Cytochrome P450 nitric oxide reductase; Flavohemoglobin ID CYLINDROCARPON-TONKINENSE; ESCHERICHIA-COLI; FUSARIUM-OXYSPORUM; P450NOR; MECHANISM; EXPRESSION; CLONING; GROWTH; FLAVOHEMOGLOBIN; DENITRIFICATION AB The fungal respiratory pathogen Histoplasma capsulatum evades the innate immune response and colonizes macrophages during infection. Although macrophage production of the antimicrobial effector nitric oxide (NO) restricts H. capsulatum growth, the pathogen is able to establish a persistent infection. H. capsulatum contains a P450 nitric oxide reductase homologue (NOR1) that may be important for detoxifying NO during infection. To characterize the activity of this putative P450 enzyme, a 404 amino acid fragment of Nor1 p was expressed in Escherichia coli and purified to homogeneity. Spectral characterization of Nor1 p indicated that it was similar to other fungal P450 nitric oxide reductases. Nor1 p catalyzed the reduction of NO to N2O using NADH as the direct reductant. The K-m for NO was determined to be 20 mu M and the k(cat) to be 5000 min(-1). Together, these results provide evidence for a protective role of a P450 nitric oxide reductase against macrophage-derived NO. (c) 2008 Elsevier Inc. All rights reserved. C1 [Rine, Jasper; Marletta, Michael A.] Univ Calif Berkeley, QB3 Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Chao, Lily Y.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Div Phys Biosci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rine, Jasper; Marletta, Michael A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. RP Rine, J (reprint author), Univ Calif Berkeley, QB3 Inst, Dept Mol & Cell Biol, 392 Stanley Hall, Berkeley, CA 94720 USA. EM jrine@berkeley.edu; marletta@berkeley.edu FU NIGMS NIH HHS [R37 GM031105-27, R01 GM031105, R37 GM031105, GM35827, R01 GM035827-20, GM31105, R01 GM035827] NR 33 TC 8 Z9 9 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0003-9861 J9 ARCH BIOCHEM BIOPHYS JI Arch. Biochem. Biophys. PD DEC 15 PY 2008 VL 480 IS 2 BP 132 EP 137 DI 10.1016/j.abb.2008.09.001 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 375OG UT WOS:000261122600007 PM 18804446 ER PT J AU Rogers, S Girolami, M Kolch, W Waters, KM Liu, T Thrall, B Wiley, HS AF Rogers, Simon Girolami, Mark Kolch, Walter Waters, Katrina M. Liu, Tao Thrall, Brian Wiley, H. Steven TI Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models SO BIOINFORMATICS LA English DT Article ID GENE-EXPRESSION; PROTEIN EXPRESSION; PATIENT SURVIVAL; ALCAM/CD166; CATENIN; CELLS; ORDER AB Motivation: Modern transcriptomics and proteomics enable us to survey the expression of RNAs and proteins at large scales. While these data are usually generated and analyzed separately, there is an increasing interest in comparing and co-analyzing transcriptome and proteome expression data. A major open question is whether transcriptome and proteome expression is linked and how it is coordinated. Results: Here we have developed a probabilistic clustering model that permits analysis of the links between transcriptomic and proteomic profiles in a sensible and. exible manner. Our coupled mixture model defines a prior probability distribution over the component to which a protein pro. le should be assigned conditioned on which component the associated mRNA pro. le belongs to. We apply this approach to a large dataset of quantitative transcriptomic and proteomic expression data obtained from a human breast epithelial cell line (HMEC). The results reveal a complex relationship between transcriptome and proteome with most mRNA clusters linked to at least two protein clusters, and vice versa. A more detailed analysis incorporating information on gene function from the Gene Ontology database shows that a high correlation of mRNA and protein expression is limited to the components of some molecular machines, such as the ribosome, cell adhesion complexes and the TCP-1 chaperonin involved in protein folding. C1 [Rogers, Simon; Girolami, Mark] Univ Glasgow, Dept Comp Sci, Glasgow G12 8QQ, Lanark, Scotland. [Kolch, Walter] Beatson Inst Canc Res, Signalling & Proteom Lab, Glasgow G61 1BD, Lanark, Scotland. [Kolch, Walter] Univ Glasgow, Inst Biomed & Life Sci, Sir Henry Wellcome Funct Genom Facill, Glasgow G12 8QQ, Lanark, Scotland. [Waters, Katrina M.; Liu, Tao; Thrall, Brian; Wiley, H. Steven] Pacific NW Natl Lab, Syst Biol Program, Richland, WA 99352 USA. [Wiley, H. Steven] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Rogers, S (reprint author), Univ Glasgow, Dept Comp Sci, Glasgow G12 8QQ, Lanark, Scotland. EM srogers@dcs.gla.ac.uk RI Liu, Tao/A-9020-2013; OI Liu, Tao/0000-0001-9529-6550; Rogers, Simon/0000-0003-3578-4477; Wiley, Steven/0000-0003-0232-6867; Kolch, Walter/0000-0001-5777-5016 FU EPSRC [EP/C010620/1, EP/E052029/1]; Interdisciplinary Research Collaboration in Proteomics Technologies RASOR; Battelle for the US Department of Energy [DE-ACO6-76RLO 1830] FX EPSRC (EP/C010620/1 to S. R. and M. G.); EPSRC Advanced Research Fellow (EP/E052029/1 to M. G.); Interdisciplinary Research Collaboration in Proteomics Technologies RASOR (BBSRC/EPSRC to W. K.); Biomolecular Systems Initiative, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL for data collection); PNNL is operated by Battelle for the US Department of Energy (DE-ACO6-76RLO 1830). NR 36 TC 79 Z9 80 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD DEC 15 PY 2008 VL 24 IS 24 BP 2894 EP 2900 DI 10.1093/bioinformatics/btn553 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 380HL UT WOS:000261456700013 PM 18974169 ER PT J AU Leu, BM Zhang, Y Bu, LT Straub, JE Zhao, JY Sturhahn, W Alp, EE Sage, JT AF Leu, Bogdan M. Zhang, Yong Bu, Lintao Straub, John E. Zhao, Jiyong Sturhahn, Wolfgang Alp, E. Ercan Sage, J. Timothy TI Resilience of the Iron Environment in Heme Proteins SO BIOPHYSICAL JOURNAL LA English DT Review ID HEART CYTOCHROME-C; INELASTIC NEUTRON-SCATTERING; X-RAY-SCATTERING; NUCLEAR RESONANT SCATTERING; LOW-FREQUENCY DYNAMICS; MOLECULAR-DYNAMICS; MOSSBAUER-SPECTROSCOPY; YEAST ISO-1-CYTOCHROME-C; VIBRATIONAL SPECTROSCOPY; CARBONMONOXY-MYOGLOBIN AB Conformational flexibility is essential to the functional behavior of proteins. We use an effective force constant introduced by Zaccai, the resilience, to quantify this flexibility. Site-selective experimental and computational methods allow us to determine the resilience of heme protein active sites. The vibrational density of states of the heme Fe determined using nuclear resonance vibrational spectroscopy provides a direct experimental measure of the resilience of the Fe environment, which we compare quantitatively with values derived from the temperature dependence of atomic mean-squared displacements in molecular dynamics simulations. Vibrational normal modes in the THz frequency range dominate the resilience. Both experimental and computational methods find a higher resilience for cytochrome c than for myoglobin, which we attribute to the increased number of covalent links to the peptide in the former protein. For myoglobin, the resilience of the iron environment is larger than the average resilience previously determined for hydrogen sites using neutron scattering. Experimental results suggest a slightly reduced resilience for cytochrome c upon oxidation, although the change is smaller than reported in previous Mossbauer investigations on a bacterial cytochrome c, and is not reproduced by the simulations. Oxidation state also has no significant influence on the compressibility calculated for cyt c, although a slightly larger compressibility is predicted for myoglobin. C1 [Leu, Bogdan M.; Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Leu, Bogdan M.; Sage, J. Timothy] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA. [Zhang, Yong; Bu, Lintao; Straub, John E.] Boston Univ, Dept Chem, Boston, MA 02215 USA. [Leu, Bogdan M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan] Argonne Natl Lab, Argonne, IL 60439 USA. RP Sage, JT (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM jtsage@neu.edu RI Zhang, Yong/B-9559-2011 FU National Science Foundation [PHY-0545787, CHE-9975494, CHE-0316551]; Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX We thank Tom H. Ching for assistance with reconstitution of cytochrome c and Prof. Abel Schejter for useful discussions. MD simulations were carried out at Boston University's Center for Computer Science.; We acknowledge generous support of this research by the National Science Foundation (grant Nos. PHY-0545787 to J. T. S. and CHE-9975494 and CHE-0316551 to J. E. S.). Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357. NR 115 TC 20 Z9 20 U1 2 U2 19 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD DEC 15 PY 2008 VL 95 IS 12 BP 5874 EP 5889 DI 10.1529/biophysj.108.138198 PG 16 WC Biophysics SC Biophysics GA 381TR UT WOS:000261559300033 PM 18835904 ER PT J AU Viamajala, S Peyton, BM Gerlach, R Sivaswamy, V Apel, WA Petersen, JN AF Viamajala, Sridhar Peyton, Brent M. Gerlach, Robin Sivaswamy, Vaideeswaran Apel, William A. Petersen, James N. TI Permeable Reactive Biobarriers for In Situ Cr(VI) Reduction: Bench Scale Tests Using Cellulomonas sp Strain ES6 SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE chromium; bioremediation; Cellulomonas; permeable reactive barrier; Cr(VI) reduction; chromate reduction; heavy metal; biofilm ID HYDROUS FERRIC-OXIDE; HEXAVALENT-CHROMIUM; CHROMATE REDUCTION; DISSIMILATORY REDUCTION; CARBON-TETRACHLORIDE; REDUCING BACTERIA; AQUATIC SEDIMENTS; HUMIC SUBSTANCES; IRON REDUCTION; DECHLORINATION AB Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to Stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr(VI)-contaminated groundwater through formation of permeable reactive biobarriers (PRBB). C1 [Viamajala, Sridhar; Peyton, Brent M.; Sivaswamy, Vaideeswaran; Petersen, James N.] Washington State Univ, Dept Chem Engn & Bioengn, Ctr Multiphase Environm Res, WSU,NSF,IGERT, Pullman, WA 99164 USA. [Viamajala, Sridhar] Utah State Univ, Dept Biol & Irrigat Engn, Logan, UT 84322 USA. [Peyton, Brent M.; Gerlach, Robin] Montana State Univ, Ctr Biofilm Engn Chem & Biol Engn, Bozeman, MT 59717 USA. [Apel, William A.] Idaho Natl Lab, Dept Biol Sci, Idaho Falls, ID USA. RP Viamajala, S (reprint author), Washington State Univ, Dept Chem Engn & Bioengn, Ctr Multiphase Environm Res, WSU,NSF,IGERT, POB 642719, Pullman, WA 99164 USA. EM sviamajala@cc.usu.edu RI Petersen, James/B-8924-2008; Gerlach, Robin/A-9474-2012; Peyton, Brent/G-5247-2015 OI Peyton, Brent/0000-0003-0033-0651 FU US Department of Energy, Office of Science, Natural and Accelerated Bioremediation Research (NABIR) Program (DOE-NE Idaho Operations Office) [DE-AC07-05ID14517, DE-FG03-98ER62693]; U.S. Department of Energy, Office of Science, Environmental Management Science Program (EMSP) [DE-FG02-03ER63577, DE-FG02-03ER63582, DE-FG02-06ER64206]; Inland Northwest Research Alliance [WSU 005, MSU 002] FX Contract grant sponsor: US Department of Energy, Office of Science, Natural and Accelerated Bioremediation Research (NABIR) Program (DOE-NE Idaho Operations Office); Contract grant number: DE-AC07-05ID14517; DE-FG03-98ER62693; Contract grant sponsor: U.S. Department of Energy, Office of Science, Environmental Management Science Program (EMSP); Contract grant number: DE-FG02-03ER63577; DE-FG02-03ER63582; DE-FG02-06ER64206; Contract grant sponsor: Inland Northwest Research Alliance; Contract grant number: WSU 005; MSU 002 NR 54 TC 11 Z9 11 U1 0 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD DEC 15 PY 2008 VL 101 IS 6 BP 1150 EP 1162 DI 10.1002/bit.22020 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 373DC UT WOS:000260950200005 PM 18683257 ER PT J AU An, XL Gauthier, E Zhang, XH Guo, XH Anstee, DJ Mohandas, N Chasis, JA AF An, Xiuli Gauthier, Emilie Zhang, Xihui Guo, Xinhua Anstee, David J. Mohandas, Narla Chasis, Joel Anne TI Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin SO BLOOD LA English DT Article ID BLOOD-GROUP GLYCOPROTEIN; CELL-SURFACE GLYCOPROTEIN; ALPHA-ACTININ; IMMUNOGLOBULIN SUPERFAMILY; ERYTHROCYTE SPECTRIN; MOLECULE GLYCOPROTEIN; CYTOPLASMIC DOMAIN; ENDOTHELIAL-CELLS; GROUP ANTIGENS; BINDING-SITES AB The Lutheran (Lu) and Lu(v13) blood group glycoproteins function as receptors for extracellular matrix laminins. Lu and Lu( v13) are linked to the erythrocyte cytoskeleton through a direct interaction with spectrin. However, neither the molecular basis of the interaction nor its functional consequences have previously been delineated. In the present study, we defined the binding motifs of Lu and Lu( v13) on spectrin and identified a functional role for this interaction. We found that the cytoplasmic domains of both Lu and Lu( v13) bound to repeat 4 of the alpha spectrin chain. The interaction of full-length spectrin dimer to Lu and Lu( v13) was inhibited by repeat 4 of alpha-spectrin. Further, resealing of this repeat peptide into erythrocytes led to weakened Lu-cytoskeleton interaction as demonstrated by increased detergent extractability of Lu. Importantly, disruption of the Lu-spectrin linkage was accompanied by enhanced cell adhesion to laminin. We conclude that the interaction of the Lu cytoplasmic tail with the cytoskeleton regulates its adhesive receptor function. C1 [Chasis, Joel Anne] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Anstee, David J.] Bristol Inst Transfus Sci, Bristol, Avon, England. [An, Xiuli; Gauthier, Emilie; Zhang, Xihui; Guo, Xinhua; Mohandas, Narla] New York Blood Ctr, Red Cell Physiol Lab, New York, NY USA. RP Chasis, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Bldg 84,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jachasis@lbl.gov FU National Institutes of Health [DK56267, DK26263, DK32094, HL31579]; National Health Service Research and Development Directorate (United Kingdom); Director, Office of Health and Environment Research Division, US Department of Energy [DE-AC03-76SF00098] FX This work was supported in part by the National Institutes of Health ( grants DK56267, DK26263, DK32094, and HL31579), the National Health Service Research and Development Directorate (United Kingdom), and by the Director, Office of Health and Environment Research Division, US Department of Energy, under contract DE-AC03-76SF00098. NR 50 TC 15 Z9 16 U1 1 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD DEC 15 PY 2008 VL 112 IS 13 BP 5212 EP 5218 DI 10.1182/blood-2008-03-146068 PG 7 WC Hematology SC Hematology GA 381CR UT WOS:000261513400055 PM 18815288 ER PT J AU Shkrob, IA AF Shkrob, Ilya A. TI Pump-probe polarized transient hole burning (PTHB) dynamics of hydrated electron revisited SO CHEMICAL PHYSICS LETTERS LA English DT Article ID OPTICAL-ABSORPTION SPECTRUM; QUANTUM MOLECULAR-DYNAMICS; AQUEOUS SOLVATED ELECTRON; COMPUTER-SIMULATION; LOCAL ANISOTROPY; EXCESS ELECTRON; SPECTROSCOPY; WATER; EXCITATION; CHLORIDE AB Femtosecond PTHB spectroscopy was expected to demonstrate the existence of distinct s-p absorption subbands originating from the three nondegenerate p-like excited states of hydrated electron in anisotropic solvation cavity. Yet no conclusive experimental evidence either for this subband structure or the reorientation of the cavity on the picosecond time scale has been obtained. It is shown here that rapid reorientation of s-p transition dipole moments in response to small scale motion of water molecules is the likely culprit. The polarized bleach is shown to be too low in amplitude and too short lived to be observed reliably on the sub-picosecond time scale. (C) 2008 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU Office of Science, Division of Chemical Sciences; US-DOE [DE-AC-02-06CH11357] FX This work was supported by the Office of Science, Division of Chemical Sciences, US-DOE under contract No. DE-AC-02-06CH11357. The author thanks B. J. Schwartz, R. E. Larsen, and W. J. Glover of UCLA for introducing him to PTHB and providing the MQC MD trajectory used in the calculations. NR 27 TC 7 Z9 7 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD DEC 15 PY 2008 VL 467 IS 1-3 BP 84 EP 87 DI 10.1016/j.cplett.2008.11.004 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379OV UT WOS:000261407000018 ER PT J AU Chai, JD Head-Gordon, M AF Chai, Jeng-Da Head-Gordon, Martin TI Optimal operators for Hartree-Fock exchange from long-range corrected hybrid density functionals SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TOP PAIR-DENSITY; RARE-GAS DIMERS; EXCITED-STATES; COULOMB; DISSOCIATION; ATTENUATION; ENERGIES AB The long-range operators for Hartree-Fock exchange from two recently proposed long-range corrected hybrid functionals, omega B97 and omega B97X [J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106], are discussed. A conserved property is found in the middle-range region of the operator from omega B97X. We argue that the. ne details of the Hartree-Fock exchange mixing in this region are responsible for the accuracy of the long-range corrected hybrid functionals in thermochemistry and barrier heights. Published by Elsevier B.V. C1 [Chai, Jeng-Da] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Chai, JD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jdchai@berkeley.edu; mhg@cchem.berkeley.edu RI Chai, Jeng-Da/C-3897-2009 OI Chai, Jeng-Da/0000-0002-3994-2279 FU US Department of Energy through the Theory and Modeling in Nanoscience Program FX This work was supported by the US Department of Energy through the Theory and Modeling in Nanoscience Program. MHG is a part-owner of Q-Chem Inc. NR 43 TC 45 Z9 45 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD DEC 15 PY 2008 VL 467 IS 1-3 BP 176 EP 178 DI 10.1016/j.cplett.2008.10.070 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379OV UT WOS:000261407000037 ER PT J AU Uejio, JS Schwartz, CP Saykally, RJ Prendergast, D AF Uejio, Janel S. Schwartz, Craig P. Saykally, Richard J. Prendergast, David TI Effects of vibrational motion on core-level spectra of prototype organic molecules SO CHEMICAL PHYSICS LETTERS LA English DT Article ID X-RAY-ABSORPTION; ENERGY-LOSS SPECTROSCOPY; LIQUID WATER; EXCITATION; SCATTERING; GLYCINE; BOND; IONIZATION; CLUSTERS; GAS AB A computational approach is presented for prediction and interpretation of core-level spectra of complex molecules. Applications are presented for several isolated organic molecules, sampling a range of chemical bonding and structural motifs. Comparison with gas phase measurements indicates that spectral lineshapes are accurately reproduced both above and below the ionization potential, without resort to ad hoc broadening. Agreement with experiment is significantly improved upon inclusion of vibrations via molecular dynamics sampling. We isolate and characterize spectral features due to particular electronic transitions enabled by vibrations, noting that even zero-point motion is sufficient in some cases. (C) 2008 Elsevier B.V. All rights reserved. C1 [Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Prendergast, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM dgprendergast@lbl.gov RI Prendergast, David/E-4437-2010 FU NERSC [DE-AC02-05CH11231] FX We thank Wanli Yang at Beamline 8.0.1 for his help with the pyrrole experiment. This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the LBNL Chemical Sciences Division, the Molecular Foundry and the Advanced Light Source. Computational resources were provided by NERSC, a DOE Advanced Scientific Computing Research User Facility. NR 38 TC 33 Z9 33 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD DEC 15 PY 2008 VL 467 IS 1-3 BP 195 EP 199 DI 10.1016/j.cplett.2008.10.088 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379OV UT WOS:000261407000041 ER PT J AU Dziegielewski, J Baulch, JE Goetz, W Coleman, MC Spitz, DR Murley, JS Grdina, DJ Morgan, WF AF Dziegielewski, Jaroslaw Baulch, Janet E. Goetz, Wilfried Coleman, Mitchell C. Spitz, Douglas R. Murley, Jeffrey S. Grdina, David J. Morgan, William F. TI WR-1065, the active metabolite of amifostine, mitigates radiation-induced delayed genomic instability SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Genomic instability; Amifostine; WR-1065; High-LET radiation; Delayed effects; Radio-protection ID FREE-RADICAL SCAVENGERS; MNSOD GENE-EXPRESSION; HIGH-LET RADIATION; FREE THIOL FORM; NF-KAPPA-B; IONIZING-RADIATION; SUPEROXIDE-DISMUTASE; IN-VITRO; OXIDATIVE STRESS; SOD2 MNSOD AB Compounds that can protect cells from the effects of radiation are important for clinical use, in the event of an accidental or terrorist-generated radiation event, and for astronauts traveling in space. One of the major concerns regarding the use of radio-protective agents is that they may protect cells initially, but predispose surviving cells to increased genomic instability later. In this study we used WR-1065, the active metabolite of amifostine, to determine how protection from direct effects of high- and low-LET radiation exposure influences genomic stability. When added 30 min before irradiation and in high concentrations, WR-1065 protected cells from immediate radiation-induced effects as well as from delayed genomic instability. Lower, nontoxic concentrations of WR-1065 did not protect cells from death; however, it was effective in significantly decreasing delayed genomic instability in the progeny of irradiated cells. The observed increase in manganese superoxide dismutase protein levels and activity may provide an explanation for this effect. These results confirm that WR-1065 is protective against both low- and high-LET radiation-induced genomic instability in surviving cells. (C) 2008 Elsevier Inc. All rights reserved. C1 [Dziegielewski, Jaroslaw; Baulch, Janet E.; Goetz, Wilfried; Morgan, William F.] Univ Maryland, Sch Med, Radiat Oncol Res Lab, Dept Radiat Oncol, Baltimore, MD 21201 USA. [Coleman, Mitchell C.; Spitz, Douglas R.] Univ Iowa, Free Rad & Radiat Biol Program, Dept Radiat Oncol, Holden Comprehens Canc Ctr, Iowa City, IA USA. [Murley, Jeffrey S.; Grdina, David J.] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA. [Morgan, William F.] Univ Maryland, Sch Med, Marlene & Stewart Greenebaum Canc Ctr, Baltimore, MD 21201 USA. RP Morgan, WF (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,MS P7-56, Richland, WA 99352 USA. EM wfmorgan@pnl.gov FU NASA [NNJ05HE73G]; DOE [DE-FG-01-04ER04-21]; NIH [P30-CA086862] FX We thank Drs. Marcelo Vazquez, Betsy M. Sutherland, Peter Guida, and Adam Rusek, and the numerous other individuals at the Brookhaven National Laboratory who helped us with these studies. We also thank Ms. Dinah Pyles, Mr. Umut Aypar, and Mr. Yi-Jun Li for help with experiments. This work was supported in part by NASA Grant NNJ05HE73G (for W.F.M.), DOE Low Dose Grant DE-FG-01-04ER04-21 (for D.J.G.), and NIH Grant P30-CA086862 (for D.R.S.). NR 40 TC 22 Z9 23 U1 1 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0891-5849 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD DEC 15 PY 2008 VL 45 IS 12 BP 1674 EP 1681 DI 10.1016/j.freeradbiomed.2008.09.004 PG 8 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 384CL UT WOS:000261721800008 PM 18845240 ER PT J AU Liang, B Lehmann, J Solomon, D Sohi, S Thies, JE Skjemstad, JO Luizao, FJ Engelhard, MH Neves, EG Wirick, S AF Liang, Biqing Lehmann, Johannes Solomon, Dawit Sohi, Saran Thies, Janice E. Skjemstad, Jan O. Luizao, Flavio J. Engelhard, Mark H. Neves, Eduardo G. Wirick, Sue TI Stability of biomass-derived black carbon in soils SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NATURAL ORGANIC MATERIALS; X-RAY SPECTROMICROSCOPY; CHEMICAL-COMPOSITION; MICROBIAL BIOMASS; ELEMENTAL CARBON; WOOD CHARCOAL; CLAY CONTENT; SODA-LIME; MATTER; RESPIRATION AB Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO2. In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO2 evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO2 respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Liang, Biqing; Lehmann, Johannes; Solomon, Dawit; Thies, Janice E.] Cornell Univ, Coll Agr & Life Sci, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. [Sohi, Saran] Rothamsted Res, Dept Soil Sci, Harpenden AL5 2JQ, Herts, England. [Skjemstad, Jan O.] CSIRO Land & Water, Glen Osmond, SA 5064, Australia. [Luizao, Flavio J.] Inst Nacl de Pesquisas da Amazonia, BR-69011970 Manaus, Amazonas, Brazil. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol & Sci Lab, Richland, WA 99352 USA. [Neves, Eduardo G.] Univ Sao Paulo, Museu Arqueol & Etnol, BR-05508900 Sao Paulo, Brazil. [Wirick, Sue] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Lehmann, J (reprint author), Cornell Univ, Coll Agr & Life Sci, Dept Crop & Soil Sci, 909 Bradfield Hall, Ithaca, NY 14853 USA. EM CL273@cornell.edu RI Engelhard, Mark/F-1317-2010; Liang, Biqing/J-2799-2012; Thies, Janice/A-5074-2014; Lehmann, Johannes/H-2682-2014 OI Engelhard, Mark/0000-0002-5543-0812; Liang, Biqing/0000-0003-3634-5556; Lehmann, Johannes/0000-0002-4701-2936 FU National Science Foundation [DEB-0425995] FX This project was funded by the Division of Environmental Biology of the National Science Foundation under contract DEB-0425995. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. file NEXAFS spectra were obtained at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, a DOE supported facility at the beamline X-IAl developed by the group of Janos Kirz and Chris Jacobsen at SUNY Stony Brook, with support front the New York State Office of Science and Technology Academic Research and NASA's Discovery Data Analysis and Exobiology programs. The XPS analyses were performed in the Environmental Molecular and Sciences Laboratory, Pacific Northwest National Laboratory, a national scientific user facility sponsored by the Department of Energy (DoE), USA. Rotharnsted Research receives grant-aided support from the UK Biotechnology and Biological Sciences Research Council. Many thanks to Jeffrey A. Baldock for insightful advice, to James Kinyangi for technical discussion about NEXAFS analysis, to Helen Yates for the soil fractionation, to Fernando Costa and Manuel Arroyo-Kalin for help with sampling, and to Yuanming Zhang for invaluable help with sectioning. NR 54 TC 114 Z9 129 U1 8 U2 108 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD DEC 15 PY 2008 VL 72 IS 24 BP 6069 EP 6078 DI 10.1016/j.gca.2008.09.028 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 386WV UT WOS:000261914200017 ER PT J AU Alvarez Retuerto, AI Cantor, RM Gleeson, JG Ustaszewska, A Schackwitz, WS Pennacchio, LA Geschwind, DH AF Alvarez Retuerto, Ana I. Cantor, Rita M. Gleeson, Joseph G. Ustaszewska, Anna Schackwitz, Wendy S. Pennacchio, Len A. Geschwind, Daniel H. TI Association of common variants in the Joubert syndrome gene (AHI1) with autism SO HUMAN MOLECULAR GENETICS LA English DT Article ID SUSCEPTIBILITY-GENE; GENOME SCAN; CHROMOSOME 6Q23; MUTATIONS CAUSE; SCHIZOPHRENIA; LINKAGE; DISORDERS; LOCI; DISEASE; FAMILY AB It has been suggested that autism, like other complex genetic disorders, may benefit from the study of rare or Mendelian variants associated with syndromic or non-syndromic forms of the disease. However, there are few examples in which common variation in genes causing a Mendelian neuropsychiatric disorder has been shown to contribute to disease susceptibility in an allied common condition. Joubert syndrome (JS) is a rare recessively inherited disorder, with mutations reported at several loci including the gene Abelson's Helper Integration 1 (AHI1). A significant proportion of patients with JS, in some studies up to 40%, have been diagnosed with autism spectrum disorder (ASD) and several linkage studies in ASD have nominally implicated the region on 6q where AHI1 resides. To evaluate AHI1 in ASD, we performed a three-stage analysis of AHI1 as an a priori candidate gene for autism. Re-sequencing was first used to screen AHI1, followed by two subsequent association studies, one limited and one covering the gene more completely, in Autism Genetic Resource Exchange (AGRE) families. In stage 3, we found evidence of an associated haplotype in AHI1 with ASD after correction for multiple comparisons, in a region of the gene that had been previously associated with schizophrenia. These data suggest a role for AHI1 in common disorders affecting human cognition and behavior. C1 [Alvarez Retuerto, Ana I.; Geschwind, Daniel H.] Univ Calif Los Angeles, Ctr Autism Res, Los Angeles, CA 90095 USA. [Alvarez Retuerto, Ana I.; Geschwind, Daniel H.] Univ Calif Los Angeles, Treatment Semel Inst, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Cantor, Rita M.; Geschwind, Daniel H.] Univ Calif Los Angeles, Dept Human Genet, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Geschwind, Daniel H.] Univ Calif Los Angeles, Dept Neurol, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Gleeson, Joseph G.] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA. [Ustaszewska, Anna; Schackwitz, Wendy S.; Pennacchio, Len A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Schackwitz, Wendy S.; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Geschwind, DH (reprint author), Univ Calif Los Angeles, Sch Med, Dept Neurol, 695 Charles E Young Dr S, Los Angeles, CA 90095 USA. EM dhg@ucla.edu FU National Institute of Health [R01 (MH64547]; ACE Genetics Network [MH081754]; National Institute of Mental Health; National Institute of Child Health and Human Development; National Institute of Deafness and Other Communication Disorders; National Institute of Neurological Disorders and Stroke [U54MH068172]; Simons Foundation; Department of Energy Contract, University of California, E.O. Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This project was supported by the National Institute of Health research grants R01 (MH64547 to D. H. G. and ACE Genetics Network grant MH081754 to D. H. G.); the National Institute of Mental Health; the National Institute of Child Health and Human Development; the National Institute of Deafness and Other Communication Disorders; the National Institute of Neurological Disorders and Stroke (U54MH068172 to D. H. G., M. Sigman, PI); Simons Foundation to J.G.G.; Department of Energy Contract, University of California, E.O. Lawrence Berkeley National Laboratory (DE-AC02-05CH11231 to L. A. P.). NR 62 TC 10 Z9 10 U1 4 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0964-6906 EI 1460-2083 J9 HUM MOL GENET JI Hum. Mol. Genet. PD DEC 15 PY 2008 VL 17 IS 24 BP 3887 EP 3896 DI 10.1093/hmg/ddn291 PG 10 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 377VQ UT WOS:000261280300006 PM 18782849 ER PT J AU Paulat, F Berto, TC George, SD Goodrich, L Praneeth, VKK Sulok, CD Lehnert, N AF Paulat, Florian Berto, Timothy C. George, Serena DeBeer Goodrich, Lauren Praneeth, V. K. K. Sulok, Corinne D. Lehnert, Nicolai TI Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight from Nuclear Resonance Vibrational Spectroscopy SO INORGANIC CHEMISTRY LA English DT Article ID NO COMPLEXES; IRON AB This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to (NO)-N-15-O-18 isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm(-1). Normal coordinate analysis shows that the 437 cm(-1) mode corresponds to the Fe-NO stretch, whereas the 563 cm(-1) band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO. C1 [Paulat, Florian; Berto, Timothy C.; Goodrich, Lauren; Praneeth, V. K. K.; Sulok, Corinne D.; Lehnert, Nicolai] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [George, Serena DeBeer] Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. RP Lehnert, N (reprint author), Univ Michigan, Dept Chem, 930 N Univ, Ann Arbor, MI 48109 USA. EM lehnertn@umich.edu RI DeBeer, Serena/G-6718-2012 FU Department of Energy (DOE), Office of Science [DE-AC02-06CH11357]; NIH; NCRR; BTP; BER [5 P41 RR001209] FX The Advanced Photon Source (APS) is supported by the Department of Energy (DOE), Office of Science, under Contract DE-AC02-06CH11357. S.D.G. acknowledges SSRL and the SMB program for funding. SSRL is supported by the DOE, Basic Energy Sciences. The SMB program is supported by the NIH, NCRR, BTP, and DOE, BER (Grant 5 P41 RR001209). We thank Dr. J. Zhao (APS) for his help with the NRVS experiments. NR 10 TC 34 Z9 34 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 15 PY 2008 VL 47 IS 24 BP 11449 EP 11451 DI 10.1021/ic801626w PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 381BP UT WOS:000261510100002 PM 18998631 ER PT J AU Sarangi, R Hocking, RK Neidig, ML Benfatto, M Holman, TR Solomon, EI Hodgson, KO Hedman, B AF Sarangi, Ritimukta Hocking, Rosalie K. Neidig, Michael L. Benfatto, Maurizio Holman, Theodore R. Solomon, Edward I. Hodgson, Keith O. Hedman, Britt TI Geometric Structure Determination of N694C Lipoxygenase: A Comparative Near-Edge X-Ray Absorption Spectroscopy and Extended X-Ray Absorption Fine Structure Study SO INORGANIC CHEMISTRY LA English DT Article ID SOYBEAN LIPOXYGENASE-1; FUNCTIONAL-CHARACTERIZATION; ENERGY REGION; XANES SPECTRA; ACTIVE-SITES; PRE-EDGE; SUBSTRATE; COMPLEXES; ENZYME; 15-LIPOXYGENASE AB The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparigine to cystiene, the short Fe-O interaction with asparigine is replaced by a weak Fe-(H(2)O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that; relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species. C1 [Benfatto, Maurizio] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Hocking, Rosalie K.; Neidig, Michael L.; Solomon, Edward I.; Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Holman, Theodore R.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Sarangi, Ritimukta; Solomon, Edward I.; Hodgson, Keith O.; Hedman, Britt] Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. RP Benfatto, M (reprint author), Ist Nazl Fis Nucl, Lab Nazl Frascati, CP 13, I-00044 Frascati, Italy. EM Maurizio.Benfatto@lnf.infn.it; hedman@ssrl.slac.stanford.edu RI Hocking, Rosalie/F-5763-2013 OI Hocking, Rosalie/0000-0002-2213-8786 FU NIH [RR-01209, DK-31450, GM56062-06]; Department of Energy, Office of Basic Energy Sciences; National Center for Research Resources [5 P41 RR001209] FX This work was supported by NIH grants RR-01209 (K.O.H.), DK-31450 (E.I.S.), and GM56062-06 (T.R.H.). SSRL operations are funded by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology program is supported by the National Institutes of Health, National Center for Research Resources. Biomedical Technology Program and by the Department of Energy, Office of Biological and Environmental Research. This publication was made possible by Grant 5 P41 RR001209 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. NR 33 TC 5 Z9 5 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD DEC 15 PY 2008 VL 47 IS 24 BP 11543 EP 11550 DI 10.1021/ic800580f PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 381BP UT WOS:000261510100016 PM 18656914 ER PT J AU Tseng, HW Zong, R Muckerman, JT Thummel, R AF Tseng, Huan-Wei Zong, Ruifa Muckerman, James T. Thummel, Randolph TI Mononuclear Ruthenium(II) Complexes That Catalyze Water Oxidation SO INORGANIC CHEMISTRY LA English DT Article ID EFFECTIVE CORE POTENTIALS; MU-OXO DIMER; MOLECULAR CALCULATIONS; REDOX PROPERTIES; SUPRAMOLECULAR COMPLEXES; CRYSTAL-STRUCTURE; RU(II) COMPLEXES; LIGANDS; METAL; BEHAVIOR AB Two series of mononuclear ruthenium(II) complexes involving polypyridine-type ligands have been prepared, and their ability to act as catalysts for water oxidation has been examined. One series is of the type [Ru(tpy)(NN)Cl](PF(6)) (tpy = 2,2'; 6,2"-terpyridine), where NN is one of 12 different bidentate ligands, and the other series includes various combinations of 4-picoline, 2,2'-bipyridine (bpy), and tpy as well as the tetradentate 2,9-dipyrid-2'-yl-1,10-phenanthroline (dpp). The electronic absorption and redox data for these compounds have been measured and reported. The long-wavelength metal-to-ligand charge-transfer absorption and the first oxidation and reduction potentials are found to be consistent with the structure of the complex. Of the 23 complexes, 14 catalyze water oxidation and all of these contain a tpy or dpp. Kinetic measurements indicate a first-order reaction and together with a catalyst recovery experiment argue against the involvement of RuO(2). A tentative mechanism is proposed that involves a seven-coordinate Ru(VI)=O species that is attacked by water to form the critical O-O bond. Density functional theory calculations, which support the proposed mechanism, are performed. C1 [Tseng, Huan-Wei; Zong, Ruifa; Thummel, Randolph] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Thummel, R (reprint author), Univ Houston, Dept Chem, 136 Fleming Bldg, Houston, TX 77204 USA. EM thummel@uh.edu RI Muckerman, James/D-8752-2013 FU Robert A. Welch Foundation [E-621]; Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG03-02ER15334, DE-AC02-98CH 10886] FX We thank the Robert A. Welch Foundation (E-621) and the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy (Contract DE-FG03-02ER15334 to H.-W.T., R.Z., and R.T. and Contract DE-AC02-98CH 10886 to Brookhaven National Laboratory) for financial support of this work. We also thank Dr. James Korp for assistance with the X-ray determination and Dr. Zhongping Ou for help with the spectroelectrochemistry. NR 69 TC 241 Z9 242 U1 9 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD DEC 15 PY 2008 VL 47 IS 24 BP 11763 EP 11773 DI 10.1021/ic8014817 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 381BP UT WOS:000261510100038 PM 19006384 ER PT J AU Graves, CR Vaughn, AE Schelter, EJ Scott, BL Thompson, JD Morris, DE Kiplinger, JL AF Graves, Christopher R. Vaughn, Anthony E. Schelter, Eric J. Scott, Brian L. Thompson, Joe D. Morris, David E. Kiplinger, Jaqueline L. TI Probing the Chemistry, Electronic Structure and Redox Energetics in Organometallic Pentavalent Uranium Complexes SO INORGANIC CHEMISTRY LA English DT Article ID VALENT ORGANOURANIUM COMPLEXES; EARLY ACTINIDE COMPLEXES; PROTON CONTACT SHIFTS; X-RAY-STRUCTURE; MOLECULAR-STRUCTURE; TRIVALENT URANIUM; URANYL-ION; F-ELEMENT; METALLOCENE COMPLEXES; ARYLOXIDE DERIVATIVES AB A series of organometallic pentavalent uranium complexes of the general formula (C5Me5)(2)U(=N-2,6-Pr-i(2)-C6H3)(Y) (Y = monoanionic, non-halide ligand) have been prepared using a variety of routes. Utilizing the direct oxidation of (C5Me5)(2)U(=N-2,6-Pr-i(2)-C6H3)(THF) (2) with the appropriate copper(l) salt yielded the triflate (Y = OTf (OSO2CF3), 11) thiolate (Y = SPh, 12), and acetylide (Y = C CPh, 13) complexes, while a salt metathesis route between the U-V-imido (C5Me5)(2)U(=N-2,6-Pr-i(2)-C6H3)(I) (10) and various alkali salts gave the diphenylamide (Y = NPh2, 14), aryloxide (Y = OPh, 15), alkyl (Y = Me, 16), and aryl (Y = Ph, 17) complexes. Paired with 13, the isolation of 16 and 17 shows that U-V can support the full range of carbon anions (sp, sp(2), and sp(3)), and these are, to the best of our knowledge, the first examples of pentavalent uranium complexes with anionic carbon moieties other than carbocyclic (C5R5, C7H7, C8H8) ligands. Finally, both protonolysis and insertion pathways afforded the U-V-imido ketimide complex (C5Me5)(2)U(=N-2,6-Pr-i(2)-C6H3)(N=CPh2) (18). The complexes have been isolated in good yield and characterized using various combinations of H-1 NMR spectroscopy, elemental analysis, mass spectrometry, single crystal X-ray diffraction, cyclic voltammetry, UV-visible-NIR absorption spectroscopy, and magnetic susceptibility measurements, All (C5Me5)(2)U(=N-Ar)(X) (X = F, Cl, Br, I) and (C5Me5)(2)U(=N-Ar)(Y) complexes exhibit U-VI/U-V and U-V/U-IV redox couples by voltammetry. The potential separation between these couples remains essentially constant at similar to 1.50 V, but both processes shift in tandem in potential by similar to 700 mV across the series of X/Y ligands. No significant differences between mu(eff) values or temperature dependencies in the magnetic susceptibility were observed for these complexes regardless of the identity of the ancillary X/Y ligand. However, an excellent linear correlation was observed between the chemical shift values Of C5Me5 ligand protons in the 1H NMR spectra and the oxidation potentials of (C5Me5)(2)U(=N-2,6-Pr-i(2)-C6H3)(X/Y), suggesting that there is a common origin, overall sigma-/pi-donation from the ancillary X/Y ligand to the metal, contributing to both observables. Combined, these data confer the following trend in increasing sigma/pi-donating ability of the X/Y ligand to the U-V metal center: OTf < I < Br < Cl < SPh < C CPh < F < [OPh similar to Me similar to Ph] << NPh2 < N=CPh2. These (C5Me5)(2)U(=N-2,6-Pr-i(2)-C6H3)(X/Y) complexes also show distinct hallmarks of a covalent bonding interaction between the metal and the imide ligand that is modulated to varying degrees by the interaction between the X/Y ancillary ligand and the Uv metal center. These signatures of covalency include stabilization of multile metal oxidations states [U-VI, U-V, and U-IV] and enhanced intensities in the intraconfiguration (f-f) transitions. Of particular note in this regard is the more than 20-fold enhancement in the f-f intensities observed for Y C=CPh and N=CPh2, which is a clear reflection of the covalent metal-ligand bonding interactions sustained by the acetylicle and ketimide ligands in these pentavalent systems. C1 [Graves, Christopher R.; Vaughn, Anthony E.; Schelter, Eric J.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lani.gov RI Schelter, Eric/E-2962-2013; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU National Nuclear Security Administration of the US. Department of Energy at Los Alamos National Laboratory [DE-AC5206NA25396] FX For financial support of this work, we acknowledge LANL (Director's PD Fellowship to C.R.G. and ETS.; Frederick Reines PD Fellowship to E.J.S.), the LANL G. T. Seaborg Institute (Pl) Fellowships to C.R.G. and ETS.; summer graduate student fellowship to A.E.V.), the Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program, and the LANL Laboratory Directed Research & Development program. This work was carried out under the auspices of the National Nuclear Security Administration of the US. Department of Energy at Los Alamos National Laboratory under Contract DE-AC5206NA25396. NR 96 TC 64 Z9 64 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 15 PY 2008 VL 47 IS 24 BP 11879 EP 11891 DI 10.1021/ic8017375 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 381BP UT WOS:000261510100049 PM 19053342 ER PT J AU Hurley, DH Fig, MK AF Hurley, D. H. Fig, M. K. TI Parametric study of thermal interface resistance using laser-based thermal wave imaging SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE photothermal effects; temperature distribution; thermal resistance ID HARMONIC HEAT-FLOW; CONDUCTIVITY MEASUREMENTS; THIN-FILMS; SUPERLATTICES; DIAMOND; CONDUCTANCE; DEFLECTION; SILICON; SYSTEMS AB A parametric study of harmonic heat flow in a thin isotropic film on an anisotropic, semi-infinite, transparent substrate is presented using the thermal interface resistance as a parameter. The heat source is provided by an amplitude modulated Gaussian laser beam. This study reveals that the anisotropic nature of the substrate is masked for large values of the interface resistance. Furthermore, for intermediate values of the interface resistance, there are localized regions in which the gradient of the thermal wave amplitude is in a direction away from the source. This anomalous behavior is explained by considering the relative phase relation of the temperature field between the film and the substrate. C1 [Hurley, D. H.; Fig, M. K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hurley, DH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM david.hurley@inl.gov FU U. S. Department of Energy; Office of Nuclear Energy; GNEP Transuranic Fuels Campaign; Fuels Characterization element; DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was sponsored by the U. S. Department of Energy, Office of Nuclear Energy, GNEP Transuranic Fuels Campaign, Fuels Characterization element, operated by Battelle Energy Alliance, LLC, under DOE Idaho Operations Office Contract No. DE-AC07-05ID14517. NR 27 TC 2 Z9 2 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 15 PY 2008 VL 104 IS 12 AR 123703 DI 10.1063/1.3033163 PG 4 WC Physics, Applied SC Physics GA 391HT UT WOS:000262225100055 ER PT J AU Jacobsohn, LG Blair, MW Tornga, SC Brown, LO Bennett, BL Muenchausen, RE AF Jacobsohn, L. G. Blair, M. W. Tornga, S. C. Brown, L. O. Bennett, B. L. Muenchausen, R. E. TI Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE annealing; bismuth; combustion synthesis; crystallites; nanostructured materials; phosphors; photoluminescence; thermoluminescence; yttrium compounds ID PHOSPHORS; PHOTOLUMINESCENCE; NANOCRYSTALLINE; POWDERS; BISMUTH; OXIDES AB Photoluminescence (PL), radioluminescence (RL), and thermoluminescence (TL) investigation of Y2O3:Bi nanophosphors prepared by solution combustion synthesis using urea, glycine, and hexamethylenetetramine (HMT) as fuels was carried out. The as-prepared nanopowders have increasing crystallinity and average crystallite sizes for urea, glycine, and HMT, respectively. Luminescence is composed of two emission bands centered at 408 and 505 nm due to two nonequivalent Bi3+ sites with symmetry S-6 and C-2, respectively. The occupancy of these sites depends on the synthesis conditions, in agreement with theoretical predictions. Annealing at 1000 degrees C for 1 h improves PL and RL efficiency due to enhanced crystallinity of the nanopowders and activation of recombination centers (Bi3+ ions). No shift in the PL peak position was observed as a function of average crystallite size. The concentration quenching was experimentally determined to have a maximum emission of around 3 mol % of the dopant. TL spectra present several peaks between 50 and 300 degrees C, and the total TL signal is correlated with the heat of combustion of the fuel and thus crystallinity increases. Most likely, increases in RL and TL are also due to the increase in the concentration of recombination centers. C1 [Jacobsohn, L. G.; Blair, M. W.; Tornga, S. C.; Brown, L. O.; Bennett, B. L.; Muenchausen, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jacobsohn, LG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM luizjaco99@hotmail.com OI Jacobsohn, Luiz/0000-0001-8991-3903 FU DOE, Office of Basic Energy Sciences; Los Alamos Directors FX This work was supported in part by the DOE, Office of Basic Energy Sciences, and by a Los Alamos Directors Funding grant. NR 28 TC 53 Z9 54 U1 2 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 15 PY 2008 VL 104 IS 12 AR 124303 DI 10.1063/1.3042223 PG 7 WC Physics, Applied SC Physics GA 391HT UT WOS:000262225100097 ER PT J AU Jones, RE Broesler, R Yu, KM Ager, JW Haller, EE Walukiewicz, W Chen, X Schaff, WJ AF Jones, R. E. Broesler, R. Yu, K. M. Ager, J. W., III Haller, E. E. Walukiewicz, W. Chen, X. Schaff, W. J. TI Band gap bowing parameter of In1-xAlxN SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE absorption coefficients; aluminium compounds; channelling; conduction bands; energy gap; III-V semiconductors; indium compounds; Rutherford backscattering; semiconductor thin films; wide band gap semiconductors ID MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; INN; SEMICONDUCTORS; ALLOYS; FILMS; ENERGY; ALINN; ABSORPTION; DEPENDENCE AB We report a band gap bowing parameter for In1-xAlxN of 4.7 eV from a study of high quality and homogenous samples with x=0.017-0.60. Optical absorption data were modeled to extract the band gaps in order to consider the complications of the band structure of In-rich InAlN, including the Burstein-Moss shift, nonparabolic conduction band, and broadening of the absorption edge. The alloy compositions were accurately determined using Rutherford backscattering spectrometry and the sample quality was evaluated using x-ray diffraction and channeling-RBS. C1 [Jones, R. E.; Broesler, R.; Yu, K. M.; Ager, J. W., III; Haller, E. E.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, X.; Schaff, W. J.] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. [Jones, R. E.; Broesler, R.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM w_walukiewicz@lbl.gov RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 FU U.S. Department of Energy [DE-AC02-05CH11231]; National Defense Science and Engineering Graduate Fellowship FX This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.E.J. acknowledges the National Defense Science and Engineering Graduate Fellowship. NR 39 TC 45 Z9 46 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 15 PY 2008 VL 104 IS 12 AR 123501 DI 10.1063/1.3039509 PG 6 WC Physics, Applied SC Physics GA 391HT UT WOS:000262225100020 ER PT J AU Mendelev, MI Ott, RT Heggen, M Feuerbacher, M Kramer, MJ Sordelet, DJ AF Mendelev, M. I. Ott, R. T. Heggen, M. Feuerbacher, M. Kramer, M. J. Sordelet, D. J. TI Deformation behavior of an amorphous Cu64.5Zr35.5 alloy: A combined computer simulation and experimental study SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE copper alloys; elastic constants; high-temperature effects; metallic glasses; molecular dynamics method; plastic deformation; softening; Young's modulus; zirconium alloys ID HIGH-TEMPERATURE DEFORMATION; BULK METALLIC GLASSES; FREE-VOLUME; STRUCTURAL RELAXATION; HOMOGENEOUS FLOW; PLASTIC-DEFORMATION; TRANSITION; CU; PD40NI10CU30P20; PD40NI40P20 AB Molecular dynamics (MD) simulations were performed to examine the temperature-dependent elastic properties and high-temperature deformation behavior of a Cu64.5Zr35.5 amorphous alloy. From the simulations we find that the elastic constants of the amorphous solid and supercooled liquid exhibit an approximately linear temperature dependence. The predicted temperature dependence of the Young's modulus for the amorphous solid obtained from the MD simulations is in good agreement with experimental measurements using dynamic mechanical analysis. Furthermore, the high-temperature plastic deformation behavior determined by MD simulations is qualitatively in good agreement with results from plastic deformation experiments performed on 1 mm diameter Cu64.5Zr35.5 metallic glass rods at 698 K. Notably, the MD simulations reveal that the flow softening regime of the stress-strain curve corresponds to an increase in the free volume in the atomic structure. Moreover, the simulations indicate that the atomic mobility significantly increases within the same regime. C1 [Mendelev, M. I.; Ott, R. T.; Kramer, M. J.; Sordelet, D. J.] Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Heggen, M.; Feuerbacher, M.] Forschungszentrum Julich GmbH, Inst Festkorperforsch, D-52428 Julich, Germany. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mendelev, MI (reprint author), Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM mendelev@ameslab.gov RI Feuerbacher, Michael/K-3768-2013; OI Feuerbacher, Michael/0000-0003-2882-4960; Heggen, Marc/0000-0002-2646-0078 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX The authors gratefully acknowledge Dr. M. Meyer at Netzsch Instruments, Selb, Germany for performing the DMA studies and Dr. Eun Soo Park, Harvard University, Cambridge, MA for synthesizing the 1 mm diameter Cu64.5Zr35.5 amorphous samples used in the homogeneous deformation experiments. Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 36 TC 20 Z9 20 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 15 PY 2008 VL 104 IS 12 AR 123532 DI 10.1063/1.3043587 PG 9 WC Physics, Applied SC Physics GA 391HT UT WOS:000262225100051 ER PT J AU Wei, X Kang, C Liscidini, M Rong, G Retterer, ST Patrini, M Sipe, JE Weiss, SM AF Wei, X. Kang, C. Liscidini, M. Rong, G. Retterer, S. T. Patrini, M. Sipe, J. E. Weiss, S. M. TI Grating couplers on porous silicon planar waveguides for sensing applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE diffraction gratings; Fourier transforms; optical couplers; optical planar waveguides; optical sensors; porous materials; silicon ID FABRICATION; LIGHT AB We study the use of polymer gratings as light couplers into porous silicon planar waveguides for sensing applications. Experimental evidence of a guided mode in a grating-coupled porous silicon structure is presented, along with a study of its detuning due to waveguide infiltration with a chemical linker. All the measurements are in good agreement with simulations obtained by means of a Fourier modal method, where the porous silicon birefringence is considered. These results demonstrate that this system is potentially useful for chemical and biological sensing applications. C1 [Wei, X.; Rong, G.; Weiss, S. M.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Patrini, M.] Univ Pavia, CNISM, I-27100 Pavia, Italy. [Patrini, M.] Univ Pavia, Dipartimento Fis A Volta, I-27100 Pavia, Italy. [Kang, C.; Weiss, S. M.] Vanderbilt Univ, Interdisciplinary Grad Program Mat Sci, Nashville, TN 37235 USA. [Liscidini, M.; Sipe, J. E.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Liscidini, M.; Sipe, J. E.] Univ Toronto, Inst Opt Sci, Toronto, ON M5S 1A7, Canada. [Retterer, S. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wei, X (reprint author), Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA. EM sharon.weiss@vanderbilt.edu RI Retterer, Scott/A-5256-2011; Weiss, Sharon/B-4806-2012; Sipe, John/B-4668-2014; Liscidini, Marco/B-4731-2014; Rong, Guoguang/E-6096-2015 OI Retterer, Scott/0000-0001-8534-1979; Liscidini, Marco/0000-0003-4001-9569; FU National Science Foundation [ECCS0746296]; Army Research Office [W911NF-08-1-0200]; Natural Science and Engineering Research Council of Canada (NSERC); Ontario Centre of Excellence FX This work was supported in part by the National Science Foundation (Grant No. ECCS0746296) and the Army Research Office (Grant No. W911NF-08-1-0200). A portion of this research was conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Resources at the Vanderbilt Institute of Nanoscale Science and Engineering were also utilized for a portion of this research. One of the authors (C.K.) acknowledges support from a NSF Integrated Graduate Education and Research Training program. Two of the authors (M.L. and J.E.S.) acknowledge support from the Natural Science and Engineering Research Council of Canada (NSERC) and the Ontario Centre of Excellence. NR 27 TC 17 Z9 18 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 15 PY 2008 VL 104 IS 12 AR 123113 DI 10.1063/1.3043579 PG 5 WC Physics, Applied SC Physics GA 391HT UT WOS:000262225100014 ER PT J AU Zhang, H Cargill, GS Ge, Y Maniatty, AM Liu, W AF Zhang, H. Cargill, G. S., III Ge, Y. Maniatty, A. M. Liu, W. TI Strain evolution in Al conductor lines during electromigration SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium; elasticity; electromigration; finite element analysis; grain boundaries; passivation; plastic deformation; stress-strain relations; surface diffusion; synchrotron radiation; X-ray crystallography; X-ray diffraction ID PLASTIC-DEFORMATION; ELASTIC-CONSTANTS; METAL LINES; STRESS; INTERCONNECTS; ALUMINUM; COPPER; FILMS AB Monochromatic and white beam synchrotron x rays were used to study the deviatoric strains and full elastic strains in passivated Al conductor lines with near-bamboo structures during electromigration (EM) at 190 degrees C. A strong strain gradient formed in the upstream part of the Al lines. Strains along the downstream part of the lines were smaller and more scattered. Numerical analysis using the Eshelby model and finite element method (FEM) calculations suggest that the moving of atoms during EM in these near-bamboo Al lines is dominated by top and/or bottom interface diffusion, which differs from the reported results for nonbamboo, polycrystalline Al conductor lines, where EM is mainly along the grain boundaries. Local strain measurements and FEM calculations indicate that the EM flux is also nonuniform across the width of the conductor line because of stronger mechanical constraint by the passivation layer near the edges of the line. Plastic deformation is observed during EM by changes in the Laue diffraction patterns. The effective valence parallel to Z(*)parallel to=1.8 +/- 0.4 is determined from the measured strain gradient. C1 [Zhang, H.; Cargill, G. S., III] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18105 USA. [Ge, Y.; Maniatty, A. M.] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhang, H (reprint author), Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18105 USA. EM hoz204@lehigh.edu FU NSF [DMR-0312189]; U. S. DOE FX This research was supported by NSF, Grant No. DMR-0312189. Samples were provided by Dr. T. Marieb, Intel Corp. The x-ray diffraction experiments were carried out on beamline 34ID at APS, Argonne National Laboratory, which is supported by the U. S. DOE. NR 26 TC 7 Z9 7 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 15 PY 2008 VL 104 IS 12 AR 123533 DI 10.1063/1.3041152 PG 10 WC Physics, Applied SC Physics GA 391HT UT WOS:000262225100052 ER PT J AU Domeier, LA Yang, N AF Domeier, Linda A. Yang, Nancy TI Material Morphology and Electrical Resistivity Differences in EPDM Rubbers SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE rubber; surface; sublayer; zinc; sulfur; blooming ID CARBON-BLACKS; SULFUR; BEHAVIOR; SURFACE AB Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-mu m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket Surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and Sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side in contact with an aluminum surface. The mechanisms by which Such features are formed have not yet been defined. (C) 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110: 3973-3984, 2008 C1 [Domeier, Linda A.; Yang, Nancy] Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94550 USA. RP Domeier, LA (reprint author), Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94550 USA. EM ladomei@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Contract grant sponsor: United States Department of Energy; contract grant number: DE-AC04-94AL85000. NR 21 TC 2 Z9 3 U1 2 U2 7 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0021-8995 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD DEC 15 PY 2008 VL 110 IS 6 BP 3973 EP 3984 DI 10.1002/app.28984 PG 12 WC Polymer Science SC Polymer Science GA 367XX UT WOS:000260587000084 ER PT J AU Henager, CH Edwards, DJ Schemer-Kohrn, AL Sundaram, SK Riley, BJ Bliss, M AF Henager, Charles H., Jr. Edwards, Danny J. Schemer-Kohrn, Alan L. Sundaram, S. K. Riley, Brian J. Bliss, Mary TI Electron backscatter diffraction of a Ge growth tip from a vertical gradient freeze furnace SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Characterization; Defects; Planar defects; Solidification; Bridgman technique; Semiconducting germanium ID CADMIUM ZINC TELLURIDE; HIGHLY UNDERCOOLED GERMANIUM; LOW-CARBON STEEL; BRIDGMAN GROWTH; MICROSTRUCTURE EVOLUTION; POLYCRYSTALLINE SILICON; BASE SUPERALLOYS; SELF-CONSISTENT; TWIN DENDRITES; SOLIDIFICATION AB The growth-tip region of a high-purity 4.2-cm-diameter Ge bottle grown using low-pressure Bridgman methods in a vertical gradient freeze furnace was sectioned and polished in preparation for scanning electron microscopy and was characterized using electron backscatter diffraction (EBSD). The boule had a characteristic conical tip region with cone angle of 40 degrees of a right circular cylinder from which a section was taken along the bottle longitudinal centerline with an approximate surface area of 4 cm(2). The majority of this surface area was characterized using EBSD and an image collage was assembled for the tip region. The grain structure, grain boundary orientation, twin structure, and overall crystal growth direction were determined. A crystal growth direction of approximately < 112 > was observed, which was also identified as the growth direction of several prominent twins observed in the tip region. The grain structure of the tip region appeared to be controlled by the sidewall nucleation of a stray grain that competed for dominance during growth. Grain boundaries and triple grain junctions were identified as low-energy coincident-site-lattice (CSL) boundaries and junctions of the 3 and 9 types. (C) 2008 Published by Elsevier B.V. C1 [Henager, Charles H., Jr.; Edwards, Danny J.; Schemer-Kohrn, Alan L.; Sundaram, S. K.; Riley, Brian J.; Bliss, Mary] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Henager, CH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM chuck.henager@pnl.gov RI Bliss, Mary/G-2240-2012; OI Bliss, Mary/0000-0002-7565-4813; Riley, Brian/0000-0002-7745-6730; Henager, Chuck/0000-0002-8600-6803 FU US Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Office of Defense Nuclear Nonproliferation; Office of Nonproliferation Research and Development [NA-22] FX PNNL is operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. This work was funded at PNNL by the Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22). NR 41 TC 4 Z9 4 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD DEC 15 PY 2008 VL 311 IS 1 BP 10 EP 14 DI 10.1016/j.jcrysgro.2008.09.183 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 399JP UT WOS:000262796500003 ER PT J AU Bishop, SM Reynolds, CL Liliental-Weber, Z Uprety, Y Ebert, CW Stevie, FA Park, JS Davis, RF AF Bishop, S. M. Reynolds, C. L., Jr. Liliental-Weber, Z. Uprety, Y. Ebert, C. W. Stevie, F. A. Park, J. -S. Davis, R. F. TI Sublimation growth of an in-situ-deposited layer in SiC chemical vapor deposition on 4H-SiC(1 1 (2)over-bar 0) SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Characterization; Chemical vapor deposition processes; Hot-wall epitaxy; Silicon carbide; Semiconducting materials ID HIGH-TEMPERATURE CVD; HOT-WALL-REACTOR; EPITAXIAL-GROWTH; SILICON-CARBIDE; CRYSTAL-GROWTH; HYDROGEN; FILMS; MORPHOLOGY; HTCVD; ALN AB Homoepitaxial growths of 4H-SiC(1 1 (2) over bar 0) epitaxial layers have been achieved using chemical vapor deposition from 1250 to 1600 degrees C and two process routes: (1) with and (2) without the addition of SiH(4) and C(2)H(4) to the growth ambient. An activation energy of 3.72 eV/atom (359 kJ/mol) was determined for the former route and associated with either reactions in the gas phase or the potential barrier associated with the temperature-dependent sticking coefficient. The activation energy for the latter route was 5.64 eV/atom (544 kJ/cool), which is consistent with published values for SiC sublimation epitaxy. Sublimation dominated the growth process at temperature >= 1600 degrees C. The same effect resulted in the in-situ deposition of a thin film during the heating stage of route (1). At 1450 degrees C this layer was similar to 100 nm thick and exhibited a specular surface microstructure with a roughness of 0.31 nm RMS. The in-situ-deposited layer was thus employed as an intermediate layer prior to epitaxial layer growth using route (1) at similar to 1450 C. Regions free of one- and two-dimensional defects were observed using cross-sectional transmission electron microscopy. Distinct interfaces were not observed between the substrate and the epitaxial layers. (C) 2008 Elsevier B.V. All rights reserved. C1 [Davis, R. F.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Bishop, S. M.; Reynolds, C. L., Jr.; Park, J. -S.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Liliental-Weber, Z.; Uprety, Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ebert, C. W.] Apogee Photon, Allentown, PA 18106 USA. [Stevie, F. A.] N Carolina State Univ, Analyt Instrumentat Facility, Raleigh, NC 27695 USA. RP Davis, RF (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave,3325 Wean Hall, Pittsburgh, PA 15213 USA. EM seann.bishop@gmail.com RI Liliental-Weber, Zuzanna/H-8006-2012; Uprety, Youaraj/C-8104-2015; Davis, Robert/A-9376-2011 OI Uprety, Youaraj/0000-0001-9101-2063; Davis, Robert/0000-0002-4437-0885 FU Cree, Inc.; Kobe Steel. Ltd. University Professorship FX R.F. Davis was supported in part by the Kobe Steel. Ltd. University Professorship. The authors acknowledge Cree, Inc. for the SiC wafers used in this research. NR 44 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD DEC 15 PY 2008 VL 311 IS 1 BP 72 EP 78 DI 10.1016/j.jcrysgro.2008.09.200 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 399JP UT WOS:000262796500014 ER PT J AU Yang, G Bolotnikov, AE Cui, Y Camarda, GS Hossain, A James, RB AF Yang, G. Bolotnikov, A. E. Cui, Y. Camarda, G. S. Hossain, A. James, R. B. TI Impurity gettering effect of Te inclusions in CdZnTe single crystals SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Diffusion; Impurities; Segregation; CdZnTe ID CDTE AB The local impurity distribution in Te inclusions of CdZnTe (CZT) crystal was investigated by the time-of-flight secondary ion mass spectrometry (Tof-SIMS) technique. Direct evidence of impurity gettering in Te inclusions has been observed for the first time. The impurity gettering in Te inclusions originated from the diffusion mechanism during crystal growth and segregation mechanism during crystal cooling. This phenomenon is meaningful, because it reveals how Te inclusions affect CZT properties and provides a possible approach to reduce the impurities in CZT by the way of removing Te inclusions. Published by Elsevier B.V. C1 [Yang, G.; Bolotnikov, A. E.; Cui, Y.; Camarda, G. S.; Hossain, A.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yang, G (reprint author), Brookhaven Natl Lab, Bldg 197D, Upton, NY 11973 USA. EM gyang@bnl.gov RI Yang, Ge/G-1354-2011 FU US Department of Energy; Office of Nonproliferation Research and Development [NA-22]; Brookhaven Science Associates, LLC [DE-AC02-98CH1-886]; The United States Government FX We would like to thank Prof Wanqi jie, Northwestern Polytechnical University, Dr. P. M. Fochuk of Chernivtsi National University and Dr. L. Li from Yinnel Tech. for beneficial discussion. This work was supported by US Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract no. DE-AC02-98CH1-886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 10 TC 39 Z9 41 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD DEC 15 PY 2008 VL 311 IS 1 BP 99 EP 102 DI 10.1016/j.jcrysgro.2008.09.201 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 399JP UT WOS:000262796500019 ER PT J AU Shin, J Goyal, A More, K Wee, SH AF Shin, Junsoo Goyal, Amit More, Karren Wee, Sung-Hun TI Fabrication of epitaxial gamma-Al2O3 and spinel NiAl2O4 films on SrTiO3 by pulsed laser ablation SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystal structure; Pulsed laser deposition; Aluminum oxide; Spinel AB Spinel gamma-Al2O3 and NiAl2O4 thin films were grown on (001) SrTiO3 substrates by pulsed laser deposition. The high quality of epitaxial growth and cube-on-cube orientation of the films were confirmed by X-ray diffraction and transmission electron microscopy. The growth of NiAl2O4 thin films is related to the reaction between sequentially deposited gamma-Al2O3 and NiO layers. These films were grown using a unique "multi-target" approach. (C) 2008 Elsevier B.V. All rights reserved. C1 [Shin, Junsoo; Goyal, Amit; More, Karren; Wee, Sung-Hun] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wee, Sung-Hun] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Shin, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM jshin@ornl.gov RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 FU Oak Ridge National Laboratory; Laboratory Directed Research FX J. Shin and S. H. Wee would like to thank Oak Ridge Associated Universities for a postdoctoral fellowship. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy. Research supported in part by the Oak Ridge National Laboratory SHaRE User Facility, Division of Scientific User Facilities, Office of Basic Energy Science, US Department of Energy. NR 4 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD DEC 15 PY 2008 VL 311 IS 1 BP 210 EP 213 DI 10.1016/j.jcrysgro.2008.10.046 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 399JP UT WOS:000262796500040 ER PT J AU Hecker, SS Stan, M AF Hecker, Siegfried S. Stan, Marius TI Properties of plutonium and its alloys for use as fast reactor fuels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT International Conference on the Advances in Nuclear Materials CY DEC 12-14, 2006 CL Bhabha Atom Res Ctr, Bombay, INDIA SP Board Res Nucl Sci, Dept Atom Energy HO Bhabha Atom Res Ctr ID PU-GA ALLOYS; LIQUID PLUTONIUM; ZIRCONIUM SYSTEM; SOUND-VELOCITY; BINARY-SYSTEMS; EQUILIBRIUM; VISCOSITY; LMR AB Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium. or zirconium and low melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher melting U-Pu-Zr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hecker, Siegfried S.] Stanford Univ, Dept Mat Sci & Engn, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA. [Stan, Marius] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Hecker, SS (reprint author), Stanford Univ, Dept Mat Sci & Engn, Ctr Int Secur & Cooperat, Encina Hall,C-220, Stanford, CA 94305 USA. EM shecker@stanford.edu NR 64 TC 13 Z9 13 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC 15 PY 2008 VL 383 IS 1-2 BP 112 EP 118 DI 10.1016/j.jnucmat.2008.08.033 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 385XK UT WOS:000261846700017 ER PT J AU Wunderlich, B AF Wunderlich, B. TI Thermodynamics and Kinetics of Crystallization of Flexible Molecules SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Editorial Material DE glass transition; kinetics; mesophase; nanophase; reversible melting; rigid-amorphous fraction; semicrystalline macromolecule; temperature-modulated DSC; thermodynamics ID TEMPERATURE-MODULATED CALORIMETRY; DIFFERENTIAL SCANNING CALORIMETRY; EXTENDED-CHAIN CRYSTALS; POLYMER CRYSTALS; GLASS-TRANSITION; THERMAL-ANALYSIS; POLY(ETHYLENE-TEREPHTHALATE) FIBERS; POLY(BUTYLENE TEREPHTHALATE); SINGLE-CRYSTALS; POLYETHYLENE C1 [Wunderlich, B.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Wunderlich, B.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wunderlich, B (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM wunderlich@chartertn.net NR 91 TC 12 Z9 12 U1 2 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD DEC 15 PY 2008 VL 46 IS 24 BP 2647 EP 2659 DI 10.1002/polb.21597 PG 13 WC Polymer Science SC Polymer Science GA 383WQ UT WOS:000261705400002 ER PT J AU Tomaras, GD Yates, NL Liu, PH Qin, L Fouda, GG Chavez, LL Decamp, AC Parks, RJ Ashley, VC Lucas, JT Cohen, M Eron, J Hicks, CB Liao, HX Self, SG Landucci, G Forthal, DN Weinhold, KJ Keele, BF Hahn, BH Greenberg, ML Morris, L Karim, SSA Blattner, WA Montefiori, DC Shaw, GM Perelson, AS Haynes, BF AF Tomaras, Georgia D. Yates, Nicole L. Liu, Pinghuang Qin, Li Fouda, Genevieve G. Chavez, Leslie L. Decamp, Allan C. Parks, Robert J. Ashley, Vicki C. Lucas, Judith T. Cohen, Myron Eron, Joseph Hicks, Charles B. Liao, Hua-Xin Self, Steven G. Landucci, Gary Forthal, Donald N. Weinhold, Kent J. Keele, Brandon F. Hahn, Beatrice H. Greenberg, Michael L. Morris, Lynn Karim, Salim S. Abdool Blattner, William A. Montefiori, David C. Shaw, George M. Perelson, Alan S. Haynes, Barton F. TI Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia SO JOURNAL OF VIROLOGY LA English DT Article ID PRIMARY HIV-1 INFECTION; PROXIMAL EXTERNAL REGION; SUBTYPE-C INFECTION; CD4(+) T-CELLS; NEUTRALIZING ANTIBODIES; VACCINE DESIGN; MONOCLONAL-ANTIBODIES; DENDRITIC CELLS; SEROCONVERSION; ENVELOPE AB A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection. C1 [Tomaras, Georgia D.] Duke Univ, Dept Surg, Duke Human Vaccine Inst, Med Ctr,Sch Med, Durham, NC 27710 USA. [Parks, Robert J.; Hicks, Charles B.; Liao, Hua-Xin; Haynes, Barton F.] Duke Univ, Sch Med, Dept Med, Durham, NC 27710 USA. [Tomaras, Georgia D.; Weinhold, Kent J.; Haynes, Barton F.] Duke Univ, Sch Med, Dept Immunol, Durham, NC 27710 USA. [Qin, Li; Decamp, Allan C.; Self, Steven G.] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Inst, Stat Ctr HIV AIDS Res, Seattle, WA 98104 USA. [Chavez, Leslie L.; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. [Cohen, Myron; Eron, Joseph] Univ N Carolina, Chapel Hill, NC USA. [Landucci, Gary; Forthal, Donald N.] Univ Calif Irvine, Irvine, CA USA. [Keele, Brandon F.; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Birmingham, AL USA. [Morris, Lynn] Natl Inst Communicable Dis, Johannesburg, South Africa. [Karim, Salim S. Abdool] Univ KwaZulu Natal, Ctr AIDS Programme Res S Africa, Durban, South Africa. [Blattner, William A.] Univ Maryland, Inst Human Virol, Div Epidemiol & Prevent, Baltimore, MD 21202 USA. RP Tomaras, GD (reprint author), Duke Univ, Dept Surg, Duke Human Vaccine Inst, Med Ctr,Sch Med, Durham, NC 27710 USA. EM gdt@duke.edu RI Abdool Karim, Salim Safurdeen/N-5947-2013; Tomaras, Georgia/J-5041-2016; OI Abdool Karim, Salim Safurdeen/0000-0002-4986-2133; , Lynn/0000-0003-3961-7828 FU NIH/NIAID [UO1 AI-0678501]; Center for HIV/AIDS Vaccine Immunology [AI64518]; Duke Center for AIDS Research; Collaboration for AIDS Vaccine Discovery Vaccine Immune Monitoring Center; Bill and Melinda Gates Foundation; NIH/National Institute of Allergy and Infectious Diseases [PO1-AI40237, 5-D43 TN 01041]; Duke Interdisciplinary Research Training Program in AIDS [5T32 AI007392-17] FX This study was supported by NIH/NIAID grant UO1 AI-0678501, the Center for HIV/AIDS Vaccine Immunology grant AI64518, the Duke Center for AIDS Research, the Collaboration for AIDS Vaccine Discovery Vaccine Immune Monitoring Center, the Bill and Melinda Gates Foundation, and the R37 Merit Award DK 49381 (M. C.). The Trinidad Cohort was initially supported by NIH/National Institute of Allergy and Infectious Diseases grants PO1-AI40237 and 5-D43 TN 01041. N. L. Y. was supported by the Duke Interdisciplinary Research Training Program in AIDS 5T32 AI007392-17. NR 64 TC 259 Z9 262 U1 1 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD DEC 15 PY 2008 VL 82 IS 24 BP 12449 EP 12463 DI 10.1128/JVI.01708-08 PG 15 WC Virology SC Virology GA 376DS UT WOS:000261164000045 PM 18842730 ER PT J AU Dryepondt, S Pint, BA AF Dryepondt, S. Pint, B. A. TI Effect of Fe-Al substrate mechanical properties on alumina scale morphology SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Alumina scale; Iron aluminide; Morphology; Creep strength; Dispersion strengthening ID HIGH-TEMPERATURE OXIDATION; CR-AL; FECRAL ALLOYS; OXIDE SCALES; REACTIVE ELEMENTS; CYCLIC OXIDATION; IRON ALUMINIDES; GROWTH STRAINS; Y ALLOYS; BEHAVIOR AB The alumina scale formed on undoped iron aluminides (Fe-40Al and Fe-28Al-2Cr) was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). For cast alloys, a convoluted scale was observed after exposures at 950 degrees and 1000 degrees C. However, oxide dispersed Fe-28Al-2Cr formed a flat oxide after similar exposures. To clarify the role of the substrate, the high temperature mechanical properties of these materials were studied in tension and/or compression. The largest scale convolutions were observed on the material with the lowest 1000 degrees C yield stress, wrought Fe-28Al-2Cr, suggesting that substrate mechanical properties can explain the observed differences in scale morphology. (C) 2008 Elsevier B.V. All rights reserved. C1 [Dryepondt, S.