FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abanin, DA Shytov, AV Levitov, LS Halperin, BI AF Abanin, D. A. Shytov, A. V. Levitov, L. S. Halperin, B. I. TI Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime SO PHYSICAL REVIEW B LA English DT Article DE carrier mean free path; gallium arsenide; III-V semiconductors; spin dynamics; spin Hall effect; spin polarised transport AB A nonlocal electric response in the spin Hall regime, resulting from spin diffusion mediating charge conduction, is predicted. The spin-mediated transport stands out due to its long-range character, and can give dominant contribution to nonlocal resistance. The characteristic range of nonlocality, set by the spin diffusion length, can be large enough to allow detection of this effect in materials such as GaAs despite its small magnitude. The detection is facilitated by a characteristic nonmonotonic dependence of transresistance on the external magnetic field, exhibiting sign changes and decay. C1 [Abanin, D. A.; Levitov, L. S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Abanin, D. A.] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA. [Shytov, A. V.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Halperin, B. I.] Harvard Univ, Dept Phys, Lyman Lab Phys, Cambridge, MA 02138 USA. RP Abanin, DA (reprint author), MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. OI Shytov, Andrey/0000-0002-4674-8124 FU NSF MRSEC [DMR 02132802]; NSF [DMR 0541988, PHY 0646094]; DOE [DEAC 02-98 CH 10886] FX We benefited from discussions with M. I. Dyakonov and H.-A. Engel. This work was supported by NSF MRSEC (Grant No. DMR 02132802), NSF (Grants No. DMR 0541988 and No. PHY 0646094), and DOE (Contract No. DEAC 02-98 CH 10886). NR 22 TC 39 Z9 39 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035304 DI 10.1103/PhysRevB.79.035304 PG 5 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200072 ER PT J AU Ahn, KH Fedro, AJ van Veenendaal, M AF Ahn, K. H. Fedro, A. J. van Veenendaal, Michel TI Dynamics and spectral weights of shake-up valence excitations in transition metal K-edge resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article DE excitons; Hubbard model; localised states; X-ray scattering ID ELECTRON CORRELATIONS; RAMAN-SCATTERING; EMISSION; PHOTOEMISSION; ABSORPTION; EXCITONS; ND2CUO4 AB Using a model Hamiltonian, we discuss how we could interpret data obtained from transition metal K-edge resonant inelastic x-ray scattering (RIXS) experiments. We analyze valence excitations resulting from the screening of the core hole and calculate corresponding RIXS spectra for metals, insulators, and the Mott insulators. For metals, the features in the RIXS peak beyond the edge singularity reflect excitations of localized holes and delocalized electrons, which gives rise to the uniform electron distribution over the whole unoccupied band and the hole distribution concentrated near the top of the occupied band. This feature is reduced but persists even for insulators until the gap size becomes larger than the bandwidth. Our analysis for the effective Hubbard model for the Mott insulators indicates even stronger asymmetry between electron and hole excitations. The results show that the probability for excitations in RIXS depends not only on the total energy but also on the asymmetric screening dynamics between electrons and holes. C1 [Ahn, K. H.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Fedro, A. J.; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fedro, A. J.; van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Ahn, KH (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. FU U. S. Department of Energy [W-31-109-Eng38, DE-FG02-03ER46097, DE-FG02-08ER46540] FX We thank John Hill, Stephane Grenier, and Jeroen van den Brink for discussions. Work at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng38. M. v. V. was supported by the U. S. Department of Energy (Contract No. DE-FG02-03ER46097) and the Institute for Nanoscience, Engineering, and Technology under a grant from the U. S. Department of Education. This work is also partially supported by the Department of Energy Computational Materials Science Network under Contract No. DE-FG02-08ER46540. NR 36 TC 8 Z9 8 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 045103 DI 10.1103/PhysRevB.79.045103 PG 8 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400019 ER PT J AU Andersson, DA Lezama, J Uberuaga, BP Deo, C Conradson, SD AF Andersson, D. A. Lezama, J. Uberuaga, B. P. Deo, C. Conradson, S. D. TI Cooperativity among defect sites in AO(2+x) and A(4)O(9) (A=U,Np,Pu): Density functional calculations SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; fission reactor materials; interstitials; neptunium compounds; oxidation; plutonium compounds; uranium compounds ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; URANIUM-DIOXIDE; PLUTONIUM DIOXIDE; POINT-DEFECTS; BASIS-SET; SYSTEM; OXIDES; PUO2+X; SPECIATION AB Actinide dioxides derived from the AO(2) fluorite lattice are of high technological relevance due to their application in nuclear reactor fuels. In this paper we use density functional theory calculations to study the oxidation of uranium, neptunium and plutonium dioxides, AO(2) (A=U, Np, or Pu), in O-2 and O-2/H2O environments. We pay particular attention to the formation of oxygen clusters (cooperativity) in AO(2+x) and how this phenomenon governs oxidation thermodynamics and the development of ordered A(4)O(9) compounds. The so-called split di-interstitial, composed of two nearest-neighbor octahedral oxygen interstitials that dislocate one regular fluorite lattice oxygen ion to form a cluster of triangular geometry, is predicted to be the fundamental building block of the most stable cluster configurations. We also identify how the formation of oxygen defect clusters and the degree of oxidation in AO(2+x) are both governed by the ability of the O 2p orbitals of the interstitial-like (+x) ions to hybridize with regular fluorite lattice ions. C1 [Andersson, D. A.; Lezama, J.; Uberuaga, B. P.; Conradson, S. D.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Lezama, J.] CINVESTAV Merida, Dept Fis Aplicada, Merida 97310, Mexico. [Deo, C.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. RP Andersson, DA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. FU Global Nuclear Energy Partnership Fuels Campaign; OBES Division of Chemical Sciences [W-7405]; Seaborg Institiute at Los Alamos National Laboratory; U.S. DOE [DE-AC5206NA25396]; DOE NERI-C [DEFG07-14891] FX Work at Los Alamos National Laboratory was funded by the Global Nuclear Energy Partnership Fuels Campaign, and OBES Division of Chemical Sciences under contract W-7405. D. A. A. also acknowledges support from the Seaborg Institiute at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC5206NA25396. C. D. was supported by DOE NERI-C Grant No. DEFG07-14891. NR 59 TC 85 Z9 86 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024110 DI 10.1103/PhysRevB.79.024110 PG 12 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100035 ER PT J AU Atanasov, V Dandoloff, R Saxena, A AF Atanasov, Victor Dandoloff, Rossen Saxena, Avadh TI Geometry-induced charge separation on a helicoidal ribbon SO PHYSICAL REVIEW B LA English DT Article DE geometry; localised states; quantum Hall effect ID QUANTUM; SURFACES; TWIST AB We present an exact calculation of the effective geometry-induced quantum potential for a particle confined on a helicoidal ribbon. This potential leads to the appearance of localized states at the rim of the helicoid. In this geometry the twist of the ribbon plays the role of an effective transverse electric field on the surface and thus this is reminiscent of the Hall effect. C1 [Atanasov, Victor] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Dandoloff, Rossen] Univ Cergy Pontoise, CNRS, Dept Phys, UMR 8089, F-95302 Cergy Pontoise, France. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Atanasov, V (reprint author), Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tsarigradsko Chaussee, BU-1784 Sofia, Bulgaria. EM victor.atanasov@u-cergy.fr; rossan.dandoloff@u-cergy.fr; avadh@lanl.gov OI Atanasov, Victor/0000-0001-6587-409X FU U.S. Department of Energy FX This work was supported in part by the U.S. Department of Energy. NR 18 TC 25 Z9 25 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 033404 DI 10.1103/PhysRevB.79.033404 PG 4 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200026 ER PT J AU Balatsky, AV Lee, WS Shen, ZX AF Balatsky, Alexander V. Lee, W. S. Shen, Z. X. TI Bogoliubov angle, particle-hole mixture, and angle-resolved photoemission spectroscopy in superconductors SO PHYSICAL REVIEW B LA English DT Article DE BCS theory; high-temperature superconductors; photoelectron spectra; quasiparticles; spectral line intensity AB Superconducting state is characterized by excitations-Bogoliubov quasiparticles that represent a coherent mixture of electron (-e) and hole (+e) components. We propose an observable, which we call Bogoliubov angle, which can be extracted using angular resolved photoemission spectroscopy (ARPES) and reveal this particle-hole entanglement by measuring relative weight of particle and hole amplitude of the Bogoliubov quasiparticle. This angle can be measured using the ratio of ARPES spectral intensities at positive and negative energies. Bogoliubov angle could be used to identify variety of possible pairing states and for discussion on possible nature of the pseudogap states that could contain pairing correlations. C1 [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Lee, W. S.; Shen, Z. X.] Stanford Univ, Appl Phys & Stanford Synchrotron Radiat Lab, Dept Phys, Stanford, CA 94305 USA. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. FU U. S. DOE; OBES; LDRD [DE-FG02-05ER15755]; DOE; Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515] FX We are grateful to I. Grigorenko, J. C. Davis, A. Yazdani, N. Nagaosa, M. Randeria, and O. Fischer for useful discussions. This work has been supported by U. S. DOE, OBES, and LDRD under Grant No. DE-FG02-05ER15755. The ARPES work is supported by DOE, Office of Basic Energy Science, Division of Materials Science and Engineering, with Contract No. DE-AC02-76SF00515. NR 9 TC 3 Z9 3 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 020505 DI 10.1103/PhysRevB.79.020505 PG 4 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100019 ER PT J AU Beck, MJ Pantelides, ST AF Beck, M. J. Pantelides, S. T. TI Origin of preferential sputtering in a-SiO2 during ion beam synthesis of nanocrystals SO PHYSICAL REVIEW B LA English DT Article DE amorphous state; bonds (chemical); diffusion; ion implantation; molecular dynamics method; nanostructured materials; nucleation; optical materials; self-assembly; silicon compounds; sputtering ID SILICON NANOCRYSTALS; SI; IMPLANTATION; FABRICATION; INTERFACE; DEFECTS; DAMAGE AB Ion implantation into a-SiO2 leads to the self-assembly of nanocrystal arrays having application in optical and nonvolatile memory devices. It was recently noted that nanocrystal nucleation occurs in oxide regions exhibiting variations in oxygen concentration resulting from preferential sputtering. Here we report quantum-mechanical calculations that probe the atomic-scale dynamics following ion-induced low-energy recoils and show that preferential sputtering does not result directly from short-time collisional processes. These processes do, however, result in a population of loosely bound oxygen atoms connected to the amorphous network by a single Si-O bond. Thus, the well-known diffusion and relaxation processes that control stable defect formation at long times following recoil events lead to variations in O concentration in damaged regions. C1 [Beck, M. J.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. RP Beck, MJ (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM m.beck@vanderbilt.edu FU USAFOSR under MURI [FA9559-05-1-0306]; McMinn Endowment at Vanderbilt University FX The authors thank Blair Tuttle for providing a-SiO2 supercells. This work was supported by USAFOSR under MURI Grant No. FA9559-05-1-0306 and the McMinn Endowment at Vanderbilt University. NR 36 TC 1 Z9 1 U1 3 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 033203 DI 10.1103/PhysRevB.79.033203 PG 4 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200015 ER PT J AU Bussmann-Holder, A Bishop, AR AF Bussmann-Holder, A. Bishop, A. R. TI Suppression of charge-density formation in TiSe2 by Cu doping SO PHYSICAL REVIEW B LA English DT Article DE antiferroelectricity; charge density waves; copper; doping; electronic density of states; electron-phonon interactions; Fermi level; superconducting materials; superconducting transitions; titanium compounds ID TRANSITION-METAL DICHALCOGENIDES; TITANIUM DISELENIDE; SUPERLATTICE FORMATION; WAVE; SUPERCONDUCTIVITY; FERROELECTRICITY; POLARIZABILITY; INSTABILITY; PHONONS; LATTICE AB The charge-density wave (CDW) state in TiSe2 vanishes rapidly with Cu doping and is suppressed almost completely upon the onset of superconductivity. Since the CDW-related structural instability also disappears, it is suggested that the additional doped charge induces a redistribution of the density of states at the Fermi level, destroying the local double-well potential responsible for the CDW and the structural instability. C1 [Bussmann-Holder, A.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bussmann-Holder, A (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. NR 31 TC 1 Z9 1 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024302 DI 10.1103/PhysRevB.79.024302 PG 4 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100043 ER PT J AU Chen, X Dong, S Wang, KF Liu, JM Dagotto, E AF Chen, Xiao Dong, Shuai Wang, Kefeng Liu, J. -M. Dagotto, Elbio TI Nonmagnetic B-site impurity-induced ferromagnetic tendency in CE-type manganites SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; calcium compounds; crystal defects; ferromagnetic materials; magnetic impurities; magnetic transitions; manganese compounds; Monte Carlo methods; praseodymium compounds; spin glasses; superexchange interactions ID CR AB Using a two-orbital model and Monte Carlo simulations, we investigate the effect of nonmagnetic B-site substitution on half-doped CE-type manganites. The lattice defects induced by this substitution destabilize the CE phase, which transforms into (1) the ferromagnetic (FM) metallic competing state, (2) a regime with short-range FM clusters, or (3) a spin-glass state, depending on couplings and on the valence of the B-site substitution. While a C-type antiferromagnetic state is usually associated with an average e(g) charge density of less than 0.5, the nonmagnetic B-site substitution that lowers the e(g) charge density is still found to enhance the FM tendency in our simulations. The present calculations are in qualitative agreement with experiments and provide a rationalization for the complex role of nonmagnetic B-site substitution in modulating the phase transitions in manganites. C1 [Chen, Xiao; Dong, Shuai; Wang, Kefeng; Liu, J. -M.] Nanjing Univ, Solid State Microstruct Lab, Nanjing 210093, Peoples R China. [Dong, Shuai; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dong, Shuai; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, J. -M.] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China. RP Chen, X (reprint author), Nanjing Univ, Solid State Microstruct Lab, Nanjing 210093, Peoples R China. EM liujm@nju.edu.cn RI Dong (董), Shuai (帅)/A-5513-2008; Wang, Kefeng/E-7683-2011 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; Wang, Kefeng/0000-0002-8449-9720 FU NSF of China [50601013, 50832002, DMR-0706020]; National Key Projects for Basic Research of China [2006CB921802, 2009CB623303]; 111 Programme of MOE of China [B07026]; Division of Materials Science and Engineering, U. S. DOE under contract with UT-Battelle, LLC FX We thank S. Kumar, K. Pradhan, P. Majumdar, and A. Kampf for careful reading and useful comments. This work was supported by the NSF of China (Contracts No. 50601013 and No. 50832002), the National Key Projects for Basic Research of China (Contracts No. 2006CB921802 and No. 2009CB623303), and the 111 Programme of MOE of China (Contract No. B07026). S. D. and E. D. were also supported by the NSF (Grant No. DMR-0706020) and the Division of Materials Science and Engineering, U. S. DOE, under contract with UT-Battelle, LLC. NR 40 TC 16 Z9 17 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024410 DI 10.1103/PhysRevB.79.024410 PG 7 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100055 ER PT J AU Crooker, SA Cheng, L Smith, DL AF Crooker, Scott A. Cheng, Lili Smith, Darryl L. TI Spin noise of conduction electrons in n-type bulk GaAs SO PHYSICAL REVIEW B LA English DT Article DE carrier lifetime; electron density; Faraday effect; fermion systems; gallium arsenide; III-V semiconductors; quantum statistical mechanics; spin fluctuations; stochastic processes ID MAGNETIC-RESONANCE; ATOMIC SPIN; SPECTROSCOPY; PROBE; MICROSCOPY AB We report a comprehensive study of stochastic electron spin fluctuations-spin noise-in lightly doped (n-type) bulk GaAs, which are measured using sensitive optical magnetometry based on off-resonant Faraday rotation. Frequency spectra of electron spin noise are studied as a function of electron density, magnetic field, temperature, probe-laser wavelength and intensity, and interaction volume. Electron spin lifetimes tau(s) are inferred from the width of the spin noise spectra and are compared to direct measurements of tau(s) using conventional Hanle-effect methods. Both methods reveal a strong and similar dependence of tau(s) on the wavelength and intensity of the probe laser, highlighting the undesired influence of sub-bandgap absorption effects on the nominally "nonperturbative" spin noise measurements. As a function of temperature, the spin noise power increases approximately linearly from 1.5 to 30 K, as expected for degenerate electrons obeying Fermi-Dirac statistics, but with an additional zero-temperature offset. Finally, as the cross-sectional area of the probe laser shrinks and fewer electrons are probed, the measured Faraday rotation fluctuations due to electron spin noise are shown to increase, as expected. C1 [Crooker, Scott A.; Cheng, Lili] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Smith, Darryl L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. FU Los Alamos LDRD program; National High Magnetic Field Laboratory FX We thank Shanalyn Kemme at Sandia National Laboratory for antireflection-coating the GaAs wafers and we are indebted to Bogdan Mihaila, Peter Littlewood, and Sasha Balatsky for valuable discussions. We acknowledge support from the Los Alamos LDRD program and the National High Magnetic Field Laboratory. NR 41 TC 54 Z9 54 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035208 DI 10.1103/PhysRevB.79.035208 PG 11 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200068 ER PT J AU Diem, M Koschny, T Soukoulis, CM AF Diem, Marcus Koschny, Thomas Soukoulis, C. M. TI Wide-angle perfect absorber/thermal emitter in the terahertz regime SO PHYSICAL REVIEW B LA English DT Article DE heat radiation; light absorption; nanostructured materials ID SURFACE-RELIEF GRATINGS; THERMAL-RADIATION; SILICON-NITRIDE; OPTICAL-PROPERTIES; PHOTONIC CRYSTALS; MICROCAVITIES; GENERATION; EMISSION; MODES AB We show that a perfect absorber/thermal emitter exhibiting an absorption peak of 99.9% can be achieved in metallic nanostructures that can be easily fabricated. The very high absorption is maintained for large angles with a minimal shift in the center frequency and can be tuned throughout the visible and near-infrared regime by scaling the nanostructure dimensions. The stability of the spectral features at high temperatures is tested by simulations using a range of material parameters. C1 [Diem, Marcus; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Diem, Marcus; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, C. M.] Univ Crete, FORTH, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, C. M.] Univ Crete, FORTH, IESL, Iraklion 71110, Crete, Greece. RP Diem, M (reprint author), Iowa State Univ, Dept Phys, Ames, IA 50011 USA. EM diem@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Alexander-von-Humboldt Foundation; Ames Laboratory was supported by the Department of Energy (asic Energy Sciences) [DE-AC02-07CH11358]; Office of Naval Research [N001407-1-0359] FX w M. D. gratefully acknowledges financial support from the Alexander-von-Humboldt Foundation (eodor-Lynen Program). Work at Ames Laboratory was supported by the Department of Energy (asic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the Office of Naval Research (rant No. N001407-1-0359). NR 31 TC 213 Z9 221 U1 14 U2 84 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 033101 DI 10.1103/PhysRevB.79.033101 PG 4 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200001 ER PT J AU Dong, HN He, DW Duffy, TS Zhao, YS AF Dong, Haini He, Duanwei Duffy, Thomas S. Zhao, Yusheng TI Elastic moduli and strength of nanocrystalline cubic BC2N from x-ray diffraction under nonhydrostatic compression SO PHYSICAL REVIEW B LA English DT Article DE boron compounds; elastic moduli; nanostructured materials; stress effects; X-ray diffraction ID EQUATION-OF-STATE; HIGH-PRESSURE; LATTICE STRAINS; TEMPERATURE; GOLD; GPA; DIAMOND; RUBY AB The stress behavior of nanocrystalline cubic boron carbon nitride (c-BC2N) was investigated using radial and axial x-ray diffractions in the diamond-anvil cell under nonhydrostatic compression up to similar to 100 GPa. The radial x-ray diffraction (RXRD) data yield a bulk modulus K-0=276 +/- 20 GPa with a fixed pressure derivative K-0(')=3.4 at psi=54.7 degrees, which corresponds to the hydrostatic compression curve. The bulk modulus obtained from axial x-ray diffraction (AXRD) gives a value of 420 +/- 11 GPa. A comparative study of the observed compression curves from radial and axial diffractions shows that the ruby-fluorescence pressure scale may reflect the maximum stress under nonhydrostatic compression. It was found that nanocrystalline c-BC2N sample could support a maximum differential stress of similar to 38 GPa when it started to yield at similar to 66 GPa under uniaxial compression. Moreover, the aggregate elastic moduli of the nanocrystalline c-BC2N have been determined from the RXRD data at high pressures. C1 [Dong, Haini; He, Duanwei] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Duffy, Thomas S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. RP He, DW (reprint author), Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. EM duanweihe@yahoo.com RI Lujan Center, LANL/G-4896-2012; Duffy, Thomas/C-9140-2017 OI Duffy, Thomas/0000-0002-5357-1259 FU Natural Science Foundation of China [50572067, 10772126]; Carnegie-DOE Alliance Center; COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 06-49658]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors thank J. Z. Hu, J. Shu, and H. K. Mao for experimental assistance. This work is partially supported by the Natural Science Foundation of China (Grants No. 50572067 and No. 10772126 to D. H.) and the Carnegie-DOE Alliance Center. This research was also partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement No. EAR 06-49658. Use of the National Synchrotron Light Source, Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886. NR 36 TC 28 Z9 29 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014105 DI 10.1103/PhysRevB.79.014105 PG 6 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900029 ER PT J AU Du, MH AF Du, Mao-Hua TI Defects in AlSb: A density functional study SO PHYSICAL REVIEW B LA English DT Article DE aluminium compounds; antisite defects; density functional theory; electron traps; Fermi level; III-V semiconductors; impurities; metastable states ID V SEMICONDUCTORS; DONOR LEVELS; GAAS AB We carry out density functional calculations to study both intrinsic and extrinsic defects in AlSb. We focus on the carrier compensation and trapping properties of these defects, which are important to the radiation detection applications. We show that the Sb antisite (Sb(Al)) is a low-energy defect, with interesting property of light-induced metastability, similar to the As antisite in GaAs. Sb(Al) is effective in compensating holes induced by the residual carbon but is also a deep electron trap that reduces the carrier drifting length. We discuss the possibility of using hydrogenated isovalent N impurity in AlSb and GaAs to pin the Fermi level without causing efficient carrier trapping. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Du, Mao-Hua] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU U.S. DOE Office of Nonproliferation Research and Development [NA22] FX The author is grateful for helpful discussions with D. J. Singh. This work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22. NR 40 TC 9 Z9 9 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 045207 DI 10.1103/PhysRevB.79.045207 PG 7 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400057 ER PT J AU Duan, YH Sorescu, DC AF Duan, Yuhua Sorescu, Dan C. TI Density functional theory studies of the structural, electronic, and phonon properties of Li2O and Li2CO3: Application to CO2 capture reaction SO PHYSICAL REVIEW B LA English DT Article DE adsorption; bond lengths; chemical potential; density functional theory; desorption; dissociation; electronic density of states; energy gap; heat of reaction; high-pressure effects; lithium compounds; phonon dispersion relations; reaction kinetics theory ID NANOCRYSTALLINE LITHIUM ZIRCONATE; GROUND-STATE PROPERTIES; AB-INITIO; CARBON-DIOXIDE; HARTREE-FOCK; ELASTIC PROPERTIES; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; SPIN-RESONANCE; BASIS-SET AB The structural, electronic, and phonon properties of Li2O and Li2CO3 solids are investigated using density functional theory (DFT) and their thermodynamic properties for CO2 absorption and desorption reactions are analyzed. The calculated bulk properties for both the ambient- and the high-pressure phases of Li2O and Li2CO3 are in good agreement with available experimental measurements. The calculated band gap of the high-pressure phase of Li2O (8.37 eV, indirect) is about 3 eV larger than the one corresponding to the ambient Li2O phase (5.39 eV, direct), whereas the calculated band gap for the high-pressure phase of Li2CO3 (3.55 eV, indirect) is about 1.6 eV smaller than that for the ambient phase of Li2CO3 (5.10 eV, direct). The oxygen atoms in the ambient phase of the Li2CO3 crystal are not equivalent as reflected by two different sets of C-O bond lengths (1.28 and 1.31 A) and they form two different groups. When Li2CO3 dissociates, one group of O forms Li2O, while the other group of O forms CO2. The calculated phonon dispersion and density of states for the ambient phases of Li2O and Li2CO3 are in good agreement with experimental measurements and other available theoretical results. Li2O(s)+CO2(g)<-> Li2CO3(s) is the key reaction of lithium salt sorbents (such as lithium silicates and lithium zircornates) for CO2 capture. The energy change and the chemical potential of this reaction have been calculated by combining DFT with lattice dynamics. Our results indicate that although pure Li2O can absorb CO2 efficiently, it is not a good solid sorbent for CO2 capture because the reverse reaction, corresponding to Li2CO3 releasing CO2, can only occur at very low CO2 pressure and/or at very high temperature when Li2CO3 is in liquid phase. C1 [Duan, Yuhua; Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Duan, Yuhua] Parsons Corp, South Pk, PA 15129 USA. RP Duan, YH (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM yuhua.duan@netl.doe.gov RI Duan, Yuhua/D-6072-2011 OI Duan, Yuhua/0000-0001-7447-0142 FU National Energy Technology Laboratory's Office of Research and Development [DE-AM26-04NT41817] FX This work was performed in support of the National Energy Technology Laboratory's Office of Research and Development under Contract No. DE-AM26-04NT41817, subtask 41817.660.01.01. One of us (Y. D.) thanks J. K. Johnson, J. Steckel, R. Anderson, and B. Zhang for fruitful discussions and critical reading of the paper. NR 83 TC 58 Z9 59 U1 8 U2 95 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014301 DI 10.1103/PhysRevB.79.014301 PG 18 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900044 ER PT J AU Duque, JGS Bittar, EM Adriano, C Giles, C Holanda, LM Lora-Serrano, R Pagliuso, PG Rettori, C Perez, CA Hu, RW Petrovic, C Maquilon, S Fisk, Z Huber, DL Oseroff, SB AF Duque, J. G. S. Bittar, E. M. Adriano, C. Giles, C. Holanda, L. M. Lora-Serrano, R. Pagliuso, P. G. Rettori, C. Perez, C. A. Hu, Rongwei Petrovic, C. Maquilon, S. Fisk, Z. Huber, D. L. Oseroff, S. B. TI Magnetic field dependence and bottlenecklike behavior of the ESR spectra in YbRh2Si2 SO PHYSICAL REVIEW B LA English DT Article DE Kondo effect; paramagnetic resonance; rhodium alloys; silicon alloys; spin-lattice relaxation; ytterbium alloys ID ELECTRON-SPIN-RESONANCE; EXCHANGE-COUPLED SYSTEMS; INTERMETALLIC COMPOUNDS; PARAMAGNETIC-RESONANCE; UNLIKE SPINS; METALS; ABSORPTION; ER AB Electron spin resonance (ESR) experiments at different fields or frequencies (4.1 <=nu <= 34.4 GHz) in the Kondo lattice (T-K similar or equal to 25 K) YbRh2Si2 single-crystal compounds confirmed the observation of a single anisotropic Dysonian resonance with g(perpendicular to c)congruent to 3.55 and no hyperfine components for 4.2 less than or similar to T less than or similar to 20 K. However, our studies differently reveal that (i) the ESR spectra for H-perpendicular to c show strong-field-dependent spin-lattice relaxation, (ii) a weak-field and temperature-dependent effective g value, (iii) a dramatic suppression of the ESR intensity beyond 15% of Lu doping, and (iv) a strong sample and Lu-doping (<= 15%) dependence of the ESR data. These results suggest a different scenario where the ESR signal may be associated to a coupled Yb3+-conduction electron resonant collective mode with a strong bottleneck and dynamiclike behavior. C1 [Duque, J. G. S.; Bittar, E. M.; Adriano, C.; Giles, C.; Holanda, L. M.; Lora-Serrano, R.; Pagliuso, P. G.; Rettori, C.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Perez, C. A.] Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Dept Condensed Matter Phys, Upton, NY 11973 USA. [Maquilon, S.] Univ Calif Davis, Dept Phys, Davis, CA 95617 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Huber, D. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Oseroff, S. B.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RP Duque, JGS (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165, BR-13083970 Campinas, SP, Brazil. RI Petrovic, Cedomir/A-8789-2009; Rettori, Carlos/C-3966-2012; Pagliuso, Pascoal/C-9169-2012; Hu, Rongwei/E-7128-2012; Giles, Carlos/E-2878-2012; Perez, Carlos/F-9949-2013; Bittar, Eduardo/B-6266-2008; Lora Serrano, Raimundo/L-6307-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Petrovic, Cedomir/0000-0001-6063-1881; Rettori, Carlos/0000-0001-6692-7915; Giles, Carlos/0000-0001-8373-7398; Perez, Carlos/0000-0003-4284-3148; Bittar, Eduardo/0000-0002-2762-1312; Lora Serrano, Raimundo/0000-0003-3777-2170; FU FAPESP; CNPq (Brazil); NSF (USA) FX We thank FAPESP and CNPq (Brazil) and NSF (USA) for financial support and P. Coleman, E. Miranda, D. J. Garcia, and M. Continentino for fruitful discussions. NR 40 TC 16 Z9 16 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035122 DI 10.1103/PhysRevB.79.035122 PG 6 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200057 ER PT J AU Engelhardt, L Martin, C Prozorov, R Luban, M Timco, GA Winpenny, REP AF Engelhardt, Larry Martin, Catalin Prozorov, Ruslan Luban, Marshall Timco, Grigore A. Winpenny, Richard E. P. TI High-field magnetic properties of the magnetic molecule {Cr10Cu2} SO PHYSICAL REVIEW B LA English DT Article DE chromium alloys; copper alloys; exchange interactions (electron); excited states; ground states; Heisenberg model; magnetic moments; magnetic susceptibility; magnetisation; molecular magnetism; molecular moments; Monte Carlo methods; nuclear magnetic resonance ID TUNNEL-DIODE OSCILLATOR AB We present detailed magnetic measurements and the theoretical analysis of the recently synthesized magnetic molecule {Cr10Cu2}. Due to the heterometallic nature of this molecule, there are three distinct intramolecular interactions, which we describe using an isotropic Heisenberg model with three distinct exchange constants. The magnetic properties of the model are calculated using the quantum Monte Carlo method, including the low-field magnetic susceptibility chi(T) and the magnetization M(H,T) versus magnetic field H up to the saturation field (approximate to 80 T) for arbitrary temperature T. Of particular relevance to experiment, we have calculated the full set of ground-state level-crossing fields corresponding to peaks in partial derivative M/partial derivative H versus H for low T. A detailed search of the three-dimensional parameter space yields two well-separated sets of exchange constants, both of which give good agreement between the predictions of the model and the measured chi(T). The present low-temperature tunnel-diode resonator measurements provide values of ground-state level-crossing fields, as well as the level-crossing fields for certain low-lying excited states up to 16 T that are in good agreement with theory. The full set of theoretical crossing fields is very nearly equal for both sets of exchange constants. The theory also provides quantitative predictions for the site-dependent local magnetic moments of this molecule, which could perhaps be tested by future nuclear-magnetic-resonance measurements. C1 [Engelhardt, Larry] Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. [Martin, Catalin; Prozorov, Ruslan; Luban, Marshall] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Martin, Catalin; Prozorov, Ruslan; Luban, Marshall] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. RP Engelhardt, L (reprint author), Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU The Leverhulme Trust; Ames Laboratory; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We thank M. H. Lee for helpful discussions concerning linear-response theory. We also thank The Leverhulme Trust for supporting the collaboration between U.K. and U.S. groups. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 23 TC 9 Z9 9 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014404 DI 10.1103/PhysRevB.79.014404 PG 8 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900052 ER PT J AU Erickson, AS Chu, JH Toney, MF Geballe, TH Fisher, IR AF Erickson, A. S. Chu, J. -H. Toney, M. F. Geballe, T. H. Fisher, I. R. TI Enhanced superconducting pairing interaction in indium-doped tin telluride SO PHYSICAL REVIEW B LA English DT Article DE carrier density; ferroelectric semiconductors; ferroelectric transitions; indium; phonons; specific heat; superconducting transition temperature; tin compounds ID IV-VI-COMPOUNDS; PHASE-TRANSITIONS; SNTE; SEMICONDUCTORS; SYSTEM; GETE; PBTE AB The ferroelectric degenerate semiconductor Sn(1-delta)Te exhibits superconductivity with critical temperatures, T(c), of up to 0.3 K for hole densities of order 10(21) cm(-3). When doped on the tin site with greater than x(c)=1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific-heat data showing that a stronger pairing interaction is present for x>x(c) than for x < x(c). By examining the effect of In dopant atoms on both T(c) and the temperature of the ferroelectric structural phase transition, T(SPT), we show that phonon modes related to this transition are not responsible for this T(c) enhancement, and discuss a plausible candidate based on negative U pairing associated with mixed valency on the indium impurity sites. C1 [Erickson, A. S.; Chu, J. -H.; Geballe, T. H.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Erickson, A. S.; Chu, J. -H.; Geballe, T. H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Toney, M. F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Erickson, AS (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. FU DOE, Office of Basic Energy Sciences, [DE-AC02-76SF00515] FX The authors would like to thank Robert E. Jones for technical assistance with EMPA measurements, Doug Scalapino for his assistance with theoretical discussions, and Mikhail Kerzhner for assistance with crystal growth and characterization. This work was supported by the DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. NR 23 TC 37 Z9 37 U1 4 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024520 DI 10.1103/PhysRevB.79.024520 PG 7 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100097 ER PT J AU Gilbert, B Frandsen, C Maxey, ER Sherman, DM AF Gilbert, B. Frandsen, C. Maxey, E. R. Sherman, D. M. TI Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE energy gap; iron compounds; nanostructured materials; X-ray absorption spectra; X-ray emission spectra ID PAIR DISTRIBUTION FUNCTION; TRANSITION-METAL OXIDES; ELECTRONIC-STRUCTURES; IRON-OXIDES; ALPHA-FE2O3; SIZE; FE2O3; EDGE; NANOCRYSTALS; ABSORPTION AB Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band-gap determination in bulk and nanoscale itinerant electron semiconductors such as CdS and ZnO, but this approach has not been established for materials such as iron oxides that possess band-edge electronic structure dominated by electron correlations. We performed soft x-ray spectroscopy at the oxygen K-edge to reveal band-edge electronic structure of bulk and nanoscale hematite. Good agreement is found between the hematite band gap derived from optical spectroscopy and the energy separation of the first inflection points in the x-ray absorption and emission onset regions. By applying this method to two sizes of phase-pure hematite nanoparticles, we find that there is no evidence for size-driven change in the band gap of hematite nanoparticles down to around 8 nm. C1 [Gilbert, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Frandsen, C.] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark. [Maxey, E. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Sherman, D. M.