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,MS 6156, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU U.S. Department of Energy; Fossil Energy Advanced Research Materials; [DE-AC05-00OR22725] FX The authors would like to thank G.W. Garner, J.L. Moser, J. Shingledecker, J.H. Schneibel, L. Tetard and B.C. Jolly at ORNL for assistance with the experimental work and M.P. Brady, J.H. Schneibel and P.F. Tortorelli at ORNL for manuscript comments. The research was sponsored by the U.S. Department of Energy, Fossil Energy Advanced Research Materials Program and work at the SHaRE User Facility by the Division of Scientific User Facilities, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 53 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD DEC 15 PY 2008 VL 497 IS 1-2 BP 224 EP 230 DI 10.1016/j.msea.2008.07.005 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 388QC UT WOS:000262033300033 ER PT J AU Yang, M Chao, YJ Li, XD Immel, D Tan, JZ AF Yang, Min Chao, Yuh J. Li, Xiaodong Immel, David Tan, Jinzhu TI Splitting in dual-phase 590 high strength steel plates Part II. Quantitative analysis and its effect on Charpy impact energy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Splitting; DP590 steel; Hot-rolled steel; Fracture toughness; Impact energy ID FRACTURE-TOUGHNESS; INCLUSIONS; SPECIMENS; BEHAVIOR AB The influence of splitting on Charpy impact energy was investigated by analyzing the primary fracture (from the Charpy V-notch) and splitting (secondary fracture) surfaces at different test temperatures quantitatively. The morphology of splitting at the primary fracture surface of Charpy impact specimens made of dual-phase (DP) 590 hot-rolled steel in TL direction at +60 degrees C and -30 degrees C were surveyed by scanning electron microscope (SEM). The broken Charpy impact specimens in both TL and IT directions at different test temperatures were studied by examining sliced images obtained from micro-radiography imaging system. Three-dimension (3D) and plane sliced images of specimens were analyzed using GEHC microview software. Results show that fracture appearance inside the splitting is cleavage. The length and depth of the splitting increased with decreasing test temperature. Splitting width decreased first then the trend becomes irregular when test temperature falls due to variation of steel ductility and reaction between splitting and the primary crack. The surface areas of splitting and primary crack changed with test temperature as well. Splitting area increased with decreasing test temperature, while the surface area of the primary crack decreased as the test temperature was lowered. Influence of splitting on the impact energy in upper shelf of DP590 hot-rolled steel is small. In the ductile-to-brittle transition temperature (DBTT) range, splitting tends to increase the Charpy impact energy and consequently reduced the DBTT of DP590 hot-rolled steel. (C) 2008 Elsevier B.V. All rights reserved. C1 [Yang, Min; Chao, Yuh J.; Li, Xiaodong; Tan, Jinzhu] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Yang, Min] Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Shandong, Peoples R China. [Tan, Jinzhu] Nanjing Univ Technol, Coll Mech & Power Engn, Nanjing 210009, Jiangsu, Peoples R China. [Immel, David] Savannah River Natl Lab, Aiken, SC USA. RP Chao, YJ (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM chao@sc.edu RI Li, Xiaodong/B-6530-2008 FU China Scholarship Council; Shandong University FX The authors would like to thank Professors Guanghui Min, Zuocheng Wang, Jinqiang Gao, and Shitong Li at Shandong University, China, for their helpful discussions. Partial financial support to M. Yang from China Scholarship Council and Shandong University is acknowledged. NR 17 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD DEC 15 PY 2008 VL 497 IS 1-2 BP 462 EP 470 DI 10.1016/j.msea.2008.07.066 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 388QC UT WOS:000262033300067 ER PT J AU Guichon, PAM Thomas, AW Tsushima, K AF Guichon, Pierre A. M. Thomas, Anthony W. Tsushima, Kazoo TI Binding of hypernuclei in the latest quark-meson coupling model SO NUCLEAR PHYSICS A LA English DT Article ID NUCLEAR-MATTER; LAMBDA-HYPERNUCLEI; HYPERON-NUCLEON; STATES; SIGMA AB The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of hypernuclei. The calculations for Lambda and Xi hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for Sigma hypernuclei. Whereas in the earlier work they were bound by an amount similar to Lambda hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the Sigma is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of Sigma-atoms. (C) 2008 Elsevier B.V. All rights reserved. C1 [Guichon, Pierre A. M.] CEA Saclay, SPhN DAPNIA, F-91191 Gif Sur Yvette, France. [Thomas, Anthony W.; Tsushima, Kazoo] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Thomas, Anthony W.] Coll William & Mary, Williamsburg, VA 23187 USA. [Tsushima, Kazoo] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain. RP Guichon, PAM (reprint author), CEA Saclay, SPhN DAPNIA, F-91191 Gif Sur Yvette, France. EM pierre.guichon@cea.fr RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU Espace de Structure Nucleaire Theorique du CEA [DE-AC05-060823177]; Spanish Ministry of Education and Science [SAB2005-0059] FX This work was supported by the Espace de Structure Nucleaire Theorique du CEA and in part by DOE contract DE-AC05-060823177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. K.T. was supported by the Spanish Ministry of Education and Science, Reference Number: SAB2005-0059 in the initial stage of this work. NR 39 TC 57 Z9 57 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC 15 PY 2008 VL 814 BP 66 EP 73 DI 10.1016/j.nuclphysa.2008.10.001 PG 8 WC Physics, Nuclear SC Physics GA 385OF UT WOS:000261822800004 ER PT J AU Goldstein, M Hudyma, R Naulleau, P Wurm, S AF Goldstein, Michael Hudyma, Russ Naulleau, Patrick Wurm, Stefan TI Extreme-ultraviolet microexposure tool at 0.5 NA for sub-16 nm lithography SO OPTICS LETTERS LA English DT Article ID RESOLUTION; DESIGN AB The resolution limit of present 0.3 NA 13.5 nm wavelength microexposure tools is compared to next-generation lithography research requirements. Findings suggest that a successor design is needed for patterning starting at the 16 nm semiconductor process technology node. A two-mirror 0.5 NA optical design is presented, and performance expectations are established from detailed optical and lithographic simulation. We report on the results from a SEMATECH program to fabricate a projection optic with an ultimate resolution limit of approximately 11 nm. (C) 2008 Optical Society of America C1 [Goldstein, Michael; Wurm, Stefan] SEMATECH, Albany, NY 12203 USA. [Hudyma, Russ] Hyper Dev, San Ramon, CA 94582 USA. [Naulleau, Patrick] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Goldstein, M (reprint author), SEMATECH, 255 Fuller Rd, Albany, NY 12203 USA. EM michael.goldstein@sematech.org NR 20 TC 17 Z9 18 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD DEC 15 PY 2008 VL 33 IS 24 BP 2995 EP 2997 DI 10.1364/OL.33.002995 PG 3 WC Optics SC Optics GA 396RO UT WOS:000262609000039 PM 19079518 ER PT J AU Van Assche, FM Wachsman, ED AF Van Assche, F. M., IV Wachsman, E. D. TI Isotopically labeled oxygen studies of the NOx exchange behavior of La2CuO4 to determine potentiometric sensor response mechanism SO SOLID STATE IONICS LA English DT Article DE Isotope labeling; TPD; TPR; Potentiometric sensor; Differential electrode equilibria; Mixed potential; Gas sensor; Mass spectrometry; Sensing mechanism ID SENSING PROPERTIES; SURFACE-REACTION; ADSORPTION; OXIDES; SPECTROSCOPY; DESORPTION; REDUCTION; DIFFUSION; TRANSPORT; ISOTOPE AB The harmful nature of nitrogen oxides (NOx) to environmental systems necessitates sensors to detect their presence. One effective means is the use of solid state sensors. These sensors are compact, rugged, and can be inexpensively fashioned, making them a viable option for measuring gas concentration. A non-Nernstian potentiometric sensor can be used to detect low concentrations of NOx gas in multiple regions of oxygen concentration. Understanding the mechanism for this behavior can assist in optimizing the sensor couple for a given application. Previous studies using Temperature Programmed Reaction and Desorption (TPR/TPD), along with IR and XPS analysis, have identified the formation of charge-building compounds that establish voltage on the sensing electrode when exposed to NOx gas. To further elucidate the mechanism, TPR and TPD were performed using isotopically labeled oxygen with simultaneous exposure to NOx. The material was examined under multiple gas conditions of NOx and O-16(2)/O-18(2) atmospheres, as well as varied levels of O-18 enrichment in the lattice itself. Through these studies, it was determined that the formation of charged surface complexes occurs solely through the use of lattice oxygen (vs. gas phase O-2) with adsorbed NOx. (C) 2008 Elsevier B.V. All rights reserved. C1 [Van Assche, F. M., IV; Wachsman, E. D.] Univ Florida, UF DOE High Temp Electrochem Ctr, Gainesville, FL 32611 USA. RP Wachsman, ED (reprint author), Univ Florida, UF DOE High Temp Electrochem Ctr, Gainesville, FL 32611 USA. EM ewach@mse.ufl.edu NR 40 TC 13 Z9 13 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD DEC 15 PY 2008 VL 179 IS 39 BP 2225 EP 2233 DI 10.1016/j.ssi.2008.08.014 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 390ZH UT WOS:000262201700001 ER PT J AU Demkowicz, P Wright, K Gan, J Petti, D AF Demkowicz, Paul Wright, Karen Gan, Jian Petti, David TI High temperature interface reactions of TiC, TiN, and SiC with palladium and rhodium SO SOLID STATE IONICS LA English DT Article DE Palladium; Rhodium; Interface reactions; Titanium carbide; Titanium nitride; Silicon carbide ID FISSION-PRODUCT RELEASE; COATED FUEL-PARTICLES; PD; DIFFUSION; BEHAVIOR; TITANIUM; CARBIDE; ZRC; NI AB Reactions of TiC, TiN, and SiC with palladium and rhodium at temperatures up to 1600 degrees C were examined using bulk diffusion couple experiments. Intermetallic phases at the ceramic-metal interfaces were observed using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and transmission electron microscopy (TEM). The reactivity of the ceramics with these platinum group metals follows the order SiC >> TiC > TiN, and reactivity of the metals follows the order Pd > Rh. TiN-Pd interfaces were unique in that no intermetallic phase formation was observed at any of the annealing times and temperatures. The formation of distinct intermetallic phases at the SiC-Rh and TiC-Rh interfaces followed a non-parabolic behavior. (C) 2008 Elsevier B.V. All rights reserved. C1 [Demkowicz, Paul; Wright, Karen; Gan, Jian; Petti, David] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Demkowicz, P (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM paul.demkowicz@inl.gov OI Wright, Karen/0000-0003-4504-929X FU Laboratory Directed Research & Development (LDRD) [DE-AC07-05ID14517] FX This work was supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 26 TC 14 Z9 14 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD DEC 15 PY 2008 VL 179 IS 39 BP 2313 EP 2321 DI 10.1016/j.ssi.2008.07.021 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 390ZH UT WOS:000262201700014 ER PT J AU Boily, JF Ilton, ES AF Boily, Jeani-Francois Ilton, Eugene S. TI An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of U-VI, U-V and U-IV in mixed valence uranium oxides by two-dimensional correlation spectroscopy SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; Two-dimensional correlation spectroscopy; Uranyl; Reduction; Mica; Adsorption ID RAY PHOTOELECTRON-SPECTROSCOPY; ABSORPTION-SPECTROSCOPY; PENTAVALENT-URANIUM; AQUEOUS-SOLUTION; OXIDATION; CRYSTAL; UO2; REDUCTION; COMPLEXES; SURFACES AB Two-dimensional (2D) correlation spectroscopy was used to resolve the positions and correlations among U4f primary peaks and satellite structures of U-IV, U-V and U-VI components on a dry mica surface. These different species resulted from the reduction of U-VI, initially sorbed/precipitated from solution, upon exposure to a high flux of monochromatic Al K alpha X-rays during X-ray photoelectron spectroscopy. Synchronous and asynchronous 2D maps of these results are consistent with previous assignments to U-IV, U-V and U-VI components of the solid. The synchronous spectra confirmed the negative correlation between U-VI and U-IV components and the asynchronous spectra confirmed the role of U-V as a reactive intermediate in the reduction reaction of U-VI to U-IV. Simulations of 2D correlation maps using synthetic spectra of the primary peaks showed that the presence of highly overlapped peaks centered within 2 eV of each other cannot be distinguished without the presence of additional cross-peaks. The maps have therefore confirmed the existence of three dominant oxidation states, and identified positions of U-IV, U-V and U-VI U4f primary peaks and satellite structures that are consistent with previous peak-fitting efforts. Satellite structures also showed out-of-phase correlations among the different oxidation states, further confirming their use as reliable indicators of oxidation state. (C) 2008 Elsevier B.V. All rights reserved. C1 [Boily, Jeani-Francois] Umea Univ, Dept Chem, SE-90187 Umea, Sweden. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Boily, JF (reprint author), Umea Univ, Dept Chem, SE-90187 Umea, Sweden. EM boily@pnl.gov FU Geosciences Research Program, Office of Basic Energy Sciences, US Department of Energy; DOE FX This research was supported by the Geosciences Research Program, Office of Basic Energy Sciences, US Department of Energy. Support by the DOE for this work does not constitute an endorsement by the DOE of the views expressed in this article. NR 31 TC 16 Z9 16 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD DEC 15 PY 2008 VL 602 IS 24 BP 3637 EP 3646 DI 10.1016/j.susc.2008.09.015 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 390ZQ UT WOS:000262202600002 ER PT J AU Gruetzmacher, JA Nome, RA Moran, AM Scherer, NF AF Gruetzmacher, Julie A. Nome, Rene A. Moran, Andrew M. Scherer, Norbert F. TI Assessing the dephasing dynamics of water from linear field-resolved pulse propagation experiments and simulations in highly absorbing solutions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE finite difference time-domain analysis; frequency-domain analysis; heavy water; infrared spectra; interferometry; liquid theory; vibrational modes; water ID FREE INDUCTION DECAY; LIQUID WATER; PHOTON-ECHOES; HYDROGEN-BOND; LIGHT-PULSES; SPECTROSCOPY; INTERFERENCE; XFROG AB We measure and simulate electric field distortions resulting from propagation of mid-infrared pulses that are resonant with the OH stretch vibration through optically dense HDO:D(2)O. These distortions are characterized experimentally by full-field-resolved time- and frequency-domain measurements, specifically cross-correlation frequency-resolved optical gating and spectral interferometry, establishing amplitude and phase of the signal fields. Correlation-function finite-difference time-domain (CF-FDTD) simulations using response functions for the OH-stretching vibration, obtained from nonlinear spectroscopic studies reported by others, show that details of the line shape functions are manifested in the measured (linear-response) spectrograms. The degree of homogeneous or inhomogeneous broadening present in the various model correlation functions is readily apparent in the measured and simulated signals. Surprisingly, the published correlation functions are shown to range from modest inhomogeneous to homogeneous line broadening. The present experimental and simulation approach is very useful for establishing the correct form of energy gap correlation functions and dephasing dynamics of IR and optical transitions. In the case of HDO:D(2)O, correlation functions with modest inhomogeneous broadening better reflect our measured responses. C1 [Gruetzmacher, Julie A.; Nome, Rene A.; Moran, Andrew M.; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Dept Chem, Chicago, IL 60637 USA. RP Gruetzmacher, JA (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nfschere@uchicago.edu RI Nome, Rene/E-6714-2012 FU National Science Foundation [CHE-0317009]; University of Chicago; CAPES-Brazil; John S. Guggenheim Memorial Foundation FX The authors gratefully acknowledge financial support from the National Science Foundation ( CHE-0317009). The authors thank Professor Richard Ziolkowski ( University of Arizona ) for informative discussions. We thank Professor James Skinner ( University of Wisconsin ) for sharing his thoughts on dynamical factors that influence FID beats. We thank Professor Andrei Tokmakoff for comments on the manuscript and helpful suggestions. J. A. G. thanks the University of Chicago for a William Rainey Harper Dissertation Fellowship. R. A. N. thanks CAPES-Brazil for support through a graduate research fellowship. N. F. S. thanks the John S. Guggenheim Memorial Foundation for a fellowship. NR 45 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2008 VL 129 IS 22 AR 224502 DI 10.1063/1.2990654 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 383UE UT WOS:000261698300023 PM 19071923 ER PT J AU Hou, CH Taboada-Serrano, P Yiacoumi, S Tsouris, C AF Hou, Chia-Hung Taboada-Serrano, Patricia Yiacoumi, Sotira Tsouris, Costas TI Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorption; electrolytes; liquid mixtures; Monte Carlo methods; nanoporous materials; voltammetry (chemical analysis) ID ELECTRICAL DOUBLE-LAYER; MONTE-CARLO SIMULATIONS; PRIMITIVE MODEL ELECTROLYTES; CARBON ELECTRODES; POISSON-BOLTZMANN; CYLINDRICAL CAPILLARY; ELECTROKINETIC FLOW; CHARGED MICROPORES; SIZE; CAPACITORS AB Grand canonical Monte Carlo (GCMC) simulations are employed to study the selective electrosorption of ions from a mixture of symmetric and asymmetric electrolytes confined in pores and results are compared to experimental observations obtained via cyclic voltammetry and batch electrosorption equilibrium experiments. GCMC simulations have the advantage over other Monte Carlo methods to unambiguously quantify the total number of ions in the pore solution. The exclusion parameter and selectivity factor are used to evaluate the selective capacity of pores toward different ionic species under various conditions. The number of coions inside the pore solution is determined by the proportion of different counterions present in the double-layer region. Because of the competitive effects resulting from asymmetries in charge and size associated with different ions, the electrosorption selectivity of small monovalent over large divalent counterions first decreases with increasing surface charge, passes through a minimum, and then increases with further increase in surface charge. At low and moderate surface charge densities, the fact that large divalent counterions preferentially screen the surface charge has a strong effect on pore occupancy; whereas at a very high surface charge density, size-exclusion effects dominate and determine the accessibility of different ions into the pores. Therefore, electrosorption selectivity of ions from a mixture of electrolytes could, in principle, be achieved via tuning the electrical double-layer formation inside the pores through the regulation of surface charge tailored for different ion characteristics. The findings of this work provide important information relevant to ion selectivity during separation processes and energy storage in supercapacitors. C1 [Hou, Chia-Hung; Taboada-Serrano, Patricia; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Taboada-Serrano, Patricia; Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hou, CH (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM sotira.yiacoumi@ce.gatech.edu RI Taboada-Serrano, Patrica/F-4745-2012; Hou, Chia-Hung/J-4350-2013; Tsouris, Costas/C-2544-2016 OI Hou, Chia-Hung/0000-0001-5149-4096; Tsouris, Costas/0000-0002-0522-1027 FU National Science Foundation [CBET-0651683] FX Support for this work was provided by the National Science Foundation under Grant No. CBET-0651683. NR 42 TC 18 Z9 18 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2008 VL 129 IS 22 AR 224703 DI 10.1063/1.3033562 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 383UE UT WOS:000261698300035 PM 19071935 ER PT J AU Kowalski, K Hammond, JR de Jong, WA Sadlej, AJ AF Kowalski, Karol Hammond, Jeff R. de Jong, Wibe A. Sadlej, Andrzej J. TI Coupled cluster calculations for static and dynamic polarizabilities of C-60 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Letter DE atomic clusters; coupled cluster calculations; fullerenes; polarisability ID MOLECULAR ELECTRIC PROPERTIES; POLARIZED BASIS-SETS; LINEAR-RESPONSE THEORY; 2ND-ROW ATOMS; SINGLES; CC2 AB New theoretical predictions for the static and frequency dependent polarizabilities of C-60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 A(3) for static and dynamic (lambda=1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5 +/- 8 and 79 +/- 4 A(3) [R. Antoine , J. Chem. Phys.110, 9771 (1999); A. Ballard , J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C-60 system. C1 [Kowalski, Karol; de Jong, Wibe A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Hammond, Jeff R.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Sadlej, Andrzej J.] Nicholas Copernicus Univ, Inst Chem, Dept Quantum Chem, PL-87100 Torun, Poland. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. RI DE JONG, WIBE/A-5443-2008; Hammond, Jeff/G-8607-2013 OI DE JONG, WIBE/0000-0002-7114-8315; Hammond, Jeff/0000-0003-3181-8190 NR 25 TC 32 Z9 32 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2008 VL 129 IS 22 AR 226101 DI 10.1063/1.3028541 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 383UE UT WOS:000261698300050 PM 19071950 ER PT J AU Quemener, G Balakrishnan, N Kendrick, BK AF Quemener, Goulven Balakrishnan, Naduvalath Kendrick, Brian K. TI Quantum dynamics of the O plus OH -> H+O-2 reaction at low temperatures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atom-molecule reactions; chemical exchanges; ground states; oxygen; oxygen compounds; potential energy surfaces; reaction kinetics theory; reaction rate constants; vibrational states ID CLASSICAL TRAJECTORY CALCULATIONS; POTENTIAL-ENERGY SURFACE; SHOCKED INTERSTELLAR CLOUDS; NONTHERMAL INTERNAL ENERGY; TOTAL ANGULAR-MOMENTUM; RATE CONSTANTS; CHEMICAL-REACTIONS; OXYGEN CHEMISTRY; HO+O-DOUBLE-LEFT-RIGHT-ARROW-HO2-DOUBLE-LEFT-RIGHT-ARROW-H+O-2 REACTION; SCATTERING CALCULATIONS AB We report quantum dynamics calculations of the O+OH -> H+O-2 reaction on two different representations of the electronic ground state potential energy surface (PES) using a time-independent quantum formalism based on hyperspherical coordinates. Calculations show that several excited vibrational levels of the product O-2 molecule are populated in the reaction. Rate coefficients evaluated using both PESs were found to be very sensitive to the energy resolution of the reaction probability, especially at temperatures lower than 100 K. It is found that the rate coefficient remains largely constant in the temperature range of 10-39 K, in agreement with the conclusions of a recent experimental study [Carty , J. Phys. Chem. A 110, 3101 (2006)]. This is in contrast with the time-independent quantum calculations of Xu [J. Chem. Phys. 127, 024304 (2007)] which, using the same PES, predicted nearly two orders of magnitude drop in the rate coefficient value from 39 to 10 K. Implications of our findings to oxygen chemistry in the interstellar medium are discussed. C1 [Quemener, Goulven; Balakrishnan, Naduvalath] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Kendrick, Brian K.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Quemener, G (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM naduvala@unlv.nevada.edu FU NSF [PHY-0555565, ATM-0635715]; U. S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by NSF Grant Nos. PHY-0555565 ( N. B. ) and ATM-0635715 (N. B. ). B. K. K. acknowledges that part of this work was done under the auspices of the U. S. Department of Energy at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. We thank D. Xie for providing us the XXZLG PES and P. Hon-vault for providing us the reaction probabilities and the rate coefficient obtained by Xu et al., and for helpful discussions. NR 49 TC 27 Z9 27 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2008 VL 129 IS 22 AR 224309 DI 10.1063/1.3035904 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 383UE UT WOS:000261698300018 PM 19071918 ER PT J AU De Val, S Chi, NC Meadows, SM Minovitsky, S Anderson, JP Harris, IS Ehlers, ML Agarwal, P Visel, A Xu, SM Pennacchio, LA Dubchak, I Krieg, PA Stainier, DYR Black, BL AF De Val, Sarah Chi, Neil C. Meadows, Stryder M. Minovitsky, Simon Anderson, Joshua P. Harris, Ian S. Ehlers, Melissa L. Agarwal, Pooja Visel, Axel Xu, Shan-Mei Pennacchio, Len A. Dubchak, Inna Krieg, Paul A. Stainier, Didier Y. R. Black, Brian L. TI Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors SO CELL LA English DT Article ID VASCULAR DEVELOPMENT; ANGIOGENESIS; PROMOTER; ENHANCER; FAMILY; VASCULOGENESIS; ZEBRAFISH; SEQUENCE; MICE; CANCER AB Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX: ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome. C1 [De Val, Sarah; Chi, Neil C.; Anderson, Joshua P.; Harris, Ian S.; Ehlers, Melissa L.; Agarwal, Pooja; Xu, Shan-Mei; Stainier, Didier Y. R.; Black, Brian L.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. [Chi, Neil C.; Stainier, Didier Y. R.; Black, Brian L.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Meadows, Stryder M.; Krieg, Paul A.] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. [Minovitsky, Simon; Visel, Axel; Pennacchio, Len A.; Dubchak, Inna] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Black, BL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. EM brian.black@ucsf.edu RI Visel, Axel/A-9398-2009; OI Visel, Axel/0000-0002-4130-7784; Black, Brian/0000-0002-6664-8913 FU NHLBI NIH HHS [HL54737, HL64658, K08 HL089330, P01 HL089707, P01 HL089707-01A1, R01 HL054737, R01 HL064658, R01 HL064658-08]; NIAMS NIH HHS [R01 AR052130, R01 AR052130-04] NR 35 TC 156 Z9 157 U1 1 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD DEC 12 PY 2008 VL 135 IS 6 BP 1053 EP 1064 DI 10.1016/j.cell.2008.10.049 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 382ZB UT WOS:000261642800021 PM 19070576 ER PT J AU Hu, QH Zavarin, M Rose, TP AF Hu, Q. H. Zavarin, M. Rose, T. P. TI Effect of reducing groundwater on the retardation of redox-sensitive radionuclides SO GEOCHEMICAL TRANSACTIONS LA English DT Article ID ACTINIDE ENVIRONMENTAL CHEMISTRY; DIFFERENT OXIDATION-STATES; PLASMA-MASS SPECTROMETRY; NUCLEAR-WASTE-DISPOSAL; NEVADA TEST-SITE; RADIOACTIVE-WASTE; YUCCA MOUNTAIN; IRON-OXIDES; REDUCTION; SORPTION AB Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for (99)Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and (237)Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for (99)Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I(-) is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U( VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)(4). Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides (99)Tc and (237)Np, which are commonly identified as long-term dose contributors in the risk assessment in various radionuclide environmental contamination scenarios. The implications for increased sorption of (99)Tc and (237)Np to devitrified tuff under reducing conditions are significant as the fractured devitrified tuff serves as important water flow path at the NTS and the horizon for a proposed repository to store high-level nuclear waste at Yucca Mountain. C1 [Hu, Q. H.] Univ Texas Arlington, Dept Earth & Environm Sci, Arlington, TX 76019 USA. [Zavarin, M.; Rose, T. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hu, QH (reprint author), Univ Texas Arlington, Dept Earth & Environm Sci, Arlington, TX 76019 USA. EM maxhu@uta.edu; zavarin1@llnl.gov; rose23@llnl.gov RI Hu, Qinhong/C-3096-2009 OI Hu, Qinhong/0000-0002-4782-319X NR 67 TC 14 Z9 14 U1 2 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD DEC 12 PY 2008 VL 9 AR 12 DI 10.1186/1467-4866-9-12 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 392SC UT WOS:000262321500001 PM 19077277 ER PT J AU Qian, CM Li, SD Jakoncic, J Zeng, L Walsh, MJ Zhou, MM AF Qian, Chengmin Li, Side Jakoncic, Jean Zeng, Lei Walsh, Martin J. Zhou, Ming-Ming TI Structure and Hemimethylated CpG Binding of the SRA Domain from Human UHRF1 SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GENE-EXPRESSION; METHYL-CPG; PROTEIN; ICBP90; DNA; HETEROCHROMATINIZATION; FAMILY; CELLS; DNMT1 AB Human UHRF1((u) under bar biquitin-like P (H) under barD and (R) under bar ING (f) under bar inger (1) under bar) functions to maintain CpG DNA methylation patterns through DNA replication by co-localizing with the DNA methyltransferase DNMT1 at chromatin in mammals. Recent studies show that UHRF1 binds selectively to hemimethylated CpG via its conserved SRA ((S) under bar ET-and (R) under bar ING finger-(a) under bar ssociated) domain. However, the underlying molecular mechanism is not known. Here, we report a 1.95 angstrom resolution crystal structure of the SRA domain of human UHRF1. Using NMR structure-guided mutagenesis, electrophoretic mobility shift assay, and fluorescence anisotropy analysis, we determined key amino acid residues for methyl-DNA binding that are conserved in the SRA domain. C1 [Qian, Chengmin; Zeng, Lei; Zhou, Ming-Ming] New York Univ, Mt Sinai Sch Med, Dept Struct & Chem Biol, New York, NY 10029 USA. [Li, Side; Walsh, Martin J.] New York Univ, Mt Sinai Sch Med, Dept Pediat, New York, NY 10029 USA. [Jakoncic, Jean] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zhou, MM (reprint author), New York Univ, Mt Sinai Sch Med, Dept Struct & Chem Biol, 1425 Madison Ave,POB 1677, New York, NY 10029 USA. EM ming-ming.zhou@mssm.edu RI Qian, Chengmin/E-9881-2010 FU NMR; Brookhaven National Laboratory [X4C, X6A]; National Institutes of Health [GM073207] FX The work was supported, in whole or in part, by National Institutes of Health, Grant GM073207 (to M.-M.Z.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact. We acknowledge the use of the NMR facilities at the New York Structural Biology Center and thank the staff at the Brookhaven National Laboratory (beamlines X4C and X6A) for facilitating x-ray data collection. We also thank A. Plotnikov and G. Chai for helpful discussion. NR 28 TC 41 Z9 42 U1 3 U2 13 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD DEC 12 PY 2008 VL 283 IS 50 BP 34490 EP 34494 DI 10.1074/jbc.C800169200 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 380MF UT WOS:000261469100002 PM 18945682 ER PT J AU Harvey, SD AF Harvey, Scott D. TI Selective solid-phase microextraction of explosives using fibers coated with the La(III) complex of p-di(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedionyl)benzene SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Selective SPME; La(dihed); Metal beta-diketonate polymer; Selective explosives analysis; 2,4,6-Trinitrotoluene; Nitrate esters; Taggant ID MOLECULARLY IMPRINTED POLYMERS; BETA-DIKETONATE POLYMERS; GAS-CHROMATOGRAPHY; SORBENTS; SAMPLES; SILICA; SEPARATION; ETHER AB This research demonstrates enhanced capture of explosives on polydimethylsiloxane (PDMS) solid-phase microextraction (SPME) fibers coated with a metal beta-diketonate polymer, [La(III) complex of p-di(4,4,5,5.6,6,6-heptafluoro-1,3-hexanedionyl)benzene. La(dihed)], compared to PDMS control fibers. SPME sampling was performed in an explosives bunker where the concentration of 2,4,6-trinitrotoluene (TNT) was estimated at less than 3 parts-per-trillion (v/v). Analysis by gas chromatography/mass spectrometry showed an approximate 10-fold enhancement in the quantity of 2,4-dinitrotoluene captured on La(dihed) over the control fiber. La(dihed) sampling also resulted in a strong signal for TNT, whereas this explosive was well below the detection limit (1 pg on fiber) on the control fiber. Published by Elsevier B.V. C1 Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. RP Harvey, SD (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, MSIN P8-50,902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM scott.harvey@pnl.gov NR 26 TC 5 Z9 5 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD DEC 12 PY 2008 VL 1213 IS 2 BP 110 EP 117 DI 10.1016/j.chroma.2008.10.054 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 381DT UT WOS:000261516400002 PM 18995861 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M.-C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for Third Generation Scalar Leptoquarks Decaying into tau b SO PHYSICAL REVIEW LETTERS LA English DT Article ID PAIR PRODUCTION; DETECTOR AB We have searched for third generation leptoquarks (LQ(3)) using 1.05 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider operating at s=1.96 TeV. We set a 95% C.L. lower limit of 210 GeV on the mass of a scalar LQ(3) state decaying solely to a b quark and a tau lepton. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M.-C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A, D-5100 Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Anderson, S.; Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013 OI Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Evans, Harold/0000-0003-2183-3127; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Bertram, Iain/0000-0003-4073-4941; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT3; GACR (Czech Republic); CRC Program,; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 35 TC 20 Z9 20 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 12 PY 2008 VL 101 IS 24 AR 241802 DI 10.1103/PhysRevLett.101.241802 PG 7 WC Physics, Multidisciplinary SC Physics GA 383WE UT WOS:000261704100012 PM 19113613 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A.-F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of B-s(0) Mixing Parameters from the Flavor-Tagged Decay B-s(0)-> J/psi phi SO PHYSICAL REVIEW LETTERS LA English DT Article AB From an analysis of the flavor-tagged decay B-s(0)-> J/psi phi we obtain the width difference between the B-s(0) light and heavy mass eigenstates, Delta Gamma(s)=0.19 +/- 0.07(stat)(-0.01)(+0.02)(syst) ps(-1), and the CP-violating phase, phi(s)=-0.57(-0.30)(+0.24)(stat)(-0.02)(+0.08)(syst). The allowed 90% CL intervals of Delta Gamma(s) and phi(s) are 0.06 35 K dominated by thermally activated magnetic Co3+ ions. C1 [Podlesnyak, A.; Russina, M.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. [Podlesnyak, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Furrer, A.; Straessle, Th.; Pomjakushina, E.] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Furrer, A.; Straessle, Th.; Pomjakushina, E.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Alfonsov, A.; Vavilova, E.; Kataev, V.; Buechner, B.] IFW Dresden, D-01171 Dresden, Germany. [Vavilova, E.] Russian Acad Sci, Zavoisky Phys Tech Inst, Kazan 420029, Russia. [Pomjakushina, E.; Conder, K.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Khomskii, D. I.] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. RP Podlesnyak, A (reprint author), Hahn Meitner Inst Berlin GmbH, Glienicker Str 100, D-14109 Berlin, Germany. EM podlesnyakaa@ornl.gov RI Podlesnyak, Andrey/A-5593-2013; Buchner, Bernd/E-2437-2016; OI Podlesnyak, Andrey/0000-0001-9366-6319; Buchner, Bernd/0000-0002-3886-2680; Vavilova, Evgeniya/0000-0003-2579-0777 FU European Commission [RII3-CT-2003-505925]; European project COMEPHS; Swiss National Science Foundation [IB7320-110859/1]; German-Russian cooperation project of the DFG [436 RUS 113/936/0-1]; SFB [608]; RFBR [08-02-91952-NNIO-a, 07-02-01184-a]; U. S. Department of Energy [DE-AC05-00OR22725] FX This work is partly based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. We acknowledge support by the European Commission under the 6th Framework Program through the Key Action "Strengthening the European Research Area, Research Infrastructures'' (Contract No. RII3-CT-2003-505925), by the European project COMEPHS, by the Swiss National Science Foundation (SCOPES No. IB7320-110859/1, NCCR MaNEP), and by the German-Russian cooperation project of the DFG (Grant No. 436 RUS 113/936/0-1), by SFB 608 and of the RFBR (Grants No. 08-02-91952-NNIO-a and No. 07-02-01184-a). ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 15 TC 54 Z9 54 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 12 PY 2008 VL 101 IS 24 AR 247603 DI 10.1103/PhysRevLett.101.247603 PG 4 WC Physics, Multidisciplinary SC Physics GA 383WE UT WOS:000261704100064 PM 19113665 ER PT J AU Ruegg, C Kiefer, K Thielemann, B McMorrow, DF Zapf, V Normand, B Zvonarev, MB Bouillot, P Kollath, C Giamarchi, T Capponi, S Poilblanc, D Biner, D Kramer, KW AF Rueegg, Ch. Kiefer, K. Thielemann, B. McMorrow, D. F. Zapf, V. Normand, B. Zvonarev, M. B. Bouillot, P. Kollath, C. Giamarchi, T. Capponi, S. Poilblanc, D. Biner, D. Kraemer, K. W. TI Thermodynamics of the Spin Luttinger Liquid in a Model Ladder Material SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; MAGNETIC-FIELD; HEISENBERG LADDER; SYSTEM; CHAIN AB The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C(5)H(12)N)(2)CuBr(4) is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modeling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the entire phase diagram. C1 [Rueegg, Ch.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Rueegg, Ch.; McMorrow, D. F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Kiefer, K.] Helmholtz Ctr Berlin Mat & Energy, BENSC, D-14109 Berlin, Germany. [Thielemann, B.] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Thielemann, B.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Zapf, V.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Normand, B.] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland. [Zvonarev, M. B.; Bouillot, P.; Giamarchi, T.] Univ Geneva, DPMC MaNEP, CH-1211 Geneva 4, Switzerland. [Kollath, C.] Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France. [Capponi, S.; Poilblanc, D.] Univ Toulouse, UPS, Phys Theor Lab, IRSAMC, F-31062 Toulouse, France. [Capponi, S.; Poilblanc, D.] CNRS, UMR 5152, F-31062 Toulouse, France. [Biner, D.; Kraemer, K. W.] Univ Bern, Dept Chem & Biochem, CH-3000 Bern 9, Switzerland. RP Ruegg, C (reprint author), UCL, London Ctr Nanotechnol, Mortimer St, London WC1E 6BT, England. RI Capponi, Sylvain/A-8851-2010; McMorrow, Desmond/C-2655-2008; Ruegg, Christian/A-3476-2012; Kiefer, Klaus/J-3544-2013; Kramer, Karl/J-5021-2013; Zapf, Vivien/K-5645-2013; Normand, Bruce/L-5245-2013; Giamarchi, Thierry/B-5735-2008 OI Capponi, Sylvain/0000-0001-9172-049X; McMorrow, Desmond/0000-0002-4947-7788; Ruegg, Christian/0000-0003-0139-7786; Kiefer, Klaus/0000-0002-5178-0495; Kramer, Karl/0000-0001-5524-7703; Zapf, Vivien/0000-0002-8375-4515; Giamarchi, Thierry/0000-0001-7409-5071 FU Royal Society, EPSRC; Wolfson Foundation; Triangle de la Physique; Swiss National Science Foundation; French National Council (ANR) FX We are grateful to C. Berthier and F. Essler for helpful discussions. This work was supported by the Royal Society, EPSRC, the Wolfson Foundation, the network "Triangle de la Physique'', the Swiss National Science Foundation through the NCCR MaNEP and Division II, and the French National Council (ANR). S. C. thanks Calmip (Toulouse) for computing time. NR 30 TC 87 Z9 87 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 12 PY 2008 VL 101 IS 24 AR 247202 DI 10.1103/PhysRevLett.101.247202 PG 4 WC Physics, Multidisciplinary SC Physics GA 383WE UT WOS:000261704100058 PM 19113659 ER PT J AU Shim, H Chaudhari, P Logvenov, G Bozovic, I AF Shim, Heejae Chaudhari, P. Logvenov, Gennady Bozovic, Ivan TI Electron-Phonon Interactions in Superconducting La1.84Sr0.16CuO4 Films SO PHYSICAL REVIEW LETTERS LA English DT Article ID LA1.85SR0.15CUO4; DENSITY; STATES AB We have measured quasiparticle tunneling across a junction perpendicular to the superconducting copper oxide planes. The tunneling spectra show peaks in the density of states. There are 11 minima in the second derivative d(2)I/dV(2), where I is the current and V the voltage, suggesting multiple boson-quasiparticle interactions. These minima match precisely with the published Raman scattering data, leading us to conclude that the relevant bosons in superconducting La1.84Sr0.16CuO4 films are phonons. C1 [Shim, Heejae; Chaudhari, P.; Logvenov, Gennady; Bozovic, Ivan] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Chaudhari, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM chaudhari@bnl.gov FU Department of Energy [MA-509-MACA] FX One of the authors (P.C.) is grateful to Dr. John Tranquada and Dr. Adrian Gozar for useful discussions and acknowledges the help of Dr. A. T. Bollinger for taking his sketch and converting it to a mask design. Two of us (H. S. and P. C.) acknowledge the financial support of Brookhaven Science Associates. This work was supported by Department of Energy Grant No. MA-509-MACA. NR 15 TC 29 Z9 29 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 12 PY 2008 VL 101 IS 24 AR 247004 DI 10.1103/PhysRevLett.101.247004 PG 4 WC Physics, Multidisciplinary SC Physics GA 383WE UT WOS:000261704100056 PM 19113657 ER PT J AU Shintani, E Aoki, S Fukaya, H Hashimoto, S Kaneko, T Matsufuru, H Onogi, T Yamada, N AF Shintani, E. Aoki, S. Fukaya, H. Hashimoto, S. Kaneko, T. Matsufuru, H. Onogi, T. Yamada, N. CA JLQCD Collaboration TI S Parameter and Pseudo Nambu-Goldstone Boson Mass from Lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHIRAL PERTURBATION-THEORY; SYMMETRY-BREAKING; DIFFERENCE; CONSTANTS; ALIGNMENT; DYNAMICS; VACUUM; VECTOR; QUARKS AB We present a lattice calculation of L(10), one of the low-energy constants in chiral perturbation theory, and the charged-neutral pion squared-mass splitting, using dynamical overlap fermion. The exact chiral symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor models, these two quantities are read as the S parameter and the pseudo Nambu-Goldstone boson mass, respectively, and play an important role in discriminating the models from others. This calculation can serve as a feasibility study of the lattice techniques for more general technicolor gauge theories. C1 [Shintani, E.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Yamada, N.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Fukaya, H.] Niels Bohr Inst, Niels Bohr Int Acad, DK-2100 Copenhagen O, Denmark. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Onogi, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Shintani, E (reprint author), High Energy Accelerator Res Org, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. RI Shintani, Eigo/C-8623-2016 FU Japanese Ministry of Education [17740171, 18034011, 18340075, 18740167, 19540286, 19740121, 19740160, 20025010, 20340047]; High Energy Accelerator Research Organization (KEK) [07-16] FX We thank M. Golterman for useful comments. The work of H. F. is supported by Nishina Memorial Foundation. This work is supported in part by the Grant-in-Aid of the Japanese Ministry of Education (No. 17740171, No. 18034011, No. 18340075, No. 18740167, No. 19540286, No. 19740121, No. 19740160, No. 20025010, No. 20340047). Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solution at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program (No. 07-16). NR 32 TC 34 Z9 34 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 12 PY 2008 VL 101 IS 24 AR 242001 DI 10.1103/PhysRevLett.101.242001 PG 4 WC Physics, Multidisciplinary SC Physics GA 383WE UT WOS:000261704100014 PM 19113615 ER PT J AU Talbayev, D LaForge, AD Trugman, SA Hur, N Taylor, AJ Averitt, RD Basov, DN AF Talbayev, D. LaForge, A. D. Trugman, S. A. Hur, N. Taylor, A. J. Averitt, R. D. Basov, D. N. TI Magnetic Exchange Interaction between Rare-Earth and Mn Ions in Multiferroic Hexagonal Manganites SO PHYSICAL REVIEW LETTERS LA English DT Article ID YMNO3; FIELDS; MEMORY AB We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO(3) by far-infrared spectroscopy. The low-temperature magnetic excitation spectrum of HoMnO(3) consists of magnetic-dipole transitions of Ho ions within the crystal-field split J=8 manifold and of the triangular antiferromagnetic resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions. C1 [Talbayev, D.; Trugman, S. A.; Taylor, A. J.; Averitt, R. D.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [LaForge, A. D.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Hur, N.] Inha Univ, Dept Phys, Inchon 402751, South Korea. [Averitt, R. D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Talbayev, D (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM diyar@lanl.gov RI Talbayev, Diyar/C-5525-2009; Hur, Namjung/G-3752-2013; OI Talbayev, Diyar/0000-0003-3537-1656; Trugman, Stuart/0000-0002-6688-7228 FU NSF DMR [0705171] FX We thank Darryl Smith for useful theoretical discussions and Jonathan Gigax for the simulation of the Ho crystalfield eigenstates. The work at LANL was supported by the LDRD program and the Center for Integrated Nanotechnologies. The work at UCSD was supported by NSF DMR 0705171. NR 21 TC 22 Z9 22 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 12 PY 2008 VL 101 IS 24 AR 247601 DI 10.1103/PhysRevLett.101.247601 PG 4 WC Physics, Multidisciplinary SC Physics GA 383WE UT WOS:000261704100062 PM 19113663 ER PT J AU Poola, B Hunt, SW Wang, XP Richmond, MG AF Poola, Bhaskar Hunt, Sean W. Wang, Xiaoping Richmond, Michael G. TI New platinum compounds containing the diphosphine ligand 2-(ferrocenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (fbpcd): Synthesis, redox behavior, and X-ray diffraction structures Of PtCl2(fbpcd) and Pt(mnt)(fbpcd) SO POLYHEDRON LA English DT Article DE Diphosphine ligand; Platinum compounds; Redox chemistry; MO calculations ID DIIMINE DITHIOLATE COMPLEXES; BOND-CLEAVAGE REACTIVITY; CRYSTAL-STRUCTURES; ELECTRON-TRANSFER; EXCITED-STATE; 4,5-BIS(DIPHENYLPHOSPHINO)-4-CYCLOPENTEN-1,3-DIONE BPCD; CONFORMATIONAL PREFERENCES; FERROCENE DERIVATIVES; PHOSPHINE COMPLEXES; ROTATIONAL BARRIERS AB The reaction of the redox-active diphosphine ligand 2-(ferrocenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (fbpcd) with PtCl2(1,5-cod) furnishes the platinum(II) compound PtCl2(fbpcd) (2). Treatment of 2 with disodium maleonitriledithiolate (Na(2)mnt) yields the chelating thiolate compound Pt(mnt)(fbpcd) (3). Both 2 and 3 have been fully characterized in solution by IR, UV-Vis, and NMR spectroscopies, and their molecular structures established by X-ray crystallography. The redox properties of the fbpcd ligand and compounds 2 and 3 have been investigated by cyclic voltammetry, and the composition of the HOMO and LUMO levels in these systems have been determined by extended Huckel MO calculations, the results of which are discussed with respect to electrochemical data. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Poola, Bhaskar; Hunt, Sean W.; Wang, Xiaoping; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Wang, XP (reprint author), Oak Ridge Natl Lab, POB 2008,MS6460, Oak Ridge, TN 37831 USA. EM xpwang@unt.edu; cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012 OI Wang, Xiaoping/0000-0001-7143-8112 FU Robert A. Welch Foundation [B-1093-MGR] FX Financial support from the Robert A. Welch Foundation (B-1093-MGR) is much appreciated, and Prof Guido F. Verbeck and graduate student Ms. Nicole Ledbetter (UNT) and Prof. Andreas H. Franz (University of the Pacific) are thanked for recording the mass spectra of compounds 2 and 3, respectively. NR 71 TC 4 Z9 4 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD DEC 12 PY 2008 VL 27 IS 18 BP 3693 EP 3699 DI 10.1016/j.poly.2008.09.005 PG 7 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 386WC UT WOS:000261912300024 ER PT J AU Maksymovych, P Sorescu, DC Jordan, KD Yates, JT AF Maksymovych, Peter Sorescu, Dan C. Jordan, Kenneth D. Yates, John T., Jr. TI Collective Reactivity of Molecular Chains Self-Assembled on a Surface SO SCIENCE LA English DT Article ID METAL INTERFACES; ELECTRON; PHOTOCHEMISTRY; SPECTROSCOPY; DYNAMICS; AU(111); ATOMS AB Self- assembly of molecules on surfaces is a route toward not only creating structures, but also engineering chemical reactivity afforded by the intermolecular interactions. Dimethyldisulfide (CH(3)SSCH(3)) molecules self- assemble into linear chains on single- crystal gold surfaces. Injecting low- energy electrons into individual molecules in the self- assembled structures with the tip of a scanning tunneling microscope led to a propagating chemical reaction along the molecular chain as sulfur- sulfur bonds were broken and then reformed to produce new CH(3)SSCH(3) molecules. Theoretical and experimental evidence supports a mechanism involving electron attachment followed by dissociation of a CH(3)SSCH(3) molecule and initiation of a chain reaction by one or both of the resulting CH(3)S intermediates. C1 [Maksymovych, Peter; Jordan, Kenneth D.; Yates, John T., Jr.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Maksymovych, Peter; Jordan, Kenneth D.; Yates, John T., Jr.] Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15260 USA. [Maksymovych, Peter] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Yates, John T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. RP Yates, JT (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM johnt@virginia.edu RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 FU W.M. Keck Foundation; Army Research Office; NSF [CHE0518253] FX We thank D. B. Dougherty for fruitful discussions. P. M. and J.T.Y were supported by the W.M. Keck Foundation and the Army Research Office, and K.D.J acknowledges support from NSF through grant CHE0518253. A grant of computer time at the Pittsburgh Supercomputer Center is gratefully acknowledged. P.M. performed part of this research as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, for the U. S. Department of Energy under contract DE-AC05-00OR22725. NR 25 TC 56 Z9 56 U1 5 U2 51 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD DEC 12 PY 2008 VL 322 IS 5908 BP 1664 EP 1667 DI 10.1126/science.1165291 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 382LU UT WOS:000261608300037 PM 19074343 ER PT J AU Carlson, LA Briggs, JAG Glass, B Riches, JD Simon, MN Johnson, MC Muller, B Grunewald, K Krausslich, HG AF Carlson, Lars-Anders Briggs, John A. G. Glass, Baerbel Riches, James D. Simon, Martha N. Johnson, Marc C. Mueller, Barbara Gruenewald, Kay Kraeusslich, Hans-Georg TI Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis SO CELL HOST & MICROBE LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; ESCRT-III; TYPE-1; PROTEIN; VIRIONS; GAG; RETROVIRUS; CELLS; VISUALIZATION; TOMOGRAPHY AB Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release-akin to its role in vesicle formation-and is not restricted to severing the thin membrane tether. C1 [Carlson, Lars-Anders; Gruenewald, Kay] Max Planck Inst Biochem, D-82152 Martinsried, Germany. [Carlson, Lars-Anders; Glass, Baerbel; Mueller, Barbara; Kraeusslich, Hans-Georg] Univ Klinikum, Abt Virol, D-69120 Heidelberg, Germany. [Briggs, John A. G.; Riches, James D.] European Mol Biol Lab, Struct & Computat Biol Unit, D-69117 Heidelberg, Germany. [Simon, Martha N.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Johnson, Marc C.] Univ Missouri, Columbia, MO 65211 USA. RP Grunewald, K (reprint author), Max Planck Inst Biochem, D-82152 Martinsried, Germany. EM gruenewa@biochem.mpg.de; hans-georg.kraeusslich@med.uni-heidelberg.de RI Briggs, John/J-3096-2012; Riches, James/M-3873-2013; OI Riches, James/0000-0001-8494-4743; Grunewald, Kay/0000-0002-4788-2691; Briggs, John/0000-0003-3990-6910 FU Deutsche Forschungsgemeinschaft [SPP1175]; BNL STEM; NIH [5 P41 EB2181] FX This work was supported by grants from the Deutsche Forschungsgemeinschaft within SPP1175 to H.-G.K and to K.G. The BNL STEM facility was an NIH-supported resource center, NIH 5 P41 EB2181, with additional support provided by DOE, OBER. NR 28 TC 107 Z9 107 U1 4 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1931-3128 J9 CELL HOST MICROBE JI Cell Host Microbe PD DEC 11 PY 2008 VL 4 IS 6 BP 592 EP 599 DI 10.1016/j.chom.2008.10.013 PG 8 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 388GB UT WOS:000262007200011 PM 19064259 ER PT J AU Newell, DL Kaszuba, JP Viswanathan, HS Pawar, RJ Carpenter, T AF Newell, Dennis L. Kaszuba, John P. Viswanathan, Hari S. Pawar, Rajesh J. Carpenter, Thomas TI Significance of carbonate buffers in natural waters reacting with supercritical CO2: Implications for monitoring, measuring and verification (MMV) of geologic carbon sequestration SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FLUID; INJECTION; BRINE; USA AB Successful geologic sequestration of carbon in deep saline aquifers requires accurate predictive models of rock-brine-CO2 interaction. Often overlooked in siliciclastic-hosted saline reservoirs is the carbonate buffering of the groundwater. Carbonate minerals are ubiquitous, even in siliciclastic host rocks, resulting in some carbonate buffering. Geochemical modeling of rock-brine-CO2 systems often do not accurately predict the geochemical evolution of the system leading to significant doubts in predicting the performance of carbon repositories. New data from a simple NaCl brine-plagioclase hydrothermal experiment tests carbon sequestration in dawsonite and sensitivity to carbonate buffering. This is contrasted to a NaCl brine siliciclastic rock system containing some initial bicarbonate buffering, analogous to most saline-aquifer sequestration targets, and show that critical errors are caused by incomplete or inaccurate characterization of the in situ geochemistry. We provide a methodology that accurately predicts the in situ condition using samples collected from brine-rock-CO2 experiments or well-heads in a carbon sequestration monitoring scenario. Citation: Newell, D. L., J. P. Kaszuba, H. S. Viswanathan, R. J. Pawar, and T. Carpenter (2008), Significance of carbonate buffers in natural waters reacting with supercritical CO2: Implications for monitoring, measuring and verification (MMV) of geologic carbon sequestration, Geophys. Res. Lett., 35, L23403, doi: 10.1029/2008GL035615. C1 [Newell, Dennis L.; Kaszuba, John P.; Viswanathan, Hari S.; Pawar, Rajesh J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Newell, DL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dnewell@lanl.gov RI Newell, Dennis/B-4676-2011 FU Los Alamos National Laboratory [LDRD-DR2004042DR] FX We thank Bill Carey for discussion related to geochemical modeling of CO2 saturated systems, Dale Counce for analytical chemistry and Ren Wan and Steve Chipera for X-ray diffraction analysis of experimental solids. Funding for this work was provided by Los Alamos National Laboratory LDRD-DR2004042DR. This paper was improved by the constructive comments and corrections from two anonymous reviewers. NR 18 TC 16 Z9 16 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 11 PY 2008 VL 35 IS 23 AR L23403 DI 10.1029/2008GL035615 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 383JC UT WOS:000261668900004 ER PT J AU Gary, SP Borovsky, JE AF Gary, S. Peter Borovsky, Joseph E. TI Damping of long-wavelength kinetic Alfven fluctuations: Linear theory SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND; DISSIPATION RANGE; WAVES; DYNAMICS AB The full electromagnetic linear dispersion equation for kinetic Alfven fluctuations in a homogeneous, isotropic, collisionless, Maxwellian electron-proton plasma is solved numerically in the long-wavelength limit. At propagation sufficiently oblique to the background magnetic field B(o), the wave number dependence of the damping rate of such modes is summarized by an analytic expression which scales as k(perpendicular to)(2)k(parallel to) where the subscripts denote directions relative to B(o). This damping progressively (although not monotonically) increases with increasing electron and proton beta, corresponding to four distinct damping regimes: nonresonant, electron Landau, proton Landau, and proton transit-time damping. C1 [Gary, S. Peter; Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gary, SP (reprint author), Los Alamos Natl Lab, Grp ISR 1,Mail Stop D466, Los Alamos, NM 87545 USA. EM pgary@lanl.gov; jborovsky@lanl.gov FU U.S. Department of Energy (DOE); Magnetic Turbulence and Kinetic Dissipation Project; Laboratory Directed Research and Development Program at Los Alamos; Department of Energy [LA06-GPRB-NEM01]; National Aeronautics and Space Administration FX Amitava Bhattacharjee thanks Robert J. Leamon and another reviewer for their assistance in evaluating this paper. NR 21 TC 15 Z9 15 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 11 PY 2008 VL 113 IS A12 AR A12104 DI 10.1029/2008JA013565 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 383QO UT WOS:000261688600006 ER PT J AU Saracibar, A Goldfield, EM Gray, SK AF Saracibar, Arnaia Goldfield, Evelyn M. Gray, Stephen K. TI Quantum Mechanical Capture/Phase Space Theory Calculation of the Rate Constants for the Complex-Forming CH + H-2 Reaction SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CHEMICAL KINETICS; STATISTICAL-THEORY; TEMPERATURE; DYNAMICS; ENERGY AB Six-dimensional wave packet calculations on an accurate potential energy surface are used to obtain the quantum mechanical capture (QM C) probabilities for CH + H-2 corresponding to a variety of total angular momenta and internal reactant states. Rate constant calculations are made feasible by employing a Monte Carlo based sampling procedure. The QM C probabilities alone are also used to estimate the high pressure CH + H-2 rate constants corresponding to stabilization or CH3 formation. The rate constants for CH + H-2 -> CH2 + H reaction in the low pressure limit are obtained by combining the QM C probabilities with a phase space theory (PST) approximation for product formation from the complex. Our results are compared with the experimental results of Brownsword et al. (J. Chem. Phys. 1997, 106, 7662), as well as with purely classical PST calculations. The QM C probabilities are shown to be highly dependent on the initial rotational states of the reactants corresponding to orientational restrictions on complex formation. Consistent with this, our QM C high pressure rate constants for CH3 formation are lower than the purely classical PST rate constants. These QM C rate constants also are in reasonable accord with experiment. A similar but somewhat more subtle Picture emerges regarding the QM C/PST rate constants for CH2 + H formation. C1 [Saracibar, Arnaia; Goldfield, Evelyn M.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Saracibar, Arnaia] Univ Basque Country, Dept Quim Fis, Vitoria 01006, Spain. [Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Goldfield, EM (reprint author), Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [AC02-06CH11357]; National Science Foundation; Ministerio the Ciencia y Tecnologia [BQU2002-04462-C02-02] FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract DE-AC02-06CH11357. E.M.G. acknowledges support from the National Science Foundation. A.S. is grateful for support from the Ministerio the Ciencia y Tecnologia project BQU2002-04462-C02-02. We are grateful for many helpful discussions with Drs. L. B. Harding, S. J. Klippenstein, and H. Guo. We are particularly grateful to Profs. I. W. M. Smith and I. R. Sims for advice and discussions on their experimental results. NR 28 TC 3 Z9 3 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 11 PY 2008 VL 112 IS 49 BP 12588 EP 12596 DI 10.1021/jp805875p PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379WG UT WOS:000261426300009 PM 19007197 ER PT J AU Craig, NC Sams, RL AF Craig, Norman C. Sams, Robert L. TI An Investigation of the Rotamers of Butadiene by High-Resolution Infrared Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TORSIONAL POTENTIAL FUNCTION; MOLECULAR-FORCE FIELDS; HIGH-ENERGY CONFORMER; AB-INITIO; IR-SPECTRA; 1,3-BUTADIENE; BANDS; S-TRANS-1,3-BUTADIENE; TRANS-1,3-BUTADIENE; S-CIS-1,3-BUTADIENE AB A wide-ranging investigation of high-resolution infrared spectra of 1,3-butadiene was undertaken with the prime objective of finding subbands in the rotational structure attributable to the gauche rotamer, from which information about the molecular structure could be derived. A weak band near 750 cm(-1), which had previously been assigned to the gauche rotamer, has been shown to be a difference band for the trans rotamer. In support of the analysis of this band, the rotational structure, including two hot bands, was analyzed in the C-type band for the v(12)(a(u)) mode near 525 cm(-1) and in the C-type band near 162 cm(-1) for the v(13)(a(u)) mode. An unsuccessful attempt was made to extend the analysis of the B-type component of the A/B-type band for v(17)(b(u)) near 3000 cm(-1). With the exception of the two weak Q branches at 463.82 and 462.16 cm(-1), no new evidence for the gauche rotamer in the gas phase was found, C1 [Craig, Norman C.] Oberlin Coll, Dept Chem & Biochem, Oberlin, OH 44074 USA. [Sams, Robert L.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Craig, NC (reprint author), Oberlin Coll, Dept Chem & Biochem, Oberlin, OH 44074 USA. FU Dreyfus Foundation; National Science Foundation [0420717]; United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division; Department of Energy's Office of Biological and Environmental Research; United States Department of Energy by Battelle [AC05-76RLO] FX We are grateful to Dr. David Feller, who did the high-level ab initio calculations for the gauche rotamer of butadiene. Oberlin students Matthew C. Leyden, Deacon J. Nemchick, and Lynn Shen assisted in analyzing rotational structure in some of the bands. NCC was supported by several Senior Scholar Mentor grants from the Dreyfus Foundation. National Science Foundation grant 0420717 supported the purchase and technical support for the Beowulf computer cluster at Oberlin College. This research was also supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division. The high-resolution spectroscopy was performed at the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC05-76RLO 1830. NR 36 TC 10 Z9 10 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 11 PY 2008 VL 112 IS 49 BP 12637 EP 12646 DI 10.1021/jp807677y PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379WG UT WOS:000261426300016 PM 19007193 ER PT J AU Marcalo, J Santos, M de Matos, AP Gibson, JK Haire, RG AF Marcalo, Joaquim Santos, Marta de Matos, Antonio Pires Gibson, John K. Haire, Richard G. TI Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ION-MOLECULE REACTIONS; THERMODYNAMICALLY STABLE DICATIONS; RESONANCE MASS-SPECTROMETRY; KINETIC-ENERGY RELEASE; TRANSITION-METAL; BIMOLECULAR REACTIONS; CHEMICAL-REACTIVITY; PERIODIC TRENDS; ACTINIDE IONS; CHEMISTRY AB The gas-phase reactivity of doubly charged lanthanide cations, Ln(2+) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly charged organometallic ions-adducts or species formed via metal ion induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons-and singly charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly charged organometallic ions were La(2+), Ce(2+), Gd(2+), and Tb(2+), which have ground-state or low-lying d(1) electronic configurations. Lu(2+), with an accessible d(1) electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln(2+) reacted via transfer channels or adduct formation. The different accessibilities of d(1) electronic configurations and the range of electron affinities of the Ln(2+) cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers. C1 [Marcalo, Joaquim; Santos, Marta; de Matos, Antonio Pires] Inst Tecnol & Nucl, Dept Quim, P-2686953 Sacavem, Portugal. [Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Marcalo, J (reprint author), Inst Tecnol & Nucl, Dept Quim, P-2686953 Sacavem, Portugal. EM jmarcalo@itn.pt; jkgibson@lbl.gov RI Marcalo, Joaquim/J-5476-2013; PTMS, RNEM/C-1589-2014; Santos, Marta/A-2411-2012; OI Marcalo, Joaquim/0000-0001-7580-057X; Santos, Marta/0000-0002-8755-9442; Pires de Matos, Antonio/0000-0003-2674-6938 FU Fundacao para a Ciencia e a Tecnologia (FCT); FEDER [POCI/QUI/58222/2004]; Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; U.S. Department of Energy [DE-AC05-00OR22725]; ORNL [DE-AC02-05CH11231] FX This work was supported by Fundacao para a Ciencia e a Tecnologia (FCT) and POCI 2010 (cofinanced by FEDER), under Contract No. POCI/QUI/58222/2004; and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725, formerly at ORNL, and Contract No. DE-AC02-05CH11231 at LBNL. M.S. is grateful to FCT for a Ph.D. grant. NR 49 TC 19 Z9 19 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 11 PY 2008 VL 112 IS 49 BP 12647 EP 12656 DI 10.1021/jp808077b PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379WG UT WOS:000261426300017 PM 19012388 ER PT J AU Lamonte, K Gualdron, DAG Cabrales-Navarro, FA Scanlon, LG Sandi, G Feld, W Balbuena, PB AF Lamonte, Kevin Gualdron, Diego A. Gomez Cabrales-Navarro, Fredy A. Scanlon, Lawrence G. Sandi, Giselle Feld, William Balbuena, Perla B. TI Molecular Dynamics Simulations of H-2 Adsorption in Tetramethyl Ammonium Lithium Phthalocyanine Crystalline Structures SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DENSITY; CORANNULENE; HYDROGEN; FUNCTIONALS; BINDING AB Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H-2 molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes. C1 [Lamonte, Kevin; Gualdron, Diego A. Gomez; Cabrales-Navarro, Fredy A.; Balbuena, Perla B.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Scanlon, Lawrence G.] USAF, Res Lab, Energy Storage & Thermal Sci Branch, Wright Patterson AFB, OH 45433 USA. [Sandi, Giselle] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Feld, William] Wright State Univ, Dept Chem, Dayton, OH 45435 USA. RP Balbuena, PB (reprint author), Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. EM balbuena@tamu.edu FU Air Force Research Laboratory FX This work is supported by funds from the Air Force Research Laboratory. Supercomputer time provided by the TAMU supercomputer center and by the DoD Major Shared Resource Centers (ARL MSRC and ASC MSRC) is gratefully acknowledged. NR 24 TC 3 Z9 3 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 11 PY 2008 VL 112 IS 49 BP 15775 EP 15782 DI 10.1021/jp8050998 PG 8 WC Chemistry, Physical SC Chemistry GA 379WI UT WOS:000261426500030 PM 19367822 ER PT J AU Phillips, J Wilson, KV Kelly, D Tanski, J AF Phillips, Jonathan Wilson, Kennard V. Kelly, Dan Tanski, John TI Generation of a Highly Effective Corrosion Barrier on LiH Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON DIOXIDE SYSTEM; FUNCTION TYPE SENSORS; FUEL-CELL GENERATORS; LITHIUM HYDRIDE; HYDROGEN STORAGE; ROOM-TEMPERATURE; WATER; KINETICS AB The kinetics of LiH powder/water reactions indicate a corrosion resistant layer can readily be generated on LiH by exposure to a mixture Of CO(2) and H(2)O. Specifically, LiH powder corrodes very rapidly even in low ppm concentration of water, but samples pretreated in CO(2)/H(2)O mixtures exhibit a lengthy 'delay' before the onset of a very slow (relative to untreated material in the same corrosion conditions) corrosion reaction. The longer the pretreatment, the longer the delay prior to corrosion onset and the 'slower' the ultimate corrosion rate. X-ray photoelectron spectroscopy indicates that the CO(2)/H(2)O Pretreatment creates a thin (ca. 1000 nm) carbonate layer. Surprisingly, a review of the kinetics of LiH corrosion for both treated and untreated material shows a very low activation energy for corrosion. This suggests that diffusion through a 'barrier layer' is rate controlling even on 'pristine' material. This implies earlier measures of true 'neat' reaction kinetics of hydride powders may not be entirely accurate. However, from a materials engineering perspective these findings suggest not a problem but a solution to the dominant mode (1420) of LiH corrosion. The data also suggest a possible method of CO(2) sequestration with net energy release. C1 [Phillips, Jonathan; Wilson, Kennard V.; Kelly, Dan; Tanski, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Phillips, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jphillips@lanl.gov RI Phillips, Jonathan/D-3760-2011 NR 23 TC 2 Z9 2 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 11 PY 2008 VL 112 IS 49 BP 19405 EP 19411 DI 10.1021/jp803357r PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 379WJ UT WOS:000261426600036 ER PT J AU Chialvo, AA Simonson, JM AF Chialvo, Ariel A. Simonson, J. Michael TI Molecular Dynamics Simulation of the Interfacial Behavior of Short-Chain Polystyrene Sulfonate Aqueous Solutions in Contact with Graphene Surfaces in the Presence of Multivalent Cations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PERIODIC SLAB GEOMETRIES; SHORT-RANGE INTERACTIONS; SELF-ASSEMBLY PROCESS; POLYELECTROLYTE MULTILAYERS; ELECTROLYTE-SOLUTIONS; CHARGED SURFACES; EWALD SUMMATION; ADSORPTION; FILMS; SYSTEMS AB We present a detailed analysis of the behavior of aqueous electrolyte-polyelectrolyte systems in contact with neutral and charged graphene substrates, based on an extensive molecular dynamics simulation effort. Our study involves aqueous systems comprising short chains of lithium polystyrene sulfonate with an explicit atomistic description of water, the chain backbones, and their interactions with all species in solution as well as with the graphene surface. We place special emphasis on the behavior of the axial profiles of species concentrations, local electrostatic charge density, electric field, and corresponding surface-charge screening to provide a full characterization of the inhomogeneous environment at the solid-liquid interface, that is, the electric double layer and the effect of the added salts (BaCl(2) and LaCl(3)) on its structure. To complete the analysis, we assess the tendency toward ion pairing along planes parallel to the graphene surface and estimate, according to the axial distribution profiles, the strength of the adsorption of the polyelectrolyte, counterions, and other species in solution, in order to interpret the degree of surface-charge screening and the occurrence of surface-charge overcompensation and reversal. We present evidence of a recently reported new phenomenon of overcharging and discuss the central role played by the explicit description of the solvent on this occurrence. Moreover, to interpret the conformational behavior of the polyelectrolyte backbones we determine the axial profiles of the perpendicular to- and parallel to-components of the corresponding radius of gyration and end-to-end distance. C1 [Chialvo, Ariel A.] Oak Ridge Natl Lab, Aqueous Chem & Geochem Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. [Simonson, J. Michael] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Chem Sci, Macromol Struct Grp, Oak Ridge, TN 37831 USA. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Aqueous Chem & Geochem Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences [DEAC05-00OR22725] FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences under Contract Number DEAC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. A.A.C. expresses his gratitude to Prof. Aleksander Brodka (Silesian University, Katowice, Poland), as well as Dr. Axel Arnold (Max Planck Inst., Mainz, Germany) and Dr. Jason De Joannis (Emory University, Atlanta) for private communications regarding the implementation of their methods. NR 59 TC 25 Z9 25 U1 6 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 11 PY 2008 VL 112 IS 49 BP 19521 EP 19529 DI 10.1021/jp8041846 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 379WJ UT WOS:000261426600051 ER PT J AU Jeon, Y Sung, J Bu, W Vaknin, D Ouchi, Y Kim, D AF Jeon, Yoonnam Sung, Jaeho Bu, Wei Vaknin, David Ouchi, Yukio Kim, Doseok TI Interfacial Restructuring of Ionic Liquids Determined by Sum-Frequency Generation Spectroscopy and X-Ray Reflectivity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VIBRATIONAL SPECTROSCOPY; PHOTOELECTRON-SPECTROSCOPY; MOLECULAR-ORIENTATION; CAPILLARY WAVES; SURFACE; CATALYSIS; SOLVENTS; CATIONS; ANIONS; WATER AB Surface sum-frequency generation spectroscopy and X-ray reflectivity were used to study the surface of [BMIM]][X] ionic liquids (BMIM = 1-butyl-3-methylimidazolium cation, X = BF(4)(-), PF(6)(-), and I(-) Sum-frequency signal strength from the terminal methyl groups of the cation at the surface indicates that the topmost surface of these ionic liquids is occupied by polar-oriented hydrophobic butyl chains having approximately 1/3 of the in-plane density of fully packed alkyl chains as observed by the same method for the hexadecanol Langmuir monolayer. X-ray reflectivity data reveal a layer with density larger than that of bulk. However, the reflectivity is not sufficiently sensitive to the exact location of this layer either at the vacuum interface or sandwiched between the bulk and-the low-density alkyl chain, as observed in the sum-frequency measurements. Analysis of the reflectivity data in conjunction with the sum-frequency spectra strongly suggests the molecules forming the topmost layer are on average polar-oriented with their (loosely packed) butyl chains toward the gas/liquid interface, while the (densely packed) imidazolium cores/anions are in contact with the bulk liquid. C1 [Jeon, Yoonnam; Kim, Doseok] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Jeon, Yoonnam; Kim, Doseok] Sogang Univ, Interdisciplinary Program Integrated Biotechnol, Seoul 121742, South Korea. [Sung, Jaeho] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bu, Wei; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bu, Wei; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ouchi, Yukio] Nagoya Univ, Grad Sch Sci, Dept Chem, Chikusa Ku, Nagoya, Aichi 4648602, Japan. RP Jeon, Y (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. RI Kim, Doseok/J-8776-2013; Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 FU Seoul Research and Business Development Program [10816]; Scientific Research Center at Hanyang University; U.S. DOE, Basic Energy Sciences, Office of Science [W-7405-Eng-82, W-31-109-Eng-38] FX This work was supported by Seoul Research and Business Development Program (10816) and Scientific Research Center at Hanyang University. The MUCAT sector at the APS is supported by the U.S. DOE, Basic Energy Sciences, Office of Science, through Ames Laboratory under contract No. W-7405-Eng-82. Use of the Advanced Photon Source is supported by the U.S. DOE, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38. NR 30 TC 75 Z9 76 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 11 PY 2008 VL 112 IS 49 BP 19649 EP 19654 DI 10.1021/jp807873j PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 379WJ UT WOS:000261426600068 ER PT J AU Corey, RL Ivancic, TM Shane, DT Carl, EA Bowman, RC von Colbe, JMB Dornheim, M Bormann, R Huot, J Zidan, R Stowe, AC Conradi, MS AF Corey, Robert L. Ivancic, Timothy M. Shane, David T. Carl, Erik A. Bowman, Robert C., Jr. von Colbe, Jose M. Bellosta Dornheim, Martin Bormann, Ruediger Huot, Jaques Zidan, Ragaiy Stowe, Ashley C. Conradi, Mark S. TI Hydrogen Motion in Magnesium Hydride by NMR SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; SPIN-LATTICE RELAXATION; SORPTION KINETICS; MG; STORAGE; NB2O5; DIFFUSION; SYSTEM; ALLOYS; COMPOSITES AB In coarse-grained MgH(2), the diffusive motion of hydrogen remains too slow (< 10(5) hops s(-1)) to narrow the H NMR line up to 400 degrees C. Slow-motion dipolar relaxation time T(ID) measurements reveal the motion, with hopping rate omega(H) from 0.1 to 430 s(-1) over the range of 260 to 400 degrees C, the first direct measurement of H hopping in MgH(2). The omega(H) data are described by an activation energy of 1.72 eV (166 kJ/mol) and attempt frequency of 2.5 x 10(15) s(-1). In ball-milled MgH(2) with 0.5 mol % added Nb(2)O(5) catalyst, line-narrowing is evident already at 50 degrees C. The line shape shows distinct broad and narrow components corresponding to immobile and mobile H, respectively. The fraction of mobile H grows continuously with temperature, reaching similar to 30% at 400 degrees C. This demonstrates that this material's superior reaction kinetics are due to an increased rate of H motion, in addition to the shorter diffusion paths from ball-milling. In ball-milled MgH(2) without additives, the line-narrowed component is weaker and is due, at least in part, to trapped H(2) gas. The spin-lattice relaxation rates T(1)(-1) of all materials are compared, with ball-milling markedly increasing T(1)(-1). The weak temperature dependence of T(1)(-1) suggests a mechanism with paramagnetic relaxation centers arising from the mechanical milling. C1 [Corey, Robert L.; Ivancic, Timothy M.; Shane, David T.; Carl, Erik A.; Conradi, Mark S.] Washington Univ, Dept Phys 1105, St Louis, MO 63130 USA. [Corey, Robert L.] S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. [Bowman, Robert C., Jr.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [von Colbe, Jose M. Bellosta; Dornheim, Martin; Bormann, Ruediger] GKSS Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany. [Huot, Jaques] Univ Quebec, Trois Rivieres, PQ G9A 5H7, Canada. [Zidan, Ragaiy; Stowe, Ashley C.] Savannah River Natl Lab, Energy Secur Directorate, Aiken, SC 29808 USA. [Stowe, Ashley C.] Y12 Natl Secur Complex, Oak Ridge, TN 37831 USA. RP Conradi, MS (reprint author), Washington Univ, Dept Phys 1105, St Louis, MO 63130 USA. EM msc@wuphys.wustl.edu RI Dornheim, Martin/B-4391-2009; Mahalingam, Arjun/G-8586-2011; Huot, Jacques/B-8934-2011 OI Dornheim, Martin/0000-0001-8491-435X; Bowman, Robert/0000-0002-2114-1713; FU Office of Basic Science (OBS), U.S. Department of Energy [DE-FG02-05ER46256]; NSERC of Canada; DOE-OBS FX The authors gratefully acknowledge funding from the Office of Basic Science (OBS), U.S. Department of Energy, under Grant DE-FG02-05ER46256. J.H. thanks J. Lang for assistance with sample preparation and NSERC of Canada for funding. R.Z. and A.C.S. appreciate support from DOE-OBS. NR 48 TC 44 Z9 44 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 11 PY 2008 VL 112 IS 49 BP 19784 EP 19790 DI 10.1021/jp807900r PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 379WJ UT WOS:000261426600088 ER PT J AU Accardi, A Melnitchouk, W AF Accardi, Alberto Melnitchouk, W. TI Target mass corrections for spin-dependent structure functions in collinear factorization SO PHYSICS LETTERS B LA English DT Article ID DEEP-INELASTIC-SCATTERING; SUM-RULES; ELECTROPRODUCTION; DUALITY; LEPTOPRODUCTION; QUARKS AB We derive target mass corrections (TMC) for the spin-dependent nucleon structure function g(1) and polarization asymmetry A(1) in collinear factorization at leading twist. The TMCs are found to be significant for g(1) at large x(B), even at relatively high Q(2) values, but largely cancel in A(1). A comparison of TMCs obtained from collinear factorization and from the operator product expansion shows that at low Q(2) the corrections drive the proton A(1) in opposite directions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Accardi, Alberto] Hampton Univ, Hampton, VA 23668 USA. RP Melnitchouk, W (reprint author), Jefferson Lab, Newport News, VA 23606 USA. EM wmelnitc@jlab.org FU DOE [DE-AC05-06OR23177]; NSF [0653508] FX We are grateful to A. Bacchetta and M. Schlegel for many informative discussions, and to A. Metz for helpful correspondence. This work was supported by the DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, and NSF award No. 0653508. NR 44 TC 20 Z9 20 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD DEC 11 PY 2008 VL 670 IS 2 BP 114 EP 118 DI 10.1016/j.physletb.2008.10.036 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 385NJ UT WOS:000261820600004 ER PT J AU Dobrescu, BA Kong, K Mahbubani, R AF Dobrescu, Bogdan A. Kong, Kyoungchul Mahbubani, Ran TI Massive color-octet bosons and pairs of resonances at hadron colliders SO PHYSICS LETTERS B LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; QUARK PRODUCTION; STANDARD MODEL; COLLISIONS; PHYSICS; TEVATRON AB We analyze collider signatures of massive color-octet bosons whose couplings to quarks are suppressed. Gauge invariance forces the octets to couple at tree level only in pairs to gluons, with a strength set by the QCD gauge coupling. For a spin-1 octet, the cross section for pair production at hadron colliders is larger than that for a quark of equal mass. The octet decays into two jets, leading to a 4-jet signature with two pairs of jets forming resonances of the same mass. For a spin-0 octet the cross section is smaller, and the dominant decay is into b (b) over bar, or t (t) over bar if kinematically allowed. We estimate that discovery of spin-1 octets is possible for masses up to 330 GeV at the Tevatron, and 1 TeV at the LHC with 1 fb(-1) while the reach is somewhat lower for spin-0 octets. (C) 2008 Elsevier B.V. All rights reserved. C1 [Dobrescu, Bogdan A.; Kong, Kyoungchul; Mahbubani, Ran] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bdob@fnal.gov NR 31 TC 65 Z9 65 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD DEC 11 PY 2008 VL 670 IS 2 BP 119 EP 123 DI 10.1016/j.physletb.2008.10.048 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 385NJ UT WOS:000261820600005 ER PT J AU Rao, KN Burley, SK Swaminathan, S AF Rao, Krishnamurthy N. Burley, Stephen K. Swaminathan, Subramanyam TI UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function SO PLOS ONE LA English DT Article AB We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel beta-sheet and five alpha-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation. C1 [Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, New York, NY USA. [Burley, Stephen K.] Eli Lilly & Co, San Diego, CA USA. RP Rao, KN (reprint author), Brookhaven Natl Lab, Dept Biol, New York, NY USA. EM swami@bnl.gov FU National Institute of General Medical Sciences [GM074945]; DOE [DEAC02- 98CH10886] FX Research was supported by a U54 award from the National Institute of General Medical Sciences to the NYSGXRC (GM074945; PI: Stephen K. Burley) under DOE Prime Contract No. DEAC02- 98CH10886 with Brookhaven National Laboratory. Financial support for X12C beamline comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and from the National Center for Research Resources of the National Institutes of Health. NR 75 TC 0 Z9 0 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 11 PY 2008 VL 3 IS 12 AR e3903 DI 10.1371/journal.pone.0003903 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 436ZU UT WOS:000265455900001 PM 19079550 ER PT J AU Bahk, SW Zuegel, JD Fienup, JR Widmayer, CC Heebner, J AF Bahk, Seung-Whan Zuegel, Jonathan D. Fienup, James R. Widmayer, C. Clay Heebner, John TI Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain SO APPLIED OPTICS LA English DT Article ID NATIONAL IGNITION FACILITY; PETAWATT; PROPAGATION; SYSTEM; BEAM AB A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser. (c) 2008 Optical Society of America. C1 [Bahk, Seung-Whan; Zuegel, Jonathan D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Fienup, James R.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. [Widmayer, C. Clay; Heebner, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bahk, SW (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM sbah@lle.rochester.edu RI Heebner, John/C-2411-2009; Fienup, James/B-2715-2016 OI Fienup, James/0000-0001-5147-9435 NR 18 TC 10 Z9 10 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD DEC 10 PY 2008 VL 47 IS 35 BP 6586 EP 6593 DI 10.1364/AO.47.006586 PG 8 WC Optics SC Optics GA 391NR UT WOS:000262240500015 PM 19079467 ER PT J AU Perkins, MP Vernon, RJ AF Perkins, Michael P. Vernon, Ronald J. TI Two-dimensional phase unwrapping to help characterize an electromagnetic beam for quasi-optical mode converter design SO APPLIED OPTICS LA English DT Article ID LEAST-SQUARES; RADAR INTERFEROMETRY; ALGORITHM; ROBUST; IMAGES; DIFFERENCE; GYROTRON; SAR AB An improved two-dimensional phase unwrapping procedure is discussed that uses a weighted least-squares algorithm, a congruence operation, and a filter to unwrap the phase distribution of an electromagnetic beam. These improvements make possible several advances for mirror designs used in gyrotron quasi-optical mode converters. The improved phase unwrapping procedure is demonstrated by applying it to a measured beam and a simulated beam that are used to design mirrors. The unwrapping procedure produces a smooth unwrapped phase that does not change the characteristics of the beam. The smooth unwrapped phase distribution is also used to find an estimate for the wavenumber vector distribution that is needed to design the mirrors. (c) 2008 Optical Society of America. C1 [Perkins, Michael P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vernon, Ronald J.] Univ Wisconsin, Madison, WI 53706 USA. RP Perkins, MP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM perkins22@llnl.gov FU U.S. Department of Energy (DOE) [DE-FG0285ER52122] FX The authors would like to thank Jeffrey M. Neilson of Calabazas Creek Research for supplying us with the simulated beam data that were used as one of our examples. The U.S. Department of Energy (DOE) supported this work under contract DE-FG0285ER52122. NR 43 TC 3 Z9 4 U1 2 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD DEC 10 PY 2008 VL 47 IS 35 BP 6606 EP 6614 DI 10.1364/AO.47.006606 PG 9 WC Optics SC Optics GA 391NR UT WOS:000262240500018 PM 19079470 ER PT J AU Chen, CH Fitzgerald, MP Smith, PS AF Chen, Christine H. Fitzgerald, Michael P. Smith, Paul S. TI A POSSIBLE ICY KUIPER BELT AROUND HD 181327 SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; planetary systems: formation; stars: individual (HD 181327) ID MULTIBAND IMAGING PHOTOMETER; SPITZER-SPACE-TELESCOPE; MAIN-SEQUENCE STARS; DEBRIS DISKS; BETA-PICTORIS; ABSOLUTE CALIBRATION; RADIATION PRESSURE; OPTICAL-CONSTANTS; DUST; IRAS AB We have obtained a Gemini South T-ReCS Qa-band (18.3 mu m) image and a Spitzer MIPS SED-mode observation of HD181327, an F5/F6 V member of the similar to 12 Myr old beta Pictoris moving group. We resolve the disk in thermal emission for the first time and find that the northern arm of the disk is 1.4 times brighter than the southern arm. In addition, we detect a broad peak in the combined Spitzer IRS and MIPS spectra at 60-75 mu m that may be produced by emission from crystalline water ice. We model the IRS and MIPS data using a size distribution of amorphous olivine and water ice grains (dn/da proportional to a(-2.25), with a(min) consistent with the minimum blowout size and a(max) = 20 mu m) located at a distance of 86.3 AU from the central star, as observed in previously published scattered-light images. Since the photodesorption lifetime for the icy particles is similar to 1400 yr, significantly less than the estimated similar to 12 Myr age of the system, we hypothesize that we have detected debris that may be steadily replenished by collisions among icy Kuiper Belt object-like parent bodies in a newly forming planetary system. C1 [Chen, Christine H.] NOAO STScI, Baltimore, MD 21218 USA. [Fitzgerald, Michael P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Smith, Paul S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Chen, CH (reprint author), NOAO STScI, Baltimore, MD 21218 USA. EM cchen@stsci.edu RI Fitzgerald, Michael/C-2642-2009 OI Fitzgerald, Michael/0000-0002-0176-8973 FU NASA; Jet Propulsion Laboratory, California Institute of Technology; DOE [DE-AC52-07NA27344]; JPL/Spitzer [1256424] FX We would like to thank J. Kessler-Silacci and A. Noriega-Crespo for their assistance with the preliminary SED-mode data reduction and S. Sandford for providing an electronic copy of the laboratory measured optical constants of ices published in Hudginset al. (1993). We would also like to thank J. Debes, M. Jura, C. McCabe, J. Najita, D. Watson, A. Weinberger, K. Willacy, and our anonymous referee for their helpful comments and suggestions. Support for this work at NOAO/STScI was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. M. P. F. acknowledges support from the Michelson Fellowship Program, under contract with JPL, funded by NASA. Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344. Support for this work at Steward Observatory was provided by JPL/Spitzer contract 1256424. NR 36 TC 22 Z9 22 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2008 VL 689 IS 1 BP 539 EP 544 DI 10.1086/592567 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 401GV UT WOS:000262929000047 ER PT J AU Colgan, J Abdallah, J Sherrill, ME Foster, M Fontes, CJ Feldman, U AF Colgan, J. Abdallah, J., Jr. Sherrill, M. E. Foster, M. Fontes, C. J. Feldman, U. TI RADIATIVE LOSSES OF SOLAR CORONAL PLASMAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; atomic processes; Sun: corona ID ELECTRON-IMPACT EXCITATION; DIFFERENTIAL CROSS-SECTIONS; R-CIRCLE-DOT; ELEMENTAL ABUNDANCES; EMISSION-LINES; THIN PLASMAS; ASTROPHYSICAL PLASMAS; IONIZATION BALANCE; RATE COEFFICIENTS; ATOMIC DATABASE AB A comprehensive set of calculations of the radiative losses of solar coronal plasmas is presented. The Los Alamos suite of atomic structure and collision codes is used to generate collisional data for 15 coronal elements. These data are used in the Los Alamos plasma kinetics code ATOMIC to compute the radiative power loss as a function of electron temperature. We investigate the sensitivity of the loss curves to the quality of the atomic data and changes in the coronal elemental abundances, and we compare our results with previous work. C1 [Colgan, J.; Abdallah, J., Jr.; Sherrill, M. E.; Foster, M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fontes, C. J.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Feldman, U.] Artep Inc, Ellicott City, MD 21042 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Colgan, James/0000-0003-1045-3858 FU US DOE through Los Alamos National Laboratory FX This work was performed under the auspices of the US DOE through Los Alamos National Laboratory. We thank Bob Clark for useful discussions. NR 71 TC 25 Z9 25 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2008 VL 689 IS 1 BP 585 EP 592 DI 10.1086/592561 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 401GV UT WOS:000262929000051 ER PT J AU Yamamoto, N Kato, T Funaba, H Sato, K Tamura, N Sudo, S Beiersdorfer, P Lepson, JK AF Yamamoto, N. Kato, T. Funaba, H. Sato, K. Tamura, N. Sudo, S. Beiersdorfer, P. Lepson, J. K. TI MEASUREMENT AND MODELING OF DENSITY-SENSITIVE LINES OF Fe XIII IN THE EXTREME ULTRAVIOLET SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; atomic processes; line: formation; line: identification; plasmas; ultraviolet: general ID SOLAR ACTIVE-REGION; EMISSION-LINES; PLASMA DIAGNOSTICS; ATOMIC DATABASE; ANGSTROM; SPECTRA; SERTS; VII; ASTROPHYSICS; TRANSPORT AB We present an analysis of the spectral emission of Fe XIII near 200 angstrom. High-resolution spectra were recorded at two densities (similar to 2 x 10(11) and similar to 10(13) cm(-3)) in the laboratory and compared to collisional radiative model calculations based on the CHIANTI database, and to models using atomic data from distorted-wave and R-matrix calculations. The Fe XIII lines in this wavelength range are sensitive indicators of plasma density below similar to 10(11) cm(-3). The laboratory data thus test calculations in the astrophysical high-density limit. Significant differences between the measurements and models were found for several line ratios. Differences in the wavelengths employed in the different models also changed the agreement with the measurements. The best agreement was found for comparisons with CHIANTI. C1 [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Yamamoto, N.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Kato, T.; Funaba, H.; Sato, K.; Tamura, N.; Sudo, S.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Beiersdorfer, P.; Lepson, J. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Yamamoto, N (reprint author), Osaka Univ, ILE, Osaka, Japan. NR 29 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2008 VL 689 IS 1 BP 646 EP 652 DI 10.1086/592262 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 401GV UT WOS:000262929000055 ER PT J AU Abbasi, R Ackermann, M Adams, J Ahlers, M Ahrens, J Andeen, K Auffenberg, J Bai, X Baker, M Baret, B Barwick, SW Bay, R Alba, JLB Beattie, K Becka, T Becker, JK Becker, KH Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bieber, JW Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Braun, J Breder, D Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cowen, DF D'Agostino, MV Danninger, M Davour, A Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegaard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hardtke, D Hardtke, R Hasegawa, Y Heise, J Helbing, K Hellwig, M Herquet, P Hickford, S Hill, GC Hoffman, KD Hoshina, K Hubert, D Hulss, JP Hulth, PO Hultqvist, K Hundertmark, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kawai, H Kelley, JL Kiryluk, J Kislat, F Klein, SR Klepser, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Laihem, K Landsman, H Lauer, R Leich, H Leier, D Lucke, A Lundberg, J Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Meli, A Merck, M Messarius, T Meszaros, P Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de Los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Pretz, J Price, PB Przybylski, GT Pyle, R Rawlins, K Razzaque, S Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Robbins, WJ Rodrigues, J Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Satalecka, K Schlenstedt, S Schmidt, T Schneider, D Schultz, O Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Smith, AJ Song, C Spiczak, GM Spiering, C Stanev, T Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Tluczykont, M Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Viscomi, V Vogt, C Voigt, B Walck, C Waldenmaier, T Waldmann, H Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, C Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Ackermann, M. Adams, J. Ahlers, M. Ahrens, J. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Baret, B. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Becka, T. Becker, J. K. Becker, K. H. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bieber, J. W. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Braun, J. Breder, D. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davour, A. Day, C. T. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegaard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hardtke, D. Hardtke, R. Hasegawa, Y. Heise, J. Helbing, K. Hellwig, M. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoshina, K. Hubert, D. Huelss, J. P. Hulth, P. O. Hultqvist, K. Hundertmark, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. H. Kappes, A. Karg, T. Karle, A. Kawai, H. Kelley, J. L. Kiryluk, J. Kislat, F. Klein, S. R. Klepser, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Lauer, R. Leich, H. Leier, D. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Meli, A. Merck, M. Messarius, T. Meszaros, P. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de Los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Pretz, J. Price, P. B. Przybylski, G. T. Pyle, R. Rawlins, K. Razzaque, S. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Robbins, W. J. Rodrigues, J. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. G. Sarkar, S. Satalecka, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schultz, O. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Smith, A. J. Song, C. Spiczak, G. M. Spiering, C. Stanev, T. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. H. Sullivan, G. W. Swillens, Q. Taboada, I. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Tluczykont, M. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Viscomi, V. Vogt, C. Voigt, B. Walck, C. Waldenmaier, T. Waldmann, H. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, C. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. TI SOLAR ENERGETIC PARTICLE SPECTRUM ON 2006 DECEMBER 13 DETERMINED BY IceTop SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: flares; Sun: particle emission ID NEUTRON MONITORS AB On 2006 December 13 the IceTop air shower array at the South Pole detected a major solar particle event. By numerically simulating the response of the IceTop tanks, which are thick Cerenkov detectors with multiple thresholds deployed at high altitude with no geomagnetic cutoff, we determined the particle energy spectrum in the energy range 0.6-7.6 GeV. This is the first such spectral measurement using a single instrument with a well-defined viewing direction. We compare the IceTop spectrum and its time evolution with previously published results and outline plans for improved resolution of future solar particle spectra. C1 [Bai, X.; Bieber, J. W.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Kuwabara, T.; Niessen, P.; Pyle, R.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Waldenmaier, T.] Univ Delaware, BRI, Newark, DE 19711 USA. [Euler, S.; Huelss, J. P.; Laihem, K.; Vogt, C.; Wiebusch, C. H.; Wissing, H.] Univ Aachen, Rhein Westfal TH Aachen, D-52056 Aachen, Germany. [Rawlins, K.] Univ Alaska, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] So Univ, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Hardtke, D.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Roucelle, C.; Taboada, I.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Roucelle, C.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.] Humboldt Univ, D-12489 Berlin, Germany. [Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Baret, B.; De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Kawai, H.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Chiba 2638522, Japan. [Adams, J.; Danninger, M.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Meagher, K.; Olivas, A.; Pretz, J.; Redl, P.; Roth, P.; Schmidt, T.; Smith, A. J.; Straszheim, T.; Sullivan, G. W.; Turcan, D.] Univ Maryland, College Pk, MD 20742 USA. [Becker, J. K.; Dreyer, J.; Leier, D.; Luenemann, J.; Meli, A.; Messarius, T.; Muenich, K.; Rhode, W.] Univ Dortmund, D-44221 Dortmund, Germany. [Descamps, F.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, B-9000 Ghent, Belgium. [Gross, A.; Resconi, E.; Schultz, O.; Sestayo, Y.] MPI Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Kuehn, K.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Irvine, CA 92697 USA. [Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Lawrence, KS 66045 USA. [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Gallagher, J.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J.; Schneider, D.; Song, C.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Madison, WI 53706 USA. [Ahrens, J.; Becka, T.; Gozzini, R.; Griesel, T.; Hellwig, M.; Koepke, L.; Kowarik, T.; Piegsa, A.; Rothmaier, F.; Sander, H. G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ahlers, M.; Sarkar, S.] Univ Oxford, Oxford OX1 3NP, England. [Hardtke, D.; Madsen, J.; Spiczak, G. M.] Univ Wisconsin, River Falls, WI 54022 USA. [Bohm, C.; Burgess, T.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Johansson, H.; Seo, S. H.; Walck, C.; Wiedemann, C.; Wikstroem, G.] Stockholm Univ, SE-10691 Stockholm, Sweden. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Meszaros, P.; Movit, S. M.; Razzaque, S.; Robbins, W. J.; Rott, C.; Rutledge, D.; Toale, P. A.; Viscomi, V.; Williams, D. R.] Penn State Univ, University Pk, PA 16802 USA. [Botner, O.; Davour, A.; Engdegaard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de Los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, S-75121 Uppsala, Sweden. [de Vries-Uiterweerd, G.; Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, SRON, NL-3584 Utrecht, Netherlands. [Auffenberg, J.; Becker, K. H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, D-42119 Wuppertal, Germany. [Ackermann, M.; Alba, J. L. Bazo; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Nahnhauer, R.; Odrowski, S.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Spiering, C.; Sulanke, K. H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Waldmann, H.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Pohl, A. C.] Kalmar Univ, S-39182 Kalmar, Sweden. RP Evenson, PA (reprint author), Univ Delaware, BRI, Newark, DE 19711 USA. EM evenson@udel.edu RI Song, Chihwa/A-3455-2008; Hundertmark, Stephan/A-6592-2010; Wiebusch, Christopher/G-6490-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Maruyama, Reina/A-1064-2013 OI Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Maruyama, Reina/0000-0003-2794-512X FU National Science Foundation Office of Polar Programs; National Science Foundation Physics Division; University of Wisconsin Alumni Research Foundation; Department of Energy; National Energy Research Scientific Computing Center; NSF-supported TeraGrid system at the San Diego Supercomputer Center (SDSC); National Center for Supercomputing Applications (NCSA); Swedish Research Council; Swedish Polar Research Secretariat; Knut and Alice Wallenberg Foundation; German Ministry for Education and Research; Deutsche Forschungsgemeinschaft (DFG); Fund for Scientific Research (FNRS-FWO); Flanders Institute to encourage scientific and technological research in industry (IWT; Belgian Federal Science Policy Office; Netherlands Organisation for Scientific Research (NWO); SNF (Switzerland); EU Marie Curie OIF Program; NASA [NNX07AH73G, NNX08AQ18G] FX We acknowledge the support from the following agencies: National Science Foundation Office of Polar Programs; National Science Foundation Physics Division; University of Wisconsin Alumni Research Foundation; Department of Energy; National Energy Research Scientific Computing Center (supported by the Office of Energy Research of the Department of Energy); NSF-supported TeraGrid system at the San Diego Supercomputer Center (SDSC); National Center for Supercomputing Applications (NCSA); Swedish Research Council; Swedish Polar Research Secretariat; Knut and Alice Wallenberg Foundation; German Ministry for Education and Research; Deutsche Forschungsgemeinschaft (DFG); Fund for Scientific Research (FNRS-FWO); Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office; Netherlands Organisation for Scientific Research (NWO); M. Ribordy: SNF (Switzerland); A. Kappes: EU Marie Curie OIF Program; T. Kuwabara and J. W. Bieber: NASA grants NNX07AH73G and NNX08AQ18G. We thank our colleagues at IZMIRAN, Polar Geophysical Institute (Russia), and Australian Antarctic Division for furnishing neutron monitor data. NR 12 TC 22 Z9 22 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2008 VL 689 IS 1 BP L65 EP L68 DI 10.1086/595679 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 398LO UT WOS:000262733800017 ER PT J AU Burgasser, AJ Tinney, CG Cushing, MC Saumon, D Marley, MS Bennett, CS Kirkpatrick, JD AF Burgasser, Adam J. Tinney, C. G. Cushing, Michael C. Saumon, Didier Marley, Mark S. Bennett, Clara S. Kirkpatrick, J. Davy TI 2MASS J09393548-2448279: THE COLDEST AND LEAST LUMINOUS BROWN DWARF BINARY KNOWN? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; stars: fundamental parameters; stars: individual (2MASS J04151954-0935066 2MASS J09393548-2448279); stars: low-mass, brown dwarfs ID SPITZER-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; T-DWARFS; SPECTRAL CLASSIFICATION; ADAPTIVE OPTICS; FILTER SET; SPECTROGRAPH; TRANSITION; SEARCH; ATMOSPHERES AB Determinations of the luminosity and atmospheric properties of the T8 brown dwarf 2MASS J09393548 - 2448279 are presented, based on Spitzer IRAC and IRS observations and ground-based astrometry. We find log(10) (L(bol)/L(circle dot)) = -5.69 +/- 0.03 for this source, comparable to the current low-luminosity record holder 2MASS J04151954 - 0935066. However, modeling of near- and mid-infrared spectral data indicates an effective temperature of 600 +/- 35 K, roughly 100 K cooler than 2M0415. These parameters require a highly inflated radius for 2M0939 (R approximate to 0.13 R(circle dot)) which cannot be reconciled with brown dwarf structure models. However, if this source is an unresolved, equal-mass binary, then the reduced luminosity of each component (L(bol) approximate to 10(-6) L(circle dot)) can be brought into agreement with the inferred atmospheric parameters for an age of 0.4-12 Gyr and component masses of 0.01-0.05 M(circle dot). This hypothesis can be tested through future high-resolution imaging and/or spectroscopic observations. C1 [Burgasser, Adam J.; Bennett, Clara S.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Tinney, C. G.] Univ New S Wales, Sch Phys, Dept Astrophys, Sydney, NSW 2052, Australia. [Saumon, Didier] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kirkpatrick, J. Davy] CALTECH, Infrared Proc Anal Ctr, Pasadena, CA 91125 USA. RP Burgasser, AJ (reprint author), MIT, Kavli Inst Astrophys & Space Res, Bldg 37,Room 664B,77 Massachusetts Ave, Cambridge, MA 02139 USA. EM ajb@mit.edu RI Marley, Mark/I-4704-2013 FU NASA [DP0774000]; NSF FX This publication makes use of data from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC), and funded by NASA and the NSF. The 2MASS data were obtained from the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology (JPL/Caltech), under contract with NASA. This work is also based in part on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. C. G. T. acknowledges support from ARC grant DP0774000. Support for D. S.'s work, part of the Spitzer Space Telescope Theoretical Research Program, was provided by NASA. We thank our anonymous referee for her/his prompt review of our original manuscript. NR 35 TC 31 Z9 31 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2008 VL 689 IS 1 BP L53 EP L56 DI 10.1086/595747 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 398LO UT WOS:000262733800014 ER PT J AU Anisimov, VI Korotin, DM Streltsov, SV Kozhevnikov, AV Kunes, J Shorikov, AO Korotin, MA AF Anisimov, V. I. Korotin, Dm. M. Streltsov, S. V. Kozhevnikov, A. V. Kunes, J. Shorikov, A. O. Korotin, M. A. TI Density-Functional Calculation of the Coulomb Repulsion and Correlation Strength in Superconducting LaFeAsO SO JETP LETTERS LA English DT Article ID MEAN-FIELD THEORY; WANNIER-FUNCTIONS; ELECTRONIC-STRUCTURE; SYSTEMS; PARAMETERS; BAND; IMPURITIES; SPECTRA; METALS; MODELS AB Constrained density functional theory scheme in Wannier functions formalism has been used to calculate Coulomb repulsion U and Hund's exchange J parameters for Fe-3d electrons in LaFeAsO. Results strongly depend on the basis set. When O-2p, As4p, and Fe-3d orbitals are included, computation results in U = 3-4 eV. With the basis set restricted to Fe-3d orbitals only, computation gives parameters corresponding to F(0) = 0.8 eV, J = 0.5 eV. Local Density Approximation combined with Dynamical Mean-Field Theory calculation with these parameters results in weakly correlated electronic structure. C1 [Anisimov, V. I.; Korotin, Dm. M.; Streltsov, S. V.; Shorikov, A. O.; Korotin, M. A.] RAS, Inst Met Phys, Ekaterinburg 620041, Russia. [Kozhevnikov, A. V.] Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. [Kunes, J.] Univ Augsburg, Ctr Elect Correlat & Magnet, Inst Phys, D-86135 Augsburg, Germany. RP Anisimov, VI (reprint author), RAS, Inst Met Phys, GSP-170, Ekaterinburg 620041, Russia. EM michael@korotin.name RI Kunes, Jan/B-4484-2008; Streltsov, Sergey/A-6674-2012; Korotin, Dmitry/I-6833-2013; Korotin, Michael/J-3252-2013; Shorikov, Alexey/J-3551-2013; Anisimov, Vladimir/K-1235-2013; Streltsov, Sergey/A-8293-2016 OI Kunes, Jan/0000-0001-9682-7640; Streltsov, Sergey/0000-0002-2823-1754; Korotin, Dmitry/0000-0002-4070-2045; Korotin, Michael/0000-0002-9603-8374; Shorikov, Alexey/0000-0001-7607-6130; Anisimov, Vladimir/0000-0002-1087-1956; FU Russian Foundation for Basic Research [RFFI-07-02-00041]; Civil Research and Development Foundation [Y4-P-05-15]; Dynasty Foundation [MK-1184.2007.2]; Deutsche Forschungsgememschaft [SFB 484] FX Support by the Russian Foundation for Basic Research under Grant no. RFFI-07-02-00041, Civil Research and Development Foundation together with Russian Ministry of science and education through program Y4-P-05-15, Russian president grant for young scientists MK-1184.2007.2 and Dynasty Foundation is gratefully acknowledged. J.K. acknowledges the support of SFB 484 of the Deutsche Forschungsgememschaft. NR 38 TC 17 Z9 17 U1 0 U2 6 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 J9 JETP LETT+ JI Jetp Lett. PD DEC 10 PY 2008 VL 88 IS 11 BP 729 EP 733 DI 10.1134/S0021364008230069 PG 5 WC Physics, Multidisciplinary SC Physics GA 413IL UT WOS:000263786700006 ER PT J AU Baturina, TI Mironov, AY Vinokur, VM Baklanov, MR Strunk, C AF Baturina, T. I. Mironov, A. Yu. Vinokur, V. M. Baklanov, M. R. Strunk, C. TI Hyperactivated Resistance in TiN Films on the Insulating Side of the Disorder-Driven Superconductor-Insulator Transition SO JETP LETTERS LA English DT Article ID SMALL JOSEPHSON-JUNCTIONS; 2-DIMENSIONAL ARRAYS; CHARGE; LOCALIZATION; PHASE; FLUCTUATIONS AB We investigate the insulating phase that forms in a titanium nitride film in a close vicinity of the disorder-driven superconductor-insulator transition. In zero magnetic field the temperature dependence of the resistance reveals a sequence of distinct regimes upon decreasing temperature crossing over from logarithmic to activated behavior with the variable-range hopping squeezing in between. In perpendicular magnetic fields below 2 T, the thermally activated regime retains at intermediate temperatures, whereas at ultralow temperatures, the resistance increases faster than that of the thermally activated type. This indicates a change of the mechanism of the conductivity. We find that at higher magnetic fields the thermally activated behavior disappears and the magnetoresistive isotherms saturate towards the value close to quantum resistance h/e(2). C1 [Baturina, T. I.; Mironov, A. Yu.] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. [Strunk, C.] Univ Regensburg, Inst Expt & Angew Phys, D-93025 Regensburg, Germany. RP Baturina, TI (reprint author), Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru FU RFBR [06-02-16704]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; Deutsche Forschungsgemeinschaft [GRK 638] FX We are grateful to A. Gerber for fruitful discussions. This research has been supported by the RFBR Grant no. 06-02-16704, the U.S. Department of Energy Office of Science through contract no. DE-AC02-06CH11357, and the Deutsche Forschungsgemeinschaft within the GRK 638. NR 37 TC 19 Z9 19 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 J9 JETP LETT+ JI Jetp Lett. PD DEC 10 PY 2008 VL 88 IS 11 BP 752 EP 757 DI 10.1134/S0021364008230112 PG 6 WC Physics, Multidisciplinary SC Physics GA 413IL UT WOS:000263786700011 ER PT J AU Owens, J Koester, C AF Owens, Janel Koester, Carolyn TI Quantitation of Abrine, an Indole Alkaloid Marker of the Toxic Glycoproteins Abrin, by Liquid Chromatography/Tandem Mass Spectrometry When Spiked into Various Beverages SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE Abrine; abrin; liquid chromatography mass spectrometry ID RICIN; PROTEIN AB Abrine is an alkaloid chemical marker and surrogate analyte of abrin, a group of highly toxic glycoproteins. These toxins can be easily isolated from the seed of the rosary pea plant and distributed in a variety of matrices, including food. A procedure for the cleanup of abrine from various beverages, including milk, cola, juice drink, tea, and water, by C18 Strata-X solid-phase extraction (SPE) cartridges is described with comparison to a previously developed liquid-liquid extraction protocol utilizing acetonitrile and water. Analysis was by liquid chromatography/tandem mass spectrometry. Abrine quantitation was based on fragmentation of m/z 219.2 to product ion m/z 188.2. The method detection limit was 0.025 mu/mL, and the quantitation limit was 0.05 mu g/mL. Fortifications of the five beverages at 0.5 and 0.05 mu g/mL were recovered ranging from 88 to 111% [relative standard deviation (RSD) < 16%] by SPE and from 48 to 101% (RSD < 19%) by liquid-liquid extraction. C1 [Owens, Janel; Koester, Carolyn] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA. RP Owens, J (reprint author), Lawrence Livermore Natl Lab, Forens Sci Ctr, 7000 East Ave, Livermore, CA 94550 USA. EM owens33@llnl.gov NR 14 TC 12 Z9 12 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD DEC 10 PY 2008 VL 56 IS 23 BP 11139 EP 11143 DI 10.1021/jf802471y PG 5 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 379XF UT WOS:000261429000011 PM 19007169 ER PT J AU Fox, EB Velu, S Engelhard, MH Chin, YH Miller, JT Kropf, J Song, CS AF Fox, Elise B. Velu, Subramani Engelhard, Mark H. Chin, Ya-Huei Miller, Jeffrey T. Kropf, Jeremy Song, Chunshan TI Characterization of CeO2-supported Cu-Pd bimetallic catalyst for the oxygen-assisted water-gas shift reaction SO JOURNAL OF CATALYSIS LA English DT Article DE Catalyst; Bimetallic catalyst; Water-gas shift; Oxygen-assisted water-gas shift; CeO2; Cu-Pd; Characterization; TPR; XPS; EXAFS ID FUEL-CELL APPLICATIONS; METAL-OXIDE CATALYSTS; IN-SITU XPS; HYDROGEN-PRODUCTION; LOW-TEMPERATURE; SURFACE-COMPOSITION; COPPER-CATALYSTS; CARBON-MONOXIDE; METHANOL; OXIDATION AB Our recent work demonstrated that Cu-Pd bimetallic catalyst supported on a nano-crystalline CeO2 synthesized by urea gelation method is effective for oxygen-assisted water-gas shift (OWGS) reaction. The present study focuses on the roles of Cu and Pd in CuPd/CeO2 bimetallic catalysts containing 20-30 wt% Cu and 0.5-1 wt% Pd used in the OWGS reaction employing a combined bulk and surface characterization techniques such as EXAFS, XRD, TPR, CO chemisorption, and in situ XPS. The catalytic activity for CO conversion and the stability of catalyst during on-stream operation increased by the addition of Cu to Pd/CeO2 or Pd to Cu/CeO2 monometallic catalysts, especially when the OWGS reaction was performed at low temperatures, below 200 degrees C. The TPR of monometallic Cu/CeO2 showed reduction of CuO supported on CeO2 in two distinct regions, around 150 and 250 degrees C. The high temperature peak disappeared and reduction occurred in a single step around 150 degrees C upon Pd addition. In situ XPS studies showed a shift in Cu 2p peaks toward lower binding energy (BE) with concomitant shift in the Pd 3d peaks toward higher BE. An inward diffusion of Pd into the CeO2 support occurred upon reduction. On the other hand, inward diffusion of Cu occurred when I'd was present in the sample. These observations indicated the existence of synergistic interactions between Cu and Pd in these catalysts which could be responsible for the improved catalytic activity and stability of CuPd/CeO2 bimetallic catalyst. The EXAFS analysis of Cu showed no clear evidence of Cu-Pd alloy formation at the copper edge. However, evidence for PdCu alloy was shown in the Pd edge, and Pd atoms are surrounded only by Cu atoms in the reduced CuPd/CeO2 bimetallic catalyst as revealed by EXAFS. (C) 2008 Elsevier Inc. All rights reserved. C1 [Fox, Elise B.; Velu, Subramani; Song, Chunshan] Penn State Univ, Clean Fuels & Catalysis Program, EMS Energy Inst, University Pk, PA 16802 USA. [Fox, Elise B.; Velu, Subramani; Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Engelhard, Mark H.; Chin, Ya-Huei] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Miller, Jeffrey T.] BP Res Ctr, Naperville, IL 60563 USA. [Kropf, Jeremy] Argonne Natl Lab, Argonne, IL 60430 USA. RP Song, CS (reprint author), Penn State Univ, Clean Fuels & Catalysis Program, EMS Energy Inst, 209 Acad Projects Bldg, University Pk, PA 16802 USA. EM csong@psu.edu RI Song, Chunshan/B-3524-2008; Engelhard, Mark/F-1317-2010; ID, MRCAT/G-7586-2011; Fox, Elise/G-5438-2013; OI Song, Chunshan/0000-0003-2344-9911; Fox, Elise/0000-0002-4527-5820; Engelhard, Mark/0000-0002-5543-0812 FU US Department of Energy; National Energy Technology Laboratory and ConocoPhillips Petroleum Corp; Office of Basic Energy Sciences; Office of Science (DOE-BES-SC) [W-31-109-Eng-38]; MR CAT [DE-FG02-94ER45525, DE-FG02-96ER45589]; NSF [GOALI 99-04033] FX Partial funding from US Department of Energy, National Energy Technology Laboratory and ConocoPhillips Petroleum Corp. for our earlier project on methanol reforming, including water-gas shift for hydrogen production, which led to the reactor system setup at Penn State for the current work, and technical assistance from the Penn State Materials Characterization Lab for ICP-AES are gratefully acknowledged. A portion of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Use of the Advanced Photon Source was Supported by the US Department of Energy, Office of Basic Energy Sciences, Office of Science (DOE-BES-SC), under Contract No. W-31-109-Eng-38. The MR CAT is funded by the member institutions and DOE-BES-SC under Contracts DE-FG02-94ER45525 and DE-FG02-96ER45589. We also acknowledge partial funding of this work from NSF GOALI 99-04033 grant. NR 45 TC 68 Z9 68 U1 11 U2 113 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC 10 PY 2008 VL 260 IS 2 BP 358 EP 370 DI 10.1016/j.jcat.2008.08.018 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 383WO UT WOS:000261705200017 ER PT J AU Berthoud, R Delichere, P Gajan, D Lukens, W Pelzer, K Basset, JM Candy, JP Coperet, C AF Berthoud, Romain Delichere, Pierre Gajan, David Lukens, Wayne Pelzer, Katrin Basset, Jean-Marie Candy, Jean-Pierre Coperet, Christophe TI Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles SO JOURNAL OF CATALYSIS LA English DT Article DE Ruthenium; Particles; Silica; H(2); O(2); Adsorption ID CARBON-MONOXIDE ADSORPTION; ABSORPTION FINE-STRUCTURE; RU CATALYSTS; CHEMISORPTION; SURFACE; PARTICLES; TITRATION; SIZE; TEMPERATURE; PLATINUM AB Treatment under H(2) at 300 degrees C of Ru(COD)(COT) dispersed on silica yields 2 nm ruthenium nanoparticles, [Ru(p)/SiO(2)], according to EXAFS, HRTEM and XPS, H(2) adsorption measurements on [Ru(p)/SiO(2)] in the absence of O(2) show that Ru particles adsorb Lip to ca. 2H per surface ruthenium atoms (2H/Ru(s)) oil various samples; this technique can therefore be used to measure the dispersion of Ru particles. In contrast, O(2) adsorption on [Ru(p)/SiO(2)] leads to a partial oxidation of the bulk at 25 degrees C, to RuO(2) at 200 degrees C and to sintering upon further reduction under H(2), Showing that O(2) adsorption cannot be used to measure the dispersion of Ru particles. (C) 2008 Published by Elsevier Inc. C1 [Berthoud, Romain; Gajan, David; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe] ESCPE Lyon, Lab Chim Catalyse Polymeres & Procedes, F-69616 Villeurbanne, France. [Delichere, Pierre] Univ Lyon 2, IRCELYON, CNRS, F-69626 Villeurbanne, France. [Lukens, Wayne] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Pelzer, Katrin] Max Planck Soc, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany. RP Candy, JP (reprint author), ESCPE Lyon, Lab Chim Catalyse Polymeres & Procedes, 43 Bd 11 Novembre, F-69616 Villeurbanne, France. EM candy@cpe.fr; coperet@cpe.fr RI DELICHERE, Pierre/F-8097-2010; OI basset, jean marie/0000-0003-3166-8882 FU le Ministere de la Recherche et de l'Education and the Region Rhone-Alpes (Cluster 5); CNRS; US Department of Energy [. DE-AC02-05CH11231] FX R.B. and D.G. thank le Ministere de la Recherche et de l'Education and the Region Rhone-Alpes (Cluster 5) for graduate fellowships, respectively. We are all grateful to the CNRS (PICS program), CPE Lyon and IDECAT for financial supports. Portions of this work were performed at the LBNL, supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231, and at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 41 TC 21 Z9 21 U1 0 U2 29 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD DEC 10 PY 2008 VL 260 IS 2 BP 387 EP 391 DI 10.1016/j.jcat.2008.10.010 PG 5 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 383WO UT WOS:000261705200021 ER PT J AU Comstock, JM Lin, RF Starr, DO Yang, P AF Comstock, Jennifer M. Lin, Ruei-Fong Starr, David O'C. Yang, Ping TI Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID WATER-VAPOR MEASUREMENTS; DELIQUESCENT MIXED CCN; ART. NO. 2230; IN-SITU DATA; RELATIVE-HUMIDITY; RADIATIVE PROPERTIES; CLIMATE MODELS; MICROPHYSICAL PROPERTIES; UPPER-TROPOSPHERE; RAMAN LIDAR AB Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone. C1 [Comstock, Jennifer M.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Lin, Ruei-Fong] Univ Maryland, NASA, Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA. [Starr, David O'C.] NASA, Goddard Space Flight Ctr, Atmospher & Space Phys Lab, Greenbelt, MD 20771 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Comstock, JM (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM jennifer.comstock@pnl.gov RI Yang, Ping/B-4590-2011 FU DOE Office of Science; Atmospheric Radiation Measurement (ARM) Program FX Research performed by Jennifer M. Comstock was supported by the DOE Office of Science, Atmospheric Radiation Measurement (ARM) Program. NR 101 TC 23 Z9 23 U1 3 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 10 PY 2008 VL 113 IS D23 AR D23211 DI 10.1029/2008JD010332 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 383JO UT WOS:000261670100009 ER PT J AU Egedal, J Fox, W Katz, N Porkolab, M Oieroset, M Lin, RP Daughton, W Drake, JF AF Egedal, J. Fox, W. Katz, N. Porkolab, M. Oieroset, M. Lin, R. P. Daughton, W. Drake, J. F. TI Evidence and theory for trapped electrons in guide field magnetotail reconnection SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID COLLISIONLESS MAGNETIC RECONNECTION; MOTION; PLASMA AB A previous analysis of electron distributions measured in situ by the Wind spacecraft has revealed that electrons were trapped in the electromagnetic geometry of the reconnection event encountered in the deep magnetotail. In this paper we develop a detailed theory that can account for the main anisotropic features of the electron distributions associated with trapping in reconnection. The analysis shows that electron trapping in electric fields is generic in reconnection, as it is required in order to maintain the condition of quasineutrality. In addition to the spacecraft data, evidence of trapping in numerical simulations is also presented. Trapping is effective in eliminating free-streaming electrons along magnetic fields and thereby reduces parallel electron currents. Its importance for fast reconnection is discussed and emphasized by observations in a laboratory plasma. C1 [Egedal, J.; Fox, W.; Katz, N.; Porkolab, M.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Egedal, J.; Fox, W.; Katz, N.; Porkolab, M.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Oieroset, M.; Lin, R. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lin, R. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Drake, J. F.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Egedal, J (reprint author), MIT, Plasma Sci & Fus Ctr, 16 Albany St,NW16-132, Cambridge, MA 02139 USA. EM jegedal@psfc.mit.edu RI Daughton, William/L-9661-2013 FU NASA [NNG05GH18G]; DOE [ER54878]; NSF/DOE [PHY-0613734] FX Fruitful discussions and collaboration with Prof. G. Lapenta are gratefully acknowledged. This work was partly funded by NASA grant NNG05GH18G at Berkeley and DOE Junior Faculty award ER54878 and NSF/DOE award PHY-0613734 at MIT. NR 25 TC 69 Z9 69 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 10 PY 2008 VL 113 IS A12 AR A12207 DI 10.1029/2008JA013520 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 383QN UT WOS:000261688500001 ER PT J AU Kathmann, SM Kuo, IFW Mundy, CJ AF Kathmann, Shawn M. Kuo, I-Feng William Mundy, Christopher J. TI Electronic Effects on the Surface Potential at the Vapor-Liquid Interface of Water SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; MOLECULAR-DYNAMICS SIMULATIONS; HYDRATION FREE-ENERGY; SOLVATION; IONS; PSEUDOPOTENTIALS; EQUILIBRIUM; ORIENTATION; CLUSTERS; METHANOL AB The surface potential of the vapor-liquid interface of pure water is relevant to electrochemistry, solvation thermodynamics of ions, and interfacial reactivity. The chemistry of an ion near the vapor-liquid interface is influenced by the surface potential. Indirect determinations of the surface potential have been experimentally attempted many times, yet there has been little agreement as to its magnitude and sign (-1.1 to +0.5 V). We present the first computation of the surface potential of water using ab initio molecular dynamics and find a surface potential of -18 mV with a maximum interfacial electric field of +8.9 x 10(7) V/m, which are consistent with structural data from experiment. A comparison is made between our results and those from experiments and previous molecular simulations. The associated electric field can alter interfacial reactivity and transport, while the surface potential can be used to determine the "chemical" contribution to the real and electrochemical potentials for ion transport through the vapor-liquid interface. C1 [Kathmann, Shawn M.; Mundy, Christopher J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Kuo, I-Feng William] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM shawn.kathmann@pnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We gratefully acknowledge helpful discussions with Michiel Sprik (Cambridge), Lawrence Pratt (Tulane), Dilip Asthagiri (Johns Hopkins), Yan Levin (Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil), Greg Schenter (PNNL), John Daschbach (PNNL), Liem Dang (PNNL), and James Cowin (PNNL). This work was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences Program and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). Part of this work was performed under the auspices of the DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with some computer resources being provided by Liven-nore Computing. PNNL is operated by Battelle for DOE. NR 58 TC 52 Z9 52 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 10 PY 2008 VL 130 IS 49 BP 16556 EP 16561 DI 10.1021/ja802851w PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 406UK UT WOS:000263320200044 PM 19554692 ER PT J AU Mcbee, JL Bell, AT Tilley, TD AF McBee, Jennifer L. Bell, Alexis T. Tilley, T. Don TI Mechanistic Studies of the Hydroamination of Norbornene with Electrophilic Platinum Complexes: The Role of Proton Transfer SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CATALYZED INTRAMOLECULAR HYDROAMINATION; ANTI-MARKOVNIKOV HYDROAMINATION; INTERMOLECULAR HYDROAMINATION; UNACTIVATED OLEFINS; ACTIVATED OLEFINS; TRIFLIC ACID; LEWIS-ACID; ALKENES; BOND; CLEAVAGE AB Hydroaminations of norbornene with arylsulfonamides and weakly basic anilines were achieved using electrophilic Pt(II) bis(triflate) complexes of the type L(2)Pt(OTf)(2) (L(2) = (t)Bu(2)bpy, (t)BuC(6)H(4)N= C(CH(3))C(CH(3))=NC(6)H(4)(t)Bu, (C(6)H(5))(2)PCH(2)CH(2)P(C(6)H(5))(2), (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2), S-BINAP). Pseudo-first-order kinetics reveal little to no dependence of the reaction rate on the ancillary ligand. Mechanistic studies do not favor an olefin coordination mechanism but are instead consistent with a mechanism involving sulfonamide coordination and generation of an acidic proton that is transferred to the norbornene. It is postulated that the resulting norbornyl cation is then attacked by free sulfonamide, and loss of proton from this adduct completes the hydroamination. The platinum-sulfonamide complex readily undergoes deprotonation to give a mu-amido platinum-bridged dimer that was isolated from the reaction solution. These studies also involve use of Me(3)SiPh and Me(3)SnPh as non-nucleophilic proton traps. Cleavage of the Ph-E bonds was used to detect the acidic, catalytically active species. C1 [McBee, Jennifer L.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [McBee, Jennifer L.; Bell, Alexis T.; Tilley, T. Don] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU U.S. Department of Energy [DE-AC02-05CH 1123] FX We thank Herman van Halbeek for NMR assistance and Dr. Fred Hollander and Dr. Allen Oliver for assistance with X-ray crystallography. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of U.S. Department of Energy under Contract No. DE-AC02-05CH 1123 NR 58 TC 68 Z9 69 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 10 PY 2008 VL 130 IS 49 BP 16562 EP 16571 DI 10.1021/ja8030104 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 406UK UT WOS:000263320200045 PM 19554728 ER PT J AU Chen, JY Chen, SY Zhao, XR Kuznetsova, LV Wong, SS Ojima, I AF Chen, Jingyi Chen, Shuyi Zhao, Xianrui Kuznetsova, Larisa V. Wong, Stanislaus S. Ojima, Iwao TI Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID IN-VIVO; ANTICANCER AGENTS; MAMMALIAN-CELLS; GENE DELIVERY; CANCER-CELLS; PLASMID DNA; TRANSPORTERS; BIODISTRIBUTION; THERAPEUTICS; ENDOCYTOSIS AB A novel single-walled carbon nanotube (SWNT)-based tumor-targeted drug delivery system (DIDS) has been developed, which consists of a functionalized SWNT linked to tumor-targeting modules as well as prodrug modules. There are three key features of this nanoscale DDS: (a) use of functionalized SWNTs as a biocompatible platform for the delivery of therapeutic drugs or diagnostics, (b) conjugation of prodrug modules of an anticancer agent (taxoid with a cleavable linker) that is activated to its cytotoxic form inside the tumor cells upon internalization and in situ drug release, and (c) attachment of tumor-recognition modules (biotin and a spacer) to the nanotube surface. To prove the efficacy of this DDS, three fluorescent and fluorogenic molecular probes were designed, synthesized, characterized, and subjected to the analysis of the receptor-mediated endocytosis and drug release inside the cancer cells (L1210FR leukemia cell line) by means of confocal fluorescence microscopy. The specificity and cytotoxicity of the conjugate have also been assessed and compared with L1210 and human noncancerous cell lines. Then, it has unambiguously been proven that this tumor-targeting DDS works exactly as designed and shows high potency toward specific cancer cell lines, thereby forming a solid foundation for further development. C1 [Chen, Jingyi; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ojima, Iwao] SUNY Stony Brook, Inst Chem Biol & Drug Discovery, Stony Brook, NY 11794 USA. [Chen, Shuyi; Zhao, Xianrui; Kuznetsova, Larisa V.; Wong, Stanislaus S.; Ojima, Iwao] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Ojima, I (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM sswong@notes.cc.sunysb.edu; iojima@notes.cc.sunysb.edu RI Chen, Jingyi/E-7168-2010 OI Chen, Jingyi/0000-0003-0012-9640 FU National Cancer Institute [CA 103314]; National Science Foundation [DMR-0348239]; Alfred P. Sloan Foundation for a faculty fellowship; Battelle Memorial Institute for Support through CRADA [05-25]; Brookhaven National Laboratory; U.S. Department of Energy Office of Basic Energy Sciences [DE-AC-02-98CH10886] FX This research was supported by grants from the National Cancer Institute (CA 103314 to I. O.) and the National Science Foundation (CAREER DMR-0348239 to S.S.W.). S.S.W. also acknowledges the Alfred P. Sloan Foundation for a faculty fellowship (2006-2008). J.C. thanks the Battelle Memorial Institute for Support through CRADA #05-25, administered by Brookhaven National Laboratory. Work at BNL was also supported by the U.S. Department of Energy Office of Basic Energy Sciences under Contract DE-AC-02-98CH10886. The authors acknowledge the technical service and advice provided by Ms. Susan Van Horn for TEM and Dr. Guo-Wei Tian for CFM, performed at the Central Microscopy Imaging Center at Stony Brook. They also thank Ms. Rebecca Rowehl for her valuable help with cell Culture preparations at the Cell Culture and Hybridoma facility at Stony Brook. NR 79 TC 240 Z9 246 U1 12 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 10 PY 2008 VL 130 IS 49 BP 16778 EP 16785 DI 10.1021/ja805570f PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 406UK UT WOS:000263320200067 PM 19554734 ER PT J AU Chipera, SJ Goff, F Goff, CJ Fittipaldo, M AF Chipera, Steve J. Goff, Fraser Goff, Cathy J. Fittipaldo, Melissa TI Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE zeolites; clinoptilolite; mordenite; lacustrine deposits; caldera lake; resurgent dome; Valles caldera ID JEMEZ VOLCANIC FIELD; YUCCA MOUNTAIN; SYSTEM NA2O-K2O-CAO-MGO-FEO-FE2O3-AL2O3-SIO2-TIO2-H2O-CO2; HYDROTHERMAL ALTERATION; PYROCLASTIC ROCKS; GEOTHERMAL SYSTEM; CRYSTAL-CHEMISTRY; REDONDO DOME; ZEOLITES; MINERALS AB Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow "caldera-type zeolitization" as defined by Utada etal. [Utada, M., Shimizu, M., Ito,T., Inoue,A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan - with special reference to "caldera-type zeolitization." Resource Geol. Spec. Issue No. 20, 129-140]. Geology and (40)Ar/(39)Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (<= 50.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alterabon does not form laterally continuous beds and are consequently, not of economic significance. Published by Elsevier B.V. C1 [Chipera, Steve J.; Fittipaldo, Melissa] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Goff, Fraser] Univ New Mexico, Earth & Planetary Sci Div, Albuquerque, NM 87131 USA. [Goff, Cathy J.] Rio Grande Res, Los Alamos, NM 87544 USA. RP Chipera, SJ (reprint author), Chesapeake Energy Corp, 6100 N Western Ave, Oklahoma City, OK 73118 USA. EM SChipera@CHKenergy.com NR 69 TC 7 Z9 11 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD DEC 10 PY 2008 VL 178 IS 2 BP 317 EP 330 DI 10.1016/j.jvolgeores.2008.06.032 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 383ZV UT WOS:000261714000018 ER PT J AU Li, XY Huang, H Meakin, P AF Li, Xiaoyi Huang, Hai Meakin, Paul TI Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media SO WATER RESOURCES RESEARCH LA English DT Article ID CARTESIAN GRID METHOD; NUMERICAL-SIMULATION; DENDRITIC SOLIDIFICATION; REACTIVE TRANSPORT; EUTECTIC SOLIDIFICATION; CO2 DISPOSAL; DISSOLUTION; INTERFACE; FLOWS; CONVECTION AB A pore-scale simulation technique based on level set interface tracking has been developed for modeling coupled reactive flow and structure evolution in porous media and fracture apertures. Advection, diffusion, and mineral precipitation resulting in changes in pore geometries are treated simultaneously by solving fully coupled fluid flow and reactive solute transport equations. The reaction-induced evolution of solid grain surfaces is captured using a level set method, and a subgrid representation of the interface based on the level set approach is used instead of a pixel representation of the interface often used in cellular automata and lattice-Boltzmann simulations. Precipitation processes within a 2-D porous medium represented by nonoverlapping discs were simulated under various flow conditions and reaction rates, and the resulting changes of pore geometry are discussed. The simulation results indicate that under reaction-limited conditions, precipitation is nearly uniform over the grain surfaces. However, this is no longer true when reaction is relatively fast and diffusion is the dominant transport process. In such cases, precipitation occurs mostly near the throat inlet and results in rapid permeability reduction with only a small reduction of porosity. In the case of fast reaction with transport dominated by advection (which is mostly likely in engineered remediation applications), solute can be delivered deep into fracture apertures and precipitation occurs mostly along preferential flow paths. Quantitative relationships between permeability and porosity under various flow conditions and reaction rates are also reported. C1 [Li, Xiaoyi; Huang, Hai; Meakin, Paul] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Li, XY (reprint author), Idaho Natl Lab, POB 1625,Mail Stop 2107, Idaho Falls, ID 83415 USA. EM hai.huang@inl.gov FU Laboratory Directed Research and Development (LDRD) FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Idaho National Laboratory (INL), which is operated by the Battelle Energy Alliance for the U. S. Department of Energy. NR 52 TC 19 Z9 19 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 10 PY 2008 VL 44 IS 12 AR W12407 DI 10.1029/2007WR006742 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 383RK UT WOS:000261690900002 ER PT J AU Berchtold, KA Nie, J Stansbury, JW Bowman, CN AF Berchtold, Kathryn A. Nie, Jun Stansbury, Jeffrey W. Bowman, Christopher N. TI Reactivity of Monovinyl (Meth)acrylates Containing Cyclic Carbonates SO MACROMOLECULES LA English DT Article ID PHOTOINITIATED ACRYLATE POLYMERIZATION; CROSS-LINKING PHOTOPOLYMERIZATIONS; LIGHT-INDUCED POLYMERIZATION; SECONDARY FUNCTIONALITIES; DENTAL COMPOSITES; NETWORK FORMATION; REACTION BEHAVIOR; MONOMERS; KINETICS; RESINS AB The tremendous diversity of materials properties available with polymers is due in large part to the ability to design structures from the monomeric state. The ease of use of comonomer mixtures only expands this versatility. While final polymer properties are obviously important in the selection or development of a material for a given purpose, for a number of applications, such as optical fiber coatings, photolithography, and microelectronics, the additional requirement of a very rapid polymerization process may be equally critical. A class of unusually reactive mono(meth)acrylate monomers hearing secondary functionality that includes carbonates, carbamates, and oxazolidones, has been demonstrated but not fully explained. Here, the influence of all integral cyclic carbonate functional group on (meth)acrylate photopolymerization kinetics is examined in detail with respect to monomers with a wide variety of alternative secondary functionality structure as well as in comparison to conventional mono- and di(meth)acrylates. The kinetic results from full cure studies of several cyclic carbonate-containing monomers clearly highlight specific structural variations that effectively promote monomer reactivity. Copolymerizations with tetrahydrofurfuryl methacrylate reflect similar dramatic kinetic effects associated with the novel monomers, while partial cure homopolymerization studies reveal exceptional dark cure behavior linked to observations of uncommonly low ratios of termination to propagation rates throughout the conversion profile. Temperature effects on reaction kinetics, including both reaction rate and the individual kinetic parameters, as well as the temperature dependence of hydrogen bonding interactions specifically involving the secondary functional groups, are probed as a means to understand better the fundamentally interesting and practically important behavior of these monomers. C1 [Stansbury, Jeffrey W.; Bowman, Christopher N.] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA. [Berchtold, Kathryn A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Nie, Jun] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China. [Nie, Jun] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China. [Stansbury, Jeffrey W.; Bowman, Christopher N.] Univ Colorado, Sch Dent Med, Dept Craniofacial Biol, Denver, CO 80045 USA. RP Bowman, CN (reprint author), Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA. EM christopher.bowman@colorado.edu RI Bowman, Christopher/B-1490-2008 OI Bowman, Christopher/0000-0001-8458-7723 FU National Science Foundation Industry - University Cooperative Research Center; National Institutes of Health [DE10959] FX The authors would like to thank the Department of Education Graduate Assistantship in the Area of National Needs fellowship program, the National Science Foundation Industry - University Cooperative Research Center for Fundamentals and Applications of Photopolymerizations and the National Institutes of Health (Grant No. DE10959) for funding this project. NR 37 TC 16 Z9 17 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 9 PY 2008 VL 41 IS 23 BP 9035 EP 9043 DI 10.1021/ma801644j PG 9 WC Polymer Science SC Polymer Science GA 378OZ UT WOS:000261335100017 PM 20011055 ER PT J AU Lewicki, JP Maxwell, RS Patel, M Herberg, JL Swain, AC Liggat, JJ Pethrick, RA AF Lewicki, James P. Maxwell, Robert S. Patel, Mogon Herberg, Julie L. Swain, Anthony C. Liggat, John J. Pethrick, Richard A. TI Effect of meta-Carborane on Segmental Dynamics in a Bimodal Poly(dimethylsiloxane) Network SO MACROMOLECULES LA English DT Article ID MULTIPLE-QUANTUM NMR; NUCLEAR-MAGNETIC-RESONANCE; RESIDUAL DIPOLAR COUPLINGS; MONTE-CARLO SIMULATIONS; THERMAL-DEGRADATION; CHAIN DIMENSIONS; POLYMER NETWORKS; MOLECULAR ORDER; SLOW DYNAMICS; PDMS NETWORKS AB Bimodal networks of polydimethylsiloxane (PDMS) filled with varying amounts of icosahedral meta-carborane (m-CB) have been developed and characterized by broadband dielectric spectroscopy (BDS) and static H-1 multiple quantum nuclear magnetic resonance (MQ NMR). Both BDS and MQ NMR showed evidence for a decrease in the polymer chain dynamics. BDS spectra quantified a normal-mode relaxation near 40 Hz at 40 degrees C. The frequency maximum observed for filled samples decreased with increasing m-CB content until contents greater than 5 wt %. The width of the relaxation spectrum increased with the addition of small quantities of filler and decreased with filler contents greater that 5 wt %. Agglomeration effects were observed at loadings greater than 5 wt % as manifest by the onset of low frequency Maxwell-Wagner-Sillars (MWS) processes. The MQ NMR data allowed the characterization of distributions of the residual dipolar couplings, and, thus, in the dynamic order parameter, S-b, consistent with the bimodal network architecture expected from the synthesis protocol used. Upon addition of less than 10 wt % m-CB filler, the mean for the longer chains increased by 46% and the width of the distribution increased by 33%. The mean for the shorter chains increased by much less, indicative of preferential dispersion of the filler particles in the long chain domains of the network structure. We conclude that the mechanism of reinforcement is likely free volume space filling at low loadings transitioning to complex molecular filler and polymer chain interaction phenomena at higher loadings. C1 [Maxwell, Robert S.; Herberg, Julie L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lewicki, James P.; Liggat, John J.; Pethrick, Richard A.] Univ Strathclyde, Dept Pure & Appl Chem, Glasgow, Lanark, Scotland. RP Maxwell, RS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM maxwell7@llnl.gov; mogon.patel@awe.co.uk OI Liggat, John/0000-0003-4460-5178 FU LLNL Laboratory Directed Research and Development (LDRD) [06-SI-005] FX We thank the following for generous help in the course of this work: Sarah C. Chinn, Jason Giuliani, Erica Gjersing, Ticora Jones, Ted Baumann, and Paul Morrell. Portions of this work were performed at LLNL under the auspices of the Department of Energy under contract DE-AC52-07NA27344. Financial support from the LLNL Laboratory Directed Research and Development (LDRD) program (06-SI-005) is acknowledged. NR 59 TC 11 Z9 11 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 9 PY 2008 VL 41 IS 23 BP 9179 EP 9186 DI 10.1021/ma801570e PG 8 WC Polymer Science SC Polymer Science GA 378OZ UT WOS:000261335100036 ER PT J AU Uhrig, D Hong, K Mays, JW Kilbey, SM Britt, PF AF Uhrig, David Hong, Kunlun Mays, Jimmy W. Kilbey, S. Michael, II Britt, Phillip F. TI Synthesis and Characterization of an ABC Miktoarm Star Terpolymer of Cyclohexadiene, Styrene, and 2-Vinylpyridine SO MACROMOLECULES LA English DT Article ID ANIONIC-POLYMERIZATION; 1,3-CYCLOHEXADIENE POLYMERS; BLOCK-COPOLYMERS; ISOPRENE; TRANSFORMATION; BRANCHES; ARMS C1 [Uhrig, David; Hong, Kunlun; Mays, Jimmy W.; Kilbey, S. Michael, II; Britt, Phillip F.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Uhrig, D (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RI Uhrig, David/A-7458-2016; Hong, Kunlun/E-9787-2015 OI Uhrig, David/0000-0001-8447-6708; Hong, Kunlun/0000-0002-2852-5111 FU Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy FX Research was undertaken fully at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 19 TC 6 Z9 6 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD DEC 9 PY 2008 VL 41 IS 23 BP 9480 EP 9482 DI 10.1021/ma801852t PG 3 WC Polymer Science SC Polymer Science GA 378OZ UT WOS:000261335100072 ER PT J AU Lin, CK Yang, ZZ Xu, T Zhao, YF AF Lin, Chikai Yang, Zhenzhen Xu, Tao Zhao, Yufeng TI An in situ electrical study on primary hydrogen spillover from nanocatalysts to amorphous carbon support SO APPLIED PHYSICS LETTERS LA English DT Article DE amorphous state; carbon; catalysts; dangling bonds; discontinuous metallic thin films; electrical conductivity; hydrogenation; metal clusters; nanostructured materials; palladium ID METAL-ORGANIC FRAMEWORKS; PLATINUM; STORAGE; MIGRATION; CATALYSIS AB Primary hydrogen spillover has been studied using a unique electrical method. We observed that at ambient temperature, when a discontinuous nanogranular Pd film is on the top of an amorphous carbon film, the electrical conductance of the carbon film decreases in pressurized hydrogen. In comparison, in the absence of this Pd layer, the conductance of the carbon film remains unchanged in pressurized hydrogen. The observed decrease in the current in the Pd/carbon structure is ascribed to the hydrogenation of the dangling carbon bonds and sp(2)-sp(3) transition in the amorphous carbon by the primary spillover hydrogen atoms from Pd nanoclusters. C1 [Lin, Chikai; Yang, Zhenzhen; Xu, Tao] No Illinois Univ, Dept Chem, De Kalb, IL 60115 USA. [Zhao, Yufeng] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem, De Kalb, IL 60115 USA. EM txu@niu.edu RI Yang, Zhenzhen/A-5904-2012; lin, chikai/D-4986-2014 FU ACS-PRF [46374-G10]; NIU LIREEF FX We thank supports by ACS-PRF (46374-G10) and NIU LIREEF grant. NR 22 TC 6 Z9 6 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2008 VL 93 IS 23 AR 233110 DI 10.1063/1.3046120 PG 3 WC Physics, Applied SC Physics GA 383UP UT WOS:000261699700059 ER PT J AU Scrymgeour, DA Hsu, JWP AF Scrymgeour, David A. Hsu, Julia W. P. TI Absence of elastic clamping in quantitative piezoelectric force microscopy measurements of nanostructures SO APPLIED PHYSICS LETTERS LA English DT Article DE atomic force microscopy; electrodes; II-VI semiconductors; nanostructured materials; piezoelectric thin films; piezoelectricity; wide band gap semiconductors; zinc compounds ID THIN-FILMS; CHARGE; FIELD AB We establish that clamping effects, which limit accurate determination of piezoelectric responses in bulk materials and films using piezoelectric force microscopy (PFM), are not present when measuring discrete nanostructures with radii less than five times the tip radius. This conclusion is established by comparing the piezoelectric response in ZnO rods using two electrode configurations: one with the conducting atomic force microscopy tip acting as the top electrode and the other using a uniform metal top electrode. The distributions of piezoelectric coefficients measured with these two types of electrode configurations are the same. Hence, clamping issues do not play a role in the piezoelectric property measurement of nanomaterials using PFM. The role of conduction electrons on the piezoelectric measurement in both cases is also discussed. C1 [Scrymgeour, David A.; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Scrymgeour, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dscrymg@sandia.gov RI Scrymgeour, David/C-1981-2008 FU Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; U. S. Department of Energy [DE-AC0494AL85000] FX The authors thank Tobias Jungk for helpful discussions. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation ) as Operator of Sandia National Laboratories under its U. S. Department of Energy Contract No. DE-AC0494AL85000. NR 20 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2008 VL 93 IS 23 AR 233114 DI 10.1063/1.3040055 PG 3 WC Physics, Applied SC Physics GA 383UP UT WOS:000261699700063 ER PT J AU Sheng, G Zhang, JX Li, YL Choudhury, S Jia, QX Liu, ZK Chen, LQ AF Sheng, G. Zhang, J. X. Li, Y. L. Choudhury, S. Jia, Q. X. Liu, Z. K. Chen, L. Q. TI Misfit strain-misfit strain diagram of epitaxial BaTiO3 thin films: Thermodynamic calculations and phase-field simulations SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; electric domains; epitaxial layers; ferroelectric thin films; ferroelectric transitions ID ANISOTROPIC INPLANE STRAINS; DIELECTRIC-PROPERTIES; DOMAIN-STRUCTURES AB The effect of anisotropic strains on the phase transitions and domains structures of BaTiO3 thin films was studied using both thermodynamic calculations and phase-field simulations. The misfit strain-misfit strain domain stability diagrams were predicted. The similarity and significant differences between the diagrams from thermodynamic calculations assuming single domains and from phase-field simulations were analyzed. Typical domain structures as a result of anisotropic misfit strains are presented. C1 [Sheng, G.; Zhang, J. X.; Li, Y. L.; Choudhury, S.; Liu, Z. K.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Jia, Q. X.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. RP Sheng, G (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM shengguang@psu.edu RI Choudhury, Samrat/B-4115-2009; Zhang, Jingxian/B-2253-2010; Jia, Q. X./C-5194-2008; Sheng, Guang/C-2043-2012; Chen, LongQing/I-7536-2012; Liu, Zi-Kui/A-8196-2009 OI Chen, LongQing/0000-0003-3359-3781; Liu, Zi-Kui/0000-0003-3346-3696 FU DOE [DOE DE-FG02-07ER46417]; NSF [DMR-0507146, DMR-0820404]; Los Alamos National Laboratory supported by DOE; Materials Simulation Center; Graduate Education and Research Services at PSU FX This work was supported by the DOE under Grant No. DOE DE-FG02-07ER46417, NSF through Grant Nos. DMR-0507146 and DMR-0820404, and the Los Alamos National Laboratory supported by DOE through the LANL/LDRD Program (Q.X.J.). The computer simulations were carried out on the LION clusters at the Pennsylvania State University supported in part by the Materials Simulation Center and the Graduate Education and Research Services at PSU. NR 28 TC 22 Z9 22 U1 4 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2008 VL 93 IS 23 AR 232904 DI 10.1063/1.3039410 PG 3 WC Physics, Applied SC Physics GA 383UP UT WOS:000261699700048 ER PT J AU Liu, B Liu, Y Braiman, Y AF Liu, B. Liu, Y. Braiman, Y. TI Coherent addition of high power laser diode array with a V-shape external Talbot cavity SO OPTICS EXPRESS LA English DT Article ID PHASE-LOCKED ARRAYS; SINGLE-LOBED BEAM; BANDWIDTH; BAR; SUPPRESSION; ANTIGUIDES; REDUCTION; LINEWIDTH; OUTPUT; RANGE AB We designed a V-shape external Talbot cavity for a broad-area laser diode array and demonstrated coherent laser beam combining at high power with narrow spectral linewidth. The V-shape external Talbot cavity provides good mode-discrimination and does not require a spatial filter. A multi-lobe far-field profile generated by a low filling-factor phase-locked array is confirmed by our numerical simulation. (C) 2008 Optical Society of America C1 [Liu, B.; Braiman, Y.] Ctr Engn Sci Adv Res, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Liu, Y.] Ctr Engn Sci Adv Res, Oak Ridge Natl Lab, Res Accelerator Div, Oak Ridge, TN 37831 USA. RP Liu, B (reprint author), Ctr Engn Sci Adv Res, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM liub@ornl.gov FU Office of Naval Research; Oak Ridge National Laboratory; U. S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Office of Naval Research and also in partly by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract DE-AC05-00OR22725. NR 36 TC 18 Z9 21 U1 2 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 8 PY 2008 VL 16 IS 25 BP 20935 EP 20942 DI 10.1364/OE.16.020935 PG 8 WC Optics SC Optics GA 381VD UT WOS:000261563100079 PM 19065232 ER PT J AU Hanson, DE AF Hanson, David E. TI The dynamic response of isolated polybutadiene chains undergoing thermal retraction from extended conformations SO POLYMER LA English DT Article DE Polybutadiene; Simulation; Retraction ID LINKED POLYMER NETWORKS; CROSS-LINKING NETWORKS; MOLECULAR-DYNAMICS; STRESSED RUBBER; PERMANENT SET; RELAXATION; SIMULATIONS; STRAIN; PRESSURE; KINETICS AB All-atom molecular dynamic simulations were performed on isolated polybutadiene chains to study the retraction velocity of a free end of an idealized network chain from extended conformations due to thermal collisions. We compare the snap-back velocity calculated from these simulations with experimental measurements on bulk rubber samples. Over a range of chain lengths, extension ratios and temperatures, we find that the average retraction velocity of a free end seen in the simulations is about two orders of magnitude less than the experimental value. (c) 2008 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hanson, DE (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM deh@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX We wish to thank Dr. P. Jeffrey Hay for helpful discussions. This work was performed under the auspices of Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 36 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD DEC 8 PY 2008 VL 49 IS 26 BP 5714 EP 5718 DI 10.1016/j.polymer.2008.10.010 PG 5 WC Polymer Science SC Polymer Science GA 384HC UT WOS:000261734900015 ER PT J AU Tsige, M Curro, JG Grest, GS AF Tsige, Mesfin Curro, John G. Grest, Gary S. TI Packing of poly(tetrafluoroethylene) in the liquid state: Molecular dynamics simulation and theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE liquid structure; molecular dynamics method; polymer melts; polymer structure ID INTEGRAL-EQUATION THEORY; POLYMER MELTS; EXCESS ELECTRONS; SURFACE-TENSION; SIMPLE FLUIDS; FORCE-FIELD; ATOM MODELS; PERFLUOROALKANES; ALKANES; POLYTETRAFLUOROETHYLENE AB Molecular dynamics simulations and polymer reference interaction site model theory calculations were carried out on the C(48)F(98) oligomer of poly(tetrafluoroethylene) (PTFE) at 500 and 600 K. The exp-6 force field of Borodin, Smith, and Bedrov, was used in both the simulation and theory. The agreement between theory and simulation was equivalent to earlier studies on polyolefin melts. The intermolecular pair correlation functions of PTFE were shifted to larger distances relative to polyethylene (PE) due to the difference in the van der Waals radii of F and H atoms. A similar shift to lower wave vectors was found in the structure factor of PTFE relative to PE. C1 [Tsige, Mesfin] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Curro, John G.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tsige, M (reprint author), So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. EM jgcurro@unm.edu NR 32 TC 5 Z9 5 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2008 VL 129 IS 21 AR 214901 DI 10.1063/1.3030610 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379XW UT WOS:000261430900042 PM 19063578 ER PT J AU Wong, BM Cordaro, JG AF Wong, Bryan M. Cordaro, Joseph G. TI Coumarin dyes for dye-sensitized solar cells: A long-range-corrected density functional study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE charge exchange; coupled cluster calculations; density functional theory; dyes; excited states; HF calculations; molecular moments; oscillator strengths ID ORGANIC PHOTOVOLTAIC CELLS; TRANSFER EXCITED-STATES; CHARGE-TRANSFER; ENERGY-CONVERSION; LOCAL-DENSITY; EXCHANGE; FILMS; APPROXIMATION; CAM-B3LYP; DESIGN AB The excited-state properties in a series of coumarin solar cell dyes are investigated with a long-range-corrected (LC) functional which asymptotically incorporates Hartree-Fock exchange. Using time-dependent density functional theory (TDDFT), we calculate excitation energies, oscillator strengths, and excited-state dipole moments in each of the dyes as a function of the range-separation parameter mu. To investigate the acceptable range of mu and to assess the quality of the LC-TDDFT formalism, an extensive comparison is made between LC-BLYP excitation energies and approximate coupled-cluster singles and doubles calculations. When using a properly optimized value of mu, we find that the LC technique provides a consistent picture of charge-transfer excitations as a function of molecular size. In contrast, we find that the widely used B3LYP hybrid functional severely overestimates excited-state dipole moments and underestimates vertical excitation energies, especially for larger dye molecules. The results of the present study emphasize the importance of long-range exchange corrections in TDDFT for investigating the excited-state properties in solar cell dyes. C1 [Wong, Bryan M.; Cordaro, Joseph G.