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. RP Gilbert, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90R1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Frandsen, Cathrine/A-5729-2011; Gilbert, Benjamin/E-3182-2010; Sherman, David/A-7538-2008 OI Frandsen, Cathrine/0000-0001-5006-924X; Sherman, David/0000-0003-1835-6470 FU Office of Science; Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC02-05CH11231]; DOE-BES [DE-AC02-05CH11231, W-31-109-ENG-38] FX We thank Wayne Lukens for assistance with the UV-vis diffuse reflectance measurements and Glenn Waychunas for the sample of natural hematite. Soft x-ray absorption and emission studies were performed at beamlines 7.0.1 and 8.0.1 of the ALS, and we thank Jinghua Guo and Jonathan Denlinger. Synchrotron powder-diffraction data were acquired at ALS beamline 11.3.1, and we thank Simon Teat. The high-energy x-ray scattering data were acquired at beamline 11-ID-C at the APS, and we thank Peter Chupas. B. G. was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy, hereby abbreviated to DOE-BES, under Contract No. DE-AC02-05CH11231. Use of the ALS and the APS is supported by DOE-BES under contracts No. DE-AC02-05CH11231 and No. W-31-109-ENG-38, respectively. NR 51 TC 67 Z9 68 U1 5 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035108 DI 10.1103/PhysRevB.79.035108 PG 7 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200043 ER PT J AU Glatz, A Beloborodov, IS AF Glatz, Andreas Beloborodov, I. S. TI Thermoelectric properties of granular metals SO PHYSICAL REVIEW B LA English DT Article DE grain size; granular materials; metals; nanostructured materials; thermoelectric power; tunnelling ID SYSTEMS; FIGURE; MERIT AB We investigate the thermopower and thermoelectric coefficient of nanogranular materials at large tunneling conductance between the grains, g(T)> 1. We show that at intermediate temperatures, T>g(T)delta, where delta is the mean energy-level spacing for a single grain, electron-electron interaction leads to an increase in the thermopower with decreasing grain size. We discuss our results in light of the next generation of thermoelectric materials and present the behavior of the figure of merit depending on the system parameters. C1 [Glatz, Andreas] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U. S. Department of Energy Office of Science [DE-AC02-06CH11357.] FX We thank Frank Hekking, Nick Kioussis, and Gang Lu for useful discussions. A. G. was supported by the U. S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. NR 19 TC 15 Z9 15 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 041404 DI 10.1103/PhysRevB.79.041404 PG 4 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400014 ER PT J AU Goldman, AI Kreyssig, A Prokes, K Pratt, DK Argyriou, DN Lynn, JW Nandi, S Kimber, SAJ Chen, Y Lee, YB Samolyuk, G Leao, JB Poulton, SJ Bud'ko, SL Ni, N Canfield, PC Harmon, BN McQueeney, RJ AF Goldman, A. I. Kreyssig, A. Prokes, K. Pratt, D. K. Argyriou, D. N. Lynn, J. W. Nandi, S. Kimber, S. A. J. Chen, Y. Lee, Y. B. Samolyuk, G. Leao, J. B. Poulton, S. J. Bud'ko, S. L. Ni, N. Canfield, P. C. Harmon, B. N. McQueeney, R. J. TI Lattice collapse and quenching of magnetism in CaFe2As2 under pressure: A single-crystal neutron and x-ray diffraction investigation SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; band structure; calcium alloys; crystal structure; electronic density of states; Fermi level; iron alloys; magnetic hysteresis; magnetic moments; magnetic structure; neutron diffraction; phase diagrams; superconducting materials; X-ray diffraction ID 1ST-ORDER PHASE-TRANSITIONS AB Single-crystal neutron and high-energy x-ray diffraction measurements have identified the phase lines corresponding to transitions among the ambient-pressure paramagnetic tetragonal (T), the antiferromagnetic orthorhombic (O), and the nonmagnetic collapsed tetragonal (cT) phases of CaFe2As2. We find no evidence of additional structures for pressures of up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects, and we demonstrate that coexistence of the O and cT phases can occur if a nonhydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase, and we find no evidence of magnetic ordering in the cT phase. Band-structure calculations show that the transition into the cT phase results in a strong decrease in the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment. C1 [Goldman, A. I.; Kreyssig, A.; Pratt, D. K.; Nandi, S.; Lee, Y. B.; Samolyuk, G.; Bud'ko, S. L.; Ni, N.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Goldman, A. I.; Kreyssig, A.; Pratt, D. K.; Nandi, S.; Lee, Y. B.; Samolyuk, G.; Bud'ko, S. L.; Ni, N.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Prokes, K.; Argyriou, D. N.; Kimber, S. A. J.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Lynn, J. W.; Chen, Y.; Leao, J. B.; Poulton, S. J.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Poulton, S. J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Goldman, AI (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Prokes, Karel/J-5438-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; OI Prokes, Karel/0000-0002-7034-1738; McQueeney, Robert/0000-0003-0718-5602; Kimber, Simon/0000-0003-0489-1851 FU U. S. DOE [DEAC0207CH11358, DEAC0206CH11357] FX The authors wish to acknowledge very useful discussions with Joerg Schmalian, the assistance of J. Q. Yan with sample preparation, and the assistance of Yejun Feng and Doug Robinson with the high- energy x-ray measurements. The work at the Ames Laboratory and at the MUCAT sector was supported by the U. S. DOE under Contract No. DEAC0207CH11358. The use of the Advanced Photon Source was supported by the U. S. DOE under Contract No. DEAC0206CH11357. NR 26 TC 125 Z9 125 U1 7 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024513 DI 10.1103/PhysRevB.79.024513 PG 8 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100090 ER PT J AU Greedan, JE Gout, D Lozano-Gorrin, AD Derahkshan, S Proffen, T Kim, HJ Bozin, E Billinge, SJL AF Greedan, J. E. Gout, Delphine Lozano-Gorrin, A. D. Derahkshan, Shahab Proffen, Th. Kim, H. -J. Bozin, E. Billinge, S. J. L. TI Local and average structures of the spin-glass pyrochlore Y2Mo2O7 from neutron diffraction and neutron pair distribution function analysis SO PHYSICAL REVIEW B LA English DT Article DE exchange interactions (electron); frustration; neutron diffraction; spin glasses; yttrium compounds ID ANTIFERROMAGNET Y2MO2O7; BETA-CRISTOBALITE; DYNAMICS; BEHAVIOR; DISORDER; MOLYBDITES; TRANSITION; SYSTEMS; PHASES; SIO2 AB The observation of canonical spin-glass behavior in the pyrochlore oxide Y2Mo2O7 has been a subject of considerable interest as the original structural studies were interpreted in terms of a well-ordered crystallographic model. It is widely held that the stabilization of the spin-glass state requires some level of positional disorder along with frustration. Recent reports from local probe measurements, extended x-ray-absorption fine structure (EXAFS) and Y-89 NMR, have been interpreted in terms of disorder involving the Mo-Mo distances (EXAFS) and multiple Y sites (NMR). This work reports results from temperature-dependent (15-300 K) neutron diffraction (ND) and neutron pair distribution function studies which can provide from the same data set information on both the average and local structures. The principal findings are that: (1) there is no crystallographic phase transition over the temperature region studied within the resolution of the ND data; (2) the diffraction data are well fitted using a fully ordered model but with large and anisotropic displacement parameters for three of the four atomic sites; (3) the pairwise real-space correlation function G(r) shows clear evidence that the principal source of disorder is associated with the Y-O1 atom pairs rather than the Mo-Mo pairs, in disagreement with the interpretation of the EXAFS results; (4) fits to the G(r) improve significantly when anisotropic displacements for all sites are included; (5) inclusion of a split-site position parameter for O1 improves, slightly, both the G(r) fits and the Rietveld fits to the ND data; and (6) for all models the fits become worse as the temperature decreases and as the fitting range decreases. These results are qualitatively consistent with the Y-89 NMR observations and perhaps recent muon-spin-relaxation studies. The issue of static versus dynamic disorder is not resolved, definitively. An estimate of the distribution of exchange constants due to the disorder is made using spin-dimer analysis and compared with the Saunders-Chalker model for the generation of spin-glass behavior from "weak" disorder on geometrically frustrated lattices. C1 [Greedan, J. E.; Lozano-Gorrin, A. D.; Derahkshan, Shahab] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Greedan, J. E.; Lozano-Gorrin, A. D.; Derahkshan, Shahab] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gout, Delphine] Forschungszentrum Julich, Julich Ctr Neutron Sci SNS, D-52425 Julich, Germany. [Gout, Delphine] Oak Ridge Natl Lab, Oak Ridge, TN 38371 USA. [Proffen, Th.; Kim, H. -J.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Bozin, E.; Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bozin, E.; Billinge, S. J. L.] Brookhaven Natl Lab, Condensed Matter & Mat Sci Dept, Upton, NY 11973 USA. RP Greedan, JE (reprint author), McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. RI Bozin, Emil/E-4679-2011; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU Natural Sciences and Engineering Research Council; Los Alamos Neutron Science Center; DOE Office of Basic Energy Sciences; Los Alamos National Laboratory is operated by Los Alamos National Security LLC [DE-AC5206NA25396] FX J.E.G. thanks the Natural Sciences and Engineering Research Council of Canada for support through a Discovery Grant. A. D. L.-G. thanks the Spanish Ministry of Education for support. The authors thank I. P. Swainson for helpful discussions. This work benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC5206NA25396. The upgrade of NPDF was funded by NSF through Grant No. DMR00-76488. Work by the Billinge group was supported by the Office of Science, U. S. Department of Energy, under Contract No. DE- AC02-98CH10886. NR 37 TC 26 Z9 28 U1 0 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014427 DI 10.1103/PhysRevB.79.014427 PG 10 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900074 ER PT J AU Hall, D Balicas, L Fisk, Z Goodrich, RG Alver, U Sarrao, JL AF Hall, Donavan Balicas, Luis Fisk, Z. Goodrich, R. G. Alver, U. Sarrao, J. L. TI High-field de Haas-van Alphen studies of the Fermi surfaces of LaMIn5 (M=Co,Rh,Ir) SO PHYSICAL REVIEW B LA English DT Article DE cerium alloys; cobalt alloys; de Haas-van Alphen effect; effective mass; Fermi surface; heavy fermion superconductors; indium alloys; iridium alloys; lanthanum alloys; magnetic superconductors; rhodium alloys ID SUPERCONDUCTIVITY AB We report measurements of the de Haas-van Alphen effect on a series of compounds, LaMIn5 (M=Co,Rh,Ir). The results show that each of the Co and Ir Fermi surfaces (FSs) exhibits some portions that are two dimensional and some portions that are three dimensional. The most two-dimensional character is exhibited in LaCoIn5, less two-dimensional behavior is seen in LaIrIn5, and no part of Fermi surface of LaRhIn5 is found to have a two-dimensional character. Thus the two dimensionality of portions of the FSs is largely determined by the d character of the energy bands while all of the effective masses remain <= 1.2. This fact has implications for the causes of the heavy fermion nature of superconductivity and magnetism in the Ce-based compounds having similar composition and structure. C1 [Hall, Donavan; Balicas, Luis] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Goodrich, R. G.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Alver, U.] Kahramanmaras Sutcu Imam Univ, Dept Phys, TR-46100 K Maras, Turkey. [Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hall, D (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. OI Hall, Donavan/0000-0001-5036-5188 FU NSF [NSF-DMR-0503361] FX The work at the NHMFL was performed under the auspices of the National Science Foundation and the State of Florida. R. G. G. was supported directly by the NSF while Z.F. acknowledges Grant No. NSF-DMR-0503361. NR 11 TC 4 Z9 4 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 033106 DI 10.1103/PhysRevB.79.033106 PG 4 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200006 ER PT J AU Held, R Schneider, CW Mannhart, J Allard, LF More, KL Goyal, A AF Held, R. Schneider, C. W. Mannhart, J. Allard, L. F. More, K. L. Goyal, A. TI Low-angle grain boundaries in YBa2Cu3O7-delta with high critical current densities SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; critical current density (superconductivity); grain boundaries; high-temperature superconductors; transmission electron microscopy; yttrium compounds ID T-C SUPERCONDUCTORS; THIN-FILMS; TRANSPORT-PROPERTIES; BICRYSTALS; JUNCTIONS; TAPES AB The grain-boundary network in high-T-c coated conductors consists of a large number of low-angle grain boundaries with many types of misorientation. Using the bicrystal technology we have measured the critical current densities of the relevant YBa2Cu3O7-delta grain boundaries as a function of the grain-boundary angle. We find that in the low-angle regime [010]-tilt boundaries and [100]-twist boundaries reduce the critical current density much less than [001]-tilt boundaries. Transmission electron microscopy reveals a low defect density in the [010]-tilt boundaries and we find that CuO2 planes cross these boundaries without interruption. C1 [Held, R.; Schneider, C. W.; Mannhart, J.] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. [Allard, L. F.; More, K. L.; Goyal, A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Held, R (reprint author), Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. RI Schneider, Christof/I-5857-2014; More, Karren/A-8097-2016; OI Schneider, Christof/0000-0002-4292-8574; More, Karren/0000-0001-5223-9097; Mannhart, Jochen/0000-0001-6331-2640 FU Bayerische Forschungsstiftung (Foroxid); U. S. Department of Energy; Office of Electricity Delivery and Energy Reliability-Superconductivity Program [DE-AC05-00OR22725]; Oak Ridge National Laboratory; Oak Ridge National Laboratory's SHaRE User Facility; Division of Scientific User Facilities; Office of Basic Energy Science FX The work at the University of Augsburg was supported by the Bayerische Forschungsstiftung (Foroxid). Research at ORNL was supported partly by the U. S. Department of Energy, Office of Electricity Delivery and Energy Reliability-Superconductivity Program under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC managing contractor for Oak Ridge National Laboratory. Research was also supported in part by Oak Ridge National Laboratory's SHaRE User Facility, Division of Scientific User Facilities, Office of Basic Energy Science, U. S. Department of Energy. The authors gratefully acknowledge helpful discussions with S. Thiel and thank A. Herrnberger as well as K. Wiedenmann for their support. NR 20 TC 16 Z9 16 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014515 DI 10.1103/PhysRevB.79.014515 PG 7 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900103 ER PT J AU Herwadkar, A Lambrecht, WRL AF Herwadkar, Aditi Lambrecht, Walter R. L. TI Electronic structure of CrN: A borderline Mott insulator SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; band structure; charge transfer states; chromium compounds; density functional theory; doping; electronic density of states; electronic structure; Fermi level; localised states; Neel temperature; optical constants; vacancies (crystal) ID TRANSITION-METAL NITRIDES; PHASE-TRANSITION; BAND THEORY; SPECTRA; STRESS; GAP; VN AB Calculations using the LSDA+U (local spin-density approximation corrected by Hubbard Coulomb terms for the d electrons) approach show that CrN is close to a charge-transfer insulator transition. The values of U are estimated in various ways, including the recently developed linear-response approach. With reasonable values of U in the range of 3-5 eV it is found that the density of states near the Fermi level is strongly depleted by the spin separation of the states. In the case of the antiferromagnetic (AFM)-[110](2) configuration a small gap actually opens even for U as small as 3 eV. Furthermore a smallest direct gap of about 1 eV can be seen in these band structures and could be responsible for the onset of strong optical absorption observed to occur at 0.7 eV. The tendency of opening the gap is found to be strongest in the actually observed AFM-[110](2) structure below the Neel temperature. The widely varying transport data in the literature are critically examined. They indicate a gap smaller than 0.1 eV, consistent with the present calculations, a strong influence of N-vacancy-induced doping carriers and possibly localization effects associated with the distortions accompanying the loss of antiferromagnetic ordering above the Neel temperature. C1 [Herwadkar, Aditi; Lambrecht, Walter R. L.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. RP Herwadkar, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Lambrecht, Walter/O-1083-2016; OI Lambrecht, Walter/0000-0002-5377-0143 FU Office of Naval Research [N00014-02-1-0880]; National Science Foundation [DMR-0710485] FX This work was supported by the Office of Naval Research under Grant No. N00014-02-1-0880 and the National Science Foundation under Grant No. DMR-0710485. The computations were done at the Ohio Supercomputing Center. NR 41 TC 35 Z9 35 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035125 DI 10.1103/PhysRevB.79.035125 PG 10 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200060 ER PT J AU Hicks, DG Boehly, TR Celliers, PM Eggert, JH Moon, SJ Meyerhofer, DD Collins, GW AF Hicks, D. G. Boehly, T. R. Celliers, P. M. Eggert, J. H. Moon, S. J. Meyerhofer, D. D. Collins, G. W. TI Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa SO PHYSICAL REVIEW B LA English DT Article DE deuterium; equations of state; impedance matching; shock wave effects ID EQUATION-OF-STATE; LIQUID DEUTERIUM; WAVE COMPRESSION; DENSE HYDROGEN; PHASE-TRANSITION; SOLID DEUTERIUM; 1-6 MBAR; HUGONIOT; PRESSURE; ALUMINUM AB The compression (eta) of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance-match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that eta similar or equal to 4.2, in agreement with previous impedance-match data from magnetically driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa eta reaches a maximum of similar to 5.0, which is less than the sixfold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower-pressure data. Previous laser-driven double shock results are found to be in good agreement with these single shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa. C1 [Hicks, D. G.; Celliers, P. M.; Eggert, J. H.; Moon, S. J.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehly, T. R.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, New York, NY USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, New York, NY USA. RP Hicks, DG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hicks13@llnl.gov RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015 OI Hicks, Damien/0000-0001-8322-9983 NR 70 TC 87 Z9 91 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014112 DI 10.1103/PhysRevB.79.014112 PG 18 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900036 ER PT J AU Jones, MD Albers, RC AF Jones, M. D. Albers, R. C. TI Spin-orbit coupling in an f-electron tight-binding model: Electronic properties of Th, U, and Pu SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; electronic density of states; plutonium; spin-orbit interactions; thorium; tight-binding calculations; uranium AB We extend a tight-binding method to include the effects of spin-orbit coupling and apply it to the study of the electronic properties of the actinide elements Th, U, and Pu. These tight-binding parameters are determined for the fcc crystal structure using the equivalent equilibrium volumes. In terms of the single-particle energies and the electronic density of states, the overall quality of the tight-binding representation is good and of the same quality as without spin-orbit coupling. The values of the optimized tight-binding spin-orbit coupling parameters are comparable to those determined from purely atomic calculations. C1 [Jones, M. D.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Albers, R. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87501 USA. [Jones, M. D.] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA. RP Jones, MD (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Calculations were performed at the Los Alamos National Laboratory and the Center for Computational Research at SUNY-Buffalo. FLAPW calculations were performed using the WIEN2K package. 18 We thank Jian-Xin Zhu for providing helpful remarks. NR 22 TC 13 Z9 13 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 045107 DI 10.1103/PhysRevB.79.045107 PG 7 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400023 ER PT J AU Kaindl, RA Hagele, D Carnahan, MA Chemla, DS AF Kaindl, R. A. Haegele, D. Carnahan, M. A. Chemla, D. S. TI Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases SO PHYSICAL REVIEW B LA English DT Article DE dielectric function; excitons; gallium arsenide; III-V semiconductors; photoluminescence; semiconductor quantum wells; thermodynamics; time resolved spectra; two-dimensional electron gas; two-dimensional hole gas ID GAAS/ALXGA1-XAS QUANTUM-WELLS; BOSE-EINSTEIN CONDENSATION; MICROSCOPIC THEORY; BINDING-ENERGY; GAAS; SEMICONDUCTORS; DYNAMICS; RELAXATION; IONIZATION; ABSORPTION AB We report a comprehensive experimental study and detailed model analysis of the terahertz dielectric response and density kinetics of excitons and unbound electron-hole pairs in GaAs quantum wells. A compact expression is given, in absolute units, for the complex-valued terahertz dielectric function of intraexcitonic transitions between the 1s and higher-energy exciton and continuum levels. It closely describes the terahertz spectra of resonantly generated excitons. Exciton ionization and formation are further explored, where the terahertz response exhibits both intraexcitonic and Drude features. Utilizing a two-component dielectric function, we derive the underlying exciton and unbound pair densities. In the ionized state, excellent agreement is found with the Saha thermodynamic equilibrium, which provides experimental verification of the two-component analysis and density scaling. During exciton formation, in turn, the pair kinetics is quantitatively described by a Saha equilibrium that follows the carrier cooling dynamics. The terahertz-derived kinetics is, moreover, consistent with time-resolved luminescence measured for comparison. Our study establishes a basis for tracking pair densities via transient terahertz spectroscopy of photoexcited quasi-two-dimensional electron-hole gases. C1 [Kaindl, R. A.; Haegele, D.; Carnahan, M. A.; Chemla, D. S.] Univ Calif Berkeley, Div Mat Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kaindl, R. A.; Haegele, D.; Carnahan, M. A.; Chemla, D. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Haegele, D.] Ruhr Univ Bochum, Arbeitsgrp Spektroskopie Kondensierten Mat, D-44780 Bochum, Germany. RP Kaindl, RA (reprint author), Univ Calif Berkeley, Div Mat Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU U. S. Department of Energy [DE-AC02-5CH11231] FX We thank R. Lovenich for contributions in the early stages of this work and J. Reno for providing quantum well samples. Our investigations were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-5CH11231. NR 67 TC 61 Z9 61 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 045320 DI 10.1103/PhysRevB.79.045320 PG 13 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400080 ER PT J AU Klimczuk, T McQueen, TM Williams, AJ Huang, Q Ronning, F Bauer, ED Thompson, JD Green, MA Cava, RJ AF Klimczuk, T. McQueen, T. M. Williams, A. J. Huang, Q. Ronning, F. Bauer, E. D. Thompson, J. D. Green, M. A. Cava, R. J. TI Superconductivity at 2.2 K in the layered oxypnictide La3Ni4P4O2 SO PHYSICAL REVIEW B LA English DT Article DE lanthanum compounds; magnetic susceptibility; nickel compounds; specific heat; superconducting materials; superconducting thin films ID TEMPERATURE; DEPENDENCE; LIFEAS; SYSTEM AB We report the observation of superconductivity in La3Ni4P4O2 at 2.2 K. The layer stacking in this compound results in an asymmetric distribution of charge reservoir layers around the Ni2P2 planes. The estimated Wilson ratio, R-W approximate to 5, indicates the presence of strongly enhanced normal-state susceptibility, but many of the basic superconducting characteristics are conventional. The estimated electronic contribution to the specific heat, gamma approximate to 6.2 mJ mol-Ni-1 K-2, is about 2/3 of that found in layered nickel borocarbide superconductors. C1 [Klimczuk, T.; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [McQueen, T. M.; Williams, A. J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Huang, Q.; Green, M. A.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Green, M. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Klimczuk, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Klimczuk, Tomasz/M-1716-2013; OI Klimczuk, Tomasz/0000-0003-2602-5049; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U. S. Department of Energy, Division of basic Energy Sciences [DE-FG02-98ER457060]; National Science Foundation FX This research at Los Alamos National Laboratory and Princeton University (Grant No. DE-FG02-98ER457060) was supported by the U. S. Department of Energy, Division of basic Energy Sciences. T. M. M. acknowledges support by the National Science Foundation. NR 27 TC 23 Z9 23 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 012505 DI 10.1103/PhysRevB.79.012505 PG 4 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900022 ER PT J AU Knizek, K Jirak, Z Hejtmanek, J Novak, P Ku, W AF Knizek, Karel Jirak, Zdenek Hejtmanek, Jiri Novak, Pavel Ku, Wei TI GGA plus U calculations of correlated spin excitations in LaCoO3 SO PHYSICAL REVIEW B LA English DT Article DE ground states; lanthanum compounds; magnetic structure; spin systems ID STATE; TRANSITIONS; ANOMALIES; LNCOO(3); X=0 AB A comprehensive generalized gradient approximation (GGA)+U calculation study of many various Co3+ spin configurations for the model structures of LaCoO3 was performed. In addition to the nonmagnetic ground state based on the low-spin (LS) Co3+, the calculations evidence a number of stationary states based on the combinations of LS, high-spin (HS), and intermediate-spin (IS) Co3+ species. The stability of individual spin states is strongly conditioned by the character of neighboring spin states. If the amount of excited magnetic Co3+ ions in the LS matrix is small, their state is always of the HS kind. With an increasing number of Co3+ in HS states, a preference for antiparallel orientation of their spins appears and, at the same time, strong HS-HS nearest-neighbor correlations are evidenced. When the HS population in the LS matrix approaches a theoretical limit 1:1, further excitation to the HS state is hindered and alternative configurations based on clustering of the IS states become energetically favorable. Finally, the uniform Co (IS) configuration with preference for parallel spin alignment is stabilized. The present calculations are thus in agreement with a two-step LS-LS/HS-IS scenario of the electronic transitions in LnCoO(3), consisting of a local excitation of HS in LS matrix, which is followed by reversal of the thermally populated HS/LS pairs into the IS states. C1 [Knizek, Karel; Jirak, Zdenek; Hejtmanek, Jiri; Novak, Pavel] Inst Phys ASCR, Prague 16253 6, Czech Republic. [Ku, Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Knizek, K (reprint author), Inst Phys ASCR, Cukrovarnicka 10, Prague 16253 6, Czech Republic. RI Knizek, Karel/G-5270-2014; Hejtmanek, Jiri/G-5591-2014; Jirak, Zdenek/G-6281-2014; Novak, Pavel/G-6692-2014 OI Knizek, Karel/0000-0002-0725-0331; Hejtmanek, Jiri/0000-0001-8248-3912; FU Grant Agency of the Czech Republic [202/06/0051]; Grant Agency of the ASCR [A100100611]; DOE [DE-AC02-98CH10886]; DOE-CMSN FX This work was supported by the Grant Agency of the Czech Republic under Project No. 202/06/0051. Part of this work was supported by the Grant Agency of the ASCR under Project No. A100100611. The authors acknowledge support from project LUNA for help in performing the calculations. W. K. acknowledges support from the DOE under Grant No. DE-AC02-98CH10886 and DOE-CMSN. NR 37 TC 48 Z9 49 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014430 DI 10.1103/PhysRevB.79.014430 PG 8 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900077 ER PT J AU Kopnin, NB Galperin, YM Vinokur, VM AF Kopnin, N. B. Galperin, Y. M. Vinokur, V. M. TI Charge transport through weakly open one-dimensional quantum wires SO PHYSICAL REVIEW B LA English DT Article DE electrical conductivity; quantum wires ID COULOMB-BLOCKADE; QUANTIZED CONDUCTANCE; CARBON NANOTUBES; LUTTINGER-LIQUID; OSCILLATIONS; JUNCTIONS AB We consider resonant transmission through a gated finite-length quantum wire connected to leads via finite-transparency junctions, such that the escape time is much smaller than the energy relaxation time in the wire. The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-voltage (IV) curves show steplike dependence on the bias voltage determined by the distance between the quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and level spacing. If the system is tuned close to the resonance condition by the gate voltage, the low-voltage IV curve is ohmic. At large Coulomb energy and low temperatures, the conductance is temperature independent for any relationship between temperature, level spacing, and coupling between the wire and the leads. C1 [Kopnin, N. B.] Aalto Univ, Low Temp Lab, Helsinki 02015, Finland. [Kopnin, N. B.] LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Galperin, Y. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.; Vinokur, V. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Galperin, Y. M.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. RP Kopnin, NB (reprint author), Aalto Univ, Low Temp Lab, POB 5100, Helsinki 02015, Finland. RI Galperin, Yuri/A-1851-2008 OI Galperin, Yuri/0000-0001-7281-9902 FU ULTI; EU [RITA-CT-2003-505313]; U. S. Department of Energy Office of Science [DE-AC02-06CH11357]; Academy of Finland [213496]; Finnish Programme for Centers of Excellence in Research [2002 -2007/2006-2011]; Russian Foundation for Basic Research FX thank K. A. Matveev and A. S. Mel'nikov for helpful discussions. This work was supported by the ULTI program under EU through Contract No. RITA-CT-2003-505313, by the U. S. Department of Energy Office of Science through Contract No. DE-AC02-06CH11357, by the Academy of Finland (Grant No. 213496, Finnish Programme for Centers of Excellence in Research 2002 -2007/2006-2011), and by the Russian Foundation for Basic Research. NR 35 TC 5 Z9 5 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035319 DI 10.1103/PhysRevB.79.035319 PG 6 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200087 ER PT J AU Krishnamurthy, VV Keavney, DJ Haskel, D Lang, JC Srajer, G Sales, BC Mandrus, DG Robertson, JL AF Krishnamurthy, V. V. Keavney, D. J. Haskel, D. Lang, J. C. Srajer, G. Sales, B. C. Mandrus, D. G. Robertson, J. L. TI Temperature dependence of Eu 4f and Eu 5d magnetizations in the filled skutterudite EuFe4Sb12 SO PHYSICAL REVIEW B LA English DT Article DE antimony alloys; europium alloys; exchange interactions (electron); ferrimagnetic materials; Heisenberg model; impurity states; iron alloys; magnetic circular dichroism; magnetic moments; magnetisation; spectral line intensity; X-ray absorption spectra ID X-RAY-ABSORPTION; MAGNETIC CIRCULAR-DICHROISM; MODULATION TECHNIQUE; PHASE RETARDER; LIII-EDGE; ANTIMONIDES; SPECTROSCOPY; AFE(4)SB(12); YB14MNSB11; STATE AB The element-specific and shell-specific magnetism of Eu in the filled skutterudite ferrimagnet Eu0.95Fe4Sb12 has been investigated using Eu M-4,M-5- and Eu L-2,L-3-edge x-ray magnetic circular dichroism (XMCD) spectroscopy as a function of temperature. Eu L-3-edge x-ray absorption spectroscopy shows that Eu is mostly in the divalent state. Eu M-5-edge x-ray absorption spectroscopy, measured by electron yield, shows nearly equal fractions of Eu2+ and Eu3+ states because it probes a significant portion of the surface volume which is dominated by the Eu3+ impurity state. Sum-rule analysis of the Eu M-4,M-5-edge XMCD spectrum measured at 4.9 K yielded the 4f spin moment of (7.15 +/- 0.3)mu(B) per Eu2+ ion. By comparing the Eu L-2,L-3-edge XMCD spectrum in the ferrimagnetic state of Eu0.95Fe4Sb12 to that of a divalent Eu reference compound, the clathrate Eu8Ga16Ge30, we show that the 5d spin polarization of Eu in the skutterudite is strongly enhanced by the exchange coupling with the 3d band electrons of Fe, which were shown to have an ordered moment of -0.21 mu(B)/Fe in our earlier Fe L-2,L-3 XMCD measurements. The temperature dependence of the magnetic order parameter, determined from the Eu L-3-edge XMCD intensity, yields a mean-field-like exponent (similar to 0.52) in the skutterudite and a three-dimensional Heisenberg-type (similar to 0.36) exponent in the clathrate. C1 [Krishnamurthy, V. V.; Robertson, J. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Keavney, D. J.; Haskel, D.; Lang, J. C.; Srajer, G.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sales, B. C.; Mandrus, D. G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Krishnamurthy, VV (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Mandrus, David/H-3090-2014 FU Materials Science and Engineering Division, Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [DEAC0500OR22725]; Oak Ridge National Laboratory, managed by UT-Battelle, LLC; APS, Argonne National Laboratory; Office of Sciences, U. S. Department of Energy [DE-AC02-06CH11357] FX The authors would like to gratefully acknowledge very helpful discussion with D. J. Singh. This research is sponsored by Materials Science and Engineering Division, Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DEAC0500OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. The work at the APS, Argonne National Laboratory is sponsored by the Office of Sciences, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 50 TC 10 Z9 10 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014426 DI 10.1103/PhysRevB.79.014426 PG 8 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900073 ER PT J AU Kurita, N Hedo, M Koeda, M Kobayashi, M Sato, H Sugawara, H Uwatoko, Y AF Kurita, N. Hedo, M. Koeda, M. Kobayashi, M. Sato, H. Sugawara, H. Uwatoko, Y. TI Pressure-induced Kondo semiconductor: The filled skutterudite compound CeRu4Sb12 SO PHYSICAL REVIEW B LA English DT Article DE cerium compounds; electrical conductivity transitions; electrical resistivity; energy gap; high-pressure solid-state phase transformations; Kondo effect; lattice constants; metal-insulator transition; ruthenium compounds; semiconductor materials; X-ray diffraction ID FERMION SEMIMETAL CERU4SB12; ELECTRICAL-RESISTIVITY; MAGNETIC-PROPERTIES; TRANSPORT-PROPERTIES; SUPERCONDUCTIVITY; TRANSITION; LAFE4P12; BEHAVIOR; TEMPERATURE; PHOSPHIDES AB We report electrical transport and x-ray studies under high pressure of the filled skutterudite compound CeRu4Sb12. Electrical resistivity measurements in the temperature range 2-300 K and under hydrostatic pressures up to 10.0 GPa have revealed a pressure-induced metal-semiconductor transition above 5.0 GPa in CeRu4Sb12. The energy gap in the semiconducting state of CeRu4Sb12 estimated from an activation law increases with a pressure coefficient of similar to 12 K/GPa. On the other hand, a high-pressure x-ray study has determined the relationship between lattice constant and energy gap of CeRu4Sb12 under high pressure. We suggest that an electronic mechanism of a semiconducting state in CeRu4Sb12 under high pressure could originate from an enhanced c-f hybridization and that the P-induced state could be categorized as a Kondo semiconductor. C1 [Kurita, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kurita, N.; Koeda, M.; Uwatoko, Y.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Hedo, M.] Univ Ryukyus, Fac Sci, Okinawa 9030213, Japan. [Kobayashi, M.; Sato, H.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Sugawara, H.] Univ Tokushima, Fac Integrated Arts & Sci, Tokushima 7708502, Japan. RP Kurita, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU Grant-in-Aid for Scientific Research in Priority Area Skutterudite [15072203]; Ministry of Education, Culture, Sports, Science, and Technology, Japan FX We would like to thank E. D. Bauer, Y. Tokiwa, Y.-F. Yang and R. Movshovich at Los Alamos National Laboratory; T. Sakakibara at ISSP, University of Tokyo; and H. Harima at Kobe University for useful discussions. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area Skutterudite (Contract No. 15072203). The Ministry of Education, Culture, Sports, Science, and Technology, Japan. NR 43 TC 13 Z9 13 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014441 DI 10.1103/PhysRevB.79.014441 PG 8 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900088 ER PT J AU Laver, M Bowell, CJ Forgan, EM Abrahamsen, AB Fort, D Dewhurst, CD Muhlbauer, S Christen, DK Kohlbrecher, J Cubitt, R Ramos, S AF Laver, M. Bowell, C. J. Forgan, E. M. Abrahamsen, A. B. Fort, D. Dewhurst, C. D. Muehlbauer, S. Christen, D. K. Kohlbrecher, J. Cubitt, R. Ramos, S. TI Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study SO PHYSICAL REVIEW B LA English DT Article DE flux-line lattice; niobium; superconducting materials; superconducting transitions ID FIELD GALVANOMAGNETIC PROPERTIES; CLEAN TYPE-2 SUPERCONDUCTORS; FERMI-SURFACE; ENERGY GAPS; WAVE SUPERCONDUCTORS; II SUPERCONDUCTORS; GORKOVS THEORY; NB; DIFFRACTION; ANISOTROPY AB High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain is observed at all temperatures and fields parallel to a threefold symmetry axis. We report a detailed investigation of the transition between these lush and barren VL landscapes, discovering new VL structures and phase transitions at high fields. We show that the number and relative population of VL domains is intrinsically tied to the underlying crystal symmetry. We discuss how subtle anisotropies of the crystal may generate the remarkable VLs observed. C1 [Laver, M.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Laver, M.] Univ Maryland, College Pk, MD 20742 USA. [Bowell, C. J.; Forgan, E. M.; Ramos, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Abrahamsen, A. B.] DTU, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Dewhurst, C. D.; Cubitt, R.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Muehlbauer, S.] Tech Univ Munich, Phys Dept E21, D-85747 Garching, Germany. [Christen, D. K.] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. [Kohlbrecher, J.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Laver, M (reprint author), NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RI Kohlbrecher, Joachim/C-8790-2011 OI Kohlbrecher, Joachim/0000-0001-5879-6943 FU Engineering and Physical Sciences Research Council of the U. K., H. Keller (University of Zurich); Institut Laue-Langevin; University of Birmingham; Danish Natural Science Council under DanScatt; European Commission [RII3-CT-2003-505925] FX We acknowledge financial support from the Engineering and Physical Sciences Research Council of the U. K., H. Keller (University of Zurich), the Institut Laue-Langevin, the University of Birmingham, the Danish Natural Science Council under DanScatt, and from the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. RII3-CT-2003-505925. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland, and at the Institut Laue-Langevin, Grenoble. NR 38 TC 13 Z9 13 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014518 DI 10.1103/PhysRevB.79.014518 PG 11 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900106 ER PT J AU Learmonth, T McGuinness, C Glans, PA Kennedy, B John, JS Guo, JH Greenblatt, M Smith, KE AF Learmonth, T. McGuinness, C. Glans, P. -A. Kennedy, B. John, J. St. Guo, J. -H. Greenblatt, M. Smith, K. E. TI Resonant soft x-ray inelastic scattering and soft x-ray emission study of the electronic structure of alpha-MoO3 SO PHYSICAL REVIEW B LA English DT Article DE electronic structure; molybdenum compounds; X-ray emission spectra; X-ray scattering ID ONE-DIMENSIONAL CONDUCTOR; FERMI-SURFACE; FLUORESCENCE SPECTROSCOPY; SYNCHROTRON-RADIATION; K0.3MOO3; LI0.9MO6O17; ABSORPTION; GRAPHITE; BRONZES; DIAMOND AB The electronic structure of quasi-low-dimensional solids is a topic of enduring interest due to the complex many-body interactions that exist in such materials and their resulting exotic physical properties. A well studied class of such materials is the quasi-low-dimensional metals known collectively as molybdenum oxide bronzes. These materials are all derived from the band insulator alpha-MoO3. We report here a study of the electronic structure of alpha-MoO3 using resonant inelastic x-ray scattering and soft x-ray emission spectroscopy. We observe significant variation in x-ray scattering as a function of the relative orientation of the polarization vector of the incident light and the crystal axes. We interpret our data using a model of k-selective soft x-ray scattering. C1 [Learmonth, T.; Glans, P. -A.; John, J. St.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [McGuinness, C.; Kennedy, B.] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. [Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Greenblatt, M.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. RP Smith, KE (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM ksmith@bu.edu RI McGuinness, Cormac/C-6808-2008; Glans, Per-Anders/G-8674-2016 OI McGuinness, Cormac/0000-0002-3095-330X; FU Department of Energy [DE-FG02-98ER45680]; U. S. Department of Energy [DE-AC02-05CH11231]; Irish Higher Educational Authority and Enterprise Ireland; Irish Research Council for Science Engineering and Technology FX The Boston University (BU) program is supported in part by the Department of Energy under Contract No. DE-FG02-98ER45680. The ALS is supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. T. L. acknowledges support from the ALS. C. M. acknowledges financial support from the Irish Higher Educational Authority and Enterprise Ireland. B. K. acknowledges funding received from the Irish Research Council for Science Engineering and Technology in cooperation with INTEL Ireland. We thank Tanel Kaambre and the MAXLab staff for their assistance. NR 33 TC 7 Z9 7 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035110 DI 10.1103/PhysRevB.79.035110 PG 8 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200045 ER PT J AU Liu, MZ Pelton, M Guyot-Sionnest, P AF Liu, Mingzhao Pelton, Matthew Guyot-Sionnest, Philippe TI Reduced damping of surface plasmons at low temperatures SO PHYSICAL REVIEW B LA English DT Article DE damping; electron-phonon interactions; electron-surface impact; gold; nanostructured materials; spectral line breadth; surface plasmon resonance ID ELECTRON-ELECTRON SCATTERING; INFRARED ABSORPTIVITY; GOLD NANORODS; TRANSPORT; METALS; DEPENDENCE AB We investigated the effectiveness of low temperatures in reducing plasmon damping by measuring the homogeneous linewidth of plasmon resonances (similar to 1.5 eV) in nanoscale gold bipyramids at temperatures from 293 to 6 K. The linewidth drops linearly with temperature and approaches a constant value at approximately 50 K. Measurements were performed on monodisperse ensembles as well as on single particles. The 30% decrease in the homogeneous linewidth with decreasing temperature is well accounted for by the reduced electron-phonon scattering. The other relaxation mechanisms-electron-electron scattering, electron-surface scattering, and radiative relaxation-do not change significantly with temperature. C1 [Liu, Mingzhao; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Liu, Mingzhao; Guyot-Sionnest, Philippe] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Liu, MZ (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02143 USA. EM liu13@fas.harvard.edu; pgs@uchicago.edu RI Liu, Mingzhao/A-9764-2011; Pelton, Matthew/H-7482-2013 OI Liu, Mingzhao/0000-0002-0999-5214; Pelton, Matthew/0000-0002-6370-8765 FU University of Chicago [DMR-0213745]; NSF [NSF-CHE-0718718]; U. S. Department of Energy [DE-AC02-06CH11357] FX M. L. was supported by the University of Chicago MR-SEC NSF-DMR under Grant No. DMR-0213745. Partial support from NSF under Grant No. NSF-CHE-0718718 is also acknowledged. Work at the Center for Nanoscale Materials was supported by the Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. M. L. also thanks Praket P. Jha for his help with the low-temperature measurements. NR 25 TC 64 Z9 65 U1 0 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035418 DI 10.1103/PhysRevB.79.035418 PG 5 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200116 ER PT J AU Mironets, O Meyerheim, HL Tusche, C Stepanyuk, VS Soyka, E Hong, H Zschack, P Jeutter, N Felici, R Kirschner, J AF Mironets, O. Meyerheim, H. L. Tusche, C. Stepanyuk, V. S. Soyka, E. Hong, H. Zschack, P. Jeutter, N. Felici, R. Kirschner, J. TI Bond length contraction in cobalt nanoislands on Cu(001) analyzed by surface x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article DE bond lengths; cobalt; copper; molecular dynamics method; nanostructured materials; surface reconstruction; X-ray diffraction ID EPITAXIAL-GROWTH; THIN-FILMS; CU(100); DYNAMICS; METALS AB We present a combined surface x-ray diffraction (SXRD) and theoretical analysis of the geometric structure of nanometer sized Co islands deposited on Cu(001) at 170 K. Two-dimensional nanoislands consisting of only 20-40 atoms are characterized by a 4%-8% contraction of the interatomic distances as compared to the bulk (2.51 A). This strongly exceeds "usual" lattice relaxations normally seen for surfaces. The SXRD analysis is based on the analysis of the registry of the Co adatoms relative to the (1x1) surface unit cell of the Cu(001) substrate crystal. Static displacements of the Co atoms of 0.18 A (root mean square) out of the equilibrium hollow sites are observed which are in agreement with predictions based on molecular-dynamics calculations. C1 [Mironets, O.; Meyerheim, H. L.; Tusche, C.; Stepanyuk, V. S.; Soyka, E.; Kirschner, J.] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany. [Hong, H.; Zschack, P.] APS Argonne Natl Lab, Argonne, IL 60439 USA. [Jeutter, N.; Felici, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Mironets, O (reprint author), Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Germany. EM hmeyerhm@mpi-halle.mpg.de OI Tusche, Christian/0000-0001-6587-1956 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX H. L. M., C. T., and O. M. thank the ESRF and APS staff for their help and hospitality during their stay in Grenoble and Argonne. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. NR 30 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035406 DI 10.1103/PhysRevB.79.035406 PG 9 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200104 ER PT J AU Morath, CP Seamons, JA Reno, JL Lilly, MP AF Morath, Christian P. Seamons, John A. Reno, John L. Lilly, Michael P. TI Density imbalance effect on the Coulomb drag upturn in an undoped electron-hole bilayer SO PHYSICAL REVIEW B LA English DT Article DE aluminium compounds; electrical resistivity; electron-hole recombination; excitons; field effect transistors; gallium arsenide; III-V semiconductors; multilayers; semiconductor quantum wells ID COUPLED QUANTUM-WELLS; SUPERCONDUCTIVITY; CONDENSATION; SYSTEMS; LAYERS AB A low-temperature upturn of the Coulomb drag resistivity measured in an undoped electron-hole bilayer (uEHBL) device, possibly manifesting from exciton formation or condensation, was recently observed. The effects of density imbalance on this upturn are examined. Measurements of drag as a function of temperature in an uEHBL with a 20-nm-wide Al(0.90)Ga(0.10)As barrier layer at various density imbalances are presented. The results show drag increasing as the density of either two-dimensional system was reduced, both within and above the upturn temperature regime and with a stronger density dependence than weak-coupling theory predicts. A comparison of the data with numerical calculations of drag in the presence of electron-hole pairing fluctuations, which qualitatively reproduce the drag upturn behavior, is also presented. The calculations predict a peak in drag at matched densities, which is not reflected by the measurements. C1 [Morath, Christian P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Morath, CP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cpmorat@sandia.gov RI Morath, Christian/B-9147-2008 OI Morath, Christian/0000-0001-5838-9301 FU U. S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 27 TC 14 Z9 14 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 041305 DI 10.1103/PhysRevB.79.041305 PG 4 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400007 ER PT J AU Moshe, M Kogan, VG Mints, RG AF Moshe, Maayan Kogan, V. G. Mints, R. G. TI Thin-film Josephson junctions with alternating critical current density SO PHYSICAL REVIEW B LA English DT Article ID NONLOCAL INTERACTION; GRAIN-BOUNDARIES; SUPERCONDUCTORS; FLUX; SYMMETRY; SYSTEM; STATE AB We study the field dependence of the maximum current I-m(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. I-m(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density g(c), i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W << Lambda, the Pearl length. The result is used to calculate I-m(H). It is shown that the maxima of I-m(H) proportional to 1/root H and the zeros of I-m(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W-2. The general approach is applied to calculate I-m(H) for a superconducting quantum interference device with two narrow edge-type junctions. If g(c) changes sign periodically or randomly, as it does in grain boundaries of high-T-c materials and superconductor-ferromagnet-superconductor heterostructures, I-m(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions. C1 [Moshe, Maayan; Mints, R. G.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Kogan, V. G.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kogan, V. G.] Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. RP Moshe, M (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. EM mints@post.tau.ac.il RI Mints, Roman/A-5091-2008 FU Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC02-07CH11358] FX The authors are grateful to D. J. Van Harlingen, A. Gurevich, J. Mannhart, and C. Schneider for stimulating discussions. The work of V. G. K. at Ames Laboratory is supported by the Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-07CH11358. NR 35 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024505 DI 10.1103/PhysRevB.79.024505 PG 7 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100082 ER PT J AU Plum, E Zhou, J Dong, J Fedotov, VA Koschny, T Soukoulis, CM Zheludev, NI AF Plum, E. Zhou, J. Dong, J. Fedotov, V. A. Koschny, T. Soukoulis, C. M. Zheludev, N. I. TI Metamaterial with negative index due to chirality SO PHYSICAL REVIEW B LA English DT Article DE chirality; circular dichroism; metamaterials; optical materials; optical multilayers; optical rotation; polarisation; refractive index ID REFRACTION; COMPOSITES; LIGHT AB Recently it has been predicted that materials with exceptionally strong optical activity may also possess a negative refractive index, allowing the realization of superlenses for super-resolution imaging and data storage applications. Here we demonstrate experimentally and numerically that a chirality-induced negative index of refraction is possible. A negative index of refraction due to three-dimensional chirality is demonstrated for a bilayered metamaterial based on pairs of mutually twisted planar metal patterns in parallel planes, which also shows negative electric and magnetic responses and exceptionally strong optical activity and circular dichroism. Multilayered forms of the metamaterial are found to be suitable for use as ultrathin polarization rotators and circular polarizers for practical applications. C1 [Plum, E.; Fedotov, V. A.; Zheludev, N. I.] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England. [Zhou, J.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Dong, J.] Ningbo Univ, Inst Opt Fiber Commun & Network Technol, Ningbo 315211, Peoples R China. [Koschny, T.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion, Greece. [Koschny, T.; Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion, Greece. [Zhou, J.; Dong, J.; Koschny, T.; Soukoulis, C. M.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Zhou, J.; Dong, J.; Koschny, T.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhou, J.] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. RP Plum, E (reprint author), Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England. EM erp@orc.soton.ac.uk RI Zheludev, Nikolay/C-2284-2014; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009; OI Zheludev, Nikolay/0000-0002-1013-6636; Zhou, Jiangfeng/0000-0002-6958-3342; Plum, Eric/0000-0002-1552-1840 NR 18 TC 375 Z9 387 U1 18 U2 146 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035407 DI 10.1103/PhysRevB.79.035407 PG 6 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200105 ER PT J AU Pribulova, Z Klein, T Kacmarcik, J Marcenat, C Konczykowski, M Bud'ko, SL Tillman, M Canfield, PC AF Pribulova, Z. Klein, T. Kacmarcik, J. Marcenat, C. Konczykowski, M. Bud'ko, S. L. Tillman, M. Canfield, P. C. TI Upper and lower critical magnetic fields of superconducting NdFeAsO1-xFx single crystals studied by Hall-probe magnetization and specific heat SO PHYSICAL REVIEW B LA English DT Article DE coherence length; fluctuations in superconductors; high-temperature superconductors; iron compounds; magnetisation; neodymium compounds; penetration depth (superconductivity); specific heat; superconducting critical field ID HIGH-TEMPERATURE SUPERCONDUCTORS AB The upper and lower critical fields have been deduced from specific heat and Hall-probe magnetization measurements in nonoptimally doped Nd(O,F)FeAs single crystals (T-c similar to 32-35 K). The anisotropy of the penetration depth (Gamma(lambda)) is temperature independent and on the order of 4.0 +/- 1.5. Similarly specific-heat data lead to an anisotropy of the coherence length Gamma(xi)similar to 5.5 +/- 1.5 close to T-c. Our results suggest the presence of rather large thermal fluctuations and the existence of a vortex liquid phase over a broad temperature range (similar to 5 K large at 2 T). C1 [Pribulova, Z.; Klein, T.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Pribulova, Z.; Kacmarcik, J.] SAS, IEP, Ctr Low Temp Phys, Kosice 04353, Slovakia. [Pribulova, Z.; Kacmarcik, J.] UPJS, FS, Kosice 04353, Slovakia. [Klein, T.] Inst Univ France, F-38041 Grenoble 9, France. [Klein, T.] Univ Grenoble 1, F-38041 Grenoble 9, France. [Kacmarcik, J.; Marcenat, C.] CEA, SPSMS LATEQS, Inst Nanosci & Cryogenie, F-38054 Grenoble 9, France. [Konczykowski, M.] Ecole Polytech, Solides Irradies Lab, F-91128 Palaiseau, France. [Bud'ko, S. L.; Tillman, M.; Canfield, P. C.] Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. RP Pribulova, Z (reprint author), CNRS, Inst Neel, BP 166, F-38042 Grenoble 9, France. RI Canfield, Paul/H-2698-2014 FU Department of Energy; Basic Energy Sciences [DEAC02-07CH11358]; Slovak Research and Development Agency [LPP-0101-06] FX We would like to thank K. van der Beek for very fruitful discussions and preliminary magneto-optic images. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DEAC02-07CH11358. Z.P. thanks the Slovak Research and Development Agency (Contract No. LPP-0101-06). J. K. thanks the 6th Framework Programme MCATransfer of Knowledge project ExtreM (Project No. MTKD-CT-2005-03002) NR 33 TC 33 Z9 33 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 020508 DI 10.1103/PhysRevB.79.020508 PG 4 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100022 ER PT J AU Ran, Y Wang, F Zhai, H Vishwanath, A Lee, DH AF Ran, Ying Wang, Fa Zhai, Hui Vishwanath, Ashvin Lee, Dung-Hai TI Nodal spin density wave and band topology of the FeAs-based materials SO PHYSICAL REVIEW B LA English DT Article DE band structure; doping; ferromagnetic materials; iron compounds; spin density waves; stoichiometry; tight-binding calculations; type II superconductors ID LAYERED QUATERNARY COMPOUND; SUPERCONDUCTIVITY AB The recently discovered FeAs-based materials exhibit a (pi,0) spin density wave (SDW) in the undoped state, which gives way to superconductivity upon doping. Here we show that due to an interesting topological feature of the band structure, the SDW state cannot acquire a full gap. This is demonstrated within the SDW mean-field theory of both a simplified two-band model and a more realistic five-band model. The positions of the nodes are different in the two models and can be used to detect the validity of each model. C1 [Ran, Ying] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ran, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhai, Hui/H-9496-2012; Wang, Fa/D-3817-2015 OI Zhai, Hui/0000-0001-8118-6027; Wang, Fa/0000-0002-6220-5349 NR 29 TC 162 Z9 162 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014505 DI 10.1103/PhysRevB.79.014505 PG 9 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900093 ER PT J AU Sefat, AS Singh, DJ Jin, R McGuire, MA Sales, BC Mandrus, D AF Sefat, A. S. Singh, D. J. Jin, R. McGuire, M. A. Sales, B. C. Mandrus, D. TI Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; cobalt compounds; critical points; density functional theory; electronic structure; ferromagnetic materials; iron compounds; magnetic transitions; magnetoresistance; materials preparation; nickel compounds; paramagnetic materials; proximity effect (superconductivity); renormalisation; specific heat ID LAYERED SUPERCONDUCTOR AB We report synthesis and single-crystal measurements of magnetic, transport, and thermal properties of single crystalline BaCo2As2 as well as first-principles calculations of the electronic structure and magnetic behavior. These results show that BaCo2As2 is a highly renormalized paramagnet in proximity to a quantum critical point, presumably of ferromagnetic character and that BaFeNiAs2 behaves similarly. These results are discussed in relation to the properties of Ba(Fe,Co)(2)As-2 and Ba(Fe,Ni)(2)As-2, which are superconducting for low Co and Ni concentrations. C1 [Sefat, A. S.; Singh, D. J.; Jin, R.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 NR 33 TC 74 Z9 77 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024512 DI 10.1103/PhysRevB.79.024512 PG 5 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100089 ER PT J AU Soon, A Cui, XY Delley, B Wei, SH Stampfl, C AF Soon, Aloysius Cui, Xiang-Yuan Delley, Bernard Wei, Su-Huai Stampfl, Catherine TI Native defect-induced multifarious magnetism in nonstoichiometric cuprous oxide: First-principles study of bulk and surface properties of Cu2-delta O SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antisite defects; chemical potential; copper compounds; dangling bonds; density functional theory; electrical conductivity; Fermi level; ferromagnetic materials; free energy; interstitials; magnetic moments; surface energy; vacancies (crystal); valence bands ID CARBON-MONOXIDE OXIDATION; 1ST PRINCIPLES; SEMICONDUCTING OXIDES; ELEVATED-TEMPERATURES; ELECTRONIC-STRUCTURE; METHANOL OXIDATION; POINT-DEFECTS; CO OXIDATION; X-RAY; CU2O AB Native defects in cuprous oxide Cu2O are investigated by using first-principles calculations based on density-functional theory. Considering the formation of copper and oxygen vacancies, antisites and interstitials, and a copper split-vacancy complex defect, we analyze the electronic structure and calculate their respective formation energies as a function of the change in Fermi level under both copper-rich and oxygen-rich conditions. We find that, under both growth conditions, the defect with the lowest formation energy is the simple copper vacancy, followed by the copper split-vacancy complex. Both low-energy copper defects produce hole states at the top of the valence band, largely accounting for the p-type conductivity in this material. In spite of the creation of dangling bonds at the nearest-neighbor O atoms, these copper defects are found to be spin neutral. Under oxygen-rich conditions, oxygen interstitials have low formation energies and are found to exhibit a ferromagnetic ordering with a total magnetic moment of 1.38 mu(B) and 1.36 mu(B) at the octahedral and tetrahedral sites, respectively. Considering the possibility of native defect formation at the surface of this material, we investigate the relative stability of both low- and high-index copper-oxide surfaces by comparing their surface free energies as a function of the change in oxygen chemical potential. Using the technique of ab initio atomistic thermodynamics, we then correlate the dependence of the calculated Gibbs free-surface energy as a function of oxygen pressure and temperature via the oxygen chemical potential. We identify two low-energy surface structures, namely, Cu2O(110):CuO and Cu2O(111)-Cu-CUS, with the former marginally more stable for oxygen-rich conditions and the latter more stable for oxygen-lean (or copper-rich) conditions. Cu2O(110):CuO is calculated to be nonmagnetic and Cu2O(111)-Cu-CUS is calculated to be a ferromagnetic ordering, with a total magnetic moment of 0.91 mu(B) per defect. With the results for both bulk and surface native defects, we find that under oxygen-lean conditions, a ferromagnetic behavior could be attributed mainly to copper vacancy formation in the (111) surface of Cu2O while under oxygen-rich conditions, low-energy bulk oxygen interstitial defects induce a ferromagnetic character in the same material. This highlights the complementary role of bulk and surface native magnetic defects under different pressure and temperature conditions, especially at the nanoparticle scale where surface properties dominate. C1 [Delley, Bernard] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Soon, Aloysius; Cui, Xiang-Yuan; Stampfl, Catherine] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RP Soon, A (reprint author), Max Planck Gesell, Fritz Haber Inst, Theory Dept, D-14195 Berlin, Germany. EM soon@fhi-berlin.mpg.de RI Soon, Aloysius/E-3478-2010; Delley, Bernard/E-1336-2014 OI Soon, Aloysius/0000-0002-6273-9324; Delley, Bernard/0000-0002-7020-2869 FU Australian Research Council (ARC); Australian Partnership for Advanced Computing (APAC); Australian Centre for Advanced Computing and Communications (ac3); University of Sydney FX The authors gratefully acknowledge support from the Australian Research Council (ARC), the Australian Partnership for Advanced Computing (APAC), and the Australian Centre for Advanced Computing and Communications (ac3). S. H. W. is grateful to the University of Sydney for support in this work. NR 59 TC 61 Z9 63 U1 5 U2 70 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035205 DI 10.1103/PhysRevB.79.035205 PG 15 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200065 ER PT J AU Sun, T Yao, B Warren, AP Barmak, K Toney, MF Peale, RE Coffey, KR AF Sun, Tik Yao, Bo Warren, Andrew P. Barmak, Katayun Toney, Michael F. Peale, Robert E. Coffey, Kevin R. TI Dominant role of grain boundary scattering in the resistivity of nanometric Cu films SO PHYSICAL REVIEW B LA English DT Article DE annealing; copper; grain boundaries; grain size; metallic thin films; silicon compounds; surface roughness; tantalum ID ELECTRICAL-RESISTIVITY; X-RAY; SURFACES; CONDUCTIVITY; COPPER; MODEL AB The dominant role of grain boundary scattering in the low-temperature resistivity of both SiO(2) and Ta/SiO(2) encapsulated Cu thin films is demonstrated by the experimental variation and quantification of film thickness, roughness, and grain size. The independent variation in film thickness (28-158 nm) and grain size (35-466 nm) is achieved through subambient temperature film deposition followed by annealing. Experimentally measured film resistivities are compared with both surface scattering and grain boundary scattering models for the classical size effect, showing the dominance of the latter. C1 [Sun, Tik; Yao, Bo; Warren, Andrew P.; Coffey, Kevin R.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Barmak, Katayun] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Peale, Robert E.; Coffey, Kevin R.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. RP Sun, T (reprint author), Univ Cent Florida, Adv Mat Proc & Anal Ctr, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. RI Barmak, Katayun/A-9804-2008; Yao, Bo/C-9927-2011 OI Barmak, Katayun/0000-0003-0070-158X; FU Semiconductor Research Corporation; NSF [DMR-0520425] FX We thank S. Roberts and V. Kumar for their assistance with the grain- size data and C. Fredricksen for his assistance with the low- temperature measurements. We gratefully acknowledge the financial support of the Semiconductor Research Corporation, Task No. 1292.008, and our many discussions with colleagues and partial support from the MRSEC program of the NSF under Contract No. DMR-0520425. Portions of this research were carried out at the SSRL, a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. NR 20 TC 49 Z9 50 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 4 AR 041402 DI 10.1103/PhysRevB.79.041402 PG 4 WC Physics, Condensed Matter SC Physics GA 401YB UT WOS:000262978400012 ER PT J AU Szabo, P Pribulova, Z Pristas, G Bud'ko, SL Canfield, PC Samuely, P AF Szabo, P. Pribulova, Z. Pristas, G. Bud'ko, S. L. Canfield, P. C. Samuely, P. TI Evidence for two-gap superconductivity in Ba0.55K0.45Fe2As2 from directional point-contact Andreev-reflection spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; high-temperature superconductors; iron compounds; point contacts; potassium compounds; reflectivity; superconducting energy gap; superconducting transition temperature ID GAPS AB Directional point-contact Andreev-reflection spectroscopy measurements on the Ba0.55K0.45Fe2As2 single crystals are presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction of the crystal. In the latter case only a reduced point-contact conductance around zero bias has been revealed persisting well above T-c and probably related to the structural and magnetic transitions in the system. Within the ab plane two superconducting energy gaps are detected below T-c. Here a reduced conductance above T-c could also be found. The fits of the ab-plane data to the superconducting s-wave two-gap model indicate that the smaller gap has a size below the BCS value while the large gap reveals much higher coupling strength. C1 [Szabo, P.; Pribulova, Z.; Pristas, G.; Samuely, P.] Slovak Acad Sci, Inst Expt Phys, Ctr Low Temp Phys, SK-04001 Kosice, Slovakia. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Szabo, P (reprint author), Slovak Acad Sci, Inst Expt Phys, Ctr Low Temp Phys, Watsonova 47, SK-04001 Kosice, Slovakia. RI Canfield, Paul/H-2698-2014 FU Slovak RD Agency [VVCE-0058-07, APVV-0346-07, LPP-0101-06]; EC Framework Programme [MTKD-CT-2005-030002]; Centre of Excellence of the Slovak Academy of Sciences; U. S. Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX This work was supported by the Slovak R&D Agency under Contracts No. VVCE-0058-07, No. APVV-0346-07, and No. LPP-0101-06, the EC Framework Programme Grant No. MTKD-CT-2005-030002, and by the U. S. Steel Kosice, s.r.o. Centre of Low Temperature Physics is operated as the Centre of Excellence of the Slovak Academy of Sciences. Work at the Ames Laboratory was supported by the U. S. Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. Valuable discussions with I. I. Mazin and N.L. Wang are appreciated. NR 26 TC 82 Z9 82 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 012503 DI 10.1103/PhysRevB.79.012503 PG 4 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900020 ER PT J AU Tanase, M Petford-Long, AK Heinonen, O Buchanan, KS Sort, J Nogues, J AF Tanase, M. Petford-Long, A. K. Heinonen, O. Buchanan, K. S. Sort, J. Nogues, J. TI Magnetization reversal in circularly exchange-biased ferromagnetic disks SO PHYSICAL REVIEW B LA English DT Article DE cobalt alloys; coercive force; ferromagnetic materials; iridium alloys; magnetic anisotropy; magnetic domain walls; magnetic hysteresis; magnetic multilayers; magnetisation reversal; manganese alloys; Permalloy; stochastic processes; vortices ID PERMALLOY ELEMENTS; DATA-STORAGE; SPIN-VALVE; VORTICES; MEMORY; DOTS; MICROSCOPY; STABILITY; NANODISKS AB We investigate the reversal behavior of circularly exchange-biased micron-sized bilayer disks of Permalloy (Py)/IrMn and CoFe/IrMn. A circular exchange bias is induced by imprinting the vortex configuration of the ferromagnetic layer into the IrMn when the disks are cooled in zero external field through the blocking temperature of IrMn. The resulting circular exchange bias has a profound effect on the reversal behavior of the ferromagnetic magnetization. In Py/IrMn disks the reversal takes place via vortex motion only, and the behavior is controlled by the exchange bias; it is reversible over a range of small fields and the vortex maintains a single chirality throughout reversal, determined by the chirality of the exchange bias. In CoFe/IrMn disks the non-negligible magnetocrystalline anisotropy causes a reversal via both vortices and domain walls resulting in a finite coercivity, and the behavior is controlled by microstructure. We verify that circular exchange bias does not give rise to a hysteresis loop shift. It lowers coercivity with respect to the field-cooled case, and in Py/IrMn disks it even causes completely reversible magnetic behavior. In both Py/IrMn and CoFe/IrMn disks, circular exchange bias removes the randomness (i.e., stochastic processes due to thermal activation) inherent in single-layer ferromagnetic disks and causes the magnetic behavior to be reproducible over time. C1 [Tanase, M.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Heinonen, O.] Seagate Technol, Recording Heads Operat, Bloomington, MN 55435 USA. [Buchanan, K. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Sort, J.] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain. [Sort, J.] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain. [Nogues, J.] ICN CSIC, Ctr Invest Nanociencia & Nanotecnol, Bellaterra 08193, Spain. RP Tanase, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Lemont, IL 60439 USA. RI Nogues, Josep/D-7791-2012; Sort, Jordi/F-6582-2014; Petford-Long, Amanda/P-6026-2014; OI Nogues, Josep/0000-0003-4616-1371; Sort, Jordi/0000-0003-1213-3639; Petford-Long, Amanda/0000-0002-3154-8090; Heinonen, Olle/0000-0002-3618-6092; Buchanan, Kristen/0000-0003-0879-0038 FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; Spanish CICYT [MAT2007-66302-C02]; Catalan DGR [2005-SGR-00401]; Institut Catala de Nanotecnologia FX This work was carried out in part at UChicago Argonne, LLC, operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. Partial financial support from the Spanish CICYT (Contract No. MAT2007-66302-C02), the Catalan DGR (Contract No. 2005-SGR-00401), and the Institut Catala de Nanotecnologia is also acknowledged. NR 45 TC 28 Z9 30 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014436 DI 10.1103/PhysRevB.79.014436 PG 9 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900083 ER PT J AU Thielemann, B Ruegg, C Kiefer, K Ronnow, HM Normand, B Bouillot, P Kollath, C Orignac, E Citro, R Giamarchi, T Lauchli, AM Biner, D Kramer, KW Wolff-Fabris, F Zapf, VS Jaime, M Stahn, J Christensen, NB Grenier, B McMorrow, DF Mesot, J AF Thielemann, B. Rueegg, Ch. Kiefer, K. Ronnow, H. M. Normand, B. Bouillot, P. Kollath, C. Orignac, E. Citro, R. Giamarchi, T. Laeuchli, A. M. Biner, D. Kraemer, K. W. Wolff-Fabris, F. Zapf, V. S. Jaime, M. Stahn, J. Christensen, N. B. Grenier, B. McMorrow, D. F. Mesot, J. TI Field-controlled magnetic order in the quantum spin-ladder system (Hpip)(2)CuBr4 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; copper compounds; critical exponents; fluctuations; Luttinger liquid; magnetic moments; magnetic structure; magnetisation; magnetocaloric effects; Monte Carlo methods; Neel temperature; neutron diffraction; organic compounds; X-Y model ID CRITICALITY; DYNAMICS; CHAINS AB Neutron diffraction is used to investigate the field-induced, antiferromagnetically ordered state in the two-leg spin-ladder material (Hpip)(2)CuBr4. This "classical" phase, a consequence of weak interladder coupling, is nevertheless highly unconventional: its properties are influenced strongly by the spin Luttinger-liquid state of the ladder subunits. We determine directly the order parameter (transverse magnetization), the ordering temperature, the spin structure, and the critical exponents around the transition. We introduce a minimal microscopic model for the interladder coupling and calculate the quantum fluctuation corrections to the mean-field interaction. C1 [Thielemann, B.; Stahn, J.; Christensen, N. B.; Mesot, J.] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Thielemann, B.; Stahn, J.; Christensen, N. B.; Mesot, J.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Rueegg, Ch.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Rueegg, Ch.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Kiefer, K.] Helmholtz Ctr Berlin Mat & Energy, BENSC, D-14109 Berlin, Germany. [Ronnow, H. M.; Mesot, J.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland. [Normand, B.] ETH Honggerberg, CH-8093 Zurich, Switzerland. [Bouillot, P.; Giamarchi, T.] Univ Geneva, DPMC MaNEP, CH-1211 Geneva, Switzerland. [Kollath, C.] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Orignac, E.] CNRS, UMR 5672, LPENSL, F-69364 Lyon 07, France. [Citro, R.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [Citro, R.] Univ Salerno, CNISM, I-84100 Salerno, Italy. [Laeuchli, A. M.] Inst Romand Rech Numer Phys Mat IRRMA, CH-1015 Lausanne, Switzerland. [Biner, D.; Kraemer, K. W.] Univ Bern, Dept Chem, CH-3000 Bern 9, Switzerland. [Wolff-Fabris, F.; Zapf, V. S.; Jaime, M.] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA. [Christensen, N. B.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Grenier, B.] CEA, INAC SPSMS MDN, F-38054 Grenoble, France. [Grenier, B.] Univ Grenoble 1, F-38054 Grenoble, France. RP Thielemann, B (reprint author), Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. RI Lauchli, Andreas/B-1930-2008; Ronnow, Henrik/A-4953-2009; McMorrow, Desmond/C-2655-2008; Ruegg, Christian/A-3476-2012; Citro, Roberta/I-1596-2012; Kiefer, Klaus/J-3544-2013; Kramer, Karl/J-5021-2013; Zapf, Vivien/K-5645-2013; Normand, Bruce/L-5245-2013; Giamarchi, Thierry/B-5735-2008; Jaime, Marcelo/F-3791-2015; Christensen, Niels/A-3947-2012 OI Orignac, Edmond/0000-0002-3405-9508; Lauchli, Andreas/0000-0002-2272-2691; Ronnow, Henrik/0000-0002-8832-8865; McMorrow, Desmond/0000-0002-4947-7788; Ruegg, Christian/0000-0003-0139-7786; Kiefer, Klaus/0000-0002-5178-0495; Kramer, Karl/0000-0001-5524-7703; Zapf, Vivien/0000-0002-8375-4515; Giamarchi, Thierry/0000-0001-7409-5071; Jaime, Marcelo/0000-0001-5360-5220; Christensen, Niels/0000-0001-6443-2142 FU Swiss National Science Foundation through the NCCR MaNEP; Royal Society; EPSRC; RTRA network "Triangle de la Physique."; NSF; DOE; State of Florida; Swiss spallation neutron source; Paul Scherrer Institute, Villigen, Switzerland FX We thank C. Berthier and M. Klanjsek for valuable discussions. This project was supported by the Swiss National Science Foundation through the NCCR MaNEP and Division II, by the Royal Society, the EPSRC, and the RTRA network "Triangle de la Physique." The NHMFL is supported by the NSF, the DOE, and the State of Florida. The work is based in part on experiments performed at the Swiss spallation neutron source, SINQ, at the Paul Scherrer Institute, Villigen, Switzerland. NR 25 TC 48 Z9 48 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 020408 DI 10.1103/PhysRevB.79.020408 PG 4 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100013 ER PT J AU Tyson, TA Chen, Z Jie, Q Li, Q Tu, JJ AF Tyson, T. A. Chen, Z. Jie, Q. Li, Q. Tu, J. J. TI Local structure of thermoelectric Ca3Co4O9 SO PHYSICAL REVIEW B LA English DT Article DE bonds (chemical); calcium compounds; density functional theory; thermal conductivity; thermoelectricity; X-ray absorption spectra ID RAY-ABSORPTION SPECTRA; SPIN-DENSITY WAVES; OXYGEN NONSTOICHIOMETRY; LAYERED COBALTITE; FINE-STRUCTURE; 1ST-PRINCIPLES; DYNAMICS; OXIDES AB We have combined temperature-dependent local structural measurements with first-principles density-functional calculations to develop a three-dimensional local structure model of the misfit system [Ca2CoO3][CoO2](1.61) (referred to as Ca3Co4O9) which has a rocksalt structure stacked incommensurately on a hexagonal CoO2 lattice. The local structural measurements reveal a low coordination of Co(2)-O bonds in the rocksalt layer with large static structural disorder. The temperature dependence of the Co(1)-Co(1) bond correlations in the CoO2 layer is found to be normal above similar to 75 K and has very small static disorder. An anomalous enhancement in the Co(1)-Co(1) correlations occurs at the onset of long-range magnetic order. Density-functional computations suggest that the reduction in the coordination of Co(2) is due to the formation of chains of Co(2)O-x in the a-b plane linked to the Ca-O layers by c-axis Co(2)-O bonds. The reduced dimensionality introduced by the chainlike structure in the rocksalt layer and high atomic order in the CoO2 layer may enable low thermal conductivity and high electrical conductivity in the respective layers. C1 [Tyson, T. A.; Chen, Z.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Jie, Q.; Li, Q.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Tu, J. J.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. RI Jie, Qing/H-3780-2011; chen, zhiqiang/C-9134-2013; Jie, Qing/N-8673-2013 FU U. S. Department of Energy Office of Basic Energy Sciences (DOE-BES) [DE-FG02-07ER46402, DE-AC-02-98CH10886, DE-AC02-05CH11231] FX This work was supported by the U. S. Department of Energy Office of Basic Energy Sciences (DOE-BES) under Grant No. DE-FG02-07ER46402 (T.A.T. and Z.C.) and by DOE-BES under Grant No. DE-AC-02-98CH10886 (J. Q. and Q. L.). We thank C. D. Ling of the University of Sydney for providing us with detailed synchrotron diffraction derived structural parameters for comparison with our x-ray absorption measurements and for providing insightful details on the modulated structure. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. DOE under Contract No. DE-AC02-05CH11231. NR 36 TC 16 Z9 16 U1 5 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 024109 DI 10.1103/PhysRevB.79.024109 PG 7 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100034 ER PT J AU Wagner, MR Bartel, TP Kirste, R Hoffmann, A Sann, J Lautenschlager, S Meyer, BK Kisielowski, C AF Wagner, Markus R. Bartel, Til P. Kirste, Ronny Hoffmann, Axel Sann, Joachim Lautenschlaeger, Stefan Meyer, Bruno K. Kisielowski, C. TI Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition SO PHYSICAL REVIEW B LA English DT Article DE chemical vapour deposition; deformation; diffusion; epitaxial growth; excitons; II-VI semiconductors; impurities; luminescence; phonons; Raman spectra; semiconductor epitaxial layers; semiconductor growth; stoichiometry; transmission electron microscopy; wide band gap semiconductors; X-ray diffraction; zinc compounds ID MOLECULAR-BEAM EPITAXY; SINGLE-CRYSTAL; VALENCE-BAND; ZINC OXIDE; EXCITON; PHOTOLUMINESCENCE; DEPENDENCE; EPILAYERS; FIELDS; FILMS AB The influence of the substrate polarity (Zn polar or O polar) on the structural and optical properties of homoepitaxial ZnO epilayers grown by chemical vapor deposition is investigated. The polarity of the epilayer is controlled by the substrate polarity as shown by high-resolution transmission electron microscopy (TEM) imaging. Changes in stoichiometry in the epilayer are studied by quantitative TEM analysis. A small compressive strain of epsilon(cc)=3x10(-4) is observed in both epilayers and x-ray diffraction measurements indicate a superior structural quality of the epilayers compared to the substrate. Cross-sectional Raman spectroscopy also demonstrates the superior quality of the epilayers, although high strain is present within the substrates. The phonon deformation-potential parameters of the strain sensitive E-2(high) Raman mode are determined to a=-730 cm(-1) and b=-1000 cm(-1). Differences in the excitonic luminescence including the appearance of different emission lines and an increased full width at half maximum in O-face epilayers are observed. It is suggested that the impurity diffusion from the substrate to the layer is affected by the substrate surface polarity with lower impurity concentrations in the Zn-polar film compared to the O-polar epilayer. C1 [Wagner, Markus R.; Bartel, Til P.; Kirste, Ronny; Hoffmann, Axel] Tech Univ Berlin, Inst Solid State Phys, D-10623 Berlin, Germany. [Sann, Joachim; Lautenschlaeger, Stefan; Meyer, Bruno K.] Univ Giessen, Inst Phys 1, D-35592 Giessen, Germany. [Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Div Mat Sci, Berkeley, CA 94720 USA. RP Wagner, MR (reprint author), Tech Univ Berlin, Inst Solid State Phys, Hardenbergstr 36, D-10623 Berlin, Germany. EM markus.wagner@tu-berlin.de RI Bartel, Til/C-1098-2008; Wagner, Markus/A-3582-2009 OI Wagner, Markus/0000-0002-7367-5629 FU DFG [SFB 296, SFB 787]; Ernst-von-Siemens Foundation; German National Academic Foundation; DOE [DE-AC02-05CH11231.] FX Parts of this work were supported by the DFG within Grants No. SFB 296 and No. SFB 787. M. R. W. acknowledges the Ernst-von-Siemens Foundation for support. T. P. B. acknowledges the German National Academic Foundation for support. HRTEM was conducted at NCEM supported by DOE under Contract No. DE-AC02-05CH11231. NR 44 TC 34 Z9 35 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 035307 DI 10.1103/PhysRevB.79.035307 PG 7 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200075 ER PT J AU Wang, LM Bai, J Lechtken, A Huang, W Schooss, D Kappes, MM Zeng, XC Wang, LS AF Wang, Lei-Ming Bai, Jaeil Lechtken, Anne Huang, Wei Schooss, Detlef Kappes, Manfred M. Zeng, Xiao Cheng Wang, Lai-Sheng TI Magnetic doping of the golden cage cluster M@Au-16(-) (M=Fe,Co,Ni) SO PHYSICAL REVIEW B LA English DT Article DE binding energy; cobalt alloys; density functional theory; doping; electron diffraction; electron traps; energy gap; gold alloys; iron alloys; metal clusters; nickel alloys; photoelectron spectroscopy; spin density waves ID PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; SILICON CLUSTERS; NICKEL CLUSTERS; TRANSITION; ANIONS; IMPURITIES; METALS; COBALT; OPTIMIZATION AB Structural, electronic, and magnetic properties of the golden cage doped with a transition-metal atom, MAu16- (M=Fe,Co,Ni), are investigated using trapped ion electron diffraction, photoelectron spectroscopy, and density-functional theory. The best agreement to experiment is obtained for endohedral M@Au-16(-) structures but with considerable distortions to the parent Au-16(-) cage. Fe@Au-16(-) and Co@Au-16(-) are found to have similar structures with C-2 symmetry while a C-1 structure is obtained for Ni@Au-16(-). The 4s electrons are observed to transfer to the Au-16 cage, whereas atomiclike magnetism due to the unpaired 3d electrons is retained for all the doped clusters. C1 [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Bai, Jaeil; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Bai, Jaeil; Zeng, Xiao Cheng] Univ Nebraska, Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Kappes, Manfred M.] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany. RP Wang, LM (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM detlef.schooss@int.fzk.de; xczeng@phase2.unl.edu; ls.wang@pnl.gov RI Wang, Leiming/A-3937-2011; Bai, Jaeil /E-7909-2011; Schooss, Detlef/O-9060-2014 OI Bai, Jaeil /0000-0002-9647-6382; Schooss, Detlef/0000-0003-3475-4436 FU NSF [CHE-0749496]; Nebraska Research Initiative; Forschungszentrum Karlsruhe; DFG FX The PES work was supported by NSF (Grant No. CHE-0749496) and performed at EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle. The theoretical work was supported by grants from NSF (CHE, CMMI, MRSEC), and the Nebraska Research Initiative. The TIED work was supported by the Forschungszentrum Karlsruhe and the DFG, as administered through the Center for Functional Nanostructures. NR 42 TC 66 Z9 69 U1 5 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 3 AR 033413 DI 10.1103/PhysRevB.79.033413 PG 4 WC Physics, Condensed Matter SC Physics GA 401YA UT WOS:000262978200035 ER PT J AU Warshavsky, VB Song, X AF Warshavsky, Vadim B. Song, Xueyu TI Phase diagrams of binary alloys calculated from a density functional theory SO PHYSICAL REVIEW B LA English DT Article DE copper alloys; free energy; gold alloys; liquid metals; liquid theory; melting; perturbation theory; phase diagrams ID FUNDAMENTAL-MEASURE-THEORY; HARD-SPHERE MIXTURES; GIBBS-DUHEM INTEGRATION; EMBEDDED-ATOM METHOD; PERTURBATION-THEORY; ELASTIC-CONSTANTS; HIGH-TEMPERATURES; FREE-ENERGY; LIQUID TRANSITION; FLUID MIXTURES AB Phase behaviors of binary alloys with an embedded atom model potential are investigated using the thermodynamic perturbation theory. The free energies of the liquid and solid phases are computed using the fundamental measure density functional theory and accurate approximations to the hard-sphere mixture correlation functions. The method is applied to calculate the Au-Cu alloy phase diagram. To improve the accuracy of the computed phase diagram, we developed a systematic approach to optimize the model potential of Au-Cu by adjusting the melting temperature of the pure Au to its experimental one. With such an optimized potential the computed Au-Cu alloy phase diagram is in good agreement with the experimental one for the whole composition range. C1 [Warshavsky, Vadim B.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Warshavsky, VB (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, (U.S.) Department of Energy [W-7405-ENG-82]; PRF [46451AC6] FX This research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, (U.S.) Department of Energy under Contract No. W-7405-ENG-82 with Iowa State University (V.B.W. and X.S.) and by a PRF Grant No. 46451AC6 (X.S.). NR 48 TC 10 Z9 11 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014101 DI 10.1103/PhysRevB.79.014101 PG 7 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900025 ER PT J AU Wu, J Choi, J Won, C Wu, YZ Scholl, A Doran, A Hwang, C Qiu, ZQ AF Wu, J. Choi, J. Won, C. Wu, Y. Z. Scholl, A. Doran, A. Hwang, Chanyong Qiu, Z. Q. TI Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001) SO PHYSICAL REVIEW B LA English DT Article DE copper; ferromagnetic materials; iron; magnetic bubbles; magnetic multilayers; magnetic thin films; magnetic transitions; metallic thin films; nickel; photoelectron microscopy; spin dynamics ID ULTRATHIN FILMS; FERROMAGNETISM; SANDWICHES; PATTERNS AB Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition. C1 [Wu, J.; Choi, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Wu, Y. Z.] Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China. [Scholl, A.; Doran, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hwang, Chanyong] Korea Res Inst Stand & Sci, Adv Technol Div, Taejon 305340, South Korea. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Scholl, Andreas/K-4876-2012; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation [DMR-0803305]; U.S. Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [2006CB921300]; ICQS Chinese Academy of Sciences; KICOS through Global Research Laboratory project FX This work was supported by National Science Foundation under Grant No. DMR-0803305, U.S. Department of Energy under Grant No. DE-AC02-05CH11231, National Natural Science Foundation of China 973-Project under Grant No. 2006CB921300, ICQS Chinese Academy of Sciences, and KICOS through Global Research Laboratory project. NR 25 TC 7 Z9 7 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014429 DI 10.1103/PhysRevB.79.014429 PG 6 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900076 ER PT J AU Xiang, T Luo, HG Lu, DH Shen, KM Shen, ZX AF Xiang, T. Luo, H. G. Lu, D. H. Shen, K. M. Shen, Z. X. TI Intrinsic electron and hole bands in electron-doped cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article DE fluctuations in superconductors; high-temperature superconductors; Hubbard model; superconducting energy gap AB We propose that the upper Hubbard band (electronlike) and the Zhang-Rice singlet band (holelike) are two essential components in describing low-energy excitations of electron-doped cuprate superconductors. We find that the gap between these two bands is significantly smaller than the charge-transfer gap measured by optics and is further reduced upon doping. This indicates that the charge fluctuation is strong and the system is in the intermediate correlation regime. A two-band model is derived. In the limit that the intraband and interband hopping integrals are equal to each other, this model is equivalent to the unconstrained t-J model with on-site Coulomb repulsions. C1 [Xiang, T.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Xiang, T.; Luo, H. G.] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. [Luo, H. G.] Lanzhou Univ, Ctr Interdisciplinary Studies, Lanzhou 730000, Peoples R China. [Lu, D. H.; Shen, Z. X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Lu, D. H.; Shen, Z. X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Shen, K. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. RP Xiang, T (reprint author), Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China. RI Luo, Hong-Gang/A-5842-2013 OI Luo, Hong-Gang/0000-0003-2602-4070 FU NSFC; Office of Science, Division of Materials Science, DOE [DE-AC02-76SF00515] FX We wish to thank N. P. Armitage and N. L. Wang for providing the ARPES and infrared conductivity data shown in Fig. 1. Support from the NSFC and the national program for basic research of China is acknowledged. The Stanford work was supported by Office of Science, Division of Materials Science, DOE under Contract No. DE-AC02-76SF00515. NR 26 TC 21 Z9 21 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 014524 DI 10.1103/PhysRevB.79.014524 PG 5 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900112 ER PT J AU Xu, J Liu, CT Miller, MK Chen, HM AF Xu, Jun Liu, C. T. Miller, M. K. Chen, Hongmin TI Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE radiation effects; steel; vacancies (crystal) ID 3-DIMENSIONAL ATOM-PROBE; ION IRRADIATION; ANNIHILATION; ALLOYS; DEFECTS; PARTICLES; STABILITY; EVOLUTION; IRON AB Nanocluster-strengthened ferritic alloys are promising as structural materials because of their excellent high-temperature strength and radiation-damage resistance. Recently, Fu [Phys. Rev. Lett. 99, 225502 (2007)] predicted that vacancies play an essential role in the formation and stabilization of nanoclusters in these materials. Positron-lifetime spectroscopy has been used to test this theoretical prediction in a nanocluster-strengthened Fe-based alloy. Nanoclusters (2-4 nm in diameter) containing Ti, Y, and O have been observed in a mechanically alloyed ferritic steel by atom-probe tomography. Vacancy clusters containing four to six vacancies have also been found in this material. In contrast, no vacancy clusters were detected in similar alloys containing no nanoclusters. These results indicate that vacancies are a vital component of the nanoclusters in these alloys. C1 [Xu, Jun; Liu, C. T.; Miller, M. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Liu, C. T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Chen, Hongmin] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. RP Xu, J (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM xuj2@ornl.gov NR 21 TC 25 Z9 27 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 020204 DI 10.1103/PhysRevB.79.020204 PG 4 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100004 ER PT J AU Yu, W Aczel, AA Williams, TJ Bud'ko, SL Ni, N Canfield, PC Luke, GM AF Yu, W. Aczel, A. A. Williams, T. J. Bud'ko, S. L. Ni, N. Canfield, P. C. Luke, G. M. TI Absence of superconductivity in single-phase CaFe2As2 under hydrostatic pressure SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; high-pressure effects; iron compounds; magnetic susceptibility; solid-state phase transformations; superconducting transition temperature ID 43 K; LAO1-XFXFEAS; COMPOUND AB Recent high-pressure studies found that structural/magnetic phase transitions are very pressure sensitive in CaFe2As2 and that superconductivity can be achieved under modest pressure, although details of the sharpness and temperature of transitions vary between liquid medium and gas medium measurements. To better understand this issue, we performed high-pressure susceptibility and transport studies on CaFe2As2, using helium as the pressure medium. The signatures of the transitions to the low-temperature orthorhombic and collapsed tetragonal phases remained exceptionally sharp, and no signature of bulk superconductivity was found under our hydrostatic conditions. Our results suggest that superconductivity in CaFe2As2 is associated with a low-temperature, multicrystallographic-phase sample that is the result of nonhydrostatic conditions associated with the combination of a first-order structural phase transition and frozen liquid media. C1 [Yu, W.; Aczel, A. A.; Williams, T. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Yu, W.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Yu, W (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM wqyu_phy@ruc.edu.cn RI Williams, Travis/A-5061-2016; 石, 源/D-5929-2012; Yu, Weiqiang/E-9722-2012; ruc, phy/E-4170-2012; Canfield, Paul/H-2698-2014; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016 OI Williams, Travis/0000-0003-3212-2726; Luke, Graeme/0000-0003-4762-1173; Aczel, Adam/0000-0003-1964-1943 FU NSERC; CIFAR; Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358]; National Basic Research Program of China [2007CB925001] FX Research at McMaster University is supported by NSERC and CIFAR. Work at Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. W. Y. also acknowledges support from the National Basic Research Program of China under Contract No. 2007CB925001. We appreciate useful discussions with Alan Goldman regarding Ref. 18. NR 20 TC 120 Z9 120 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 2 AR 020511 DI 10.1103/PhysRevB.79.020511 PG 4 WC Physics, Condensed Matter SC Physics GA 401XZ UT WOS:000262978100025 ER PT J AU Zhang, LJ Singh, DJ Du, MH AF Zhang, Lijun Singh, D. J. Du, M. H. TI Density functional study of excess Fe in Fe1+xTe: Magnetism and doping SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; doping; electronic structure; Fermi level; iron compounds; superconducting materials; tellurium compounds ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SUPERCONDUCTIVITY AB The electronic and magnetic properties of the excess Fe in iron telluride Fe(1+x)Te are studied by density functional calculations. We find that the excess Fe occurs with valence near Fe+ and thus provides electron doping of approximately one carrier per Fe, and furthermore that the excess Fe is strongly magnetic. Thus it will provide local moments that interact with the plane Fe magnetism, and these are expected to persist in phases where the magnetism of the planes is destroyed, for example, by pressure or doping. The results are discussed in the context of superconductivity. C1 [Zhang, Lijun; Singh, D. J.; Du, M. H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions with A. Subedi, I. I. Mazin, D. Mandrus, and B. C. Sales. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 43 TC 123 Z9 124 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2009 VL 79 IS 1 AR 012506 DI 10.1103/PhysRevB.79.012506 PG 4 WC Physics, Condensed Matter SC Physics GA 401XX UT WOS:000262977900023 ER PT J AU Bosted, P Dunne, J Lee, CA Junnarkar, P Strikman, M Arrington, J Asaturyan, R Benmokhtar, F Christy, ME Chudakov, E Clasie, B Connell, SH Dalton, MM Daniel, A Day, D Dutta, D Ent, R Fomin, N Gaskell, D Horn, T Kalantarians, N Keppel, CE Kiselev, D Meekins, DG Mkrtchyan, H Navasardyan, T Roche, J Rodriguez, VM Seely, J Slifer, K Tajima, S Testa, G Trojer, R Wesselmann, FR Wood, SA Zheng, XC AF Bosted, P. Dunne, J. Lee, C. A. Junnarkar, P. Strikman, M. Arrington, J. Asaturyan, R. Benmokhtar, F. Christy, M. E. Chudakov, E. Clasie, B. Connell, S. H. Dalton, M. M. Daniel, A. Day, D. Dutta, D. Ent, R. Fomin, N. Gaskell, D. Horn, T. Kalantarians, N. Keppel, C. E. Kiselev, D. Meekins, D. G. Mkrtchyan, H. Navasardyan, T. Roche, J. Rodriguez, V. M. Seely, J. Slifer, K. Tajima, S. Testa, G. Trojer, Roman Wesselmann, F. R. Wood, S. A. Zheng, X. C. TI Search for sub-threshold photoproduction of J/psi mesons SO PHYSICAL REVIEW C LA English DT Article ID SPECTRAL-FUNCTION; ANTIPROTON PRODUCTION; COLLISIONS; MOMENTUM; NUCLEUS; CHARM AB A search was made for sub-threshold J/psi production from a carbon target by using a mixed real and quasireal Bremsstrahlung photon beam with an endpoint energy of 5.76 GeV. No events were observed, which is consistent with predictions under the assumption of quasifree production. The results place limits on exotic mechanisms that strongly enhance quasifree production. C1 [Bosted, P.; Chudakov, E.; Ent, R.; Gaskell, D.; Horn, T.; Meekins, D. G.; Roche, J.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Dunne, J.; Junnarkar, P.; Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Lee, C. A.; Dalton, M. M.] Univ Witwatersrand, Johannesburg, South Africa. [Strikman, M.] Univ Penn, University Pk, PA 16802 USA. [Arrington, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Benmokhtar, F.; Horn, T.] Univ Maryland, College Pk, MD 20742 USA. [Christy, M. E.; Keppel, C. E.] Hampton Univ, Hampton, VA 23668 USA. [Clasie, B.; Seely, J.] MIT, Cambridge, MA 02139 USA. [Connell, S. H.] Univ Johannesburg, Johannesburg, South Africa. [Daniel, A.; Kalantarians, N.; Rodriguez, V. M.] Univ Houston, Houston, TX 77204 USA. [Day, D.; Fomin, N.; Slifer, K.; Tajima, S.; Zheng, X. C.] Univ Virginia, Charlottesville, VA 22904 USA. [Rodriguez, V. M.] Univ Metropolitana, San Juan, PR 00928 USA. [Testa, G.; Trojer, Roman] Univ Basel, Basel, Switzerland. [Kiselev, D.] Paul Scherrer Inst, Villigen, Switzerland. [Slifer, K.] Univ New Hampshire, Durham, NH 03824 USA. [Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA 23504 USA. RP Bosted, P (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Arrington, John/D-1116-2012; Day, Donal/C-5020-2015; Connell, Simon/F-2962-2015; Dalton, Mark/B-5380-2016 OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934; Connell, Simon/0000-0001-6000-7245; Dalton, Mark/0000-0001-9204-7559 FU National Research Foundation; US Department of Energy [DEAC05-84ER40150] FX The authors wish to thank J. M. Laget for theoretical support. This work is supported in part by research grants from the US Department of Energy and the US National Science Foundation. The South African group acknowledges the support of the National Research Foundation. The Southeastern Universities Research Asso operates the Thomas Jefferson National Accelerator Facility under the US Department of Energy Contract No. DEAC05-84ER40150. NR 21 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 015209 DI 10.1103/PhysRevC.79.015209 PG 7 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900062 ER PT J AU Budzanowski, A Chatterjee, A Hawranek, P Jahn, R Jain, BK Jha, V Kailas, S Kilian, K Kliczewski, S Kirillov, D Kirillov, D Kolev, D Kravcikova, M Lesiak, M Lieb, J Liu, LC Machner, H Magiera, A Maier, R Martinska, G Nedev, S Piskunov, N Protic, D Ritman, J von Rossen, P Roy, BJ Shukla, P Sitnik, I Siudak, R Tsenov, R Urban, J Vankova, G AF Budzanowski, A. Chatterjee, A. Hawranek, P. Jahn, R. Jain, B. K. Jha, V. Kailas, S. Kilian, K. Kliczewski, S. Kirillov, Da. Kirillov, Di. Kolev, D. Kravcikova, M. Lesiak, M. Lieb, J. Liu, L. C. Machner, H. Magiera, A. Maier, R. Martinska, G. Nedev, S. Piskunov, N. Protic, D. Ritman, J. von Rossen, P. Roy, B. J. Shukla, P. Sitnik, I. Siudak, R. Tsenov, R. Urban, J. Vankova, G. CA COSY-GEM Collaboration TI Search for eta-mesic nuclei in a recoil-free transfer reaction SO PHYSICAL REVIEW C LA English DT Article ID BOUND-STATES AB We have studied the reaction p + (27)Al -> (3)He + p + pi(-) + X at recoil-free kinematics. An eta meson possibly produced in this reaction would be thus almost at rest in the laboratory system and could therefore be bound with high probability, if nuclear eta states exist. The decay of such a state through the N*(1535) resonance would lead to a proton-pi(-) pair emitted in opposite directions. For these conditions we find some indication of such a bound state. An upper limit of approximate to 0.5 nb is found. C1 [Kilian, K.; Kirillov, Da.; Lesiak, M.; Machner, H.; Maier, R.; Protic, D.; Ritman, J.; von Rossen, P.; Vankova, G.] Forschungszentrum Julich, Inst Kernphys, D-5170 Julich, Germany. [Budzanowski, A.; Kliczewski, S.; Siudak, R.] PAN, Inst Nucl Phys, Krakow, Poland. [Chatterjee, A.; Jha, V.; Kailas, S.; Roy, B. J.; Shukla, P.] BARC, Div Nucl Phys, Bombay, Maharashtra, India. [Hawranek, P.; Lesiak, M.; Magiera, A.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Jahn, R.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Jain, B. K.] Mumbai Univ, Bombay, Maharashtra, India. [Kirillov, Da.; Machner, H.] Univ Duisburg Essen, Fachbereich Phys, Duisburg, Germany. [Kirillov, Di.; Piskunov, N.; Sitnik, I.] Joint Inst Nucl Res Dubna, Lab High Energies, Dubna, Russia. [Kolev, D.; Tsenov, R.; Vankova, G.] Univ Sofia, Fac Phys, BU-1126 Sofia, Bulgaria. [Kravcikova, M.] Tech Univ, Kosice, Slovakia. [Lieb, J.] George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. [Liu, L. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Martinska, G.; Urban, J.] Safarik Univ, Kosice, Slovakia. [Nedev, S.] Univ Chem Technol & Met, BU-1756 Sofia, Bulgaria. RP Machner, H (reprint author), Forschungszentrum Julich, Inst Kernphys, D-5170 Julich, Germany. EM h.machner@fz-juelich.de FU European community [RII3-CT-2004-506078]; Indo-German bilateral agreement; Research Center Julich (FFE); GAS Slovakia [1/4010/07] FX Discussions with B. Kamys and C. Wilkin are gratefully acknowledged. We appreciate the support received from the European community research infrastructure activity under the FP6 "Structuring the European Research Area" program under Contract No. RII3-CT-2004-506078, from the Indo-German bilateral agreement, from the Research Center Julich (FFE), and from GAS Slovakia (1/4010/07). NR 19 TC 50 Z9 50 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 012201 DI 10.1103/PhysRevC.79.012201 PG 4 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900006 ER PT J AU Cole, JD Drigert, MW AF Cole, J. D. Drigert, M. W. TI Observation of resonances in Pu-239 (n,alpha) reactions SO PHYSICAL REVIEW C LA English DT Article ID TERNARY FISSION; EMISSION; U-233 AB A measurement performed at the Argonne National Laboratory (ANL) Intense Pulsed Neutron Source (IPNS) facility studied the incident neutron energy-dependent charged particle and fission fragment yields from a Pu-239 target. The analysis of the data showed a set of previously unknown resonances identified as arising from a (n, alpha) reaction channel. These resonances differ from the known fission and radiative capture resonances in Pu-239 and do not correspond to any known capture resonances from structural material around the Pu-239 target assembly. The new resonances decay uniquely via alpha-emission, and represent new states not explained by current models. The yield of the observed (n, alpha) reaction channel is 60 +/- 5 times as strong as the fission channel, as determined from the high-energy alpha-particle and fission fragment peak area observed in the Si detectors. C1 [Cole, J. D.; Drigert, M. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cole, JD (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. FU US Department of Energy [DE-AC07-05ID14517] FX This manuscript has been authored under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517 with the US Department of Energy. NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 017603 DI 10.1103/PhysRevC.79.017603 PG 3 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900073 ER PT J AU Dragojevic, I Gregorich, KE Dullmann, CE Dvorak, J Ellison, PA Gates, JM Nelson, SL Stavsetra, L Nitsche, H AF Dragojevic, I. Gregorich, K. E. Duellmann, Ch. E. Dvorak, J. Ellison, P. A. Gates, J. M. Nelson, S. L. Stavsetra, L. Nitsche, H. TI New isotope (263)Hs SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR PROPERTIES; ELEMENTS AB A new isotope of Hs was produced in the reaction Pb-208(Fe-56, n)(263)Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope (263)Hs. The measured cross section was 21(-8.4)(+13) pb at 276.4 MeV lab frame center-of-target beam energy. (263)Hs decays with a half-life of 0.74(-0.21)(+0.48) ms by alpha-decay and the measured a- particle energies are 10.57 +/- 0.06, 10.72 +/- 0.06, and 10.89 +/- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)]. C1 [Dragojevic, I.; Ellison, P. A.; Gates, J. M.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Dragojevic, I.; Gregorich, K. E.; Dvorak, J.; Ellison, P. A.; Gates, J. M.; Nelson, S. L.; Stavsetra, L.; Nitsche, H.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Duellmann, Ch. E.] Schwerionenforsch GmbH, GSI Helmholtzzentrum, Kernchem, D-64291 Darmstadt, Germany. RP Dragojevic, I (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. FU Director, Office of High Energy; US Department of Energy [DE-AC03-76SF000988.] FX The authors would like to thank the operations and the ECR ion source staff of the 88-Inch Cyclotron for help and support during the experiment. The authors also wish to thank W. J. Swiatecki for his predictions and helpful discussions, and the staff of the GSI target lab for providing some of the targets used in these experiments. In addition, the authors would like to thank M. A. Garcia and M. N. Ali for the help during the experiment. This work was supported in part by the Director, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy, under contract DE-AC03-76SF000988. NR 27 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 011602 DI 10.1103/PhysRevC.79.011602 PG 4 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900004 ER PT J AU Eichmann, G Cloet, IC Alkofer, R Krassnigg, A Roberts, CD AF Eichmann, G. Cloet, I. C. Alkofer, R. Krassnigg, A. Roberts, C. D. TI Toward unifying the description of meson and baryon properties SO PHYSICAL REVIEW C LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; LADDER APPROXIMATION; NUCLEON; QCD; MASSES; EQUATIONS; PHYSICS; THEOREM; DYSON AB We present a Poincare covariant Faddeev equation, which enables the simultaneous prediction of meson and baryon observables using the leading order in a truncation of the Dyson-Schwinger equations that can systematically be improved. The solution describes a nucleon's dressed-quark core. The evolution of the nucleon mass with current-quark mass is discussed. A nucleon-photon current, which can produce nucleon form factors with realistic Q(2) evolution, is described. Axial-vector diquark correlations lead to a neutron Dirac form factor that is negative, with r(1)(nu) > r(1)(nd). The proton electric-magnetic form factor ratio falls with increasing Q(2). C1 [Eichmann, G.; Cloet, I. C.; Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Eichmann, G.; Alkofer, R.; Krassnigg, A.] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria. RP Eichmann, G (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. OI Eichmann, Gernot/0000-0002-0546-2533; Roberts, Craig/0000-0002-2937-1361 FU Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357]; Austrian Science Fund [W1203, P20496-N16, P20592-N16]; Argonne National Laboratory's Computing Resource Center facilities FX We acknowledge helpful conversations with B. El-Bennich, T. Klahn, D. Nicmorus, and R. D. Young; and thank P. C. Tandy for a critical reading of the manuscript. We acknowledge support from Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357 and Austrian Science Fund (FWF) Grant No. W1203 and Project Nos. P20496-N16 and P20592-N16 and the use of Argonne National Laboratory's Computing Resource Center facilities. NR 37 TC 83 Z9 83 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 012202 DI 10.1103/PhysRevC.79.012202 PG 5 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900007 ER PT J AU Fedotov, GV Mokeev, VI Burkert, VD Elouadrhiri, L Golovatch, EN Ishkhanov, BS Isupov, EL Shvedunov, NV Adams, G Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asavapibhop, B Asryan, G Avakian, H Baghdasaryan, H Baillie, N Ball, JP Baltzell, NA Batourine, V Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Biselli, AS Bonner, BE Bouchigny, S Boiarinov, S Bradford, R Branford, D Brooks, WK Bultmann, S Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Chen, S Cole, PL Coltharp, P Corvisiero, P Crabb, D Crannell, H Crede, V Cummings, JP Dashyan, NB De Sanctis, E De Vita, R Degtyarenko, PV Denizli, H Dennis, L Dharmawardane, KV Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS Eugenio, P Fatemi, R Feuerbach, RJ Forest, TA Funsten, H Gavalian, G Gevorgyan, NG Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hardie, J Hassall, N Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hu, J Huertas, M Hyde, CE Ilieva, Y Ireland, DG Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, A Klusman, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, S Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Livingston, K Markov, N McCracken, M McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Mineeva, T Minehart, R Mirazita, M Miskimen, R Moriya, K Morrow, SA Mueller, J Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Price, JW Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shaw, J Smith, ES Smith, LC Sober, DI Stavinsky, A Stepanyan, S Stokes, BE Stoler, P Stopani, K Strauch, S Taiuti, M Taylor, S Tedeschi, DJ Thompson, R Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J AF Fedotov, G. V. Mokeev, V. I. Burkert, V. D. Elouadrhiri, L. Golovatch, E. N. Ishkhanov, B. S. Isupov, E. L. Shvedunov, N. V. Adams, G. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asavapibhop, B. Asryan, G. Avakian, H. Baghdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Batourine, V. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Biselli, A. S. Bonner, B. E. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Brooks, W. K. Bueltmann, S. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Carnahan, B. Chen, S. Cole, P. L. Coltharp, P. Corvisiero, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dashyan, N. B. De Sanctis, E. De Vita, R. Degtyarenko, P. V. Denizli, H. Dennis, L. Dharmawardane, K. V. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. Eugenio, P. Fatemi, R. Feuerbach, R. J. Forest, T. A. Funsten, H. Gavalian, G. Gevorgyan, N. G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gothe, R. W. Griffioen, K. A. Guidal, M. Guillo, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hardie, J. Hassall, N. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hu, J. Huertas, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ito, M. M. Jenkins, D. Jo, H. S. Joo, K. Juengst, H. G. Kellie, J. D. Khandaker, M. Kim, K. Y. Kim, K. Kim, W. Klein, A. Klein, F. J. Klimenko, A. Klusman, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Lee, T. Livingston, K. Markov, N. McCracken, M. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Mineeva, T. Minehart, R. Mirazita, M. Miskimen, R. Moriya, K. Morrow, S. A. Mueller, J. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niyazov, R. A. O'Rielly, G. V. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Rowntree, D. Rubin, P. D. Sabatie, F. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shaw, J. Smith, E. S. Smith, L. C. Sober, D. I. Stavinsky, A. Stepanyan, S. Stokes, B. E. Stoler, P. Stopani, K. Strauch, S. Taiuti, M. Taylor, S. Tedeschi, D. J. Thompson, R. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. CA CLAS Collaboration TI Electroproduction of p pi(+)pi(-) off protons at 0.2 < Q(2) < 0.6 GeV2 and 1.3 < W < 1.57 GeV with the CLAS detector SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; DOUBLE-PION-PHOTOPRODUCTION; VIRTUAL PHOTONS; MESON PRODUCTION; CHANNELS; MODEL; S-11(1535); DEUTERON; ENERGIES; SYSTEM AB This paper reports on the most comprehensive data set obtained on differential and fully integrated cross sections for the process ep. e -> p pi(+)pi(-). The data were collected with the CLAS detector at Jefferson Laboratory. Measurements were carried out in the as yet unexplored kinematic region of photon virtuality 0.2 < Q(2) < 0.6 GeV2 and invariant mass of the final hadron system W from 1.3 to 1.57 GeV. For the first time, nine independent one-fold differential cross sections were determined in each bin of W and Q(2) covered by the measurements. A phenomenological analysis of the data allowed us to establish the most significant mechanisms contributing to the reaction. The nonresonant mechanisms account for a major part of cross sections. However, we find sensitivity to s-channel excitations of low-mass nucleon resonances, especially to the N(1440)P-11 and N(1520)D-13 states in kinematic dependencies of the one-fold differential cross sections. C1 [Fedotov, G. V.; Mokeev, V. I.; Golovatch, E. N.; Ishkhanov, B. S.; Isupov, E. L.; Shvedunov, N. V.; Osipenko, M.; Sharov, D.; Stopani, K.] Moscow MV Lomonosov State Univ, Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. [Mokeev, V. I.; Burkert, V. D.; Elouadrhiri, L.; Avakian, H.; Bouchigny, S.; Boiarinov, S.; Carman, D. S.; Cole, P. L.; Coltharp, P.; Degtyarenko, P. V.; Egiyan, K. S.; Girod, F. X.; Guo, L.; Gyurjyan, V.; Ito, M. M.; Kramer, L. H.; Mecking, B. A.; Mestayer, M. D.; Niczyporuk, B. B.; Niyazov, R. A.; Prok, Y.; Raue, B. A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ball, J. P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McCracken, M.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Carnahan, B.; Crannell, H.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Doughty, D.; Hardie, J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Laget, J. M.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Baillie, N.; Butuceanu, C.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Branford, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Kramer, L. H.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Eugenio, P.; Ostrovidov, A. I.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Ilieva, Y.; Juengst, H. G.; Nadel-Turonski, P.; Niccolai, S.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.] Idaho State Univ, Pocatello, ID 83209 USA. [Bouchigny, S.; Guidal, M.; Hadjidakis, C.; Jo, H. S.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [De Sanctis, E.; Mirazita, M.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bedlinskiy, I.; Kuleshov, S.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, K.; Klein, A.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Rowntree, D.] MIT, Cambridge, MA 02139 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Hleiqawi, I.; Mibe, T.; Niculescu, G.; Tkabladze, A.; Tkachenko, S.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Baghdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Forest, T. A.; Gavalian, G.; Guler, N.; Hyde, C. E.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Kuhn, S. E.; Tkabladze, A.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Adams, G.; Bellis, M.; Cummings, J. P.; Hu, J.; Klusman, M.; Kubarovsky, V.; Niyazov, R. A.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Bonner, B. E.; Mutchler, G. S.; Taylor, S.] Rice Univ, Houston, TX 77005 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Goetz, J. T.; Price, J. W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Joo, K.; Markov, N.; Mineeva, T.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Donnelly, J.; Hassall, N.; Ireland, D. G.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Paterson, C.; Protopopescu, D.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Asavapibhop, B.; Lawrence, D.; Miskimen, R.; O'Rielly, G. V.; Shaw, J.] Univ Massachusetts, Amherst, MA 01003 USA. [Calarco, J. R.; Egiyan, H.; Hersman, F. W.; Holtrop, M.; Lee, T.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Baltzell, N. A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Guillo, M.; Huertas, M.; Langheinrich, J.; Park, K.; Strauch, S.; Tedeschi, D. J.; Tur, C.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Denizli, H.; Dytman, S.; Kim, K. Y.; Mueller, J.; Thompson, R.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Gilfoyle, G. P.; Rubin, P. D.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Crabb, D.; Fatemi, R.; Joo, K.; Minehart, R.; Pierce, J.; Pocanic, D.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Asryan, G.; Dashyan, N. B.; Egiyan, K. S.; Gevorgyan, N. G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Fedotov, G. V.; Golovatch, E. N.; Ishkhanov, B. S.; Isupov, E. L.; Shvedunov, N. V.; Sharov, D.; Stopani, K.] Moscow MV Lomonosov State Univ, Dept Phys, RU-119899 Moscow, Russia. RP Fedotov, GV (reprint author), Moscow MV Lomonosov State Univ, Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. RI Osipenko, Mikhail/N-8292-2015; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Zhang, Jixie/A-1461-2016 OI Sapunenko, Vladimir/0000-0003-1877-9043; Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; NR 69 TC 24 Z9 24 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 015204 DI 10.1103/PhysRevC.79.015204 PG 23 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900057 ER PT J AU Huovinen, P Molnar, D AF Huovinen, Pasi Molnar, Denes TI Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; PARTON CASCADE; FLUID THEORIES; ELLIPTIC FLOW; VISCOSITY AB We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2.2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio eta/s approximate to const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path tau(0)/lambda(tr,0) greater than or similar to 2. The same accuracy with NS requires three times larger tau(0)/lambda(tr,0) greater than or similar to 6. For dynamics driven by a constant cross section, on the other hand, about 50% larger tau(0)/lambda(tr,0) greater than or similar to 3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., root s(NN) similar to 100-200 GeV, these limits imply that even the IS approach becomes marginal when eta/s greater than or similar to 0.15. In addition, we find that the "naive" approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws. C1 [Huovinen, Pasi] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Huovinen, Pasi; Molnar, Denes] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Molnar, Denes] RIKEN BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Huovinen, P (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. NR 45 TC 86 Z9 87 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 014906 DI 10.1103/PhysRevC.79.014906 PG 21 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900052 ER PT J AU Ichikawa, T Iwamoto, A Moller, P AF Ichikawa, Takatoshi Iwamoto, Akira Moller, Peter TI Origin of the narrow, single peak in the fission-fragment mass distribution for Fm-258 SO PHYSICAL REVIEW C LA English DT Article ID HEAVIEST ELEMENTS; NUCLEAR-FISSION; HALF-LIVES; HEAVY; DEFORMATION; BARRIERS; SCISSION; MD-260; MODES AB We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of Fm-258. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schrodinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution. C1 [Ichikawa, Takatoshi] RIKEN, RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan. [Iwamoto, Akira] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Moller, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ichikawa, T (reprint author), RIKEN, RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; JUSTIPEN [DE-FG02-06ER41407] FX T. I. is grateful for the Special Postdoctoral Researcher Program in RIKEN. The numerical calculations have been performed at the RSCC system, RIKEN. P. M. acknowledges that this work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and was also supported by a travel grant to JUSTIPEN (Japan-US Theory Institute for Physics with Exotic Nuclei) under Grant DE-FG02-06ER41407 (U. Tennessee). NR 31 TC 11 Z9 11 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 014305 DI 10.1103/PhysRevC.79.014305 PG 6 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900016 ER PT J AU Jia, JY Lacey, R AF Jia, Jiangyong Lacey, Roy TI Influence of quenched jets on di-hadron correlations SO PHYSICAL REVIEW C LA English DT Article AB A simple jet absorption model is used to study the influence of hadron pairs produced by quenched jets, on di-hadron angular correlations at intermediate transverse momentum ((PT)). We demonstrate that such pairs can dominate both the yield and the shape of angular correlations, and may account for the similar properties between the near-side "ridge" and the away-side "double-humped" structure seen in recent data. These hadron pairs also show azimuthal anisotropy which is sensitive to the emission angle of hadrons relative to that of the jet. Measurement of this anisotropy may provide a constraint for elucidating the production mechanism for near- and away-side hadron pairs at intermediate (PT). C1 [Jia, Jiangyong; Lacey, Roy] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov FU NSF [PHY-0701487]; DOE [1011251-1-007968] FX This work is supported by the NSF under grant no. PHY-0701487 and by the DOE under grant no. 1011251-1-007968. NR 28 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 011901 DI 10.1103/PhysRevC.79.011901 PG 5 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900005 ER PT J AU Kutsarova, T Stefanova, EA Minkova, A Lalkovski, S Korichi, A Lopez-Martens, A Hannachi, F Hubel, H Gorgen, A Jansen, A Schonwasser, G Khoo, TL Herskind, B Bergstrom, M Bazzacco, D Podolyak, Z AF Kutsarova, T. Stefanova, E. A. Minkova, A. Lalkovski, S. Korichi, A. Lopez-Martens, A. Hannachi, F. Huebel, H. Goergen, A. Jansen, A. Schoenwasser, G. Khoo, T. L. Herskind, B. Bergstrom, M. Bazzacco, D. Podolyak, Z. TI High-spin level scheme of Pb-194 SO PHYSICAL REVIEW C LA English DT Article ID SHAPE COEXISTENCE; SUPERDEFORMED STATES; MAGNETIC ROTATION; SHEARS MECHANISM; LEAD ISOTOPES; PB ISOTOPES; NUCLEI; BANDS; MODEL AB High-spin states in Pb-194 have been populated in the Er-168(Si-30, 4n) reaction at 142 MeV. The emitted. rays were detected by the EUROBALL III multidetector array. The level scheme was considerably extended and many previously observed. gamma-ray transitions were reordered. Four new magnetic rotational bands were observed. The energies and spins of the bandheads of all previously observed magnetic rotational bands were corrected based on the observation of new transitions. From nine observed bands, only one could not be connected to the lower lying states. Based on comparison systematics with neighboring Pb isotopes and tilted-axis cranking model calculations previously reported, configuration assignments to the observed bands have been made. C1 [Kutsarova, T.; Stefanova, E. A.; Minkova, A.] BAS, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria. [Lalkovski, S.] Sofia Univ St Kliment Ohridski, Fac Phys, BG-1164 Sofia, Bulgaria. [Korichi, A.; Lopez-Martens, A.; Hannachi, F.] CNRS, IN2P3, CSNSM Orsay, F-91405 Orsay, France. [Huebel, H.] Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Goergen, A.; Jansen, A.; Schoenwasser, G.] Univ Bonn, ISKP, D-53115 Bonn, Germany. [Khoo, T. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Herskind, B.; Bergstrom, M.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bazzacco, D.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Bazzacco, D.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Podolyak, Z.] Ist Nazl Fis Nucl, Lab Natl Legnaro, Rome, Italy. RP Kutsarova, T (reprint author), BAS, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria. FU Bulgarian National Foundation [MON-204/06]; Nuclear Regulatory Commission [NRC-38-07-495] FX Financial support from the Bulgarian National Foundation Contract No. MON-204/06 is acknowledged. E. A. S. acknowledges the support form the Nuclear Regulatory Commission under Grant No. NRC-38-07-495. NR 30 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 014315 DI 10.1103/PhysRevC.79.014315 PG 19 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900026 ER PT J AU Laveissiere, G Degrande, N Jaminion, S Jutier, C Todor, L Di Salvo, R Van Hoorebeke, L Alexa, LC Anderson, BD Aniol, KA Arundell, K Audit, G Auerbach, L Baker, FT Baylac, M Berthot, J Bertin, PY Bertozzi, W Bimbot, L Boeglin, WU Brash, EJ Breton, V Breuer, H Burtin, E Calarco, JR Cardman, LS Cavata, C Chang, CC Chen, JP Chudakov, E Cisbani, E Dale, DS de Jager, CW De Leo, R Deur, A d'Hose, N Dodge, GE Domingo, JJ Elouadrhiri, L Epstein, MB Ewell, LA Finn, JM Fissum, KG Fonvieille, H Fournier, G Frois, B Frullani, S Furget, C Gao, H Gao, J Garibaldi, F Gasparian, A Gilad, S Gilman, R Glamazdin, A Glashausser, C Gomez, J Gorbenko, V Grenier, P Guichon, PAM Hansen, JO Holmes, R Holtrop, M Howell, C Huber, GM Hyde, CE Incerti, S Iodice, M Jardillier, J Jones, MK Kahl, W Kamalov, S Kato, S Katramatou, AT Kelly, JJ Kerhoas, S Ketikyan, A Khayat, M Kino, K Kox, S Kramer, LH Kumar, KS Kumbartzki, G Kuss, M Leone, A LeRose, JJ Liang, M Lindgren, RA Liyanage, N Lolos, GJ Lourie, RW Madey, R Maeda, K Malov, S Manley, DM Marchand, C Marchand, D Margaziotis, DJ Markowitz, P Marroncle, J Martino, J McCormick, K McIntyre, J Mehrabyan, S Merchez, F Meziani, ZE Michaels, R Miller, GW Mougey, JY Nanda, SK Neyret, D Offermann, EAJM Papandreou, Z Perdrisat, CF Perrino, R Petratos, GG Platchkov, S Pomatsalyuk, R Prout, DL Punjabi, VA Pussieux, T Quemener, G Ransome, RD Ravel, O Real, JS Renard, F Roblin, Y Rowntree, D Rutledge, G Rutt, PM Saha, A Saito, T Sarty, AJ Serdarevic, A Smith, T Smirnov, G Soldi, K Sorokin, P Souder, PA Suleiman, R Templon, JA Terasawa, T Tiator, L Tieulent, R Tomasi-Gustaffson, E Tsubota, H Ueno, H Ulmer, PE Urciuoli, GM Van de Vyver, R Van der Meer, RLJ Vernin, P Vlahovic, B Voskanyan, H Voutier, E Watson, JW Weinstein, LB Wijesooriya, K Wilson, R Wojtsekhowski, BB Zainea, DG Zhang, WM Zhao, J Zhou, ZL AF Laveissiere, G. Degrande, N. Jaminion, S. Jutier, C. Todor, L. Di Salvo, R. Van Hoorebeke, L. Alexa, L. C. Anderson, B. D. Aniol, K. A. Arundell, K. Audit, G. Auerbach, L. Baker, F. T. Baylac, M. Berthot, J. Bertin, P. Y. Bertozzi, W. Bimbot, L. Boeglin, W. U. Brash, E. J. Breton, V. Breuer, H. Burtin, E. Calarco, J. R. Cardman, L. S. Cavata, C. Chang, C.-C. Chen, J.-P. Chudakov, E. Cisbani, E. Dale, D. S. de Jager, C. W. De Leo, R. Deur, A. d'Hose, N. Dodge, G. E. Domingo, J. J. Elouadrhiri, L. Epstein, M. B. Ewell, L. A. Finn, J. M. Fissum, K. G. Fonvieille, H. Fournier, G. Frois, B. Frullani, S. Furget, C. Gao, H. Gao, J. Garibaldi, F. Gasparian, A. Gilad, S. Gilman, R. Glamazdin, A. Glashausser, C. Gomez, J. Gorbenko, V. Grenier, P. Guichon, P. A. M. Hansen, J. O. Holmes, R. Holtrop, M. Howell, C. Huber, G. M. Hyde, C. E. Incerti, S. Iodice, M. Jardillier, J. Jones, M. K. Kahl, W. Kamalov, S. Kato, S. Katramatou, A. T. Kelly, J. J. Kerhoas, S. Ketikyan, A. Khayat, M. Kino, K. Kox, S. Kramer, L. H. Kumar, K. S. Kumbartzki, G. Kuss, M. Leone, A. LeRose, J. J. Liang, M. Lindgren, R. A. Liyanage, N. Lolos, G. J. Lourie, R. W. Madey, R. Maeda, K. Malov, S. Manley, D. M. Marchand, C. Marchand, D. Margaziotis, D. J. Markowitz, P. Marroncle, J. Martino, J. McCormick, K. McIntyre, J. Mehrabyan, S. Merchez, F. Meziani, Z. E. Michaels, R. Miller, G. W. Mougey, J. Y. Nanda, S. K. Neyret, D. Offermann, E. A. J. M. Papandreou, Z. Perdrisat, C. F. Perrino, R. Petratos, G. G. Platchkov, S. Pomatsalyuk, R. Prout, D. L. Punjabi, V. A. Pussieux, T. Quemener, G. Ransome, R. D. Ravel, O. Real, J. S. Renard, F. Roblin, Y. Rowntree, D. Rutledge, G. Rutt, P. M. Saha, A. Saito, T. Sarty, A. J. Serdarevic, A. Smith, T. Smirnov, G. Soldi, K. Sorokin, P. Souder, P. A. Suleiman, R. Templon, J. A. Terasawa, T. Tiator, L. Tieulent, R. Tomasi-Gustaffson, E. Tsubota, H. Ueno, H. Ulmer, P. E. Urciuoli, G. M. Van de Vyver, R. Van der Meer, R. L. J. Vernin, P. Vlahovic, B. Voskanyan, H. Voutier, E. Watson, J. W. Weinstein, L. B. Wijesooriya, K. Wilson, R. Wojtsekhowski, B. B. Zainea, D. G. Zhang, W.-M. Zhao, J. Zhou, Z.-L. CA Jefferson Lab Hall A Collaboration TI Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles SO PHYSICAL REVIEW C LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; QUARK-MODEL; FORM-FACTORS; PROTON; PHOTON; THRESHOLD; ENERGIES; NUCLEON; PHOTOPRODUCTION; TRANSITION AB We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p). exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q(2) = 1 GeV(2) and for the Q(2) dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q(2) dependence is smooth. The measured ratio of H(e, e'p). to H(e, e'p) pi(0) cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q(2) independence, which may suggest a transition to a perturbative scattering mechanism at the quark level. C1 [Laveissiere, G.; Jaminion, S.; Di Salvo, R.; Berthot, J.; Bertin, P. Y.; Breton, V.; Fonvieille, H.; Grenier, P.; Ravel, O.; Roblin, Y.; Smirnov, G.] Univ Clermont Ferrand, LPC Clermont, CNRS, IN2P3, F-63177 Aubiere, France. [Degrande, N.; Van Hoorebeke, L.; Van de Vyver, R.] Univ Ghent, B-9000 Ghent, Belgium. [Jutier, C.; Todor, L.; Dodge, G. E.; Hyde, C. E.; McCormick, K.; Ulmer, P. E.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Alexa, L. C.; Brash, E. J.; Huber, G. M.; Lolos, G. J.; Papandreou, Z.; Zainea, D. G.] Univ Regina, Regina, SK S4S 0A2, Canada. [Anderson, B. D.; Katramatou, A. T.; Khayat, M.; Madey, R.; Manley, D. M.; Petratos, G. G.; Prout, D. L.; Watson, J. W.; Zhang, W.-M.] Kent State Univ, Kent, OH 44242 USA. [Aniol, K. A.; Epstein, M. B.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Arundell, K.; Finn, J. M.; Jones, M. K.; Perdrisat, C. F.; Quemener, G.; Rutledge, G.; Wijesooriya, K.] Coll William & Mary, Williamsburg, VA 23187 USA. [Audit, G.; Baylac, M.; Burtin, E.; Cavata, C.; d'Hose, N.; Fournier, G.; Frois, B.; Guichon, P. A. M.; Jardillier, J.; Kerhoas, S.; Marchand, C.; Marchand, D.; Marroncle, J.; Martino, J.; Neyret, D.; Platchkov, S.; Pussieux, T.; Renard, F.; Tomasi-Gustaffson, E.; Vernin, P.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Auerbach, L.; Incerti, S.; Meziani, Z. E.] Temple Univ, Philadelphia, PA 19122 USA. [Baker, F. T.; Templon, J. A.] Univ Georgia, Athens, GA 30602 USA. [Bertozzi, W.; Fissum, K. G.; Gao, H.; Gao, J.; Gilad, S.; Liyanage, N.; Rowntree, D.; Suleiman, R.; Zhao, J.; Zhou, Z.-L.] MIT, Cambridge, MA 02139 USA. [Bimbot, L.] Univ Paris 11, IPNO, CNRS, IN2P3, F-91406 Orsay, France. [Boeglin, W. U.; Kramer, L. H.; Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA. [Breuer, H.; Chang, C.-C.; Ewell, L. A.; Kelly, J. J.] Univ Maryland, College Pk, MD 20742 USA. [Calarco, J. R.; Holtrop, M.; Smith, T.] Univ New Hampshire, Durham, NH 03824 USA. [Cardman, L. S.; Chen, J.-P.; Chudakov, E.; de Jager, C. W.; Deur, A.; Domingo, J. J.; Elouadrhiri, L.; Gomez, J.; Hansen, J. O.; Kuss, M.; LeRose, J. J.; Liang, M.; Michaels, R.; Nanda, S. K.; Offermann, E. A. J. M.; Saha, A.; Serdarevic, A.; Van der Meer, R. L. J.; Wojtsekhowski, B. B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Iodice, M.; Urciuoli, G. M.] INFN, Sez Sanita, I-00161 Rome, Italy. [Dale, D. S.] Univ Kentucky, Lexington, KY 40506 USA. [De Leo, R.] Univ Bari, I-70126 Bari, Italy. [Furget, C.; Kox, S.; Merchez, F.; Mougey, J. Y.; Real, J. S.; Tieulent, R.; Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, LPSC Grenoble,INP, F-38026 Grenoble, France. [Gasparian, A.] Hampton Univ, Hampton, VA 23668 USA. [Gilman, R.; Glashausser, C.; Kumbartzki, G.; Malov, S.; McIntyre, J.; Ransome, R. D.; Rutt, P. M.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Glamazdin, A.; Gorbenko, V.; Pomatsalyuk, R.; Sorokin, P.] Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. [Holmes, R.; Kahl, W.; Souder, P. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Howell, C.] Duke Univ, Durham, NC 27706 USA. [Kamalov, S.; Tiator, L.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Kato, S.; Ueno, H.] Yamagata Univ, Yamagata 990, Japan. [Ketikyan, A.; Mehrabyan, S.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Kino, K.; Maeda, K.; Saito, T.; Terasawa, T.; Tsubota, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Kumar, K. S.; Miller, G. W.] Princeton Univ, Princeton, NJ 08544 USA. [Leone, A.; Perrino, R.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Lindgren, R. A.] Univ Virginia, Charlottesville, VA 22901 USA. [Lourie, R. W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Punjabi, V. A.] Norfolk State Univ, Norfolk, VA 23504 USA. [Sarty, A. J.] Florida State Univ, Tallahassee, FL 32306 USA. [Soldi, K.; Vlahovic, B.] N Carolina Cent Univ, Durham, NC 27707 USA. [Wilson, R.] Harvard Univ, Cambridge, MA 02138 USA. [Cisbani, E.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [De Leo, R.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. RP Laveissiere, G (reprint author), Univ Clermont Ferrand, LPC Clermont, CNRS, IN2P3, F-63177 Aubiere, France. EM helene@clermont.in2p3.fr RI Perrino, Roberto/B-4633-2010; Gao, Haiyan/G-2589-2011; Kuss, Michael/H-8959-2012; Sarty, Adam/G-2948-2014; McIntyre, Justin/P-1346-2014; CAVATA, Christian/P-6496-2015; Cisbani, Evaristo/C-9249-2011; OI Incerti, Sebastien/0000-0002-0619-2053; Perrino, Roberto/0000-0002-5764-7337; McIntyre, Justin/0000-0002-3706-4310; Cisbani, Evaristo/0000-0002-6774-8473; Kumar, Krishna/0000-0001-5318-4622; Di Salvo, Rachele/0000-0002-2162-714X; Glamazdin, Alexander/0000-0002-4172-7324; Hyde, Charles/0000-0001-7282-8120; Quemener, Gilles/0000-0001-6703-6655 NR 57 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 015201 DI 10.1103/PhysRevC.79.015201 PG 18 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900054 ER PT J AU Liu, LC AF Liu, Lon-chang (L. C.) TI Pauli blocking and final-state interaction in electron-nucleus quasielastic scattering SO PHYSICAL REVIEW C LA English DT Article ID INELASTIC ELECTRON; KNOCKOUT REACTIONS; C-12; ORTHOGONALITY; HE-3 AB The nucleon final-state interaction in inclusive electron-nucleus quasielastic scattering is studied. Based on the unitarity equation satisfied by the scattering-wave operators, a doorway model is developed to take into account the final-state interaction including the Pauli blocking of nucleon knockout. The model uses only experimental form factors as the input and can be readily applied to light- and medium-mass nuclei. Pauli blocking effects in these latter nuclei are illustrated with the case of the Coulomb interaction. Significant effects are noted for beam energies below similar to 350 MeV/c and for low momentum transfers. C1 [Liu, Lon-chang (L. C.)] Los Alamos Natl Lab, Div Theoret, Grp T16, Los Alamos, NM 87545 USA. RP Liu, LC (reprint author), Los Alamos Natl Lab, Div Theoret, Grp T16, Mail Stop B243, Los Alamos, NM 87545 USA. EM liu@lanl.gov NR 31 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 014605 DI 10.1103/PhysRevC.79.014605 PG 7 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900036 ER PT J AU Rotureau, J Michel, N Nazarewicz, W Ploszajczak, M Dukelsky, J AF Rotureau, J. Michel, N. Nazarewicz, W. Ploszajczak, M. Dukelsky, J. TI Density matrix renormalization group approach to two-fluid open many-fermion systems SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; CONTINUUM; RESONANCE; NUCLEI; STATES AB We have extended the density matrix renormalization group (DMRG) approach to two-fluid open many-fermion systems governed by complex-symmetric Hamiltonians. The applications are carried out for three- and four-nucleon (proton-neutron) systems within the Gamow shell model (GSM) in the complex-energy plane. We study necessary and sufficient conditions for the GSM+DMRG method to yield the correct ground-state eigenvalue and discuss different truncation schemes within the DMRG. The proposed approach will enable configuration interaction studies of weakly bound and unbound strongly interacting complex systems, which, because of a prohibitively large size of Fock space, cannot be treated by means of the direct diagonalization. C1 [Rotureau, J.; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Rotureau, J.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Rotureau, J.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Michel, N.] Kyoto Univ, Dept Phys, Grad Sch Sci, Kyoto 6068502, Japan. [Michel, N.] Serv Phys Nucl, IRFU, Ctr Saclay, CEA, F-91191 Gif Sur Yvette, France. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Ploszajczak, M.] IN2P3, CEA, CNRS, GANIL,DSM, F-14076 Caen, France. [Dukelsky, J.] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain. RP Rotureau, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI rotureau, jimmy/B-2365-2013; Dukelsky, Jorge/I-1118-2015 OI Dukelsky, Jorge/0000-0002-7715-5487 FU US Department of Energy [DE-FG02-96ER40963, DE-AC05-00OR22725, DE-FG05-87ER40361]; Spanish DGI [FIS2006-12783-c03-01]; CICYT-IN2P3 cooperation FX We thank Gaute Hagen for useful discussions. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge and the National Energy Research Scientific Computing Facility. This work was supported by the US Department of Energy under Contract Nos. DE-FG02-96ER40963 (University of Tennessee), DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FG05-87ER40361 (Joint Institute for Heavy Ion Research), by the Spanish DGI under Grant No. FIS2006-12783-c03-01, and by the CICYT-IN2P3 cooperation. NR 41 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 014304 DI 10.1103/PhysRevC.79.014304 PG 12 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900015 ER PT J AU Stanislaus, TDS Abaev, VV Allen, D Allgower, CE Alyea, J Bates, MA Bekrenev, VS Briscoe, WJ Cadman, RV Comfort, J Corliss, R Craig, K Gibson, A Greene, R Grosnick, DP Isenhower, D Kasprzyk, TE Knecht, N Koetke, DD Kozlenko, NG Kruglov, SP Kulbardis, AA Lolos, G Lopatin, IV Manley, DM Manweiler, R Marusic, A McDonald, S Olmsted, J Papandreou, Z Peaslee, DC Phaisangittisakul, N Price, JW Ramirez, AF Sadler, M Schlobohm, S Shafi, A Spinka, H Staudenmaier, HM Strakovsky, II Supek, I Thoms, J Wolf, S AF Stanislaus, T. D. S. Abaev, V. V. Allen, D. Allgower, C. E. Alyea, J. Bates, M. A. Bekrenev, V. S. Briscoe, W. J. Cadman, R. V. Comfort, J. Corliss, R. Craig, K. Gibson, A. Greene, R. Grosnick, D. P. Isenhower, D. Kasprzyk, T. E. Knecht, N. Koetke, D. D. Kozlenko, N. G. Kruglov, S. P. Kulbardis, A. A. Lolos, G. Lopatin, I. V. Manley, D. M. Manweiler, R. Marusic, A. McDonald, S. Olmsted, J. Papandreou, Z. Peaslee, D. C. Phaisangittisakul, N. Price, J. W. Ramirez, A. F. Sadler, M. Schlobohm, S. Shafi, A. Spinka, H. Staudenmaier, H. M. Strakovsky, I. I. Supek, I. Thoms, J. Wolf, S. TI Measurement of the total cross section of the reaction K- p -> Sigma(0)gamma between 514 and 750 MeV/c SO PHYSICAL REVIEW C LA English DT Article ID RADIATIVE DECAYS; ELECTROMAGNETIC PROPERTIES; DECUPLET HYPERONS; QUARK-MODEL; STRANGENESS; TRANSITIONS; CAPTURE; BARYONS; REST AB We report the first measurements of the total cross section of the reaction K- p -> Sigma(0)gamma. at eight beam momenta from 514 to 750 MeV/ c. The data were obtained at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory using the Crystal Ball detector consisting of 672 NaI crystals. All charged particles were vetoed by a barrel of plastic scintillators, resulting in a study of only the neutral decays of the Sigma(0). The prompt photon and the photons from the decay products of Sigma(0) were detected for each reconstructed event; the neutron was also detected in a small fraction of the events. C1 [Stanislaus, T. D. S.; Allen, D.; Alyea, J.; Corliss, R.; Gibson, A.; Greene, R.; Grosnick, D. P.; Koetke, D. D.; Manweiler, R.; Schlobohm, S.; Thoms, J.; Wolf, S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Allgower, C. E.; Bates, M. A.; Cadman, R. V.; Kasprzyk, T. E.; Manweiler, R.; Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Abaev, V. V.; Bekrenev, V. S.; Kozlenko, N. G.; Kruglov, S. P.; Kulbardis, A. A.; Lopatin, I. V.] Petersburg Nucl Phys Inst, RU-188350 Gatchina, Russia. [Briscoe, W. J.; Shafi, A.; Strakovsky, I. I.] George Washington Univ, Washington, DC 20052 USA. [Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J. W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Comfort, J.; Craig, K.; Ramirez, A. F.] Arizona State Univ, Tempe, AZ 85287 USA. [Isenhower, D.; Sadler, M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Knecht, N.; Lolos, G.; Papandreou, Z.] Univ Regina, Regina, SK S4S 0A2, Canada. [Manley, D. M.; Olmsted, J.] Kent State Univ, Kent, OH 44242 USA. [Peaslee, D. C.] Univ Maryland, College Pk, MD 20742 USA. [Staudenmaier, H. M.] Univ Karlsruhe, D-76128 Karlsruhe, Germany. [Supek, I.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. RP Stanislaus, TDS (reprint author), Valparaiso Univ, Valparaiso, IN 46383 USA. RI Marusic, Ana/E-7683-2013 OI Marusic, Ana/0000-0001-6272-0917 FU US Department of Energy; US National Science Foundation, NSERC; Russian Ministry of Education and Science; Russian Foundation for Basic Research; Volkswagen Stiftung of Germany. FX The authors thank especially the following individuals for their many contributions to the success of this experiment: P. Pile and J. Scaduto for their support of the experimental facilities, and L. Jia for the design, construction, and installation of the liquid-hydrogen target. Much thanks is also expressed for the numerous contributions of the technical staffs of Brookhaven National Laboratory and the collaborating institutions, and for their assistance and support. Thanks is also given to the StanfordLinear Accelerator Center (SLAC) for use of the Crystal Ball detector, which provided excellent means of detecting neutral particles. This experiment was supported by the US Department of Energy, the US National Science Foundation, NSERC, the Russian Ministry of Education and Science, the Russian Foundation for Basic Research, and the Volkswagen Stiftung of Germany. NR 27 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 015203 DI 10.1103/PhysRevC.79.015203 PG 8 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900056 ER PT J AU Steiner, AW Reddy, S AF Steiner, Andrew W. Reddy, Sanjay TI Superfluid response and the neutrino emissivity of neutron matter SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE INTERACTIONS; NUCLEAR-INTERACTIONS; SUPERBURST IGNITION; GAUGE INVARIANCE; FERMI LIQUID; STARS; SUPERCONDUCTIVITY; PHYSICS; OCEAN; GAPS AB We calculate the neutrino emissivity of superfluid neutron matter in the inner crust of neutron stars. We find that neutrino emission due to fluctuations resulting from the formation of Cooper pairs at finite temperature is highly suppressed in nonrelativistic systems. This suppression of the pair-breaking emissivity in a simplified model of neutron matter with interactions that conserve spin is of the order of nu(4)(F) F for density fluctuations and nu(2)(F) F for spin fluctuations, where nu(F) is the Fermi velocity of neutrons. The larger suppression of density fluctuations arises because the dipole moment of the density distribution of a single component system does not vary in time. For this reason, we find that the axial current response (spin fluctuations) dominates. In more realistic models of neutron matter that include tensor interactions where the neutron spin is not conserved, neutrino radiation from bremsstrahlung reactions occurs at order nu(0)(F). Consequently, even with the suppression factors due to superfluidity, this rate dominates near T(C). Present calculations of the pair-breaking emissivity are incomplete because they neglect the tensor component of the nucleon-nucleon interaction. C1 [Steiner, Andrew W.] Michigan State Univ, Dept Phys & Astron, Joint Inst Nucl Astrophys, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Reddy, Sanjay] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Steiner, AW (reprint author), Michigan State Univ, Dept Phys & Astron, Joint Inst Nucl Astrophys, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. OI Steiner, Andrew/0000-0003-2478-4017 FU Department of Energy [W-7405-ENG-36]; NSF-PFC [PHY 02-16783]; NASA ATFP [NNX08AG76G] FX The authors thank Edward Brown and Dima Yakovlev for useful discussions related to this work. This research was supported by the Department of Energy under Contract W-7405-ENG-36, by the Joint Institute for Nuclear Astrophysics at MSU under NSF-PFC Grant PHY 02-16783,and by NASA ATFP Grant NNX08AG76G. NR 39 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 015802 DI 10.1103/PhysRevC.79.015802 PG 9 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900066 ER PT J AU Tovesson, F Hill, TS Mocko, M Baker, JD McGrath, CA AF Tovesson, F. Hill, T. S. Mocko, M. Baker, J. D. McGrath, C. A. TI Neutron induced fission of Pu-240,Pu-242 from 1 eV to 200 MeV SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTION RATIOS; NUCLEAR-DATA LIBRARY; SUBTHRESHOLD FISSION; ENERGY-RANGE; PU-240; U-235; SCIENCE AB The neutron induced fission cross sections of Pu-240,Pu-242 have been measured as a function of incident neutron energy from 1 eV to 200 MeV. This is part of an effort to reduce experimental uncertainties of nuclear data in support of next generation nuclear reactors and transmutation technology. These two plutonium isotopes are nonfissile, and the available data are limited below reaction threshold. The present data demonstrate the presence of a 2.67 eV resonance in the Pu-242 fission cross section, which is missing in the ENDF/B-VII evaluation, and resolve discrepancies in the keV region. The measured cross sections are also compared with statistical model calculations made with the nuclear reaction code GNASH. C1 [Tovesson, F.; Hill, T. S.; Mocko, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Baker, J. D.; McGrath, C. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Tovesson, F (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012; McGrath, Christopher/E-8995-2013 FU Los Alamos Neutron Science Center at the Los Alamos National Laboratory; US Department of Energy [DE-AC52-06NA25396] FX The authors thank Patrick Talou and Phillip G. Young for performing the EMPIRE calculations presented in this manuscript and for helpful discussions on the result. This work has benefited from the use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the US Department of Energy and operated by Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25396. NR 39 TC 21 Z9 21 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2009 VL 79 IS 1 AR 014613 DI 10.1103/PhysRevC.79.014613 PG 9 WC Physics, Nuclear SC Physics GA 401YL UT WOS:000262979900044 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Cuenca Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Levy, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Movilla Fernandez, P Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Tesarek, RJ Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Levy, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R.-S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tesarek, R. J. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C. I. I. I. Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for the rare decays B+ -> mu(+)mu K--(+), B-0 -> mu(+)mu(-) K*(892)(0), and B-s(0) -> mu(+)mu(-)phi at CDF SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; B->K-ASTERISK-L(+)L(-); TRANSITIONS; QCD AB We search for b --> s mu(+)mu(-) transitions in B meson (B+, B-0, or B-s(0)) decays with 924 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We find excesses with significances of 4.5, 2.9, and 2.4 standard deviations in the B+ --> mu(+)mu K--(+), B-0 --> mu(+)mu(-) K*(892)(0), and B-s(0) --> mu(+)mu(-)phi decay modes, respectively. Using B --> J/psi h (h = K+, K*(892)(0), phi) decays as normalization channels, we report branching fractions for the previously observed B+ and B-0 decays, B(B+ --> mu(+)mu K--(+)) = (0.59 +/- 0.15 +/- 0.04) x 10(-6), and B(B-0 --> mu(+)mu K-*(892)(0)) = (0.81 +/- 0.30 +/- 0.10) x 10(-6), where the first uncertainty is statistical, and the second is systematic. We set an upper limit on the relative branching fraction B(B-s(0) --> mu(+)mu(-)phi)/B(B-s(0) --> J/psi phi) < 2.6(2.3) x 10(-3) at the 95(90)% confidence level, which is the most stringent to date. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Bromberg, C.; Campanelli, M.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Gunay-Unalan, Z.; Huston, J.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Miller, R.; Nurse, E.; Sorin, V.; Tollefson, K.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, Athens 15771, Greece. [Attal, A.; Azfar, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Martinez, M.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Aurisano, A.; Dittmann, J. R.; Elagin, A.; Goncharov, M.; Hewamanage, S.; Kamon, T.; Khotilovich, V.; Krumnack, N.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S.-C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Movilla Fernandez, P.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tesarek, R. J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C. I. I. I.; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Nielsen, J.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Carosi, R.; Chiarelli, G.; Garcia, J. E.; Giannetti, P.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B.-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Lu, R.-S.; Mitra, A.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Antos, J.; Bednar, P.; Lovas, L.; Tokar, S.] Inst Phys Expt, Kosice 04001, Slovakia. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Lancaster, M.; Malik, S.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Bednar, P.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Muller, Th.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.; Stelzer, B.] Univ Oxford, Oxford OX1 3RH, England. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's Human Potential Programme; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 32 TC 23 Z9 23 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 011104 DI 10.1103/PhysRevD.79.011104 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700004 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Aurisano, A Azfar, F Azzurri, P Badgett, W Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A Dell'Orso, M Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Rekovic, V Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B.-Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Rekovic, V. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S.-Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wurthwein, F. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Global search for new physics with 2.0 fb(-1) at CDF SO PHYSICAL REVIEW D LA English DT Article AB Data collected in run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (VISTA) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps'' that could indicate resonant production of new particles, and the SLEUTH procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV reveals no indication of physics beyond the standard model. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, Athens 15771, Greece. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucleare Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Stelzer-Chilton, O.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Experimentelle Kernphysik, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cerri, A.; Deisher, A.; Fang, H. C.; Hsu, S.-C.; Lujan, P.; Mulmenstadt, J.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. [Houlden, M.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Brigliadori, L.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Cortiana, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B.-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S.-Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] UCL, London WC1E 6BT, England. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Amerio, Silvia/J-4605-2012; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 6 TC 25 Z9 25 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 011101 DI 10.1103/PhysRevD.79.011101 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chand, P Chang, BS Chang, WC Charvet, JL Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cole, BA Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hamagaki, H Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, H Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Williamson, S Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chand, P. Chang, B. S. Chang, W. C. Charvet, J.-L. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cole, B. A. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H.-A. Henni, A. Hadj Haggerty, J. S. Hamagaki, H. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, H. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J.-C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T.-A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V.-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Williamson, S. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. TI Inclusive cross section and double helicity asymmetry for pi(0) production in p plus p collisions at root s=62.4 GeV SO PHYSICAL REVIEW D LA English DT Article ID HIGH TRANSVERSE-MOMENTUM; PROTON-PROTON COLLISIONS; CERN-ISR; POLARIZED PROTONS; SPIN ASYMMETRY; O PRODUCTION; PI0 MESONS; SCATTERING; SPECTRA; PREDICTIONS AB The PHENIX experiment presents results from the RHIC 2006 run with polarized p + p collisions at root s = 62.4 GeV, for inclusive pi(0) production at midrapidity. Unpolarized cross section results are measured for transverse momenta p(T) = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A(LL) are presented for p(T) = 1 to 4 GeV/c and probe the higher range of Bjorken x of the gluon (x(g)) with better statistical precision than our previous measurements at root s = 200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x(g) < 0.4. C1 [Adare, A.; Basye, A. T.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Isenhower, D.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Towell, R. S.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Chand, P.; Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Nouicer, R.; Pak, R.; Sukhanov, A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J.-L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 724, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Koster, J.; Layton, D.; Meredith, B.; Peng, J.-C.; Seidl, R.; Veicht, A.; Williamson, S.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Nagamiya, S.; Sawada, S.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest 114, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Shoji, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V.-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H.-A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Kametani, S.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Okada, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T.-A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Reuter, M.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, SUBATECH Ecole Mines Nantes, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T.-A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Basye, A. T.; Isenhower, D.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014 OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; FU Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences; Vanderbilt University (U.S.A); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat al'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung; Forschung, Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); Korea Research Foundation; Korea Science and Engineering Foundation (Korea); Ministry of Education and Science; Russian Academy of Sciences; Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); U. S. Civilian Research and Development Foundation; Independent States of the Former Soviet Union; U.S.-Hungarian Fulbright Foundation for Educational Exchange; U.S.-Israel Binational Science Foundation FX We thank the RHIC Polarimeter Group and the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We thank W. Vogelsang and M. Stratmann for providing the pQCD calculations and for informative discussions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat al'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), Korea Research Foundation and Korea Science and Engineering Foundation (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), V.R. and the Wallenberg Foundation (Sweden), the U. S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the U.S.-Hungarian Fulbright Foundation for Educational Exchange, and the U.S.