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. RP Wong, BM (reprint author), Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. EM bmwong@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU Sandia Corporation; Lockheed Martin Co.; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 51 TC 120 Z9 120 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2008 VL 129 IS 21 AR 214703 DI 10.1063/1.3025924 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379XW UT WOS:000261430900035 PM 19063571 ER PT J AU Yu, HG Poggi, G Francisco, JS Muckerman, JT AF Yu, Hua-Gen Poggi, Gabriella Francisco, Joseph S. Muckerman, James T. TI Energetics and molecular dynamics of the reaction of HOCO with HO2 radicals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE association; coupled cluster calculations; free radical reactions; ground states; heat of formation; potential energy surfaces; reaction kinetics theory ID AB-INITIO DYNAMICS; TRANS-HOCO; TRAJECTORY CALCULATIONS; CORRELATION-ENERGY; BASIS-SETS; SPECTROSCOPY; MARS; PHOTODETACHMENT; TEMPERATURE; KINETICS AB The energetics of the reaction of HOCO with HO2 have been studied using the quadratic configuration interaction with single and double excitations (QCISD(T)) method and a large basis set on the singlet and triplet potential energy surfaces of the system. The results show that the ground-state O-2+HOC(O)H products can be produced by a direct hydrogen abstraction via a transition state with a small barrier (1.66 kcal/mol) on the lowest triplet surface. A similar hydrogen abstraction can occur on the singlet electronic surface, but it leads to the singlet O-2(a(1)Delta) and HOC(O)H. On the singlet surface, a new stable intermediate, HOC(O)OOH, hydroperoxyformic acid, has been found. This intermediate is formed by the direct addition of the terminal oxygen atom in HO2 onto the carbon atom in HOCO in a barrierless reaction. The HOC(O)OOH intermediate may dissociate into either the CO2+H2O2 or CO3+H2O products through elimination reactions with four-center transition states, or into HOC(O)O+OH through an O-O bond cleavage. The heat of formation of HOC(O)OOH is predicted to be -118.9 +/- 1.0 kcal/mol. In addition, the dynamics of the HO2+HOCO reaction have been investigated using a scaling-all correlation couple cluster method with single and double excitation terms (CCSD) on the singlet potential energy surface. Reaction mechanisms have been studied in detail. It was found that the direct and addition reaction mechanisms coexist. For the addition mechanism, the lifetime of the HOC(O)OOH intermediate is predicted to be 880 +/- 27 fs. At room temperature, the calculated thermal rate coefficient is (6.52 +/- 0.44)x10(-11) cm(3) molecule(-1) s(-1) with the product branching fractions: 0.77 (CO2+H2O2), 0.15 (HOC(O)O+OH), 0.056 (CO3+H2O), 0.019 (O-2(a(1)Delta)+HOC(O)H), and 0.01 (O-2(X (3)Sigma)+HOC(O)H). C1 [Yu, Hua-Gen; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Poggi, Gabriella] Univ Bologna, Dept Chem, I-40126 Bologna, Italy. [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hgy@bnl.gov RI Muckerman, James/D-8752-2013; Yu, Hua-Gen/N-7339-2015 FU University of Bologna; Brookhaven National Laboratory [DE-AC02-98CH10886]; U. S. Department of Energy; Division of Chemical Sciences, Office of Basic Energy Sciences; National Energy Research Scientific Computing Center (NERSC) FX G. P. gratefully acknowledges support from the University of Bologna through "ex- 60%" funding. This work was performed at the Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. Calculations were also carried out at the National Energy Research Scientific Computing Center (NERSC) center at the Lawrence Berkeley National Laboratory. NR 50 TC 10 Z9 10 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2008 VL 129 IS 21 AR 214307 DI 10.1063/1.3028052 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 379XW UT WOS:000261430900025 PM 19063561 ER PT J AU Stewart, ST Seifter, A Obst, AW AF Stewart, Sarah T. Seifter, Achim Obst, Andrew W. TI Shocked H(2)O ice: Thermal emission measurements and the criteria for phase changes during impact events SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SURFACE ORGANICS; WATER; TEMPERATURE; MELT; EJECTA; TITAN AB Impact cratering events on icy planetary bodies may produce transient liquid water and vapor. We present the first thermal emission measurements from shocked H(2)O ice and derive peak and post-shock temperatures. Under shock pressures between 8.2 and 13.6 GPa, initially similar to 165 K ice is heated to between 673 and 1055 K. In the time frame of the experiment, the shocked H2O releases to the saturation vapor curve and does not achieve full decompression. The temperature results are used to validate the new 5-Phase H(2)O model equation of state (EOS). The 5-Phase EOS is used to predict the critical shock pressures required to induce melting and vaporization of ice for a wide range of ambient pressures and temperatures. Impact events with velocities as low as similar to 1 km/s will initiate phase changes on icy surfaces. Thus, shock-induced melting and vaporization of ice is a widespread process in the solar system. Citation: Stewart, S. T., A. Seifter, and A. W. Obst (2008), Shocked H2O ice: Thermal emission measurements and the criteria for phase changes during impact events, Geophys. Res. Lett., 35, L23203, doi: 10.1029/2008GL035947. C1 [Stewart, Sarah T.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Seifter, Achim] Los Alamos Natl Lab, AOT ABS, Los Alamos, NM 87545 USA. RP Stewart, ST (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM sstewart@eps.harvard.edu; seif@lanl.gov; obst@lanl.gov FU NASA [NNX06AC13G]; Harvard Center for Nanoscale Systems [ECS-0335765] FX This work was supported by NASA grant NNX06AC13G and the Harvard Center for Nanoscale Systems (NSF award ECS-0335765). We appreciate the comments from the reviewers and laboratory assistance from Lee Farina and Andrea Peterson. NR 24 TC 17 Z9 17 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 6 PY 2008 VL 35 IS 23 AR L23203 DI 10.1029/2008GL035947 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 380NA UT WOS:000261471200006 ER PT J AU Bergmann, O Bhardwaj, RD Bernard, S Zdunek, S Barnabe-Heider, F Walsh, S Zupicich, J Alkass, K Buchholz, BA Druid, H Jovinge, S Frisen, J AF Bergmann, Olaf Bhardwaj, Ratan D. Bernard, Samuel Zdunek, Sofia Barnabe-Heider, Fanie Walsh, Stuart Zupicich, Joel Alkass, Kanar Buchholz, Bruce A. Druid, Henrik Jovinge, Stefan Frisen, Jonas TI Turnover of Human Cardiomyocytes SO CIRCULATION RESEARCH LA English DT Meeting Abstract CT 81st Annual Scientific Session of the American-Heart-Association CY NOV 08-12, 2008 CL New Orleans, LA SP Amer Heart Assoc C1 [Bergmann, Olaf; Bhardwaj, Ratan D.; Zdunek, Sofia; Barnabe-Heider, Fanie; Zupicich, Joel; Alkass, Kanar; Druid, Henrik; Frisen, Jonas] Karolinska Inst, Stockholm, Sweden. [Bernard, Samuel] Univ Lyon 1, Inst Camille Jordan, F-69365 Lyon, France. [Walsh, Stuart; Jovinge, Stefan] Lund Univ, Lund Strateg Rsch Ctr Stem Cell Biol & Cell Thera, Lund, Sweden. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RI Buchholz, Bruce/G-1356-2011 NR 0 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7330 J9 CIRC RES JI Circ.Res. PD DEC 5 PY 2008 VL 103 IS 12 BP 1494 EP 1495 PG 2 WC Cardiac & Cardiovascular Systems; Hematology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Hematology GA 379TK UT WOS:000261418900024 ER PT J AU Chylek, P Lohmann, U AF Chylek, Petr Lohmann, Ulrike TI Reply to comment by Andrey Ganopolski and Thomas Schneider von Deimling on "Aerosol radiative forcing and climate sensitivity deduced from the Last Glacial Maximum to Holocene transition'' SO GEOPHYSICAL RESEARCH LETTERS LA English DT Editorial Material ID DUST; GREENLAND; PERIOD; ICE; ANTARCTICA C1 [Chylek, Petr] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lohmann, Ulrike] ETH, Inst Atmospher & Climate Sci, CH-8093 Zurich, Switzerland. RP Chylek, P (reprint author), Los Alamos Natl Lab, MS B244, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Lohmann, Ulrike/B-6153-2009 OI Lohmann, Ulrike/0000-0001-8885-3785 NR 16 TC 1 Z9 2 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 5 PY 2008 VL 35 IS 23 AR L23704 DI 10.1029/2008GL034308 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 380MZ UT WOS:000261471100002 ER PT J AU Miyoshi, Y Sakaguchi, K Shiokawa, K Evans, D Albert, J Connors, M Jordanova, V AF Miyoshi, Y. Sakaguchi, K. Shiokawa, K. Evans, D. Albert, J. Connors, M. Jordanova, V. TI Precipitation of radiation belt electrons by EMIC waves, observed from ground and space SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ION-CYCLOTRON WAVES; PITCH-ANGLE SCATTERING; DAWN-DUSK ASYMMETRY; GEOMAGNETIC STORMS; RELATIVISTIC ELECTRONS; PROTON PRECIPITATION; MAGNETIC STORM; MAGNETOSPHERE; ACCELERATION; PULSATIONS AB We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation of both ions and relativistic electrons. This study clarifies that ions with energies of tens of keV affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's. C1 [Miyoshi, Y.; Sakaguchi, K.; Shiokawa, K.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Albert, J.] AFRL, Hanscom AFB, MA 01731 USA. [Connors, M.] Athabasca Univ, Ctr Sci, Athabasca, AB T9S 3A3, Canada. [Evans, D.] NOAA, SWPC, Boulder, CO 80305 USA. [Jordanova, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Miyoshi, Y (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. EM miyoshi@stelab.nagoya-u.ac.jp RI Miyoshi, Yoshizumi/B-5834-2015; OI Miyoshi, Yoshizumi/0000-0001-7998-1240; Albert, Jay/0000-0001-9494-7630; Jordanova, Vania/0000-0003-0475-8743 FU Ministry of Education, Culture, Sports, Science and Technology of Japan [16403007]; GEMSIS project [19403010]; STEL [20740283]; Nagoya University [20244080] FX The POES particle data are provided from the NGDC. This work was supported by Grants-in-Aid for Scientific Research (16403007, 19403010, 20740283, and 20244080) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the GEMSIS project, STEL, Nagoya University. NR 33 TC 88 Z9 88 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 5 PY 2008 VL 35 IS 23 AR L23101 DI 10.1029/2008GL035727 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 380MZ UT WOS:000261471100004 ER PT J AU Huang, D Liu, YG Wiscombe, W AF Huang, Dong Liu, Yangang Wiscombe, Warren TI Cloud tomography: Role of constraints and a new algorithm SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INVERSION AB Retrieving spatial distributions of cloud liquid water content from limited-angle emission data (passive microwave cloud tomography) is ill-posed, and a small inaccuracy in the data and/or numerical treatments may result in a large error in the retrieval. Proper handling of the ill-posedness is an ongoing challenge to the atmospheric remote sensing community. In this paper we first analyze the major regularization methods that each apply a single but different constraint to their retrievals and extend these methods to allow for multiple constraints. We then develop a new iterative algorithm that can also incorporate complex physical constraints with great flexibility. To understand the influences of different constraints on the retrievals, we use the new iterative algorithm with various combinations of constraints to retrieve a stratocumulus cloud simulated with a large-eddy-simulation model. For this relatively homogeneous cloud case, the standard least squares method with no constraints, as expected, performs very poorly, and yields a very large retrieval error, making this method nearly useless. Adding a nonnegativity constraint reduces the mean retrieval error by a factor of 6 but the internal structure of the cloud is still not reproduced in the retrieval. Adding a smoothness constraint dramatically improves the retrieved spatial structure of the cloud, and brings the mean error down further, although the retrieved cloud top edges are still considerably blurred. Further adding the so-called double-side constraint (based on scaled adiabatic profiles) produces the best result; the retrieval faithfully reproduces the cloud water structure with a mean retrieval error of only one third of that of the nonnegativity and smoothness constrained method. C1 [Huang, Dong; Liu, Yangang; Wiscombe, Warren] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Wiscombe, Warren] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Huang, D (reprint author), Brookhaven Natl Lab, Dept Environm Sci, 75 Rutherford Dr, Upton, NY 11973 USA. EM dhuang@bnl.gov RI Liu, Yangang/H-6154-2011; Wiscombe, Warren/D-4665-2012; Huang, Dong/H-7318-2014 OI Wiscombe, Warren/0000-0001-6844-9849; Huang, Dong/0000-0001-9715-6922 NR 20 TC 5 Z9 7 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 5 PY 2008 VL 113 AR D23203 DI 10.1029/2008JD009952 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 380NL UT WOS:000261472300004 ER PT J AU West, JM Xia, JR Tsuruta, H Guo, WY O'Day, EM Kantrowitz, ER AF West, Jay M. Xia, Jiarong Tsuruta, Hiro Guo, Wenyue O'Day, Elizabeth M. Kantrowitz, Evan R. TI Time Evolution of the Quaternary Structure of Escherichia coli Aspartate Transcarbamoylase upon Reaction with the Natural Substrates and a Slow, Tight-Binding Inhibitor SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE cooperativity; quaternary structure; allosteric transition; small-angle X-ray scattering ID PHOSPHONACETYL-L-ASPARTATE; ALLOSTERIC TRANSITION; BISUBSTRATE ANALOG; CATALYTIC SUBUNIT; CONFORMATIONAL-CHANGES; DISC ELECTROPHORESIS; CRYSTAL-STRUCTURES; EFFECTOR BINDING; NATIVE ENZYME; KINETICS AB Here, we present a study of the conformational changes of the quaternary structure of Escherichia coli aspartate transcarbamoylase, as monitored by time-resolved small-angle X-ray scattering, upon combining with substrates, substrate analogs, and nucleotide effectors at temperatures between 5 and 22 degrees C, obviating the need for ethylene glycol. Time-resolved small-angle X-ray scattering time courses tracking the T -> R structural change after mixing with substrates or substrate analogs appeared to be a single phase under some conditions and biphasic under other conditions, which we ascribe to multiple ligation states producing a time course composed of multiple rates. Increasing the concentration of substrates up to a certain point increased the T,R transition rate, with no further increase in rate beyond that point. Most strikingly, after addition of N-phosphonacetyl-L-aspartate to the enzyme, the transition rate was more than 1 order of magnitude slower than with the natural substrates. These results on the homotropic mechanism are consistent with a concerted transition between structural and functional states of either low affinity, low activity or high affinity, high activity for aspartate. Addition of ATP along with the substrates increased the rate of the transition from the T to the R state and also decreased the duration of the R-state steady-state phase. Addition of CTP or the combination of CTP/UTP to the substrates significantly decreased the rate of the T -> R transition and caused a shift in the enzyme population towards the T state even at Saturating substrate concentrations. These results on the heterotropic mechanism suggest a destabilization of the T state by ATP and a destabilization of the R state by CTP and CTP/UTP, consistent with the T and R state crystallographic structures of aspartate transcarbamoylase in the presence of the heterotropic effectors. (c) 2008 Elsevier Ltd. All rights reserved. C1 [West, Jay M.; Xia, Jiarong; Guo, Wenyue; O'Day, Elizabeth M.; Kantrowitz, Evan R.] Boston Coll, Merkert Chem Centcr, Dept Chem, Chestnut Hill, MA 02467 USA. [Tsuruta, Hiro] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Kantrowitz, ER (reprint author), Boston Coll, Merkert Chem Centcr, Dept Chem, Chestnut Hill, MA 02467 USA. EM evan.kantrowitz@bc.edu FU NIH [GM26237, P41RR01209]; Department of Energy FX This work was supported in part by Grant GM26237 from the NIH. The SSRL is operated by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Biology Resource is Supported by the NIH, National Center for Research Resources (P41RR01209), and by the Department of Energy, Office of Biological and Environmental Research. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Center for Research Resources or NIH. NR 51 TC 8 Z9 8 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD DEC 5 PY 2008 VL 384 IS 1 BP 206 EP 218 DI 10.1016/j.jmb.2008.09.022 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 372WN UT WOS:000260933100016 PM 18823998 ER PT J AU Chroneos, A Bracht, H Grimes, RW Uberuaga, BR AF Chroneos, A. Bracht, H. Grimes, R. W. Uberuaga, B. R. TI Phosphorous clustering in germanium-rich silicon germanium SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Front-End Junction and Contact Formation in Future Silicon/Germanium based Devices held at the 2008 E-MRS Spring Meeting CY MAY 26-29, 2008 CL Strasbourg, FRANCE SP European Mat Res Soc DE Germanium; SiGe; Phosphorous; Density functional theory ID VACANCY-MEDIATED DIFFUSION; ATOMIC-SCALE SIMULATIONS; 1ST-PRINCIPLES; IMPLANTATION; COMPLEXES; MOBILITY; GE AB The formation of clusters consisting of donor atoms and lattice vacancies can deleteriously affect the performance of silicon germanium devices. In the present study results from electronic structure calculations are evaluated using mass action analysis to identify the extent to which phosphorous-vacancy clusters form in germanium-rich silicon germanium. Although it is energetically favourable to form clusters containing up to four phosphorous atoms, clusters are only important at lower temperatures. At such temperatures the formation of the cluster, in which four phosphorous atoms are tetrahedrally coordinated around a vacancy. is especially stable. At high temperatures unbound vacancies and phosphorous atoms are dominant. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chroneos, A.; Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. [Uberuaga, B. R.] Los Alamos Natl Lab, Mat Sci & Technol Lab, Los Alamos, NM 87545 USA. RP Chroneos, A (reprint author), Univ Munster, Inst Mat Phys, Wilhelm Kiemm Str 10, D-48149 Munster, Germany. EM alexander.chroneos@imperial.ac.uk OI Chroneos, Alex/0000-0002-2558-495X NR 38 TC 40 Z9 40 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD DEC 5 PY 2008 VL 154 BP 72 EP 75 DI 10.1016/j.mseb.2008.08.005 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 390TW UT WOS:000262187600015 ER PT J AU Windl, W Stumpf, R AF Windl, Wolfgang Stumpf, Roland TI Charge of self-interstitials and boron-interstitial pairs as a function of doping concentration SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Front-End Junction and Contact Formation in Future Silicon/Germanium based Devices held at the 2008 E-MRS Spring Meeting CY MAY 26-29, 2008 CL Strasbourg, FRANCE SP European Mat Res Soc DE Band structure calculations; Boron; Diffusion; Doping effects; Indium; Silicon ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MOLECULAR-DYNAMICS; DIFFUSION; SILICON; MECHANISMS; METALS AB In this paper, we discuss the accuracy of ab initio calculations for self-interstitial and boron diffusion in silicon in light of recent experimental data by De Salvador et at. and Bracht et al. Mapping the experimental data onto the activation energy vs. Fermi-level representation commonly used to display ab initio results, we show that the experimental results are consistent with each other. While the theoretical LDA value for the boron activation energy as a function of the Fermi level agrees well with experiment, we find for the self-interstitial, in line with other calculations. an underestimation of the experimental values, despite using scissors and finite-size type total-energy corrections. Finally, we discuss the general ability of ab initio calculations to predict ionization levels for the example of boron in comparison to indium. (C) 2008 Elsevier B.V. All rights reserved. C1 [Windl, Wolfgang] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Stumpf, Roland] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Windl, W (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd, Columbus, OH 43210 USA. EM windl.1@osu.edu; rrstump@sandia.gov RI Windl, Wolfgang/C-7255-2012 OI Windl, Wolfgang/0000-0001-5892-0684 NR 18 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD DEC 5 PY 2008 VL 154 BP 198 EP 201 DI 10.1016/j.mseb.2008.09.027 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 390TW UT WOS:000262187600043 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACS Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K Jong, SJ La Cruz-Burelo, E Martins, CO DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Komissarov, EV Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merekov, YP Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rozhdestvenski, A Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B den Berg, PJ Kooten, R Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Vertogradova, Y Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Komissarov, E. V. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merekov, Y. P. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rozhdestvenski, A. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Vertogradova, Y. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Observation of the Doubly Strange b Baryon Omega(-)(b) SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We report the observation of the doubly strange b baryon Omega(-)(b) in the decay channel Omega(-)(b) -> J/psi Omega(-), with J/psi -> mu(+)mu(-) and Omega(-) -> Lambda K- -> (p pi(-))K-, in p (p) over bar collisions at root s = 1.96 TeV. Using approximately 1.3 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider, we observe 17.8 +/- 4.9(stat) +/- 0.8(syst) Omega(-)(b) signal events at a mass of 6.165 +/- 0.010(stat) +/- 0.013(syst) GeV. The significance of the observed signal is 5.4 sigma, corresponding to a probability of 6.7 x 10(-8) of it arising from a background fluctuation. C1 [Abazov, V. M.; Alexeev, G. D.; Alton, A.; Kharzheev, Y. M.; Komissarov, E. V.; Malyshev, V. L.; Merekov, Y. P.; Rozhdestvenski, A.; Tokmenin, V. V.; Vertogradov, L. S.; Vertogradova, Y.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ H3A 2T5, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quinto, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Zeitnitz, C.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.; de Jong, S. J.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Anastasoaie, M.; Ancu, L. S.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Kharchilava, A.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.; Zeitnitz, C.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Meyer, J.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Yip, Kin/D-6860-2013; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Perfilov, Maxim/E-1064-2012; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; OI Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Evans, Harold/0000-0003-2183-3127; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Qian, Jianming/0000-0003-4813-8167; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Bertram, Iain/0000-0003-4073-4941 FU DOE; NSF (U.S.); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 18 TC 65 Z9 67 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 232002 DI 10.1103/PhysRevLett.101.232002 PG 7 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200015 PM 19113541 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chang, BS Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Hur, MG Ichihara, T Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Bornec, Y Leckey, S Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Lim, H Liska, T Litvinenko, A Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Masek, L Masui, H Matathias, F McCain, MC McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Otterlund, I Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sato, HD Sato, S Sawada, S Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J. -S. Chang, B. S. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S. -Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Hur, M. G. Ichihara, T. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Lim, H. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Masek, L. Masui, H. Matathias, F. McCain, M. C. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjoe, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA Phenix Collaboration TI Suppression Pattern of Neutral Pions at High Transverse Momentum in Au plus Au Collisions at root S-NN=200 GeV and Constraints on Medium Transport Coefficients SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; ENERGY-LOSS; MATTER AB For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, p(T), up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p(T) < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium, e. g., <(q) over cap > in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au + Au collisions. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Deaton, M. B.; Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mishra, M.; Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Fung, S. -Y.; Hester, T.; Kotchetkov, D.; Li, X. H.; Morreale, A.; Seto, R.; Xie, W.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Oda, S. X.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Cobigo, Y.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.; Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M.; Finger, M., Jr.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] Cyclotron Applicat Lab, KAERI, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA, RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Butsyk, S.; Constantin, P.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjoe, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Deshpande, A.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Inoue, Y.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Kawall, D.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] RIKEN, BNL, Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Leckey, S.; Matathias, F.; McCumber, M.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, F-44307 Nantes, France. [Dzhordzhadze, V.; Garishvili, I.; Glenn, A.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Kanou, H.; Nakano, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Oka, M.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Sakaguchi, T.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; seto, richard/G-8467-2011; Taketani, Atsushi/E-1803-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in DOE Office of Science; NSF (USA); MEXT; JSPS (Japan); CNPq; FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS; CEA (France); BMBF; DAAD; AvH (Germany); OTKA (Hungary); DAE (India); ISF (Israel); KRF; KOSEF (Korea); MES; RAS; FAAE (Russia); VR; KAW (Sweden); U.S. CRDF; US-Hungarian NSF-OTKA-MTA; US-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (USA), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSF-OTKA-MTA, and US-Israel BSF. NR 18 TC 179 Z9 179 U1 5 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 232301 DI 10.1103/PhysRevLett.101.232301 PG 7 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200016 ER PT J AU Colgan, J Pindzola, MS Robicheaux, F Kaiser, C Murray, AJ Madison, DH AF Colgan, J. Pindzola, M. S. Robicheaux, F. Kaiser, C. Murray, A. J. Madison, D. H. TI Differential Cross Sections for the Ionization of Oriented H(2) Molecules by Electron Impact SO PHYSICAL REVIEW LETTERS LA English DT Article ID CLOSE-COUPLING METHOD; HYDROGEN; H-2; 2E AB A nonperturbative close-coupling technique is used to calculate differential cross sections for the electron-impact ionization of H(2) at an energy of 35.4 eV. Our approach allows cross sections for any orientation of the molecule with respect to the incident electron beam to be analyzed. New features in the resulting cross sections are found compared with the case where the molecular orientation is averaged, and also with cross sections for He at equivalent electron kinematics. When averaged over all possible molecular orientations, good agreement is found with recent experimental results. C1 [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Kaiser, C.; Murray, A. J.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Madison, D. H.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Robicheaux, Francis/F-4343-2014; OI Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU National Science Foundation [PHY-0757749]; EPSRC (UK) FX A portion of this work was performed under the auspices of the US DOE through Los Alamos National Laboratory (LANL) and through DOE and NSF grants to Auburn University. Computational work was carried out at the NCCS in Oak Ridge, TN, and through a LANL Institutional Computing Resources grant. A portion of this work was done under National Science Foundation grant No. PHY-0757749, and we acknowledge the EPSRC (UK) for support of the experimental work. NR 19 TC 47 Z9 48 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 233201 DI 10.1103/PhysRevLett.101.233201 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200021 PM 19113547 ER PT J AU Daghofer, M Moreo, A Riera, JA Arrigoni, E Scalapino, DJ Dagotto, E AF Daghofer, M. Moreo, A. Riera, J. A. Arrigoni, E. Scalapino, D. J. Dagotto, E. TI Model for the Magnetic Order and Pairing Channels in Fe Pnictide Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE-DIAGRAM; ANTIFERROMAGNET; INSTABILITY; HOLE AB A two-orbital model for Fe-pnictide superconductors is investigated using computational techniques on two-dimensional square clusters. The hopping amplitudes are derived from orbital overlap integrals, or by band structure fits, and the spin frustrating effect of the plaquette-diagonal Fe-Fe hopping is remarked. A spin striped state is stable in a broad range of couplings in the undoped regime, in agreement with neutron scattering. Adding two electrons to the undoped ground state of a small cluster, the dominant pairing operators are found. Depending on the parameters, two pairing operators were identified: they involve inter-xz-yz orbital combinations forming spin singlets or triplets, transforming according to the B(2g) and A(2g) representations of the D(4h) group, respectively. C1 [Daghofer, M.; Moreo, A.; Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daghofer, M.; Moreo, A.; Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Riera, J. A.] Univ Nacl Rosario, Inst Fis Rosario, Consejo Nacl Invest Cient & Tecn, RA-2000 Rosario, Santa Fe, Argentina. [Arrigoni, E.] Graz Univ Technol, Inst Theoret & Computat Phys, A-8010 Graz, Austria. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Daghofer, M (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Daghofer, Maria/C-5762-2008; Riera, Jose/A-1234-2008; Arrigoni, Enrico/E-4507-2012 OI Daghofer, Maria/0000-0001-9434-8937; Riera, Jose/0000-0003-4546-1137; Arrigoni, Enrico/0000-0002-1347-3080 FU NSF [DMR-0706020]; Div. of Materials Sciences and Eng., U.S. DOE; Austrian Science Fund [P18551-N16] FX We acknowledge discussions with F. Reboredo. Research supported by the NSF Grant No. DMR-0706020, the Div. of Materials Sciences and Eng., U.S. DOE under contract with UT-Batelle, LLC, and the Austrian Science Fund Grant No. P18551-N16. NR 42 TC 110 Z9 110 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 237004 DI 10.1103/PhysRevLett.101.237004 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200058 PM 19113584 ER PT J AU Goldenzweig, P Schwartz, AJ Adachi, I Aihara, H Arinstein, K Aulchenko, V Aushev, T Bahinipati, S Bakich, AM Bay, A Bedny, I Bhardwaj, V Bitenc, U Bondar, A Bozek, A Bracko, M Browder, TE Chang, P Chao, Y Chen, A Chen, KF Cheon, BG Chiang, CC Chistov, R Cho, IS Choi, Y Dalseno, J Dash, M Drutskoy, A Eidelman, S Golob, B Ha, H Hayasaka, K Hayashii, H Hazumi, M Heffernan, D Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Inami, K Ishikawa, A Ishino, H Iwasaki, M Kah, DH Kang, JH Kawasaki, T Kichimi, H Kim, HJ Kim, SK Kim, YI Kim, YJ Kinoshita, K Korpar, S Krizan, P Krokovny, P Kumar, R Kuzmin, A Kwon, YJ Kyeong, SH Lange, JS Lee, JS Lee, MJ Lee, SE Lesiak, T Li, J Limosani, A Lin, SW Liu, C Liu, Y MacNaughton, J Mandl, F McOnie, S Miyabayashi, K Miyata, H Miyazaki, Y Mizuk, R Nagamine, T Nakano, E Nakao, M Nakazawa, H Nishida, S Nitoh, O Ogawa, S Ohshima, T Okuno, S Olsen, SL Ostrowicz, W Ozaki, H Pakhlov, P Pakhlova, G Palka, H Park, CW Park, H Park, HK Peak, LS Pestotnik, R Piilonen, LE Sahoo, H Sakai, Y Schneider, O Schumann, J Schwanda, C Seidl, R Sekiya, A Senyo, K Sevior, ME Shapkin, M Shebalin, V Shen, CP Shiu, JG Singh, JB Somov, A Stanic, S Staric, M Sumisawa, K Sumiyoshi, T Suzuki, S Tamura, N Tanaka, M Teramoto, Y Tikhomirov, I Trabelsi, K Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Varner, G Varvell, KE Vervink, K Wang, CC Wang, CH Wang, MZ Wang, P Wang, XL Watanabe, Y Wedd, R Wicht, J Won, E Yabsley, BD Yamashita, Y Yamauchi, M Zhang, CC Zhang, ZP Zhulanov, V Zivko, T Zupanc, A Zyukova, O Collaboration, B AF Goldenzweig, P. Schwartz, A. J. Adachi, I. Aihara, H. Arinstein, K. Aulchenko, V. Aushev, T. Bahinipati, S. Bakich, A. M. Bay, A. Bedny, I. Bhardwaj, V. Bitenc, U. Bondar, A. Bozek, A. Bracko, M. Browder, T. E. Chang, P. Chao, Y. Chen, A. Chen, K. -F. Cheon, B. G. Chiang, C. -C. Chistov, R. Cho, I. -S. Choi, Y. Dalseno, J. Dash, M. Drutskoy, A. Eidelman, S. Golob, B. Ha, H. Hayasaka, K. Hayashii, H. Hazumi, M. Heffernan, D. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Inami, K. Ishikawa, A. Ishino, H. Iwasaki, M. Kah, D. H. Kang, J. H. Kawasaki, T. Kichimi, H. Kim, H. J. Kim, S. K. Kim, Y. I. Kim, Y. J. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kumar, R. Kuzmin, A. Kwon, Y. -J. Kyeong, S. -H. Lange, J. S. Lee, J. S. Lee, M. J. Lee, S. E. Lesiak, T. Li, J. Limosani, A. Lin, S. -W. Liu, C. Liu, Y. MacNaughton, J. Mandl, F. McOnie, S. Miyabayashi, K. Miyata, H. Miyazaki, Y. Mizuk, R. Nagamine, T. Nakano, E. Nakao, M. Nakazawa, H. Nishida, S. Nitoh, O. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Ostrowicz, W. Ozaki, H. Pakhlov, P. Pakhlova, G. Palka, H. Park, C. W. Park, H. Park, H. K. Peak, L. S. Pestotnik, R. Piilonen, L. E. Sahoo, H. Sakai, Y. Schneider, O. Schuemann, J. Schwanda, C. Seidl, R. Sekiya, A. Senyo, K. Sevior, M. E. Shapkin, M. Shebalin, V. Shen, C. P. Shiu, J. -G. Singh, J. B. Somov, A. Stanic, S. Staric, M. Sumisawa, K. Sumiyoshi, T. Suzuki, S. Tamura, N. Tanaka, M. Teramoto, Y. Tikhomirov, I. Trabelsi, K. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Varner, G. Varvell, K. E. Vervink, K. Wang, C. C. Wang, C. H. Wang, M. -Z. Wang, P. Wang, X. L. Watanabe, Y. Wedd, R. Wicht, J. Won, E. Yabsley, B. D. Yamashita, Y. Yamauchi, M. Zhang, C. C. Zhang, Z. P. Zhulanov, V. Zivko, T. Zupanc, A. Zyukova, O. Collaboration, Belle TI Evidence for Neutral B Meson Decays to omega K*(0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZATION; VIOLATION; PHYSICS; SEARCH; BELLE AB We present the results of a study of the charmless vector-vector decay B-0 -> omega K*(0) with 657 X 10(6) B (B) over bar pairs collected with the Belle detector at the KEKB e(+)e(-) collider. We measure the branching fraction to be B(B-0 -> omega K*(0)) = [1.8 +/- 0.7(stat) +/- 0.3(syst)] X 10(-6) with 3.0 sigma significance. We also perform a helicity analysis of the omega and K*(0) vector mesons, and obtain the longitudinal polarization fraction f(L)(B-0 -> omega K*(0)) = 0.56 +/- 0.29(stat)(-0.08)(+0.18)(syst). Finally, we measure a large nonresonant branching fraction B[B-0 -> omega K+ pi(-); M-K pi is an element of (0.755, 1.250) GeV/c(2)] = [5.1 +/- 0.7(stat) +/- 0.7(syst)] X 10(-6) with a significance of 9.5 sigma. C1 [Goldenzweig, P.; Schwartz, A. J.; Bahinipati, S.; Drutskoy, A.; Kinoshita, K.; Somov, A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Arinstein, K.; Aulchenko, V.; Bedny, I.; Eidelman, S.; Kuzmin, A.; Shebalin, V.; Usov, Y.; Zhulanov, V.; Zyukova, O.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Lesiak, T.] T Kosciuszko Cracow Univ Technol, Krakow, Poland. [Lange, J. S.] Univ Giessen, Giessen, Germany. [Kim, Y. J.; Liu, Y.] Grad Univ Adv Studies, Hayama, Japan. [Cheon, B. G.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Bondar, A.; Browder, T. E.; Li, J.; Olsen, S. L.; Sahoo, H.; Shen, C. P.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Dalseno, J.; Hazumi, M.; Kichimi, H.; Krokovny, P.; MacNaughton, J.; Nakao, M.; Nishida, S.; Ozaki, H.; Sakai, Y.; Schuemann, J.; Sumisawa, K.; Tanaka, M.; Trabelsi, K.; Uehara, S.; Uno, S.; Wicht, J.; Yamauchi, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Olsen, S. L.; Wang, P.; Wang, X. L.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Mandl, F.; Schwanda, C.] Inst High Energy Phys, Vienna, Austria. [Shapkin, M.] Inst High Energy Phys, Protvino, Russia. [Aushev, T.; Chistov, R.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Tikhomirov, I.; Uglov, T.] Inst Theoret & Expt Phys, Moscow, Russia. [Bitenc, U.; Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Pestotnik, R.; Staric, M.; Zivko, T.; Zupanc, A.] Jozef Stefan Inst, Ljubljana, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Ha, H.; Won, E.] Korea Univ, Seoul, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. J.; Kim, Y. I.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Aushev, T.; Bay, A.; Schneider, O.; Vervink, K.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Limosani, A.; Sevior, M. E.; Urquijo, P.; Wedd, R.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Hayasaka, K.; Iijima, T.; Inami, K.; Miyazaki, Y.; Ohshima, T.; Senyo, K.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Hayashii, H.; Miyabayashi, K.; Sekiya, A.] Nara Womens Univ, Nara 630, Japan. [Chen, A.; Nakazawa, H.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Chang, P.; Chao, Y.; Chen, K. -F.; Chiang, C. -C.; Hou, W. -S.; Hsiung, Y. B.; Lin, S. -W.; Shiu, J. -G.; Wang, C. C.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Bozek, A.; Lesiak, T.; Ostrowicz, W.; Palka, H.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata, Japan. [Kawasaki, T.; Miyata, H.; Tamura, N.] Niigata Univ, Niigata, Japan. [Stanic, S.] Univ Nova Gor, Nova Gorica, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 558, Japan. [Heffernan, D.] Osaka Univ, Osaka, Japan. [Bhardwaj, V.; Kumar, R.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Seidl, R.] RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. [Ishikawa, A.; Suzuki, S.] Saga Univ, Saga 840, Japan. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Kim, S. K.; Lee, M. J.; Lee, S. E.] Seoul Natl Univ, Seoul, South Korea. [Choi, Y.; Lee, J. S.; Park, C. W.] Sungkyunkwan Univ, Suwon, South Korea. [Bakich, A. M.; McOnie, S.; Peak, L. S.; Varvell, K. E.; Yabsley, B. D.] Univ Sydney, Sydney, NSW 2006, Australia. [Ogawa, S.] Toho Univ, Funabashi, Chiba 274, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. [Nagamine, T.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Aihara, H.; Iwasaki, M.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Ishino, H.] Tokyo Inst Technol, Tokyo 152, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo, Japan. [Dash, M.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Goldenzweig, P (reprint author), Univ Cincinnati, Cincinnati, OH 45221 USA. RI Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Ishino, Hirokazu/C-1994-2015; Kim, Sun Kee/G-2042-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; OI Aihara, Hiroaki/0000-0002-1907-5964; Ishino, Hirokazu/0000-0002-8623-4080; Kim, Sun Kee/0000-0002-0013-0775; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Trabelsi, Karim/0000-0001-6567-3036; HSIUNG, YEE/0000-0003-4801-1238; CHANG, PAO-TI/0000-0003-4064-388X FU MEXT; JSPS (Japan); ARC; DEST (Australia); NSFC (China); DST (India); MOEHRD; KOSEF; KRF (Korea); KBN (Poland); MES; RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC; MOE (Taiwan); DOE (USA) FX We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (China); DST (India); MOEHRD, KOSEF, and KRF (Korea); KBN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA). NR 39 TC 4 Z9 4 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 231801 DI 10.1103/PhysRevLett.101.231801 PG 6 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200013 PM 19113539 ER PT J AU Gupta, SS Kawano, T Moller, P AF Gupta, Sanjib S. Kawano, Toshihiko Moller, Peter TI Neutron Reactions in Accreting Neutron Stars: A New Pathway to Efficient Crust Heating SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERBURST IGNITION; MODELS AB In our calculation of neutron star crust heating we include several key new model features. In earlier work electron capture (EC) only allowed neutron emission from the daughter ground state; here we calculate, in a deformed quasi-random-phase approximation (QRPA) model, EC decay rates to all states in the daughter that are allowed by Gamow-Teller selection rules and energetics. The subsequent branching ratios between the 1n,...,xn channels and the competing gamma decay are calculated in a Hauser-Feshbach model. In our multicomponent plasma model a single (EC, xn) reaction step can produce several neutron-deficient nuclei, each of which can further decay by (EC, xn). Hence, the neutron emission occurs more continuously with increasing depth as compared to that in a one-component plasma model. C1 [Gupta, Sanjib S.; Kawano, Toshihiko; Moller, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Gupta, SS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Moller, Peter/0000-0002-5848-3565 FU LDRD [20080130DR] FX We thank S. Reddy for helpful discussions and for suggestions for improvement after a careful reading of the manuscript. We thank A. Heger for providing the x-ray burst ashes of [3] for use in our calculations. We are grateful for the encouraging and helpful advice from the referees. This work was funded in part by the LDRD program at LANL under Grant No. 20080130DR. NR 14 TC 19 Z9 19 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 231101 DI 10.1103/PhysRevLett.101.231101 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200011 PM 19113537 ER PT J AU Kasai, S Fischer, P Im, MY Yamada, K Nakatani, Y Kobayashi, K Kohno, H Ono, T AF Kasai, Shinya Fischer, Peter Im, Mi-Young Yamada, Keisuke Nakatani, Yoshinobu Kobayashi, Kensuke Kohno, Hiroshi Ono, Teruo TI Probing the Spin Polarization of Current by Soft X-Ray Imaging of Current-Induced Magnetic Vortex Dynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOMAIN-WALL; MICROSCOPY; EXCITATION; REVERSAL; FILMS AB Time-resolved soft x-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micron sized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the resonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 +/- 0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque. C1 [Kasai, Shinya; Yamada, Keisuke; Kobayashi, Kensuke; Ono, Teruo] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Fischer, Peter; Im, Mi-Young] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Nakatani, Yoshinobu] Univ Electrocommun, Chofu, Tokyo 1828585, Japan. [Kohno, Hiroshi] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan. RP Kasai, S (reprint author), Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012; Kobayashi, Kensuke/E-5404-2010; Kohno, Hiroshi/N-7689-2013; Yamada, Keisuke/O-2385-2013 OI Fischer, Peter/0000-0002-9824-9343; Kobayashi, Kensuke/0000-0001-7072-5945; NR 24 TC 37 Z9 37 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 237203 DI 10.1103/PhysRevLett.101.237203 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200062 PM 19113588 ER PT J AU Mattsson, AE Armiento, R Mattsson, TR AF Mattsson, Ann E. Armiento, Rickard Mattsson, Thomas R. TI Comment on "Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by John P. Perdew , Phys. Rev. Lett. 100, 136406 (2008). The authors of the Letter offer a Reply. C1 [Mattsson, Ann E.; Mattsson, Thomas R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Armiento, Rickard] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. RP Mattsson, AE (reprint author), Sandia Natl Labs, Multiscale Dynam Mat Modeling MS 1322, Albuquerque, NM 87185 USA. RI Mattsson, Thomas/B-6057-2009; Armiento, Rickard/E-1413-2011 OI Armiento, Rickard/0000-0002-5571-0814 NR 6 TC 25 Z9 25 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 239701 DI 10.1103/PhysRevLett.101.239701 PG 1 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200074 PM 19113600 ER PT J AU Prumper, G Fukuzawa, H Rolles, D Sakai, K Prince, KC Harries, JR Tamenori, Y Berrah, N Ueda, K AF Pruemper, G. Fukuzawa, H. Rolles, D. Sakai, K. Prince, K. C. Harries, J. R. Tamenori, Y. Berrah, N. Ueda, K. TI Is CO Carbon KVV Auger Electron Emission Affected by the Photoelectron? SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR-DISTRIBUTIONS; MOLECULES; N-2; SPECTROSCOPY; DISSOCIATION; TRANSITIONS; STATES; RATES; DECAY; HF AB Angular distributions (ADs) of O(+) fragments from C 1s photoexcited CO detected in coincidence with carbon KVV Auger electrons emitted in the horizontal direction were measured at photon energies of 298, 305, 320, and 450 eV. At 450 eV, the ADs are polarization-independent and coincide with the molecular-frame Auger electron angular distribution. All measured ADs can be rationalized as a product of the same molecular-frame Auger electron angular distribution and the axial selectivity in the photoionization process. Thus the interaction between the photoelectron and the Auger electron for the normal Auger decay of CO can be neglected, and the two-step model is a good approximation. C1 [Pruemper, G.; Fukuzawa, H.; Sakai, K.; Prince, K. C.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Rolles, D.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Rolles, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Prince, K. C.] Sincrotrone Trieste, I-34012 Trieste, Italy. [Harries, J. R.] Japan Atom Energy Agcy, Mikazuki, Hyogo 6795148, Japan. [Tamenori, Y.] Japan Synchrotron Radiat Res Inst, Hyogo 6795198, Japan. RP Prumper, G (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. RI Harries, James/G-2336-2011; Tamenori, Yusuke/F-8867-2014 OI Harries, James/0000-0003-2173-0697; Tamenori, Yusuke/0000-0001-8004-895X FU Japan Society of the Promotion of Science (JSPS) FX The experiment was carried out with the approval of JASRI and was partly supported by the Japan Society of the Promotion of Science (JSPS) in the form of Grants-in-Aid for Scientific Research. K. C. P. thanks the JSPS for financial support. We thank P. Bolognesi and R. Dorner for their helpful discussions. NR 22 TC 8 Z9 8 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 233202 DI 10.1103/PhysRevLett.101.233202 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200022 PM 19113548 ER PT J AU Saniz, R Norman, MR Freeman, AJ AF Saniz, R. Norman, M. R. Freeman, A. J. TI Orbital Mixing and Nesting in the Bilayer Manganites La2-2xSr1+2xMn2O7 SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLOSSAL MAGNETORESISTIVE OXIDES; PLANE-WAVE METHOD AB A first principles study of La2-2xSr1+2xMn2O7 compounds for doping levels 0.3 <= x <= 0.5 shows that the low energy electronic structure of the majority spin carriers is determined by strong momentum-dependent interactions between the Mn e(g) d(x)(2)-y(2) and d(3z)(2)-r(2) orbitals, which, in addition to an x-dependent Jahn-Teller distortion, differ in the ferromagnetic and antiferromagnetic phases. The Fermi surface exhibits nesting behavior that is reflected by peaks in the static susceptibility, whose positions as a function of momentum have a nontrivial dependence on x. C1 [Saniz, R.; Freeman, A. J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Saniz, R (reprint author), Univ Antwerp, Dept Fys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. RI Norman, Michael/C-3644-2013 FU U.S. DOE, Office of Science [DE-FG02-88ER45372, DE-AC02-06CH11357]; NERSC FX We acknowledge the support of the U.S. DOE, Office of Science, under Grant No. DE-FG02-88ER45372 and Contract No. DE-AC02-06CH11357, and a computer time grant at the NERSC. We thank B. Barbiellini, L.-H. Ye, J.-H. Song, J.F. Mitchell, R. Osborn, S. Rosenkranz, U. Chatterjee, and J.C. Campuzano for useful discussions. NR 26 TC 12 Z9 12 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 236402 DI 10.1103/PhysRevLett.101.236402 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200045 PM 19113571 ER PT J AU Weber, F Kreyssig, A Pintschovius, L Heid, R Reichardt, W Reznik, D Stockert, O Hradil, K AF Weber, F. Kreyssig, A. Pintschovius, L. Heid, R. Reichardt, W. Reznik, D. Stockert, O. Hradil, K. TI Direct Observation of the Superconducting Gap in Phonon Spectra SO PHYSICAL REVIEW LETTERS LA English DT Article ID INELASTIC NEUTRON-SCATTERING; X-Y ANISOTROPY; SINGLE-CRYSTALS; RAMAN-SCATTERING; YNI2B2C AB We show that the superconducting energy gap 2 Delta can be directly observed in phonon spectra, as predicted by recent theories. In addition, since each phonon probes the gap on only a small part of the Fermi surface, the gap anisotropy can be studied in detail. Our neutron scattering investigation of the anisotropic conventional superconductor YNi(2)B(2)C demonstrates this new application of phonon spectroscopy. C1 [Weber, F.; Pintschovius, L.; Heid, R.; Reichardt, W.; Reznik, D.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Weber, F.] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany. [Kreyssig, A.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Reznik, D.] CE Saclay, Lab Leon Brillouin, F-91911 Gif Sur Yvette, France. [Stockert, O.] Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany. [Hradil, K.] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. RP Weber, F (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM fweber@anl.gov RI Hradil, Klaudia/M-7069-2014 OI Hradil, Klaudia/0000-0002-6989-2495 FU DFG [SFB463] FX A. K. acknowledges the support by DFG through SFB463. NR 18 TC 19 Z9 19 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2008 VL 101 IS 23 AR 237002 DI 10.1103/PhysRevLett.101.237002 PG 4 WC Physics, Multidisciplinary SC Physics GA 379XZ UT WOS:000261431200056 PM 19113582 ER PT J AU Bagwell, CE Bhat, S Hawkins, GM Smith, BW Biswas, T Hoover, TR Saunders, E Han, CS Tsodikov, OV Shimkets, LJ AF Bagwell, Christopher E. Bhat, Swapna Hawkins, Gary M. Smith, Bryan W. Biswas, Tapan Hoover, Timothy R. Saunders, Elizabeth Han, Cliff S. Tsodikov, Oleg V. Shimkets, Lawrence J. TI Survival in Nuclear Waste, Extreme Resistance, and Potential Applications Gleaned from the Genome Sequence of Kineococcus radiotolerans SRS30216 SO PLOS ONE LA English DT Article AB Kineococcus radiotolerans SRS30216 was isolated from a high-level radioactive environment at the Savannah River Site (SRS) and exhibits gamma-radiation resistance approaching that of Deinococcus radiodurans. The genome was sequenced by the U. S. Department of Energy's Joint Genome Institute which suggested the existence of three replicons, a 4.76 Mb linear chromosome, a 0.18 Mb linear plasmid, and a 12.92 Kb circular plasmid. Southern hybridization confirmed that the chromosome is linear. The K. radiotolerans genome sequence was examined to learn about the physiology of the organism with regard to ionizing radiation resistance, the potential for bioremediation of nuclear waste, and the dimorphic life cycle. K. radiotolerans may have a unique genetic toolbox for radiation protection as it lacks many of the genes known to confer radiation resistance in D. radiodurans. Additionally, genes involved in the detoxification of reactive oxygen species and the excision repair pathway are overrepresented. K. radiotolerans appears to lack degradation pathways for pervasive soil and groundwater pollutants. However, it can respire on two organic acids found in SRS high-level nuclear waste, formate and oxalate, which promote the survival of cells during prolonged periods of starvation. The dimorphic life cycle involves the production of motile zoospores. The flagellar biosynthesis genes are located on a motility island, though its regulation could not be fully discerned. These results highlight the remarkable ability of K radiotolerans to withstand environmental extremes and suggest that in situ bioremediation of organic complexants from high level radioactive waste may be feasible. C1 [Bagwell, Christopher E.; Smith, Bryan W.] Savannah River Natl Lab, Aiken, SC USA. [Biswas, Tapan; Tsodikov, Oleg V.] Univ Michigan, Coll Pharm, Dept Med Chem, Ann Arbor, MI 48109 USA. [Bhat, Swapna; Hawkins, Gary M.; Hoover, Timothy R.; Shimkets, Lawrence J.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Saunders, Elizabeth; Han, Cliff S.] DOE, Joint Genome Inst, Biosci Div, Los Alamos Natl Lab, Los Alamos, NM USA. RP Bagwell, CE (reprint author), Savannah River Natl Lab, Aiken, SC USA. EM shimkets@uga.edu OI Hoover, Timothy/0000-0003-1101-8030 FU U.S. Department of Energy, Office of Environmental Management, Laboratory Directed Research and Development Program; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Program [KP1302000]; Office of the Vice President for Research, University of Georgia FX CEB would like to acknowledge support from the U.S. Department of Energy, Office of Environmental Management as administered through the Laboratory Directed Research and Development Program, and the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Program (Contract #KP1302000). LJS would like to acknowledge support from the Office of the Vice President for Research, University of Georgia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 30 Z9 32 U1 2 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 5 PY 2008 VL 3 IS 12 AR e3878 DI 10.1371/journal.pone.0003878 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 436YP UT WOS:000265452300011 PM 19057647 ER PT J AU Munch, E Launey, ME Alsem, DH Saiz, E Tomsia, AP Ritchie, RO AF Munch, E. Launey, M. E. Alsem, D. H. Saiz, E. Tomsia, A. P. Ritchie, R. O. TI Tough, Bio-Inspired Hybrid Materials SO SCIENCE LA English DT Article ID FRACTURE-RESISTANCE MECHANISM; HUMAN CORTICAL BONE; CRACK-PROPAGATION; LAYERED CERAMICS; POROUS CERAMICS; SILICON-CARBIDE; PORE STRUCTURE; NACRE; COMPOSITES; ALUMINA AB The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs that are extremely difficult to replicate synthetically. We emulate nature's toughening mechanisms by combining two ordinary compounds, aluminum oxide and polymethyl methacrylate, into ice- templated structures whose toughness can be more than 300 times ( in energy terms) that of their constituents. The final product is a bulk hybrid ceramic- based material whose high yield strength and fracture toughness [similar to 200 megapascals (MPa) and similar to 30 MPa.m(1/2)] represent specific properties comparable to those of aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio- inspired ceramic- based composites with unique strength and toughness. C1 [Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alsem, D. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU Office of Science; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 NR 41 TC 613 Z9 615 U1 73 U2 629 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD DEC 5 PY 2008 VL 322 IS 5907 BP 1516 EP 1520 DI 10.1126/science.1164865 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 379DU UT WOS:000261377400042 PM 19056979 ER PT J AU Keppler, H Dubrovinsky, LS Narygina, O Kantor, I AF Keppler, Hans Dubrovinsky, Leonid S. Narygina, Olga Kantor, Innokenty TI Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals SO SCIENCE LA English DT Article ID LOWER MANTLE; HEAT-TRANSFER; (MG,FE)SIO3 PEROVSKITE; SPECTRA; TEMPERATURE; IRON; GPA; RINGWOODITE; DEPENDENCE; PRESSURE AB Mantle convection and plate tectonics are driven by the heat flow from Earth's core to the surface. The radiative contribution to heat transport is usually assumed to be negligible. Here, we report the near- infrared and optical absorption spectra of silicate perovskite, the main constituent of the lower mantle, to 125 gigapascals. Silicate perovskite remains quite transparent up to the pressures at the core- mantle boundary. Estimates of radiative thermal conductivity derived from these spectra approach 10 watts meter(-1) kelvin(-1) at lowermost mantle conditions, implying that heat conduction is dominated by radiation. However, the increase in radiative conductivity with temperature (T) is less pronounced than expected from a T(3) dependency. C1 [Keppler, Hans; Dubrovinsky, Leonid S.; Narygina, Olga; Kantor, Innokenty] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Kantor, Innokenty] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Keppler, H (reprint author), Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. EM hans.keppler@uni-bayreuth.de FU German Science Foundation; DFG; Leibniz award FX This work was supported by German Science Foundation (DFG; Leibniz award to H. K.). A. Audetat took the photographs of the samples at high pressure. NR 25 TC 43 Z9 44 U1 3 U2 21 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD DEC 5 PY 2008 VL 322 IS 5907 BP 1529 EP 1532 DI 10.1126/science.1164609 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 379DU UT WOS:000261377400045 PM 19056982 ER PT J AU Wolfe, CL Cessi, P McClean, JL Maltrud, ME AF Wolfe, C. L. Cessi, P. McClean, J. L. Maltrud, M. E. TI Vertical heat transport in eddying ocean models SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CIRCULATION; ENERGETICS; FLUXES; ENERGY AB The effect of mesoscale eddies on the vertical heat transport of the ocean is examined using two eddy-resolving numerical models. The global heat transport by the mean flow and diffusion are both downwards and are balanced by an upward eddy heat flux. Mean and eddy advective heat fluxes dominate the subpolar regions, while diffusive flux is important primarily in the subtropics. In the subtropical abyss, the mean advective heat flux is balanced by a combination of eddy and diffusive fluxes and the classical Munk-type advective-diffusive heat balance must be modified. The Munk and Wunsch (1998) expression for the vertical turbulent diffusivity over-estimates the diffusivity by as much as a factor of four near the base of the main thermocline. This implies that the mixing required to close the meridional overturning circulation determined by Munk and Wunsch (1998) may be an over-estimate due to the neglect of mesoscale eddies. Citation: Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud (2008), Vertical heat transport in eddying ocean models, Geophys. Res. Lett., 35, L23605, doi: 10.1029/2008GL036138. C1 [Wolfe, C. L.; Cessi, P.; McClean, J. L.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Maltrud, M. E.] Los Alamos Natl Lab, Fluid Dynm Grp, Los Alamos, NM 87545 USA. RP Wolfe, CL (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Mail Code 0213, La Jolla, CA 92093 USA. EM clwolfe@ucsd.edu FU Office of Science (BER) U. S. Department of Energy [DE-FG02-01ER63252, DE-FG02-05ER64119]; NSF [OCE-0549225] FX This research was supported by the Office of Science (BER) U. S. Department of Energy, grants DE-FG02-01ER63252 (P. C. and C. W.) and DE-FG02-05ER64119 (J.M.) and NSF OCE-0549225 (J.M.). The MITgcm was run at SDSC, NCCS, and NERSC. The global POP simulation was carried out as part of a Department of Defense High Performance Computing Modernization Program (HPCMP) grant challenge grant at MHPCC. NR 19 TC 27 Z9 27 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 4 PY 2008 VL 35 IS 23 AR L23605 DI 10.1029/2008GL036138 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 380MW UT WOS:000261470800006 ER PT J AU Mathez, EA Roberts, JJ Duba, AG Kronenberg, AK Karner, SL AF Mathez, E. A. Roberts, J. J. Duba, A. G. Kronenberg, A. K. Karner, S. L. TI Carbon deposition during brittle rock deformation: Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID GRAIN-BOUNDARY GRAPHITE; LOMA-PRIETA EARTHQUAKE; SAN-ANDREAS FAULT; NOJIMA FAULT; HYDROTHERMAL CONDITIONS; SIOUX QUARTZITE; STRESS DROP; STICK-SLIP; CONDUCTIVITY; FRACTURE AB To investigate potential mechanisms for geoelectric phenomena accompanying earthquakes, we have deformed hollow cylinders of Sioux quartzite to failure in the presence of carbonaceous pore fluids and investigated the resulting changes in electrical conductivity and carbon distribution. Samples were loaded at room temperature or 400 degrees C by a hydrostatic pressure at their outer diameter, increasing pressure at a constant rate to similar to 290 MPa. Pore fluids consisted of pure CO, CO2, and CH4 and a 1:1 mixture of CO2 and CH4, each with pore pressures of 2.0 to 4.1 MPa. Failure occurred by the formation of Mode II shear fractures transecting the hollow cylinder walls. Radial resistivities of the cylinders fell to 2.9 to 3.1 M Omega-m for CO tests and 15.2 to 16.5 M Omega-m for CO2: CH4 tests, compared with > 23 M Omega-m for dry undeformed cylinders. Carbonaceous fluids had no discernable influence on rock strength. On the basis of mapping using electron microprobe techniques, carbon occurs preferentially as quasicontinuous films on newly formed fracture surfaces, but these films are absent from preexisting surfaces in those same experiments. The observations support the hypothesis that electrical conductivity of rocks is enhanced by the deposition of carbon on fracture surfaces and imply that electrical properties may change in direct response to brittle deformation. They also suggest that the carbon films formed nearly instantaneously as the cracks formed. Carbon film deposition may accompany the development of microfracture arrays prior to and during fault rupture and thus may be capable of explaining precursory and coseismic geoelectric phenomena. C1 [Mathez, E. A.; Duba, A. G.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Karner, S. L.] ExxonMobil Upstream Res Co, Houston, TX 77252 USA. [Kronenberg, A. K.] Texas A&M Univ, Dept Geol & Geophys, Ctr Tectonophys, College Stn, TX 77843 USA. [Roberts, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mathez, EA (reprint author), Amer Museum Nat Hist, Dept Earth & Planetary Sci, Cent Pk W,79th St, New York, NY 10024 USA. EM mathez@amnh.org; roberts17@llnl.gov; duba@amnh.org; kronenberg@geo.tamu.edu; stephen.l.karner@exxonmobil.com FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [EAR-0337188] FX This paper benefited from discussions with Steve Park, Gary Egbert, Tom Shankland, Steve Constable, Jan Tullis, and Jane Selverstone and from reviews by Philip Benson and an anonymous reviewer. We thank Nathan Davis, Keith Jenkins, and Clayton Powell for their hard work while performing the rock deformation experiments and Carl Boro for help with the electrical resistance measurement apparatus. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, specifically through the Office of Basic Energy Sciences, and by funding from the National Science Foundation (EAR-0337188); their support is gratefully acknowledged. NR 56 TC 5 Z9 5 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD DEC 4 PY 2008 VL 113 IS B12 AR B12201 DI 10.1029/2008JB005798 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 380OX UT WOS:000261476100001 ER PT J AU Ghosal, S Brown, MA Bluhm, H Krisch, MJ Salmeron, M Jungwirth, P Hemminger, JC AF Ghosal, Sutapa Brown, Matthew A. Bluhm, Hendrik Krisch, Maria J. Salmeron, Miquel Jungwirth, Pavel Hemminger, John C. TI Ion Partitioning at the Liquid/Vapor Interface of a Multicomponent Alkali Halide Solution: A Model for Aqueous Sea Salt Aerosols SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; AIR/WATER INTERFACE; VAPOR INTERFACE; POLAR SUNRISE; SPECTROSCOPIC MEASUREMENT; OZONE DESTRUCTION; BOUNDARY-LAYER; CHEMISTRY; BROMINE; SURFACE AB The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br(-) is only a minor component in sea salt, which has a Br(-)/Cl(-) molar ratio of similar to 0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br(-) for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure X-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br(-) enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br(-)/Cl(-) ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br(-) in a multicomponent solution with particular relevance to sea salt chemistry. C1 [Jungwirth, Pavel] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic. [Jungwirth, Pavel] Ctr Complex Mol Syst & Biomol, CR-16610 Prague, Czech Republic. [Ghosal, Sutapa] Lawrence Livermore Natl Lab, Phys & Lifie Sci Directorate, Livermore, CA 94551 USA. [Brown, Matthew A.; Krisch, Maria J.; Hemminger, John C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Brown, Matthew A.; Krisch, Maria J.; Hemminger, John C.] Univ Calif Irvine, AirUCI, Irvine, CA 92697 USA. [Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Jungwirth, P (reprint author), Acad Sci Czech Republic, Inst Organ Chem & Biochem, Flemingovo Nam 2, CR-16610 Prague 6, Czech Republic. EM pavel.jungwirth@marge.uochb.cas.cz; jchemmin@uci.edu RI Ghosal, Sandip/B-7595-2009; Brown, Matthew/D-9236-2012; Jungwirth, Pavel/D-9290-2011 OI Jungwirth, Pavel/0000-0002-6892-3288 FU AirUCI Environmental Molecular Sciences Institute [CRE 0431312]; National Science Foundation; Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Divisions of the U.S. Department of Energy at the LBNL [DE-AC02-05CH11231]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Granting Agency of the Czech Republic [203/07/1006]; Czech Ministry of Education [LC512]; ALS Doctoral Fellowship FX The AirUCI Environmental Molecular Sciences Institute supported this work under grant CRE 0431312 from the National Science Foundation. The ALS and the molecular environmental sciences beamline (1.1.0.2) are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Divisions of the U.S. Department of Energy at the LBNL under contract DE-AC02-05CH11231. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We gratefully acknowledge support from the Granting Agency of the Czech Republic (grant 203/07/1006) and from the Czech Ministry of Education (grant LC512). M.A.B. acknowledges the ALS Doctoral Fellowship program. NR 48 TC 60 Z9 60 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 4 PY 2008 VL 112 IS 48 BP 12378 EP 12384 DI 10.1021/jp805490f PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 376YE UT WOS:000261218100012 PM 19006284 ER PT J AU Sengupta, B Ritchie, CM Buckman, JG Johnsen, KR Goodwin, PM Petty, JT AF Sengupta, Bidisha Ritchie, Caroline M. Buckman, Jenna G. Johnsen, Kenneth R. Goodwin, Peter M. Petty, Jeffrey T. TI Base-Directed Formation of Fluorescent Silver Clusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSLATIONAL DIFFUSION; MEDIATED SYNTHESIS; QUANTUM YIELDS; GOLD CLUSTERS; DNA; NANOPARTICLES; NANOCLUSTERS; LUMINESCENCE; RNA; NANOCRYSTALS AB Small silver clusters that form with short oligonucleotides are distinguished by their strong fluorescence. Previous work showed that red- and blue/green-emitting species form with the cytosine oligonucleotide dC(12). To understand how the bases and base sequence influence cluster formation, the blue/green-emitting clusters that form with the thymine-containing oligonucleotides dT(12), dT(4)C(4)T(4), and dC(4)T(4)C(4) are discussed. With dT12 and dT4C4T4, variations in the solution pH establish that the clusters associate with the N3 of thymine. The small clusters are bound to the larger DNA template, as demonstrated by fluorescence anisotropy, circular dichroism, and fluorescence correlation spectroscopy (FCS) studies. For dT(4)C(4)T(4), FCS studies showed that approximately 50% of the strands are labeled with the fluorescent clusters. Absorption spectra and the gas dependence of the fluorescence show that nonfluorescent clusters also form following the reduction of the silver cation-oligonucleotide conjugates. Fluorescent cluster formation is favored by oxygen, thus indicating that the DNA-bound clusters are partially oxidized. To elaborate the sequence dependence of cluster formation, dC(4)T(4)C(4) was studied. Cluster formation depends on the oligonucleotide concentration, and higher concentrations favor a red-emitting species. A blue/green emissive species dominates at lower concentrations of dC(4)T(4)C(4), and it has spectroscopic, physical, and chemical properties that are similar to those of the clusters that form with dT(12) and dT(4)C(4)T(4). These results suggest that cytosine- and thymine-containing oligonucleotides stabilize a preferred emissive silver cluster. C1 [Sengupta, Bidisha; Ritchie, Caroline M.; Buckman, Jenna G.; Johnsen, Kenneth R.; Petty, Jeffrey T.] Furman Univ, Dept Chem, Greenville, SC 29613 USA. [Goodwin, Peter M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Petty, JT (reprint author), Furman Univ, Dept Chem, Greenville, SC 29613 USA. EM jeff.petty@furman.edu FU National Institutes of Health [Rl5GM084442, P20 RR-016461]; National Science Foundation [0718588]; Henry Dreyfus Teacher-Scholar Awards Program; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors are most appreciative of the comments of the reviewers. J.T.P. gratefully acknowledges the support provided by the National Institutes of Health (Rl5GM084442 and P20 RR-016461 (from the National Center for Research Resource)), the National Science Foundation (0718588), and the Henry Dreyfus Teacher-Scholar Awards Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 41 TC 138 Z9 138 U1 9 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2008 VL 112 IS 48 BP 18776 EP 18782 DI 10.1021/jp804031v PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 376YH UT WOS:000261218400011 ER PT J AU Li, GH Dimitrijevic, NM Chen, L Rajh, T Gray, KA AF Li, Gonghu Dimitrijevic, Nada M. Chen, Le Rajh, Tijana Gray, Kimberly A. TI Role of Surface/Interfacial Cu(2+) Sites in the Photocatalytic Activity of Coupled CuO-TiO(2) Nanocomposites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MIXED-PHASE TIO2; TITANIUM-DIOXIDE; VISIBLE-LIGHT; OXIDE CATALYSTS; PARAMAGNETIC-RESONANCE; ELECTRON-TRANSFER; SURFACE SCIENCE; SILICATE SIEVE; COPPER; REACTIVITY AB Coupled CuO-TiO(2) nanocomposite photocatalysts were prepared by a deposition precipitation method and were characterized with a variety of techniques. Electron paramagnetic resonance (EPR) spectroscopy was employed to study the local structures of surface/interfacial Cu(2+) sites using Cu(2+) as a sensitive paramagnetic probe. The addition of bulk CuO to TiO(2) led to decreased photocatalytic efficiency in the degradation of methylene blue. However, doping with a very small amount of CuO (0.1 wt % copper loading) significantly enhanced the photocatalytic activity of TiO(2). EPR study of the TiO(2) surface revealed the presence of both highly dispersed CuO clusters and substitutional Cu(2+) sites (Ti-O-Cu linkages) at 0.1 wt % copper loading. The data suggest that the Ti-O-Cu linkages contributed to the improved photooxidative activity of the 0.1% CuO-TiO(2) nanocomposite. In contrast, at higher loadings the bulk form of CuO created charge recombination centers lowering the photoactivity of the composites. C1 [Li, Gonghu; Chen, Le; Gray, Kimberly A.] Northwestern Univ, Dept Civil & Environm Engn, Inst Catalysis Energy Processes, Evanston, IL 60208 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gray, KA (reprint author), Northwestern Univ, Dept Civil & Environm Engn, Inst Catalysis Energy Processes, Evanston, IL 60208 USA. EM k-gray@northwestern.edu RI Gray, Kimberly/B-6989-2009 FU U.S. Department of Energy [DE-FG02-03ER15457/A003, DE-AC0206CH11357] FX The authors thank the U.S. Department of Energy (DE-FG02-03ER15457/A003 and DE-AC0206CH11357) for funding the research described in this paper, and Professor Joseph T. Hupp and Karen Mulfort of Chemistry Department at Northwestern University for their help on surface area measurements. Materials characterization was performed in MRSEC, NUANCE, and ASL at Northwestern University. NR 53 TC 142 Z9 144 U1 8 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2008 VL 112 IS 48 BP 19040 EP 19044 DI 10.1021/jp8068392 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 376YH UT WOS:000261218400048 ER PT J AU Actis, S Passarino, G Sturm, C Uccirati, S AF Actis, Stefano Passarino, Giampiero Sturm, Christian Uccirati, Sandro TI NLO electroweak corrections to Higgs boson production at hadron colliders SO PHYSICS LETTERS B LA English DT Article DE Feynman diagrams; Multi-loop calculations; Higgs physics ID RADIATIVE-CORRECTIONS; LHC; QCD; PREDICTIONS; RESUMMATION; LIMIT; DIS AB Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5% shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Actis, Stefano] Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. [Passarino, Giampiero] Univ Turin, Dipartmento Fis Teor, I-10124 Turin, Italy. [Sturm, Christian] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Uccirati, Sandro] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany. RP Actis, S (reprint author), Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. EM actis@physik.rwth-aachen.de; giampiero@to.infn.it; sturm@bnl.gov; uccirati@particle.uni-karlsruhe.de RI Sturm, Christian/Q-2713-2015; OI Sturm, Christian/0000-0002-3137-4940; Passarino, Giampiero/0000-0001-6379-4686 NR 37 TC 173 Z9 173 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 4 PY 2008 VL 670 IS 1 BP 12 EP 17 DI 10.1016/j.physletb.2008.10.018 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 382UW UT WOS:000261631900003 ER PT J AU Yabusaki, SB Fang, YL Waichler, SR AF Yabusaki, Steven B. Fang, Yilin Waichler, Scott R. TI Building conceptual models of field-scale uranium reactive transport in a dynamic vadose zone-aquifer-river system SO WATER RESOURCES RESEARCH LA English DT Article ID CHEMICAL-REACTIONS; HANFORD SEDIMENT; GROUNDWATER; WATER; SITE; ADSORPTION; SORPTION; CARBONATE; OXYHYDROXIDE; CHEMISTRY AB Subsurface simulation is used to build, test, and couple conceptual process models to better understand the persistence of uranium concentrations above federal drinking water standards in a 0.4 km by 1.0 km groundwater plume beneath the 300 Area of the U. S. Department of Energy's Hanford Site in eastern Washington State. At this location, the unconfined aquifer and the variably saturated lower vadose zone sediments are subject to significant variations in water levels driven by diurnal, weekly, and seasonal fluctuations in the Columbia River stage. In the near-river aquifer, uranium-contaminated sediments in the highly transmissive Hanford formation are subject to high groundwater velocities, daily flow reversals, and exposure to river water. One-and two-dimensional simulations of variably saturated flow and reactive transport based on laboratory-derived models of uranium sorption are used to assess the representation of uranium transport processes in the vadose zone-aquifer-river system. The simulations show that the various frequencies of river stage fluctuation are capable of driving significant inland transport above the average water table, which is in contrast to the net groundwater flow to the river. Inclusion of a rate-limited uranium mass transfer process model is notably more important to the timescales of the river stage-driven groundwater flow than for vadose zone flow driven by natural recharge. Spatially and temporally variable solution chemistry from the dynamic exchange of river water and groundwater in the unconfined aquifer is shown to significantly alter uranium mobility as represented by a multicomponent uranium surface complexation model. C1 [Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yabusaki, SB (reprint author), Pacific NW Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA. EM yabusaki@pnl.gov RI Fang, Yilin/J-5137-2015 FU U. S. Department of Energy (DOE) Office of Environmental Management (EM) FX This research was supported by the U. S. Department of Energy (DOE) Office of Environmental Management (EM) through the Hanford Remediation and Closure Science project funded under contract to the Fluor Hanford Corporation. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle. We gratefully acknowledge the assistance provided by Jim Davis, Brad Fritz, Mark Freshley, Chongxuan Liu, Bob Peterson, Nik Qafoku, Mark Rockhold, Jeff Serne, Frank Spane, Deb Stoliker, Paul Thorne, Duane Ward, Bruce Williams, and John Zachara in this research. This manuscript benefited significantly from the anonymous reviewers, and we thank them for their helpful comments and suggestions. NR 50 TC 32 Z9 32 U1 2 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 4 PY 2008 VL 44 IS 12 AR W12403 DI 10.1029/2007WR006617 PG 24 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 380PV UT WOS:000261478500002 ER PT J AU Hu, YY Chmielewski, DJ Papadias, D AF Hu, Yongyou Chmielewski, Donald J. Papadias, Dennis TI Autothermal Reforming of Gasoline for Fuel Cell Applications: A Control-Oriented Dynamic Model SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DESIGN AB In this work, we develop a control-oriented, reduced order dynamic model of an autothermal reforming (ATR) reactor. The targeted application is within the on-board fuel-processing unit of a fuel cell vehicle. A previous effort has illustrated that a predictive-type controller may be required to achieve desired performance within this application. The objective of the current effort is to determine the existence of a reduced order model with enough speed and accuracy to meet the online computational demands of a predictive controller. Central to the model development is an approximation of reaction rates that achieve reasonable accuracy near the inlet while preserving the overall energy balance. The resulting scheme converts a partial differential equation model into a set of ordinary differential/algebraic equations and achieves nearly a 4 orders of magnitude improvement in computational speed while preserving most of the nonlinear characteristics of the original system. Such results give clear indication that the hurdle of computational viability can be overcome and opens the door for further development of a predictive controller for the ATR application. C1 [Hu, Yongyou; Chmielewski, Donald J.] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA. [Papadias, Dennis] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Chmielewski, DJ (reprint author), IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA. EM chmielewski@iit.edu NR 10 TC 3 Z9 3 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD DEC 3 PY 2008 VL 47 IS 23 BP 9437 EP 9446 DI 10.1021/ie800209k PG 10 WC Engineering, Chemical SC Engineering GA 377VL UT WOS:000261279700053 ER PT J AU Woo, CH Thompson, BC Kim, BJ Toney, MF Frechet, JMJ AF Woo, Claire H. Thompson, Barry C. Kim, Bumjoon J. Toney, Michael F. Frechet, Jean M. J. TI The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-WEIGHT; SELF-ORGANIZATION; MELTING BEHAVIOR; CHARGE-TRANSPORT; POLYMER; MORPHOLOGY; BLENDS; EFFICIENCY; CRYSTALLIZATION; POLYTHIOPHENE AB A comparison of three samples of poly(3-hexylthiophene) having regioregularities of 86, 90, and 96% is used to elucidate the effect of regioregularity on polymer-fullerene-composite solar cell performance. It is observed that polymer samples with lower regioregularity are capable of generating fullerene composites that exhibit superior thermal stability. The enhanced thermal stability of the composites is attributed to a lower driving force for polymer crystallization in the less regioregular polymer samples, which is supported with two-dimensional grazing incidence X-ray scattering and differential scanning calorimetry measurements. Furthermore, it is demonstrated that all three polymer samples are capable of generating solar cells with equivalent peak efficiencies of similar to 4% in blends with [6,6]-phenyl-C(61)-butyric acid methyl ester. While it may be non-intuitive that polymers with lower regioregularity can exhibit higher efficiencies, it is observed that the charge-carrier mobility of the three polymers is on the same order of magnitude (10(-4) cm(2) V(-1) s(-1)) when measured from the space-charge-limited current, suggesting that highly regioregular and crystalline polythiophenes are not required in order to effectively transport charges in polymer solar cells. Overall, these results suggest a design principle for semicrystalline conjugated polymers in fullerene-composite solar cells in which crystallization-driven phase separation can be dramatically suppressed via the introduction of a controlled amount of disorder into the polymer backbone. C1 [Woo, Claire H.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Woo, Claire H.; Kim, Bumjoon J.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Thompson, Barry C.; Kim, Bumjoon J.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94205 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Kim, Bumjoon J./C-1714-2011; OI Frechet, Jean /0000-0001-6419-0163; Cloutet, Eric/0000-0002-5616-2979 FU Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC0205CH 1123 1] FX The authors acknowledge financial support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC0205CH 1123 1; portions of this work were performed at the Molecular Foundry under the same contract. C.H.W. thanks the Department of Defense for a National Defense Science and Engineering Graduate (NDSEG) Fellowship. B.C.T. thanks the American Chemical Society Petroleum Research Fund for an Alternative Energy Postdoctoral Fellowship. The authors also thank Alex C. Mayer and Michael D. McGehee of the Department of Materials Science and Engineering at Stanford University for assistance with scattering measurements. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 39 TC 294 Z9 299 U1 9 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 3 PY 2008 VL 130 IS 48 BP 16324 EP 16329 DI 10.1021/ja806493n PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 406UG UT WOS:000263319800046 PM 18998653 ER PT J AU Steen, EJ Chan, R Prasad, N Myers, S Petzold, CJ Redding, A Ouellet, M Keasling, JD AF Steen, Eric J. Chan, Rossana Prasad, Nilu Myers, Samuel Petzold, Christopher J. Redding, Alyssa Ouellet, Mario Keasling, Jay D. TI Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol SO MICROBIAL CELL FACTORIES LA English DT Article ID ESCHERICHIA-COLI; MEVALONATE PATHWAY AB Background: Increasing energy costs and environmental concerns have motivated engineering microbes for the production of "second generation" biofuels that have better properties than ethanol. Results and conclusion: Saccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB) did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement. C1 [Steen, Eric J.; Chan, Rossana; Prasad, Nilu; Myers, Samuel; Petzold, Christopher J.; Redding, Alyssa; Ouellet, Mario; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Steen, Eric J.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Chan, Rossana; Prasad, Nilu; Myers, Samuel; Petzold, Christopher J.; Redding, Alyssa; Ouellet, Mario; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, 5885 Hollis Ave, Emeryville, CA 94608 USA. EM esteen@berkeley.edu; rossana18@gmail.com; nilu_prasad12@yahoo.com; smyers84@gmail.com; CJPetzold@lbl.gov; ARedding@lbl.gov; MOuellet@lbl.gov; keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Tien Scholars Graduate Fellowship; U. S. Department of Energy; Office of Science; Office of Biological and Environmental Research [DE-AC02-05CH11231] FX EJS is funded by the Tien Scholars Graduate Fellowship. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported in part by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. NR 16 TC 233 Z9 253 U1 14 U2 88 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1475-2859 J9 MICROB CELL FACT JI Microb. Cell. Fact. PD DEC 3 PY 2008 VL 7 AR 36 DI 10.1186/1475-2859-7-36 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 393MU UT WOS:000262378200001 PM 19055772 ER PT J AU Kim, TH Wendelken, JF Li, AP Du, GH Li, WZ AF Kim, Tae-Hwan Wendelken, John F. Li, An-Ping Du, Gaohui Li, Wenzhi TI Probing electrical transport in individual carbon nanotubes and junctions SO NANOTECHNOLOGY LA English DT Article ID Y-JUNCTIONS; GROWTH AB The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of similar to 20 degrees to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs. C1 [Kim, Tae-Hwan; Wendelken, John F.; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Du, Gaohui; Li, Wenzhi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov; Wenzhi.Li@fiu.edu RI Kim, Tae-Hwan/A-5636-2010; Li, An-Ping/B-3191-2012; Li, Wenzhi/J-6797-2016 OI Kim, Tae-Hwan/0000-0001-5328-0913; Li, An-Ping/0000-0003-4400-7493; Li, Wenzhi/0000-0001-8442-2232 FU Scientific User Facilities Division; Office of Basic Energy Sciences; US Department of Energy; National Science Foundation [DMR-0548061] FX A portion of the research was performed at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Growth of the CNTs was performed at Florida International University. WZL acknowledges the support of the National Science Foundation under grant DMR-0548061. NR 24 TC 5 Z9 5 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD DEC 3 PY 2008 VL 19 IS 48 AR 485201 DI 10.1088/0957-4484/19/48/485201 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 371VH UT WOS:000260859400004 ER PT J AU Liu, HQ Spoerke, ED Bachand, M Koch, SJ Bunker, BC Bachand, GD AF Liu, Haiqing Spoerke, Erik D. Bachand, Marlene Koch, Steven J. Bunker, Bruce C. Bachand, George D. TI Biomolecular Motor-Powered Self-Assembly of Dissipative Nanocomposite Rings SO ADVANCED MATERIALS LA English DT Article ID KINESIN; MICROTUBULES; TRANSPORT; BREAKAGE; FORCE AB The fundamental mechanisms by which biomolecular motors drive the assembly and disassembly of the composite ring Structures are characterized in this study. This, system provides an enabling model of how the collective behavior of energy-dissipating and thermodynamic processes may be used to drive the dynamic assembly of nanostructured composites, and provides knowledge for the future development of adaptive, "smart," and reconfigurable materials. C1 [Liu, Haiqing; Bachand, Marlene; Koch, Steven J.; Bachand, George D.] Sandia Natl Labs, Biomol Interfaces & Syst Dept, Albuquerque, NM 87185 USA. [Spoerke, Erik D.; Bunker, Bruce C.] Sandia Natl Labs, Elect & Nanostruct Mat Dept, Albuquerque, NM 87185 USA. RP Bachand, GD (reprint author), Sandia Natl Labs, Biomol Interfaces & Syst Dept, POB 5800,MS-1413, Albuquerque, NM 87185 USA. EM gdbacha@sandia.gov OI Koch, Steven/0000-0001-9027-7502 FU Division of Materials Sciences and Engineering in the Department of Energy Office of Basic Energy Sciences and Sandia's Laboratory Directed Research and Development Office; Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Drs. Andy Boal, Peter Feibelman, and Gordon Osbourn for helpful discussion and comments on this manuscript. We thank Dr. Peng Li in the Transmission Electron Microscopy Laboratory at the University of New Mexico for technical assistance on STEM work, and Dr.). Howard for generously providing the Drosophila kinesin expression clone. This work was supported by the Division of Materials Sciences and Engineering in the Department of Energy Office of Basic Energy Sciences and Sandia's Laboratory Directed Research and Development Office. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Supporting Information is available online from Wiley InterScience or from the author. NR 25 TC 38 Z9 38 U1 2 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 2 PY 2008 VL 20 IS 23 BP 4476 EP 4481 DI 10.1002/adma.200801291 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 387FO UT WOS:000261937300022 ER PT J AU Germain, J Rolandi, M Backer, SA Frechet, JMJ AF Germain, Jonathan Rolandi, Marco Backer, Scott A. Frechet, Jean M. J. TI Sulfur as a Novel Nanopatterning Material: An Ultrathin Resist and a Chemically Addressable Template for Nanocrystal Self-Assembly SO ADVANCED MATERIALS LA English DT Article ID SCANNING PROBE LITHOGRAPHY; NANOLITHOGRAPHY; SILICON; MICROSCOPE; CHEMISTRY; OXIDATION; PATTERNS; KINETICS AB Nanoscale tip-induced polymerization of a sulfur thin film affords a simple negative tone resist that can be used as a mask for substrate etching in fluorinated solutions or as a chemical template for the directed self-assembly of gold nanocrystals. C1 [Germain, Jonathan; Rolandi, Marco; Backer, Scott A.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Rolandi, Marco; Frechet, Jean M. J.] Lawrence Orlando Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU NSF (SINAM); LIC Berkeley; INTEL for postdoctoral funding through the Division of Materials Sciences, LBNL; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX Financial support for this research by NSF (SINAM) is gratefully acknowledged. J.G. thanks the LIC Berkeley Fellowship Office for a graduate fellowship and M.R. thanks INTEL for postdoctoral funding through the Division of Materials Sciences, LBNL. The Secondary Ion Mass Spectroscopy work was performed by Dr. X. Chen in the Keck-II facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. We also thank D. Unruh and Dr. I. Suez for help with sample preparation and insightful discussions. Supporting Information is available online from Wiley InterScience or from the author. NR 21 TC 11 Z9 11 U1 0 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD DEC 2 PY 2008 VL 20 IS 23 BP 4526 EP 4529 DI 10.1002/adma.200802024 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 387FO UT WOS:000261937300032 ER PT J AU Wang, HC Yan, Z Yang, S Cai, JW Robinson, H Ke, HM AF Wang, Huanchen Yan, Zier Yang, Serena Cai, Jiwen Robinson, Howard Ke, Hengming TI Kinetic and Structural Studies of Phosphodiesterase-8A and Implication on the Inhibitor Selectivity SO BIOCHEMISTRY LA English DT Article ID CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES; CAMP-SPECIFIC PHOSPHODIESTERASE; CRYSTAL-STRUCTURES; SUBSTRATE-SPECIFICITY; THERAPEUTIC AGENTS; ALZHEIMERS-DISEASE; GENE ORGANIZATION; DRUG DEVELOPMENT; 8B GENE; EXPRESSION AB Cyclic nucleotide phosphodiesterase-8 (PDE8) is a family of cAMP-specific enzymes and plays Important roles in many biological processes, including T-cell activation, testosterone production, adrenocortical hyperplasia, and thyroid function. However, no PDE8 selective inhibitors are available for trial treatment of human diseases. Here we report kinetic properties of the highly active PDE8A1 catalytic domain prepared from refolding and its crystal structures in the unliganded and 3-isobutyl-1-methylxanthine (IBMX) bound forms at 1.9 and 2.1 angstrom resolutions, respectively. The PDE8A1 catalytic domain has a K(M) of 1.8 mu M, V(max) of 6.1 mu mol/min/mg, a k(cat) of 4.0 s(-1) for cAMP, and a K(M) of 1.6 mM, V(max) of 2.5 mu mol/nim/mg, a k(cat) of 1.6 s(-1) for cGMP, thus indicating that the substrate specificity of PDE8 is dominated by Km. The structure of the PDE8A1 catalytic domain has similar topology as those of other PDE families but contains two extra helices around Asn685-Thr710. Since this fragment is distant from the active site of the enzyme, its impact on the catalysis is unclear. The PDE8A1 catalytic domain is insensitive to the IBMX inhibition (IC(50) = 700 mu M). The unfavorable interaction of IBMX in the PDE8A1-IBMX structure suggests an important role of Tyr748 in the inhibitor binding. Indeed, the mutation of Tyr748 to phenylalanine increases the PDE8A1 sensitivity to several nonselective or family selective PDE inhibitors. Thus, the structural and mutagenesis studies provide not only insight into the enzymatic properties but also guidelines for design of PDE8 selective inhibitors. C1 [Wang, Huanchen; Yan, Zier; Yang, Serena; Ke, Hengming] Univ N Carolina, Dept Biochem & Biophys, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Yan, Zier; Cai, Jiwen; Ke, Hengming] Sun Yat Sen Univ, Struct Biol Lab, Sch Pharmaceut Sci, Guangzhou 510275, Guangdong, Peoples R China. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Ke, HM (reprint author), Univ N Carolina, Dept Biochem & Biophys, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. EM hke@med.unc.edu FU NIH [GM59791]; Science Foundation of Sun Yat-sen University; U.S. Department of Energy,; National Center for Research Resources; National Institutes of Health FX This work was supported in part by NIH GM59791 to H.K.. the 985 project of Science Foundation of Sun Yat-sen University (J.C.), the Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy, and the National Center for Research Resources of the National Institutes of Health (H. R.). NR 62 TC 35 Z9 36 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD DEC 2 PY 2008 VL 47 IS 48 BP 12760 EP 12768 DI 10.1021/bi801487x PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 376SC UT WOS:000261202300014 PM 18983167 ER PT J AU Tian, LW Dai, SF Wang, JF Huang, YC Ho, SC Zhou, Y Lucas, D Koshland, CP AF Tian, Linwei Dai, Shifeng Wang, Jianfang Huang, Yunchao Ho, Suzanne C. Zhou, Yiping Lucas, Donald Koshland, Catherine P. TI Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study SO BMC PUBLIC HEALTH LA English DT Article ID INDOOR AIR-POLLUTION; XUAN-WEI; COMBUSTION EMISSIONS; CHINA; RISK; PARTICLES; MORTALITY; EXPOSURE; SMOKING AB Background: The Pearl River Origin area, Qujing District of Yunnan Province, has one of the highest female lung cancer mortality rates in China. Smoking was excluded as a cause of the lung cancer excess because almost all women were non-smokers. Crystalline silica embedded in the soot emissions from coal combustion was found to be associated with the lung cancer risk in a geographical correlation study. Lung cancer rates tend to be higher in places where the Late Permian C1 coal is produced. Therefore, we have hypothesized the two processes: C1 coal combustion --> nanoquartz in ambient air --> lung cancer excess in non-smoking women. Methods/Design: We propose to conduct a retrospective cohort study to test the hypothesis above. We will search historical records and compile an inventory of the coal mines in operation during 1930-2009. To estimate the study subjects' retrospective exposure, we will reconstruct the historical exposure scenario by burning the coal samples, collected from operating or deserted coal mines by coal geologists, in a traditional firepit of an old house. Indoor air particulate samples will be collected for nanoquartz and polycyclic aromatic hydrocarbons (PAHs) analyses. Bulk quartz content will be quantified by X-ray diffraction analysis. Size distribution of quartz will be examined by electron microscopes and by centrifugation techniques. Lifetime cumulative exposure to nanoquartz will be estimated for each subject. Using the epidemiology data, we will examine whether the use of C1 coal and the cumulative exposure to nanoquartz are associated with an elevated risk of lung cancer. Discussion: The high incidence rate of lung cancer in Xuan Wei, one of the counties in the current study area, was once attributed to high indoor air concentrations of PAHs. The research results have been cited for qualitative and quantitative cancer risk assessment of PAHs by the World Health Organization and other agencies. If nanoquartz is found to be the main underlying cause of the lung cancer epidemic in the study area, cancer potency estimates for PAHs by the international agencies based on the lung cancer data in this study setting should then be updated. C1 [Tian, Linwei; Ho, Suzanne C.] Chinese Univ Hong Kong, Sch Publ Hlth, Hong Kong, Hong Kong, Peoples R China. [Dai, Shifeng] Chinese Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China. [Wang, Jianfang] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Huang, Yunchao] Kunming Med Univ, Affiliated Hosp 3, Yunnan Prov Tumor Hosp, Kunming 650106, Peoples R China. [Zhou, Yiping] Yunnan Inst Coal Geol Prospect, Kunming 650218, Peoples R China. [Lucas, Donald] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koshland, Catherine P.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Koshland, Catherine P.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Tian, LW (reprint author), Chinese Univ Hong Kong, Sch Publ Hlth, Hong Kong, Hong Kong, Peoples R China. EM linweit@cuhk.edu.hk; dsfcumtb@vip.163.com; jfwang@sun1.phy.cuhk.edu.hk; huangych2001@yahoo.com.cn; suzanneho@cuhk.edu.hk; zyp1937@vip.sina.com; d_lucas@lbl.gov; ckoshland@berkeley.edu RI Dai, Shifeng/K-1531-2014; Tian, Linwei/A-9736-2009; Wang, Jianfang/O-1810-2013 OI Dai, Shifeng/0000-0002-9770-1369; Tian, Linwei/0000-0002-4739-1534; FU Research Grants Council of Hong Kong; National Natural Science Foundation of China [N_CUHK454_08] FX This work described in this paper was supported by a grant from the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China (Project No. N_CUHK454_08). We thank the anonymous reviewers for their helpful suggestions on the study protocol. NR 21 TC 30 Z9 34 U1 3 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2458 J9 BMC PUBLIC HEALTH JI BMC Public Health PD DEC 2 PY 2008 VL 8 AR 398 DI 10.1186/1471-2458-8-398 PG 12 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 392MT UT WOS:000262307500002 PM 19055719 ER PT J AU Shreve, AP Howland, MC Sapuri-Butti, AR Allen, TW Parikh, AN AF Shreve, Andrew P. Howland, Michael C. Sapuri-Butti, Annapoorna R. Allen, Toby W. Parikh, Atul N. TI Evidence for Leaflet-Dependent Redistribution of Charged Molecules in Fluid Supported Phospholipid Bilayers SO LANGMUIR LA English DT Article ID CHOLERA-TOXIN; LIPID-BILAYERS; MEMBRANES; MICROSCOPY; SURFACE; GANGLIOSIDE; ASYMMETRY; BINDING AB The asymmetric distribution of charged molecules between the leaflets of solid-substrate-supported phospholipid bilayers is studied using imaging ellipsometry, fluorescence microscopy, and numerical solutions of the Poisson-Boltzmann equation. Experiments are facilitated by the use of patterned substrates that allow for side-by-side comparison of lipid monolayers and supported bilayers. On silica surfaces, negatively charged lipid components are shown to be enriched in the outer leaflet of a supported bilayer system at modest salt concentrations. The approaches developed provide a general means for determining asymmetries of charged components in supported lipid bilayers. C1 [Sapuri-Butti, Annapoorna R.; Parikh, Atul N.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Shreve, Andrew P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Allen, Toby W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Parikh, AN (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RI PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 FU DOE Office of Science, Basic Energy Sciences, through the Biomolecular Materials Program [DE-FG02-04ER4613]; NIH [T32-GM08799]; NSF [MCB-0546768] FX Work at LANL and UCD was supported by the DOE Office of Science, Basic Energy Sciences, through the Biomolecular Materials Program (grant DE-FG02-04ER4613 at UCD). M.C.H. and T.W.A. are supported by the NIH (T32-GM08799) and the NSF (MCB-0546768), respectively. NR 24 TC 28 Z9 28 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 2 PY 2008 VL 24 IS 23 BP 13250 EP 13253 DI 10.1021/la802909c PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 376XO UT WOS:000261216500006 PM 19007257 ER PT J AU Allen, CG Baker, DJ Albin, JM Oertli, HE Gillaspie, DT Olson, DC Furtak, TE Collins, RT AF Allen, C. G. Baker, D. J. Albin, J. M. Oertli, H. E. Gillaspie, D. T. Olson, D. C. Furtak, T. E. Collins, R. T. TI Surface Modification of ZnO Using Triethoxysilane-Based Molecules SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; RAY PHOTOELECTRON-SPECTROSCOPY; HYBRID PHOTOVOLTAIC DEVICES; LIGHT-EMITTING-DIODES; NORMAL-ALKYL CHAINS; H STRETCHING MODES; SOLAR-CELLS; ALKYLSILOXANE MONOLAYERS; CONJUGATED POLYMERS; ORGANIC MONOLAYERS AB Zinc oxide (ZnO) is an important material for hybrid inorganic-organic devices in which the characteristics of the interface can dominate both the structural and electronic properties of the system. These characteristics can be modified through chemical functionalization of the ZnO surface. One of the possible strategies involves covalent bonding of the modifier using silane chemistry. Whereas a significant body of work has been published regarding silane attachments to glass and SiO2, there is less information about the efficacy of this method for controlling the surface of metal oxides. Here we report our investigation of molecular layers attached to polycrystalline ZnO through silane bonding, controlled by an amine catalyst. The catalyst enables us to use triethoxysilane precursors and thereby avoid undesirable multilayer formation. The polycrystalline surface is a practical material, grown by sol-gel processing, that is under active exploration for device applications. Our study included terminations with alkyl and phenyl groups. We used water contact angles, infrared spectroscopy, and X-ray photoemission spectroscopy to evaluate the modified surfaces. Alkyltriethoxysilane functionalization of ZnO produced molecular layers with submonolayer coverage and evidence of disorder. Nevertheless, a very stable hydrophobic surface with contact angles approaching 106 degrees resulted. Phenyltriethoxysilane was found to deposit in a similar manner. The resulting surface, however, exhibited significantly different wetting as a result of the nature of the end group. Molecular layers of this type, with a variety of surface terminations that use the same molecular attachment scheme, should enable interface engineering that optimizes the chemical selectivity of ZnO biosensors or the charge-transfer properties of ZnO-polymer interfaces found in oxide-organic electronics. C1 [Allen, C. G.; Baker, D. J.; Albin, J. M.; Oertli, H. E.; Furtak, T. E.; Collins, R. T.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Gillaspie, D. T.; Olson, D. C.] Natl Renewable Energy Lab, Golden, CO USA. RP Collins, RT (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM rtcollin@mines.edu RI Gillaspie, Dane/E-2731-2010; Collins, Reuben/O-2545-2014 OI Collins, Reuben/0000-0001-7910-3819 FU National Science Foundation [DMR-0606054] FX We acknowledge valuable discussions with and assistance from George Radziszewski, Joseph Dahdah, Tracy Berman, Matt Bergren, Emily Prezekwas, Christian Weigand, David Ginley, and Don Williamson. This report is based on work supported by the National Science Foundation under grant no. DMR-0606054. NR 63 TC 59 Z9 59 U1 6 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 2 PY 2008 VL 24 IS 23 BP 13393 EP 13398 DI 10.1021/la802621n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 376XO UT WOS:000261216500026 PM 18973351 ER PT J AU Yang, L AF Yang, Lu TI Surface Polarity of beta-HMX Crystal and the Related Adhesive Forces with Estane Binder SO LANGMUIR LA English DT Article ID DELTA PHASE-TRANSITION; ENERGETIC NITRAMINE OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; MOLECULAR-DYNAMICS SIMULATIONS; POLYMER BONDED EXPLOSIVES; CONTACT-ANGLE; MECHANICAL-PROPERTIES; INTERFACE INTERACTIONS; WATER; DEFORMATION; FAILURE AB Here I present the results on the study of surface properties of beta-HMX crystal utilizing molecular dynamics simulations. The surface polarity of three principal crystal surfaces, (011),(010),and(110), is investigated by measuring the water contact angles. The calculated contact angles are in excellent agreement with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain (with and without surrounding nitroplasticizer molecules) from the three principal crystal surfaces are also calculated using the umbrella sampling method. I find that the force for Estane detachment increases with the increasing HMX surface polarity. In addition, my results show that the nitroplasticizer also plays an important role in the adhesion between Estane and HMX surfaces. C1 Los Alamos Natl Lab, Theoret Chem & Mol Phys T Grp 12, Los Alamos, NM 87545 USA. RP Yang, L (reprint author), Los Alamos Natl Lab, Theoret Chem & Mol Phys T Grp 12, Los Alamos, NM 87545 USA. EM yangl@lanl.gov RI Yang, Lu/A-5446-2010 FU U.S. Department of Energy [DE-AC52-06NA25396, LA-UR-08-04754] FX I wish to thank David E. Hanson, Lawrence R. Pratt, and Neil J. Henson for helpful discussions. I also want to thank Alan Grossfield for the Weighted Histogram Analysis code. This work was performed under the auspices of Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396, LA-UR-08-04754. NR 41 TC 5 Z9 5 U1 3 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 2 PY 2008 VL 24 IS 23 BP 13477 EP 13482 DI 10.1021/la802494b PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 376XO UT WOS:000261216500038 PM 18991413 ER PT J AU Pol, VG Calderon-Moreno, JA Thiyagarajan, P AF Pol, Vilas G. Calderon-Moreno, Jose A. Thiyagarajan, P. TI Facile Synthesis of Novel Photoluminescent ZnO Micro- and Nanopencils SO LANGMUIR LA English DT Article ID OPTICAL-PROPERTIES; THERMAL-DECOMPOSITION; ELEVATED-TEMPERATURE; AUTOGENIC PRESSURE; SIZE CONTROL; NANORODS; NANOWIRES; NANOSTRUCTURES; NANOPARTICLES; GROWTH AB A single-step solvent-, catalyst-, and template-free synthesis process to prepare photoluminescent pencils of ZnO either in micro- or in nanosize diameters from a single precursor is demonstrated. The thermolysis of Zn's acetate dihydrate (ZAD) precursor in a closed stainless steel reactor at 700 degrees C under autogenic pressure (6.5 MPa), yielded carbon sphere-decorated ZnO micropencils (ZnO-M's). The ZnO-M's have novel room-temperature photoluminescence (PL) with well-defined emission peaks at the green, yellow, orange, and red regions of the visible spectra while suppressing the blue region. On the contrary, the thermolysis of ZAD in a closed stainless steel reactor at 700 degrees C with released pressure yielded uniformly carbon-coated ZnO nanopencils (ZN's). The coated carbon in ZN's quenches the complete UV-vis PL; however, after annealing ZN's at 600 degrees C/2 h in air, the UV PL is dominant, and the visible PL is suppressed. The carbon coating (partly or completely) on the one-dimensional (1D) ZnO surfaces plays an important role to modify PL properties. The insight into the reaction mechanism was gained through in situ mass spectrometry measurements. The as-prepared ZnO-M's and ZN's have been systematically characterized to determine their morphology, structure, and composition. C1 [Pol, Vilas G.; Thiyagarajan, P.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Calderon-Moreno, Jose A.] Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania. [Calderon-Moreno, Jose A.] Univ Politecn Cataluna, EPSC, Dept Appl Phys, Barcelona 08860, Spain. RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vilaspol@gmail.com RI Calderon Moreno, Jose/B-2867-2008 OI Calderon Moreno, Jose/0000-0001-8376-9082 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work benefited from the use of the facilities at IPNS, CNM and EMC at ANL supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 40 TC 40 Z9 42 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 2 PY 2008 VL 24 IS 23 BP 13640 EP 13645 DI 10.1021/la803008g PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 376XO UT WOS:000261216500060 PM 18986186 ER PT J AU Brown, JN Kohler, JJ Coberley, CR Sleasman, JW Goodenow, MM AF Brown, Joseph N. Kohler, James J. Coberley, Carter R. Sleasman, John W. Goodenow, Maureen M. TI HIV-1 Activates Macrophages Independent of Toll-Like Receptors SO PLOS ONE LA English DT Article AB Background: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1). Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. Methodology/Principal Findings: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK), and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR) pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1 beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. Conclusions/Significance: HIV-1 induced a primed, proinflammatory state, M1(HIV), which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic approaches. C1 [Brown, Joseph N.; Kohler, James J.; Coberley, Carter R.; Goodenow, Maureen M.] Univ Florida, Coll Med, Lab Med, & Pediat, Dept Pathol, Immunol, Div Rheumatol, Immunol & Inf, Gainesville, FL 32611 USA. [Sleasman, John W.] Univ S Florida, Coll Med, All Childrens Hosp, Dept Pediat, Div Allergy, Immunol & Rheumatol, St Petersburg, FL USA. RP Brown, JN (reprint author), Pacific NW Natl Lab, Richland, WA USA. EM goodenow@pathology.ufl.edu FU Laura McClamma Fellowship; Center for Research in Pediatric Immune Deficiency; Stephany W. Holloway University Chair for AIDS Research; [HD032259]; [AI047723]; [AI065265]; [AR07603]; [CA09126] FX Research was supported in part by PHS R01 awards HD032259, AI047723, and AI065265; T32 awards AR07603 and CA09126; the Laura McClamma Fellowship; Center for Research in Pediatric Immune Deficiency; Stephany W. Holloway University Chair for AIDS Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 78 TC 50 Z9 52 U1 1 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 2 PY 2008 VL 3 IS 12 AR e3664 DI 10.1371/journal.pone.0003664 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 436YM UT WOS:000265452000001 PM 19048100 ER PT J AU Sela, DA Chapman, J Adeuya, A Kim, JH Chen, F Whitehead, TR Lapidus, A Rokhsar, DS Lebrilla, CB German, JB Price, NP Richardson, PM Mills, DA AF Sela, D. A. Chapman, J. Adeuya, A. Kim, J. H. Chen, F. Whitehead, T. R. Lapidus, A. Rokhsar, D. S. Lebrilla, C. B. German, J. B. Price, N. P. Richardson, P. M. Mills, D. A. TI The genome sequence of Bifidobacterium longum subsp infantis reveals adaptations for milk utilization within the infant microbiome SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbohydrate metabolism; co-evolution; genomics; human milk oligosaccharides ID GUT; OLIGOSACCHARIDES; LACTOBACILLUS; IDENTIFICATION; COMMUNITIES; PROKARYOTES; MICROFLORA; BACTERIAL; NITROGEN; FORMULAS AB Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype. C1 [Sela, D. A.; Kim, J. H.; German, J. B.; Mills, D. A.] Univ Calif Davis, Robert Mondavi Inst Wine & Food Sci, Davis, CA 95616 USA. [Sela, D. A.] Univ Calif Davis, Microbiol Grad Grp, Davis, CA 95616 USA. [Kim, J. H.; Mills, D. A.] Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. [Lebrilla, C. B.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [German, J. B.] Univ Calif Davis, Dept Food Sci & Technol, Davis, CA 95616 USA. [Chapman, J.; Chen, F.; Lapidus, A.; Rokhsar, D. S.; Richardson, P. M.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Whitehead, T. R.] USDA ARS, Fermentat Biotechnol Res Unit, Natl Ctr Agr Utilizat Res, Peoria, IL 61604 USA. [Adeuya, A.; Price, N. P.] USDA ARS, Bioprod & Biocatalysts Res Unit, Natl Ctr Agr Utilizat Res, Peoria, IL 61604 USA. RP Mills, DA (reprint author), Univ Calif Davis, Robert Mondavi Inst Wine & Food Sci, Davis, CA 95616 USA. EM damills@ucdavis.edu RI Whitehead, Terence/B-5235-2009; Mills, David/G-2282-2011; Lapidus, Alla/I-4348-2013 OI Mills, David/0000-0003-1913-9865; Lapidus, Alla/0000-0003-0427-8731 FU National Institutes of Health [NIGMS T32-GM08799]; University of California Discovery Grant Program; California Dairy Research Foundation; USDA NRI-CSREES [2008-35200-18776] FX The authors thank C. Bevins and J. Eisen for their critical review of the manuscript, K. Ahrens for technical assistance, R. Ward for providing HMO, D. O'Sullivan for his gift of DJO10A, and B. Phinney for proteomics assistance. The project described was supported by National Institutes of Health NIGMS T32-GM08799 (DAS), University of California Discovery Grant Program and California Dairy Research Foundation (DAM) and by USDA NRI-CSREES Award 2008-35200-18776 (DAS and DAM). NR 47 TC 289 Z9 485 U1 7 U2 102 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 2 PY 2008 VL 105 IS 48 BP 18964 EP 18969 DI 10.1073/pnas.0809584105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 380TW UT WOS:000261489100064 PM 19033196 ER PT J AU Tao, AR Huang, JX Yang, PD AF Tao, Andrea R. Huang, Jiaxing Yang, Peidong TI Langmuir-Blodgettry of Nanocrystals and Nanowires SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID FINGERING INSTABILITY; CDSE NANOCRYSTALLITES; PATTERN-FORMATION; CONTACT LINE; FILMS; SURFACE; MONOLAYERS; ARRAYS; NANOPARTICLES; SUPERLATTICES AB Although nanocrystals and nanowires have proliferated new scientific avenues in the study of their physics and chemistries, the bottom-up assembly of these small-scale building blocks remains a formidable challenge for device fabrication and processing. An attractive nanoscale assembly strategy should be cheap, fast, defect tolerant, compatible with a variety of materials, and parallel in nature, ideally utilizing the self-assembly to generate the core of a device, such as a memory chip or optical display. Langmuir-Blodgett (LB) assembly is a good candidate for arranging vast numbers of nanostructures on solid surfaces. In the LB technique, uniaxial compression of a nanocrystal or nanowire monolayer floating on an aqueous subphase causes the nanostructures to assemble and pack over a large area. The ordered monolayer can then be transferred to a solid surface en masse and with fidelity. In this Account, we present the Langmuir-Blodgett technique as a low-cost method for the massively parallel, controlled organization of nanostructures. The isothermal compression of fluid-supported nanoparticles or nanowires is unique in its ability to achieve control over nanoscale assembly by tuning a macroscopic property such as surface pressure. Under optimized conditions (e.g., surface pressure, substrate hydrophobicity, and pulling speed), it allows continuous variation of particle density, spacing, and even arrangement. For practical application and device fabrication, LB compression is ideal for forming highly dense assemblies of nanowires and nanocrystals over unprecedented surface areas. In addition, the dewetting properties of LB monolayers can be used to further achieve patterning within the range of micrometers to tens of nanometers without a predefined template. The LB method should allow for easy integration of nanomaterials into current manufacturing schemes, in addition to fast device prototyping and multiplexing capability. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tao, Andrea R.] Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Santa Barbara, CA 93106 USA. [Huang, Jiaxing] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Huang, Jiaxing/B-7521-2009; Huang, Jiaxing/A-9417-2012 FU Office of Basic Science; Department of Energy FX P. Y. thanks F Kim, S. Conner, H. Lee, H. Song, P. Sinsermsuksakul, and several other members of his group that greatly contributed to the development of this nanostructure assembly program. This work was supported by the Office of Basic Science, Department of Energy. NR 58 TC 257 Z9 259 U1 32 U2 226 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD DEC PY 2008 VL 41 IS 12 BP 1662 EP 1673 DI 10.1021/ar8000525 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 384TR UT WOS:000261767600011 PM 18683954 ER PT J AU Mcguire, JA Joo, J Pietryga, JM Schaller, RD Klimov, VI AF Mcguire, John A. Joo, Jin Pietryga, Jeffrey M. Schaller, Richard D. Klimov, Victor I. TI New Aspects of Carrier Multiplication in Semiconductor Nanocrystals SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID MULTIPLE EXCITON GENERATION; PBSE QUANTUM DOTS; SILICON NANOCRYSTALS; IONIZATION; ABSORPTION; EFFICIENCY; INTERBAND AB One consequence of strong spatial confinement of electronic wave functions in semiconductor nanocrystals (NCs) is a significant enhancement in carrier-carrier Coulomb interactions. This effect leads to a number of novel physical phenomena including ultrafast decay of multiple electron-hole pairs (multiexcitons) by Auger recombination and high-efficiency generation of mutiexcitons by single photons via carrier multiplication (CM). Significant recent interest in multiexciton phenomena in NCs has been stimulated by studies of NC lasing, as well as potential applications of CM in solar-energy conversion. The focus of this Account is on CM. In this process, the kinetic energy of a "hot" electron (or a "hot" hole) does not dissipate as heat but is, instead, transferred via the Coulomb interaction to the valence-band electron, exciting it across the energy gap. Because of restrictions imposed by energy and translational-momentum conservation, as well as rapid energy loss due to phonon emission, CM is inefficient in bulk semiconductors, particularly at energies relevant to solar energy conversion. On the other hand, the CM efficiency can potentially be enhanced in zero-dimensional NCs because of factors such as a wide separation between discrete electronic states, which inhibits phonon emission ("phonon bottleneck"), enhanced Coulomb interactions, and relaxation in translational-momentum conservation. Here, we investigate CM in PbSe NCs by applying time-resolved photoluminescence and transient absorption. Both techniques show clear signatures of CM with efficiencies that are in good agreement with each other. NCs of the same energy gap show moderate batch-to-batch variations (within similar to 30%) in apparent multiexciton yields and larger variations (more than a factor of 3) due to differences in sample conditions (stirred vs; static solutions). These results indicate that NC surface properties may affect the CM process. They also point toward potential interference from extraneous effects such as NC photoionization that can distort the results of CM studies. CM yields measured under conditions when extraneous effects are suppressed via intense sample stirring and the use of extremely low pump levels (0.02-0.03 photons absorbed per NC per pulse) reveal that both the electron-hole creation energy and the CM threshold are reduced compared with those in bulk solids. These results indicate a confinement-induced enhancement in the CM process in NC materials. Further optimization of CM performance should be possible by utilizing more complex (for example, shaped-controlled or heterostructured) NCs that allow for facile manipulation of carrier-carrier interactions, as well as single and multiexciton energies and dynamics. C1 [Mcguire, John A.; Joo, Jin; Pietryga, Jeffrey M.; Schaller, Richard D.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI McGuire, John/C-3380-2015; OI McGuire, John/0000-0002-0682-0953; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences, and Geosciences Division; Office of Basic Energy Sciences; Office of Science; U.S. Department of Energy (DOE); Los Alamos LDRD FX This work was supported by the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE), and Los Alamos LDRD funds. V.I.K. acknowledges partial support by the DOE Center for Integrated Nanotechnologies (CINT) jointly operated by Los Alamos and Sandia National Laboratories. TA measurements were conducted at CINT as part of its user program. NR 47 TC 280 Z9 282 U1 21 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD DEC PY 2008 VL 41 IS 12 SI SI BP 1810 EP 1819 DI 10.1021/ar800112v PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 384TR UT WOS:000261767600025 PM 19006342 ER PT J AU Daniels, J Silva, CT Shepherd, J Cohen, E AF Daniels, Joel Silva, Claudio T. Shepherd, Jason Cohen, Elaine TI Quadrilateral Mesh Simplification SO ACM TRANSACTIONS ON GRAPHICS LA English DT Article; Proceedings Paper CT ACM SIGGRAPH Conference 2008 CY AUG 11-15, 2008 CL Singapore, SINGAPORE SP ACM SIGGRAPH AB We introduce a simplification algorithm for meshes composed of quadrilateral elements. It is reminiscent of edge-collapse based methods for triangle meshes, but takes a novel approach to the challenging problem of maintaining the quadrilateral connectivity during level-of-detail creation. The method consists of a set of unit operations applied to the dual of the mesh, each designed to improve mesh structure and maintain topological genus. Geometric shape is maintained by an extension of a quadric error metric to quad meshes. The technique is straightforward to implement and efficient enough to be applied to real-world models. Our technique can handle models with sharp features, and can be used to re-mesh general polygonal, i.e. tri- and quad-dominant, meshes into quad-only meshes. C1 [Daniels, Joel; Silva, Claudio T.; Cohen, Elaine] Univ Utah, Salt Lake City, UT 84112 USA. [Shepherd, Jason] Sandia Natl Labs, Livermore, CA 94550 USA. RP Daniels, J (reprint author), Univ Utah, Salt Lake City, UT 84112 USA. NR 39 TC 11 Z9 12 U1 1 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0730-0301 EI 1557-7368 J9 ACM T GRAPHIC JI ACM Trans. Graph. PD DEC PY 2008 VL 27 IS 5 AR 148 DI 10.1145/1409060.1409101 PG 9 WC Computer Science, Software Engineering SC Computer Science GA 458BG UT WOS:000266986100042 ER PT J AU Nutaro, J AF Nutaro, James TI On Constructing Optimistic Simulation Algorithms for the Discrete Event System Specification SO ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION LA English DT Article DE DEVS; parallel simulation; Time Warp; discrete-event simulation ID CELL-DEVS AB This article describes a Time Warp simulation algorithm for discrete event models that are described in terms of the Discrete Event System Specification (DEVS). The article shows how the total state transition and total output function of a DEVS atomic model can be transformed into an event processing procedure for a logical process. A specific Time Warp algorithm is constructed around this logical process, and it is shown that the algorithm correctly simulates a DEVS coupled model that consists entirely of interacting atomic models. The simulation algorithm is presented abstractly; it is intended to provide a basis for implementing efficient and scalable parallel algorithms that correctly simulate DEVS models. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Nutaro, J (reprint author), Oak Ridge Natl Lab, POB 2008,MS6085, Oak Ridge, TN 37831 USA. EM nutarojj@ornl.gov OI Nutaro, James/0000-0001-7360-2836 NR 26 TC 2 Z9 3 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1049-3301 EI 1558-1195 J9 ACM T MODEL COMPUT S JI ACM Trans. Model. Comput. Simul. PD DEC PY 2008 VL 19 IS 1 AR 1 DI 10.1145/1456645.1456646 PG 21 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA 395BO UT WOS:000262497400001 ER PT J AU Romo-Herrera, JM Terrones, M Terrones, H Meunier, V AF Romo-Herrera, Jose M. Terrones, Mauricio Terrones, Humberto Meunier, Vincent TI Guiding Electrical Current in Nanotube Circuits Using Structural Defects: A Step Forward in Nanoelectronics SO ACS NANO LA English DT Article DE carbon nanotube; nanolectronics; defect; electronic properties; quantum transport ID WALLED CARBON NANOTUBES; INTEGRATED NANOSYSTEMS; ELECTRONIC-STRUCTURE; LOGIC GATES; QUANTUM-DOT; CONDUCTANCE; NETWORKS; NANOSTRUCTURES; SUPERLATTICES; CRYSTALS AB Electrical current could be efficiently guided in 2D nanotube networks by introducing specific topological defects within the periodic framework. Using semiempirical transport calculations coupled with Landauer-Buttiker formalism of quantum transport in multiterminal nanoscale systems, we provide a detailed analysis of the processes governing the atomic-scale design of nanotube circuits. We found that when defects are introduced as patches in specific sites, they act as bouncing centers that reinject electrons along specific paths, via a wave reflection process. This type of defects can be incorporated while preserving the 3-fold connectivity of each carbon atom embedded within the graphitic lattice. Our findings open up a new way to explore bottom-up design, at the nanometer scale, of complex nanotube circuits which could be extended to 3D nanosystems and applied in the fabrication of nanoelectronic devices. C1 [Meunier, Vincent] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Romo-Herrera, Jose M.; Terrones, Mauricio; Terrones, Humberto] IPICYT, Adv Mat Dept, San Luis Potosi 78216, Mexico. [Romo-Herrera, Jose M.; Terrones, Mauricio; Terrones, Humberto] IPICYT, Natl Lab Nanosci & Nanotechnol Res LINAN, San Luis Potosi 78216, Mexico. RP Meunier, V (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM meunierv@ornl.gov RI Meunier, Vincent/F-9391-2010; Terrones, Mauricio/B-3829-2014 OI Meunier, Vincent/0000-0002-7013-179X; FU Oak Ridge National Laboratory; U.S. Department of Energy [DEAC05-00OR22725]; CONACYT-Mexico [56787, 45762, 45772, 41464, 42428, 2004-01-013/SALUD-CONACYT]; Fondo Mixto de San Luis Potosi [63001 S-3908, 63072 S-3909]; IPICyT FX A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. V.M. also acknowledges the Division of Materials Science, U.S. Department of Energy under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC at Oak Ridge National Laboratory. This work was supported by CONACYT-Mexico grants 56787 (Laboratory for Nanoscience and Nanotechnology Research-LINAN), 45762 (H.T.), 45772 (M.T,), 41464-Inter American Collaboration (M.T.) 42428-Inter American Collaboration (H.T.), 2004-01-013/SALUD-CONACYT (M.T.), Fondo Mixto de San Luis Potosi 63001 S-3908 (M.T.), Fondo Mixto de San Luis Potosi 63072 S-3909 (H.T.), and Ph.D. Scholarhsip (J.M.R.H.). We also acknowledge Special Scholarship by IPICyT scholarships grant (J.M.R.H.). We are very thankful to Daniel Ramirez and Grisel Ramirez for technical support. NR 46 TC 29 Z9 29 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2008 VL 2 IS 12 BP 2585 EP 2591 DI 10.1021/nn800612d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 388MJ UT WOS:000262023600025 PM 19206295 ER PT J AU Soltis, SM Cohen, AE Deacon, A Eriksson, T Gonzalez, A McPhillips, S Chui, H Dunten, P Hollenbeck, M Mathews, I Miller, M Moorhead, P Phizackerley, RP Smith, C Song, J van dem Bedem, H Ellis, P Kuhn, P McPhillips, T Sauter, N Sharp, K Tsyba, I Wolf, G AF Soltis, S. Michael Cohen, Aina E. Deacon, Ashley Eriksson, Thomas Gonzalez, Ana McPhillips, Scott Chui, Hsui Dunten, Pete Hollenbeck, Michael Mathews, Irimpan Miller, Mitch Moorhead, Penjit Phizackerley, R. Paul Smith, Clyde Song, Jinhu van dem Bedem, Henry Ellis, Paul Kuhn, Peter McPhillips, Timothy Sauter, Nicholas Sharp, Kenneth Tsyba, Irina Wolf, Guenter TI New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID RNA-POLYMERASE-II; SYNCHROTRON-RADIATION SOURCE; STRUCTURAL BASIS; PROTEIN CRYSTALLOGRAPHY; TRANSCRIPTION; SYSTEM; BEAMLINE; RESOLUTION; COCRYSTAL; ICE AB Complete automation of the macromolecular crystallography experiment has been achieved at SSRL through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface. These highly reliable systems have enabled crystallography experiments to be carried out from the researchers' home institutions and other remote locations while retaining complete control over even the most challenging systems. A breakthrough component of the system, the Stanford Auto-Mounter (SAM), has enabled the efficient mounting of cryocooled samples without human intervention. Taking advantage of this automation, researchers have successfully screened more than 200 000 samples to select the crystals with the best diffraction quality for data collection as well as to determine optimal crystallization and cryocooling conditions. These systems, which have been deployed on all SSRL macromolecular crystallography beamlines and several beamlines worldwide, are used by more than 80 research groups in remote locations, establishing a new paradigm for macromolecular crystallography experimentation. C1 [Soltis, S. Michael; Cohen, Aina E.; Deacon, Ashley; Eriksson, Thomas; Gonzalez, Ana; McPhillips, Scott; Chui, Hsui; Dunten, Pete; Hollenbeck, Michael; Mathews, Irimpan; Miller, Mitch; Moorhead, Penjit; Phizackerley, R. Paul; Smith, Clyde; Song, Jinhu; van dem Bedem, Henry; Ellis, Paul; Kuhn, Peter; McPhillips, Timothy; Sauter, Nicholas; Sharp, Kenneth; Tsyba, Irina; Wolf, Guenter] SLAC, SSRL, Menlo Pk, CA 95124 USA. RP Soltis, SM (reprint author), SLAC, SSRL, 2575 Sand Hill Rd,MS 99, Menlo Pk, CA 95124 USA. EM soltis@slac.stanford.edu RI Sauter, Nicholas/K-3430-2012 FU Department of Energy; Office of Biological and Environmental Research; National Institutes of Medical Sciences; Array BioPharma; Chiron; Exelixis; Genencor; Genentech; HWI; Plexxikon; Roche; The Scripps Research Institute; Stanford University; NIGMS/PSI [U54 GM074898]; National Center for Research Resources (NCRR) [5 P41 RR001209]; National Institutes of Health (NIH) FX Special appreciation goes to the entire SSRL Macromolecular Crystallography Group for their contributions and committed support of the crystallography facilities, to Dr Dave Bushnell and the Professor Roger Kornberg group (Stanford University) for their critical feedback during the robot-development phase, and Dr Eddie Snell (HWI) and Dr Peter Turner (University of Sydney) for their participation in the remote-access workshops. This research was carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research and by the National Institutes of Medical Sciences. These developments were also partially funded by the following Collaborative Research Teams: Array BioPharma, Chiron, Exelixis, Genencor, Genentech, HWI, Plexxikon, Roche, The Scripps Research Institute and Stanford University. The JCSG program is funded by NIGMS/PSI, U54 GM074898. The projects described were partially supported by Grant Number 5 P41 RR001209 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. NR 35 TC 80 Z9 82 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2008 VL 64 BP 1210 EP 1221 DI 10.1107/S0907444908030564 PN 12 PG 12 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 373VL UT WOS:000261001500003 PM 19018097 ER PT J AU Snell, EH Nagel, RM Wojtaszcyk, A O'Neill, H Wolfley, JL Luft, JR AF Snell, Edward H. Nagel, Ray M. Wojtaszcyk, Ann O'Neill, Hugh Wolfley, Jennifer L. Luft, Joseph R. TI The application and use of chemical space mapping to interpret crystallization screening results SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID BIOLOGICAL MACROMOLECULES; VISUAL ANALYSIS; TRAINING SET AB Macromolecular crystallization screening is an empirical process. It often begins by setting up experiments with a number of chemically diverse cocktails designed to sample chemical space known to promote crystallization. Where a potential crystal is seen a refined screen is set up, optimizing around that condition. By using an incomplete factorial sampling of chemical space to formulate the cocktails and presenting the results graphically, it is possible to readily identify trends relevant to crystallization, coarsely sample the phase diagram and help guide the optimization process. In this paper, chemical space mapping is applied to both single macromolecules and to a diverse set of macromolecules in order to illustrate how visual information is more readily understood and assimilated than the same information presented textually. C1 [Snell, Edward H.; Nagel, Ray M.; Wojtaszcyk, Ann; Wolfley, Jennifer L.; Luft, Joseph R.] Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA. [Snell, Edward H.; Luft, Joseph R.] SUNY Buffalo, Dept Biol Struct, Buffalo, NY 14203 USA. [O'Neill, Hugh] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Snell, EH (reprint author), Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA. EM esnell@hwi.buffalo.edu OI O'Neill, Hugh/0000-0003-2966-5527 FU NIGMS NIH HHS [U54 GM074899] NR 10 TC 15 Z9 16 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2008 VL 64 BP 1240 EP 1249 DI 10.1107/S0907444908032411 PN 12 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 373VL UT WOS:000261001500006 PM 19018100 ER PT J AU Rodriguez, MA Nichol, JL Zifer, T Vance, AL Wong, BM Leonard, F AF Rodriguez, Mark A. Nichol, Jessica L. Zifer, Thomas Vance, Andrew L. Wong, Bryan M. Leonard, Francois TI (E)-4-[(4-Nitrophenyl)diazenyl]phenyl anthracene-9-carboxylate SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article AB In the title compound, C27H17N3O4, the azo group displays a trans conformation and the dihedral angles between the central benzene ring and the pendant anthracene and nitrobenzene rings are 82.94 (7) and 7.30 (9)degrees, respectively. In the crystal structure, weak C-H center dot center dot center dot O hydrogen bonds, likely associated with a dipole moment present on the molecule, help to consolidate the packing. C1 [Rodriguez, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Nichol, Jessica L.] Indiana Univ Penn, Dept Chem, Indiana, PA 15705 USA. [Zifer, Thomas; Vance, Andrew L.; Wong, Bryan M.] Sandia Natl Labs, MS 9403, Livermore, CA 94551 USA. [Leonard, Francois] Sandia Natl Labs, MS 9161, Livermore, CA 94551 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM marodri@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 NR 6 TC 3 Z9 3 U1 0 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2056-9890 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD DEC PY 2008 VL 64 BP O2258 EP U1593 DI 10.1107/S1600536808034958 PN 12 PG 11 WC Crystallography SC Crystallography GA 378DU UT WOS:000261302200135 PM 21581239 ER PT J AU Roy, SB Chaddah, P Pecharsky, VK Gschneidner, KA AF Roy, S. B. Chaddah, P. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Overview No. 145 Metamagnetic transitions, phase coexistence and metastability in functional magnetic materials SO ACTA MATERIALIA LA English DT Article DE Magnetism; Phase coexistence; Phase transformations; Metamagnetism; Magnetostructural transformations ID DOPED MANGANITES; 1ST-ORDER TRANSITION; GLASS-TRANSITION; CHARGE ORDER; RARE-EARTH; SEPARATION; FERROMAGNETISM; DISORDER; STATE; FIELD AB Magnetic field-induced transitions (metamagnetic transitions) play an important role in defining functionality of various classes of magnetic materials. Rare earth manganites showing colossal magnetoresistance and Gd(5)(Ge(1-x)Si(x))(4) alloys showing a giant magnetocaloric effect are typical examples that are or interest to the solid-state physics, chemistry and materials science communities. The key features of the metamagnetic transitions occurring in these systems are phase coexistence and metastability. This generality is highlighted by comparing experimental results characterizing three different classes of magnetic materials. A generalized framework of disorder-influenced first-order phase transition is introduced to understand the experimental data, which have considerable bearing oil the functionality of these model materials. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Chaddah, P.] UGC DAE Consortium Sci Res, Indore 452001, Madhya Pradesh, India. [Roy, S. B.; Chaddah, P.] Raja Ramanna Ctr Adv Technol, Magnet & Supercondcuting Mat Sect, Indore 452013, India. RP Gschneidner, KA (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM cagey@ameslab.gov FU Office of Science; US Department of Energy [DE-AC02-07CH11358]; Iowa State University of Science and Technology FX The authors would like to thank numerous colleagues, discussions with whom have helped to reline ideas and views expressed in this article. Work at the Ames Laboratory is supported by the Office of Science, Office of Basic Energy Siences of the US Department of Energy under contract No. DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 80 TC 54 Z9 55 U1 5 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2008 VL 56 IS 20 BP 5895 EP 5906 DI 10.1016/j.actamat.2008.08.040 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 381NJ UT WOS:000261542900001 ER PT J AU Ren, F Case, ED Sootsman, JR Kanatzidis, MG Kong, HJ Uher, C Lara-Curzio, E Trejo, RM AF Ren, Fei Case, Eldon D. Sootsman, Joseph R. Kanatzidis, Mercouri G. Kong, Huijun Uher, Ctirad Lara-Curzio, Edgar Trejo, Rosa M. TI The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy SO ACTA MATERIALIA LA English DT Article DE Semiconductor compounds; Dynamic mechanical analysis; Elastic behavior; Temperature-dependent ID NON-PARABOLIC SEMICONDUCTORS; ELECTRONIC CONTRIBUTION; THERMOELECTRIC-MATERIALS; GRADED INTERFACES; POWER-GENERATION; MAGNETIC QUANTIZATION; LEAD-TELLURIDE; CONSTANTS; SUPERLATTICES; DEPENDENCE AB The thermoelectric material PbTe has been used in a wide variety of power generator applications. However, there is limited mechanical property data available for PbTe for temperatures above room temperature. This paper reports dynamic elastic moduli measured via resonant ultrasound spectroscopy on undoped and PbI(2)-doped polycrystalline PbTe between room temperature and 773 K; in addition, the room temperature carrier concentration was measured by a Hall effect experiment. The Young's modulus and shear modulus of PbTe decreased linearly with temperature above room temperature, while the Poisson's ratio exhibited either monotonic increase or decrease with temperature. The Young's modulus and shear modulus values obtained during heating and cooling agreed to within 1%. The dynamic elastic moduli data obtained in this Study compared well in general with literature data. The difference observed between the current Study and other literature studies is explained in terms of the carrier concentration effect on elastic moduli. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Ren, Fei; Case, Eldon D.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Sootsman, Joseph R.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL USA. [Kong, Huijun; Uher, Ctirad] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Lara-Curzio, Edgar; Trejo, Rosa M.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Case, ED (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, 2527 Engn Bldg, E Lansing, MI 48824 USA. EM casee@egr.msu.edu RI Ren, Fei/E-7706-2011 FU Office of Naval Research MURI [N000140310789]; US Department of Energy [DE-FC26-04NT42281, DE-AC05-00OR22725] FX The authors acknowledge the financial assistance of the Office of Naval Research MURI Grant No. N000140310789 and the US Department of Energy Grant DE-FC26-04NT42281. The research work at the High Temperature Materials Laboratory was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy Under Contract No. DE-AC05-00OR22725. NR 30 TC 36 Z9 36 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2008 VL 56 IS 20 BP 5954 EP 5963 DI 10.1016/j.actamat.2008.07.055 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 381NJ UT WOS:000261542900007 ER PT J AU Jiang, C AF Jiang, Chao TI First-principles study of site occupancy of dilute 3d, 4d and 5d transition metal solutes in L1(0) TiAl SO ACTA MATERIALIA LA English DT Article DE Site preference; Transition metals; Titanium aluminides; Point defects; First-principle electron theory ID THERMAL POINT-DEFECTS; ALLOYING ELEMENTS; ATOMIC DEFECTS; INTERATOMIC POTENTIALS; INTERMETALLIC ALLOYS; FORMATION ENERGIES; ORDERED COMPOUNDS; BASE ALLOYS; AL SYSTEM; PREFERENCE AB Using a statistical-mechanical Wagner-Schottky model parametrized by first-principles density-functional (DFT-GGA) calculations on 32-atom supercells. we predict the lattice site occupancy of 3d (Ti-Cu), 4d (Zr-Ag) and 5d (Hf-Au) transition-metal elements in L1(0) TiAl intermetallic compound as a function of both alloy composition and temperature. The effects of local atomic relaxations, anisotropic lattice distortions, as well as magnetism on point defect energetics are fully taken into account. Our calculations show that, at all alloy compositions and temperatures, Zr and Hf consistently show a preference for the Ti sublattice, while Co, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt and Au consistently show a preference for the Al sublattice. In contrast, the site preference of V, Cr, Mn, Fe, Ni, Cu, Nb, Mo, Tc, Ta and W strongly depend on both alloy stoichiometry and temperature. Our calculated results compare favorably with the existing theoretical and experimental studies in the literature. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Struct Property Relat Grp MST8, Los Alamos, NM 87545 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Struct Property Relat Grp MST8, 3-1698,MailStop G755, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 FU Los Alamos National Laboratory (LANL) FX This work is financially supported by Director's Postdoctoral fellowship at Los Alamos National Laboratory (LANL). All calculations were performed using the parallel computing facilities at LANL. NR 51 TC 20 Z9 25 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2008 VL 56 IS 20 BP 6224 EP 6231 DI 10.1016/j.actamat.2008.08.047 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 381NJ UT WOS:000261542900031 ER PT J AU Sheng, HW Cheng, YQ Lee, PL Shastri, SD Ma, E AF Sheng, H. W. Cheng, Y. Q. Lee, P. L. Shastri, S. D. Ma, E. TI Atomic packing in multicomponent aluminum-based metallic glasses SO ACTA MATERIALIA LA English DT Article DE Metallic glasses; Atomic structure; Molecular dynamics; Inverse Monte Carlo simulations; Aluminum alloys ID AUGMENTED-WAVE METHOD; MEDIUM-RANGE ORDER; X-RAY-SCATTERING; STRUCTURAL MODEL; NI SYSTEM; LIQUIDS; ALLOYS; CU; GEOMETRY; FE AB Three-dimensional atomic configurations have been established for Al-based multicomponent metallic glasses (MGs). This was achieved via Computer simulations employing effective pair-potentials, which were derived from ab initio molecular dynamics simulation data using the inverse Monte Carlo (IMC) method. The ab initio and IMC Structural models were validated using structure factors and extended X-ray absorption fine Structures obtained from synchrotron X-ray experiments. The Al-based MGs are characterized by solute-centered quasi-equivalent clusters. These coordination polyhedra of different types and sizes intermix in the multicomponent alloy, resulting in improved glass-forming ability for the Al-La-Ni alloys when compared with binary Al-La and Al-Ni systems. Our Survey of a large number of Al-solute systems using ab initio calculations demonstrates that the topological short-range order (cluster type, size and coordination number of the solute) correlates directly with the Al-solute bond length (or the effective atomic size ratio). The differences between our findings and previously proposed structural models are also discussed. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lee, P. L.; Shastri, S. D.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Sheng, H. W.; Cheng, Y. Q.; Ma, E.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RP Sheng, HW (reprint author), George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. EM hsheng@gmu.edu RI Sheng, Howard/B-2033-2013; Cheng, Yongqiang/F-6567-2010; Ma, En/A-3232-2010 FU US DoE; Office of Science; Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46056] FX This work was Supported by US DoE, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-FG02-03ER46056, APS is funded by DoE. NR 59 TC 80 Z9 84 U1 14 U2 67 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2008 VL 56 IS 20 BP 6264 EP 6272 DI 10.1016/j.actamat.2008.08.049 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 381NJ UT WOS:000261542900035 ER PT J AU Cochepin, B Trotignon, L Bildstein, O Steefel, CI Lagneau, V Van der Lee, J AF Cochepin, B. Trotignon, L. Bildstein, O. Steefel, C. I. Lagneau, V. Van der lee, J. TI Approaches to modelling coupled flow and reaction in a 2D cementation experiment SO ADVANCES IN WATER RESOURCES LA English DT Article DE Reactive transport; Hydrodynamics; Porosity clogging; Numerical benchmarking; Mineral surface area; Simulation; Coupled processes; Crunch; Hytec ID POROUS-MEDIA; FLUID-FLOW; GEOTHERMAL-RESERVOIRS; NUMERICAL-SIMULATION; CHEMICAL-REACTIONS; RADIOACTIVE-WASTE; TRANSPORT; PRECIPITATION; PERMEABILITY; DISSOLUTION AB Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution/precipitation. The simulation of highly non-linear reactive transport systems is also shown to be partly dependent on specific numerical approaches. (c) 2008 Published by Elsevier Ltd. C1 [Cochepin, B.; Trotignon, L.; Bildstein, O.] CEN Cadarache, Direct Energie Nucl, F-13108 St Paul Les Durance, France. [Steefel, C. I.] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Lagneau, V.; Van der lee, J.] Ecole Mines Paris, Ctr Geosci, F-77305 Fontainebleau, France. RP Cochepin, B (reprint author), CEN Cadarache, Direct Energie Nucl, Bat 307, F-13108 St Paul Les Durance, France. EM benoit.cochepin@cea.fr RI Steefel, Carl/B-7758-2010 FU CEA Nuclear Energy Direction FX This work was supported by the CEA Nuclear Energy Direction. We also acknowledge members of the PGT (P61e Geochimie Transport, Armines-CEA-EDF-IRSN-Lafarge-Total) for fruitful discussions. US Department of Energy and Lawrence Berkeley Laboratory are acknowledged for supporting Crunch development. The authors also acknowledge three anonymous reviewers for their very constructive comments. NR 37 TC 15 Z9 16 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2008 VL 31 IS 12 BP 1540 EP 1551 DI 10.1016/j.advwatres.2008.05.007 PG 12 WC Water Resources SC Water Resources GA 388NP UT WOS:000262026800002 ER PT J AU Klise, KA Tidwell, VC McKenna, SA AF Klise, Katherine A. Tidwell, Vincent C. McKenna, Sean A. TI Comparison of laboratory-scale solute transport visualization experiments with numerical simulation using cross-bedded sandstone SO ADVANCES IN WATER RESOURCES LA English DT Article DE Heterogeneity; Sandstone; Solute transport; Experiment; Numerical simulation ID HETEROGENEOUS POROUS-MEDIA; FLUID TRANSPORT; MASS-TRANSFER; FLOW; FIELDS; CONDUCTIVITY; DISPERSION; DIFFUSION; MODEL AB Using a slab of Massillon Sandstone, laboratory-scale solute tracer experiments were carried out to test numerical simulations using the Advection-Dispersion Equation (ADE). While studies of a similar nature exist, our work differs in that we combine: (1) experimentation in naturally complex geologic media, (2) X-ray absorption imaging to visualize and quantify two-dimensional solute transport, (3) high resolution transport property characterization, with (4) numerical simulation. The simulations use permeability, porosity, and solute concentration measured to sub-centimeter resolution. While bulk breakthrough curve characteristics were adequately matched, large discrepancies exist between the experimental and simulated solute concentration fields. Investigation of potential experimental errors suggests that the failure to fit solute concentration fields may lie in loss of intricate connectivity within the cross-bedded sandstone occurring at scales finer than our property characterization measurements (i.e., subcentimeter). (c) 2008 Elsevier Ltd. All rights reserved. C1 [Klise, Katherine A.; Tidwell, Vincent C.; McKenna, Sean A.] Sandia Natl Labs, Geohydrol Dept, Albuquerque, NM 87185 USA. RP Klise, KA (reprint author), Sandia Natl Labs, Geohydrol Dept, POB 5800,MS 0735, Albuquerque, NM 87185 USA. EM kaklise@sandia.gov; vctidwe@sandia.gov; samcken@sandia.gov FU US Department of Energy; Office of Basic Energy Sciences; Geoscience Research Program [DE-AC0494AL85000, DE-F303-96ER14589/AOOO]; Lockheed Martin Company, United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX The authors gratefully acknowledge Bryan Chambers and Will Peplinski for assistance with image processing, David Benson for advice on data analysis, and Michael Campana and three anonymous reviewers for reviewing the paper. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Geoscience Research Program, under Contracts DE-AC0494AL85000 and DE-F303-96ER14589/AOOO. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DEAC04-94AL85000. NR 38 TC 22 Z9 22 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2008 VL 31 IS 12 BP 1731 EP 1741 DI 10.1016/j.advwatres.2008.08.013 PG 11 WC Water Resources SC Water Resources GA 388NP UT WOS:000262026800017 ER PT J AU Rasmussen, SA Whitehead, N Cottier, SA Frias, JL AF Rasmussen, Sonja A. Whitehead, Nedra Cottier, Sarah A. Frias, Jaime L. TI Setting a Public Health Research Agenda for Down Syndrome: Summary of a Meeting Sponsored by the Centers for Disease Control and Prevention and the National Down Syndrome Society SO AMERICAN JOURNAL OF MEDICAL GENETICS PART A LA English DT Editorial Material ID FRAGILE-X-SYNDROME; TYPICALLY DEVELOPING-CHILDREN; SHORT-TERM-MEMORY; PRADER-WILLI-SYNDROME; ATHEROMA-FREE MODEL; MENTAL-RETARDATION; YOUNG-CHILDREN; DEVELOPMENTAL-DISABILITIES; BEHAVIOR PROBLEMS; INTELLECTUAL DISABILITY C1 [Rasmussen, Sonja A.; Cottier, Sarah A.; Frias, Jaime L.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Whitehead, Nedra] RTI Int, Atlanta, GA USA. [Cottier, Sarah A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Frias, Jaime L.] McKing Consulting Corp, Atlanta, GA USA. RP Rasmussen, SA (reprint author), 1600 Clifton Rd,MS E-86, Atlanta, GA 30333 USA. EM skr9@edc.gov NR 126 TC 29 Z9 29 U1 1 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4825 J9 AM J MED GENET A JI Am. J. Med. Genet. A PD DEC 1 PY 2008 VL 146A IS 23 BP 2998 EP 3010 DI 10.1002/ajmg.a.32581 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 382WM UT WOS:000261636100003 PM 19006076 ER PT J AU Olson, AK Hyyti, OM Cohen, GA Ning, XH Sadilek, M Isern, N Portman, MA AF Olson, Aaron K. Hyyti, Outi M. Cohen, Gordon A. Ning, Xue-Han Sadilek, Martin Isern, Nancy Portman, Michael A. TI Superior cardiac function via anaplerotic pyruvate in the immature swine heart after cardiopulmonary bypass and reperfusion SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY LA English DT Article DE cardiac metabolism; pyruvate carboxylation; pyruvate decarboxlyation; citric acid cycle; tricarboxylic acid cycle ID CITRIC-ACID CYCLE; ENERGY PHOSPHATE-METABOLISM; GLOBAL-ISCHEMIA; PORCINE MYOCARDIUM; NEWBORN HEARTS; OXIDATION; PIG; EXPRESSION; INOTROPISM; CARNITINE AB Olson AK, Hyyti OM, Cohen GA, Ning XH, Sadilek M, Isern N, Portman MA. Superior cardiac function via anaplerotic pyruvate in the immature swine heart after cardiopulmonary bypass and reperfusion. Am J Physiol Heart Circ Physiol 295: H2315 - H2320, 2008. First published October 10, 2008; doi: 10.1152/ajpheart.00739.2008.Pyruvate produces inotropic responses in the adult reperfused heart. Pyruvate oxidation and anaplerotic entry into the tricarboxylic acid (TCA) cycle via carboxylation are linked to the stimulation of contractile function. The goals of this study were to determine if these metabolic pathways operate and are maintained in the developing myocardium after reperfusion. Immature male swine (age: 10 - 18 days) were subjected to cardiopulmonary bypass (CPB). Intracoronary infusion of [2- (13)C] pyruvate (to achieve an estimated final concentration of 8 mM) was given for 35 min, starting either during weaning (group I) and after its discontinuation (group II) or without (control) CPB. Hemodynamic data were collected. (13)C NMR spectroscopy was used to determine the fraction of pyruvate entering the TCA cycle via pyruvate carboxylation (PC) to total TCA cycle entry (PC plus decarboxlyation via pyruvate dehydrogenase). Liquid chromatographymass spectrometry was used to determine total glutamate enrichment. Pyruvate infusion starting during the weaning of mechanical circulatory support improved maximum dP/dt (P < 0.05) but waiting to start the infusion until after the discontinuation of CPB did not. Glutamate fractional enrichment was confirmed by liquid chromatographymass spectroscopy as adequate (> 5%) to provide signal to noise in the NMR experiment in all groups. The ratio of pyruvate carboxylase to total pyruvate entry into the TCA cycle did not differ between groups (group I: 20 +/- 4%, group II: 23 +/- 7%, and control: 27 +/- 7%). These data show that robust PC operates in the neonatal pig heart and is maintained during reperfusion under conditions that emulate CPB and reperfusion in human infants. C1 [Olson, Aaron K.; Hyyti, Outi M.; Cohen, Gordon A.; Ning, Xue-Han; Portman, Michael A.] Childrens Hosp & Reg Med Ctr, Seattle, WA 98105 USA. [Olson, Aaron K.; Hyyti, Outi M.; Ning, Xue-Han; Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. [Hyyti, Outi M.] Univ Washington, Dept Radiol, Seattle, WA 98195 USA. [Cohen, Gordon A.] Univ Washington, Div Pediat Cardiovasc Surg, Dept Surg, Seattle, WA 98195 USA. [Sadilek, Martin] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Isern, Nancy] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Portman, MA (reprint author), Childrens Hosp & Reg Med Ctr, MSW 4841,4800 Sand Point Way NE, Seattle, WA 98105 USA. EM Michael.Portman@seattlechildrens.org OI Isern, Nancy/0000-0001-9571-8864 FU NHLBI NIH HHS [R01-HL-60666, T32-HL07828] NR 36 TC 20 Z9 20 U1 1 U2 3 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6135 J9 AM J PHYSIOL-HEART C JI Am. J. Physiol.-Heart Circul. Physiol. PD DEC PY 2008 VL 295 IS 6 BP H2315 EP H2320 DI 10.1152/ajpheart.00739.2008 PG 6 WC Cardiac & Cardiovascular Systems; Physiology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Physiology GA 379MH UT WOS:000261399900013 PM 18849332 ER PT J AU Han, P Yanni, E Davis, XH Pollard, W Maran, N AF Han, Pauline Yanni, Emad Davis, Xiaohong Pollard, William Maran, Nina TI TRAVEL HEALTH ADVICE-SEEKING BEHAVIOR OF US TRAVELERS TO YELLOW FEVER- AND JAPANESE ENCEPHALITIS-ENDEMIC COUNTRIES: FINDINGS FROM THE 2007 HEALTHSTYLES SURVEY SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY DEC 07-11, 2008 CL New Orleans, LA SP Amer Soc Trop Med & Hyg C1 [Han, Pauline] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Atlanta, GA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD DEC PY 2008 VL 79 IS 6 MA 461 BP 136 EP 136 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 382ZT UT WOS:000261644600460 ER PT J AU Lopez-Ferrer, D Petritis, K Lourette, NM Clowers, B Hixson, KK Heibeck, T Prior, DC Pasa-Tolic, L Camp, DG Belov, ME Smith, RD AF Lopez-Ferrer, Daniel Petritis, Konstantinos Lourette, Natacha M. Clowers, Brian Hixson, Kim K. Heibeck, Tyler Prior, David C. Pasa-Tolic, Ljiljana Camp, David G., II Belov, Mikhail E. Smith, Richard D. TI On-line Digestion System for Protein Characterization and Proteome Analysis SO ANALYTICAL CHEMISTRY LA English DT Article ID INTENSITY FOCUSED ULTRASOUND; MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; IDENTIFICATION; DATABASES; SOLVENTS AB An efficient on-line digestion system that reduces the number of sample manipulation steps has been demonstrated for high-throughput proteomics. By incorporating a pressurized sample loop into a liquid chromatography-based separation system, both sample and enzyme (e.g., trypsin) can be simultaneously introduced to produce a complete, yet rapid digestion. Both standard proteins and a complex Shewanella oneidensis global protein extract were digested and analyzed using the automated online pressurized digestion system coupled to an ion mobility time-of-flight mass spectrometer, an ion trap mass spectrometer, or both. The system denatured, digested, and separated product peptides in a manner of minutes, making it amenable to on-line high-throughput applications. In addition to simplifying and expediting sample processing, the system was easy to implement and no cross-contamination was observed among samples. As a result, the online digestion system offers a powerful approach for high-throughput screening of proteins that could prove valuable in biochemical research (rapid screening of protein-based drugs). C1 [Lopez-Ferrer, Daniel; Petritis, Konstantinos; Lourette, Natacha M.; Clowers, Brian; Heibeck, Tyler; Prior, David C.; Camp, David G., II; Belov, Mikhail E.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hixson, Kim K.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI Petritis, Konstantinos/F-2156-2010; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH [RR018522, R21 CA12619-01]; Pacific Northwest National Laboratory's (PNNL); U.S. Department of Energy (DOE) Office of Biological and Environmental Research [DE-AC05-76RLO 1830] FX The authors thank Penny Colton, Dr. Ryan Kelly, and Dr. Eric Livesay for helpful suggestions. Portions of this work were supported by the NIH National Center for Research Resources (RR018522), NIH National Cancer Institute (R21 CA12619-01), and the Pacific Northwest National Laboratory's (PNNL) Laboratory Directed Research and Development Program. This research was enabled in part by capabilities developed under support by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and was conducted in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract No. DE-AC05-76RLO 1830. NR 29 TC 32 Z9 32 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2008 VL 80 IS 23 BP 8930 EP 8936 DI 10.1021/ac800927v PG 7 WC Chemistry, Analytical SC Chemistry GA 378PE UT WOS:000261335600013 PM 19551971 ER PT J AU Kiss, MM Ortoleva-Donnelly, L Beer, NR Warner, J Bailey, CG Colston, BW Rothberg, JM Link, DR Leamon, JH AF Kiss, Margaret Macris Ortoleva-Donnelly, Lori Beer, N. Reginald Warner, Jason Bailey, Christopher G. Colston, Bill W. Rothberg, Jonathon M. Link, Darren R. Leamon, John H. TI High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets SO ANALYTICAL CHEMISTRY LA English DT Article ID SINGLE-MOLECULE PCR; REAL-TIME; MICROFLUIDIC SYSTEMS; MICROCHAMBER ARRAY; DIGITAL PCR; ON-CHIP; COPY; AMPLIFICATION; EMULSION; BACTERIA AB Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow. The oil stream conducts the droplets through alternating denaturation and annealing zones, resulting in rapid (55-s cycles) and efficient PCR amplification. Inclusion of fluorescent probes in the PCR reaction mix permits the amplification process to be monitored within individual droplets at specific locations within the microfluidic chip. We show that amplification of a 245-bp adenovirus product can be detected and quantified in 35 min at starting template concentrations as low as 1 template molecule/167 droplets (0.003 pg/mu L). The frequencies of positive reactions over a range of template concentrations agree closely with the frequencies predicted by Poisson statistics, demonstrating both the accuracy and sensitivity of this platform for limiting dilution and digital PCR applications. C1 [Kiss, Margaret Macris; Ortoleva-Donnelly, Lori; Warner, Jason; Rothberg, Jonathon M.; Link, Darren R.; Leamon, John H.] Raindance Technol, Lexington, MA 02421 USA. [Beer, N. Reginald; Bailey, Christopher G.; Colston, Bill W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Link, DR (reprint author), Raindance Technol, 44 Hartwell Ave, Lexington, MA 02421 USA. EM dlink@raindancetechnologies.com FU NIH [NCI 1R21 CA12569301]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [06-ERD-064] FX This work was supported by the NIH (NCI 1R21 CA12569301). The contribution of authors N.R.B., C.G.B., and B.W.C. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The project 06-ERD-064 was funded by the Laboratory Directed Research and Development Program at LLNL. NR 34 TC 174 Z9 179 U1 6 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2008 VL 80 IS 23 BP 8975 EP 8981 DI 10.1021/ac801276c PG 7 WC Chemistry, Analytical SC Chemistry GA 378PE UT WOS:000261335600018 PM 19551929 ER PT J AU Fruetel, JA West, JAA Debusschere, BJ Hukari, K Lane, TW Najm, HN Ortega, J Renzi, RF Shokair, I VanderNoot, VA AF Fruetel, Julia A. West, Jason A. A. Debusschere, Bert J. Hukari, Kyle Lane, Todd W. Najm, Habib N. Ortega, Jose Renzi, Ronald F. Shokair, Isaac VanderNoot, Victoria A. TI Identification of Viruses Using Microfluidic Protein Profiling and Bayesian Classification SO ANALYTICAL CHEMISTRY LA English DT Article ID RESPIRATORY SYNCYTIAL VIRUS; COMPLETE GENOME SEQUENCE; MASS-SPECTROMETRY; CAPILLARY-ELECTROPHORESIS; CAUSATIVE AGENT; BACTERIOPHAGE-T4; SEPARATIONS; MORPHOGENESIS; SYSTEM; SPORES AB We present a rapid method for the identification of viruses using microfluidic chip gel electrophoresis (CGE) of high-copy number proteins to generate unique protein profiles. Viral proteins are solubilized by heating at 95 degrees C in borate buffer containing detergent (5 min), then labeled with fluorescamine dye (10 s), and analyzed using the mu Chem-Lab CGE system (5 min). Analyses of closely related T2 and T4 bacteriophage demonstrate sufficient assay sensitivity and peak resolution to distinguish the two phage. CGE analyses of four additional viruses-MS2 bacteriophage, Epstein-Barr, respiratory syncytial, and vaccinia viruses-demonstrate reproducible and visually distinct protein profiles. To evaluate the suitability of the method for unique identification of viruses, we employed a Bayesian classification approach. Using a subset of 126 replicate electropherograms of the six viruses and phage for training purposes, successful classification with non-training data was 66/69 or 95% with no false positives. The classification method is based on a single attribute (elution time), although other attributes such as peak width, peak amplitude, or peak shape could be incorporated and may improve performance further. The encouraging results suggest a rapid and simple way to identify viruses without requiring specialty reagents such as PCR probes and antibodies. C1 [Fruetel, Julia A.; West, Jason A. A.; Debusschere, Bert J.; Hukari, Kyle; Lane, Todd W.; Najm, Habib N.; Ortega, Jose; Renzi, Ronald F.; Shokair, Isaac; VanderNoot, Victoria A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Fruetel, JA (reprint author), Sandia Natl Labs, POB 969,MS 9292, Livermore, CA 94551 USA. EM jfruet@sandia.gov OI Lane, Todd/0000-0002-5816-2649 FU Department of Energy Chemical and Biological National Security Program; U.S. Department of Homeland Security Biocountermeasures Program; United States Department of Energy [DE-AC04-94AL85000] FX We thank Pamela Lane for SDS-PAGE of the viral samples. This work was supported by the Department of Energy Chemical and Biological National Security Program and the U.S. Department of Homeland Security Biocountermeasures Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 42 TC 5 Z9 5 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2008 VL 80 IS 23 BP 9005 EP 9012 DI 10.1021/ac801342m PG 8 WC Chemistry, Analytical SC Chemistry GA 378PE UT WOS:000261335600021 PM 19551975 ER PT J AU Zhang, Y Phillips, GJ Li, QX Yeung, ES AF Zhang, Yun Phillips, Gregory J. Li, Qingxi Yeung, Edward S. TI Imaging Localized Astrocyte ATP Release with Firefly Luciferase Beads Attached to the Cell Surface SO ANALYTICAL CHEMISTRY LA English DT Article ID CULTURED HIPPOCAMPAL-NEURONS; INTERCELLULAR CALCIUM WAVES; CARRIER PROTEIN DOMAIN; EXTRACELLULAR ATP; NUCLEOTIDE RECEPTORS; EPITHELIAL-CELLS; MECHANISMS; METABOLISM; VOLUME; CHEMILUMINESCENCE AB Extracellular adenosine triphosphate (ATP) functions as a signaling molecule in many cell regulation processes. The traditional firefly luciferase assays measure the ATP release as a signal increase with time using a luminometer. Recently, advanced cell imaging techniques using charge-coupled device (CCD) cameras have enabled two-dimensional (2D) high-resolution detection providing both spatial and temporal information. Real-time imaging of ATP release from astrocyte cells has been reported. However, the observed chemiluminescence propagation wave reflects both ATP release and diffusion in the extracellular bulk solution. The dynamic ATP efflux at the cell surface could not be accurately measured. Hence, we constructed biotinylated fused firefly luciferase proteins, immobilized the proteins on 1 mu m beads, and attached the beads to the cell surface to detect ATP release from mechanically stimulated astrocyte cells. This novel detection method enables us to monitor the actual ATP concentration at the surface of single live cells. The localized ATP release was found to be prominent but lasted only <20 s, which is very different from the results obtained by free firefly luciferase detection. C1 [Zhang, Yun; Li, Qingxi; Yeung, Edward S.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Zhang, Yun; Li, Qingxi; Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Phillips, Gregory J.] Iowa State Univ, Dept Vet Microbiol & Prevent Med, Ames, IA 50011 USA. RP Yeung, ES (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM yeung@ameslab.gov FU Robert Allen Wright Endowment; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences FX E.S.Y. thanks the Robert Allen Wright Endowment for Excellence for support. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. NR 55 TC 20 Z9 20 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2008 VL 80 IS 23 BP 9316 EP 9325 DI 10.1021/ac801701w PG 10 WC Chemistry, Analytical SC Chemistry GA 378PE UT WOS:000261335600060 PM 19551993 ER PT J AU Einstein, DR Neradilak, B Pollisar, N Minard, KR Wallis, C Fanucchi, M Carson, JP Kuprat, AP Kabilan, S Jacob, RE Corley, RA AF Einstein, Daniel R. Neradilak, Blazej Pollisar, Nayak Minard, Kevin R. Wallis, Chris Fanucchi, Michelle Carson, James P. Kuprat, Andrew P. Kabilan, Senthil Jacob, Richard E. Corley, Richard A. TI An Automated Self-Similarity Analysis of the Pulmonary Tree of the Sprague-Dawley Rat SO ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY LA English DT Article DE morphometry; pulmonary airway tree; self-similarity ID HUMAN AIRWAY TREE; BRONCHIAL TREE; ARTERIAL TREE; MORPHOMETRY; LUNG; SYSTEM; ACINUS; MODELS; SEGMENTATION; MORPHOLOGY AB We present the results of an automated analysis of the morphometry of the pulmonary airway trees of the Sprague-Dawley rat. Our work is motivated by a need to inform lower-dimensional mathematical models to prescribe realistic boundary conditions for multiscale hybrid models of rat lung mechanics. Silicone casts were made from three age-matched, male Sprague-Dawley rats, immersed in a gel containing a contrast agent and subsequently imaged with magnetic resonance (MR). From a segmentation of this data, we extracted a connected graph, representing the airway centerline. Segment statistics (lengths and diameters) were derived from this graph. To validate this MR imaging/digital analysis method, airway segment measurements were compared with nearly 1,000 measurements collected by hand using an optical microscope from one of the rat lung casts. To evaluate the reproducibility of the MR imaging/digital analysis method, two lung casts were each imaged three times with randomized orientations in the MR bore. Diameters and lengths of randomly selected airways were compared among each of the repeated imaging datasets to estimate the variability. Finally, we analyzed the morphometry of the airway tree by assembling individual airway segments into structures that span multiple generations, which we call branches. We show that branches not segments are the fundamental repeating unit in the rat lung and develop simple mathematical relationships describing these structures for the entire lung. Our analysis shows that airway diameters and lengths have both a deterministic and stochastic character. Anat Rec, 291:1628-1648, 2008. (C) 2008 Wiley-Liss, Inc. C1 [Einstein, Daniel R.; Minard, Kevin R.; Carson, James P.; Kuprat, Andrew P.; Jacob, Richard E.; Corley, Richard A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Neradilak, Blazej; Pollisar, Nayak] Mt Whisper Light Stat Consulting, Seattle, WA USA. [Wallis, Chris] Univ Calif Davis, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA. [Fanucchi, Michelle] Univ Alabama, Sch Publ Hlth, Dept Environm Hlth Sci, Birmingham, AL 35294 USA. [Kabilan, Senthil] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. RP Einstein, DR (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-59, Richland, WA 99352 USA. EM Daniel.einstein@pnl.gov OI Kuprat, Andrew/0000-0003-4159-918X FU NIH National Heart, Blood and Lung Institute [1RO1 HL073598-01A] FX Grant sponsor: NIH National Heart, Blood and Lung Institute; Grant number: 1RO1 HL073598-01A. NR 46 TC 16 Z9 16 U1 0 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1932-8486 J9 ANAT REC JI Anat. Rec. PD DEC PY 2008 VL 291 IS 12 BP 1628 EP 1648 DI 10.1002/ar.20771 PG 21 WC Anatomy & Morphology SC Anatomy & Morphology GA 375OL UT WOS:000261123100007 PM 18951511 ER PT J AU Favorite, JA AF Favorite, Jeffrey A. TI Maximum polar angle subtended by a right circular cylinder SO ANNALS OF NUCLEAR ENERGY LA English DT Article ID DETECTOR; POINT AB For Monte Carlo calculations of a point source external to an object, efficient sampling in the direction of the object is desirable. The maximum polar angle (minimum cosine), as measured from a partially arbitrary reference vector, needed to subtend a right circular cylinder is derived. Schemes for choosing the reference vector to maximize sampling efficiency by maximizing the minimum polar angle cosine are discussed. Results are all analytic (semianalytic optimizations are suggested). (c) 2008 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Appl Phys Div X, Los Alamos, NM 87545 USA. RP Favorite, JA (reprint author), Los Alamos Natl Lab, Appl Phys Div X, MS P365, Los Alamos, NM 87545 USA. EM fave@lanl.gov NR 16 TC 2 Z9 2 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD DEC PY 2008 VL 35 IS 12 BP 2195 EP 2199 DI 10.1016/j.anucene.2008.09.009 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 384FI UT WOS:000261729300004 ER PT J AU Hill, CT Zachos, CK AF Hill, Christopher T. Zachos, Cosmas K. TI Chern-Simons and WZW anomaly cancelations across dimensions SO ANNALS OF PHYSICS LA English DT Article DE Wess-Zumino; Chern-Simons; Anomalies; Deconstruction; Holographic duality; Boundary-bulk ID MASSIVE GAUGE-THEORIES; WARD IDENTITIES; FERMIONS AB The WZW functional in D=4 can be derived directly from the Chern-Simons functional of a compactified D=5 gauge theory and the boundary fermions it supplants. A simple pedagogical model based on U(I) gauge groups illustrates how this works. A bulk-boundary system with the fermions eliminated manifestly evinces anomaly cancelations between CS and WZW terms. (c) 2008 Elsevier Inc. All rights reserved. C1 [Hill, Christopher T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zachos, Cosmas K.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Zachos, CK (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM hil@fnal.gov; zachos@anl.gov RI zachos, cosmas/C-4366-2014 OI zachos, cosmas/0000-0003-4379-3875 FU U.S. Department of Energy [DE-AC02-76CH03000]; U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; University of Chicago-Argonne joint Theory Institute FX We thank Jeff Harvey and Richard Hill for helpful discussions. Research supported by the U.S. Department of Energy grant DE-AC02-76CH03000, and by the U.S. Department of Energy, Division of High Energy Physics, Contract DE-AC02-06CH11357 as well as the University of Chicago-Argonne joint Theory Institute. NR 29 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 J9 ANN PHYS-NEW YORK JI Ann. Phys. PD DEC PY 2008 VL 323 IS 12 BP 3065 EP 3073 DI 10.1016/j.aop.2008.08.009 PG 9 WC Physics, Multidisciplinary SC Physics GA 378DL UT WOS:000261301300011 ER PT J AU Merkli, M Berman, GP Sigal, IM AF Merkli, M. Berman, G. P. Sigal, I. M. TI Dynamics of collective decoherence and thermalization SO ANNALS OF PHYSICS LA English DT Article DE Decoherence; Decoherence rate; Thermalization rate; Reduced density matrix; Open quantum system; Quantum register; Qubit; Spin system; Thermal reservoir; Thermal equilibrium; Quantum resonance theory; Level shift operator ID MARKOVIAN MASTER EQUATIONS; QUANTUM-SYSTEMS; STATES; RESERVOIRS; RESONANCES AB We analyze the dynamics of N interacting spins (quantum register) collectively Coupled to a thermal environment. Each spin experiences the same environment interaction, consisting of an energy conserving and an energy exchange part. We find the decay rates of the reduced density matrix elements in the energy basis. We show that if the spins do not interact among each other, then the fastest decay rates of off-diagonal matrix elements induced by the energy conserving interaction is of order N while that one induced by the energy exchange interaction is of the order N only. Moreover, the diagonal matrix elements approach their limiting values at a rate independent of N. For a general spin system the decay rates depend in a rather complicated (but explicit) way on the size N and the interaction between the spins. Our method is based on a dynamical quantum resonance theory valid for small. fixed values of the couplings. We do not make Markov-, Born- or weak Coupling (van Hove) approximations. (c) 2008 Elsevier Inc. All rights reserved. C1 [Merkli, M.] Mem Univ Newfoundland, Dept Math & Stat, St John, NL A1C 557, Canada. [Berman, G. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Berman, G. P.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Sigal, I. M.] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada. RP Merkli, M (reprint author), Mem Univ Newfoundland, Dept Math & Stat, St John, NL A1C 557, Canada. EM merkli@math.mun.ca; gpb@lanl.gov; im.sigal@utoronto.ca FU NSERC [205247, NA 7901]; U.S. DOE [AC52-06NA25396] FX Supported by NSERC under Grant 205247.; Supported by the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396.; Supported by NSERC under Grant NA 7901. NR 28 TC 15 Z9 15 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 J9 ANN PHYS-NEW YORK JI Ann. Phys. PD DEC PY 2008 VL 323 IS 12 BP 3091 EP 3112 DI 10.1016/j.aop.2008.07.004 PG 22 WC Physics, Multidisciplinary SC Physics GA 378DL UT WOS:000261301300013 ER PT J AU Clauset, A Tanner, HG Abdallah, CT Byrne, RH AF Clauset, A. Tanner, H. G. Abdallah, C. T. Byrne, R. H. TI Controlling across complex networks - Emerging links between networks and control SO ANNUAL REVIEWS IN CONTROL LA English DT Review DE Complex networks; Networked control systems; Delays; Connectedness; Navigability; Efficiency ID COMMUNICATION BANDWIDTH CONSTRAINTS; MULTIAGENT SYSTEMS; SMALL-WORLD; STABILITY; FEEDBACK; STABILIZATION; CONNECTIVITY; CONSENSUS; TOPOLOGY; INTERNET AB This paper discusses the interplay between networks and control systems. As we gain more understanding about the structure and dynamics of physical networks. their effects on the performance of closed-loop control systems, as well its the ability to control such networks, provide fertile areas of research. The paper reviews such research with special emphasis on the connectivity and delays in the information transfer across networks. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Abdallah, C. T.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Tanner, H. G.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Clauset, A.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Byrne, R. H.] Sandia Natl Labs, Dept 5535, Albuquerque, NM 87185 USA. RP Abdallah, CT (reprint author), Univ New Mexico, Dept Elect & Comp Engn, MSC01 1100,1, Albuquerque, NM 87131 USA. EM aaronc@santafe.edu; tanner@unm.edu; chaouki@ece.unm.edu; rhbyrne@sandia.gov FU NSF [PHY-0200909, 0447898, CNS 0626380]; United States Department of Energy [DE-AC04-94AL8500] FX The work of the first author is supported by NSF grant no. PHY-0200909; the second author is supported in part by the NSF Career grant no. 0447898; the third author is supported in part by NSF grant no. CNS 0626380 under the FIND initiative; the work of the last author was supported by the United States Department of Energy under Contract DE-AC04-94AL8500. NR 57 TC 6 Z9 7 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1367-5788 J9 ANNU REV CONTROL JI Annu. Rev. Control PD DEC PY 2008 VL 32 IS 2 BP 183 EP 192 DI 10.1016/j.arcontrol.2008.09.001 PG 10 WC Automation & Control Systems SC Automation & Control Systems GA 384EY UT WOS:000261728300005 ER PT J AU Shary, S Kapich, AN Panisko, EA Magnuson, JK Cullen, D Hammel, KE AF Shary, Semarjit Kapich, Alexander N. Panisko, Ellen A. Magnuson, Jon K. Cullen, Daniel Hammel, Kenneth E. TI Differential Expression in Phanerochaete chrysosporium of Membrane-Associated Proteins Relevant to Lignin Degradation SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RIGHT-SIDE-OUT; MASS-SPECTROMETRY; IDENTIFICATION TECHNOLOGY; EXTRACELLULAR PROTEINS; PENICILLIUM-CYCLOPIUM; GENE-EXPRESSION; WOOD DECAY; PEROXIDASE; VESICLES; DATABASE AB Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew the white rot basidiomycete Phanerochaete chrysosporium on cellulose or glucose as the carbon source and monitored the mineralization of a C-14-labeled synthetic lignin by these cultures to assess their ligninolytic competence. The results showed that the cellulose-grown cultures were ligninolytic, whereas the glucose-grown ones were not. We isolated microsomal membrane fractions from both types of culture and analyzed tryptic digests of their proteins by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the results against the predicted P. chrysosporium proteome showed that a catalase (Joint Genome Institute P. chrysosporium protein identification number [I. D.] 124398), an alcohol oxidase (126879), two transporters (137220 and 132234), and two cytochrome P450s (5011 and 8912) were upregulated under ligninolytic conditions. Quantitative reverse transcription-PCR assays showed that RNA transcripts encoding all of these proteins were also more abundant in ligninolytic cultures. Catalase 124398, alcohol oxidase 126879, and transporter 137220 were found in a proteomic analysis of partially purified plasma membranes from ligninolytic P. chrysosporium and are therefore most likely associated with the outer envelope of the fungus. C1 [Shary, Semarjit; Kapich, Alexander N.; Cullen, Daniel; Hammel, Kenneth E.] USDA, Forest Prod Lab, Inst Microbial & Biochem Technol, Madison, WI 53726 USA. [Shary, Semarjit; Kapich, Alexander N.; Cullen, Daniel; Hammel, Kenneth E.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Panisko, Ellen A.; Magnuson, Jon K.] Pacific NW Natl Lab, Biol Proc Dev Grp, Richland, WA 99352 USA. RP Hammel, KE (reprint author), USDA, Forest Prod Lab, Inst Microbial & Biochem Technol, 1 Gifford Pinchot Dr, Madison, WI 53705 USA. EM kehammel@wisc.edu RI Hammel, Kenneth/G-1890-2011 OI Hammel, Kenneth/0000-0002-2935-5847 FU U. S. Department of Energy [DE-FG02-94ER20140, DE-AI02-07ER64480, DE-AI32-08NA28543]; U. S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by U. S. Department of Energy grants DE-FG02-94ER20140, DE-AI02-07ER64480, and DE-AI32-08NA28543 to K. E. H. The proteomic data were processed and archived by the Instrument Development Laboratory at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U. S. Department of Energy's Office of Biological and Environmental Research. NR 42 TC 30 Z9 30 U1 0 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2008 VL 74 IS 23 BP 7252 EP 7257 DI 10.1128/AEM.01997-08 PG 6 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 374FZ UT WOS:000261030400020 PM 18849459 ER PT J AU Kwak, JH Kim, DH Szanyi, J Peden, CHF AF Kwak, Ja Hun Kim, Do Heui Szanyi, Janos Peden, Charles H. F. TI Excellent sulfur resistance of Pt/BaO/CeO(2) lean NO(x) trap catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Ceria; LNT; Sulfur; Barium oxide; NO(x) ID STORAGE-REDUCTION; PT/BAO/AL2O3; MECHANISM; TEMPERATURE; STABILITY; PLATINUM; WATER; OXIDE AB In this work, we investigated the NO(x) storage behavior of Pt/BaO/CeO(2) catalysts, especially in the presence of SO(2). High surface area CeO(2) (similar to 110 m(2)/g) with a rod like morphology was synthesized and used as a support. The Pt/BaO/CeO(2) sample demonstrated slightly higher NO(x) uptake in the entire temperature range studied compared with Pt/BaO/gamma-Al(2)O(3). More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NO(x) uptake was maintained even after exposing the sample to similar to 3 g/L of SO(2). The same sulfur exposure, on the other hand, eliminated the complete NO(x) uptake time on the alumina-based NO(x) storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600 degrees C on the ceria-based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly formed BaS phase into large crystallites. XPS results revealed the presence of about five times more residual sulfur after reductive de-sulfation at 600 degrees C on the alumina-based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NO(x) uptake properties, ceria-based catalysts have (a) much higher sulfur tolerance and (b) excellent resistance against Pt sintering when they are compared to the widely used alumina-based catalysts. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99354 USA. EM chuck.peden@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE) [DE-AC06-76RLO 1830]; Office of Freedom Car and Vehicle Technologies; U.S. DOE's Office of Biological and Environmental Research FX Financial support was provided by the U.S. Department of Energy (DOE), Office of Freedom Car and Vehicle Technologies. The work was performed in the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility and supported by the U.S. DOE's Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 17 TC 35 Z9 37 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD DEC 1 PY 2008 VL 84 IS 3-4 BP 545 EP 551 DI 10.1016/j.apcatb.2008.05.009 PG 7 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 375OQ UT WOS:000261123600028 ER PT J AU Xu, TF Senger, R Finsterle, S AF Xu, Tianfu Senger, Rainer Finsterle, Stefan TI Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects SO APPLIED GEOCHEMISTRY LA English DT Article ID HYDROGEN EVOLUTION; IRON CORROSION; POROUS-MEDIA; FLUID-FLOW; TRANSPORT; PRESSURE; CLAY AB Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of H-2 gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies have used H-2 generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, Fe corrosion and H-2 generation rates vary with time, depending on factors such as amount of Fe, water availability, water contact area and aqueous and solid chemistry. To account for these factors and feedback mechanisms, a chemistry model was developed related to Fe corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H-2 generation and water consumption. Results indicate that by dynamically calculating H-2 generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas-pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry. the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on H-2 gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Xu, Tianfu; Finsterle, Stefan] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Senger, Rainer] INTERA Inc, Austin, TX 78754 USA. RP Xu, TF (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM Tianfu_Xu@lbl.gov RI Finsterle, Stefan/A-8360-2009 OI Finsterle, Stefan/0000-0002-4446-9906 FU National Co-operative for the Disposal of Radioactive Waste (NAGRA) of Switzerland; US Department of Energy [DE-AC02-05CH11231] FX We are grateful to Nicolas Spycher and Keni Zhang for a review of the manuscript and suggestions for improvement. We appreciate Eric Gaucher and the anonymous reviewer for their comments during the journal review process, which greatly improved the quality of the paper. This work was supported by the National Co-operative for the Disposal of Radioactive Waste (NAGRA) of Switzerland, and, in part, by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 20 Z9 21 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD DEC PY 2008 VL 23 IS 12 BP 3423 EP 3433 DI 10.1016/j.apgeochem.2008.07.012 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 387PI UT WOS:000261963700013 ER PT J AU Soler, JM Boi, M Mogollon, JL Cama, J Ayora, C Nico, PS Tamura, N Kunz, M AF Soler, Josep M. Boi, Marco Mogollon, Jose Luis Cama, Jordi Ayora, Carlos Nico, Peter S. Tamura, Nobumichi Kunz, Martin TI The passivation of calcite by acid mine water. Column experiments with ferric sulfate and ferric chloride solutions at pH 2 SO APPLIED GEOCHEMISTRY LA English DT Article ID DISPERSED ALKALINE SUBSTRATE; METAL CONCENTRATIONS; DRAINAGE; LIMESTONE; SCHWERTMANNITE; NEUTRALIZATION; PENNSYLVANIA; DESIGN; USA AB Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H(2)SO(4), pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L(-1), were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe-oxyhydroxysulfates (Fe(III)-SO(4)-H(+) solutions) or Fe-oxyhydroxychlorides (Fe(III)-Cl-H(+) solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to similar to 6-7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)-SO(4)-H(+) solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)-Cl-H(+) solutions. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Soler, Josep M.; Boi, Marco; Mogollon, Jose Luis; Cama, Jordi; Ayora, Carlos] CSIC, Inst Earth Sci Jaume Almera, E-08028 Barcelona, Catalonia, Spain. [Soler, Josep M.; Boi, Marco; Cama, Jordi; Ayora, Carlos] CSIC, Inst Environm Assessment & Water Res, ES-08034 Barcelona, Catalonia, Spain. [Mogollon, Jose Luis] Cent Univ Venezuela, Inst Ciencias Tierra, Caracas 1020A, Venezuela. [Nico, Peter S.; Tamura, Nobumichi; Kunz, Martin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Soler, JM (reprint author), CSIC, Inst Earth Sci Jaume Almera, Lluis Sole & Sabaris S-N, E-08028 Barcelona, Catalonia, Spain. EM jsoler@ija.csic.es RI Nico, Peter/F-6997-2010; Kunz, Martin/K-4491-2012; ayora, carlos/M-3914-2014; OI Nico, Peter/0000-0002-4180-9397; Kunz, Martin/0000-0001-9769-9900; ayora, carlos/0000-0003-0238-7723; Soler, Josep M./0000-0003-0741-249X FU Spanish Ministry of Science [CTM2006-28151-E/TECNO, CTM2007-66724C02-01/TECNO]; US Department of EnergyDE-AC02-05CH11231 FX We wish to express our gratitude to Fermi Roca (Roca Quarry) for providing the limestone samples, to Eva Pelegri and Xavier Llovet from the Scientific-Technical Services of the University of Barcelona for their helpful assistance in the ICP-AES and EM analyses, to Josep Elvira, Rafael Bartroli and J.J. Cepero (Inst. Jaurne Almera) for the XRD work, ICPAES analyses and initial column design and construction, and to Carl Steefel and Alastair MacDowell for assistance in organizing the work at Lawrence Berkeley National Laboratory. The reviews of the manuscript by C. Cravotta and D. Rimstidt are also acknowledged. Research was funded by projects CTM2006-28151-E/TECNO and CTM2007-66724C02-01/TECNO from the Spanish Ministry of Science. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 15 Z9 18 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD DEC PY 2008 VL 23 IS 12 BP 3579 EP 3588 DI 10.1016/j.apgeochem.2008.08.011 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 387PI UT WOS:000261963700025 ER PT J AU Bourg, IC Sposito, G Bourg, ACM AF Bourg, Ian C. Sposito, Garrison Bourg, Alain C. M. TI Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength SO APPLIED GEOCHEMISTRY LA English DT Article ID SODIUM MONTMORILLONITE; EXCHANGE; SORPTION; CESIUM; CLAYS; MICROSTRUCTURE; CONFINEMENT; SIMULATION; MECHANISM; MIGRATION AB Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of Na-22(+) in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (DJ of Na+, whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers. (C) 2008 Elsevier Ltd. All rights reserved, C1 [Bourg, Ian C.; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Berkeley, CA 94720 USA. [Bourg, Ian C.; Bourg, Alain C. M.] Univ Pau, F-64013 Pau, France. [Bourg, Ian C.] ANDRA, F-92298 Chatenay Malabry, France. RP Bourg, IC (reprint author), Harvard Univ, Hoffman Labs 304, 20 Oxford St, Cambridge, MA 02138 USA. EM ibourg@nature.berkeley.edu RI Bourg, Ian/A-6405-2013; OI Bourg, Ian/0000-0002-5265-7229 FU French Agency for Radioactive Waste Management (ANDRA, Agence Nationale pour la Gestion des Dechets Radioactifs, Chatenay-Malabry, France); US Department of Energy [DE-AC03-76F00098] FX The lead author (ICB) is grateful for a predoctoral fellowship from the French Agency for Radioactive Waste Management (ANDRA, Agence Nationale pour la Gestion des Dechets Radioactifs, Chatenay-Malabry, France). The data analysis reported in this paper also was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC03-76F00098. The interpretation of experimental diffusion data benefited greatly from discussions between the first author and Professor T. Kozaki, Hokkaido University (Japan). NR 38 TC 20 Z9 20 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD DEC PY 2008 VL 23 IS 12 BP 3635 EP 3641 DI 10.1016/j.apgeochem.2008.09.004 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 387PI UT WOS:000261963700030 ER PT J AU Puretzky, AA Styers-Barnett, DJ Rouleau, CM Hu, H Zhao, B Ivanov, IN Geohegan, DB AF Puretzky, A. A. Styers-Barnett, D. J. Rouleau, C. M. Hu, H. Zhao, B. Ivanov, I. N. Geohegan, D. B. TI Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID ABLATION; DYNAMICS; GROWTH AB The conditions for the scaled synthesis of single wall carbon nanotubes (SWNTs) and single wall carbon nanohorns (SWNHs) by laser vaporization at high temperatures are investigated and compared using in situ diagnostics. An industrial Nd:YAG laser (600 W, 1-500 Hz repetition rate) with tunable pulse widths (0.5-50 ms) is utilized to explore conditions for high-yield production. High-speed videography (50000 frames/s) of the laser plume and pyrometry of the target surface are correlated with ex situ high resolution transmission electron microscopy analysis of the products for pure carbon targets and carbon/catalyst targets to understand the effects of the processing conditions on the resulting nanostructures. Carbon is shown to self-assemble into single-wall nanohorn structures at rates of similar to 1 nm/ms, which is comparable to the catalyst-assisted SWNT growth rates. Two regimes of laser ablation, cumulative ablation by multiple pulses and continuous ablation by individual pulses, were explored. Cumulative ablation with spatially overlapping 0.5-ms pulses is favorable for the high yield and production rate of SWNTs at similar to 6 g/h while continuous ablation by individual long laser pulses (similar to 20 ms) at high temperatures results in the highest yield of SWNHs at similar to 10 g/h. Adjustment of the laser pulse width is shown to control SWNH morphology. C1 [Puretzky, A. A.; Styers-Barnett, D. J.; Rouleau, C. M.; Hu, H.; Zhao, B.; Ivanov, I. N.; Geohegan, D. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Puretzky, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM puretzkya@ornl.gov RI ivanov, ilia/D-3402-2015; Rouleau, Christopher/Q-2737-2015; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI ivanov, ilia/0000-0002-6726-2502; Rouleau, Christopher/0000-0002-5488-3537; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 NR 13 TC 19 Z9 20 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD DEC PY 2008 VL 93 IS 4 BP 849 EP 855 DI 10.1007/s00339-008-4744-3 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 362SX UT WOS:000260218500006 ER PT J AU Liu, Z Styers-Barnett, DJ Puretzky, AA Rouleau, CM Yuan, D Ivanov, IN Xiao, K Liu, J Geohegan, DB AF Liu, Z. Styers-Barnett, D. J. Puretzky, A. A. Rouleau, C. M. Yuan, D. Ivanov, I. N. Xiao, K. Liu, J. Geohegan, D. B. TI Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; LOCALIZED SYNTHESIS; SCALE AB The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (> 0.5 ms) was implemented to rapidly heat (> 3 x 10(4)degrees C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of > 0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors. C1 [Liu, Z.; Styers-Barnett, D. J.; Puretzky, A. A.; Rouleau, C. M.; Ivanov, I. N.; Xiao, K.; Geohegan, D. B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yuan, D.; Liu, J.] Duke Univ, Dept Chem, Durham, NC 27708 USA. RP Geohegan, DB (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM odg@ornl.gov RI Xiao, Kai/A-7133-2012; ivanov, ilia/D-3402-2015; Rouleau, Christopher/Q-2737-2015; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI Xiao, Kai/0000-0002-0402-8276; ivanov, ilia/0000-0002-6726-2502; Rouleau, Christopher/0000-0002-5488-3537; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 FU DOE-BES Division of Materials Science FX We gratefully thank Dr. Daihua Zhang, Dr. Xiaolei Liu at USC, Dr. Weidong Luo, Dr. Gyula Eres, Dr. Zhixian Zhou, and Dr. Jing Tao at ORNL for helpful discussion on this manuscript. The authors acknowledge the technical assistance of Pam Fleming. Research on rapid laser heating for device functionality performed as a user project [D.Y., J.L.] through the Functional Hybrid Nanostructures group at the Center for Nanophase Materials Sciences [Z.L., D.S.B., I.I., C.M.R.] which is supported by the U. S. Dept. of Energy Basic Energy Sciences, Division of Scientific User Facilities. Fundamental measurements of nanotube growth [A.A., D.G.] funded by DOE-BES Division of Materials Science. NR 20 TC 17 Z9 17 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD DEC PY 2008 VL 93 IS 4 BP 987 EP 993 DI 10.1007/s00339-008-4804-8 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 362SX UT WOS:000260218500029 ER PT J AU Rouleau, CM Eres, G Cui, H Christen, HM Puretzky, AA Geohegan, DB AF Rouleau, C. M. Eres, G. Cui, H. Christen, H. M. Puretzky, A. A. Geohegan, D. B. TI Altering the catalytic activity of thin metal catalyst films for controlled growth of chemical vapor deposited vertically aligned carbon nanotube arrays SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID YARNS AB The growth rate and terminal length of vertically aligned carbon nanotube arrays (VANTAs) grown by chemical vapor deposition have been dramatically improved through pulsed KrF excimer laser pretreatments of multilayer metal catalyst films. Silicon wafers coated with Al, Mo, and Fe layers were laser processed in air with single laser shots of varying fluence through circular apertures, then heated to similar to 750 degrees C and exposed to acetylene and ferrocene containing gas mixtures typically used to grow vertically aligned nanotube arrays. In situ videography was used to record the growth kinetics of the nanotube arrays in both patterned and unpatterned regions to understand the changes in catalytic activity, growth rates, and termination of growth. The height of the patterned regions varied with fluence, with the most successful treatment resulting in 1.4 cm tall posts of nanotubes embedded in a 0.4 cm tall nanotube carpet. High-resolution transmission electron microscopy images from the nanotubes in the posts revealed fewer walls, smaller diameters, and a much narrower distribution of diameters compared to the nanotubes grown in the carpet. This information, along with data obtained from weighing the material from each region, suggests that pulsed laser processing can also significantly increase the areal density of VANTAs. C1 [Rouleau, C. M.; Puretzky, A. A.; Geohegan, D. B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. [Eres, G.; Cui, H.; Christen, H. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Rouleau, CM (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. EM rouleaucm@ornl.gov RI Christen, Hans/H-6551-2013; Rouleau, Christopher/Q-2737-2015; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017 OI Christen, Hans/0000-0001-8187-7469; Rouleau, Christopher/0000-0002-5488-3537; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214 NR 7 TC 5 Z9 6 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD DEC PY 2008 VL 93 IS 4 BP 1005 EP 1009 DI 10.1007/s00339-008-4775-9 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 362SX UT WOS:000260218500031 ER PT J AU Han, WQ Wu, LJ Zhu, YM Watanabe, K Taniguchi, T AF Han, Wei-Qiang Wu, Lijun Zhu, Yimei Watanabe, Kenji Taniguchi, Takashi TI Structure of chemically derived mono- and few-atomic-layer boron nitride sheets SO APPLIED PHYSICS LETTERS LA English DT Article DE boron compounds; crystal microstructure; electron energy loss spectra; III-V semiconductors; monolayers; sheet materials; transmission electron microscopy; wide band gap semiconductors ID GRAPHENE; NANOTUBES; CARBON; TEMPERATURE AB We prepared mono- and few-layer hexagonal boron nitride sheets by a chemical-solution-derived method starting from single-crystalline hexagonal boron nitride. Using high-resolution transmission electron microscopy and electron-energy-loss spectrometry, we characterized the microstructure, composition, and near-edge fine structure of the boron nitride sheets. We conclude that the fringe contrast in the edge and the moire patterns are feasible criteria for determining the number of layers and their stacking orientation in the sheets. These criteria are also useful for other mono- and few-layer materials, such as graphene sheets. C1 [Han, Wei-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Han, WQ/E-2818-2013; TANIGUCHI, Takashi/H-2718-2011; WATANABE, Kenji/H-2825-2011 OI WATANABE, Kenji/0000-0003-3701-8119 FU U. S. DOE [DE-AC02-98CH10886]; Laboratory Directed Research and Development Fund of Brookhaven National Laboratory FX This work is supported by the U. S. DOE under Contract No. DE-AC02-98CH10886 and Laboratory Directed Research and Development Fund of Brookhaven National Laboratory (to W.- Q. H.). NR 24 TC 250 Z9 254 U1 21 U2 134 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2008 VL 93 IS 22 AR 223103 DI 10.1063/1.3041639 PG 3 WC Physics, Applied SC Physics GA 379XT UT WOS:000261430600061 ER PT J AU Kang, J Parsai, EI Albin, D Karpov, VG Shvydka, D AF Kang, J. Parsai, E. I. Albin, D. Karpov, V. G. Shvydka, Diana TI From photovoltaics to medical imaging: Applications of thin-film CdTe in x-ray detection SO APPLIED PHYSICS LETTERS LA English DT Article DE cadmium compounds; diagnostic radiography; II-VI semiconductors; photovoltaic effects; semiconductor thin films; X-ray detection AB Recent developments in photovoltaics created a commercially viable technology of large area uniform thin-film structures, potentially extendable to the field of medical imaging, where the capability of producing large area x-ray detectors is essential for the successful diagnosis and treatment of cancer. We propose a large area thin-film CdTe structure suitable for radiation detection and discuss its main characteristics under x-ray beams used in radiation therapy. While based on the same principle, the details of its operations are very dissimilar from that of photovoltaics. C1 [Kang, J.; Parsai, E. I.; Shvydka, Diana] Univ Toledo Hlth Sci Campus, Dept Radiat Oncol, Toledo, OH 43614 USA. [Albin, D.] NREL, Golden, CO 80401 USA. [Karpov, V. G.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. RP Kang, J (reprint author), Univ Toledo Hlth Sci Campus, Dept Radiat Oncol, Toledo, OH 43614 USA. EM diana.shvydka@utoledo.edu RI Karpov, Victor/I-5169-2012 NR 11 TC 13 Z9 15 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2008 VL 93 IS 22 AR 223507 DI 10.1063/1.3042212 PG 3 WC Physics, Applied SC Physics GA 379XT UT WOS:000261430600084 ER PT J AU Rawool-Sullivan, MW Sullivan, JP Tornga, SR Brumby, SP AF Rawool-Sullivan, Mohini W. Sullivan, John P. Tornga, Shawn R. Brumby, Steven P. TI A simple algorithm for estimation of source-to-detector distance in Compton imaging SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Compton scattering; Nuclear imaging; Algorithms ID CAMERA AB Compton imaging is used to predict the location of gamma-emitting radiation sources. The X and Y coordinates of the source can be obtained using a back-projected image and a two-dimensional peak-finding algorithm. The emphasis of this work is to estimate the source-to-detector distance (Z). The algorithm presented uses the solid angle subtended by the reconstructed image at various source-to-detector distances. This algorithm was validated using both measured data from the prototype Compton imager (PCI) constructed at the Los Alamos National Laboratory and simulated data of the same imager. Results show this method can be applied successfully to estimate Z, and it provides a way of determining Z without prior knowledge of the source location. This method is faster than the methods that employ maximum likelihood method because it is based on simple back projections of Compton scatter data. (C) 2008 Elsevier Ltd. All rights reserved C1 [Rawool-Sullivan, Mohini W.; Sullivan, John P.; Tornga, Shawn R.; Brumby, Steven P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rawool-Sullivan, MW (reprint author), Los Alamos Natl Lab, MS B230,IAT-1, Los Alamos, NM 87545 USA. EM Mohini@lanl.gov OI Rawool-Sullivan, Mohini/0000-0002-3001-3318; Sullivan, John/0000-0002-9067-1531 NR 13 TC 5 Z9 5 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD DEC PY 2008 VL 66 IS 12 BP 1986 EP 1991 DI 10.1016/j.apradiso.2008.06.040 PG 6 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 373YG UT WOS:000261008800041 PM 18693115 ER PT J AU Quiroz-Valenzuela, S Sukuru, SCK Hausinger, RP Kuhn, LA Heller, WT AF Quiroz-Valenzuela, Soledad Sukuru, Sai Chetan K. Hausinger, Robert P. Kuhn, Leslie A. Heller, William T. TI The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering SO ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS LA English DT Article DE Urease; Activation; Flexibility; Small-angle X-ray scattering ID KLEBSIELLA-AEROGENES UREASE; NICKEL METALLOCENTER; ACCESSORY PROTEINS; APOPROTEIN COMPLEXES; CRYSTAL-STRUCTURE; ACTIVE-SITE; UREF; METALLOCHAPERONE; PURIFICATION; BIOSYNTHESIS AB Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)(3) induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SANS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G I I P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)(3), and (UreABC-UreDF)(3) confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)(3) Structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site. (C) 2008 Elsevier Inc. All rights reserved. C1 [Hausinger, Robert P.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Quiroz-Valenzuela, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.] Michigan State Univ, Quantitat Biol Initiat, E Lansing, MI 48824 USA. [Heller, William T.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Heller, William T.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hausinger, RP (reprint author), Michigan State Univ, Dept Microbiol & Mol Genet, 2215 Biomed Phys Sci, E Lansing, MI 48824 USA. EM hausinge@msu.edu OI Hausinger, Robert/0000-0002-3643-2054 FU National Institutes of Health [DK45686, GM67249]; MSU Quantitative Biology and Modeling Initiative [71-4841, KP1102010]; office of Biological and Environmental Research of the U.S. Department of Energy, [DE-AC05-000R22725]; Oak Ridge National Laboratory; UT-Batelle, LLC FX We thank Scott Mulrooney, Kimberly Anderson, and Yiming Mo for their assistance. This work was Supported by the National Institutes of Health (DK45686 to R.P.H. and GM67249 to L.A.K.), the MSU Quantitative Biology and Modeling Initiative (Strategic Partnership Grant 71-4841), and Project KP1102010 of the office of Biological and Environmental Research of the U.S. Department of Energy, under Contract No. DE-AC05-000R22725 with Oak Ridge National Laboratory managed and operated by UT-Batelle, LLC. NR 42 TC 24 Z9 24 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0003-9861 EI 1096-0384 J9 ARCH BIOCHEM BIOPHYS JI Arch. Biochem. Biophys. PD DEC 1 PY 2008 VL 480 IS 1 BP 51 EP 57 DI 10.1016/j.abb.2008.09.004 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 374JK UT WOS:000261039400007 PM 18823937 ER PT J AU Voynova, NE Fu, ZJ Battaile, KP Herdendorf, TJ Kim, JJP Miziorko, HM AF Voynova, Natalia E. Fu, Zhuji Battaile, Kevin P. Herdendorf, Timothy J. Kim, Jung-Ja P. Miziorko, Henry M. TI Human mevalonate diphosphate decarboxylase: Characterization, investigation of the mevalonate diphosphate binding site, and crystal structure SO ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS LA English DT Article DE Human mevalonate diphosphate; decarboxylase; Isoprenoid biosynthesis; Mevalonate pathway; Competitive inhibition; Active site function; Protein structure ID HUMAN INHERITED DISEASE; 5-PYROPHOSPHATE DECARBOXYLASE; 5-DIPHOSPHATE DECARBOXYLASE; PYROPHOSPHATE DECARBOXYLASE; CHOLESTEROL-BIOSYNTHESIS; TRANSITION-STATE; CHICKEN LIVER; MECHANISM; KINASE; INHIBITION AB Expression in Escherichia coli of his-tagged human mevalonate diphosphate decarboxylase (hMDD) has expedited enzyme isolation, characterization, functional investigation of the mevalonate diphosphate binding site, and crystal Structure determination (2.4 A resolution). hMDD exhibits V-max = 6.1 +/- 0.5 U/mg; K, for ATP is 0.69 +/- 0.07 mM and K-m for (R,S) mevalonate diphosphate is 28.9 +/- 3.3 mu M. Conserved polar residues predicted to be in the hMDD active site were mutated to test functional importance. RI 61 Q exhibits a similar to 1000-fold diminution in specific activity, while binding the fluorescent substrate analog, TNP-ATP, comparably to wild-type enzyme. Diphosphoglycolyl proline (K-i = 2.3 +/- 0.3 uM) and 6-fluoromevalonate 5-diphosphate (Ki = 62 +/- 5 nM) are competitive inhibitors with respect to mevalonate diphosphate. N17A exhibits a V-max = 0.25 +/- 0.02 U/mg and a 15-fold inflation in K. for mevalonate diphosphate. N17A's K-i values for diphosphoglycolyl proline and fluoromevalonate diphosphate are inflated (>70-fold and 40-fold, respectively) in comparison with wild-type enzyme. hMDD structure indicates the proximity (2.8 angstrom) between RI 61 and NI 7, which are located in an interior pocket of the active site cleft. The data suggest the functional importance of RI 61 and NI 7 in the binding and orientation of mevalonate diphosphate. (C) 2008 Elsevier Inc. All rights reserved. C1 [Voynova, Natalia E.; Herdendorf, Timothy J.; Miziorko, Henry M.] Univ Missouri, Div Mol Biol & Biochem, Kansas City, MO 64110 USA. [Voynova, Natalia E.] St Petersburg State Univ, Dept Biochem, St Petersburg, Russia. [Fu, Zhuji; Kim, Jung-Ja P.] Med Coll Wisconsin, Dept Biochem, Milwaukee, WI 53226 USA. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, IMCA CAT, Argonne, IL 60439 USA. RP Miziorko, HM (reprint author), Univ Missouri, Div Mol Biol & Biochem, 5007 Rockhill Rd, Kansas City, MO 64110 USA. EM miziorkoh@umkc.edu OI Battaile, Kevin/0000-0003-0833-3259 FU NIH [DK53766]; [MDD R161] FX Dr. K.M. Gibson generously provided the plasmid encoding a GST-human MDD fusion construct. Dr. Dmitrjy Krepkiy provided preliminary evidence for the importance of an arginine corresponding to human MDD R161 in unpublished work on yeast MDD. We thank Dr. Todd Holyoak for suggestions and help with some of the molecular modeling. This work was supported, in part, by NIH DK53766. NR 35 TC 21 Z9 25 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0003-9861 EI 1096-0384 J9 ARCH BIOCHEM BIOPHYS JI Arch. Biochem. Biophys. PD DEC 1 PY 2008 VL 480 IS 1 BP 58 EP 67 DI 10.1016/j.abb.2008.08.024 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 374JK UT WOS:000261039400008 PM 18823933 ER PT J AU Holtzman, JA Marriner, J Kessler, R Sako, M Dilday, B Frieman, JA Schneider, DP Bassett, B Becker, A Cinabro, D DeJongh, F Depoy, DL Doi, M Garnavich, PM Hogan, CJ Jha, S Konishi, K Lampeitl, H Marshall, JL McGinnis, D Miknaitis, G Nichol, RC Prieto, JL Riess, AG Richmond, MW Romani, R Smith, M Takanashi, N Tokita, K Van der Heyden, K Yasuda, N Zheng, C AF Holtzman, Jon A. Marriner, John Kessler, Richard Sako, Masao Dilday, Ben Frieman, Joshua A. Schneider, Donald P. Bassett, Bruce Becker, Andrew Cinabro, David DeJongh, Fritz Depoy, Darren L. Doi, Mamoru Garnavich, Peter M. Hogan, Craig J. Jha, Saurabh Konishi, Kohki Lampeitl, Hubert Marshall, Jennifer L. McGinnis, David Miknaitis, Gajus Nichol, Robert C. Prieto, Jose Luis Riess, Adam G. Richmond, Michael W. Romani, Roger Smith, Mathew Takanashi, Naohiro Tokita, Kouichi Van der Heyden, Kurt Yasuda, Naoki Zheng, Chen TI THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA SO ASTRONOMICAL JOURNAL LA English DT Article DE supernovae: general; techniques: photometric ID DATA RELEASE; SYSTEM; STANDARDS; PROGRAM; MONITOR; STIS AB We present ugriz light curves for 146 spectroscopically-confirmed or spectroscopically-probable Type Ia supernovae (SNe) from the 2005 season of the Sloan Digital Sky Survey-II Supernova (SN) survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that SN brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique that demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season. C1 [Holtzman, Jon A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Marriner, John; Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Kessler, Richard; Dilday, Ben; Frieman, Joshua A.; DeJongh, Fritz; McGinnis, David; Miknaitis, Gajus] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, Richard] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Sako, Masao; Jha, Saurabh; Romani, Roger; Zheng, Chen] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dilday, Ben] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bassett, Bruce] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Bassett, Bruce; Van der Heyden, Kurt] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Becker, Andrew; Hogan, Craig J.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Cinabro, David] Wayne State Univ, Dept Phys, Detroit, MI 48202 USA. [Depoy, Darren L.; Marshall, Jennifer L.; Prieto, Jose Luis] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Doi, Mamoru; Takanashi, Naohiro; Tokita, Kouichi] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Jha, Saurabh] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Konishi, Kohki; Yasuda, Naoki] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Lampeitl, Hubert; Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lampeitl, Hubert; Nichol, Robert C.; Smith, Mathew] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Van der Heyden, Kurt] Univ Cape Town, Dept Astron, ZA-7700 Rondebosch, South Africa. RP Holtzman, JA (reprint author), New Mexico State Univ, Dept Astron, MSC 4500,POB 30001, Las Cruces, NM 88003 USA. EM holtz@nmsu.edu RI Yasuda, Naoki/A-4355-2011; OI Bassett, Bruce/0000-0001-7700-1069 FU Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U. S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Funding for the creation and distribution of the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. This work is supported in part by a JSPS (Japan Society for the Promotion of Science) core-to-core program "International Research Network for Dark Energy" and by JSPS research grants. This work was also partially supported by Los Alamos National Laboratory University of California Directed Research and Development Fund. The HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig- Maximillians-Universitat Munchen, and Georg-August-Universitat Gottingen; the HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPA), the Max-Planck-Institute for Astrophysics (MPiA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 26 TC 118 Z9 118 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2008 VL 136 IS 6 BP 2306 EP 2320 DI 10.1088/0004-6256/136/6/2306 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 374KP UT WOS:000261042500008 ER PT J AU Howell, SB Harrison, TE Huber, ME Szkody, P Walter, FM Harbeck, D AF Howell, Steve B. Harrison, Thomas E. Huber, Mark E. Szkody, Paula Walter, Frederick M. Harbeck, Daniel TI OPTICAL AND INFRARED OBSERVATIONS OF TWO MAGNETIC INTERACTING BINARIES: TAU 4 (RXJ0502.8+1624) & SDSS J121209.31+013627.7 SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: close; stars: general; stars: individual (RXJ0502.8+1624 (Tau 4), SDSS J121209.31+013627.7) ID CATACLYSMIC VARIABLES; WHITE-DWARFS; DATA RELEASE; EF-ERIDANI; SKY SURVEY; SDSS-J121209.31+013627.7; BAND AB We present new optical photometric and spectroscopic observations and K-band spectroscopy of two magnetic interacting binaries: Tau 4 (RXJ0502.8+1624) and SDSS J121209.31+013627.7. Tau 4 shows short-term, highly modulated optical light but no orbital period is firmly detected. K-band spectroscopy shows H and He I emission and reveals a remarkable phase-resolved dataset. We detect clear evidence for cyclotron humps in the K-band implying a magnetic white dwarf with B similar to 7-11 MG and confirming Tau 4 as a magnetic binary. A short self eclipse by the gas stream is evident as the spectrum changes from emission to absorption and back within a few minutes. None of our K-band spectra of Tau 4 appear similar to the previously reported observation. Optical spectroscopy of SDSS J121209.31+013627.7 in 2007 May and June shows Zeeman-split Balmer absorption lines as previously noted in the literature but only weak, sporadic H alpha emission compared to past data. However, stronger H alpha emission returned in 2008 February, looking similar to that previously detected in 2006. The variable nature of this emission line makes irradiation from the white dwarf an unlikely cause of the H alpha emission in J1212. The nature of J1212 is reminiscent of that observed in its near twin, EF Eri. C1 [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Harrison, Thomas E.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Huber, Mark E.] Johns Hopkins Univ, Livermore, CA USA. [Huber, Mark E.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Szkody, Paula] Univ Washington, Seattle, WA 98195 USA. [Walter, Frederick M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Harbeck, Daniel] Univ Wisconsin, Madison, WI 53706 USA. RP Howell, SB (reprint author), Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. EM howell@noao.edu; tharriso@nmsu.edu; mhuber@pha.jhu.edu; szkody@washington.astro.edu; fwalter@astro.sunysb.edu; harbeck@noao.edu FU Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX S. H. thanks Marina Orio and the University of Padova Observatory, for their hospitality and the use of a 16th century Specola tower office. We wish to thank the Keck IIOAs Heather, Chuck, Terry, and Jason for their help with our observations and our support astronomer, Jim Lyke. Some of this work was performed by M. E. H. under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 22 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2008 VL 136 IS 6 BP 2541 EP 2551 DI 10.1088/0004-6256/136/6/2541 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 374KP UT WOS:000261042500027 ER PT J AU Tinker, J Kravtsov, AV Klypin, A Abazajian, K Warren, M Yepes, G Gottlober, S Holz, DE AF Tinker, Jeremy Kravtsov, Andrey V. Klypin, Anatoly Abazajian, Kevork Warren, Michael Yepes, Gustavo Gottloeber, Stefan Holz, Daniel E. TI TOWARD A HALO MASS FUNCTION FOR PRECISION COSMOLOGY: THE LIMITS OF UNIVERSALITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; large-scale structure of universe; methods: numerical ID DARK-MATTER HALOES; CLUSTER SCALING RELATIONS; PROBE WMAP OBSERVATIONS; X-RAY LUMINOSITY; GALAXY CLUSTERS; INITIAL CONDITIONS; HIGH-REDSHIFT; SKY SURVEY; SIMULATIONS; EVOLUTION AB We measure the mass function of dark matter halos in a large set of collisionless cosmological simulations of flat Delta CDM cosmology and investigate its evolution at z <= 2. Halos are identified as isolated density peaks, and their masses are measured within a series of radii enclosing specific overdensities. We argue that these spherical overdensity masses are more directly linked to cluster observables than masses measured using the friends-of-friends algorithm (FOF), and are therefore preferable for accurate forecasts of halo abundances. Our simulation set allows us to calibrate the mass function at z=0 for virial masses in the range 10(11) h(-1) M-circle dot <= M <= 10(15) h(-1) M-circle dot to <= 5%, improving on previous results by a factor of 2-3. We derive fitting functions for the halo mass function in this mass range for a wide range of overdensities, both at z=0 and earlier epochs. Earlier studies have sought to calibrate a universal mass function, in the sense that the same functional form and parameters can be used for different cosmologies and redshifts when expressed in appropriate variables. In addition to our fitting formulae, our main finding is that the mass function cannot be represented by a universal function at this level or accuracy. The amplitude of the "universal'' function decreases monotonically by approximate to 20%-50%, depending on the mass definition, from z=0 to 2.5. We also find evidence for redshift evolution in the overall shape of the mass function. C1 [Tinker, Jeremy; Kravtsov, Andrey V.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Tinker, Jeremy; Kravtsov, Andrey V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Klypin, Anatoly] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Abazajian, Kevork] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Warren, Michael; Holz, Daniel E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yepes, Gustavo] Univ Autonoma Madrid, Grp Astrofis, E-28049 Madrid, Spain. [Gottloeber, Stefan] Inst Astrophys, Potsdam, Germany. RP Tinker, J (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Yepes, Gustavo/A-7899-2010; OI Yepes, Gustavo/0000-0001-5031-7936; Warren, Michael/0000-0002-1218-7904 NR 66 TC 679 Z9 680 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2008 VL 688 IS 2 BP 709 EP 728 DI 10.1086/591439 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 373VU UT WOS:000261002400001 ER PT J AU Wu, HY Rozo, E Wechsler, RH AF Wu, Hao-Yi Rozo, Eduardo Wechsler, Risa H. TI THE EFFECTS OF HALO ASSEMBLY BIAS ON SELF-CALIBRATION IN GALAXY CLUSTER SURVEYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: theory; galaxies: clusters: general; galaxies: halos; large-scale structure of universe; methods: statistical ID DARK-MATTER HALOES; OPTICAL RICHNESS RELATION; PROBE WMAP OBSERVATIONS; DIGITAL SKY SURVEY; COSMOLOGICAL PARAMETERS; X-RAY; DENSITY PROFILE; MASS; ENERGY; CONSTRAINTS AB Self-calibration techniques for analyzing galaxy cluster counts utilize the abundance and the clustering amplitude of dark matter halos. These properties simultaneously constrain cosmological parameters and the cluster observable-mass relation. It was recently discovered that the clustering amplitude of halos depends not only on the halo mass, but also on various secondary variables, such as the halo formation time and the concentration; these dependences are collectively termed "assembly bias.'' Applying modified Fisher matrix formalism, we explore whether these secondary variables have a significant impact on the study of dark energy properties using the self-calibration technique in current (SDSS) and the near future ( DES, SPT, and LSST) cluster surveys. The impact of the secondary dependence is determined by ( 1) the scatter in the observable-mass relation and ( 2) the correlation between observable and secondary variables. We find that for optical surveys, the secondary dependence does not significantly influence an SDSS-like survey; however, it may affect a DES-like survey ( given the high scatter currently expected from optical clusters) and an LSST-like survey ( even for low scatter values and low correlations). For an SZ survey such as SPT, the impact of secondary dependence is insignificant if the scatter is 20% or lower but can be enhanced by the potential high scatter values introduced by a highly correlated background. Accurate modeling of the assembly bias is necessary for cluster self-calibration in the era of precision cosmology. C1 [Wu, Hao-Yi; Wechsler, Risa H.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Rozo, Eduardo] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. RP Wu, HY (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. EM hywu@stanford.edu; erozo@mps.ohio-state.edu; rwechsler@stanford.edu NR 66 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2008 VL 688 IS 2 BP 729 EP 741 DI 10.1086/591929 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 373VU UT WOS:000261002400002 ER PT J AU Hui, L Zhang, J AF Hui, Lam Zhang, Jun TI DENSITY-ELLIPTICITY CORRELATIONS, GALAXY-GALAXY LENSING, AND THE IMPORTANCE OF NON-GAUSSIANITY IN INTRINSIC ALIGNMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; galaxies: halos; galaxies: structure; gravitational lensing; large-scale structure of universe ID LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; 3-POINT CORRELATION-FUNCTION; TIDAL-TORQUE THEORY; DARK-MATTER HALOES; ANGULAR-MOMENTUM; REDSHIFT SURVEY; COSMIC SHEAR; NONLINEAR EVOLUTION; POWER SPECTRUM AB We compute both the extrinsic (lensing) and the intrinsic contributions to the density-ellipticity correlation function, the latter by using current analytic theories of tidal alignment. The gravitational lensing contribution has two components, one analogous to galaxy-galaxy lensing, and the other arising from magnification bias: gravitational lensing induces a modulation of the galaxy density, as well as the ellipticity. On the other hand, the intrinsic alignment contribution vanishes, even after we take source-clustering corrections into account, which suggests that the density-ellipticity correlation might be an interesting diagnostic with which to differentiate between intrinsic and extrinsic alignments. However, an important assumption commonly adopted by current analytic alignment theories is the Gaussianity of the tidal field. The inevitable non-Gaussian fluctuations from gravitational instability induce a nonzero intrinsic density-ellipticity correlation, which we estimate. We also argue that non-Gaussian contributions to the intrinsic ellipticity-ellipticity correlation are often nonnegligible. This leads to a linear scaling, rather than a quadratic scaling, as is commonly assumed, with the power spectrum on sufficiently large scales. Finally, we estimate the contribution of the intrinsic alignment to low-redshift galaxy-galaxy lensing measurements ( e. g., the SDSS) due to the partial overlap between foreground and background galaxies, and we find that the intrinsic contamination is about 10%-30% at 10 '. Uncertainties in this estimate are discussed. C1 [Hui, Lam] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Hui, L (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM lhui@fnal.gov; jz203@columbia.edu RI Zhang, Jun/O-3283-2015 NR 92 TC 12 Z9 12 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2008 VL 688 IS 2 BP 742 EP 756 DI 10.1086/589872 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 373VU UT WOS:000261002400003 ER PT J AU Abdo, AA Allen, B Aune, T Berley, D Blaufuss, E Casanova, S Chen, C Dingus, BL Ellsworth, RW Fleysher, L Fleysher, R Gonzalez, MM Goodman, JA Hoffman, CM Huntemeyer, PH Kolterman, BE Lansdell, CP Linnemann, JT McEnery, JE Mincer, AI Moskalenko, IV Nemethy, P Noyes, D Porter, TA Pretz, J Ryan, JM Parkinson, PMS Shoup, A Sinnis, G Smith, AJ Strong, AW Sullivan, GW Vasileiou, V Walker, GP Williams, DA Yodh, GB AF Abdo, A. A. Allen, B. Aune, T. Berley, D. Blaufuss, E. Casanova, S. Chen, C. Dingus, B. L. Ellsworth, R. W. Fleysher, L. Fleysher, R. Gonzalez, M. M. Goodman, J. A. Hoffman, C. M. Huentemeyer, P. H. Kolterman, B. E. Lansdell, C. P. Linnemann, J. T. McEnery, J. E. Mincer, A. I. Moskalenko, I. V. Nemethy, P. Noyes, D. Porter, T. A. Pretz, J. Ryan, J. M. Parkinson, P. M. Saz Shoup, A. Sinnis, G. Smith, A. J. Strong, A. W. Sullivan, G. W. Vasileiou, V. Walker, G. P. Williams, D. A. Yodh, G. B. TI MEASUREMENT OF THE SPATIAL DISTRIBUTION OF DIFFUSE TeV GAMMA-RAY EMISSION FROM THE GALACTIC PLANE WITH MILAGRO SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: observations ID COSMIC-RAY; GALAXY; J2032+4130; DISCOVERY; SPECTRUM; CYGNUS; EXCESS; MATTER; RIDGE AB Diffuse gamma-ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the northern hemisphere sky and for detecting diffuse gamma-ray emission at very high energies. Here the spatial distribution and the flux of the diffuse gamma-ray emission in the TeV energy range with a median energy of 15 TeV for Galactic longitude between 30 degrees and 110 degrees and between 136 degrees and 216 degrees and for Galactic latitude between -10 degrees and 10 degrees are determined. The measured fluxes are consistent with predictions of the GALPROP model everywhere, except for the Cygnus region (l is an element of[65 degrees, 85 degrees]). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the presence of active cosmic-ray sources accelerating hadrons, which interact with the local dense interstellar medium and produce gamma rays through pion decay. C1 [Abdo, A. A.] USN, Res Lab, Washington, DC 20375 USA. [Allen, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Aune, T.; Porter, T. A.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Berley, D.; Blaufuss, E.; Goodman, J. A.; Noyes, D.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.] Univ Maryland, College Pk, MD 20742 USA. [Casanova, S.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Chen, C.; Yodh, G. B.] Univ Calif Irvine, Irvine, CA USA. [Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Pretz, J.; Sinnis, G.; Walker, G. P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ellsworth, R. W.] George Mason Univ, Fairfax, VA 22030 USA. [Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, New York, NY USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Lansdell, C. P.] Inst Def Anal, Alexandria, VA USA. [Linnemann, J. T.] Michigan State Univ, E Lansing, MI 48824 USA. [McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moskalenko, I. V.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Moskalenko, I. V.] Stanford Univ, KIPAC, Stanford, CA 94305 USA. [Ryan, J. M.] Univ New Hampshire, Durham, NH 03824 USA. [Shoup, A.] Ohio State Univ, Lima, OH 45804 USA. [Strong, A. W.] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. RP Abdo, AA (reprint author), USN, Res Lab, Washington, DC 20375 USA. RI McEnery, Julie/D-6612-2012; Casanova, Sabrina/J-8935-2013; Moskalenko, Igor/A-1301-2007; OI Casanova, Sabrina/0000-0002-6144-9122; Moskalenko, Igor/0000-0001-6141-458X; Dingus, Brenda/0000-0001-8451-7450 FU National Science Foundation [PHY-0245234, PHY-0302000, PHY-0400424, PHY-0504201, PHY-0601080, ATM-0002744]; Department of Energy (Office of High Energy Physics); Los Alamos National Laboratory; University of California; Institute for Geophysics and Planetary Physics at Los Alamos National Laboratory; NASA APRA FX We thank Scott Delay, Michael Schneider, and Owen Marshall for their dedicated efforts on the Milagro experiment. We also gratefully acknowledge the financial support of the National Science Foundation (under grants PHY-0245234, -0302000, -0400424, -0504201, -0601080, and ATM-0002744), the Department of Energy (Office of High Energy Physics), Los Alamos National Laboratory, the University of California, and the Institute for Geophysics and Planetary Physics at Los Alamos National Laboratory. I.V. Moskalenko acknowledges partial support from the NASA APRA grant. NR 35 TC 65 Z9 67 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2008 VL 688 IS 2 BP 1078 EP 1083 DI 10.1086/592213 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 373VU UT WOS:000261002400028 ER PT J AU Xu, H O'Shea, BW Collins, DC Norman, ML Li, H Li, ST AF Xu, Hao O'Shea, Brian W. Collins, David C. Norman, Michael L. Li, Hui Li, Shengtai TI THE BIERMANN BATTERY IN COSMOLOGICAL MHD SIMULATIONS OF POPULATION III STAR FORMATION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: theory; galaxies: high-redshift; MHD; stars: formation ID MAGNETIC TOWER JETS; 1ST STARS; PRIMORDIAL STARS; CDM UNIVERSE; FIELDS; MAGNETOHYDRODYNAMICS; HYDRODYNAMICS; ORIGIN; EVOLUTION; CLUSTER AB We report the results of the first self-consistent three-dimensional adaptive mesh refinement magnetohydrodynamical simulations of Population III star formation including the Biermann battery effect. We find that the Population III stellar cores formed including this effect are both qualitatively and quantitatively similar to those from hydrodynamics-only (non-MHD) cosmological simulations. We observe peak magnetic fields of similar or equal to 10(-9) G in the center of our star-forming halo at z similar or equal to 17.55 at a baryon density of n(B) similar to 10(10) cm(-3). The magnetic fields created by the Biermann battery effect are predominantly formed early in the evolution of the primordial halo at low density and large spatial scales, and then grow through compression and by shear flows. The fields seen in this calculation are never large enough to be dynamically important (with beta >= 10(15) at all times before the termination of our calculation), and should be considered the minimum possible fields in existence during Population III star formation. The lack of magnetic support lends credibility to assumptions made in previous calculations regarding the lack of importance of magnetic fields in Population III star formation. In addition, these magnetic fields may be seed fields for the stellar dynamo or the magnetorotational instability at higher densities and smaller spatial scales. C1 [Xu, Hao; Collins, David C.; Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Xu, Hao; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [O'Shea, Brian W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Xu, H (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Xu, Hao/B-8734-2014 OI Xu, Hao/0000-0003-4084-9925 FU US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; NSF [AST-0708960]; NRAC [MCA98N020] FX - We would like to thank Tom Abel, Greg Bryan, Mordecai-Mark Mac Low, Matthew Turk, and Daniel Whalen for useful conversations. H. X. and B. W. O. have been supported by IGPP at Los Alamos National Laboratory, and carried out this work under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under contract DE-AC52-06NA25396. H. X. and M. L. N. acknowledge partial support from NSF grant AST-0708960. The simulation described in this paper was performed at the San Diego Supercomputing Center with computing time provided by NRAC allocation MCA98N020. NR 38 TC 44 Z9 44 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2008 VL 688 IS 2 BP L57 EP L60 DI 10.1086/595617 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 398LG UT WOS:000262733000001 ER PT J AU An, D Johnson, JA Clem, JL Yanny, B Rockosi, CM Morrison, HL Harding, P Gunn, JE Prieto, CA Beers, TC Cudworth, KM Ivans, II Ivezic, Z Lee, YS Lupton, RH Bizyaev, D Brewington, H Malanushenko, E Malanushenko, V Oravetz, D Pan, K Simmons, A Snedden, S Watters, S York, DG AF An, Deokkeun Johnson, Jennifer A. Clem, James L. Yanny, Brian Rockosi, Constance M. Morrison, Heather L. Harding, Paul Gunn, James E. Prieto, Carlos Allende Beers, Timothy C. Cudworth, Kyle M. Ivans, Inese I. Ivezic, Zeljko Lee, Young Sun Lupton, Robert H. Bizyaev, Dmitry Brewington, Howard Malanushenko, Elena Malanushenko, Viktor Oravetz, Dan Pan, Kaike Simmons, Audrey Snedden, Stephanie Watters, Shannon York, Donald G. TI GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. I. CROWDED-FIELD PHOTOMETRY AND CLUSTER FIDUCIAL SEQUENCES IN ugriz SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE globular clusters: general; Hertzsprung-Russell diagram; open clusters and associations: general; stars: evolution; surveys ID EMPIRICALLY CALIBRATED ISOCHRONES; DATA RELEASE; MILKY-WAY; BOLOMETRIC CORRECTIONS; STELLAR PHOTOMETRY; MODEL ATMOSPHERES; LOCAL SUBDWARFS; CCD PHOTOMETRY; WHITE-DWARFS; STAR CATALOG AB We present photometry for globular and open cluster stars observed with the Sloan Digital Sky Survey (SDSS). In order to exploit the over 100 million stellar objects with r < 22:5 mag observed by SDSS, we need to understand the characteristics of stars in the SDSS ugriz filters. While star clusters provide important calibration samples for stellar colors, the regions close to globular clusters, where the fraction of field stars is smallest, are too crowded for the standard SDSS photometric pipeline to process. To complement the SDSS imaging survey, we reduce the SDSS imaging data for crowded cluster fields using the DAOPHOT/ALLFRAME suite of programs and present photometry for 17 globular clusters and three open clusters in a SDSS value-added catalog. Our photometry and cluster fiducial sequences are on the native SDSS 2.5 m ugriz photometric system, and the fiducial sequences can be directly applied to the SDSS photometry without relying on any transformations. Model photometry for red giant branch and main-sequence stars obtained by Girardi et al. cannot be matched simultaneously to fiducial sequences; their colors differ by similar to 0.02-0.05 mag. Good agreement (similar to 0.02 mag in colors) is found with Clem et al. empirical fiducial sequences in u'g'r'i'z' when using the transformation equations in Tucker et al. C1 [An, Deokkeun; Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clem, James L.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA. [Morrison, Heather L.; Harding, Paul] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Gunn, James E.; Ivans, Inese I.; Lupton, Robert H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Prieto, Carlos Allende] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Ctr Study Cosm Evolut, Dept Phys & Astrophys, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Cudworth, Kyle M.] Univ Chicago, Yerkes Observ, Williams Bay, WI 53191 USA. [Ivans, Inese I.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Ivezic, Zeljko] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie; Watters, Shannon] Apache Point Observ, Sunspot, NM 88349 USA. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP An, D (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM deokkeun@astronomy.ohio-state.edu; jaj@astronomy.ohiostate.edu FU Alfred P. Sloan Foundation FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the ,NSF, the U. S. Department of Energy the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. NR 72 TC 95 Z9 95 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2008 VL 179 IS 2 BP 326 EP 354 DI 10.1086/592090 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 400IW UT WOS:000262862300004 ER PT J AU Johnson, BM Guan, XY Gammie, CF AF Johnson, Bryan M. Guan, Xiaoyue Gammie, Charles F. TI ORBITAL ADVECTION BY INTERPOLATION: A FAST AND ACCURATE NUMERICAL SCHEME FOR SUPER-FAST MHD FLOWS (vol 177, pg 373, 2008) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Correction RP Johnson, BM (reprint author), Lawrence Livermore Natl Lab, L-023,7000 E Ave, Livermore, CA 94550 USA. NR 1 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2008 VL 179 IS 2 BP 553 EP 555 DI 10.1086/591907 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 400IW UT WOS:000262862300013 ER PT J AU Adhikary, B Kulkarni, S Dallura, A Tang, Y Chai, T Leung, LR Qian, Y Chung, CE Ramanathan, V Carmichael, GR AF Adhikary, B. Kulkarni, S. Dallura, A. Tang, Y. Chai, T. Leung, L. R. Qian, Y. Chung, C. E. Ramanathan, V. Carmichael, G. R. TI A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aerosol transport modeling; Data assimilation; Receptor modeling ID POSITIVE MATRIX FACTORIZATION; ACE-ASIA; RETRIEVALS; CLIMATE; POLLUTION; CYCLE; HAZE AB A regional chemical transport model assimilated with monthly mean satellite and ground based aerosol optical depth (AOD) observations was used to produce three dimensional distributions of aerosols throughout Asia for a period of four years. The model was evaluated with daily assimilation of AOD for the month of April 2005. Sulfur Transport deposition Model (STEM), a regional chemical transport model, was used to simulate aerosol distributions at a resolution of 50 x 50 km with a time interval of 3 h. Monthly mean Moderate Resolution Imaging Spectroradiometer (MODIS) AOD along with AErosol RObotic NETwork (AERONET) AOD was used in an optimal interpolation assimilation scheme to yield regional distributions of aerosols. The MODIS AOD and aerosol fine mode fraction information (where available) were used in the assimilation technique. The daily assimilation of AOD results shows that the optimal interpolation algorithm is able to significantly improve model aerosol mass prediction skills at the two sites in Asia. Sensitivity studies were also conducted with different assimilation parameters on a daily assimilation scale and these results are discussed. The assimilation results of four-year aerosol fields were used to study the spatial and temporal distribution of aerosols in Asia. Two remote sites, Hanimaadhoo and Gosan were chosen as the case studies to study the outflow from the Indian subcontinent and East Asia. Seasonal and vertical structures of the aerosols are presented at these two sites. Positive Matrix Factorization (PMF), a factor analytic method was also used to characterize the source profile and source contribution at these two locations. A three-factor solution was able to explain more than 80% of the variation in the individual species at Hanimaadhoo and 90% variation of aerosol loadings at Gosan. The four-year averaged PMF model results were able to capture the seasonality of anthropogenic and dust loadings at both these locations. In addition, the PMF model identified the differences in the composition of anthropogenic aerosols over Hanimaadhoo and Gosan reflecting the differences in regional emissions. The PMF derived factors could be used as additional constraints for future assimilation studies. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Adhikary, B.; Kulkarni, S.; Dallura, A.; Tang, Y.; Chai, T.; Carmichael, G. R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Adhikary, B.; Kulkarni, S.; Carmichael, G. R.] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. [Leung, L. R.; Qian, Y.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chung, C. E.; Ramanathan, V.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Adhikary, B (reprint author), 407 IATL, Iowa City, IA 52242 USA. EM badhikar@engineering.uiowa.edu; sarika-kulkarni@uiowa.edu; alessio.dallura@gmail.com; Youhua.Tang@noaa.gov; Chai.Tianfeng@epamail.epa.gov; Ruby.Leung@pnl.gov; Yun.Qian@pnl.gov; chul.chung@helsinki.fi; vram@ucsd.edu; gcarmich@engineering.uiowa.edu RI qian, yun/A-5056-2010; Chai, Tianfeng/E-5577-2010; qian, yun/E-1845-2011; Tang, Youhua/D-5205-2016 OI Chai, Tianfeng/0000-0003-3520-2641; Tang, Youhua/0000-0001-7089-7915 FU NASA [NNG04GC58 G]; Battelle Memorial Institute [DE-AC06-76RLO] FX We would like to thank the various PIs of AERONET sites in maintaining their sites so that we can use their AOD and angstrom exponent data. This work was supported by a NASA grant (NNG04GC58 G). The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 48 TC 45 Z9 47 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2008 VL 42 IS 37 BP 8600 EP 8615 DI 10.1016/j.atmosenv.2008.08.031 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 378TY UT WOS:000261348100005 ER PT J AU Shetty, SK Lin, CJ Streets, DG Jang, C AF Shetty, Suraj K. Lin, Che-Jen Streets, David G. Jang, Carey TI Model estimate of mercury emission from natural sources in East Asia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Atmospheric mercury; Emission inventory; Natural/re-emission; Modeling; East Asia ID GASEOUS ELEMENTAL MERCURY; DYNAMIC FLUX CHAMBER; ATMOSPHERIC MERCURY; UNITED-STATES; SCIENTIFIC UNCERTAINTIES; AIR/SURFACE EXCHANGE; NORTH-AMERICA; LEAF-AREA; DEPOSITION; TRANSPORT AB East Asia is one of the largest source regions that release mercury into the atmosphere. Although extensive studies have been devoted to estimating the anthropogenic mercury emission, little is known about mercury emission from natural sources in the region. In this study, we adapt the algorithms developed previously, coupled with detailed GIS data and satellite LAI products, to estimate mercury emission from natural sources including vegetation, soil, and water surfaces in an East Asian domain containing 164 x 97 grid cells at a spatial resolution of 36 km. Seasonal simulations were performed to project the annual emission quantity. The simulated emission shows strong diurnal and seasonal variations due to meteorology and vegetation coverage. The annual emission in the form of gaseous elemental mercury (GEM) from the domain in 2001 is estimated to be 834 Mg, with 462 Mg contributed from China. The estimated GEM emission is comparable to the reported anthropogenic emission of 575 +/- 261 Mg (56% GEM, 32% reactive gaseous mercury, 12% particulate mercury; Wu, Y., Wang, S., Streets, D.G., Hao, J., Chan, M., Jiang, J., 2006. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology 40, 5312-5318) in China for the year 2001, and dominates the anthropogenic emission during the warm season. Combining the anthropogenic and natural emission estimates, the total mercury emission from China is 776-1298 Mg, with GEM being in the range of 660-1000 Mg. The latter is similar to the GEM emission quantity inferred from aircraft measurement (765 Mg; Friedli, H.R., Radke, LF, Prescott, R., Li, P., Woo, J.-H., Carmichael, G.R., 2004. Mercury in the atmosphere around Japan, Korea and China as observed during the 2001 ACE Asia field campaign: measurements, distributions, sources, and implications. journal of Geophysical Research 109, D19 S25) and modeling estimate (1140 Mg; Pan, L., Chai, T., Carmichael, G.R., Tang, Y., Streets, G.G., Woo, J.-H., Friedli, H.R., Radke, LF, 2007a. Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation. Atmospheric Environment 41, 2804-2819) in China for the year 2001. The estimated natural emission helps explain the gap between the anthropogenic emission estimates based on activity data (e.g., Pacyna, J.M., Pacyna, E., Steenhuisen, F, Wilson, S., 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 40, 4048-4063; Wu, Y., Wang, S., Streets, D.G., Hao, J., Chan, M., Jiang, J., 2006. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology 40, 5312-5318) and the emission inferred from field observations (e.g., Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., Kajii, Y., 2005. Export of atmospheric mercury from Asia. Atmospheric Environment 39, 3029-3038; Weiss-Penzias, R, Jaffe, D., Swartzendruber, R, Hafner, W., Chand, D., Prestbo, E., 2007. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor observatory. Atmospheric Environment 41, 4366-4379) in the region. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Lin, Che-Jen] Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. [Shetty, Suraj K.] Lamar Univ, Dept Chem Engn, Beaumont, TX 77710 USA. [Lin, Che-Jen] S China Univ Technol, Sch Environm Sci & Engn, Guangzhou, Guangdong, Peoples R China. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Jang, Carey] US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC 27711 USA. RP Lin, CJ (reprint author), Lamar Univ, Dept Civil Engn, 211 Redbird Lane,ML 10024, Beaumont, TX 77710 USA. EM jerry.lin@lamar.edu RI Lin, Che-Jen/K-1808-2013; OI Lin, Che-Jen/0000-0001-5990-3093; Streets, David/0000-0002-0223-1350 FU Texas Commission on Environmental Quality [64582-06-15] FX The authors would like to acknowledge the funding support from the Texas Commission on Environmental Quality (TCEQ Work Order Number: 64582-06-15), the USEPA Office of Air Quality Planning & Standards (RTI Subcontract Number: 6-321-0210288) and Texas Air Research Center (TARC Project Number: 077LUB0976). The work represents the authors' scientific assessment of mercury emission inventory and does not necessarily reflect the funding agencies' point of view. The mentioning of commercial software does not constitute the endorsement from the authors. The authors would also like to acknowledge the initial programming assistance by T. Vanjani and R. Poojary in this work. NR 71 TC 45 Z9 52 U1 6 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2008 VL 42 IS 37 BP 8674 EP 8685 DI 10.1016/j.atmosenv.2008.08.026 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 378TY UT WOS:000261348100012 ER PT J AU Ding, YHR Hixson, KK Aklujkar, MA Lipton, MS Smith, RD Lovley, DR Mester, T AF Ding, Yan-Huai R. Hixson, Kim K. Aklujkar, Muktak A. Lipton, Mary S. Smith, Richard D. Lovley, Derek R. Mester, Tuende TI Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Article DE Geobacter; c-Type cytochrome; Proteomics; Accurate mass and time tag proteomic ID MASS-SPECTROMETRY; ACCURATE MASS; FERRIC IRON; DISSIMILATORY FE(III); LIQUID-CHROMATOGRAPHY; MICROBIAL REDUCTION; SHUTTLING COMPOUNDS; MN(IV) REDUCTION; METAL REDUCTION; CYTOCHROMES AB The mechanisms for Fe(III) oxide reduction in Geobacter species are of interest because Fe(III) oxides are the most abundant form of Fe(III) in many soils and sediments and Geobacter species are prevalent Fe(III)reducing microorganisms in many of these environments. Protein abundance in G. sulfurreducens grown on poorly crystalline Fe(III) oxide or on soluble Fe(III) citrate was compared with a global accurate mass and time tag proteomic approach in order to identify proteins that might be specifically associated with Fe(III) oxide reduction. A total of 2991 proteins were detected in G. sulfurreducens grown with acetate as the electron donor and either Fe(III) oxide or soluble Fe(III) citrate as the electron acceptor, resulting in 86% recovery of the genes predicted to encode proteins. Of the total expressed proteins 76% were less abundant in Fe(III) oxide cultures than in Fe(III) citrate cultures, which is consistent with the overall slower rate of metabolism during growth with an insoluble electron acceptor. A total of 269 proteins were more abundant in Fe(III) oxide-grown cells than in cells grown on Fe(III) citrate. Most of these proteins were in the energy metabolism category: primarily electron transport proteins, including 13 c-type cytochromes and PilA, the structural protein for electrically conductive pili. Several of the cytochromes that were more abundant in Fe(III) oxide-grown cells were previously shown with genetic approaches to be essential for optimal Fe(III) oxide reduction. Other proteins that were more abundant during growth on Fe(III) oxide included transport and binding proteins, proteins involved in regulation and signal transduction, cell envelope proteins, and enzymes for amino acid and protein biosynthesis, among others. There were also a substantial number of proteins of unknown function that were more abundant during growth on Fe(III) oxide. These results indicate that electron transport to Fe(III) oxide requires additional and/or different proteins than electron transfer to soluble, chelated Fe(III) and suggest proteins whose functions should be further investigated in order to better understand the mechanisms of electron transfer to Fe(III) oxide in G. sulfurreducens. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ding, Yan-Huai R.; Aklujkar, Muktak A.; Lovley, Derek R.; Mester, Tuende] Univ Massachusetts, Dept Microbiol, Amherst, MA 01002 USA. [Hixson, Kim K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Lipton, Mary S.; Smith, Richard D.] Pacific NW Natl Lab, Biosci Div, Richland, WA 99353 USA. RP Mester, T (reprint author), Univ Massachusetts, Dept Microbiol, 203 Morrill Sci IVN, Amherst, MA 01003 USA. EM tmester@microbio.umass.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU Office of Science (BER), U.S. Department of Energy [DE-FC02-02ER63446] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FC02-02ER63446. NR 45 TC 51 Z9 52 U1 9 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD DEC PY 2008 VL 1784 IS 12 BP 1935 EP 1941 DI 10.1016/j.bbapap.2008.06.011 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 383KU UT WOS:000261673300006 PM 18638577 ER PT J AU With, KA King, AW Jensen, WE AF With, Kimberly A. King, Anthony W. Jensen, William E. TI Remaining large grasslands may not be sufficient to prevent grassland bird declines SO BIOLOGICAL CONSERVATION LA English DT Article DE Migratory songbirds; Grazing effects; Prescribed burning; Habitat degradation; Land management; Population viability; Rangeland ID CONSERVATION RESERVE PROGRAM; TALLGRASS PRAIRIE; NEST SUCCESS; EXTINCTION DEBT; UNITED-STATES; POPULATION; HABITAT; FRAGMENTATION; MANAGEMENT; ABUNDANCE AB Grassland birds are in steep decline throughout many regions of the world. In North America, even some common species have declined by > 50% over the last few decades. Declines in grassland bird populations have generally been attributed to widespread agricultural conversion of grasslands; more than 80% of North American grasslands have been converted to agriculture and other land uses, for example. Remaining large grasslands should thus be especially important to the conservation of grassland birds. The Flint Hills of Kansas and Oklahoma (USA) preserves the largest intact tallgrass prairie (similar to 2 million ha) left in the world. The Flint Hills supports a major cattle industry, however, and therefore experiences widespread grazing and frequent burning. We assessed the regional population status of three grassland birds that are considered the core of the avian community in this region (Dickcissel, Spiza americana; Grasshopper Sparrow, Ammodramus savannarum; Eastern Meadowlark, Sturnella magna). our approach is founded on a demographic analysis that additionally explores how to model variability in empirically derived estimates of reproductive success across a large heterogeneous landscape, which ultimately requires the translation of demographic data from local (plot) to regional scales. We found that none of these species is demographically viable at a regional scale under realistic assumptions, with estimated population declines of 3-290/o/year and a likelihood of regional viability of 0-45% over the two years of study. Current land-management practices may thus be exacerbating grassland bird declines by degrading habitat in even large grassland remnants. Habitat area is thus no guarantee of population viability in landscapes managed predominantly for agricultural or livestock production. (c) 2008 Elsevier Ltd. All rights reserved. C1 [With, Kimberly A.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [King, Anthony W.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Jensen, William E.] Emporia State Univ, Dept Biol Sci, Emporia, KS 66801 USA. RP With, KA (reprint author), Kansas State Univ, Div Biol, Ackert Hall, Manhattan, KS 66506 USA. EM kwith@ksu.edu RI With, Kimberly/J-5124-2014 OI With, Kimberly/0000-0001-5570-1515 NR 58 TC 62 Z9 66 U1 7 U2 77 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0006-3207 J9 BIOL CONSERV JI Biol. Conserv. PD DEC PY 2008 VL 141 IS 12 BP 3152 EP 3167 DI 10.1016/j.biocon.2008.09.025 PG 16 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 381ZR UT WOS:000261574900022 ER PT J AU Mariella, R AF Mariella, Raymond, Jr. TI Sample preparation: the weak link in microfluidics-based biodetection SO BIOMEDICAL MICRODEVICES LA English DT Article DE microfluidics; biological assays; sample preparation; acoustics; electrokinetics; integration ID HUMAN CHORIONIC-GONADOTROPIN; DNA; PCR; MICROARRAYS; AMPLIFICATION; SYSTEM; RNA; DIELECTROPHORESIS; IDENTIFICATION; HYBRIDIZATION AB As a broad generalization, clinicians and laboratory personnel who use microfluidics-based automated or semi-automated instrumentation to perform biomedical assays on real-world samples are more pleased with the state of the assays than they are with the state of the front-end sample preparation. The end-to-end procedure requires one to collect, manipulate, prepare, and analyze the sample. The appeal of microfluidics for this procedure is partly based on its combination of small size and its ability to process very small liquid volumes, thus minimizing the use of possibly expensive reagents. However, real-world samples are often large and incompatible with the input port and the mu m-scale channels of a microfluidic device, and very small liquid volumes can be inappropriate in analyzing low concentrations of target analytes. It can be a worthy challenge to take a raw sample, introduce it into a microfluidics-based system, and perform the sample preparation, which may include separation and concentration of the target analytes, so that one can benefit from the reagent-conserving small volumes and obtain the correct answer when finally implementing the assay of interest. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mariella, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM raymar47@llnl.gov NR 68 TC 66 Z9 66 U1 0 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-2176 J9 BIOMED MICRODEVICES JI Biomed. Microdevices PD DEC PY 2008 VL 10 IS 6 BP 777 EP 784 DI 10.1007/s10544-008-9190-7 PG 8 WC Engineering, Biomedical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 348YQ UT WOS:000259246400002 PM 18483862 ER PT J AU Jones, EM Squier, TC Sacksteder, CA AF Jones, Eric M. Squier, Thomas C. Sacksteder, Colette A. TI An Altered Mode of Calcium Coordination in Methionine-Oxidized Calmodulin SO BIOPHYSICAL JOURNAL LA English DT Article ID MEMBRANE CA-ATPASE; TRANSFORM INFRARED-SPECTROSCOPY; QUANTITATIVE IR SPECTROPHOTOMETRY; INDUCED CONFORMATIONAL-CHANGES; SECONDARY STRUCTURE ESTIMATION; WATER H2O SOLUTIONS; CHAIN COO-GROUPS; TROPONIN-C; MOLECULAR-DYNAMICS; SIDE-CHAIN AB Oxidation of methionine residues in calmodulin (CaM) lowers the affinity for calcium and results in an inability to activate target proteins fully. To evaluate the structural consequences of CaM oxidation, we used infrared difference spectroscopy to identify oxidation-dependent effects on protein conformation and calcium liganding. Oxidation-induced changes include an increase in hydration of alpha-helices, as indicated in the downshift of the amide I' band of both apo-CaM and Ca2+-CaM, and a modification of calcium liganding by carboxylate side chains, reflected in antisymmetric carboxylate band shifts. Changes in carboxylate ligands are consistent with the model we propose: an Asp at position 1 of the EF-loop experiences diminished hydrogen bonding with the polypeptide backbone, an Asp at position 3 forms a bidentate coordination of calcium, and an Asp at position 5 forms a pseudobridging coordination with a calcium-bound water molecule. The bidentate coordination of calcium by conserved glutamates is unaffected by oxidation. The observed changes in calcium ligation are discussed in terms of the placement of methionine side chains relative to the calcium-binding sites, suggesting that varying sensitivities of binding sites to oxidation may underlie the loss of CaM function upon oxidation. C1 [Jones, Eric M.; Squier, Thomas C.; Sacksteder, Colette A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Sacksteder, CA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Cell Biol & Biochem Grp, POB 999,MSIN P7-56, Richland, WA 99352 USA. EM colette.sacksteder@pnl.gov FU Office of Biological and Environmental Research, United States Department of Energy; Pacific Northwest National Laboratory (PNNL) for the Department of Energy by the Battelle Memorial Institute [DE-AC06-76RL0 1830] FX This research was supported by a grant from the Low Dose Radiation Research Program, Office of Biological and Environmental Research, United States Department of Energy. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by the Battelle Memorial Institute under contract DE-AC06-76RL0 1830. NR 86 TC 8 Z9 8 U1 0 U2 7 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD DEC 1 PY 2008 VL 95 IS 11 BP 5268 EP 5280 DI 10.1529/biophysj.108.139634 PG 13 WC Biophysics SC Biophysics GA 373UR UT WOS:000260999500027 PM 18723592 ER PT J AU Hodge, DB Karim, MN Schell, DJ McMillan, JD AF Hodge, David B. Karim, M. Nazmul Schell, Daniel J. McMillan, James D. TI Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose SO BIORESOURCE TECHNOLOGY LA English DT Article DE Lignocellulosic hydrolyzates; Cellulase; Process integration; Corn stover; High-solids saccharification ID STEAM-PRETREATED SOFTWOOD; EXPLODED POPLAR WOOD; DILUTE-SULFURIC-ACID; DEGRADATION-PRODUCTS; CORN STOVER; DOUGLAS-FIR; INHIBITION; ETHANOL; BIOMASS; LIGNIN AB The rates and extents of enzymatic cellulose hydrolysis of dilute acid pretreated corn stover (PCS) decline with increasing Slurry concentration. However, mass transfer limitations are not apparent until insoluble solids concentrations approach 20% w/w, indicating that inhibition of enzyme hydrolysis at lower solids concentrations is primarily due to soluble components. Consequently, the inhibitory effects of pH-adjusted pretreatment liquor on the enzymatic hydrolysis of PCS were investigated. A response surface methodology (RSM) was applied to empirically model how hydrolysis performance varied as a function of enzyme loading (12-40 mg protein/g cellulose) and insoluble solids concentration (5-13%) in full-slurry hydrolyzates. Factorial design and analysis of variance (ANOVA) were also used to assess the contribution of the major classes of soluble components (acetic acid. phenolics, furans, sugars) to total inhibition. High sugar concentrations ( 130 g/L total initial background sugars) were shown to be the primary cause of performance inhibition, with acetic acid (15 g/L) only slightly inhibiting enzymatic hydrolysis and phenolic Compounds (9 g/L total including vanillin, syringaldehyde, and 4-hydroxycinnamic acid) and furans (8 g/L total of furfural and hydroxymethylfurfural, HMF) with only a minor effect on reaction kinetics. It was also demonstrated that this enzyme inhibition in high-solids PCS slurries can be approximated using a synthetic hydrolyzate composed Of Pure sugars supplemented with a mixture of acetic acid, furans, and phenolic compounds, which indicates that generally all of the reaction rate-determining Soluble Compounds for this system can be approximated synthetically. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Hodge, David B.] Lulea Univ Technol, Dept Biochem & Chem Proc Technol, S-97187 Lulea, Sweden. [Karim, M. Nazmul] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. [Schell, Daniel J.; McMillan, James D.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hodge, DB (reprint author), Lulea Univ Technol, Dept Biochem & Chem Proc Technol, S-97187 Lulea, Sweden. EM david.hodge@ltu.se OI Karim, Muhammad/0000-0002-0332-4217 FU US Department of Energy Office FX The funding for this work was provided by the US Department of Energy Office of the Biomass Program. The authors would also like to thank Dr. Ali Mohagheghi and Gary McMillan at NREL for laboratory assistance. NR 45 TC 141 Z9 143 U1 8 U2 65 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2008 VL 99 IS 18 BP 8940 EP 8948 DI 10.1016/j.biortech.2008.05.015 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 358AN UT WOS:000259888700063 PM 18585030 ER PT J AU Donohoe, BS Decker, SR Tucker, MP Himmel, ME Vinzant, TB AF Donohoe, Bryon S. Decker, Stephen R. Tucker, Melvin P. Himmel, Michael E. Vinzant, Todd B. TI Visualizing Lignin Coalescence and Migration Through Maize Cell Walls Following Thermochemical Pretreatment SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE lignin; biomass; pretreatment; electron microscopy; tomography ID ENZYMATIC-HYDROLYSIS; ELECTRON TOMOGRAPHY; ACID PRETREATMENT; CORN STOVER; LIGNIFICATION; WOOD; TOPOCHEMISTRY; MICROSCOPY; INTERNODES; CELLULOSE AB Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production. C1 [Donohoe, Bryon S.; Decker, Stephen R.; Himmel, Michael E.; Vinzant, Todd B.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Tucker, Melvin P.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Donohoe, BS (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM bryon_donohoe@nrel.gov FU DOE Office of the Biomass Program FX We would like to thank Mark Davis for NMR analysis, David Johnson for preparing pretreated materials, and Katia Ruel for the generous gift of antibodies. This work was funded by the DOE Office of the Biomass Program. NR 33 TC 270 Z9 284 U1 15 U2 101 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD DEC 1 PY 2008 VL 101 IS 5 BP 913 EP 925 DI 10.1002/bit.21959 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 373CW UT WOS:000260949600006 PM 18781690 ER PT J AU Pascoal, F Oliveira, LFA Rosa, FSS Farina, C AF Pascoal, F. Oliveira, L. F. A. Rosa, F. S. S. Farina, C. TI Estimate for the Size of the Compactification Radius of a One Extra Dimension Universe SO BRAZILIAN JOURNAL OF PHYSICS LA English DT Article DE Casimir effect; Kaluza-Klein theory ID CASIMIR FORCE; MU-M; PLATES; RANGE; CONTROVERSIES; SUPERGRAVITY; PROGRESS AB In this work, we use the Casimir effect to probe the existence of one extra dimension. We begin by evaluating the Casimir pressure between two plates in a M(4) x S(1) manifold, and then use an appropriate statistical analysis in order to compare the theoretical expression with a recent experimental data and set bounds for the compactification radius. C1 [Pascoal, F.] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil. [Oliveira, L. F. A.] Petr Brasileiro SA, CENPES, BR-21941 Illha Do Fundao, RJ, Brazil. [Rosa, F. S. S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Farina, C.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. RP Pascoal, F (reprint author), Univ Fed Sao Carlos, Dept Fis, Via Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil. FU CNPq; FAPERJ FX F. P. would like to thank CNPq and L. F. A. O. also acknowledges CNPq for financial support. F. S. S. R. is grateful to both CNPq and FAPERJ for partial financial support and C. F. thanks CNPq for partial financial support. NR 38 TC 17 Z9 17 U1 0 U2 0 PU SOC BRASILEIRA FISICA PI SAO PAULO PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL SN 0103-9733 J9 BRAZ J PHYS JI Braz. J. Phys. PD DEC PY 2008 VL 38 IS 4 BP 581 EP 586 PG 6 WC Physics, Multidisciplinary SC Physics GA 389DQ UT WOS:000262071400009 ER PT J AU Dubey, MK Zender, CS Folland, CK Chylek, P AF Dubey, Manvendra K. Zender, Charlie S. Folland, Chris K. Chylek, Petr TI GLOBAL WARMING AND THE NEXT ICE AGE SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Dubey, Manvendra K.; Chylek, Petr] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zender, Charlie S.] Univ Calif Irvine, Irvine, CA USA. [Folland, Chris K.] Hadley Ctr, Met Off, Exeter, Devon, England. RP Dubey, MK (reprint author), Los Alamos Natl Lab, MS D462, Los Alamos, NM 87545 USA. EM dubey@lanl.gov RI Dubey, Manvendra/E-3949-2010; Zender, Charles/D-4485-2012; Folland, Chris/I-2524-2013 OI Dubey, Manvendra/0000-0002-3492-790X; Zender, Charles/0000-0003-0129-8024; NR 22 TC 0 Z9 0 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2008 VL 89 IS 12 BP 1905 EP 1909 DI 10.1175/2008BAMS2359.1 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 389KH UT WOS:000262090800010 ER PT J AU Sperber, KR Waliser, DE AF Sperber, Kenneth R. Waliser, Duane E. TI NEW APPROACHES TO UNDERSTANDING, SIMULATING, AND FORECASTING THE MADDEN-JULIAN OSCILLATION SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sperber, Kenneth R.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Waliser, DE (reprint author), CALTECH, Jet Prop Lab, MS 183-505,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM duane.waliser@jpl.nasa.gov RI Sperber, Kenneth/H-2333-2012 NR 0 TC 16 Z9 16 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2008 VL 89 IS 12 BP 1917 EP 1920 DI 10.1175/2008BAMS2700.1 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 389KH UT WOS:000262090800012 ER PT J AU Arrowsmith, MD Taylor, SR Wallace, TC AF Arrowsmith, Marie D. Taylor, Steven R. Wallace, Terry C. TI Using Interstation Amplitude Correction Factors to Predict Regional Phase Amplitudes SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID UNITED-STATES; CENTRAL-ASIA; TIEN-SHAN; SEISMIC DISCRIMINATION; SURROUNDING REGIONS; VELOCITY STRUCTURE; WAVE; ATTENUATION; TOMOGRAPHY; PROPAGATION AB Developing regional discriminants at any given seismic station requires a ground truth database of waveforms from both earthquakes and explosions. Recently installed stations used for seismic monitoring have no single-charge explosions on which to base discriminants. We have developed a procedure to map regional seismic amplitudes from surrogate stations, which have a long recording history, to newly installed operational stations. This procedure uses an interstation amplitude correction factor (IACF), computed using a set of commonly recorded calibration earthquakes between the surrogate and operational station pair, to predict seismic amplitudes at the new station using the IACF and historical explosion amplitudes from the surrogate station. We tested the method using an earthquake aftershock sequence in Pakistan recorded at the Kyrgyzstan broadband seismic network. The aftershocks had a range of depths and were clustered in a linear trend defining the fault rupture plane of the mainshock. We computed IACFs for all possible station combinations at KNET (45 combinations) for all events and then computed a mean IACF value for each station pair. Using the mean IACF values, we calculated predicted phase amplitudes at each station and compared the predictions to the actual values. The observed-predicted relationship performed well (r(2)-values > 0.8) for all phases and frequency bands. At frequencies above 6 Hz, the observed-predicted relationship showed more scatter, a trend not due to interstation distance, source depth, or spatial location of the calibration earthquakes. We were able to reduce scatter in the observed-predicted relationship by applying path corrections to the data, suggesting that sensitivities in differing paths between certain surrogate-operational station combinations do play a role in the effectiveness of the method. We used this methodology to predict explosion values at the Lop Nor nuclear test site in China using a suite of nearby calibration earthquakes to calculate IACF values. The results indicate good correlation between the observed and predicted amplitudes, suggesting that the method can be used to simulate explosion characteristics at stations that have never recorded explosions. Comparing the IACF values from the calibration dataset near Lop Nor to those calculated for the earthquakes in Pakistan, we see some similarity for certain station combinations; however, on the whole, there are differences that suggest that IACFs have a spatial variance and must be tuned to the region and path of interest for the method to be successful. C1 [Arrowsmith, Marie D.] So Methodist Univ, Dedman Coll, Huffington Dept Earth Sci, Dallas, TX 75275 USA. [Taylor, Steven R.] Rocky Mt Geophys, Los Alamos, NM 87544 USA. [Wallace, Terry C.] Los Alamos Natl Lab, PAD STE MS A127, Los Alamos, NM 87545 USA. RP Arrowsmith, MD (reprint author), So Methodist Univ, Dedman Coll, Huffington Dept Earth Sci, POB 750395, Dallas, TX 75275 USA. EM arrowsmith@smu.edu; terryw@lanl.gov OI Arrowsmith, Marie/0000-0002-8916-2414 FU National Science Foundation's Graduate Research Fellowship program; U. S. Department of Energy [DE-FC52-03NA99511]; Alamos National Laboratory [DE-AC52-06NA25396] FX We wish to thank Brian Stump for useful comments and suggestions in improving the manuscript, as well as Aaron Velasco and Hans Hartse who provided help with initial data processing. Dale Anderson was invaluable in both mediating statistical debates and offering assistance in applying appropriate hypothesis tests. BSSA Associate Editor Anton Dainty, Douglas Baumgardt, and an anonymous reviewer provided critical and meaningful comments for improving the manuscript. We wish to thank Marv Wetovsky for assistance with technical editing. Graduate research support was provided in part by the National Science Foundation's Graduate Research Fellowship program, as well as the U. S. Department of Energy under Contract Number DE-FC52-03NA99511. This work was performed under the auspices of the U. S. Department of Energy by Los Alamos National Laboratory under Contract Number DE-AC52-06NA25396. NR 29 TC 0 Z9 0 U1 0 U2 2 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC 1 PY 2008 VL 98 IS 6 BP 2590 EP 2614 DI 10.1785/0120070098 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 376KW UT WOS:000261183500002 ER PT J AU Antao, SM Hassan, I Wang, J Lee, PL Toby, BH AF Antao, Sytle M. Hassan, Ishmael Wang, Jun Lee, Peter L. Toby, Brian H. TI STATE-OF-THE-ART HIGH-RESOLUTION POWDER X-RAY DIFFRACTION (HRPXRD) ILLUSTRATED WITH RIETVELD STRUCTURE REFINEMENT OF QUARTZ, SODALITE, TREMOLITE, AND MEIONITE SO CANADIAN MINERALOGIST LA English DT Article; Proceedings Paper CT Feldspars 2007 Session held at the Frontiers in Mineral Sciences Symposium CY JUN, 2007 CL Univ Cambridge, Cambridge, ENGLAND HO Univ Cambridge DE quartz; sodalite; tremolite; meionite; crystal structure; HRPXRD ID CRYSTAL-CHEMISTRY; ALPHA-QUARTZ AB Synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements were used to examine the crystal structures of quartz, sodalite, tremolite, and meionite Me(79.6), and compare them with those obtained by single-crystal diffraction (SXTL). The purpose is to illustrate that crystal structures obtained by HRPXRD are comparable to those obtained by SXTL. The comparisons indicate important and significant differences between the structures obtained by the two methods. The cell parameters obtained by Rietveld refinements using HRPXRD data appear of superior quality to those obtained by SXTL. The < Si-O > distances in pure SiO(4) tetrahedron in quartz, sodalite, and tremolite are 1.6081(3), 1.6100(2), and 1.620(1) angstrom, respectively. These values are affected by interstitial cations. In meionite Me79.6, the average < T1-O > and < T2-O > distances are 1.647(1) and 1.670(1) angstrom, respectively, and they indicate that the occupancies are (Al(0.28)Si(0.72)) for T1 where the atoms are partially ordered and (Al(0.45)Si(0.55)) for T2 site where the atoms are nearly disordered, based on sodalite Si-O and Al-O distances of 1.6100(2) and 1.7435(2) angstrom, respectively. C1 [Antao, Sytle M.; Hassan, Ishmael; Wang, Jun; Lee, Peter L.; Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Antao, SM (reprint author), Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. EM antao@ucalgary.ca RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 NR 21 TC 44 Z9 46 U1 1 U2 17 PU MINERALOGICAL ASSOC CANADA PI OTTAWA PA PO BOX 78087, MERILINE POSTAL OUTLET, 1460 MERIVALE RD, OTTAWA, ONTARIO K2E 1B1, CANADA SN 0008-4476 J9 CAN MINERAL JI Can. Mineral. PD DEC PY 2008 VL 46 BP 1501 EP 1509 DI 10.3749/canmin.46.5.1501 PG 9 WC Mineralogy SC Mineralogy GA 410FF UT WOS:000263562200010 ER PT J AU Antao, SM Hassan, I AF Antao, Sytle M. Hassan, Ishmael TI INCREASE IN Al-Si AND Na-Ca DISORDER WITH TEMPERATURE IN SCAPOLITE Me-32.9 SO CANADIAN MINERALOGIST LA English DT Article; Proceedings Paper CT Feldspars 2007 Session held at the Frontiers in Mineral Sciences Symposium CY JUN, 2007 CL Univ Cambridge, Cambridge, ENGLAND HO Univ Cambridge DE scapolite group; marialite; high-temperature crystal structure; Al-Si and Na-Ca disorder; APBs; synchrotron X-ray diffraction ID RIETVELD STRUCTURE-REFINEMENT; SATRAS NMR-SPECTROSCOPY; SI-29 MAS; CRYSTAL-STRUCTURES; THERMAL-EXPANSION; PHASE-TRANSITION; SOLID-SOLUTIONS; MARIALITE; SODALITE; BEHAVIOR AB Scapolite Me-32.9 (marialite) from Monmouth Township, Ontario, was studied using in situ synchrotron powder X-ray diffraction (XRD) and Rietveld structure refinement of data obtained by heating and cooling from 26 to 902 degrees C. The structure was refined in space group P4(2)/n. A room-temperature structure, obtained with synchrotron high-resolution powder X-ray-diffraction (HRPXRD) data, has unit-cell parameters a 12.06503(1), c 7.58360(1) angstrom, and V 1103.906(2) angstrom(3). Moreover, the average bond-distances < T1-O >, < T2-O > and < T3-O > are equal to 1.606(2), 1.726(2) and 1.612(2) angstrom, respectively, and correspond to occupancies T1 = [Al0Si1], T2 = [Al0.87Si0.13], and T3 = [Al0.02Si0.98]. At 902 C, < T1-O >, < T2-O > and < T3-O > are equal to 1.591(5), 1.683(8) and 1.686(7) angstrom, respectively, and correspond to T1 = [Al0Si1], T2 = [Al0.55Si0.45], and T3 = [Al0.57Si0.43]. At 902 degrees C, the T1 site remains fully occupied by Si atoms, whereas the disorder at the T2 and T3 sites is close to being complete. Several structural parameters show a break at 200 degrees C, which corresponds to disorder of the Na and Ca (= M) atoms. On cooling, the structure does not go back to the initial structural state; some T2-T3 and Na-Ca disorder are quenched in. The type-b reflections that give rise to antiphase-domain boundaries (APBs) are present at all temperatures; they arise from Cl-CO3 order, instead of Al-Si order. At 902 degrees C, except for the anions, there is no difference between the structure of Me-32.9 in space group P4(2)/n and that of Me-80 in space group I4/m. C1 [Antao, Sytle M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hassan, Ishmael] Univ W Indies, Dept Chem, Kingston 7, Jamaica. RP Antao, SM (reprint author), Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. EM antao@ucalgary.ca NR 28 TC 3 Z9 3 U1 2 U2 7 PU MINERALOGICAL ASSOC CANADA PI QUEBEC PA 490, RUE DE LA COURONNE, QUEBEC, QC G1K 9A9, CANADA SN 0008-4476 J9 CAN MINERAL JI Can. Mineral. PD DEC PY 2008 VL 46 BP 1577 EP 1591 DI 10.3749/canmin.46.5.1577 PN 6 PG 15 WC Mineralogy SC Mineralogy GA 410FF UT WOS:000263562200014 ER PT J AU DeNardo, GL Natarajan, A Hok, S Mirick, G DeNardo, SJ Corzett, M Sysko, V Lehmann, J Beckett, L Balhorn, R AF DeNardo, Gerald L. Natarajan, Arutselvan Hok, Saphon Mirick, Gary DeNardo, Sally J. Corzett, Michele Sysko, Vladimir Lehmann, Joerg Beckett, Laurel Balhorn, Rod TI Nanomolecular HLA-DR10 Antibody Mimics: A Potent System for Molecular Targeted Therapy and Imaging SO CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS LA English DT Article DE antibodies; nanomolecules; ligands; HLA-DR; lymphoma; therapy; imaging ID NON-HODGKINS-LYMPHOMA; HIGH-AFFINITY LIGANDS; REFRACTORY LOW-GRADE; MONOCLONAL-ANTIBODIES; CARBOXYLTRANSFERASE DOMAIN; LYM-1; CELLS; RADIOIMMUNOTHERAPY; IMMUNOTHERAPY; CARBOXYLASE AB To mimic the molecular specificity and cell selectivity of monoclonal antibody (mAb) binding while decreasing size, nanomolecules (selective high-affinity ligands; SHALs), based on in silico modeling, have been created to bind to human leukocyte antigen-DR (HLA-DR10), a signaling receptor protein upregulated on the malignant B-lymphocytes from of Hodgkin's lymphoma and chronic lymphocytic leukemia. SHALs were synthesize with a biotin or DOTA chelate (1,4,7,10-tetraazacyclododecane-N.N',N '',N'"-tetraacetic acid), using a solid-phase lysine-polyethyleneglycol backbone to link sets of ligands shown previously to bind to HLA-DR10. Using cell-binding and death assays and confocal microscopy, SHAL uptake, residualization, and cytocidal activity were evaluated in HLA-DR10 expressing and nonexpressing live, human lymphoma cell lines. All of the SHALs tested were selective for, and accumulated in, expressing cells. Reflecting binding to HLA-DR10 inside the cells, SHALs having the Ct ligand (3-(2-([3-chloro-5-5-trifluoromethyl)-2-pyridinyl]oxy)-anilino)-3- oxopropanionic acid) residualized in expressing cells greater than 179 times more than accountable by cell-surface membrane HLA-DR10. Confocal microscopy confirmed the intracellular residualization of these SHALs. Importantly, SHALs with a Ct ligand had direct cytocidal activity, similar in potency to that of Lym-1 mAb and rituximab, selectively for HLA-DR10 expressing lymphoma cells and xenografts. The results show, that SHALs containing the Ct ligand residualize intracellularly and have cytocidal effects mediated by HLA-DR10. These SHALs have extraordinary potential as novel molecules for the selective targeting of lymphoma and leukemia for molecular therapy and imaging. Further, these SHALs can be used to transport and residualize cytotoxic agents near critical sites inside these malignant cells. C1 [DeNardo, Gerald L.; Natarajan, Arutselvan; Mirick, Gary; DeNardo, Sally J.; Sysko, Vladimir; Lehmann, Joerg] Univ Calif Davis, Davis Med Ctr, Sacramento, CA 95816 USA. [Hok, Saphon; Corzett, Michele; Balhorn, Rod] Lawrence Livermore Natl Lab, Livermore, CA USA. [Beckett, Laurel] Univ Calif Davis, Davis, CA 95616 USA. RP DeNardo, GL (reprint author), Univ Calif Davis, Davis Med Ctr, 1508 Alhambra Blvd,Room 3100, Sacramento, CA 95816 USA. EM gldenardo@ucdavi.edu OI Beckett, Laurel/0000-0002-2418-9843 FU National Cancer Institute [PO1-CA47829]; Lawrence Livermore National Laboratory [01-ERD-111, 01-ERD-046, 01-SI-012] FX This work was supported by National Cancer Institute PO1-CA47829 and Lawrence Livermore National Laboratory Awards 01-ERD-111, 01-ERD-046, and 01-SI-012. The authors thank B. Petitt for manuscript preparation. NR 35 TC 4 Z9 4 U1 1 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1084-9785 J9 CANCER BIOTHER RADIO JI Cancer Biother. Radiopharm. PD DEC PY 2008 VL 23 IS 6 BP 783 EP 795 DI 10.1089/cbr.2008.0589 PG 13 WC Oncology; Medicine, Research & Experimental; Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Research & Experimental Medicine; Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging GA 399AF UT WOS:000262772100012 PM 20443696 ER PT J AU Williford, RE Johnson, KI Sundararn, SK AF Williford, R. E. Johnson, K. I. Sundararn, S. K. TI Modelling of high-chromia refractory spalling in slagging coal gasifiers SO CERAMICS INTERNATIONAL LA English DT Article DE Failure analysis; Interfaces; Mechanical properties; Refractories ID THERMOMECHANICAL BEHAVIOR; SELF-DIFFUSION; SINGLE-CRYSTALS; CR2O3; ALPHA-AL2O3; SIMULATION; LININGS; SOLIDS AB The economic viability of converting coal into clean burning liquid fuels in slagging coal gasifiers is compromised by the limited service lifetime of hot-face refractories. One of the most severe refractory degradation mechanisms is spalling, which can occur by either volume-expansion phenomena (compressive stresses) or by volume-shrinkage phenomena (tensile stresses). A volume-shrinkage model is benchmarked to high-chromia refractory material properties and performance under gasifier operating conditions. The model is found to be appropriate for first-order estimates of gasifier refractory lifetime when the apparent diffusivity of volatized Cr in the refractory includes the effects of slag-filled pores and cracks. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Williford, R. E.; Johnson, K. I.; Sundararn, S. K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Williford, RE (reprint author), Pacific NW Natl Lab, Mail Stop K2-44, Richland, WA 99352 USA. EM Rick.Williford@pnl.gov FU PNNL Laboratory Directed Research and Development Program (Energy Conversion Initiative); Battelle Memorial Institute [DE-AC06-76RLO-1830] FX This work was supported by the PNNL Laboratory Directed Research and Development Program (Energy Conversion Initiative). Pacific Northwest National Laboratory is operated for the US Department of Energy (DOE) by Battelle Memorial Institute under contract DE-AC06-76RLO-1830. The authors would like to acknowledge the support and guidance of George Muntean and Mike Elliott of PNNL. NR 38 TC 2 Z9 2 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 J9 CERAM INT JI Ceram. Int. PD DEC PY 2008 VL 34 IS 8 BP 2085 EP 2089 DI 10.1016/j.ceramint.2007.08.011 PG 5 WC Materials Science, Ceramics SC Materials Science GA 370AQ UT WOS:000260735500044 ER PT J AU Benyahia, S AF Benyahia, Sofiane TI Verification and validation study of some polydisperse kinetic theories SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Polydisperse kinetic theory; Verification and validation; Fluidization; Frictional particles; Vertical riser flow ID UNEQUAL GRANULAR TEMPERATURE; FLUIDIZED-BED; CONSTITUTIVE RELATIONS; FLOW; MIXTURES; SPHERES; BINARY; SIMULATION; BEHAVIOR; DENSE AB The predictions of several polydisperse kinetic theories are presented in this study for the simple shear flow of a binary mixture of powders with varying sizes in a vacuum under zero gravity. These results are compared to published numerical data obtained using discrete molecular dynamics technique. The theory showing the most accurate results is modified so that the sum of the kinetic stresses of two or more identical solid phases adds to that of a monodisperse system with the same properties. Simulation results obtained in a three-dimensional riser for the flow of air and a binary mixture of glass beads are compared with available experimental data for each solid-phase velocity, concentration, and granular temperature. The predictions of the theory compare reasonably well with experimental data when the value of the linear particle-particle restitution coefficient is lowered to take into account the extra energy dissipation due to collisions between pairs of slightly frictional particles. Published by Elsevier Ltd. C1 Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Benyahia, S (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM sofiane.benyahia@netl.doe.gov NR 27 TC 24 Z9 24 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD DEC 1 PY 2008 VL 63 IS 23 BP 5672 EP 5680 DI 10.1016/j.ces.2008.08.016 PG 9 WC Engineering, Chemical SC Engineering GA 377NK UT WOS:000261257700010 ER PT J AU Tainer, JA AF Tainer, John A. TI DNA Base Excision Repair Initiation from the Structural Biochemistry of N-Glyocsylases and Endonucleases That Recognize and Excise DNA Base Damage SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Meeting Abstract CT 236th National Meeting of the Division of Chemical Toxicology of the American-Chemical-Society CY AUG 17-21, 2008 CL Philadelphia, PA SP Amer Chem Soc, Div Chem Toxicol C1 [Tainer, John A.] Lawrence Berkeley Natl Lab, Skaggs Inst Chem Biol, San Diego, CA USA. [Tainer, John A.] Scripps Res Inst, La Jolla, CA 92037 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD DEC PY 2008 VL 21 IS 12 MA 5 BP 2434 EP 2434 PG 1 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA 384HU UT WOS:000261736700028 ER PT J AU Barton, JW Vodraska, CD Flanary, SA Davison, BH AF Barton, John W. Vodraska, Chris D. Flanary, Sandie A. Davison, Brian H. TI Solubility of toluene, benzene and TCE in high-microbial concentration systems SO CHEMOSPHERE LA English DT Article DE Solubility; TCE; Toluene; Benzene; Biomass; Partitioning coefficient ID VOLATILE ORGANIC-COMPOUNDS; ACTIVATED-SLUDGE; WATER; BIOMASS; COEFFICIENTS; PARTITION; CHEMICALS AB We report measurements of solubility limits for benzene. toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g mL(-1) for TCE and 0.25 g mL(-1) for benzene and toluene. The solubility limit increased from 21 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the Solubility increased from 8 mM to more than 1000 mM. Solubility for TCE (trichloroethylene) was most heavily impacted by biomass levels, changing by two orders of magnitude as the microbial concentrations approach those in biofilms. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Davison, Brian H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Davison, BH (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. EM davisonbh@ornl.gov RI Davison, Brian/D-7617-2013 OI Davison, Brian/0000-0002-7408-3609 FU US Department of Energy, Office of Science Environmental Management Science Program FX This research was Supported by the US Department of Energy, Office of Science Environmental Management Science Program. Research performed at Oak Ridge National Laboratory under contract DE-AC05-00OR22725. NR 28 TC 7 Z9 7 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2008 VL 73 IS 11 BP 1737 EP 1740 DI 10.1016/j.chemosphere.2008.09.008 PG 4 WC Environmental Sciences SC Environmental Sciences & Ecology GA 382IR UT WOS:000261600000006 PM 18929392 ER PT J AU Zhou, SH Yin, HF Schwartz, V Wu, ZL Mullins, D Eichhorn, B Overbury, SH Dai, S AF Zhou, Shenghu Yin, Hongfeng Schwartz, Viviane Wu, Zili Mullins, David Eichhorn, Bryan Overbury, Steven H. Dai, Sheng TI In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts SO CHEMPHYSCHEM LA English DT Article DE catalysts; CO oxidation; gold; nanoparticles nickel ID AU NANOPARTICLES; GOLD CATALYSTS; BIMETALLIC NANOPARTICLES; PREFERENTIAL OXIDATION; SURFACE ALLOY; HYDROGEN; SHELL; TEMPERATURE; PRECURSORS C1 [Eichhorn, Bryan] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Zhou, Shenghu; Yin, Hongfeng; Schwartz, Viviane; Wu, Zili; Mullins, David; Overbury, Steven H.; Dai, Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhou, Shenghu; Yin, Hongfeng; Schwartz, Viviane; Wu, Zili; Mullins, David; Overbury, Steven H.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Eichhorn, B (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. EM eichhorn@umd.edu; dais@ornl.gov RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU Center for Nanophase Materials Sciences at Oak Ridge National Laboratory; Basic Energy Sciences; Oak Ridge Associated Universities; NSF [0401850] FX This work was conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory and supported by Basic Energy Sciences, DOE. S. Zhou acknowledges the ORNL postdoctoral Research Associates Program, managed by Oak Ridge Associated Universities. We thank Michelle Pawel, Selim Alayoglu for help. B.E. acknowledges the NSF (Grant No. 0401850) for support. NR 30 TC 58 Z9 59 U1 11 U2 75 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD DEC 1 PY 2008 VL 9 IS 17 BP 2475 EP 2479 DI 10.1002/cphc.200800587 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 384CK UT WOS:000261721700006 PM 19006163 ER PT J AU Huang, J Wan, BN Stotler, D Xiao, BJ Wu, ZW AF Huang Juan Wan Bao-Nian Stotler, Daren Xiao Bing-Jia Wu Zhen-Wei CA HT-7 Team TI Analysis of D alpha(H alpha) spectrum emitted in front of the limiter in HT-7 SO CHINESE PHYSICS B LA English DT Article DE tokamak; edge recycling; D(alpha)(H(alpha)) line shape ID TEXTOR TOKAMAK; BEHAVIOR; SURFACE AB In order to understand the recycling and emission processes of hydrogen atoms in HT-7, spectral profiles of the D(alpha)(H(alpha)) line emitted in front of the limited have been observed with a high-resolution spectrometer and simulated by using the neutral particle transport code DEGAS 2. The results show that four processes are necessary to interpret the D alpha(H alpha) line shape: 1) atom desorption, 2) molecular dissociation, 3) particle reflection, and 4) charge-exchange. The products of the first two processes are cold atoms which emit photons near the peak of D(alpha)(H(alpha)) line shape, and those from the last two are warm atoms contributing to the blue side of the spectrum. For a typical ohmic discharge (shot 68520 n(e)(0) approximate to 3 x 10(19)m(-3)), these components contribute 32%, 15%, 32% and 21%, respectively. D(alpha)(H(alpha)) line shapes under different plasma parameters are also discussed in this paper. C1 [Huang Juan; Wan Bao-Nian; Xiao Bing-Jia; Wu Zhen-Wei; HT-7 Team] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Stotler, Daren] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Huang, J (reprint author), Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Peoples R China. EM janejoy@ipp.ac.cn RI Stotler, Daren/J-9494-2015; Xiao, Bingjia/A-1681-2017 OI Stotler, Daren/0000-0001-5521-8718; Xiao, Bingjia/0000-0001-8692-2636 FU National Natural Science Foundation of China [10725523] FX National Natural Science Foundation of China (GrantNo 10725523). NR 13 TC 3 Z9 3 U1 5 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 J9 CHINESE PHYS B JI Chin. Phys. B PD DEC PY 2008 VL 17 IS 12 BP 4562 EP 4567 PG 6 WC Physics, Multidisciplinary SC Physics GA 395AN UT WOS:000262494500038 ER PT J AU Caulfield, MP Li, S Lee, G Blanche, PA Salameh, WA Benner, WH Reitz, RE Krauss, RA AF Caulfield, Michael P. Li, Shuguang Lee, Gloria Blanche, Patricia A. Salameh, Wael A. Benner, W. Henry Reitz, Richard E. Krauss, Ronald A. TI Protein Microarrays: Before the Elephant Got in the Room In Reply SO CLINICAL CHEMISTRY LA English DT Letter C1 [Caulfield, Michael P.; Li, Shuguang; Lee, Gloria; Salameh, Wael A.; Reitz, Richard E.] Quest Diagitost Nichols Inst, San Juan Capistrano, CA USA. [Blanche, Patricia A.; Krauss, Ronald A.] Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA. [Benner, W. Henry] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Caulfield, MP (reprint author), 33608 Ortega Highway, San Juan Capistrano, CA 92675 USA. EM michael.p.caulfield@questdiagnostics.com NR 1 TC 7 Z9 7 U1 0 U2 2 PU AMER ASSOC CLINICAL CHEMISTRY PI WASHINGTON PA 2101 L STREET NW, SUITE 202, WASHINGTON, DC 20037-1526 USA SN 0009-9147 J9 CLIN CHEM JI Clin. Chem. PD DEC PY 2008 VL 54 IS 12 BP 2088 EP 2089 DI 10.1373/clinchem.2008.115667 PG 2 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 377JZ UT WOS:000261248800032 ER PT J AU Bisetti, F Chen, JY Hawkes, ER Chen, JH AF Bisetti, Fabrizio Chen, J. Y. Hawkes, Evatt R. Chen, Jacqueline H. TI Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling SO COMBUSTION AND FLAME LA English DT Article DE Probability density function; HCCI; Mixing models ID DIRECT NUMERICAL-SIMULATION; PREMIXED TURBULENT FLAMES; SCALAR DISSIPATION; FRONT PROPAGATION; CONSTANT VOLUME; REACTIVE FLOWS; PDF METHODS; COMBUSTION; INHOMOGENEITIES; INJECTION AB Homogeneous charge compression ignition (HCCI) engine technology promises to reduce NO(x) and soot emissions while achieving high thermal efficiency, Temperature and mixture stratification are regarded as effective means of controlling the start of combustion and reducing the abrupt pressure rise at high loads. Probability density function methods are currently being pursued as a viable approach to modeling the effects of turbulent mixing and mixture stratification on HCCI ignition. In this paper we present ail assessment of the merits of three widely used mixing models in reproducing the moments of reactive scalars during the ignition of a lean hydrogen/air mixture (phi = 0.1, p = 41 atm, and T = 1070 K) under increasing temperature stratification and subject to decaying turbulence. The results front the solution Of the evolution equation for a spatially homogeneous joint PDF of the reactive scalars are compared with available direct numerical simulation (DNS) data [E.R. Hawkes, R. Sankaran, P.P. Pebay, J.H. Chen, Combust. Flame 145 (1-2) (2006) 145-159]. The mixing models are found able to quantitatively reproduce the time history of the heat release rate, first and second moments of temperature, and hydroxyl radical mass fraction from the DNS results. Most importantly, the dependence of the heat release I-ate oil the extent of the initial temperature stratification in the charge is also well captured. (C) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Bisetti, Fabrizio; Chen, J. Y.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Hawkes, Evatt R.] Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. [Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Bisetti, F (reprint author), Univ Calif Berkeley, Dept Mech Engn, 246 Hesse Hall,Mailstop 1740, Berkeley, CA 94720 USA. EM fbisetti@me.berkeley.edu RI Hawkes, Evatt/C-5307-2012 OI Hawkes, Evatt/0000-0003-0539-7951 NR 51 TC 12 Z9 12 U1 2 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2008 VL 155 IS 4 BP 571 EP 584 DI 10.1016/j.combustflame.2008.05.018 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 380IC UT WOS:000261458400003 ER PT J AU Mehl, M Vanhove, G Pitz, WJ Ranzi, E AF Mehl, Marco Vanhove, Guillaume Pitz, William J. Ranzi, Eliseo TI Oxidation and combustion of the n-hexene isomers: A wide range kinetic modeling study SO COMBUSTION AND FLAME LA English DT Article DE Detailed kinetic modeling; Alkenes; Surrogate fuels; Autoignition ID ALKYL RADICALS; 1-HEXENE OXIDATION; LOW-TEMPERATURE; DECOMPOSITION; PYROLYSIS; CHEMISTRY; PARAMETERS; ISOBUTENE; 1-PENTENE; MECHANISM AB A detailed chemical kinetic mechanism has been developed to study the oxidation of the straight-chain isomers of hexene over a wide range of operating conditions. The main features of this detailed kinetic mechanism, which includes both high and low temperature reaction pathways, are presented and discussed with special emphasis on the main classes of reactions involved in alkene oxidation. Simulation results have been compared with experimental data over a wide range of operating conditions including shock tube, jet stirred reactor and rapid compression machine. The different reactivities of the three isomers have been successfully predicted by the model. Isomerization reactions of the hexenyl radicals were found to play a significant role in the chemistry and interactions of the three n-hexene isomers. A comparative reaction flux analysis is used to verify and discuss the fundamental role of the double bond position in the isomerization reactions of alkenyl radicals, as well as the impact of the allylic site in the low and high temperature mechanism Of fuel oxidation. (C) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Mehl, Marco; Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vanhove, Guillaume] UST Lille 1, Physicochim Proc Combust & Atmosphere PC2A, Villeneuve Dascq, France. [Ranzi, Eliseo] Politecn Milan, I-20133 Milan, Italy. RP Mehl, M (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM mehl6@llnl.gov RI Mehl, Marco/A-8506-2009; Ranzi, Eliseo/L-2366-2013; OI Mehl, Marco/0000-0002-2227-5035; Ranzi, Eliseo/0000-0002-1395-6074 FU U.S. Department of Energy [DE-AC5207NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344. NR 38 TC 58 Z9 58 U1 6 U2 39 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2008 VL 155 IS 4 BP 756 EP 772 DI 10.1016/j.combustflame.2008.07.004 PG 17 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 380IC UT WOS:000261458400013 ER PT J AU Tan, H Huang, Y Liu, C AF Tan, H. Huang, Y. Liu, C. TI The viscoelastic composite with interface debonding SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Polymer-matrix composites (PMCs); Debonding; Interface; Modelling; Viscoelasticity ID MORI-TANAKA METHOD; UNIAXIAL TENSION AB The effect of particle/matrix interface debonding on composites consisting of elastic particles and viscoelastic matrix is studied. The interface debonding is represented by a nonlinear cohesive law for the high explosive PBX 9501. The Mori-Tanaka method gives the constitutive relation of the composite in terms of the properties of elastic particles, viscoelastic matrix, and nonlinear cohesive law for interfaces. For the example of a composite with spherical particles subject to hydrostatic tension, simple analytical expressions of the composite stress-strain relation are obtained. The strain rate and temperature have strong effects on the composite behavior. High strain rate and low temperature give high strength of the composite. However, the rate and temperature effects decrease as the particle volume fraction increases. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Tan, H.] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M60 1QD, Lancs, England. [Huang, Y.] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Huang, Y.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Liu, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. RP Tan, H (reprint author), Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M60 1QD, Lancs, England. EM Henry.Tan@manchester.ac.uk RI Huang, Yonggang/B-6998-2009 FU U.S. Department of Energy; U.S. Department of Defense/Office of Land Warfare Munitions; ONR Composites for Marine Structures Program [N00014-01-1-0205] FX This research was supported by the U.S. Department of Energy and the U.S. Department of Defense/Office of Land Warfare & Munitions under the joint DoD/DOE Munitions Technology Development Program, and ONR Composites for Marine Structures Program (Grants N00014-01-1-0205, Program Manager Dr. Y.D.S. Rajapakse). NR 15 TC 6 Z9 10 U1 3 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD DEC PY 2008 VL 68 IS 15-16 BP 3145 EP 3149 DI 10.1016/j.compscitech.2008.07.014 PG 5 WC Materials Science, Composites SC Materials Science GA 383JR UT WOS:000261670400012 ER PT J AU Webb-Robertson, BJM Oehmen, CS Shah, AR AF Webb-Robertson, Bobbie-Jo M. Oehmen, Christopher S. Shah, Anuj R. TI A feature vector integration approach for a generalized support vector machine pairwise homology algorithm SO COMPUTATIONAL BIOLOGY AND CHEMISTRY LA English DT Article DE Homology; Support vector machine; Integration ID SEQUENCE SIMILARITY; LOCAL-STRUCTURE; CLASSIFICATION; EVOLUTIONARY; ALIGNMENT; DATABASE AB Due to the exponential growth of sequenced genomes, the need to quickly provide accurate annotation for existing and new sequences is paramount to facilitate biological research. Current sequence comparison approaches fail to detect homologous relationships when sequence similarity is low. Support vector machine (SVM) algorithms approach this problem by transforming all proteins into a feature space of equal dimension based on protein properties, such as sequence similarity scores against a basis set of proteins or motifs. This multivariate representation of the protein space is then used to build a classifier specific to a pre-defined protein family. However, this approach is not well suited to large-scale annotation. We have developed a SVM approach that formulates remote homology as a single classifier that answers the pairwise comparison problem by integrating the two feature vectors for a pair of sequences into a single vector representation that can be used to build a classifier that separates sequence pairs into homologs and non-homologs. This pairwise SVM approach significantly improves the task of remote homology detection on the benchmark dataset. quantified as the area under the receiver operating characteristic curve; 0.97 versus 0.73 and 0.70 for PSI-BLAST and Basic Local Alignment Search Tool (BLAST), respectively. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Webb-Robertson, Bobbie-Jo M.; Oehmen, Christopher S.; Shah, Anuj R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Webb-Robertson, BJM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM bj@pnl.gov FU U.S. Department of Energy (DOE); National Science Foundation [53836A] FX We acknowledge the useful feedback of William Cannon, Karin Rodland, Lee Ann McCue and Jason McDermott at Pacific Northwest National Laboratory (PNNL). This work was supported by the U.S. Department of Energy (DOE) through the Data-intensive Computing Initiative with the Laboratory Directed Research and Development program at PNNL and the National Science Foundation under contract 53836A. Computational support was provided by the Molecular Sciences Computing Facility at PNNL under proposal 29393. PNNL is a multi-program national laboratory operated by Battelle for the U.S. DOE under contract DE-AC05-76RL01830. NR 16 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1476-9271 J9 COMPUT BIOL CHEM JI Comput. Biol. Chem. PD DEC PY 2008 VL 32 IS 6 BP 458 EP 461 DI 10.1016/j.compbiolchem.2008.07.017 PG 4 WC Biology; Computer Science, Interdisciplinary Applications SC Life Sciences & Biomedicine - Other Topics; Computer Science GA 377NI UT WOS:000261257500012 PM 18722814 ER PT J AU Rest, J AF Rest, J. TI A generalized hard-sphere model for the irradiation induced viscosity of amorphous binary alloys SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Viscosity; Amorphous; Irradiation; Hard-sphere model; Binary alloy; Excess entropy ID INDUCED PLASTIC-DEFORMATION; URANIUM SILICIDE COMPOUNDS; NEUTRON-IRRADIATION; EXCESS ENTROPIES; LIQUID-METALS; ION; BEHAVIOR; SOLIDS; AMORPHIZATION; RELAXATION AB The entropy of mixing of binary alloys using a generalized hard-sphere model of binary fluids is considered in an application to alloys that undergo an irradiation-induced crystal line-amorphous transformation at temperatures significantly below the melting temperature. The model is based on the observation that many amorphous materials respond in a "liquid like" manner while under irradiation. The generalization of the model to include attractive forces is obtained by adding the effect of a uniform negative background potential to the hard-sphere model. An application of the method is demonstrated for U-Si, U-Al and Al-Si irradiated alloys. Because of the scarcity of experimental information, estimates of the binary alloy formation enthalpy made using the empirical Mieclema method are employed. Thermal expansion coefficients are estimated using the quantum approximate BFS method assuming solid solution. The model is used to calculate the viscosity of the alloys as a function of composition. (c) 2008 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Rest, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jrest@anl.gov FU US Department of Energy; Office of Global Threat Reduction; National Nuclear Security Administration (NNSA) [DE-AC-02-06CH11357] FX Work supported by US Department of Energy, Office of Global Threat Reduction, National Nuclear Security Administration (NNSA), under Contract DE-AC-02-06CH11357. NR 33 TC 5 Z9 5 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD DEC PY 2008 VL 44 IS 2 BP 207 EP 217 DI 10.1016/j.commatsci.2008.04.012 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 384FW UT WOS:000261731700001 ER PT J AU Parks, ML Lehoucq, RB Plimpton, SJ Silling, SA AF Parks, Michael L. Lehoucq, Richard B. Plimpton, Steven J. Silling, Stewart A. TI Implementing peridynamics within a molecular dynamics code SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Multiscale; Molecular dynamics; Peridynamics; Continuum mechanics; Parallel computing ID MECHANICS; FORCES AB Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material properties.]it this context, nonlocal means that continuum points separated by a finite distance may exert force upon each other A meshless method results when PD is discretized with material behavior approximated as a collection of interacting particles. This paper describes how PD can be implemented within a molecular dynamics (MD) framework, and provides details of an efficient implementation. This adds a computational mechanics capability to in MD code, enabling simulations at mesoscopic or even macroscopic length and time scales. (C) 2008 Elsevier B.V. All rights reserved. C1 [Parks, Michael L.; Lehoucq, Richard B.; Plimpton, Steven J.; Silling, Stewart A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Parks, ML (reprint author), Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA. EM mlparks@sandia.gov RI Parks, Michael/A-2878-2008 NR 20 TC 61 Z9 62 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC 1 PY 2008 VL 179 IS 11 BP 777 EP 783 DI 10.1016/j.cpc.2008.06.011 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 374AJ UT WOS:000261014300002 ER PT J AU Dueck, LA Cameron, KM AF Dueck, Lucy A. Cameron, Kenneth M. TI Molecular evidence on the species status and phylogenetic relationships of Spiranthes parksii, an endangered orchid from Texas SO CONSERVATION GENETICS LA English DT Article DE Conservation policy; DNA sequencing; Endangered species; Orchidaceae ID NONCODING REGIONS; UNIVERSAL PRIMERS; CHLOROPLAST DNA; CONSERVATION; GENETICS; AMPLIFICATION; TAXONOMY; PLANTS; SET AB New genetic information on the taxonomic status of an endangered species may have strong implications for its continued protection and that of other listed taxa with questionable species status. While analyzing a more comprehensive project on the molecular phylogeny of North American Spiranthes (Orchidaceae), lack of genetic differentiation between endangered S. parksii, endemic only to Texas, and a common local congener, S. cernua, was discovered. To confirm these results in a comparative context, we focused parsimony analyses on a subset of data from local Spiranthes and the same congeners found elsewhere, expanded by additional local samples of the two focal species. Four DNA sequence segments (two chloroplast, one mitochondrial, one nuclear ribosomal) totaling 3191 base pairs were used separately and together to verify that S. parksii is nested within the same clade as S. cernua, and thus likely to be the same species. Our results concur with another recent investigation using AFLP and microsatellite data that also suggests S. parksii is not unique genetically. Therefore, based on empirical data and the phylogenetic species concept, endangered S. parksii is merely an aberrant local phenotype of and a synonym for S. cernua sensu lato. Our results should be considered during the current review of this orchid's listing status, despite some recent policy changes on consideration of genetic data after listing. C1 [Dueck, Lucy A.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Cameron, Kenneth M.] New York Bot Garden, Bronx, NY 10458 USA. RP Dueck, LA (reprint author), POB 1413, Athens, TX 75751 USA. EM lucydueck@msn.com FU USFWS [TE100419-0]; South Carolina Department of Natural Resources; Department of Energy [DE-FC09-07SR22506]; University of Georgia Research Foundation; [American Orchid Society] FX We wish to thank Travis Glenn for primer design and use of his lab, and Cris Hagen for running many of the sequences. We also thank the USFWS for permit # TE100419-0 to transport the DNA of an endangered species, and the South Carolina Department of Natural Resources for permission to collect samples on two heritage preserves. We are especially grateful to Catherine Walters for sharing DNA and information on her Spiranthes parksii samples, and to the other collectors: Stan Bentley, Richard Bischof Nebraska Game and Parks Commission, Paul Martin Brown, Jim Fowler, Frank Galloway, Joe Liggio, Scott Shriver, Scott Stewart, and Bill Summers. We appreciate comments by Ken Jones and Pamela Soltis on early versions of the manuscript, discussions with Paul Martin Brown, and suggestions by anonymous reviewers. Materials for this project were funded by a research grant from the American Orchid Society for 2004 - 2005; time (partially) and facilities were supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 46 TC 2 Z9 2 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1566-0621 J9 CONSERV GENET JI Conserv. Genet. PD DEC PY 2008 VL 9 IS 6 BP 1617 EP 1631 DI 10.1007/s10592-007-9501-1 PG 15 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 367GF UT WOS:000260539800019 ER PT J AU Eckermann, F Suter, T Uggowitzer, PJ Afseth, A Davenport, AJ Connolly, BJ Larsen, MH De Carlo, F Schmutz, P AF Eckermann, Fabian Suter, Thomas Uggowitzer, Peter J. Afseth, Andreas Davenport, Alison J. Connolly, Brian J. Larsen, Magnus Hurlen De Carlo, Francesco Schmutz, Patrik TI In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography SO CORROSION SCIENCE LA English DT Article DE Aluminium; X-ray microtomography; Acid corrosion; Exfoliation corrosion ID ALUMINUM-ALLOY; LOCALIZED CORROSION; FILIFORM CORROSION; STRESS-CORROSION; HEAT-TREATMENT; ELECTROCHEMICAL-BEHAVIOR; COMPUTERIZED-TOMOGRAPHY; INTERGRANULAR CORROSION; EXFOLIATION CORROSION; MATERIALS SCIENCE AB Susceptibility to localized corrosion of AlMgSi (AA6016 and AA6111) alloys in certain aggressive environments is high. In this study, synchrotron X-ray microtomography was used to monitor non-destructively corrosion processes within bulk materials. In the selected aggressive solutions, surface-deformed layers showed high localized corrosion susceptibility, but are more stable than the bulk of the alloy during corrosion propagation. In addition, exfoliation-like attack was observed as a transition from intergranular attack. This directed corrosion is not related to grain or crystallographic structure. Finally, intermetallic particles dissolution inside the materials after contact with aggressive solution of the intergranular corrosion path was evidenced. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Eckermann, Fabian; Suter, Thomas; Schmutz, Patrik] Empa, Swiss Fed Labs Mat Testing & Res, Lab Corros & Mat Integr, CH-8600 Dubendorf, Switzerland. [Eckermann, Fabian; Uggowitzer, Peter J.] ETH, Dept Mat, Lab Met Phys & Technol, CH-8093 Zurich, Switzerland. [Afseth, Andreas] Alcan Inc, F-38341 Voreppe, France. [Davenport, Alison J.; Connolly, Brian J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Larsen, Magnus Hurlen] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway. [De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Eckermann, F (reprint author), Empa, Swiss Fed Labs Mat Testing & Res, Lab Corros & Mat Integr, Uberlandstr 129, CH-8600 Dubendorf, Switzerland. EM fabian.eckermann@empa.ch; thomas.suter@empa.ch RI Davenport, Alison/J-6089-2013; Schmutz, Patrik/D-6263-2014; Uggowitzer, Peter/H-3581-2012 OI Davenport, Alison/0000-0003-0853-515X; Uggowitzer, Peter/0000-0002-9504-5652 FU Alcan Technology Fund; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support from the Alcan Technology Fund is gratefully acknowledged. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 48 TC 20 Z9 21 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD DEC PY 2008 VL 50 IS 12 BP 3455 EP 3466 DI 10.1016/j.corsci.2008.09.015 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 389BF UT WOS:000262064200024 ER PT J AU Delak, K Giocondi, J Orme, C Evans, JS AF Delak, Katya Giocondi, Jennifer Orme, Christine Evans, John Spencer TI Modulation of Crystal Growth by the Terminal Sequences of the Prismatic-Associated Asprich Protein SO CRYSTAL GROWTH & DESIGN LA English DT Article; Proceedings Paper CT 12th International Conference on Crystalization of Biological Macromolecules CY MAY 06-08, 2008 CL Cancun, MEXICO ID EGGSHELL MATRIX PROTEIN; ABALONE SHELL PROTEINS; POLYPROLINE-II; PINCTADA-FUCATA; NACREOUS LAYER; CALCITE; PURIFICATION; BIOMINERALIZATION; IDENTIFICATION; FAMILY AB The formation of calcite in the mollusk shell prismatic layer requires the participation of various proteins. Recent studies indicate that the prismatic-associated protein superfamily, Asprich, is capable of in vitro stabilization of amorphous calcium carbonate (ACC), a precursor phase of prismatic calcite. To learn more about the molecular behavior of Asprich, we performed experiments on two highly conserved sequences derived from Asprich: Fragment-1, a 48 AA N-terminal cationic-anionic sequence, and Fragment-2, a previously characterized 42 C-terminal AA anionic sequence. SEM analyses reveal that Fragment-1 induces polycrystalline, radial aggregate assemblies of calcite, with evidence of surface porosities. AFM flow cell experiments demonstrate that Fragment-1 is multifunctional and its mineralization behavior is qualitatively similar to that reported for Fragment-2 except for hillock step kinetics. Surprisingly, when Fragment-1 and Fragment-2 are present together within the same assay, we observe phase stabilization of vaterite on Kevlar substrates and amorphous-appearing islands on calcite substrates. We believe that island formation on the calcite substrate results from the deposition of peptide-mineral clusters onto calcite hillock terrace surfaces. These events may also take place on the Kevlar substrate as well, where either vaterite or calcite form. The most significant feature is that a mixture of Fragment-1 + Fragment-2 are required to induce these effects and that the individual sequences themselves do not have this capability. These results indicate that these conserved terminal Asprich sequences jointly exhibit mineralization behavior (i.e., phase stabilization) that is qualitatively similar to the parent protein, and, parallels the in vitro findings reported for other calcite and aragonite - associated polypeptide sequences. It is likely that the sequence features of Asprich may be used to design crystal growth mimetics that can modulate crystal growth within the laboratory setting. C1 [Delak, Katya; Evans, John Spencer] NYU, Ctr Biomol Mat Spect, Chem Phys Lab, New York, NY 10010 USA. [Giocondi, Jennifer; Orme, Christine] Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, Livermore, CA 94551 USA. RP Evans, JS (reprint author), NYU, Ctr Biomol Mat Spect, Chem Phys Lab, 345 E 24th St,Room 1007, New York, NY 10010 USA. EM jse1@nyu.edu RI Orme, Christine/A-4109-2009 NR 31 TC 21 Z9 21 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD DEC PY 2008 VL 8 IS 12 BP 4481 EP 4486 DI 10.1021/cg8004294 PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 379EL UT WOS:000261379400047 ER PT J AU Lee, SK Chou, H Ham, TS Lee, TS Keasling, JD AF Lee, Sung Kuk Chou, Howard Ham, Timothy S. Lee, Taek Soon Keasling, Jay D. TI Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ISOPROPANOL PRODUCTION; XYLOSE FERMENTATION; ETHANOL-PRODUCTION; HIGHER ALCOHOLS; FLUX ANALYSIS; GENOME; MICROBES; PATHWAY AB The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L. For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels. C1 [Lee, Sung Kuk; Chou, Howard; Ham, Timothy S.; Lee, Taek Soon; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 95608 USA. [Lee, Sung Kuk; Chou, Howard; Lee, Taek Soon; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chou, Howard; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Ham, Timothy S.] Sandia Natl Labs, Dept Computat Biosci, Albuquerque, NM 87185 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, Emeryville, CA 95608 USA. EM Keasling@berkeley.edu RI Lee, Sung/E-6525-2010; Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Joint BioEnergy Institute (JBEI); US Department of Energy; Synthetic Biology Engineering Research Center (SynBERG); National Science Foundation FX This work was funded by the Joint BioEnergy Institute (JBEI) through a grant from the US Department of Energy and by the Synthetic Biology Engineering Research Center (SynBERG) through a grant form the National Science Foundation. The authors would like to thank Dr Harry Beller for discussion. NR 64 TC 271 Z9 286 U1 23 U2 198 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD DEC PY 2008 VL 19 IS 6 BP 556 EP 563 DI 10.1016/j.copbio.2008.10.014 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 388YY UT WOS:000262057600004 PM 18996194 ER PT J AU Lucks, JB Qi, L Whitaker, WR Arkin, AP AF Lucks, Julius B. Qi, Lei Whitaker, Weston R. Arkin, Adam P. TI Toward scalable parts families for predictable design of biological circuits SO CURRENT OPINION IN MICROBIOLOGY LA English DT Review ID ESCHERICHIA-COLI; GENE-EXPRESSION; SYNTHETIC BIOLOGY; FLUCTUATING ENVIRONMENTS; QUANTITATIVE-ANALYSIS; NETWORK; BINDING; BACTERIA; CELLS; RIBOREGULATORS AB Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts - encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts - independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications. C1 [Lucks, Julius B.; Whitaker, Weston R.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Lucks, Julius B.] Miller Inst Basic Res Sci, Berkeley, CA USA. [Qi, Lei] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Arkin, AP (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; Lucks, Julius/L-2801-2016; OI Arkin, Adam/0000-0002-4999-2931; Qi, Lei S/0000-0002-3965-3223 FU Miller Institute for Basic Scientific Research; NSF [04-570/0506186] FX JBL acknowledges the support of the Miller Institute for Basic Scientific Research. JBL, LQ, WRW, and APA acknowledge the support of the Synthetic Biology Engineering Research Center under NSF grant number 04-570/0506186. The authors also thank Dustin Rubinstein, Jason Stajieh, and Sera Young for their helpful comments during the preparation of the manuscript. NR 59 TC 56 Z9 56 U1 0 U2 8 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5274 J9 CURR OPIN MICROBIOL JI Curr. Opin. Microbiol. PD DEC PY 2008 VL 11 IS 6 BP 567 EP 573 DI 10.1016/j.mib.2008.10.002 PG 7 WC Microbiology SC Microbiology GA 386EX UT WOS:000261866200015 PM 18983935 ER PT J AU Ehrhardt, D Brandizzi, F AF Ehrhardt, David Brandizzi, Federica TI Cell biology SO CURRENT OPINION IN PLANT BIOLOGY LA English DT Editorial Material C1 [Ehrhardt, David] Stanford Univ, Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. [Ehrhardt, David] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. [Brandizzi, Federica] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Ehrhardt, D (reprint author), Stanford Univ, Carnegie Inst Sci, Dept Plant Biol, 260 Panama St, Stanford, CA 94305 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5266 J9 CURR OPIN PLANT BIOL JI Curr. Opin. Plant Biol. PD DEC PY 2008 VL 11 IS 6 BP 575 EP 576 DI 10.1016/S1369-5266(08)00194-5 PG 2 WC Plant Sciences SC Plant Sciences GA 386EV UT WOS:000261866000001 PM 19028348 ER PT J AU Chen, YN Slabaugh, E Brandizzi, F AF Chen, Ya-Ni Slabaugh, Erin Brandizzi, Federica TI Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development SO CURRENT OPINION IN PLANT BIOLOGY LA English DT Review ID ENDOPLASMIC-RETICULUM STRESS; UNFOLDED PROTEIN RESPONSE; LATERAL ROOT DEVELOPMENT; TRANSMEMBRANE PROTEIN; CELL-DIVISION; ER STRESS; GENES; ATF6; GOLGI; IDENTIFICATION AB Membrane-tethered transcription factors (MTTFs) differ from cytosolic transcription factors (TF) in that they are innately membrane-bound. To attain TF activity, MTTFs are released from the membrane anchor as a result of proteolytic cleavage. This enables MTTFs to travel to the nucleus and modulate gene expression. Arabidopsis MTTFs characterized to date belong to either the bZIP or the NAC family. In this review, we highlight the most recent findings on Arabidopsis MTTFs that ascribe different yet important roles to these proteins: the MTTFs in the bZIP family appear to regulate stress signaling pathways, whereas members of the NAC family are involved in both development and stress response. C1 [Chen, Ya-Ni; Slabaugh, Erin; Brandizzi, Federica] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, DOE Plant Res Lab, Plant Biol Bldg, E Lansing, MI 48824 USA. EM brandizz@msu.edu FU U.S. Department of Energy FX We apologize to those colleagues whose work we have not reviewed owing to space limitations. This work was supported by the U.S. Department of Energy. We thank Karen Bird for editing the manuscript. NR 36 TC 46 Z9 51 U1 2 U2 14 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5266 J9 CURR OPIN PLANT BIOL JI Curr. Opin. Plant Biol. PD DEC PY 2008 VL 11 IS 6 BP 695 EP 701 DI 10.1016/j.pbi.2008.10.005 PG 7 WC Plant Sciences SC Plant Sciences GA 386EV UT WOS:000261866000016 PM 19019722 ER PT J AU Bishop, JKB Wood, TJ AF Bishop, James K. B. Wood, T. J. TI Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites SO DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS LA English DT Article DE VERTIGO; Optics; Particulate organic matter; Opal; POC; PIC; Flux; Remineralization ID NORTHEAST PACIFIC-OCEAN; ORGANIC-CARBON; ATLANTIC-OCEAN; IN-SITU; POC CONCENTRATIONS; PARTICLE-FLUX; STATION ALOHA; EXPORT; MODEL; GEOCHEMISTRY AB Understanding particle dynamics in the 'Twilight Zone' is critical to prediction of the ocean's carbon cycle. As part of the VERtical Transport In the Global Ocean (VERTIGO) project, this rarely sampled regime extending from the base of the euphotic layer to 1000m, was characterized by double-paired day/night Multiple Unit Large Volume in-situ Filtration System (MULVFS) deployments and by similar to 100 high-frequency CTD/transmissometer/ turbidity sensor profiles. VERTIGO studies lasting 3 weeks, contrasted oligotrophic station ALOHA (22.75 degrees N 158 degrees W), sampled in June July 2004, with a biologically productive location (47 degrees N 161 degrees E) near station K2 in the Oyashio, occupied July-August 2005. Profiles of major and minor particulate components (C(org), N, P, Ca, Si, Sr, Ba, Mn) in <1, 1-51, and >51 mu m size fractions, in-water optics, neutrally buoyant sediment trap (NBST) fluxes, and zooplankton data were intercompared. MULVFS total C(org) and C-Star particle beam attenuation coefficient (C(P)) were consistently related at both sites with a 27 mu M m(-1) conversion factor. At K2, C(P) profiles further showed a multitude of transient spikes throughout the water column and spike abundance profiles closely paralleled the double peaked abundance profiles of zooplankton. Also at K2, copepods contributed similar to 40% and 10%, night and day, respectively to > 51 mu m C(org) of MULVFS samples in the mixed layer, but few copepods were collected in deeper waters; however, non-swimming radiolarians were quantitatively sampled. A recent hypothesis regarding POC differences between pumps and bottles is examined in light of these results. Particulate > 51 mu m C(org), N, and P at both ALOHA and K2 showed strong attenuation with depth at both sites. Notable at ALOHA were unusually high levels of >51 mu m Sr (up to 4nM) in the mixed layer, a reflection of high abundances of SrSO(4) precipitating Acantharia. Notable at K2 were major changes in water column inventories of many particulate components to 700m over 10 days. Carbon mass balance, with the consideration of particle inventory changes included, indicated that over 98% and 96% of primary produced C(org) was remineralized shallower than 500 m at ALOHA and K2, respectively. Production of CaCO(3) was estimated to be similar to 0.06, 0.89, and 0.02 mmol m(-2) d(-1) at ALOHA and at K2 during two separate week long study periods, respectively. Similarly, Si production was estimated to be similar to 0.08, 10.7, and 4.2 mol m(-2) d(-1). An estimated 50% and 65% of produced Si was remineralized by 500 m at ALOHA and K2, respectively. Little carbonate dissolution was seen in the upper 500 m at ALOHA, a reflection of 400% super saturation of surface waters and the 700 m deep saturation horizon. Over 92% of produced CaCO(3) was dissolved shallower than 500 m at K2 and biological enhancement of dissolution was readily apparent in waters above the 200 m calcite saturation horizon. (C) 2008 Published by Elsevier Ltd. C1 [Bishop, James K. B.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bishop, James K. B.; Wood, T. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bishop, JKB (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jkbishop@berkeley.edu; tjwood@lbl.gov NR 50 TC 40 Z9 40 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0637 J9 DEEP-SEA RES PT I JI Deep-Sea Res. Part I-Oceanogr. Res. Pap. PD DEC PY 2008 VL 55 IS 12 BP 1684 EP 1706 DI 10.1016/j.dsr.2008.07.012 PG 23 WC Oceanography SC Oceanography GA 384DX UT WOS:000261725600005 ER PT J AU Horton, A Mahadevan, N Minguillon, C Osoegawa, K Rokhsar, D Ruvinsky, I Jong, P Logan, M Gibson-Brown, J AF Horton, Amy C. Mahadevan, Navin R. Minguillon, Carolina Osoegawa, Kazutoyo Rokhsar, Daniel S. Ruvinsky, Ilya Jong, Pieter J. de Logan, Malcolm P. Gibson-Brown, Jeremy J. TI Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs SO DEVELOPMENT GENES AND EVOLUTION LA English DT Article DE T-box; Amphioxus; Limb; Evolution; Development ID HOLT-ORAM SYNDROME; MAXIMUM-LIKELIHOOD; PHYLOGENETIC INFERENCE; TRANSCRIPTION FACTOR; PAIRED APPENDAGES; AMPHIOXUS GENOME; SERIAL HOMOLOGY; SEQUENCE DATA; TBX4 GENE; IDENTITY AB T-box genes encode a family of DNA-binding transcription factors implicated in numerous developmental processes in all metazoans. The Tbx2/3/4/5 subfamily genes are especially interesting because of their key roles in the evolution of vertebrate appendages, eyes, and the heart, and, like the Hox genes, the longevity of their chromosomal linkage. A BAC library derived from the single male amphioxus (Branchiostoma floridae) used to sequence the amphioxus genome was screened for AmphiTbx2/3 and AmphiTbx4/5, yielding two independent clones containing both genes. Using comparative expression, genomic linkage, and phylogenetic analyses, we have reconstructed the evolutionary histories of these members of the T-box gene family. We find that the Tbx2-Tbx4 and Tbx3-Tbx5 gene pairs have maintained tight linkage in most animal lineages since their birth by tandem duplication, long before the divergence of protostomes and deuterostomes (e.g., arthropods and vertebrates) at least 600 million years ago, and possibly before the divergence of poriferans and cnidarians (e.g., sponges and jellyfish). Interestingly, we find that the gene linkage detected in all vertebrate genomes has been maintained in the primitively appendage-lacking, basal chordate, amphioxus. Although all four genes have been involved in the evolution of developmental programs regulating paired fin and (later) limb outgrowth and patterning, and most are also implicated in eye and heart development, linkage maintenance-often considered due to regulatory constraints imposed by limb, eye, and/or heart associated gene expression-is undoubtedly a consequence of other, much more ancient functional constraints. C1 [Horton, Amy C.; Mahadevan, Navin R.; Gibson-Brown, Jeremy J.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Minguillon, Carolina; Logan, Malcolm P.] Natl Inst Med Res, Div Dev Biol, London NW7 1AA, England. [Osoegawa, Kazutoyo; Jong, Pieter J. de] Childrens Hosp Oakland, Res Inst, BACPAC Resources, Oakland, CA 94609 USA. [Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Dept Computat Gen, Walnut Creek, CA 94598 USA. [Ruvinsky, Ilya] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Gibson-Brown, J (reprint author), Washington Univ, Dept Biol, 1 Brookings Dr, St Louis, MO 63130 USA. EM gibbroster@gmail.com OI Horton, Amy/0000-0003-2148-5636; Minguillon, Carolina/0000-0002-2782-6908 FU Medical Research Council [MC_U117560477] NR 78 TC 33 Z9 34 U1 3 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-944X J9 DEV GENES EVOL JI Dev. Genes Evol. PD DEC PY 2008 VL 218 IS 11-12 BP 613 EP 628 DI 10.1007/s00427-008-0249-5 PG 16 WC Cell Biology; Evolutionary Biology; Developmental Biology SC Cell Biology; Evolutionary Biology; Developmental Biology GA 379UU UT WOS:000261422500005 PM 18815807 ER PT J AU Kost, GJ Tran, NK Louie, RF Gentile, NL Abad, VJ AF Kost, Gerald J. Tran, Nam K. Louie, Richard F. Gentile, Nicole L. Abad, Victor J. TI Assessing the Performance of Handheld Glucose Testing for Critical Care SO DIABETES TECHNOLOGY & THERAPEUTICS LA English DT Article ID INTENSIVE INSULIN THERAPY; TIGHT GLYCEMIC CONTROL; ILL PATIENTS; INFUSION PROTOCOL; BLOOD-GLUCOSE; ACCURACY; HEMATOCRIT; METERS; OUTCOMES; SURGERY AB Background: We assessed the performance of a point-of-care (POC) glucose meter system (GMS) with multitasking test strip by using the locally-smoothed (LS) median absolute difference (MAD) curve method in conjunction with a modified Bland-Altman difference plot and superimposed International Organization for Standardization (ISO) 15197 tolerance bands. We analyzed performance for tight glycemic control (TGC). Methods: A modified glucose oxidase enzyme with a multilayer-gold, multielectrode, four-well test strip (StatStrip (TM), NOVA Biomedical, Waltham, MA) was used. There was no test strip calibration code. Pragmatic comparison was done of GMS results versus paired plasma glucose measurements from chemistry analyzers in clinical laboratories. Venous samples (n = 1,703) were analyzed at 35 hospitals that used 20 types of chemistry analyzers. Erroneous results were identified using the Bland-Altman plot and ISO 15197 criteria. Discrepant values were analyzed for the TGC interval of 80-110 mg/dL. Results: The GMS met ISO 15197 guidelines; 98.6% (410 of 416) of observations were within tolerance for glucose <75 mg/dL, and for >= 75 mg/dL, 100% were within tolerance. Paired differences (handheld. minus reference) averaged -2.2 (SD 9.8) mg/dL; the median was -1 (range, -96 to 45) mg/dL. LS MAD curve analysis revealed satisfactory performance below 186 mg/dL; above 186 mg/dL, the recommended error tolerance limit (5 mg/dL) was not met. No discrepant values appeared. All points fell in Clarke Error Grid zone A. Linear regression showed y = 1.018x - 0.716 mg/dL, and r(2) = 0.995. Conclusions: LS MAD curves draw on human ability to discriminate performance visually. LS MAD curve and ISO 15197 performance were acceptable for TGC. POC and reference glucose calibration should be harmonized and standardized. C1 [Kost, Gerald J.; Tran, Nam K.; Louie, Richard F.; Gentile, Nicole L.] Univ Calif Davis, Point Care Testing Ctr Teaching & Res, Sch Med, Davis, CA 95616 USA. [Kost, Gerald J.; Tran, Nam K.; Louie, Richard F.; Gentile, Nicole L.] Univ Calif Davis, Univ Calif Lawrence Livermore Natl Lab, Ctr Point Care Technol, Davis, CA 95616 USA. [Abad, Victor J.] Epsilon Grp LLC, Charlottesville, VA USA. RP Kost, GJ (reprint author), Univ Calif Davis, Point Care Testing Ctr Teaching & Res, Sch Med, 3455 Tupper Hall, Davis, CA 95616 USA. EM gjkost@ucdavis.edu FU Point-of-Care Testing Center for Teaching and Research (POCT. CTRSM); School of Medicine, University of California, Davis; National Institute of Biomedical Imaging and Bioengineering Point-of-Care Technologies Center [1U54 EB007959-01] FX The tables and figures were provided courtesy and permission of Knowledge Optimization (R), Davis, CA. This study was supported by the Point-of-Care Testing Center for Teaching and Research (POCT. CTRSM), School of Medicine, University of California, Davis, and by a National Institute of Biomedical Imaging and Bioengineering Point-of-Care Technologies Center grant (G.J.K., Principal Investigator, National Institutes of Health grant number 1U54 EB007959-01.). This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Biomedical Imaging and Bioengineering or the National Institutes of Health. NR 31 TC 8 Z9 9 U1 1 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1520-9156 J9 DIABETES TECHNOL THE JI Diabetes Technol. Ther. PD DEC PY 2008 VL 10 IS 6 BP 445 EP 451 DI 10.1089/dia.2008.0049 PG 7 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 382HR UT WOS:000261597300003 PM 19049373 ER PT J AU Sansongsiri, S Anders, A Yotsombat, B AF Sansongsiri, Sakon Anders, Andre Yotsombat, Banchob TI Electrical properties of a-C: Mo films produced by dual-cathode filtered cathodic arc plasma deposition SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Metal-doped amorphous carbon; Electrical properties; Cathodic arc deposition; Raman spectroscopy ID VACUUM-ARC; AMORPHOUS-CARBON; MECHANICAL-PROPERTIES; COATINGS; RAMAN; DLC AB Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a clual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 not. Film resistivity varied from 3.55 x 10(-4) Omega in to 2.27x10(-6) Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias. the film resistivity was in the range of 4.59 x 10(-2) and 4.05 Omega in at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80 x 10(-2) to 3.36 x 10(-4) eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-pealk and G-peik (l(D)/l(G)) correlated with the pre-exponential factor (00) which included charge carrier density and density of states. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sansongsiri, Sakon; Yotsombat, Banchob] Chiang Mai Univ, Fac Sci, Dept Phys, Chiang Mai 50200, Thailand. [Sansongsiri, Sakon; Anders, Andre] Univ Calif, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sansongsiri, S (reprint author), Chiang Mai Univ, Fac Sci, Dept Phys, Chiang Mai 50200, Thailand. EM sakon@chiangmai.ac.th RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 FU Thai Commission on Higher Education Staff Development; Nanochip Inc., Fremont, California; U.S. Department of Energy [DE-AC02-05CH11231] FX S. Sansongsiri acknowledges Support by the Thai Commission on Higher Education Staff Development, allowing him to do work at Lawrence Berkeley National Laboratory. The authors thank Joel Teague, Joe Wallig,, Michael Dickinson, and Tom McVeigh for technical Support. This work was supported by Nanochip Inc., Fremont, California, and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 11 Z9 11 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD DEC PY 2008 VL 17 IS 12 BP 2080 EP 2083 DI 10.1016/j.diamond.2008.07.006 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 375UV UT WOS:000261140000017 ER PT J AU Zou, CB Breshears, DD Newman, BD Wilcox, BP Gard, MO Rich, PM AF Zou, Chris B. Breshears, David D. Newman, Brent D. Wilcox, Bradford P. Gard, Marvin O. Rich, Paul M. TI Soil water dynamics under low- versus high-ponderosa pine tree density: ecohydrological functioning and restoration implications SO ECOHYDROLOGY LA English DT Article DE ecohydrology; Pinus ponderosa; restoration; tree density; semi-arid forest; soil water content ID ECOLOGICAL RESTORATION; FOREST STRUCTURE; BURNING TREATMENTS; NORTHERN ARIZONA; GROWTH-RESPONSE; STAND DENSITY; NATURAL AREA; LEAF-AREA; HILLSLOPE; MOISTURE AB Soil water dynamics reflect the integrated effects of climate conditions, soil hydrological properties and vegetation at a site. Consequently, changes in tree density call have important ecohydrological implications. Notably, stand density in many semi-arid forests has increased greatly because of fire suppression, such as that in the extensive ponderosa pine (Pinus ponderosa Laws.) forests that span Much of western USA. Few studies have quantified low soil water content varies in low-versus high-density stands both by depth and years, or the inter-relationships between water content, stand density, and ecohydrological processes. Over a 4-year period, we measured the soil water content throughout the soil profiles in both low-density (250 trees/ha) and high-density (2710 trees/ha) ponderosa pine stands. Our results document significantly greater soil water contents in the low-density stands over a wide range of conditions (wet, dry, winter, summer). We observed substantial differences in water contents at depths greater than are typically measured. Our results also show that differences in monthly average soil water contents between the low- and high-density stands fluctuated between 0.02 and 0.08 m(3) m(-3) depending oil the time of year, and reflect a dynamic coupling between infiltration and stand evapotranspiration processes. The difference in soil water availability between low- and high-density stands is substantially amplified when expressed as plant-available water oil a per tree, per biomass or per leaf area basis. Our findings highlight important ecohydrological couplings and suggest that restoration and monitoring plans for semi-arid forests could benefit from adopting a more ecohydrological focus that explicitly considers soil water content as a determinant of the ecosystem process. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Zou, Chris B.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA. [Breshears, David D.] Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Newman, Brent D.; Gard, Marvin O.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Wilcox, Bradford P.] Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77841 USA. [Rich, Paul M.] Creekside Ctr Earth Observat, Menlo Pk, CA 94025 USA. RP Zou, CB (reprint author), Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA. EM chriszou1965@hotmail.com RI Breshears, David/B-9318-2009; Zou, Chris/A-5039-2010 OI Breshears, David/0000-0001-6601-0058; Zou, Chris/0000-0003-0080-2866 FU Arizona Agricultural Experiment Station [126580]; NSF STC Program on SAHRA [EAR-9876800]; Los Alamos National Laboratory Environmental Restoration Program FX Support was provided by the Arizona Agricultural Experiment Station (#126580); NSF STC Program on SAHRA (Sustainability of semi-Arid Hydrology and Riparian Areas: EAR-9876800): and the Arizona Water Institute; Data collection was supported by the Los Alamos National Laboratory Environmental Restoration Program. NR 57 TC 14 Z9 14 U1 2 U2 29 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1936-0584 J9 ECOHYDROLOGY JI Ecohydrology PD DEC PY 2008 VL 1 IS 4 BP 309 EP 315 DI 10.1002/eco.17 PG 7 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 390FU UT WOS:000262150500003 ER PT J AU Valett, HM Thomas, SA Mulholland, PJ Webster, JR Dahm, CN Fellows, CS Crenshaw, CL Peterson, CG AF Valett, H. M. Thomas, S. A. Mulholland, P. J. Webster, J. R. Dahm, C. N. Fellows, C. S. Crenshaw, C. L. Peterson, C. G. TI ENDOGENOUS AND EXOGENOUS CONTROL OF ECOSYSTEM FUNCTION: N CYCLING IN HEADWATER STREAMS SO ECOLOGY LA English DT Article DE endogenous; exogenous; metabolic theory; nitrogen uptake; primary production; respiration; spatial subsidies; streams; temporal variation; uptake length; uptake velocity ID ORGANIC-CARBON; CONTINENTAL-SHELF; NUTRIENT-UPTAKE; ENERGY-FLOW; METABOLISM; STOICHIOMETRY; NITROGEN; FOREST; VARIABILITY; DYNAMICS AB Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of (15)N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in (15)N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; mu g N.m(-2).s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled. C1 [Valett, H. M.; Thomas, S. A.; Webster, J. R.; Crenshaw, C. L.] Virginia Tech, Dept Biol, Blacksburg, VA 24061 USA. [Thomas, S. A.] Univ Nebraska, Dept Biol, Lincoln, NE 68588 USA. [Mulholland, P. J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Dahm, C. N.; Fellows, C. S.; Crenshaw, C. L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Fellows, C. S.] Griffith Univ, Australian Rivers Inst, Fac Environm Sci, Nathan, Qld 4111, Australia. [Fellows, C. S.] Griffith Univ, Grifith Sch Environm, Fac Environm Sci, Nathan, Qld 4111, Australia. [Peterson, C. G.] Loyola Univ Chicago, Dept Nat Sci, Evanston, IL 60626 USA. RP Valett, HM (reprint author), Virginia Tech, Dept Biol, Blacksburg, VA 24061 USA. EM mvalett@vt.edu RI Mulholland, Patrick/C-3142-2012 NR 54 TC 38 Z9 38 U1 0 U2 42 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD DEC PY 2008 VL 89 IS 12 BP 3515 EP 3527 DI 10.1890/07-1003.1 PG 13 WC Ecology SC Environmental Sciences & Ecology GA 381GP UT WOS:000261524000025 PM 19137956 ER PT J AU Mao, X Liu, GD Wang, SF Lin, YH Zhang, AG Zhang, LR Ma, YQ AF Mao, Xun Liu, Guodong Wang, Shengfu Lin, Yuehe Zhang, Aiguo Zhang, Lurong Ma, Yunqing TI Ultrasensitive electrochemical detection of mRNA using branched DNA amplifiers SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE mRNA; Electrochemical; Branched DNA; Amplification ID GENE-EXPRESSION; MICRORNAS; BIOSENSOR; ASSAY AB We describe here an ultrasensitive electrochemical detection of messenger RNA (mRNA) protocol without RNA purification and reverse transcription-polymerase chain reaction (RT-PCR) amplification. The new mRNA electrical detection capability is coupled to the amplification feature of branched DNA (bDNA) technology and with the magnetic beads (MB) based electrochemical bioassay. After sandwich-type hybridization reactions among the DNA probes modified magnetic beads, mRNA target and bDNA amplifiers, numerous alkaline phosphatase tracers were captured to the MB surface. The quantification of mRNA was realized by square wave voltammetric detection of the enzymatic product with a disposable screen printed electrode. The proof of concept was demonstrated with human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) mRNA. The parameters (e.g., amount of DNA probes coated magnetic beads, substrate concentration and enzymatic reaction time) that govern the sensitivity of the assay were optimized. The voltammetric response is highly linear over the range of 1.35-216 pM mRNA, and the limit of detection is estimated to be 0.68 pM (3.4 attomoles in 5 mu L of sample). Such bDNA and magnetic bead based electrochemical bioassay shows great promise for simple, cost-effective and quantitative gene expression analysis. (C) 2008 Elsevier B.V. All rights reserved. C1 [Mao, Xun; Liu, Guodong; Wang, Shengfu] N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58108 USA. [Wang, Shengfu] Hubei Univ, Coll Chem & Chem Engn, Wuhan 430062, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Aiguo] DiaCarta LLC, Fremont, CA 94555 USA. [Zhang, Lurong] Univ Rochester, Med Ctr, Dept Radiat Oncol, Rochester, NY 14642 USA. [Ma, Yunqing] Panomics Inc, Fremont, CA 94555 USA. RP Liu, GD (reprint author), N Dakota State Univ, Dept Chem & Mol Biol, 1231 Albrecht Ave,POB 6050, Fargo, ND 58108 USA. EM Guodong.liu@ndsu.edu RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU North Dakota Experimental Program to Stimulate Competitive Research (EPS-CoR); North Dakota State University; Pacific Northwest National laboratory (PNNL); DOE [DE-AC05-76RL01830] FX G. Liu acknowledges the financial support from North Dakota Experimental Program to Stimulate Competitive Research (EPS-CoR) and new faculty startup funds of North Dakota State University. Y. Lin acknowledges the financial support from the laboratory-directed research and development program at Pacific Northwest National laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 14 TC 3 Z9 4 U1 0 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2008 VL 10 IS 12 BP 1847 EP 1850 DI 10.1016/j.elecom.2008.09.028 PG 4 WC Electrochemistry SC Electrochemistry GA 387XQ UT WOS:000261985300008 ER PT J AU Waychunas, GA Zhang, HZ AF Waychunas, Glenn A. Zhang, Hengzhong TI Structure, Chemistry, and Properties of Mineral Nanoparticles SO ELEMENTS LA English DT Article DE nanoparticle; pair distribution function; ZnS; TiO2; oriented aggregation; strain ID COHERENT DIFFRACTION; ORIENTED ATTACHMENT; PHASE-STABILITY; NANOCRYSTALS; SURFACE; FERRIHYDRITE; NANOTUBES; KINETICS; OXIDE AB Nanoparticle properties can show marked departures from their bulk analog materials, including large differences in chemical reactivity, molecular and electronic structure, and mechanical behavior. The greatest changes are expected at the smallest sizes, e.g. 10 nanometers; and less, where surface effects are likely to dominate bonding, shape, and energy considerations. The precise chemistry at nanoparticle interfaces can have a profound effect on structure, phase transformations, strain and reactivity. Certain phases may exist only as nanoparticles, requiring transformations larger sizes. In in chemistry, stoichiometry, and structure with evolution to general, mineral nanoparticles have been little studied. C1 [Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Waychunas, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM GAWaychunas@lbl.gov; heng@eps.berkeley.edu FU Department of Energy, Office of Basic Energy Sciences FX The authors gratefully acknowledge the guidance and support from Prof. Jillian Banfield for a significant portion of the work presented here, and for development of the Nanogeoscience Center at Lawrence Berkeley National Laboratory, We are also grateful for Suggestions and discussions with Dr. Benjamin Gilbert at LBNL. Reviews by Andrew Madden, Michael Hochella, David Vaughan, and an anonymous reviewer are much appreciated. Much of the nanoscience research of the authors has been supported through the Department of Energy, Office of Basic Energy Sciences, within the Chemical Sciences, Geosciences and Biosciences Program. NR 35 TC 41 Z9 42 U1 2 U2 23 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD DEC PY 2008 VL 4 IS 6 BP 381 EP 387 DI 10.2113/gselements.4.6.381 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 404KB UT WOS:000263149300002 ER PT J AU Siddiqui, AS Marnay, C AF Siddiqui, Afzal S. Marnay, Chris TI Distributed generation investment by a microgrid under uncertainty SO ENERGY LA English DT Article DE Distributed generation; Real options; Optimal investment; Energy markets ID IRREVERSIBLE INVESTMENT; HEAT AB This paper examines a California-based microgrid's decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the Value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Siddiqui, Afzal S.] UCL, Dept Stat Sci, London WC1E 6BT, England. [Marnay, Chris] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Siddiqui, AS (reprint author), UCL, Dept Stat Sci, Gower St, London WC1E 6BT, England. EM afzal@stats.ucl.ac.uk FU Distributed Energy Program; US Department of Energy [DE-AC02-05CH11231] FX The work described in this paper was funded by the former Distributed Energy Program, under the Assistant Secretary of Energy Efficiency and Renewable Energy of the US Department of Energy under Contract DE-AC02-05CH11231. This work builds upon prior efforts by a considerable number of Berkeley Lab researchers, including Ryan Firestone, Kristina Hamachi LaCommare, Michael Stadler, and others. The authors are also grateful to the feedback provided by seminar participants at the Department of Industrial Economics and Technology Management of the Norwegian University of Science and Technology in Trondheim, Norway and participants from the 2006 International Meeting of the Institute for Operations Research and the Management Sciences (INFORMS) in Hong Kong, SAR as well as the 19th Mini-EURO Conference on Operational Research Models and Methods in the Energy Sector (ORMMES 2006) in Coimbra, Portugal. Finally, the comments from two anonymous reviewers have also improved the paper. All remaining errors are the authors' own. NR 22 TC 30 Z9 31 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD DEC PY 2008 VL 33 IS 12 BP 1729 EP 1737 DI 10.1016/j.energy.2008.08.011 PG 9 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 378CG UT WOS:000261298100001 ER PT J AU Dewar, RL Hole, MJ McGann, M Mills, R Hudson, SR AF Dewar, Robert L. Hole, Matthew J. McGann, Mathew Mills, Ruth Hudson, Stuart R. TI Relaxed Plasma Equilibria and Entropy-Related Plasma Self-Organization Principles SO ENTROPY LA English DT Article DE Plasma; Fusion; Relaxation; Chaos; Turbulence ID STATISTICAL-MECHANICS; STATIONARY-PROCESSES; INFORMATION-THEORY; MAGNETIC-FIELDS; VACUUM SYSTEMS; RELAXATION; MAXIMUM; TURBULENCE; FLOW; PRESSURE AB The concept of plasma relaxation as a constrained energy minimization is reviewed. Recent work by the authors on generalizing this approach to partially relaxed three-dimensional plasma systems in a way consistent with chaos theory is discussed, with a view to clarifying the thermodynamic aspects of the variational approach used. Other entropy-related approaches to finding long-time steady states of turbulent or chaotic plasma systems are also briefly reviewed. C1 [Dewar, Robert L.; Hole, Matthew J.; McGann, Mathew; Mills, Ruth] Australian Natl Univ, Res Sch Phys & Engn, Plasma & Fluids Theory Grp, Canberra, ACT 0200, Australia. [Hudson, Stuart R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dewar, RL (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Plasma & Fluids Theory Grp, Canberra, ACT 0200, Australia. EM robert.dewar@anu.edu.au; shudson@pppl.gov RI Hudson, Stuart/H-7186-2013; Dewar, Robert/B-1300-2008 OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 FU U. S. Department of Energy [DE-AC02-76CH03073, DE-FG02-99ER54546]; Australian Research Council (ARC) [DP0452728, DP0343765]; ARC Complex Open Systems Research Network; COSNet [RN0460006] FX The first author wishes to thank the organizers of the AMSI/MASCOS Concepts of Entropy and their Applications Workshop, in particular Professor Philip Broadbridge, for the opportunity to present and discuss the topic of this paper in a stimulating environment. He acknowledges useful discussions with Drs Robert Niven and Jorgen Frederiksen. Some of the work presented was supported by U. S. Department of Energy Contract No. DE-AC02-76CH03073 and Grant No. DE-FG02-99ER54546 and the Australian Research Council (ARC), Discovery Projects DP0452728 and DP0343765. The ARC Complex Open Systems Research Network, COSNet, grant RN0460006 also provided some support for the workshop. NR 44 TC 21 Z9 21 U1 0 U2 4 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY JI Entropy PD DEC PY 2008 VL 10 IS 4 BP 621 EP 634 DI 10.3390/e10040621 PG 14 WC Physics, Multidisciplinary SC Physics GA 424IU UT WOS:000264561200014 ER PT J AU Vrugt, J Diks, C Clark, M AF Vrugt, Jasper A. Diks, Cees G. H. Clark, Martyn P. TI Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling SO ENVIRONMENTAL FLUID MECHANICS LA English DT Article; Proceedings Paper CT 5th International Symposium on Environmental Hydraulics CY DEC 02-07, 2007 CL Arizona State Univ, Tempe, AZ HO Arizona State Univ DE Bayesian model averaging; Markov Chain Monte Carlo; Maximum likelihood; DiffeRential Evolution Adaptive Metropolis; Temperature forecasting; Streamflow forecasting ID MULTIMODEL ENSEMBLES; PREDICTION SYSTEM; CLIMATE FORECASTS; OPTIMIZATION; COMBINATION; UNCERTAINTY; WEATHER AB Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery et al. Mon Weather Rev 133:1155-1174, 2005) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model streamflow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances. C1 [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Diks, Cees G. H.] Univ Amsterdam, Ctr Nonlinear Dynam Econ & Finance, Amsterdam, Netherlands. [Clark, Martyn P.] NIWA, Christchurch, New Zealand. RP Vrugt, J (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Mail Stop B258, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov RI Vrugt, Jasper/C-3660-2008; Clark, Martyn/A-5560-2015 OI Clark, Martyn/0000-0002-2186-2625 NR 30 TC 39 Z9 41 U1 6 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1567-7419 J9 ENVIRON FLUID MECH JI Environ. Fluid Mech. PD DEC PY 2008 VL 8 IS 5-6 SI SI BP 579 EP 595 DI 10.1007/s10652-008-9106-3 PG 17 WC Environmental Sciences; Mechanics; Meteorology & Atmospheric Sciences; Oceanography; Water Resources SC Environmental Sciences & Ecology; Mechanics; Meteorology & Atmospheric Sciences; Oceanography; Water Resources GA 376MA UT WOS:000261186500018 ER PT J AU Redding, LE Sohn, MD McKone, TE Chen, JW Wang, SL Hsieh, DPH Yang, RSH AF Redding, Laurel E. Sohn, Michael D. McKone, Thomas E. Chen, Jein-Wen Wang, Shu-Li Hsieh, Dennis P. H. Yang, Raymond S. H. TI Population Physiologically Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB-153 with Consideration of Worldwide Human Biomonitoring Results SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE body burden; exposure reconstruction; human milk biomonitoring; lactational transfer; PCB-153; physiologically based pharmacokinetic modeling; polychlorinated biphenyls; reverse dosimetry ID DIBENZO-P-DIOXINS; POLYBROMINATED DIPHENYL ETHERS; BLOOD PARTITION-COEFFICIENTS; POLYCHLORINATED-BIPHENYLS; ADIPOSE-TISSUE; BREAST-MILK; COPLANAR PCBS; PBPK MODELS; CORD BLOOD; EXPOSURE AB BACKGROUND: One of the most serious human health concerns related to environmental contamination with polychlorinated biphenyls (PCBs) is the presence of these chemicals in breast milk. OBJECTIVES: We developed a physiologically based pharmacokinetic model of PCB-153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB-153. Data in the literature provided estimates for model development and for performance assessment. METHODS: We used physiologic parameters from a cohort in Taiwan and reference values given in the literature to estimate partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data from Japan, we predicted acquired body burden of PCB-153 at an average childbearing age of 25 years and compared predictions to measurements from studies in multiple countries. We attempted one example of reverse dosimetry modeling using our PBPK model for possible exposure scenarios in Canadian Inuits, the population with the highest breast milk PCB-153 level in the world. RESULTS: Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. CONCLUSION: The model successfully describes the range of possible PCB-153 dispositions in maternal milk, suggesting a promising option for back-estimating doses for various populations. C1 [Sohn, Michael D.; McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wang, Shu-Li] Kaohsiung Med Univ, Grad Inst Occupat & Ind Hlth, Kaohsiung, Taiwan. [Yang, Raymond S. H.] Colorado State Univ, Quantitat & Computat Toxicol Grp, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. [Redding, Laurel E.; Chen, Jein-Wen; Wang, Shu-Li; Hsieh, Dennis P. H.; Yang, Raymond S. H.] Natl Hlth Res Inst, Div Environm Hlth & Occupat Med, Zhunan, Miaoli, Taiwan. RP Yang, RSH (reprint author), Colorado State Univ, Quantitat & Computat Toxicol Grp, Dept Environm & Radiol Hlth Sci, 137A Physiol Bldg,1680 Campus Delivery, Ft Collins, CO 80523 USA. EM raymond.yang@colostate.edu RI Wang, Shu-Li/C-1367-2010 NR 47 TC 20 Z9 20 U1 1 U2 12 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD DEC PY 2008 VL 116 IS 12 BP 1629 EP 1634 DI 10.1289/ehp.11519 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 377ZG UT WOS:000261290300023 PM 19079712 ER PT J AU Lema, SC Dickey, JT Schultz, IR Swanson, P AF Lema, Sean C. Dickey, Jon T. Schultz, Irvin R. Swanson, Penny TI Dietary Exposure to 2,2 ',4,4 '-Tetrabromodiphenyl Ether (PBDE-47) Alters Thyroid Status and Thyroid Hormone-Regulated Gene Transcription in the Pituitary and Brain SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE basic transcription element-binding protein; brain; endocrine disruption; PBDE-47; polybrominated diphenyl ethers; thyroid hormone; thyroid hormone receptor; thyroid-stimulating hormone; thyrotropin ID POLYBROMINATED DIPHENYL ETHERS; BROMINATED FLAME RETARDANTS; ELEMENT-BINDING PROTEIN; MINNOW PIMEPHALES-PROMELAS; CENTRAL-NERVOUS-SYSTEM; ADULT-RAT BRAIN; XENOPUS-LAEVIS; FATHEAD MINNOW; RECEPTOR-BETA; POLYCHLORINATED-BIPHENYLS AB BACKGROUND: Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDES may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. OBJECTIVE: We examined the effects of dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47)-commonly the highest concentrated PBDE in human tissues-on plasma TH levels and on gene transcripts for glycoprotein hormone alpha-subunit (GPH alpha) and thyrotropin beta-subunit (TSH beta) in the pituitary gland, the autoinduced TH receptors alpha and beta in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. METHODS: Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 mu g/pair/day or 12.3 mu g/pair/day) for 21 days. RESULTS: Minnows exposed to PBDE-47 had depressed plasma thyroxine (T(4)), but not 3,5,3'-triiodothyronine (T(3)). This decline in T(4) was accompanied by elevated mRNA levels for TSH beta (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor a in the brain of females and decreased mRNA for TH receptor beta in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. CONCLUSIONS: Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants. C1 [Lema, Sean C.; Swanson, Penny] Natl Ocean & Atmospher Adm, NW Fisheries Sci Ctr, Physiol Program, Seattle, WA USA. [Dickey, Jon T.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Schultz, Irvin R.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA USA. RP Lema, SC (reprint author), Univ N Carolina, 601 S Coll Rd, Wilmington, NC 28403 USA. EM lemas@uncw.edu FU West Coast Center for Oceans and Human Health (WCCOHH); National Marine Fisheries Service's Northwest Fisheries Science Center FX This study was supported by the West Coast Center for Oceans and Human Health (WCCOHH) as part of the NOAA Oceans and Human Health Initiative. The WCCOHH is part of the National Marine Fisheries Service's Northwest Fisheries Science Center. NR 57 TC 108 Z9 114 U1 4 U2 36 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD DEC PY 2008 VL 116 IS 12 BP 1694 EP 1699 DI 10.1289/ehp.11570 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 377ZG UT WOS:000261290300033 PM 19079722 ER PT J AU Tokunaga, TK Wan, JM Kim, YM Daly, RA Brodie, EL Hazen, TC Herman, D Firestone, MK AF Tokunaga, Tetsu K. Wan, Jiamin Kim, Yongman Daly, Rebecca A. Brodie, Eoin L. Hazen, Terry C. Herman, Don Firestone, Mary K. TI Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SURFACE COMPLEXATION; REDUCING CONDITIONS; REDUCTION; IRON; U(VI); REOXIDATION; BACTERIA; AQUIFER; FE(III) AB Remediation of uranium-contaminated sediments through in situ stimulation of bioreduction to insoluble UO2 is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol of OC (kg of sediment)(-1) year(-1), and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol of OC (kg of sediment)(-1) year(-1) was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, the resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe-reducing community, and the sulfate-reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low-solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization. C1 [Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Brodie, Eoin L.; Hazen, Terry C.; Firestone, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tokunaga, TK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM tktokunaga@lbl.gov RI Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Brodie, Eoin/A-7853-2008; Kim, Yongman/D-1130-2015; Hazen, Terry/C-1076-2012 OI Tokunaga, Tetsu/0000-0003-0861-6128; Brodie, Eoin/0000-0002-8453-8435; Kim, Yongman/0000-0002-8857-1291; Hazen, Terry/0000-0002-2536-9993 FU U.S. Department of Energy [DE-AC03-76SF00098] FX We thank Andrew Mei for technical assistance, Brian Viani (Simbol Mining Corporation) for suggesting the presentation shown in Figure 4b, and the anonymous reviewers for helpful comments. Funding was provided through the Environmental Remediation Sciences Program (ERSP) of the U.S. Department of Energy, under Contract DE-AC03-76SF00098. NR 29 TC 16 Z9 16 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2008 VL 42 IS 23 BP 8901 EP 8907 DI 10.1021/es8019947 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 378FS UT WOS:000261307200050 PM 19192816 ER PT J AU Rau, GH AF Rau, Greg H. TI Electrochemical Splitting of Calcium Carbonate to Increase Solution Alkalinity: Implications for Mitigation of Carbon Dioxide and Ocean Acidity SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CO2 CAPTURE; WATER ELECTROLYSIS; ANTHROPOGENIC CO2; CLIMATE-CHANGE; SEAWATER; AIR; ENERGY; CACO3; PRECIPITATION; BICARBONATE AB Electrochemical splitting of calcium carbonate (e.g., as contained in limestone or other minerals) is explored as a means of forming dissolve hydroxides for absorbing, neutralizing, and storing carbon dioxide, and for restoring, preserving, or enhancing ocean calcification. While essentially insoluble in water, CaCO(3) can be dissolved in the presence of the highly acidic anolyte of a water electrolysis cell. The resulting charged constituents, Ca(2+) and CO(3)(2-), migrate to the cathode and anode, respectively, forming Ca(OH)(2) on the one hand and H(2)CO(3) (or H(2)O and CO(2)) on the other. By maintaining a pH between 6 and 9, subsequent hydroxide reactions with CO(2) primarily produce dissolved calcium bicarbonate, Ca(HCO(3))(2aq). Thus, for each mole of CaCO(3) split, there can be a net capture of up to 1 mol of CO(2). Ca(HCO(3))(2aq) is thus the carbon sequestrant that can be diluted and stored in the ocean, in natural or artificial surface water reservoirs, or underground. The theoretical work requirement for the reaction is 266 kJ(e) per net mole CO(2) consumed. Even with inefficiencies, a realized net energy expenditure lower than the preceding quantity appears possible considering energy recovery via oxidation of the H(2) produced. The net process cost is estimated to be <$100/tonne CO(2) mitigated. An experimental demonstration of the concept is presented, and further implementation issues are discussed. C1 [Rau, Greg H.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Rau, Greg H.] Lawrence Livermore Natl Lab, Energy & Environm Secur Div, Carbon Management Program, Livermore, CA 94550 USA. RP Rau, GH (reprint author), Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. EM rau4@llnl.gov FU California Energy Commission [55043A/06-26]; Lawrence Livermore National Laboratory [B558132] FX Research supported in part by Grant 55043A/06-26 from the Energy Innovations Small Grant Program of the California Energy Commission, and Grant B558132 from the Carbon Management Program, Lawrence Livermore National Laboratory. I thank Richard Zeebe and Todd Martz for their assistance with solution chemistry modeling, and three anonymous reviewers for their helpful comments on the manuscript. NR 45 TC 22 Z9 23 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2008 VL 42 IS 23 BP 8935 EP 8940 DI 10.1021/es800366q PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 378FS UT WOS:000261307200055 PM 19192821 ER PT J AU Chowell, G Torre, CA Munayco-Escate, C Suarez-Ognio, L Lopez-Cruz, R Hyman, JM Castillo-Chavez, C AF Chowell, G. Torre, C. A. Munayco-Escate, C. Suarez-Ognio, L. Lopez-Cruz, R. Hyman, J. M. Castillo-Chavez, C. TI Spatial and temporal dynamics of dengue fever in Peru: 1994-2006 SO EPIDEMIOLOGY AND INFECTION LA English DT Article ID AEDES-AEGYPTI; HEMORRHAGIC-FEVER; REPRODUCTION NUMBER; TRAVELING-WAVES; TRANSMISSION; EPIDEMICS; POPULATIONS; INFECTION; VECTOR; BRAZIL AB The weekly number of dengue cases in Peru, South America, stratified by province for the period 1994-2006 were analysed in conjunction with associated demographic, geographic and climatological data. Estimates of the reproduction number, moderately correlated with population size (Spearman rho = 0.28, P = 0.03), had a median of 1.76 (IQR 0.83-4.46). The distributions of dengue attack rates and epidemic durations follow power-law (Pareto) distributions (coefficient of determination > 85 %, P < 0.004). Spatial heterogeneity of attack rates was highest in coastal areas followed by mountain and jungle areas. Our findings suggest a hierarchy of transmission events during the large 2000-2001 epidemic from large to small population areas when serotypes DEN-3 and DEN-4 were first identified (Spearman rho = -0.43. P = 0.03). The need for spatial and temporal dengue epidemic data with a high degree of resolution not only increases our understanding of the dynamics of dengue but will also generate new hypotheses and provide a platform for testing innovative control policies. C1 [Chowell, G.] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA. [Chowell, G.; Hyman, J. M.] Los Alamos Natl Lab, Math Modeling & Anal Grp T7, Theoret Div MS B284, Los Alamos, NM USA. [Torre, C. A.; Castillo-Chavez, C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ USA. [Munayco-Escate, C.; Suarez-Ognio, L.] Minist Salud, Direcc Gen Epidemiol, Lima, Peru. [Lopez-Cruz, R.] Univ Nacl Mayor San Marcos, Lima 14, Peru. RP Chowell, G (reprint author), Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA. EM gchowell@asu.edu RI Chowell, Gerardo/A-4397-2008; Munayco, Cesar/G-9990-2013; Chowell, Gerardo/F-5038-2012; Castillo-Chavez, Carlos/E-1412-2014; OI Munayco, Cesar/0000-0001-7872-8913; Chowell, Gerardo/0000-0003-2194-2251; Castillo-Chavez, Carlos/0000-0002-1046-3901; Lopez-Cruz, Roxana/0000-0002-7703-5784 NR 52 TC 31 Z9 31 U1 4 U2 20 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0950-2688 J9 EPIDEMIOL INFECT JI Epidemiol. Infect. PD DEC PY 2008 VL 136 IS 12 BP 1667 EP 1677 DI 10.1017/S0950268808000290 PG 11 WC Public, Environmental & Occupational Health; Infectious Diseases SC Public, Environmental & Occupational Health; Infectious Diseases GA 381RL UT WOS:000261553500011 PM 18394264 ER PT J AU Nakayama, T Kanashita, E AF Nakayama, T. Kanashita, E. TI Interacting dipoles in type-I clathrates: Why glass-like though crystalline? SO EPL LA English DT Article ID THERMAL-CONDUCTIVITY; GE; HEAT AB Almost identical thermal properties of type-I clathrate compounds to those of glasses follow naturally from the consideration that off-centered guest ions possess electric dipole moments. Local fields from neighbor dipoles create many potential minima in the configuration space. A theoretical analysis based on two-level tunneling states demonstrates that interacting dipoles are a key to quantitatively explain the glass-like behaviors of low-temperature thermal properties of type-I clathrate compounds with off-centered guest ions. Copyright (C) EPLA, 2008 C1 [Nakayama, T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kanashita, E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Nakayama, T (reprint author), Toyota Phys & Chem Res Inst Nagakute, Aichi 4801192, Japan. EM Riken-nakayama@mosk.tytlabs.co.jp FU U.S. DOE, Office of Science; Office of Basic Energy Sciences [DE-FG02-05ER46241]; Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-FG02-05ER46241 at MIT, and the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory. NR 23 TC 13 Z9 13 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2008 VL 84 IS 6 AR 66001 DI 10.1209/0295-5075/84/66001 PG 5 WC Physics, Multidisciplinary SC Physics GA 410SP UT WOS:000263598900012 ER PT J AU Diaz, RJ Rhoads, DC Blake, JA Kropp, RK Keay, KE AF Diaz, Robert J. Rhoads, Donald C. Blake, James A. Kropp, Roy K. Keay, Kenneth E. TI Long-term Trends of Benthic Habitats Related to Reduction in Wastewater Discharge to Boston Harbor SO ESTUARIES AND COASTS LA English DT Article DE Boston Harbor; Benthic habitat; Long term; Sewage discharge; Outfall; Monitoring; Ampelisca ID MASSACHUSETTS-BAY; PRODUCTION PATTERNS; MARINE BENTHOS; SEDIMENTS; COMMUNITY; ENVIRONMENTS; RECOVERY; OUTFALL; ESTUARY; STRESS AB A combination of methods (infaunal grabs and sediment profile cameras) were used to monitor the response of Boston Harbor benthic habitats to reductions in wastewater associated with movement of the outfalls to the mouth of the harbor and then offshore. From 1992 to 2006, there was strong evidence that benthic habitats within Boston Harbor have shifted from a more anaerobic state to a more aerobic state and that these changes are directly related to changes in carbon loading associated with outfall placement and improvements in wastewater treatment. Over the period of 1992 to 2000, when the ocean outfall started to operate, there was > 90% reduction in organic loadings to Boston Harbor from 11,400 to 1,200 t C per year. There were also corresponding decreases in primary production due to reduced nutrient loadings. The most apparent change in harbor benthos was the widespread increase in 1992 and subsequent decline by 2005 in Ampelisca spp. tube mats. The long-term increase in thickness of the apparent color redox potential discontinuity layer was consistent with reductions in organic loading and increases in bioturbation. The optimal organic loading for maintaining large areas of amphipod tube mats and high bioturbation rates was around 500 g C per square meter per year. Above and below this level, the area of tube mats in Boston Harbor declined. C1 [Diaz, Robert J.] Coll William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. [Rhoads, Donald C.; Blake, James A.] ENSR Marine & Coastal Ctr, Woods Hole, MA 02543 USA. [Kropp, Roy K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Keay, Kenneth E.] Massachusetts Water Resources Author, ENQUAD Operat, Boston, MA 02129 USA. RP Diaz, RJ (reprint author), Coll William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. EM diaz@vims.edu FU Harbor and Outfall Monitoring Program FX We would like to thank the many people that assisted with fieldwork and data processing over the last 15 year, in particular Nancy Maciolek and Carlton Hunt for critical reviews over the years. The Massachusetts Water Resources Authority provided support as part of five contracts for the Harbor and Outfall Monitoring Program. This is contribution 2962 of the Virginia Institute of Marine Science. NR 40 TC 25 Z9 25 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 J9 ESTUAR COAST JI Estuaries Coasts PD DEC PY 2008 VL 31 IS 6 BP 1184 EP 1197 DI 10.1007/s12237-008-9094-z PG 14 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 369IA UT WOS:000260686700013 ER PT J AU Dilmanian, FA Romanelli, P Zhong, Z Wang, RL Wagshul, ME Kalef-Ezra, J Maryanski, MJ Rosen, EM Anschel, DJ AF Dilmanian, F. Avraham Romanelli, Pantaleo Zhong, Zhong Wang, Ruiliang Wagshul, Mark E. Kalef-Ezra, John Maryanski, Marek J. Rosen, Eliot M. Anschel, David J. TI Microbeam radiation therapy: Tissue dose penetration and BANG-gel dosimetry of thick-beams' array interlacing SO EUROPEAN JOURNAL OF RADIOLOGY LA English DT Article; Proceedings Paper CT Conference on Medical Applications of Synchrotron Radiation CY 2007 CL Saskatoon, CANADA DE Radiation therapy; Radiosurgery; Microbeam Synchrotron X-rays; Brain; Microradiosurgery ID X-RAY MICROBEAMS; STEREOTACTIC RADIOSURGERY; MICROPLANAR BEAMS; SYNCHROTRON-WIGGLER; BRAIN-TUMORS; LEKSELL-GAMMA-KNIFE(R); GLIOSARCOMAS; IRRADIATION; PROSPECTS; CHILDREN AB The tissue-sparing effect of parallel, thin (narrower than 100 mu m) synchrotron-generated X-ray planar beams (microbeams) in healthy tissues including the central nervous system (CNS) is known since early 1990s. This, together with a remarkable preferential tumoricidal effect of such beam arrays observed at high doses, has been the basis for labeling the method microbeam radiation therapy (MRT). Recent studies showed that beams as thick as 0.68 mm ("thick microbeams") retain part of their sparing effect in the rat's CNS, and that two Such orthogonal microbeams arrays can be interlaced to produce an unsegmented field at the target, thus producing focal targeting. We measured the half-value layer (HVL) of our 120-keV median-energy beam in water phantoms, and we irradiated stereotactically his acrylamide nitrogen gelatin (BANG)-gel-filled phantoms, including one containing a human skull, with interlaced microbeams and imaged them with MRI. A 43-mm water HVL resulted, together with an adequately large peak-to-valley ratio of the microbeams' three-dimensional dose distribution in the vicinity of the 20 mm x 20 mm x 20 mm target deep into the skull. Furthermore, the 80-20% dose falloff was a fraction of a millimeter as predicted by Monte Carlo simulations. We conclude that clinical MRT will benefit from the use of higher beam energies than those used here, although the current energy could serve certain neurosurgical applications. Furthermore, thick microbeams particularly when interlaced present some advantages over thin microbeams in that they allow the use of higher beam energies and they could conceivably be implemented with high power orthovoltage X-ray tubes. (C) 2008 Elsevier Ireland Ltd. All rights reserved. C1 [Dilmanian, F. Avraham; Romanelli, Pantaleo; Wang, Ruiliang; Anschel, David J.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dilmanian, F. Avraham] SUNY Stony Brook, Dept Radiat Oncol, Stony Brook, NY 11794 USA. [Romanelli, Pantaleo] SUNY Stony Brook, Dept Neurol, Stony Brook, NY 11794 USA. [Romanelli, Pantaleo] NEUROMED IRCCS, Dept Neurosurg, I-86077 Pozzilli, IS, Italy. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Wagshul, Mark E.] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA. [Kalef-Ezra, John] Univ Ioannina, Sch Med, Med Phys Lab, GR-45110 Ioannina, Greece. [Maryanski, Marek J.] MGS Res Inc, Madison, CT 06443 USA. [Rosen, Eliot M.] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA. RP Dilmanian, FA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM dilmanian@bnl.gov; radiosurgery2000@yahoo.com; Zhong@bnl.gov; rlwang@bnl.gov; mark.Wagshul@stonybrook.edu; jkalef@cc.uoi.gr; mgsr@snet.net; emr36@georgetown.edu; danschel@bnl.gov NR 37 TC 21 Z9 22 U1 0 U2 4 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0720-048X J9 EUR J RADIOL JI Eur. J. Radiol. PD DEC PY 2008 VL 68 IS 3 SU S BP S129 EP S136 DI 10.1016/j.ejrad.2008.04.055 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 387GW UT WOS:000261940700028 PM 18606516 ER PT J AU Roberts, DC Teodorescu, R AF Roberts, D. C. Teodorescu, R. TI A linear path toward synchronization Anomalous scaling in a new class of exactly solvable Kuramoto models SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article; Proceedings Paper CT Conference on Chaos and Nonlinear Dynamics CY 2007 CL Univ Aberdeen, Aberdeen, SCOTLAND HO Univ Aberdeen ID COUPLED OSCILLATORS; POPULATIONS; ARRAY AB Using a recently introduced linear reformulation of the Kuramoto model of self-synchronizing oscillator systems [1], we study a new class of analytically solvable oscillator systems defined by a particular coupling scheme. We show that these systems have a logarithmic scaling law in the vicinity of the critical point, which may be seen as anomalous with respect to the usual power-law behavior exhibited by the standard Kuramoto model. C1 [Roberts, D. C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Roberts, DC (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. NR 12 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD DEC PY 2008 VL 165 BP 103 EP 109 DI 10.1140/epjst/e2008-00853-1 PG 7 WC Physics, Multidisciplinary SC Physics GA 383UC UT WOS:000261698100011 ER PT J AU Song, B Syn, CJ Grupido, CL Chen, W Lu, WY AF Song, B. Syn, C. J. Grupido, C. L. Chen, W. Lu, W. -Y. TI A Long Split Hopkinson Pressure Bar (LSHPB) for Intermediate-rate Characterization of Soft Materials SO EXPERIMENTAL MECHANICS LA English DT Article DE Long split Hopkinson pressure bar (LSHPB); Intermediate strain rate; Mechanical characterization; Soft material ID STRAIN RATES; BEHAVIOR AB In this study, we developed a long split Hopkinson pressure bar (LSHPB) for mechanically characterizing soft materials at intermediate strain rates. Using a proper pulse shaper, a loading pulse over 3 ms was produced for compression experiments on a PMDI foam material at the strain rates in the order of 10/s. The pulse shaping technique minimized the dispersion effects of stress wave when propagating through such a long bar system. Consistency of stress-strain curves obtained from the LSHPB and an MTS in the same strain rate range shows that a gap currently existing in intermediate strain-rate range is closed by the introduction of the LSHPB. C1 [Song, B.] Purdue Univ, Sch AAE, W Lafayette, IN 47907 USA. Purdue Univ, Sch MSE, W Lafayette, IN 47907 USA. [Grupido, C. L.] L 3 Commun Integrated Syst, Greenville, TX 75402 USA. [Lu, W. -Y.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Song, B (reprint author), Purdue Univ, Sch AAE, W Lafayette, IN 47907 USA. EM songb@purdue.edu; csyn@purdue.edu; chris.grupido@1-3com.com; wchen@purdue.edu; wlu@dandia.gov RI Song, Bo/D-3945-2011 FU Sandia National Laboratories, Livermore, CA; United States Department of Energy [DE-AC04-94AL8500] FX This work was partially supported by Sandia National Laboratories, Livermore, CA. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500. The authors thank Dr. Michael J. Forrestal for posting the challenge for closing the strain-rate gap. NR 14 TC 13 Z9 16 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD DEC PY 2008 VL 48 IS 6 BP 809 EP 815 DI 10.1007/s11340-007-9095-z PG 7 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 379NO UT WOS:000261403600010 ER PT J AU Dharmarajan, L Case, CL Dunten, P Mukhopadhyay, B AF Dharmarajan, Lakshmi Case, Christopher L. Dunten, Pete Mukhopadhyay, Biswarup TI Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate SO FEBS JOURNAL LA English DT Article DE catalysis; human PEPCK; kinetics; site-directed mutagenesis; Tyr235 ID CIRCULAR-DICHROISM SPECTRA; RAT-LIVER CYTOSOL; PHOSPHORYL-TRANSFER; MYCOBACTERIUM-SMEGMATIS; STEREOCHEMICAL COURSE; SECONDARY STRUCTURE; GTP; PURIFICATION; MECHANISM; DECARBOXYLATION AB Tyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants. The Y235F change lowered the apparent K(m) for PEP by about six-fold, raised the apparent K(m) for Mn(2+) by about 70-fold, and decreased oxaloacetate (OAA)-forming activity by about 10-fold. These effects were due to an enhanced anion-quadrupole interaction between the aromatic side chain at position 235, which now lacked a hydroxyl group, and PEP carboxylate, which probably increased the distance between PEP and Mn(2+) and consequently affected the phosphoryl transfer step and overall catalysis. For the Y235A and Y235S changes, an elimination of the favorable edge-on interaction increased the apparent K(m) for PEP by four- and six-fold, respectively, and the apparent K(m) for Mn(2+) by eight- and six-fold, respectively. The pyruvate kinase-like activity, representing the PEP dephosphorylation step of the OAA-forming reaction, was affected by the substitutions in a similar way to the complete reaction. These observations indicate that the aromatic ring of Tyr235 helps to position PEP in the active site and the hydroxyl group allows an optimal PEP-Mn(2+) distance for efficient phosphoryl transfer and overall catalysis. The Y235A and Y235S changes drastically reduced the PEP-forming and OAA decarboxylase activities, probably due to the elimination of the stabilizing interaction between Tyr235 and the respective products, PEP and pyruvate. C1 [Dharmarajan, Lakshmi; Case, Christopher L.; Mukhopadhyay, Biswarup] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. [Dharmarajan, Lakshmi; Mukhopadhyay, Biswarup] Virginia Polytech Inst & State Univ, Genet Bioinformat & Computat Biol PhD Program, Blacksburg, VA 24061 USA. [Case, Christopher L.; Mukhopadhyay, Biswarup] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA. [Mukhopadhyay, Biswarup] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. [Dunten, Pete] Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. RP Mukhopadhyay, B (reprint author), Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Washington St 0477, Blacksburg, VA 24061 USA. EM biswarup@vt.edu FU Institute for Biomedical and Public Health Sciences (IBPHS); Virginia Polytechnic and State University; Fralin Biotechnology Center; Genetics, Bioinformatics and Computational Biology program FX This work was supported by a seed grant from the Institute for Biomedical and Public Health Sciences (IBPHS), Virginia Polytechnic and State University, to B. Mukhopadhyay. C. L. Case received an Undergraduate Summer Research Fellowship (2004) from the Fralin Biotechnology Center. L. Dharmarajan received a graduate fellowship (2005) from the Genetics, Bioinformatics and Computational Biology program. NR 48 TC 9 Z9 9 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1742-464X J9 FEBS J JI FEBS J. PD DEC PY 2008 VL 275 IS 23 BP 5810 EP 5819 DI 10.1111/j.1742-4658.2008.06702.x PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 371HP UT WOS:000260822700007 PM 19021757 ER PT J AU Gross, F Ramalho, G Pena, MT AF Gross, F. Ramalho, G. Pena, M. T. TI Covariant calculation of the nucleon and nucleon -> Delta form factor SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept AB All four nucleon electromagnetic form factors can be very well described by a manifestly covariant nucleon wave function with zero orbital angular momentum. The same model gives a qualitative description of deep inelastic scattering. The results for the G(M)* form factor of the N -> Delta transition are consistent with other quark models. C1 [Gross, F.; Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Univ Tecn Lisboa, Ctr Fis Teor Particulas, Inst Super Tecn, Lisbon, Portugal. RP Gross, F (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM gross@jlab.org; ramalho@jlab.org; teresa@fisica.ist.utl.pt RI Pena, Teresa/M-4683-2013 OI Pena, Teresa/0000-0002-3529-2408 NR 9 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 44 IS 1-4 BP 7 EP 10 DI 10.1007/s00601-008-0244-4 PG 4 WC Physics, Multidisciplinary SC Physics GA 387MM UT WOS:000261956300002 ER PT J AU Bentz, W Cloet, IC Ito, T Thomas, AW Yazaki, K AF Bentz, W. Cloet, I. C. Ito, T. Thomas, A. W. Yazaki, K. TI Spin-dependent parton distributions and structure functions SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept ID PAIR ANNIHILATION PROCESSES; LEPTON-NUCLEON SCATTERING; Q(2) EVOLUTION-EQUATIONS; NUMERICAL-SOLUTION AB Nuclear parton distributions and structure functions are determined in an effective chiral quark theory. We also discuss an extension of our model to fragmentation functions. C1 [Bentz, W.; Ito, T.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Cloet, I. C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Thomas, A. W.] Jefferson Lab, Newport News, VA USA. [Yazaki, K.] Tokyo Womans Christian Univ, Dept Phys, Tokyo, Japan. RP Bentz, W (reprint author), Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. EM bentz@keyaki.cc.u-tokai.ac.jp OI Ito, Takuya/0000-0003-2688-2462; Thomas, Anthony/0000-0003-0026-499X NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 44 IS 1-4 BP 71 EP 73 DI 10.1007/s00601-008-0259-x PG 3 WC Physics, Multidisciplinary SC Physics GA 387MM UT WOS:000261956300017 ER PT J AU de Jager, K AF de Jager, K. TI Elastic form factors of He-3,He-4 up to large Q (2) SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept ID DEUTERON PHOTODISINTEGRATION; POLARIZATION AB Elastic electron scattering off He-3 and He-4 has recently been studied at forward and backward scattering angles in Hall A at JLab. The results will provide accurate data on the elastic form factors, charge and magnetic for He-3 and charge only for He-4, up to squared momentum transfer Q (2)-values of 3.2 GeV2. C1 Jefferson Lab, Newport News, VA 23606 USA. RP de Jager, K (reprint author), Jefferson Lab, Jefferson Ave 12000, Newport News, VA 23606 USA. EM kees@jlab.org NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 44 IS 1-4 BP 199 EP 202 DI 10.1007/s00601-008-0290-y PG 4 WC Physics, Multidisciplinary SC Physics GA 387MM UT WOS:000261956300048 ER PT J AU Gross, F Stadler, A AF Gross, F. Stadler, A. TI High-precision covariant one-boson-exchange potentials for np scattering below 350 MeV SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept AB Using the covariant spectator theory (CST), we have found one-boson-exchange (OBE) potentials that fit the 2006 world np data below 350 MeV with a chi(2)/N (data) very close to 1, for a total of 3788 data. Our potentials have significantly fewer adjustable parameters than previous high-precision potentials, and they also reproduce the experimental triton binding energy without introducing additional irreducible three-nucleon forces. C1 [Stadler, A.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Gross, F.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. [Gross, F.] Coll William & Mary, Williamsburg, VA USA. [Stadler, A.] Univ Evora, Dept Fis, Evora, Portugal. RP Stadler, A (reprint author), Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. EM stadler@cii.fc.ul.pt RI Stadler, Alfred/C-5550-2009 OI Stadler, Alfred/0000-0002-9596-0770 NR 8 TC 6 Z9 6 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 44 IS 1-4 BP 295 EP 298 DI 10.1007/s00601-008-0312-9 PG 4 WC Physics, Multidisciplinary SC Physics GA 387MM UT WOS:000261956300070 ER PT J AU Arriaga, A Schiavilla, R AF Arriaga, A. Schiavilla, R. TI A relativistic calculation of the deuteron threshold electrodisintegration at backward angles SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept ID HIGH MOMENTUM-TRANSFER AB Deuteron threshold electrodisintegration at backward angles is studied with a relativistic Hamiltonian, including a relativistic one-pion-exchange potential with off-shell terms. Boost effects in bound and scattering states are considered. Full Lorentz structure of the electromagnetic current is retained, which includes one- and two-body terms. Pseudovector coupling of pions to nucleons is consistently used. Cross-section results show significant relativistic corrections, even for low momentum transfer. Calculations suggest the need for including additional two-body currents. C1 [Arriaga, A.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Arriaga, A.] Univ Lisbon, Fac Ciencias, Dept Fis, P-1649003 Lisbon, Portugal. [Schiavilla, R.] Jefferson Lab, Newport News, VA USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Arriaga, A (reprint author), Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. EM arriaga@cii.fc.ul.pt RI Arriaga, Ana/N-2369-2015 OI Arriaga, Ana/0000-0002-8113-7425 NR 8 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 44 IS 1-4 BP 303 EP 305 DI 10.1007/s00601-008-0314-7 PG 3 WC Physics, Multidisciplinary SC Physics GA 387MM UT WOS:000261956300072 ER PT J AU Quaglioni, S Navratil, P AF Quaglioni, S. Navratil, P. TI Ab initio no-core shell model and microscopic reactions: Recent achievements SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept AB We report on recent microscopic calculations of reaction properties based upon the nuclear structure of the ab initio no-core shell model (NCSM). C1 [Quaglioni, S.; Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Quaglioni, S (reprint author), Lawrence Livermore Natl Lab, L-414,POB 808, Livermore, CA 94551 USA. EM quaglioni1@llnl.gov; navratil1@llnl.gov NR 16 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 44 IS 1-4 BP 337 EP 339 DI 10.1007/s00601-008-0322-7 PG 3 WC Physics, Multidisciplinary SC Physics GA 387MM UT WOS:000261956300080 ER PT J AU Navratil, P Gueorguiev, VG Vary, JP Ormand, WE Nogga, A Quaglioni, S AF Navratil, P. Gueorguiev, V. G. Vary, J. P. Ormand, W. E. Nogga, A. Quaglioni, S. TI Light nuclei from chiral EFT interactions SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept ID EFFECTIVE-FIELD THEORY; PERTURBATION-THEORY; LAGRANGIANS; FORCES AB Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (chi EFT) provides a natural hierarchy to define two-nucleon (NN), three-nucleon (NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within chi EFT. C1 [Navratil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Quaglioni, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Nogga, A.] Forschungszentrum Julich, Inst Kernphys, D-5170 Julich, Germany. RP Navratil, P (reprint author), Lawrence Livermore Natl Lab, L-414,POB 808, Livermore, CA 94551 USA. EM navratil1@llnl.gov RI Nogga, Andreas/A-3354-2008; Gueorguiev, Vesselin/A-9679-2009 OI Nogga, Andreas/0000-0003-2156-748X; Gueorguiev, Vesselin/0000-0002-2022-6432 NR 16 TC 12 Z9 12 U1 0 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 43 IS 1-4 BP 129 EP 135 DI 10.1007/s00601-008-0221-y PG 7 WC Physics, Multidisciplinary SC Physics GA 387KU UT WOS:000261951900021 ER PT J AU Nollett, KM AF Nollett, K. M. TI Nuclear quantum Monte Carlo: Expanding into the continuum SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept ID NUCLEOSYNTHESIS AB I discuss calculations of nuclear properties using the variational Monte-Carlo (VMC) and Green's function Monte-Carlo (GFMC) methods in combination with realistic two- and three-nucleon interactions. Work to date has emphasized energies of bound and narrow states, and the results agree well with measured masses and energies. We are now directing more effort toward other nuclear properties, including weak decay rates and nuclear charge radii. The main new direction is the computation of low-energy scattering and reaction properties. We have incorporated R-matrix-like boundary conditions into GFMC calculations, and our first calculation of this kind has yielded phase shifts for neutron scattering on He-4 up to a few MeV. We find strong dependence of the results on the three-nucleon interaction used. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Nollett, KM (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nollett@anl.gov NR 22 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 43 IS 1-4 BP 143 EP 148 DI 10.1007/s00601-008-0223-9 PG 6 WC Physics, Multidisciplinary SC Physics GA 387KU UT WOS:000261951900023 ER PT J AU Schiavilla, R AF Schiavilla, R. TI Two topics in the physics of light nuclei SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept ID ELASTIC ELECTRON-SCATTERING; HE-4 AB I review how tensor forces affect the ground-state structure of nuclei, and how isospin-symmetry-breaking corrections at the nucleon and nuclear level contaminate the asymmetry measured in parity-violating electron scattering from nuclei, complicating the extraction of the strange-quark form factors from these measurements. C1 [Schiavilla, R.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Schiavilla, R (reprint author), Jefferson Lab, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM schiavil@jlab.org NR 14 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 43 IS 1-4 BP 185 EP 191 DI 10.1007/s00601-008-0230-x PG 7 WC Physics, Multidisciplinary SC Physics GA 387KU UT WOS:000261951900030 ER PT J AU Nadel-Turonski, P Berman, BL Ilieva, Y Ireland, DG Tkabladze, A AF Nadel-Turonski, P. Berman, B. L. Ilieva, Y. Ireland, D. G. Tkabladze, A. TI Photoproduction and rescattering of polarized hyperons in deuterium SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th European Conference on Few-Body Problems in Physics CY SEP 10-14, 2007 CL Univ Pisa, Phys Dept, Pisa, ITALY SP Inst Nazl Fis Nucl, Pisa Branch HO Univ Pisa, Phys Dept AB Excited states of hadrons are essential for understanding confinement and non-perturbative QCD. Constituent quark models are successful in describing the first excited nucleon (N (*)) states in each partial wave, but predict more states than have been observed experimentally. Diquark correlations have been suggested as one explanation for these "missing" states. Recent advances in both theory (coupled-channels calculations) and experiment (high-statistics polarization measurements) offer new tools for resolving this question. The g13 experiment at Jefferson Lab, completed in June 2007, forms an important part of this effort. It used linearly and circularly polarized photons and a deuteron target to study N (*) states produced on the neutron, primarily through their decays into kaons and hyperons. The self-analyzing property of the I > is ideally suited for this purpose. The general nature and exceptional size of the data set will, however, produce a wide range of results, including opening a new window on the study of hyperon-nucleon interactions through rescattering processes. C1 [Nadel-Turonski, P.; Berman, B. L.; Ilieva, Y.; Tkabladze, A.] George Washington Univ, Washington, DC USA. [Ireland, D. G.] Univ Glasgow, Glasgow, Lanark, Scotland. [Nadel-Turonski, P.] Catholic Univ Amer, Washington, DC 20064 USA. [Tkabladze, A.] Schlumberger SPC, Sugar Land, TX USA. RP Nadel-Turonski, P (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM turonski@jlab.org RI Ireland, David/E-8618-2010 OI Ireland, David/0000-0001-7713-7011 NR 18 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD DEC PY 2008 VL 43 IS 1-4 BP 227 EP 232 DI 10.1007/s00601-008-0220-z PG 6 WC Physics, Multidisciplinary SC Physics GA 387KU UT WOS:000261951900036 ER PT J AU Hansen, JGR Frame, BJ AF Hansen, J. G. R. Frame, B. J. TI Flame penetration and burn testing of fire blanket materials SO FIRE AND MATERIALS LA English DT Article DE fire blanket; flame penetration test; burn test; oxyacetylene torch; aerogel AB Materials were evaluated in laboratory tests for a fire blocking blanket to protect stores of U.S. Army munitions from burning material and hot fragments. The objective of testing was to evaluate and rank materials' ability to resist the penetration of flame and heat and to limit flame spread. Materials in all tests were subjected to an oxyacetylene torch with temperatures in excess of 3000 degrees C. Inorganic fiber-based fabric, insulation and blankets evaluated in flame penetration tests were rated by their time to limit backside temperature rise to 100 degrees C above ambient and 500 degrees C for a given material areal mass. Carbon fiber fabric performed the best of the fabrics tested. Silica aerogel insulation was the top performing insulation material group. The blanket with carbon fiber sandwiching silica aerogel insulation performed best. Horizontal and vertical flame burn tests were conducted on several candidate blanket cover materials. Fabrics coated with polyvinyl chloride, polytetrafluoroethylene and silicone rubber coatings were all found to be immediately self-extinguishing when the flame was removed. Burn damage was confined locally to the heated zone beneath and around the lit torch tip's flame. All flames were immediately self-extinguishing beyond those regions, with zero flame-out times recorded. Published in 2008 by John Wiley & Sons, Ltd. C1 [Hansen, J. G. R.; Frame, B. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Hansen, JGR (reprint author), Oak Ridge Natl Lab, Bethel Valley Rd,POB 2008,MS 6053, Oak Ridge, TN 37830 USA. EM hansenjg@ornl.gov FU Logistics Research & Engineering Directorate (LRED); U.S. Army Armament Research, Development and Engineering Center (ARDEC) [43WA078AC]; U.S. Department of Energy [DEAC05-00OR22725] FX This research was performed at ORNL and sponsored by the Logistics Research & Engineering Directorate (LRED), U.S. Army Armament Research, Development and Engineering Center (ARDEC) under the Work-for-Others Program, IAN #43WA078AC, with the U.S. Department of Energy under contract DEAC05-00OR22725 with UT-Battelle, LLC. The authors thank Frank Chan and Duane Scarborough of LRED for their program management of the effort. The authors also thank Jeanne Phillips for help with article preparation. NR 7 TC 3 Z9 3 U1 0 U2 14 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0308-0501 J9 FIRE MATER JI Fire Mater. PD DEC PY 2008 VL 32 IS 8 BP 457 EP 483 DI 10.1002/fam.979 PG 27 WC Materials Science, Multidisciplinary SC Materials Science GA 385PQ UT WOS:000261826500002 ER EF