-Israel Binational Science Foundation. NR 46 TC 31 Z9 31 U1 6 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 012003 DI 10.1103/PhysRevD.79.012003 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700010 ER PT J AU Alwall, J Le, MP Lisanti, M Wacker, JG AF Alwall, Johan Le, My-Phuong Lisanti, Mariangela Wacker, Jay G. TI Model-independent jets plus missing energy searches SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; SUPERSYMMETRY BREAKING; GLUINO PRODUCTION; COLLISIONS; COLLIDER; SQUARKS; SUPERGRAVITY; ALGORITHMS; TEVATRON; SIGNALS AB We present a proposal for performing model-independent jets plus missing energy searches. Currently, these searches are optimized for mSUGRA and are consequently not sensitive to all kinematically accessible regions of parameter space. We show that the reach of these searches can be broadened by setting limits on the differential cross section as a function of the total visible energy and the missing energy. These measurements only require knowledge of the relevant standard model backgrounds and can be subsequently used to limit any theoretical model of new physics. We apply this approach to an example where gluinos are pair-produced and decay to the LSP through a single-step cascade and show how sensitivity to different gluino masses is altered by the presence of the decay chain. The analysis is closely based upon the current searches done at the Tevatron and our proposal requires only small modifications to the existing techniques. We find that within the minimal supersymmetric standard model, the gluino can be as light as 125 GeV. The same techniques are applicable to jets and missing energy searches at the Large Hadron Collider. C1 [Alwall, Johan] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. RP Alwall, J (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. NR 47 TC 72 Z9 72 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 015005 DI 10.1103/PhysRevD.79.015005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700075 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Baquilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Search for Lepton Flavor Violating Decays tau(-) -> l(-)K(s)(0) with the BABAR Experiment SO PHYSICAL REVIEW D LA English DT Article ID NUMBER-NONCONSERVATION; GAUGE THEORIES; MONTE-CARLO; MUON; COLLISIONS; PHYSICS; PHOTOS; TAUOLA AB A search for the lepton flavor violating decays tau(-) --> l(-)K(S)(0) (l = e or mu) has been performed using a data sample corresponding to an integrated luminosity of 469 fb(-1), collected with the BABAR detector at the SLAC PEP-II e(+) e(-) asymmetric energy collider. No statistically significant signal has been observed in either channel and the estimated upper limits on branching fractions are B(tau(-) --> e(-)K(S)(0)) < 3.3 x 10(-8) and B(tau(-) --> mu K--(S)0) < 4.0 x 10(-8) at 90% confidence level. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Tisserand, V.; Tico, J. Garra] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Grauges, E.; Lopez, L.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Grauges, E.; Lopez, L.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Lista, L.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, San Diego, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Baquilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS,IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Adametz, A.; Arnaud, N.; Baquilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455 FU US Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung; Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A.P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation. NR 27 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 012004 DI 10.1103/PhysRevD.79.012004 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700011 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurements of the semileptonic decays (B)over-bar -> Dl(nu)over-bar and (B)over-bar -> D*l(nu)over-bar using a global fit to DXl(nu)over-bar final states SO PHYSICAL REVIEW D LA English DT Article ID CB-VERTICAL-BAR; QED RADIATIVE-CORRECTIONS; UNIVERSAL MONTE-CARLO; B-MESON DECAYS; BRANCHING FRACTIONS; FORM-FACTORS; SYMMETRY; PHOTOS AB Semileptonic (B) over bar decays to DXl (nu) over bar (l = e or mu) are selected by reconstructing D(0)l and D(+)l combinations from a sample of 230 x 10(6) Y(4S) --> B (B) over bar decays recorded with the BABAR detector at the PEP-II e(+)e(-) collider at SLAC. A global fit to these samples in a three-dimensional space of kinematic variables is used to determine the branching fractions B(B- --> D(0)l (nu) over bar = (2.34 +/- 0.03 +/- 0.13)% and B(B- --> D*(0)l (nu) over bar) = (5.40 +/- 0.02 +/- 0.21)% where the errors are statistical and systematic, respectively. The fit also determines form-factor parameters in a parametrization based on heavy quark effective theory, resulting in rho(2)(D) = 1.20 +/- 0.04 +/- 0.07 for (B) over bar --> Dl (nu) over bar and rho(2)(D*) = 1.22 +/- 0.02 +/- 0.07 for (B) over bar --> D*(0)l (nu) over bar. These values are used to obtain the product of the Cabibbo-Kobayashi-Maskawa matrix element |V-cb| times the form factor at the zero recoil point for both (B) over bar --> Dl (nu) over bar decays, G(1)|V-cb| = (43.1 +/- 0.8 +/- 2.3) x 10(-3), and for (B) over bar --> D*l (nu) over bar decays, F(1)|V-cb| = (35.9) +/- 0.2 +/- 1.2) x 10(-3). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.; Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Lawrence Livermore Natl Lab, Berkeley, CA 94704 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, San Diego, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Univ Pisa, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455 FU U.S. Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung (Germany); Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A.P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation. NR 36 TC 32 Z9 32 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 012002 DI 10.1103/PhysRevD.79.012002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700009 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Lopez, L Palano, A Pappagallo, M Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Lazzaro, A Lombardo, V Palombo, F De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Chukwudi, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Lopez, L. Palano, A. Pappagallo, M. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Lazzaro, A. Lombardo, V. Palombo, F. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Chukwudi, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Branching fractions and CP-violating asymmetries in radiative B decays to eta K gamma SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY; PARITY; MODEL AB We present measurements of the CP-violation parameters S and C for the radiative decay B-0 --> eta K-S(0)gamma; for B --> eta K gamma we also measure the branching fractions and for B+ --> K+gamma the time-integrated charge asymmetry A(ch). The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 465 x 10(6) B (B) over bar pairs produced in e(+)e(-) annihilation. The results are S = -0.18(-0.46)(+0.49) +/- 0.12, C = -0.32(-0.39)(+0.40) +/- 0.07, B(B-0 --> eta K-0 gamma) = (7.1(-2.0)(+2.1) +/- 0.4) x 10(-6), B(B+ --> eta K+gamma) = (7.7 +/- 1.0 +/- 0.4) x 10(-6), and A(ch) = (-9.0(-9.8)(+10.4)) x 10(-2). The first error quoted is statistical and the second systematic. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.; Bevan, A. J.; Chukwudi, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.; Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, San Diego, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Geova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Raven, Gerhard/0000-0002-2897-5323; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A.P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation. NR 29 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 011102 DI 10.1103/PhysRevD.79.011102 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700002 ER PT J AU Barger, V Langacker, P McCaskey, M Ramsey-Musolf, M Shaughnessy, G AF Barger, Vernon Langacker, Paul McCaskey, Mathew Ramsey-Musolf, Michael Shaughnessy, Gabe TI Complex singlet extension of the standard model SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK PHASE-TRANSITION; DARK-MATTER; HIGGS-BOSON; MSSM; PHYSICS; DECAYS; SCALAR AB We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider. C1 [Barger, Vernon; McCaskey, Mathew; Ramsey-Musolf, Michael; Shaughnessy, Gabe] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Langacker, Paul] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Ramsey-Musolf, Michael] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shaughnessy, Gabe] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Barger, V (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. FU U.S. Department of Energy [DE-FG0295ER40896, DE-FG02-05ER41361, DE-FG0208ER41531, DE-AC02-06CH11357]; Wisconsin Alumni Research Foundation; Institute for Advanced Study (PL); National Science Foundation Grant [PHY-0503584] FX V. B. and P. L. thank the Aspen Center for Physics for hospitality. This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG0295ER40896, DE-FG02-05ER41361, DE-FG0208ER41531, and Contract No. DE-AC02-06CH11357, by the Wisconsin Alumni Research Foundation, the Institute for Advanced Study (PL), and the National Science Foundation Grant No. PHY-0503584. NR 62 TC 125 Z9 125 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 015018 DI 10.1103/PhysRevD.79.015018 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700088 ER PT J AU Bernard, C DeTar, C Di Pierro, M El-Khadra, AX Evans, RT Freeland, ED Gamiz, E Gottlieb, S Heller, UM Hetrick, JE Kronfeld, AS Laiho, J Levkova, L Mackenzie, PB Okamoto, M Simone, J Sugar, R Toussaint, D Van de Water, RS AF Bernard, C. DeTar, C. Di Pierro, M. El-Khadra, A. X. Evans, R. T. Freeland, E. D. Gamiz, E. Gottlieb, Steven Heller, U. M. Hetrick, J. E. Kronfeld, A. S. Laiho, J. Levkova, L. Mackenzie, P. B. Okamoto, M. Simone, J. Sugar, R. Toussaint, D. Van de Water, R. S. TI (B)over-bar -> D*l(nu)over-bar form factor at zero recoil from three-flavor lattice QCD: A model independent determination of vertical bar V-cb vertical bar SO PHYSICAL REVIEW D LA English DT Article ID QUARK EFFECTIVE THEORY; HEAVY-LIGHT MESONS; PERTURBATION-THEORY; DECAYS; TRANSITIONS; FERMIONS; SCALE AB We present the first lattice QCD calculation of the form factor for (B) over bar -> D*l (v) over bar with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks ( the MILC configurations), and the Fermilab action for the heavy quarks. The form factor is computed at zero recoil using a new double ratio method that yields the form factor more directly than the previous Fermilab method. Other improvements over the previous calculation include the use of much lighter light-quark masses, and the use of lattice ( staggered) chiral perturbation theory in order to control the light-quark discretization errors and chiral extrapolation. We obtain for the form factor, F-B -> D* (1) = 0. 921(13)(20), where the first error is statistical and the second is the sum of all systematic errors in quadrature. Applying a 0.7% electromagnetic correction and taking the latest PDG average for F-B -> D* (1)vertical bar V-cb vertical bar leads to vertical bar V-cb vertical bar = (38. 7 +/- 0.9(exp) +/- 1.0(theo)) X 10(-3). C1 [Bernard, C.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [DeTar, C.; Levkova, L.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Di Pierro, M.] Depaul Univ, Sch Comp Sci Telecommun & Informat Syst, Chicago, IL 60604 USA. [El-Khadra, A. X.; Evans, R. T.; Gamiz, E.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Freeland, E. D.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Heller, U. M.] Amer Phys Soc, Ridge, NY USA. [Hetrick, J. E.] Univ Pacific, Dept Phys, Stockton, CA USA. [Kronfeld, A. S.; Laiho, J.; Mackenzie, P. B.; Okamoto, M.; Simone, J.; Van de Water, R. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Bernard, C (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. RI Gamiz, Elvira/E-8009-2016 OI Gamiz, Elvira/0000-0001-5125-2687 FU NSF [TG-MCA93S002]; United States Department of Energy [DE-FC02-06ER41446, DE-FG02-91ER40661, DE-FG0291ER40677, DE-FG02-91ER40628, DE-FG02-04ER41298]; National Science Foundation [PHY-0555243, PHY-0757333, PHY-0703296, PHY0555235, PHY-0456556]; Fermi Research Alliance, LLC, [DE-AC02-07CH11359] FX We thank J. Bailey for a careful reading of the manuscript. Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U. S. Department of Energy; and on facilities of the NSF Teragrid under allocation Contract No. TG-MCA93S002. This work was supported in part by the United States Department of Energy under Grant Nos. DE-FC02-06ER41446 ( C. D., L. L.), DE-FG02-91ER40661 ( S. G.), DE-FG0291ER40677 ( A. X. K.), DE-FG02-91ER40628 ( C. B., J. L.), DE-FG02-04ER41298 ( D. T.), and by the National Science Foundation under Grant Nos. PHY-0555243, PHY-0757333, PHY-0703296 ( C. D., L. L.), PHY0555235 ( J. L.), and PHY-0456556 ( R. S.). R. T. E. and E. G. thank Fermilab and URA for their hospitality. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 83 TC 42 Z9 42 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 014506 DI 10.1103/PhysRevD.79.014506 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700067 ER PT J AU Bodwin, GT Chung, HS Lee, J Yu, C AF Bodwin, Geoffrey T. Chung, Hee Sok Lee, Jungil Yu, Chaehyun TI Order-alpha(s) corrections to the quarkonium electromagnetic current at all orders in the heavy-quark velocity SO PHYSICAL REVIEW D LA English DT Article ID LEPTONIC DECAYS; NEAR-THRESHOLD; QCD; ANNIHILATION; MESON AB We compute in order alpha(s) the nonrelativistic QCD (NRQCD) short-distance coefficients that match quark-antiquark operators of all orders in the heavy-quark velocity v to the electromagnetic current. We employ a new method to compute the one-loop NRQCD contribution to the matching condition. The new method uses full-QCD expressions as a starting point to obtain the NRQCD contribution, thus greatly streamlining the calculation. Our results show that, under a mild constraint on the NRQCD operator matrix elements, the NRQCD velocity expansion for the quark-antiquark-operator contributions to the electromagnetic current converges. The velocity expansion converges rapidly for approximate J / psi operator matrix elements. C1 [Bodwin, Geoffrey T.; Lee, Jungil] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Chung, Hee Sok; Lee, Jungil; Yu, Chaehyun] Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U. S. Department of Energy; Division of High Energy Physics [DE-AC02-06CH11357]; BK21 program; MOEHRD Basic Research Promotion [KRF-2006-311-C00020]; Korea government (MEST) [R01-2008-000-10378-0] FX The work of G. T. B. was supported by the U. S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The work of H.S.C. was supported by the BK21 program. The work of C.Y. was supported by the Korea Research Foundation under MOEHRD Basic Research Promotion Grant No. KRF-2006-311-C00020. The work of J. L. was supported by the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MEST) under Grant No. R01-2008-000-10378-0. NR 18 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 014007 DI 10.1103/PhysRevD.79.014007 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700032 ER PT J AU Dawson, S Jackson, CB AF Dawson, Sally Jackson, C. B. TI One-loop corrections to the S parameter in the four-site model SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK CORRECTIONS; STRONG HIGGS; GAUGE; STATES AB We compute the leading chiral-logarithmic corrections to the S parameter in the four-site Higgsless model. In addition to the usual electroweak gauge bosons of the standard model, this model contains two sets of heavy charged and neutral gauge bosons. In the continuum limit, the latter gauge bosons can be identified with the first excited Kaluza-Klein states of the W-+/- and Z bosons of a warped extra-dimensional model with an SU(2)(L) x SU(2)(R) x U(1)(X) bulk gauge symmetry. We consider delocalized fermions and show that the delocalization parameter must be considerably tuned from its tree-level ideal value in order to reconcile experimental constraints with the one-loop results. Hence, the delocalization of fermions does not solve the problem of large contributions to the S parameter in this class of theories and significant contributions to S can potentially occur at one-loop. C1 [Dawson, Sally] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Jackson, C. B.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM dawson@bnl.gov; jackson@hep.anl.gov OI Dawson, Sally/0000-0002-5598-695X FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-06CH11357] FX The work of S. D. (C.J.) is supported by the U.S. Department of Energy under Grant Nos. DE-AC02-98CH10886 (DE-AC02-06CH11357). NR 42 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 013006 DI 10.1103/PhysRevD.79.013006 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700017 ER PT J AU Giedt, J Brower, R Catterall, S Fleming, GT Vranas, P AF Giedt, Joel Brower, Richard Catterall, Simon Fleming, George T. Vranas, Pavlos TI Lattice super-Yang-Mills using domain wall fermions in the chiral limit SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; GAUGE-THEORIES; LIGHT GLUINOS; SYMMETRY; SUSY; SIMULATIONS; QCD; GLUODYNAMICS; ALGORITHM; SPECTRUM AB Lattice N=1 super-Yang-Mills formulated using Ginsparg-Wilson fermions provides a rigorous nonperturbative definition of the continuum theory that requires no fine-tuning as the lattice spacing is reduced to zero. Domain wall fermions are one explicit scheme for achieving this and using them we have performed large-scale Monte Carlo simulations of the theory for gauge group SU(2). We have measured the gaugino condensate, static potential, Creutz ratios, and residual mass for several values of the domain wall separation L-s, four-dimensional lattice volume, and two values of the bare gauge coupling. With this data we are able to extrapolate the gaugino condensate to the chiral limit, to express it in physical units, and to establish important benchmarks for future studies of super-Yang-Mills on the lattice. C1 [Giedt, Joel] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12065 USA. [Brower, Richard] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Catterall, Simon] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Fleming, George T.] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. [Vranas, Pavlos] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. RP Giedt, J (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12065 USA. EM giedtj@rpi.edu; brower@bu.edu; smc@physics.syr.edu; George.Fleming@yale.edu; vranasp@llnl.gov RI Fleming, George/L-6614-2013; OI Fleming, George/0000-0002-4987-7167; Catterall, Simon/0000-0003-2735-2682 NR 68 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 2 AR 025015 DI 10.1103/PhysRevD.79.025015 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YK UT WOS:000262979800078 ER PT J AU Guzey, V Teckentrup, T AF Guzey, V. Teckentrup, T. TI On the mistake in the implementation of the minimal model of the dual parametrization and resulting inability to describe the high-energy deeply virtual Compton data SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; SCATTERING; NUCLEON; HERA AB We correct the mistaken claim made by Guzey and Polyakov [Eur. Phys. J. C 46, 151 (2006)] and Guzey and Teckentrup [Phys. Rev. D 74, 054027 (2006)] that the minimal model of the dual parametrization of nucleon generalized parton distributions gives a good, essentially model-independent description of high-energy data on deeply virtual Compton scattering (DVCS). In the implementation of the dual parametrization by Guzey-Polyakov and Guzey-Teckentrup (see above), the numerical prefactor of two in front of the DVCS amplitude was missing. We show that the corrected minimal model of the dual parametrization significantly overestimates the Hadron Electron Ring Accelerator data (H1 and ZEUS experiments) on the DVCS cross section. C1 [Guzey, V.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Teckentrup, T.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. RP Guzey, V (reprint author), Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. EM vguzey@jlab.org; tobias.teckentrup@tp2.rub.de OI Guzey, Vadim/0000-0002-2393-8507 NR 15 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 017501 DI 10.1103/PhysRevD.79.017501 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700095 ER PT J AU Hall, LJ Salem, MP Watari, T AF Hall, Lawrence J. Salem, Michael P. Watari, Taizan TI Neutrino mixing and mass hierarchy in Gaussian landscapes SO PHYSICAL REVIEW D LA English DT Article AB The flavor structure of the standard model may arise from random selection on a landscape. In a class of simple models, called "Gaussian landscapes," Yukawa couplings derive from overlap integrals of Gaussian zero-mode wave functions on an extra-dimensional space. Statistics of vacua are generated by scanning the peak positions of these wave functions, giving probability distributions for all flavor observables. Gaussian landscapes can account for all of the major features of flavor, including both the small electroweak mixing in the quark sector and the large mixing observed in the lepton sector. We find that large lepton mixing stems directly from lepton doublets having broad wave functions on the internal manifold. Assuming the seesaw mechanism, we find the mass hierarchy among neutrinos is sensitive to the number of right-handed neutrinos and can provide a good fit to neutrino oscillation measurements. C1 [Hall, Lawrence J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hall, Lawrence J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Salem, Michael P.] Tufts Univ, Dept Phys & Astron, Inst Cosmol, Medford, MA 02155 USA. [Watari, Taizan] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Watari, Taizan] Univ Tokyo, Inst Phys & Math Univ, Tokyo 2778592, Japan. RP Hall, LJ (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. OI Watari, Taizan/0000-0002-8879-1008 NR 22 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 2 AR 025010 DI 10.1103/PhysRevD.79.025010 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YK UT WOS:000262979800073 ER PT J AU Hooper, D Petriello, F Zurek, KM Kamionkowski, M AF Hooper, Dan Petriello, Frank Zurek, Kathryn M. Kamionkowski, Marc TI New DAMA dark-matter window and energetic-neutrino searches SO PHYSICAL REVIEW D LA English DT Article ID SUN; LIMITS; ANNIHILATIONS; PHOTINO; EARTH AB Recently, the DAMA/LIBRA Collaboration has repeated and reinforced their claim to have detected an annual modulation in their signal rate, and have interpreted this observation as evidence for dark-matter particles at the 8:2 sigma confidence level. Furthermore, it has also been noted that the effects of channeling may enable a weakly interacting massive particle (WIMP) that scatters elastically via spin-independent interactions from nuclei to produce the signal observed by DAMA/LIBRA without exceeding the limits placed by CDMS, XENON, CRESST, CoGeNT, and other direct-detection experiments. To accommodate this elastic-scattering explanation, however, the mass of the responsible dark-matter particle must be relatively light, mDM less than or similar to 10 GeV. Such dark-matter particles will become captured by and annihilate in the Sun at very high rates, leading to a potentially large flux of GeV-scale neutrinos. We calculate the neutrino spectrum resulting from WIMP annihilations in the Sun and show that existing limits from Super-Kamiokande can be used to close a significant portion of the DAMA region, especially if the dark-matter particles produce tau leptons or neutrinos in a sizable fraction of their annihilations. We also determine the spin-dependent WIMP-nuclei elastic-scattering parameter space consistent with DAMA. The constraints from Super-Kamiokande on the spin-dependent scenario are even more severe-they exclude any self-annihilating WIMP in the DAMA region that annihilates 1% of the time or more to any combination of neutrinos, tau leptons, or charm or bottom quarks. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Petriello, Frank; Zurek, Kathryn M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kamionkowski, Marc] CALTECH, Pasadena, CA 91125 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; NASA [NNX08AH34G]; DOE [DE-FG03-92-ER40701, DE-FG02-95ER40896]; Gordon and Betty Moore Foundation FX D. H. is supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and by NASA Grant No. NNX08AH34G. M. K. is supported by DOE Grant No. DE-FG03-92-ER40701 and the Gordon and Betty Moore Foundation. F. P. and K. M. Z. are supported by DOE Grant No. DE-FG02-95ER40896. F. P. and K. M. Z. thank the Aspen Center for Physics, where part of this work was completed. NR 54 TC 58 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 1 AR 015010 DI 10.1103/PhysRevD.79.015010 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YJ UT WOS:000262979700080 ER PT J AU Linder, EV AF Linder, Eric V. TI Like vs like: Strategy and improvements in supernova cosmology systematics SO PHYSICAL REVIEW D LA English DT Article ID HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; IA SUPERNOVAE; DARK ENERGY; CONSTRAINTS; EVOLUTION; SPECTRA; OMEGA(LAMBDA); DISCOVERIES; DIVERSITY AB Control of systematic uncertainties in the use of type Ia supernovae as standardized distance indicators can be achieved through contrasting subsets of observationally characterized, like supernovae. Essentially, like supernovae at different redshifts reveal the cosmology, and differing supernovae at the same redshift reveal systematics, including evolution not already corrected for by the standardization. Here we examine the strategy for use of empirically defined subsets to minimize the cosmological parameter risk, the quadratic sum of the parameter uncertainty and systematic bias. We investigate the optimal recognition of subsets within the sample and discuss some issues of observational requirements on accurately measuring subset properties. Neglecting like vs like comparison (i.e. creating only a single Hubble diagram) can cause cosmological constraints on dark energy to be biased by 1 sigma or degraded by a factor of 1.6 for a total drift of 0.02 mag. Recognition of subsets at the 0.016 mag level (relative differences) erases bias and reduces the degradation to 2%. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU Director, Office of Science; Office of High Energy Physics, of the U. S. Department of Energy [AC02-05CH11231] FX I thank Bob Cahn, Ariel Goobar, Dragan Huterer, Alex Kim, Peter Nugent, Reynald Pain, and Saul Perlmutter for useful discussions. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 2 AR 023509 DI 10.1103/PhysRevD.79.023509 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YK UT WOS:000262979800019 ER PT J AU Nawa, K Suganuma, H Kojo, T AF Nawa, Kanabu Suganuma, Hideo Kojo, Toru TI Brane-induced Skyrmion on S-3: Baryonic matter in holographic QCD SO PHYSICAL REVIEW D LA English DT Article ID HIDDEN LOCAL SYMMETRIES; FIELD THEORY; CHIRAL-SYMMETRY; 1-N EXPANSION; LATTICE QCD; QUARK-MODEL; RHO-MESONS; INSTANTONS; DENSITY; PHYSICS AB We study baryonic matter in holographic QCD with D4/D8/(D8) over bar multi-D brane system in type IIA superstring theory. The baryon is described as the "brane-induced Skyrmion,'' which is a topologically nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the "truncated-resonance model'' approach for the baryon analysis, including pion and rho meson fields below the ultraviolet cutoff scale M-KK similar to 1 GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N-c as single brane-induced Skyrmion on the three-dimensional closed manifold S-3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S-3, and the decrease of the size of S-3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S-3 as the function of its radius R. We find a new picture of "pion dominance'' near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another instanton description of the baryon in holographic QCD, considering the role of cutoff scale M-KK. C1 [Nawa, Kanabu] Osaka Univ, RCNP, Osaka 5670047, Japan. [Suganuma, Hideo] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kojo, Toru] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Nawa, K (reprint author), Osaka Univ, RCNP, Mihogaoka 10-1, Osaka 5670047, Japan. EM nawa@rcnp.osaka-u.ac.jp; suganuma@ruby.scphys.kyoto-u.ac.jp; torujj@quark.phy.bnl.gov FU Grant-in-Aid for Scientific Research (C) in Japan [19540287]; RIKEN; Global COE Program, "The Next Generation of Physics, Spun from Universality and Emergence." FX Authors thank Josh Erlich and Dong-Pil Min for their communications about our truncated-resonance model as the baryon analysis in holographic QCD in comparison with the instanton models. K. N. is also indebted to Atsushi Hosaka and Hiroshi Toki for their discussions in Research Center for Nuclear Physics (RCNP). H. S. is supported by a Grant-in-Aid for Scientific Research [(C) No. 19540287] in Japan. T. K. is supported by Special Postdoctoral Research Program of RIKEN. This work is supported by the Global COE Program, "The Next Generation of Physics, Spun from Universality and Emergence.'' NR 97 TC 22 Z9 22 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 2 AR 026005 DI 10.1103/PhysRevD.79.026005 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YK UT WOS:000262979800091 ER PT J AU Ribeiro, ALB Andrade, APA Letelier, PS AF Ribeiro, A. L. B. Andrade, A. P. A. Letelier, P. S. TI Stochastic contribution to the growth factor in the Lambda CDM model SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; UNIVERSE; SUPERNOVAE AB We study the effect of noise on the evolution of the growth factor of density perturbations in the context of the Lambda CDM model. Stochasticity is introduced as a Wiener process amplified by an intensity parameter alpha. By comparing the evolution of deterministic and stochastic cases for different values of alpha we estimate the intensity level necessary to make noise relevant for cosmological tests based on large-scale structure data. Our results indicate that the presence of random forces underlying the fluid description can lead to significant deviations from the nonstochastic solution at late times for alpha >= 10(-3). C1 [Ribeiro, A. L. B.; Andrade, A. P. A.] Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, BR-45650000 Ilheus, BA, Brazil. [Letelier, P. S.] Univ Estadual Campinas, Dept Matemat Aplicada, IMECC, BR-13081970 Campinas, SP, Brazil. RP Ribeiro, ALB (reprint author), Fermilab Natl Accelerator Lab, Fermilab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM albr@uesc.br; apaula@uesc.br; letelier@ime.unicamp.br FU CNPq; FAPESP FX We thank the referee for useful suggestions. A. L. B. R. and P. S. L. thank the partial support of CNPq and P. S. L. also thanks partial support of FAPESP. We thank F. Bonjour for his computational support. NR 23 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2009 VL 79 IS 2 AR 027302 DI 10.1103/PhysRevD.79.027302 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 401YK UT WOS:000262979800094 ER PT J AU Bandi, MM Chumakov, SG Connaughton, C AF Bandi, M. M. Chumakov, Sergei G. Connaughton, Colm TI Probability distribution of power fluctuations in turbulence SO PHYSICAL REVIEW E LA English DT Article DE fluctuations; Navier-Stokes equations; probability; turbulence ID STATISTICS AB We study local power fluctuations in numerical simulations of stationary, homogeneous, isotropic turbulence in two and three dimensions with Gaussian forcing. Due to the near-Gaussianity of the one-point velocity distribution, the probability distribution function (pdf) of the local power is well modeled by the pdf of the product of two joint normally distributed variables. In appropriate units, this distribution is parametrized only by the mean dissipation rate, epsilon. The large deviation function for this distribution is calculated exactly and shown to satisfy a fluctuation relation (FR) with a coefficient which depends on epsilon. This FR is entirely statistical in origin. The deviations from the model pdf are most pronounced for positive fluctuations of the power and can be traced to a slightly faster than Gaussian decay of the tails of the one-point velocity pdf. The resulting deviations from the FR are consistent with several recent experimental studies. C1 [Bandi, M. M.; Chumakov, Sergei G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Connaughton, Colm] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England. [Connaughton, Colm] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England. RP Bandi, MM (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, MPA10, Los Alamos, NM 87545 USA. EM mbandi@lanl.gov RI Connaughton, Colm/E-8796-2011 OI Connaughton, Colm/0000-0003-4137-7050 FU National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was partially carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 15 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 016309 DI 10.1103/PhysRevE.79.016309 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XR UT WOS:000262976900047 PM 19257141 ER PT J AU Berkelbach, TC Colgan, J Abdallah, J Faenov, AY Pikuz, TA Fukuda, Y Yamakawa, K AF Berkelbach, Timothy C. Colgan, James Abdallah, Joseph, Jr. Faenov, Anatoly Ya. Pikuz, Tatiana A. Fukuda, Yuji Yamakawa, Koichi TI Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters SO PHYSICAL REVIEW E LA English DT Article DE atomic clusters; high-speed optical techniques; spin-orbit interactions; xenon; X-ray emission spectra ID PLASMA; SPECTRA; IONS; GENERATION; TARGETS; ATOMS AB We employ the Los Alamos suite of atomic physics codes to model the inner-shell x-ray emission spectrum of xenon and compare results with those obtained via high-resolution x-ray spectroscopy of xenon clusters irradiated by 30 fs Ti:Sapphire laser pulses. We find that the commonly employed configuration-average approximation breaks down and significant spin-orbit splitting necessitates a detailed level accounting. We reproduce an interesting spectral trend for a series of experimental spectra taken with varying pulse energy for fixed pulse duration. To simulate the experimental measurements at increasing beam energies, we find that spectral modeling requires an increased hot electron fraction, but decreased atomic density and bulk electron temperature. We believe these latter conditions to be a result of partial cluster destruction due to the increased energy in the laser prepulse. C1 [Berkelbach, Timothy C.; Colgan, James; Abdallah, Joseph, Jr.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Faenov, Anatoly Ya.; Pikuz, Tatiana A.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia. [Faenov, Anatoly Ya.; Pikuz, Tatiana A.; Fukuda, Yuji; Yamakawa, Koichi] Japan Atom Energy Agcy, Kansai Photon Sci Inst, Kizu, Kyoto 6190215, Japan. RP Berkelbach, TC (reprint author), NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. OI Colgan, James/0000-0003-1045-3858 FU U. S. Department of Energy at Los Alamos National Laboratories [DE-AC52-06NA25396]; National Science Foundation; Japan Ministry of Education, Science, Sports and Culture; Grant-in-Aid for Kiban A [20244065]; RFBR [06-02-16174, 06-02-72005MNTIa]; ISTC [3504]; RAS Presidium Program of Basic Research [12] FX This work was supported under the auspices of the U. S. Department of Energy at Los Alamos National Laboratories under Contract No. DE-AC52-06NA25396. The work was also funded in part by the National Science Foundation through the University of New Mexico/Los Alamos Summer School in Physics. The experimental portion was also supported by the Japan Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Kiban A (20244065), by the RFBR (Projects No. 06-02-16174 and No. 06-02-72005MNTIa), by ISTC Grant No. 3504, and by the RAS Presidium Program of Basic Research No. 12. NR 35 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 016407 DI 10.1103/PhysRevE.79.016407 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XR UT WOS:000262976900054 PM 19257148 ER PT J AU Brewster, R Grest, GS Levine, AJ AF Brewster, Robert Grest, Gary S. Levine, Alex J. TI Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum SO PHYSICAL REVIEW E LA English DT Article DE compressibility; friction; granular materials; wetting ID RADIAL SEGREGATION; AXIAL SEGREGATION; AVALANCHES; CYLINDER; SOLIDS; REPOSE; FLOWS AB Large scale, discrete element simulations are performed to study the dynamics of a rotating drum partially filled with cohesive granular particles. The continuous avalanche regime is explored using a simple model for interparticle cohesion in order to simulate the effects of granular media in the presence of a wetting fluid. The shape of the free surface for cohesionless particles ranges from flat to a concave S shape depending on the rotation rate and frictional properties between the grains and the drum side walls. The presence of interparticle cohesion reduces the concavity of the free surface and pushes the free surface towards a flat or even slightly convex shape. From contour plots of the velocity, we show how the position of the vortex core (the stationary spot in the laboratory frame) depends on the rotation speed and interparticle cohesion strength and how this relationship can be understood from considerations of the incompressibility condition on the mass flow. C1 [Brewster, Robert] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Levine, Alex J.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Levine, Alex J.] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA. RP Brewster, R (reprint author), Weizmann Inst Sci, Dept Mat & Interfaces, POB 26, IL-76100 Rehovot, Israel. NR 32 TC 12 Z9 12 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 011305 DI 10.1103/PhysRevE.79.011305 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XP UT WOS:000262976600041 PM 19257028 ER PT J AU Feng, EH Crooks, GE AF Feng, Edward H. Crooks, Gavin E. TI Far-from-equilibrium measurements of thermodynamic length SO PHYSICAL REVIEW E LA English DT Article DE fluctuations; free energy; thermodynamic properties ID FREE-ENERGY DIFFERENCES; NONEQUILIBRIUM MEASUREMENTS; FLUCTUATION THEOREM; DIVERGENCE MEASURES; METRIC GEOMETRY; ENTROPY; SYSTEMS; EQUALITY AB Thermodynamic length is a path function that generalizes the notion of length to the surface of thermodynamic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free-energy change during an external perturbation on a system. We use this result to determine equilibrium averages at intermediate points of the protocol in which the system is out of equilibrium. This allows us to extend Bennett's method to determine the potential of the mean force, as well as the thermodynamic length, in single-molecule experiments. C1 [Feng, Edward H.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Crooks, Gavin E.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Feng, EH (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RI Crooks, Gavin/H-7111-2012 FU U. S. Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science FX We would like to thank John Chodera and David Minh for pertinent correspondence. This research was supported by the U. S. Department of Energy, under Contract No. DE-AC02-05CH11231. E. H. F. thanks the Miller Institute for Basic Research in Science for financial support. NR 35 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 012104 DI 10.1103/PhysRevE.79.012104 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XP UT WOS:000262976600103 PM 19257090 ER PT J AU Martin, JE AF Martin, James E. TI Theory of strong intrinsic mixing of particle suspensions in vortex magnetic fields SO PHYSICAL REVIEW E LA English DT Article DE iron; magnetic field effects; magnetic fields; magnetic particles; mixing; nanoparticles; suspensions; torque ID MAGNETORHEOLOGICAL SUSPENSIONS AB Recent experiments have shown that a type of triaxial magnetic field we call a vortex field can induce strong mixing in a magnetic particle suspension. A vortex triaxial field consists of a rotating magnetic field in a horizontal plane, with a dc field applied normal to this. The mixing torque is found to be independent of the field frequency and fluid viscosity over a broad range; scales as the square of the applied field; and is strongest for a balanced triaxial field-one in which the root-mean-square amplitudes of the three field components are equal. In this paper we show that these anomalous effects are consistent with the formation of volatile particle chains that have a precessionlike motion. Theoretical results are given for both particle chains and magnetic rods for arbitrary vortex field angles. A key conclusion is that the mixing torque is independent of particle size, making this mixing technique scale adaptive, and thus suitable for microfluidics applications. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy [DE-AC04-94AL85000]; Office of Basic Energy Research, DOE FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. This work was supported by the Office of Basic Energy Research, DOE. NR 13 TC 19 Z9 19 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 011503 DI 10.1103/PhysRevE.79.011503 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XP UT WOS:000262976600051 PM 19257038 ER PT J AU Mazarakis, MG Cuneo, ME Stygar, WA Harjes, HC Sinars, DB Jones, BM Deeney, C Waisman, EM Nash, TJ Struve, KW McDaniel, DH AF Mazarakis, Michael G. Cuneo, Michael E. Stygar, William A. Harjes, Henry C. Sinars, Daniel B. Jones, Brent M. Deeney, Christopher Waisman, Eduardo M. Nash, Thomas J. Struve, Kenneth W. McDaniel, Dillon H. TI X-ray emission current scaling experiments for compact single-tungsten-wire arrays at 80-nanosecond implosion times SO PHYSICAL REVIEW E LA English DT Article DE exploding wires; explosions; plasma inertial confinement; plasma instability; plasma X-ray sources; tungsten; Z pinch ID Z-PINCHES; Z-ACCELERATOR; POWER; PHYSICS; NUMBER; SIMULATIONS; DYNAMICS AB We report the results of a series of current scaling experiments with the Z accelerator for the compact, single, 20-mm diameter, 10-mm long, tungsten-wire arrays employed for the double-ended hohlraum ICF concept [M. E. Cuneo , Plasma Phys. Controlled Fusion 48, R1 (2006)]. We measured the z-pinch peak radiated x-ray power and total radiated x-ray energy as a function of the peak current, at a constant implosion time tau(imp)=80 ns. Previous x-ray emission current scaling for these compact arrays was obtained at tau(imp)=95 ns in the work of Stygar [Phys. Rev. E 69, 046403 (2004)]. In the present study we utilized lighter single-tungsten-wire arrays. For all the measurements, the load hardware dimensions, materials, and array wire number (N=300) were kept constant and were the same as the previous study. We also kept the normalized load current spatial and temporal profiles the same for all experiments reported in this work. Two different currents, 11.2 +/- 0.2 MA and 17.0 +/- 0.3 MA, were driven through the wire arrays. The average peak x-ray power for these compact wire arrays increased by 26%+/- 7% to 158 +/- 26 TW at 17 +/- 0.3 MA from the 125 +/- 24 TW obtained at a peak current of 18.8 +/- 0.5 MA with tau(imp)=95 ns. The higher peak power of the faster implosions may possibly be attributed to a higher implosion velocity, which in turn improves the implosion stability, and/or to shorter wire ablation times, which may lead to a decrease in trailing mass and trailing current. Our results show that the scaling of the radiated x-ray peak power and total radiated x-ray energy scaling with peak drive current to be closer to quadratic than the results of Stygar We find that the x-ray peak radiated power is P(r)proportional to I(1.57 +/- 0.20) and the total x-ray radiated energy E(r)proportional to I(1.9 +/- 0.24). We also find that the current scaling exponent of the power is sensitive to the inclusion of a single data point with a peak power at least 1.9 sigma below the average. If we eliminate this particular shot from our analysis (shot 1608), the power and energy scaling becomes closer to quadratic. Namely, we find that the dependence on the peak load current of the peak x-ray radiated power and the total x-ray radiated energy become P(r)proportional to I(1.71 +/- 0.10) and E(r)proportional to I(2.01 +/- 0.21), respectively. In this case, the power scaling exponent is different by more than 2 sigma from the previously published results of Stygar Larger data sets are likely required to resolve this uncertainty and eliminate the sensitivity to statistical fluctuations in any future studies of this type. Nevertheless, with or without the inclusion of shot 1608, our results with tau(imp)=80 ns fall short of an I(2) scaling of the peak x-ray radiated power by at least 2 sigma. In either case, the results of our study are consistent with the heuristic wire ablation model proposed by Stygar (P(r)proportional to I(1.5)). We also derive an empirical predictive relation that connects the power scaling exponent with certain array parameters. C1 [Mazarakis, Michael G.; Cuneo, Michael E.; Stygar, William A.; Harjes, Henry C.; Sinars, Daniel B.; Jones, Brent M.; Deeney, Christopher; Waisman, Eduardo M.; Nash, Thomas J.; Struve, Kenneth W.; McDaniel, Dillon H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mazarakis, MG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U. S. Department of Energy [DE-AC04-94AL85000] FX The authors are deeply indebted to our colleagues at Sandia National Laboratories, Ktech Corporation, and Team Specialty Products. We also wish especially to thank the Z operation department headed by Guy L. Donovan, the supporting technologies department headed by Johann F. Seamen, the load design group headed by Dustin Heinz Romero, the diagnostics team headed by Don O. Jobe, and the wire array laboratory headed by Dolores Graham for their superb work and great dedication. The authors are grateful for helpful discussions with Dr. Sergey Lebedev and Dr. Simon Bland of the Imperial College. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 46 TC 17 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 016412 DI 10.1103/PhysRevE.79.016412 PN 2 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XR UT WOS:000262976900059 PM 19257153 ER PT J AU Muller, P Mertens, FG Bishop, AR AF Mueller, P. Mertens, F. G. Bishop, A. R. TI Chaotic transport in deterministic sine-Gordon soliton ratchets SO PHYSICAL REVIEW E LA English DT Article DE chaos; differential equations; perturbation theory; sine-Gordon equation; solitons ID BROWNIAN MOTORS; EXCITATIONS; DYNAMICS; KINKS AB We investigate homogeneous and inhomogeneous sine-Gordon ratchet systems in which a temporal symmetry and the spatial symmetry, respectively, are broken. We demonstrate that in the inhomogeneous systems with ac driving the soliton dynamics is chaotic in certain parameter regions, although the soliton motion is unidirectional. This is qualitatively explained by a one-collective-coordinate theory which yields an equation of motion for the soliton that is identical to the equation of motion for a single particle ratchet which is known to exhibit chaotic transport in its underdamped regime. For a quantitative comparison with our simulations we use a two-collective-coordinate (2CC) theory. In contrast to this, homogeneous sine-Gordon ratchets with biharmonic driving, which breaks a temporal shift symmetry, do not exhibit chaos. This is explained by a 2CC theory which yields two ODEs: one is linear, the other one describes a parametrically driven oscillator which does not exhibit chaos. The latter ODE can be solved by a perturbation theory which yields a hierarchy of linear equations that can be solved exactly order by order. The results agree very well with the simulations. C1 [Mueller, P.; Mertens, F. G.] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Muller, P (reprint author), Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. EM patric.mueller@uni-bayreuth.de; franz.mertens@uni-bayreuth.de FU USDOE FX F. G. M. acknowledges the hospitality of the Theoretical Division and Center for Nonlinear Studies at Los Alamos National Laboratory. Work at Los Alamos was supported by USDOE. The authors thank A. Sanchez, Madrid, and R. Ecke, Los Alamos, for valuable advice. NR 37 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 016207 DI 10.1103/PhysRevE.79.016207 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XR UT WOS:000262976900028 PM 19257122 ER PT J AU Potekhin, AY Chabrier, G Rogers, FJ AF Potekhin, Alexander Y. Chabrier, Gilles Rogers, Forrest J. TI Equation of state of classical Coulomb plasma mixtures SO PHYSICAL REVIEW E LA English DT Article DE Debye-Huckel theory; equations of state; free energy; Monte Carlo methods; plasma pressure; plasma simulation; plasma thermodynamics ID DENSE IONIZED MATTER; ELECTRON-ION PLASMAS; ONE-COMPONENT PLASMA; LINEAR MIXING RULE; STATISTICAL-MECHANICS; PHASE; ENERGY AB We develop analytic approximations of thermodynamic functions of fully ionized nonideal electron-ion plasma mixtures. In the regime of strong Coulomb coupling, we use our previously developed analytic approximations for the free energy of one-component plasmas with rigid and polarizable electron background and apply the linear mixing rule (LMR). Other thermodynamic functions are obtained through analytic derivation of this free energy. In order to obtain an analytic approximation for the intermediate coupling and transition to the Debye-Huckel limit, we perform hypernetted-chain calculations of the free energy, internal energy, and pressure for mixtures of different ion species and introduce a correction to the LMR, which allows a smooth transition from strong to weak Coulomb coupling, in agreement with the numerical results. C1 [Potekhin, Alexander Y.; Chabrier, Gilles] Ecole Normale Super Lyon, CNRS, CRAL, UMR 5574, F-69364 Lyon 07, France. [Rogers, Forrest J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Potekhin, Alexander Y.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Potekhin, AY (reprint author), Ecole Normale Super Lyon, CNRS, CRAL, UMR 5574, F-69364 Lyon 07, France. EM palex@astro.ioffe.ru; chabrier@ens-lyon.fr RI Potekhin, Alexander/B-9747-2014 OI Potekhin, Alexander/0000-0001-9955-4684 FU CNRS French-Russian [PICS 3202]; Rosnauka [NSh-2600.2008.2]; RFBR [08-02-00837]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX The work of G. C. and A. Y. P. was partially supported by the CNRS French-Russian Grant No. PICS 3202. The work of A. Y. P. was partially supported by the Rosnauka Grant No. NSh-2600.2008.2 and the RFBR Grant No. 08-02-00837. The work of F. J. R. was partially performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344. NR 20 TC 30 Z9 30 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 016411 DI 10.1103/PhysRevE.79.016411 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XR UT WOS:000262976900058 PM 19257152 ER PT J AU Rose, KA Hoffman, B Saintillan, D Shaqfeh, ESG Santiago, JG AF Rose, Klint A. Hoffman, Brendan Saintillan, David Shaqfeh, Eric S. G. Santiago, Juan G. TI Hydrodynamic interactions in metal rodlike-particle suspensions due to induced charge electroosmosis SO PHYSICAL REVIEW E LA English DT Article DE electrophoresis; hydrodynamics; lubrication; osmosis; suspensions ID ELECTRIC-FIELD; DISPERSE PARTICLES; PAIR INTERACTION; MOTION; ELCTROOSMOSIS; NANOWIRES; FLOWS AB We present a theoretical and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rodlike particles in the presence of an externally applied electric field. In these systems, the electric field polarizes the particles and induces an electroosmotic flow relative to the surface of each particle. The simulations include the effect of the gravitational body force, buoyancy, far-field hydrodynamic interactions, and near-field lubrication forces. The particles in the simulations and experiments were observed to experience repeated pairing interactions in which they come together axially with their ends approaching each other, slide past one another until their centers approach, and then push apart. These interactions were confirmed in measurements of particle orientations and velocities, pair distribution functions, and net dispersion of the suspension. For large electric fields, the pair distribution functions show accumulation and depletion regions consistent with many pairing events. For particle concentrations of 10(8) particles/mL and higher, dispersion within the suspension dramatically increases with increased field strength. C1 [Rose, Klint A.] Lawrence Livermore Natl Lab, Meso Micro & Nanotechnol Ctr, Livermore, CA 94550 USA. [Shaqfeh, Eric S. G.; Santiago, Juan G.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Hoffman, Brendan; Shaqfeh, Eric S. G.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Saintillan, David] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. RP Rose, KA (reprint author), Lawrence Livermore Natl Lab, Meso Micro & Nanotechnol Ctr, Livermore, CA 94550 USA. FU National Science Foundation [. CBET-0729771]; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX We gratefully acknowledge the support of the National Science Foundation through Grant No. CBET-0729771. Portions of this work were performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. W-7405-Eng-48 and in part under Contract No. DE-AC52-07NA27344. NR 24 TC 31 Z9 31 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2009 VL 79 IS 1 AR 011402 DI 10.1103/PhysRevE.79.011402 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 401XP UT WOS:000262976600043 PM 19257030 ER PT J AU Brown, KA Blaskiewicz, M Degen, C Della Penna, A AF Brown, K. A. Blaskiewicz, M. Degen, C. Della Penna, A. TI Measuring transverse beam emittance using a 2.07 GHz movable Schottky cavity at the Relativistic Heavy Ion Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ALTERNATING-GRADIENT SYNCHROTRON AB Using a movable Schottky cavity resonant at 2.07 GHz, we have developed a simple method of deriving the beam sizes at the detector. In this report we will explain the theory behind the method, describe the system and the signal processing, and then present the results from experiments using this method. We will also present our plans for using this new technique for obtaining beam emittances during normal operation of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). C1 [Brown, K. A.; Blaskiewicz, M.; Degen, C.; Della Penna, A.] BNL, C AD Dept, Upton, NY 11973 USA. RP Brown, KA (reprint author), BNL, C AD Dept, Upton, NY 11973 USA. EM kbrown@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX We are very grateful for productive discussions with J. M. Brennan, P. Cameron, R. Connolly, and M. Minty. Technical support for the Schottky systems is provided by J. Cupolo and R. Schroeder. We also thank W. Fischer for providing technical parameters of RHIC. This work was performed under Contract No. DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy. NR 24 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2009 VL 12 IS 1 AR 012801 DI 10.1103/PhysRevSTAB.12.012801 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 420FF UT WOS:000264273600009 ER PT J AU Cardona, JF Peggs, SG AF Cardona, Javier F. Peggs, Stephen G. TI Linear and nonlinear magnetic error measurements using action and phase jump analysis SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB "Action and phase jump'' analysis is presented-a beam based method that uses amplitude and phase knowledge of a particle trajectory to locate and measure magnetic errors in an accelerator lattice. The expected performance of the method is first tested using single-particle simulations in the optical lattice of the Relativistic Heavy Ion Collider (RHIC). Such simulations predict that under ideal conditions typical quadrupole errors can be estimated within an uncertainty of 0.04%. Other simulations suggest that sextupole errors can be estimated within a 3% uncertainty. Then the action and phase jump analysis is applied to real RHIC orbits with known quadrupole errors, and to real Super Proton Synchrotron (SPS) orbits with known sextupole errors. It is possible to estimate the strength of a skew quadrupole error from measured RHIC orbits within a 1.2% uncertainty, and to estimate the strength of a strong sextupole component from the measured SPS orbits within a 7% uncertainty. C1 [Cardona, Javier F.] Natl Univ Colombia, Bogota, Colombia. [Peggs, Stephen G.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cardona, JF (reprint author), Natl Univ Colombia, Ciudad Univ, Bogota, Colombia. EM jfcardona@unal.edu.co FU DINAIN; National Division of Research at the National University of Colombia FX Many thanks go to Todd Satogata, who provided valuable help in the experiments, to Vadim Ptitsyn, for help and suggestions in the analysis of data, and to all RHIC staff. We are also grateful to Rogelio Tomas Garcia, who provided critical SPS data for the sextupole analysis presented here. J. Cardona thanks DINAIN, the National Division of Research at the National University of Colombia, for financial support. NR 17 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2009 VL 12 IS 1 AR 014002 DI 10.1103/PhysRevSTAB.12.014002 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 420FF UT WOS:000264273600012 ER PT J AU Erdelyi, B Bandura, L Nolen, J AF Erdelyi, B. Bandura, L. Nolen, J. TI Transfer map approach to and optical effects of energy degraders in fragment separators SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RELATIVISTIC HEAVY-IONS; ISOTOPIC-SEPARATION; PROJECT; GSI; FRS AB A second order analytical and an arbitrary order numerical procedure is developed for the computation of transfer maps of energy degraders. The incorporation of the wedges into the optics of fragment separators for next-generation exotic beam facilities, their optical effects, and the optimization of their performance is studied in detail. It is shown how to place and shape the degraders in the system such that aberrations are minimized and resolving powers are maximized. C1 [Erdelyi, B.; Bandura, L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Erdelyi, B.; Bandura, L.; Nolen, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Erdelyi, B (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM erdelyi@anl.gov FU U.S. Department of Energy, Office of Nuclear Physics [AC0206CH11357] FX We would like to thank Martin Berz and his group for assistance with wedge map-related COSY work. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC0206CH11357. NR 25 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2009 VL 12 IS 1 AR 014003 DI 10.1103/PhysRevSTAB.12.014003 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 420FF UT WOS:000264273600013 ER PT J AU Ostroumov, PN Kondrashev, SA Mustapha, B Scott, R Vinogradov, NE AF Ostroumov, P. N. Kondrashev, S. A. Mustapha, B. Scott, R. Vinogradov, N. E. TI Analysis and recombination of multiple-charge-state beams from an electron cyclotron resonance ion source SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB To meet the beam power requirements for high-intensity ion linacs being proposed for rare isotope beam production and other nuclear physics applications, we have developed an injector system to extract, accelerate, analyze, and recombine multiple charge states of any heavy-ion beam. The injector consists of an electron cyclotron resonance ion source, a 100 kV platform and an achromatic low-energy beam transport system. Two charge states of bismuth-209 (20+ and 21+) were successfully accelerated by the high-voltage platform potential, separated and perfectly recombined in the transverse phase space with 100% transmission. The perfect recombination and maximum transmission of the cw beam are essential for smooth injection into a subsequent rf accelerator. C1 [Ostroumov, P. N.; Kondrashev, S. A.; Mustapha, B.; Scott, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Vinogradov, N. E.] No Illinois Univ, De Kalb, IL 60115 USA. RP Ostroumov, PN (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Nuclear Physics [DEAC0206CH11357] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DEAC0206CH11357. NR 14 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2009 VL 12 IS 1 AR 010101 DI 10.1103/PhysRevSTAB.12.010101 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 420FF UT WOS:000264273600001 ER PT J AU Stygar, WA Savage, ME Wagoner, TC Bennett, LF Corley, JP Donovan, GL Fehl, DL Ives, HC LeChien, KR Leifeste, GT Long, FW Mckee, RG Mills, JA Moore, JK Ramirez, JJ Stoltzfus, BS Struve, KW Woodworth, JR AF Stygar, W. A. Savage, M. E. Wagoner, T. C. Bennett, L. F. Corley, J. P. Donovan, G. L. Fehl, D. L. Ives, H. C. LeChien, K. R. Leifeste, G. T. Long, F. W. Mckee, R. G. Mills, J. A. Moore, J. K. Ramirez, J. J. Stoltzfus, B. S. Struve, K. W. Woodworth, J. R. TI Dielectric-breakdown tests of water at 6 MV SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID POWER AB We have conducted dielectric-breakdown tests on water subject to a single unipolar pulse. The peak voltages used for the tests range from 5.8 to 6.8 MV; the effective pulse widths range from 0.60 to 1.1 mu s; and the effective areas tested range from 1.8 X 10(5) to 3.6 X 10(6) cm(2). The tests were conducted on water-insulated coaxial capacitors. The two electrodes of each capacitor have outer and inner radii of 99 and 56 cm, respectively. Results of the tests are consistent with predictions of the water-dielectric-breakdown relation developed in [Phys. Rev. ST Accel. Beams 9, 070401 (2006)]. C1 [Stygar, W. A.; Savage, M. E.; Bennett, L. F.; Donovan, G. L.; Fehl, D. L.; LeChien, K. R.; Leifeste, G. T.; Long, F. W.; Mckee, R. G.; Mills, J. A.; Ramirez, J. J.; Stoltzfus, B. S.; Struve, K. W.; Woodworth, J. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wagoner, T. C.; Corley, J. P.; Moore, J. K.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Ives, H. C.] EG&G, Albuquerque, NM 87107 USA. RP Stygar, WA (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would very much like to thank J. Porter, R. Leeper, and our many other colleagues at Sandia National Laboratories, EG& G, Ktech Corporation, L-3 Communications, and Team Specialty Products for invaluable contributions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 30 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2009 VL 12 IS 1 AR 010402 DI 10.1103/PhysRevSTAB.12.010402 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 420FF UT WOS:000264273600003 ER PT J AU Talman, R Malitsky, N Stulle, F AF Talman, Richard Malitsky, Nikolay Stulle, Frank TI Emittance growth due to static and radiative space charge forces in an electron bunch compressor SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COHERENT SYNCHROTRON-RADIATION AB Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the "Compact Linear Collider'' using electrons of about 40 MeV. Previous simulations of these results have been performed (using TRAFIC4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance epsilon(x) on beam width (as controlled by the lattice beta(x) function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening. home. cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTRACK [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18-21, MOCOS05, available at http://www. JACoW. org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, "standard chicane'' is introduced. Unlike CSRTRACK (which neglects vertical forces) the present simulation shows substantial growth of vertical emittance. But "turning off'' vertical forces in the UAL code (to match the CSRTRACK treatment) brings the two codes into excellent agreement. (iii) Results are also obtained for 5 GeV electrons passing through a previously introduced "standard chicane'' [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www. desy. de/csr] [of the sort needed for linear colliders and free electron lasers (FEL's) currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice). Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TRAFIC4 and CSRTRACK) avoids the regularization step (subtracting the free-space space charge force) which is required (to remove divergence) in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space chare forces (but not image forces), and also the centrifugal space charge force (CSCF) are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner et al., in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated. C1 [Talman, Richard] Cornell Univ, Elementary Particle Sci Lab, Ithaca, NY 14853 USA. [Malitsky, Nikolay] Brookhaven Natl Lab, Upton, NY 11973 USA. [Stulle, Frank] CERN, Geneva, Switzerland. RP Talman, R (reprint author), Cornell Univ, Elementary Particle Sci Lab, Ithaca, NY 14853 USA. NR 33 TC 3 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2009 VL 12 IS 1 AR 014201 DI 10.1103/PhysRevSTAB.12.014201 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 420FF UT WOS:000264273600014 ER PT S AU Schlaup, C Friebel, D Brockmann, P Wandelt, K AF Schlaup, C. Friebel, D. Brockmann, P. Wandelt, K. BE Cat, DT Pucci, A Wandelt, K TI Surface confined electrochemical compound formation: Incipient sulfidation of Au(111) SO PHYSICS AND ENGINEERING OF NEW MATERIALS SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 10th German-Vietnamese Seminar on Physics and Engineering CY JUN 06-09, 2007 CL Bonn, GERMANY ID SCANNING-TUNNELING-MICROSCOPY; SULFUR; GOLD; MONOLAYERS; STM AB The incipient electrochemical interaction between sulfur and a Au(1 1 1) surface is investigated by keeping the sulfur coverage constant. To this end the (root 3 x root 3) R30 phase of sulfur oil Au(1 1 1), Theta(S) = 0.33 ML, is subjected to potential increases in a S-free NaOH solution. At anodic potentials the reversible formation of a rhombic phase is observed. The local S coverage increase which is required for the formation of the rhombic phase results from a coverage decrease within the (root 3 x root 3) R30 regions. where single-S-atom-defects and, in later stages. S vacancy islands are fanned. Furthermore, the growth of the rhombic phase is accompanied by a Au mass transport which clearly calls for a reinterpretation of its chemical nature. C1 [Schlaup, C.; Brockmann, P.; Wandelt, K.] Univ Bonn, Inst Phys & Theoret Chem, Wegelerstr 12, D-53115 Bonn, Germany. [Friebel, D.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Schlaup, C (reprint author), Univ Bonn, Inst Phys & Theoret Chem, Wegelerstr 12, D-53115 Bonn, Germany. EM schlaup@pc.uni-bonn.de FU Alexander von Humboldt Foundation FX D. Friebel thanks the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship. NR 16 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0930-8989 BN 978-3-540-88200-8 J9 SPRINGER PROC PHYS PY 2009 VL 127 BP 113 EP + PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA BIY13 UT WOS:000263677600013 ER PT S AU Zhu, XX Gu, DF Li, QL Baumgart, H Ioannou, DE Suehle, JS Richter, CA AF Zhu, Xiaoxiao Gu, Diefeng Li, Qiliang Baumgart, H. Ioannou, D. E. Suehle, J. S. Richter, C. A. BE Kar, S Houssa, M VanElshocht, S Landheer, D TI Application of ALD high-k Dielectric Films as Charge Storage Layer and Blocking Oxide in Nonvolatile Memories SO PHYSICS AND TECHNOLOGY OF HIGH-K GATE DIELECTRICS 7 SE ECS Transactions LA English DT Proceedings Paper CT 7th International Symposium on High Dielectric Constant Materials and Gate Stacks held during the 216th Meeting of The Electrochemical-Society CY OCT 05-07, 2009 CL Vienna, AUSTRIA SP Electrochem Soc, Electrochem Soc, Dielectr Sci & Technol Div, Electrochem Soc, Elect & Photon Div ID HFO2; CELL AB ALD high-k dielectric films of HfO2 were utilized for the charge trapping layer and Al2O3 for the blocking oxide layer during fabrication of several Metal/Al2O3/HfO2/SiO2/Si (MAHOS) nonvolatile memory (NVM) cells based on Si nanowire channel. Si nanowires grown from predefined Au catalysts were integrated into memory devices by using a self-aligning approach. For benchmarking and comparison a different Metal/SiO2/HfO2/SiO2/Si (MOHOS) nonvolatile memory cell with a SiO2 blocking layer was also processed. All the Si nanowire nonvolatile memory cells show a large memory window, good endurance and retention, however, the MAHOS cells with Al2O3 blocking layers outperform the MOHOS cell with SiO2 blocking layer. C1 [Zhu, Xiaoxiao; Li, Qiliang; Ioannou, D. E.; Suehle, J. S.; Richter, C. A.] George Mason Univ, Dept Elect Engn & Comp Engn, Fairfax, VA 22030 USA. [Zhu, Xiaoxiao; Li, Qiliang; Ioannou, D. E.; Suehle, J. S.; Richter, C. A.] NIST, Div Semicond Elect, CMOS & Novel Dev Grp, Gaithersburg, MD 20899 USA. [Gu, Diefeng; Baumgart, H.] Old Dominion Univ, Dept Elect Engn & Comp Engn, Norfolk, VA 23529 USA. [Gu, Diefeng; Ioannou, D. E.] Appl Res Ctr ODU, Jefferson Lab, Newport News, VA 23606 USA. RP Zhu, XX (reprint author), George Mason Univ, Dept Elect Engn & Comp Engn, Fairfax, VA 22030 USA. EM hbaumgar@odu.edu RI Li, Qiliang/B-2225-2015 OI Li, Qiliang/0000-0001-9778-7695 NR 11 TC 0 Z9 0 U1 0 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-093-2; 978-1-56677-743-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 6 BP 473 EP 479 DI 10.1149/1.3206647 PG 7 WC Electrochemistry; Physics, Applied SC Electrochemistry; Physics GA BA8GO UT WOS:000338086300046 ER PT B AU Banerjee, S AF Banerjee, Sunanda BE Datta, A Mukhopadhyaya, B Raychaudhuri, A TI Challenges to Software/Computing for Experimentation at the LHC SO PHYSICS AT THE LARGE HADRON COLLIDER LA English DT Article; Book Chapter AB The demands of future high energy physics experiments towards software and computing have led the experiments to plan the related activities as a full-fledged project and to investigate new methodologies and languages to meet the challenges. The paths taken by the four LHC experiments ALICE, ATLAS, CMS and LHCb are coherently put together in an LHC-wide framework based on Grid technology. The current status and understandings have been broadly outlined. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Banerjee, S (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU INDIAN NATL SCIENCE ACAD PI NEW DELHI PA 1, BAHADUR SHAH ZAFAR MARG, NEW DELHI 110002, INDIA BN 978-81-8489-215-4 PY 2009 BP 37 EP 46 DI 10.1007/978-81-8489-295-6_4 D2 10.1007/978-81-8489-295-6 PG 10 WC Physics, Particles & Fields SC Physics GA BWC42 UT WOS:000293439300004 ER PT B AU Dobrescu, BA AF Dobrescu, Bogdan A. BE Datta, A Mukhopadhyaya, B Raychaudhuri, A TI Universal Extra Dimensions SO PHYSICS AT THE LARGE HADRON COLLIDER LA English DT Article; Book Chapter AB Extra dimensions in which all particles propagate are called universal. These lecture notes present the basics of field theory in a compact dimension with flat metric, as well as the hadron collider phenomenology of universal extra dimensions. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 19 TC 0 Z9 0 U1 0 U2 0 PU INDIAN NATL SCIENCE ACAD PI NEW DELHI PA 1, BAHADUR SHAH ZAFAR MARG, NEW DELHI 110002, INDIA BN 978-81-8489-215-4 PY 2009 BP 241 EP 247 DI 10.1007/978-81-8489-295-6_15 D2 10.1007/978-81-8489-295-6 PG 7 WC Physics, Particles & Fields SC Physics GA BWC42 UT WOS:000293439300015 ER PT J AU Bird, GA Gallis, MA Torczynski, JR Rader, DJ AF Bird, G. A. Gallis, M. A. Torczynski, J. R. Rader, D. J. TI Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows SO PHYSICS OF FLUIDS LA English DT Article AB The accuracy of a recently proposed direct simulation Monte Carlo (DSMC) algorithm, termed "sophisticated DSMC," is investigated by comparing simulation results to analytical solutions of the Boltzmann equation for one-dimensional Fourier-Couette flow. An argon-like hard-sphere gas at 273.15 K and 266.644 Pa is confined between two parallel, fully accommodating walls 1 mm apart that have unequal temperatures and unequal tangential velocities. The simulations are performed using a one-dimensional implementation. In harmony with previous work, the accuracy metrics studied are the ratios of the DSMC-calculated transport properties and Sonine polynomial coefficients to their corresponding infinite-approximation Chapman-Enskog theoretical values. The sophisticated DSMC algorithm is shown to reproduce the theoretical results to high precision. The efficiency of the sophisticated DSMC algorithm relative to the original algorithm is demonstrated for a two-dimensional " real-world" application. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3067865] C1 [Gallis, M. A.; Torczynski, J. R.; Rader, D. J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. [Bird, G. A.] GAB Consulting Pty Ltd, Sydney, NSW 2000, Australia. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors would like to thank Professor A. L. Garcia of San Jose State University for his suggestion to use gravity to investigate number-density gradients and Dr. D. K. Gartling and Dr. E. S. Piekos of Sandia National Laboratories for their critical reviews of the manuscript. NR 16 TC 44 Z9 47 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2009 VL 21 IS 1 AR 017103 DI 10.1063/1.3067865 PG 12 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 401UU UT WOS:000262968700039 ER PT J AU Mueschke, NJ Schilling, O AF Mueschke, Nicholas J. Schilling, Oleg TI Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY-SIMULATION; HYDRODYNAMIC INSTABILITIES; LAYER; FLOW; DEPENDENCE; RESOLUTION; EVOLUTION; TRANSPORT; GRADIENT; SPECTRUM AB A 1152 x 760 x 1280 direct numerical simulation (DNS) using initial conditions, geometry, and physical parameters chosen to approximate those of a transitional, small Atwood number Rayleigh Taylor mixing experiment [Mueschke et al., J. Fluid Mech. 567, 27 (2006)] is presented. In particular, the Atwood number is 7.5 x 10(-4), and temperature diffusion is modeled by mass diffusion with an equivalent Schmidt number of 7. The density and velocity fluctuations measured just off of the splitter plate in this buoyantly unstable water channel experiment were parametrized to provide physically realistic, anisotropic initial conditions for the DNS. The methodology for parametrizing the measured data and numerically implementing the resulting perturbation spectra in the simulation is discussed in detail. The DNS is then validated by comparing quantities from the simulation to experimental measurements. In particular, large-scale quantities (such as the bubble front penetration h(b) and the mixing layer growth parameter alpha(b)), higher-order statistics (such as velocity variances and the molecular mixing parameter theta on the center plane), and vertical velocity and density variance spectra from the DNS are shown to be in favorable agreement with the experimental data. The DNS slightly underestimates the growth of the bubble front h(b) but predicts alpha(b)approximate to 0.07 at the latest time, in excellent agreement with the experimental measurement. While the molecular mixing parameter theta is also slightly underestimated by the DNS during the nonlinear and weakly turbulent growth phases, the late-time value theta approximate to 0.55 compares favorably with the value theta approximate to 0.6 measured in the experiment. The one-dimensional density and vertical velocity variance spectra are in excellent agreement between the DNS and experimental measurements. Differences between the quantities obtained from the DNS and from experimental measurements are related to limitations in the dynamic range of scales resolved in the DNS and other idealizations of the simulation. Specifically, the statistical convergence of the DNS results and confidence interval bounds are discussed. This work demonstrates that a parametrization of experimentally measured initial conditions can yield simulation data that quantitatively agrees well with experimentally measured low- and higher-order statistics in a Rayleigh-Taylor mixing layer. This study also provides resolution and initial conditions implementation requirements needed to simulate a physical Rayleigh-Taylor mixing experiment. In Paper II [Mueschke and Schilling, Phys. Fluids 21, 014107 (2009)], other quantities not measured in the experiment are obtained from the DNS and discussed, such as the integral- and Taylor-scale Reynolds numbers, Reynolds stress and dissipation anisotropy, two-dimensional density and velocity variance spectra, hypothetical chemical product formation measures, other local and global mixing parameters, and the statistical composition of mixed fluid. These quantities are valuable for assessing the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of Rayleigh-Taylor turbulent mixing. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3064120] C1 [Schilling, Oleg] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mueschke, Nicholas J.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Schilling, O (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM schilling1@llnl.gov OI Schilling, Oleg/0000-0002-0623-2940 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Dr. Malcolm J. Andrews for insights concerning the experimental portion of this work, and Dr. Andrew W. Cook and Dr. William H. Cabot for providing their code. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A portion of this research was also sponsored NR 58 TC 27 Z9 27 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2009 VL 21 IS 1 AR 014106 DI 10.1063/1.3064120 PG 19 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 401UU UT WOS:000262968700019 ER PT J AU Mueschke, NJ Schilling, O AF Mueschke, Nicholas J. Schilling, Oleg TI Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics SO PHYSICS OF FLUIDS LA English DT Article ID SMALL-ATWOOD-NUMBER; SHEAR LAYERS; INSTABILITY AB A 1152 x 760 x 1280 direct numerical simulation (DNS) using initial conditions, geometry, and physical parameters chosen to approximate those of a transitional, small Atwood number, nonreacting Rayleigh-Taylor mixing experiment was presented in Paper I [Mueschke and Schilling, Phys. Fluids 21, 014106 (2009)]. In addition, the DNS model of the experiment was validated by comparing quantities from the simulation to experimental measurements, including large-scale quantities, higher-order statistics, and vertical velocity and density variance spectra. In Paper II of this study, other quantities not measured in the experiment are obtained from the DNS and discussed, such as the integral- and Taylor-scale Reynolds numbers, Reynolds stress and dissipation anisotropy, two-dimensional density and velocity variance spectra, hypothetical chemical product formation measures (similar to those used in reacting shear flow experiments), other local and global mixing parameters, and the statistical composition of mixed fluid. The integral- and Taylor-scale Reynolds numbers, together with visualizations of vertical and center plane slices of the density and vorticity fields, are used to elucidate the various evolutionary stages of the flow. It is shown that the early-time evolution retains a primarily two-dimensional character until the flow begins to transition to a more three-dimensional state at later times, as also observed in the experiment. The evolution of the three diagonal components of the anisotropy tensors showed that anisotropy persists to the latest times in the simulation. Compensated spectra at the latest time in the DNS suggest very short k(-5/3) and k(-5/4) inertial subrange scalings of the vertical velocity and density variance spectra, respectively. By interpreting the mixing between the two fluids as a hypothetical, infinitely fast, reversible chemical reaction between the species, the local formation of chemical product, equivalent product thickness, and other standard measures of mixing used in shear-driven turbulence are obtained from the DNS and discussed. Other measures of molecular mixing are shown to be qualitatively similar to the molecular mixing parameter theta on the center plane. Finally, the statistical composition of the mixed fluid is examined using the probability distribution function of the heavy-fluid volume fraction and the averaged composition of mixed fluid. Thus, DNS modeled closely after a physical Rayleigh-Taylor instability and mixing experiment can provide additional insights into the flow physics complementary to the experiment. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3064121] C1 [Schilling, Oleg] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mueschke, Nicholas J.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Schilling, O (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM schilling1@llnl.gov OI Schilling, Oleg/0000-0002-0623-2940 FU U. S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 36 TC 14 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2009 VL 21 IS 1 AR 014107 DI 10.1063/1.3064121 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 401UU UT WOS:000262968700020 ER PT J AU Olson, BJ Cook, AW AF Olson, Britton J. Cook, Andrew W. TI Rayleigh-Taylor shock waves (vol 19, art 128108, 2007) SO PHYSICS OF FLUIDS LA English DT Correction C1 [Olson, Britton J.; Cook, Andrew W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Olson, BJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 2 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2009 VL 21 IS 1 AR 019901 DI 10.1063/1.3059634 PG 1 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 401UU UT WOS:000262968700041 ER PT J AU Vladimirova, N Chertkov, M AF Vladimirova, Natalia Chertkov, Michael TI Self-similarity and universality in Rayleigh-Taylor, Boussinesq turbulence SO PHYSICS OF FLUIDS LA English DT Article ID 3-DIMENSIONAL NUMERICAL SIMULATIONS; IA-SUPERNOVAE; INSTABILITY; TRANSITION; NUMBER AB We report and discuss case study simulations of the Rayleigh-Taylor instability in the Boussinesq, incompressible regime developed to turbulence. Our main focus is on a statistical analysis of density and velocity fluctuations inside of the already developed and growing in size mixing zone. Novel observations reported in the article concern self-similarity of the velocity and density fluctuations spectra inside of the mixing zone snapshot, independence of the spectra of the horizontal slice level, and universality showing itself in a virtual independence of the internal structure of the mixing zone, measured in the rescaled spatial units, of the initial interface perturbations. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3054152] C1 [Vladimirova, Natalia] Univ Chicago, ASC Flash Ctr, Chicago, IL 60637 USA. [Vladimirova, Natalia; Chertkov, Michael] Los Alamos Natl Lab, Div Theoret, CNLS & T13, Los Alamos, NM 87544 USA. RP Vladimirova, N (reprint author), Univ Chicago, ASC Flash Ctr, Chicago, IL 60637 USA. EM nata@flash.uchicago.edu; chertkov@lanl.gov RI Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396, B341495] FX We wish to thank P. Fischer for permission to use the NEKTON code, A. Obabko, and P. Fischer for detailed help in using the code, and J. R. Ristorcelli for useful comments. This work was supported by the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and under Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. NR 27 TC 27 Z9 27 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2009 VL 21 IS 1 AR 015102 DI 10.1063/1.3054152 PG 9 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 401UU UT WOS:000262968700025 ER PT J AU Hudson, SR AF Hudson, S. R. TI An expression for the temperature gradient in chaotic fields SO PHYSICS OF PLASMAS LA English DT Article DE chaos; plasma transport processes ID AREA-PRESERVING MAPS; BOUNDARY CIRCLES; GHOST CIRCLES; TWIST MAPS; TRANSPORT; TOKAMAK AB A coordinate system adapted to the invariant structures of chaotic magnetic fields is constructed. The coordinates are based on a set of ghost-surfaces, defined via an action-gradient flow between the minimax and minimizing periodic orbits. The construction of the chaotic coordinates allows an expression describing the temperature gradient across a chaotic magnetic field to be derived. The results are in close agreement with a numerical calculation. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 FU U. S. Department of Energy [DE-AC02-76CH03073, DE-FG02-99ER54546] FX This work was supported in part by U. S. Department of Energy Contract Nos. DE-AC02-76CH03073 and DE-FG02-99ER54546. NR 21 TC 6 Z9 6 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2009 VL 16 IS 1 AR 010701 DI 10.1063/1.3063062 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 401UM UT WOS:000262967900001 ER PT J AU Kirkwood, RK Milovich, J Bradley, DK Schmitt, M Goldman, SR Kalantar, DH Meeker, D Jones, OS Pollaine, SM Amendt, PA Dewald, E Edwards, J Landen, OL Nikroo, A AF Kirkwood, R. K. Milovich, J. Bradley, D. K. Schmitt, M. Goldman, S. R. Kalantar, D. H. Meeker, D. Jones, O. S. Pollaine, S. M. Amendt, P. A. Dewald, E. Edwards, J. Landen, O. L. Nikroo, A. TI Sensitivity of ignition scale backlit thin-shell implosions to hohlraum symmetry in the foot of the drive pulse SO PHYSICS OF PLASMAS LA English DT Article DE explosions; laser fusion; plasma diagnostics ID LASER SYSTEM; FACILITY; FUSION; RADIOGRAPHY; ASYMMETRY; PLASMAS; TARGETS; OMEGA; NOVA AB A necessary condition for igniting indirectly driven inertial confinement fusion spherical capsules on the National Ignition Facility (NIF) is controlling drive flux asymmetry to the 1% level time-integrated over the pulse and with < 10%/ns swings during the pulse [J. D. Lindl, P. Amendt, R. L. Berger , Phys. Plasmas 11, 339 (2003)]. While drive symmetry during the first 2 ns of the pulse can be inferred by using the re-emission pattern from a surrogate high Z sphere and symmetry during the last 5 ns inferred from the shape of fully imploded capsules, the midportion (approximate to 2-10 ns) has been shown to be amenable to detection by the in-flight shape of x-ray backlit thin-shell capsules. In this paper, we present sensitivity studies conducted on the University of Rochester's OMEGA laser [J. Soures, R. L. McCrory, C. P. Verdon , Phys. Plasmas 3, 2108 (1996)] of the thin-shell symmetry measurement technique at near NIF-scale for two candidate capsule ablator materials: Ge-doped CH and Cu-doped Be. These experiments use both point and area backlighting to cast 4.7 keV radiographs of thin 1.4 mm initial-diameter Ge-doped CH and Cu-doped Be shells when converged by a factor of approximate to 0.5 in radius. Distortions in the position of the transmission limb of the shells resulting from drive asymmetries are measured to an accuracy of a few micrometers, meeting requirements. The promising results to date allow us to compare measured and predicted distortions and by inference drive asymmetries for the first four asymmetry modes as a function of hohlraum illumination conditions. C1 [Kirkwood, R. K.; Milovich, J.; Bradley, D. K.; Kalantar, D. H.; Meeker, D.; Jones, O. S.; Pollaine, S. M.; Amendt, P. A.; Dewald, E.; Edwards, J.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Schmitt, M.; Goldman, S. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. RP Kirkwood, RK (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. OI Schmitt, Mark/0000-0002-0197-9180 FU U. S. Department of Energy [DE-AC52-A27344, LLNL-JRNL-406419] FX We thank the Laboratory for Laser Energetics, University of Rochester, for the use of the OMEGA laser.; This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract Nos. DE-AC52-A27344 and LLNL-JRNL-406419. NR 25 TC 11 Z9 13 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2009 VL 16 IS 1 AR 012702 DI 10.1063/1.3041160 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 401UM UT WOS:000262967900021 ER PT J AU Lasinski, BF Langdon, AB Still, CH Tabak, M Town, RPJ AF Lasinski, B. F. Langdon, A. B. Still, C. H. Tabak, M. Town, R. P. J. TI Particle-in-cell simulations of short-pulse, high intensity light impinging on structured targets SO PHYSICS OF PLASMAS LA English DT Article DE ignition; plasma production by laser; plasma simulation ID LASER FUSION IGNITION AB Light propagating down a cone and/or impinging on a structured surface in the short-pulse, high intensity laser-matter interaction which generates the hot energetic electrons essential to the fast ignition scheme is studied with particle-in-cell simulations. These more complex geometries lead to both increased laser light absorption and higher temperatures of the resulting energetic electrons as compared to simple slab interactions. But the relatively wide angular distributions of the energetic electrons observed in the simulations needs to be taken into account in fast ignition designs. C1 [Lasinski, B. F.; Langdon, A. B.; Still, C. H.; Tabak, M.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lasinski, BF (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 20 TC 8 Z9 8 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2009 VL 16 IS 1 AR 012705 DI 10.1063/1.3062832 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 401UM UT WOS:000262967900024 ER PT J AU Lin, L Porkolab, M Edlund, EM Rost, JC Fiore, CL Greenwald, M Lin, Y Mikkelsen, DR Tsujii, N Wukitch, SJ AF Lin, L. Porkolab, M. Edlund, E. M. Rost, J. C. Fiore, C. L. Greenwald, M. Lin, Y. Mikkelsen, D. R. Tsujii, N. Wukitch, S. J. TI Studies of turbulence and transport in Alcator C-Mod H-mode plasmas with phase contrast imaging and comparisons with GYRO SO PHYSICS OF PLASMAS LA English DT Article DE plasma diagnostics; plasma instability; plasma radiofrequency heating; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence ID PARTICLE; BARRIERS AB Recent advances in gyrokinetic simulation of core turbulence and associated transport requires an intensified experimental effort to validate these codes using state of the art synthetic diagnostics to compare simulations with experimental data. A phase contrast imaging (PCI) diagnostic [M. Porkolab, J. C. Rost, N. Basse , IEEE Trans. Plasma Sci. 34, 229 (2006)] is used to study H-mode plasmas in Alcator C-Mod [M. Greenwald, D. Andelin, N. Basse , Nucl. Fusion 45, S109 (2005)]. The PCI system is capable of measuring density fluctuations with high temporal (2 kHz-5 MHz) and wavenumber (0.5-55 cm(-1)) resolution. Recent upgrades have enabled PCI to localize the short wavelength turbulence in the electron temperature gradient range and resolve the direction of propagation (i.e., electron versus ion diamagnetic direction) of the longer wavelength turbulence in the ion temperature gradient (ITG) and trapped electron mode range. The studies focus on plasmas before and during internal transport barrier formation in an enhanced D(alpha) H-mode plasma assisted with ion cyclotron resonance frequency heating. Nonlinear GYRO simulations have also been performed [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)] and the predicted fluctuation is compared against experimental measurements through a synthetic PCI diagnostic method. The simulated fluctuations from GYRO agree with experimental measurements in the ITG regime. GYRO also shows good agreement in transport predictions with experimental measurements after reducing the ion temperature gradient (similar to 15%) and adding ExB shear suppression, all within the experimental uncertainty. C1 [Lin, L.; Porkolab, M.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Lin, Y.; Tsujii, N.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lin, L (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RI Lin, Yijun/B-5711-2009; Lin, Liang/H-2255-2011; OI Greenwald, Martin/0000-0002-4438-729X FU U. S. DOE [DE-FG0294-ER54235, DE-FC02-99-ER54512] FX This work is supported by U. S. DOE under DE-FG0294-ER54235 and DE-FC02-99-ER54512. This research also utilized parallel computational clusters at MIT Plasma Science and Fusion Center (Loki) and Princeton Plasma Physics Laboratory (Kestrel). NR 29 TC 28 Z9 28 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2009 VL 16 IS 1 AR 012502 DI 10.1063/1.3057420 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 401UM UT WOS:000262967900015 ER PT S AU Ma, ZX Liu, L Yu, PY Mao, SS AF Ma, Zhixun Liu, Lei Yu, Peter Y. Mao, Samuel S. BE Caldas, MJ Studart, N TI Effect of Cu doping on Hole Mobility in CdTe SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE CdTe; hole mobility ID SEMICONDUCTOR RADIATION DETECTORS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; METALS AB High quality CdTe thin films grown by laser deposition technique and heavily doped with Cu have recently been reported to have resistivity and hole mobility comparable to those of bulk single crystals. To explain the experimental results we have calculated the effect of Cu on the band structure and phonon spectrum of CdTe using the density functional theory (DFT) and the linearized augmented plane wave (LAPW) method. We found that the introduction of a high density of Cu can lead to a reduction in the hole-LO phonon scattering. In addition, Cu doping can remove Cd vacancies in CdTe and thereby enhance the hole mobility in CdTe. C1 [Ma, Zhixun; Liu, Lei; Yu, Peter Y.; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ma, ZX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 77 EP 78 PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800036 ER PT S AU Osorio-Guillen, J Lany, S Zunger, A AF Osorio-Guillen, Jorge Lany, Stephan Zunger, Alex BE Caldas, MJ Studart, N TI Nonstoichiometry and hole doping in NiO SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE Nickel oxide; formation energies; intrinsic defects; defect levels; hole doping ID NICKEL-OXIDE AB We have study by means of DFT+U and thermodynamic calculations the doping response of the p-type transparent oxide NiO. We have found from the calculated defect formation enthalpies that Ni vacancy, not the 0 interstitial, is the main source of nonstoichiometry in NiO. On the other hand, the calculated free-hole concentration at room temperature of pure NiO remains very low compared to the concentration of Ni vacancies; this is due to the too large ionization energy of the Ni vacancy. The free-hole concentration can be strongly increased by extrinsic dopants with a more shallow donor as it is illustrated for the case of Li. C1 [Osorio-Guillen, Jorge] Univ Antioquia, Inst Fis, Medellin 1226, Antioquia, Colombia. [Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Osorio-Guillen, J (reprint author), Univ Antioquia, Inst Fis, Medellin 1226, Antioquia, Colombia. RI Osorio-Guillen, Jorge/B-7587-2008 OI Osorio-Guillen, Jorge/0000-0002-7384-8999 FU U.S. Department of Energy, DOE-EERE [DE-AC36-99GO10337] FX This work was funded by the U.S. Department of Energy, DOE-EERE, under contract No. DE-AC36-99GO10337. One of the authors (J. O.-G.) is grateful to CODI-UdeA for its support NR 14 TC 0 Z9 0 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 128 EP + PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800060 ER PT S AU Dyer, GC Crossno, JD Aizin, GR Mikalopas, J Shaner, EA Wanke, MC Reno, JL Allen, SJ AF Dyer, G. C. Crossno, J. D. Aizin, G. R. Mikalopas, J. Shaner, E. A. Wanke, M. C. Reno, J. L. Allen, S. J. BE Caldas, MJ Studart, N TI Temperature Dependent Terahertz Response of an Integrated Narrowband Hot Electron Bolometer SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE Terahertz; Bolometer; Spectroscopy; Plasmon; 2DEG ID PLASMON MODES AB The temperature dependent response and transport characteristics of an integrated bolometric-plasmonic terahertz detector have been measured. A sensitive bolometric detection element and a grating-gated GaAs/AlGaAs high electron mobility transistor (HEMT) with a resonant plasmonic response 40 GHz in width over a broad temperature range are monolithically integrated. Prior work has demonstrated that the low temperature response results from a hot electron detection mechanism; the hot electron effect remains prominent at 100 K. The terahertz response drops by nearly two orders of magnitude from 20 K to 100 K, consistent with a temperature dependent energy relaxation time. C1 [Dyer, G. C.; Crossno, J. D.; Allen, S. J.] UC Santa Barbara, Santa Barbara, CA USA. [Aizin, G. R.; Mikalopas, J.] CUNY, New York, NY USA. [Shaner, E. A.; Wanke, M. C.; Reno, J. L.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Dyer, GC (reprint author), UC Santa Barbara, Santa Barbara, CA USA. FU SFB [616] FX We thank Alik Chaplik and Dietrich Wolf for very fruitful discussions and acknowledge financial support from the SFB 616. NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 147 EP + PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800067 ER PT S AU Mamaev, YA Clendenin, JE Kuz'michev, VV Gerchikov, LG Maruyama, T Mikhrin, VS Ustinov, VM Vasiliev, DA Vasiliev, AP Yashin, YP Zhukov, AE Roberts, JS AF Mamaev, Yu. A. Clendenin, J. E. Kuz'michev, V. V. Gerchikov, L. G. Maruyama, T. Mikhrin, V. S. Ustinov, V. M. Vasiliev, D. A. Vasiliev, A. P. Yashin, Yu. P. Zhukov, A. E. Roberts, J. S. BE Caldas, MJ Studart, N TI Emission of Polarized Electrons from Semiconductor Super lattices with Distributed Bragg Reflector SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE Quantum efficiency; Fabry-Perot resonator; Superlattice AB Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources. C1 [Mamaev, Yu. A.; Kuz'michev, V. V.; Gerchikov, L. G.; Vasiliev, D. A.; Yashin, Yu. P.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Clendenin, J. E.; Maruyama, T.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Mikhrin, V. S.; Vasiliev, A. P.; Zhukov, A. E.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Ustinov, V. M.] Russian Acad Sci, St Petersburg Sci Educ Ctr, St Petersburg 195220, Russia. [Roberts, J. S.] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England. RP Mamaev, YA (reprint author), St Petersburg State Polytech Univ, St Petersburg 195251, Russia. RI Zhukov, Alexey/A-5523-2014 OI Zhukov, Alexey/0000-0002-4579-0718 FU Russian Ministry of Education and Science [N.P. 2.1.1.2215]; U.S. Department of Energy [DEAC02-76SF00515]; Swiss National Science Foundation [SNSF IB7420-111116] FX This work was supported by Russian Ministry of Education and Science under grant N.P. 2.1.1.2215 in the frames of a program Development of the High School scientific potential, the U.S. Department of Energy under contract DEAC02-76SF00515 and Swiss National Science Foundation under grant SNSF IB7420-111116. NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 201 EP + PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800094 ER PT S AU Wang, X Hilton, DJ Mittleman, DM Kono, J Reno, JL AF Wang, X. Hilton, D. J. Mittleman, D. M. Kono, J. Reno, J. L. BE Caldas, MJ Studart, N TI Time-Domain Terahertz Magneto-Spectroscopy of an Ultrahigh-Mobility Two-Dimensional Electron Gas SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE Terahertz; 2DEG; cyclotron resonance; Landau level; dephasing time ID CYCLOTRON-RESONANCE AB We have developed a time-domain terahertz magneto-spectroscopy system, which enables us to investigate magnetic coherent excitations in a GaAs/AlGaAs ultrahigh-mobility two-dimension electron gas (2DEG) in the far-infrared region (0.1- 2.5 THz). We observed very long-lived (on the order of 30 ps) coherent cyclotron oscillations, which can be viewed as the free induction decay of a coherent superposition between the lowest-unfilled Landau level and the highest-filled Landau level induced by the incident coherent THz pulse. From the frequency and decay time of these oscillations, we can directly determine the cyclotron mass and decay time. The magnetic field dependence of the cyclotron decay time shows some oscillatory behavior, whose origin we are currently investigating. C1 [Wang, X.; Hilton, D. J.; Mittleman, D. M.; Kono, J.] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mittleman, D. M.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. RP Wang, X (reprint author), Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. FU NSF [DMR-0134058, DMR-0325474] FX This work was supported in part by the NSF through Award Nos. DMR-0134058 and DMR-0325474. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 365 EP + PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800172 ER PT S AU Yang, A Steger, M Thewalt, MLW Ladd, TD Itoh, KM Haller, EE Ager, JW Riemann, H Abrosimov, NV Becker, P Pohl, HJ AF Yang, A. Steger, M. Thewalt, M. L. W. Ladd, T. D. Itoh, K. M. Haller, E. E. Ager, J. W., III Riemann, H. Abrosimov, N. V. Becker, P. Pohl, H. -J. BE Caldas, MJ Studart, N TI Nuclear Polarization of Phosphorus Donors in Si-28 by Selective Optical Pumping SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE silicon; nuclear polarization; electronic polarization; dynamic optical pumping AB We show that significant electronic and nuclear polarizations of P-31 donors in highly enriched Si-28 can be obtained by dynamic optical pumping. Polarization of the donor spins is observed using photoluminescence excitation spectroscopy and optical pumping of individual hyperfine components of the P-31 bound exciton transition. Previous samples of Si-28 used for P-31 bound exciton spectroscopy were p-type due to excess boron, while more recently, samples of P-31-doped n-type Si-28 with 99.99% isotopic purity became available. The selective pumping and ionization of P-31 donors in specific electronic and nuclear spin states has applications in quantum computing, where a highly polarized initial state is required. C1 [Yang, A.; Steger, M.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Ladd, T. D.] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA. [Itoh, K. M.] Keio Univ, CREST, JST, Yokohama, Kanagawa 2238522, Japan. [Haller, E. E.; Ager, J. W., III] Univ Calif Berkeley, LBNL, Berkeley, CA 94720 USA. [Riemann, H.; Abrosimov, N. V.] Inst Crystal Growth IKZ, Berlin 12489, Germany. [Becker, P.] PTB Braunschweig, D-38116 Braunschweig, Germany. [Pohl, H. -J.] VITCON Projectconsult GmbH, D-07745 Jena, Germany. RP Yang, A (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. RI Itoh, Kohei/C-5738-2014; OI Ager, Joel/0000-0001-9334-9751 FU NSERC FX This work was supported by NSERC. NR 3 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 375 EP + PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800176 ER PT S AU Liu, L Yu, PY Ma, ZX Mao, SS AF Liu, Lei Yu, Peter Y. Ma, Zhixun Mao, Samuel S. BE Caldas, MJ Studart, N TI A Density Functional Theory Study of Ferromagnetism in GaN:Gd SO PHYSICS OF SEMICONDUCTORS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Conference on Physics of Semiconductors CY JUL 27-AUG 01, 2008 CL Rio de Janeiro, BRAZIL DE Density-functional theory; Ferromagnetism; GaN; Gd; Vacancies ID MAGNETIC SEMICONDUCTORS AB First principle calculations of the electronic structure and magnetic interaction of GaN:Gd have shown that the ferromagnetic p-d coupling is over two orders of magnitude larger than the s-d exchange coupling. The experimental room temperature ferromagnetism in GaN:Gd are explained by the interaction of Gd 4f spins via p-d coupling involving localized holes introduced by intrinsic defects such as Ga vacancies. C1 [Liu, Lei; Yu, Peter Y.; Ma, Zhixun; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Liu, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 17 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0736-7 J9 AIP CONF PROC PY 2009 VL 1199 BP 421 EP 422 PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BQR10 UT WOS:000281590800198 ER PT J AU Duffy, PB Santer, BD Wigley, TML AF Duffy, Philip B. Santer, Benjamin D. Wigley, Tom M. L. TI Solar variability does not explain late-20th-century warming SO PHYSICS TODAY LA English DT Editorial Material ID MAUNDER MINIMUM; CLIMATE; IRRADIANCE C1 [Santer, Benjamin D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Wigley, Tom M. L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RI Santer, Benjamin/F-9781-2011 NR 9 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JAN PY 2009 VL 62 IS 1 BP 48 EP 49 PG 2 WC Physics, Multidisciplinary SC Physics GA 395CH UT WOS:000262499400020 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Science toys SO PHYSICS WORLD LA English DT Article C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JAN PY 2009 VL 22 IS 1 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 394QN UT WOS:000262462400021 ER PT J AU Thanos, PK Cavigelli, SA Michaelides, M Olvet, DM Patel, U Diep, MN Volkow, ND AF Thanos, P. K. Cavigelli, S. A. Michaelides, M. Olvet, D. M. Patel, U. Diep, M. N. Volkow, N. D. TI A Non-Invasive Method for Detecting the Metabolic Stress Response in Rodents: Characterization and Disruption of the Circadian Corticosterone Rhythm SO PHYSIOLOGICAL RESEARCH LA English DT Article DE Corticosterone; Stress; Fecal steroid metabolites; Circadian rhythm ID MALE RATS; IMMUNOGLOBULIN-A; EXCRETION; PATTERNS; COCAINE; URINE; FECES; TIME; MICE; SEX AB Plasma corticosterone (CORT) measures are a common procedure to detect stress responses in rodents. However, the procedure is invasive and can influence CORT levels, making it less than ideal for monitoring CORT circadian rhythms. In the current paper, we examined the applicability of a non-invasive fecal CORT metabolite measure to assess the circadian rhythm. We compared fecal CORT metabolite levels to circulating CORT levels, and analyzed change in the fecal circadian rhythm following an acute stressor (i.e. blood sampling by tail veil catheter). Fecal and blood samples were collected from male adolescent rats and analyzed for CORT metabolites and circulating CORT respectively. Fecal samples were collected hourly for 24 h before and after blood draw. On average, peak fecal CORT metabolite values occurred 7-9 h after the plasma CORT peak and time-matched fecal CORT values were well correlated with plasma CORT. As a result of the rapid blood draw, fecal production and CORT levels were altered the next day. These results indicate fecal CORT metabolite measures can be used to assess conditions that disrupt the circadian CORT rhythm, and provide a method to measure long-term changes in CORT production. This can benefit research that requires long-term glucocorticoid assessment (e. g. stress mechanisms underlying health). C1 [Thanos, P. K.; Michaelides, M.; Olvet, D. M.; Patel, U.] Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & Neuroimaging Lab, Upton, NY 11973 USA. [Olvet, D. M.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY USA. [Thanos, P. K.; Michaelides, M.; Patel, U.; Volkow, N. D.] NIAAA, Lab Neuroimaging, NIH, Dept Hlth & Human Serv, Bethesda, MD USA. [Cavigelli, S. A.; Diep, M. N.] Penn State Univ, Dept Biobehav Hlth, University Pk, PA 16802 USA. RP Thanos, PK (reprint author), Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & Neuroimaging Lab, Bldg 490, Upton, NY 11973 USA. EM thanos@bnl.gov FU Intramural NIH HHS [Z01 AA000551-04]; NIAAA NIH HHS [AA11034, AA07574, AA07611, P50 AA007611, R01 AA011034, T32 AA007574] NR 32 TC 25 Z9 25 U1 0 U2 12 PU ACAD SCIENCES CZECH REPUBLIC, INST PHYSIOLOGY PI PRAGUE 4 PA VIDENSKA 1083, PRAGUE 4 142 20, CZECH REPUBLIC SN 0862-8408 J9 PHYSIOL RES JI Physiol. Res. PY 2009 VL 58 IS 2 BP 219 EP 228 PG 10 WC Physiology SC Physiology GA 442PM UT WOS:000265853100008 PM 18380537 ER PT J AU Zhao, N Guan, J Forouhar, F Tschaplinski, TJ Cheng, ZM Tong, L Chen, F AF Zhao, Nan Guan, Ju Forouhar, Farhad Tschaplinski, Timothy J. Cheng, Zong-Ming Tong, Liang Chen, Feng TI Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns SO PHYTOCHEMISTRY LA English DT Article DE Black cottonwood; Populus trichocarpa; Methyl esterase; SABP2; Methyl salicylate; Salicylic acid; Gene family; Molecular modeling ID SYSTEMIC ACQUIRED-RESISTANCE; ACID CARBOXYL METHYLTRANSFERASE; PLANT-DISEASE RESISTANCE; PROGRAMMED CELL-DEATH; JASMONIC ACID; INNATE IMMUNITY; INDOLE-3-ACETIC-ACID METHYLTRANSFERASE; BINDING PROTEIN-2; HYBRID POPLAR; ARABIDOPSIS AB Two genes encoding proteins of 98% sequence identity that are highly homologous to tobacco methyl salicylate (MeSA) esterase (SABP2) were identified and cloned from poplar. Proteins encoded by these two genes displayed specific esterase activities towards MeSA to produce salicylic acid, and are named PtSABP2-1 and PtSABP2-2, respectively. Recombinant PtSABP2-1 and PtSABP2-2 exhibited apparent Km values of 68.2 +/- 3.8 mu M and 24.6 +/- 1 mu M with MeSA, respectively. Structural modeling using the three-dimensional structure of tobacco SABP2 as a template indicated that the active sites of PtSABP2-1 and PtSABP2-2 were highly similar to that of tobacco SABP2. Under normal growing conditions, PtSABP2-1 showed the highest level of expression in leaves and PtSABP2-2 was most highly expressed in roots. In leaf tissues of poplar plants under stress conditions, the expression of PtSABP2-1 was significantly down-regulated by two stress factors, whereas the expression of PtSABP2-2 was significantly up-regulated by four stress factors. The plausible mechanisms leading to these two highly homologous MeSA esterase genes involved in divergent biological processes in poplar are discussed. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Zhao, Nan; Guan, Ju; Cheng, Zong-Ming; Chen, Feng] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Forouhar, Farhad; Tong, Liang] Columbia Univ, Dept Biol Sci, NE Struct Genom Consortium, New York, NY 10027 USA. [Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Chen, F (reprint author), Univ Tennessee, Dept Plant Sci, 252 Ellington Plant Sci Bldg,2431 Joe Johnson Dr, Knoxville, TN 37996 USA. EM fengc@utk.edu OI Tschaplinski, Timothy/0000-0002-9540-6622; Tong, Liang/0000-0002-0563-6468; Cheng, Zong-Ming/0000-0002-1811-591X FU DOE Office Biological and Environmental Research - Genome to Life Program through the BioEnergy Science Center (BESC); Tennessee Agricultural Experiment Station FX We are grateful to Byung-Guk Kang for providing poplar plants for gene expression analysis. This research was supported in part by the DOE Office Biological and Environmental Research - Genome to Life Program through the BioEnergy Science Center (BESC), and by the Tennessee Agricultural Experiment Station. NR 45 TC 13 Z9 16 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9422 J9 PHYTOCHEMISTRY JI Phytochemistry PD JAN PY 2009 VL 70 IS 1 BP 32 EP 39 DI 10.1016/j.phytochem.2008.11.014 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 419RA UT WOS:000264235800004 PM 19136124 ER PT B AU Matlashov, AN Zotev, VS Kraus, RH Sandin, H Urbaitis, AV Volegov, PL Espy, MA AF Matlashov, A. N. Zotev, V. S. Kraus, R. H., Jr. Sandin, H. Urbaitis, A. V. Volegov, P. L. Espy, M. A. GP ELECTROMAGNETICS ACAD TI SQUIDs for Magnetic Resonance Imaging at Ultra-low Magnetic Field SO PIERS 2009 MOSCOW VOLS I AND II, PROCEEDINGS LA English DT Proceedings Paper CT Progress in Electromagnetics Research Symposium (PIERS 2009 Moscow) CY AUG 12-21, 2009 CL Moscow, RUSSIA SP Moscow State Inst Radio Engn, Elect & Automat, Russian New Univ, NVK, VIST, Russian Fdn Basic Res, Russian Acad Sci, Sci Res Inst Automat Equipment na acad VS Semenihina, VIMPEL Interstate Corp, Zhejiang Unvi, Zhejiang Unvi, Electromagnet Acad, MIT Ctr Electromagnet Theory & Applicat, Res Lab Elect, Electromagnet Acad ID HUMAN BRAIN; MRI; MAGNETOENCEPHALOGRAPHY; INSTRUMENTATION; MEG AB Nuclear magnetic resonance methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. It is among the most effective diagnostic tools in medicine. Modern medical MRI scanners use strong magnetic fields. Recently it has become possible to perform NMR and MRI in ultra-low field regime that requires measurement field strengths only of the order of 1 gauss. These ultra-low field techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. We describe the world's first multichannel SQUID-based instruments that are capable of performing ULF Mill for different applications. C1 [Matlashov, A. N.; Zotev, V. S.; Kraus, R. H., Jr.; Sandin, H.; Urbaitis, A. V.; Volegov, P. L.; Espy, M. A.] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA. RP Matlashov, AN (reprint author), Los Alamos Natl Lab, Appl Modern Phys Grp, MS D454, Los Alamos, NM 87545 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU ELECTROMAGNETICS ACAD PI CAMBRIDGE PA 777 CONCORD AVENUE, STE 207, CAMBRIDGE, MA 02138 USA BN 978-1-934142-10-3 PY 2009 BP 802 EP 806 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BOF79 UT WOS:000276497300169 ER PT J AU Zhang, XC Hu, JP AF Zhang, Xinchun Hu, Jianping TI Two small protein families, DYNAMIN-RELATED PROTEIN3 and FISSION1, are required for peroxisome fission in Arabidopsis SO PLANT JOURNAL LA English DT Article DE peroxisome fission; Arabidopsis; dynamin-related protein; FISSION1 protein ID PLANT PEROXISOMES; MITOCHONDRIAL DIVISION; MAMMALIAN-CELLS; SACCHAROMYCES-CEREVISIAE; PROLIFERATION; BIOGENESIS; THALIANA; ADL2B; VPS1P; FIS1 AB Peroxisomes are multi-functional organelles that differ in size and abundance depending on the species, cell type, developmental stage, and metabolic and environmental conditions. The PEROXIN11 protein family and the DYNAMIN-RELATED PROTEIN3A (DRP3A) protein have been shown previously to play key roles in peroxisome division in Arabidopsis. To establish a mechanistic model of peroxisome division in plants, we employed forward and reverse genetic approaches to identify more proteins involved in this process. In this study, we identified three new components of the Arabidopsis peroxisome division apparatus: DRP3B, a homolog of DRP3A, and FISSION1A and 1B (FIS1A and 1B), two homologs of the yeast and mammalian FIS1 proteins that mediate the fission of peroxisomes and mitochondria by tethering the DRP proteins to the membrane. DRP3B is partially targeted to peroxisomes and causes defects in peroxisome fission when the gene function is disrupted. drp3A drp3B double mutants display stronger deficiencies than each single mutant parent with respect to peroxisome abundance, seedling establishment and plant growth, suggesting partial functional redundancy between DRP3A and DRP3B. In addition, FIS1A and FIS1B are each dual-targeted to peroxisomes and mitochondria; their mutants show growth inhibition and contain peroxisomes and mitochondria with incomplete fission, enlarged size and reduced number. Our results demonstrate that both DRP3 and FIS1 protein families contribute to peroxisome fission in Arabidopsis, and support the view that DRP and FIS1 orthologs are common components of the peroxisomal and mitochondrial division machineries in diverse eukaryotic species. C1 [Zhang, Xinchun; Hu, Jianping] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Hu, Jianping] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Hu, JP (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM huji@msu.edu FU US Department of Energy; Michigan State University Intramural Research Grant Program (IRGP); National Science Foundation [MCB 0618335] FX We would like to thank the Arabidopsis Biological Resource Center (Ohio State University) for providing mutant seeds and the RNAi vector, Sarah Jacquart for assistance with mutant genotyping, Dr Melinda Frame for help with confocal microscopy, Marlene Cameron for graphic assistance, and Karen Bird for manuscript editing. This work was supported by the US Department of Energy, Michigan State University Intramural Research Grant Program (IRGP), and a grant from the National Science Foundation (MCB 0618335) to J.H. NR 47 TC 38 Z9 44 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD JAN PY 2009 VL 57 IS 1 BP 146 EP 159 DI 10.1111/j.1365-313X.2008.03677.x PG 14 WC Plant Sciences SC Plant Sciences GA 387OY UT WOS:000261962700012 PM 18785999 ER PT B AU Schwender, J AF Schwender, Joerg BE Schwender, J TI Plant Metabolic Networks Introduction SO PLANT METABOLIC NETWORKS LA English DT Editorial Material; Book Chapter C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Schwender, J (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. EM schwend@bnl.gov; schwend@bnl.gov NR 6 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-0-387-78744-2 PY 2009 BP 1 EP 7 DI 10.1007/978-0-387-78745-9_1 D2 10.1007/978-0-387-78745-9 PG 7 WC Plant Sciences SC Plant Sciences GA BKK22 UT WOS:000268362100001 ER PT B AU Rogers, A Gibon, Y AF Rogers, Alistair Gibon, Yves BE Schwender, J TI Enzyme Kinetics: Theory and Practice SO PLANT METABOLIC NETWORKS LA English DT Article; Book Chapter ID ADP-GLUCOSE PYROPHOSPHORYLASE; POSTTRANSLATIONAL REDOX-MODIFICATION; CARBOXYLASE-OXYGENASE; ASSAY; ARABIDOPSIS; DEHYDROGENASE; FLUORESCENCE; SUBUNIT; TOMATO; PHOSPHATASE C1 [Rogers, Alistair] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Gibon, Yves] Max Planck Inst Mol Plant Physiol, Dept 1, D-14059 Golm, Germany. RP Rogers, A (reprint author), Brookhaven Natl Lab, Dept Environm Sci, 50 Bell Ave, Upton, NY 11973 USA. EM arogers@bnl.gov NR 54 TC 20 Z9 20 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-0-387-78744-2 PY 2009 BP 71 EP 103 DI 10.1007/978-0-387-78745-9_4 D2 10.1007/978-0-387-78745-9 PG 33 WC Plant Sciences SC Plant Sciences GA BKK22 UT WOS:000268362100004 ER PT B AU Schwender, J AF Schwender, Joerg BE Schwender, J TI Isotopic Steady-State Flux Analysis SO PLANT METABOLIC NETWORKS LA English DT Article; Book Chapter ID BIDIRECTIONAL REACTION STEPS; PENTOSE-PHOSPHATE PATHWAY; BRASSICA-NAPUS EMBRYOS; MAIZE ROOT-TIPS; NUCLEAR-MAGNETIC-RESONANCE; CENTRAL CARBON METABOLISM; FATTY-ACID SYNTHESIS; CHROMATOGRAPHY-MASS-SPECTROMETRY; CENTRAL CARBOHYDRATE-METABOLISM; C-13 TRACER EXPERIMENTS C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Schwender, J (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. EM schwend@bnl.gov; schwend@bnl.gov NR 149 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-0-387-78744-2 PY 2009 BP 245 EP 284 DI 10.1007/978-0-387-78745-9_9 D2 10.1007/978-0-387-78745-9 PG 40 WC Plant Sciences SC Plant Sciences GA BKK22 UT WOS:000268362100009 ER PT B AU Schwender, J AF Schwender, Joerg BE Schwender, J TI Kinetic Properties of Metabolic Networks SO PLANT METABOLIC NETWORKS LA English DT Article; Book Chapter ID CALVIN PHOTOSYNTHESIS CYCLE; FLUX CONTROL COEFFICIENTS; IN-VIVO; CORYNEBACTERIUM-GLUTAMICUM; SUCROSE ACCUMULATION; ENZYME-ACTIVITIES; LINEAR TREATMENT; POTATO-TUBERS; SYSTEMS; PATHWAYS C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Schwender, J (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. EM schwend@bnl.gov; schwend@bnl.gov NR 48 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-0-387-78744-2 PY 2009 BP 307 EP + DI 10.1007/978-0-387-78745-9_11 D2 10.1007/978-0-387-78745-9 PG 17 WC Plant Sciences SC Plant Sciences GA BKK22 UT WOS:000268362100011 ER PT J AU Gray, J Bevan, M Brutnell, T Buell, CR Cone, K Hake, S Jackson, D Kellogg, E Lawrence, C McCouch, S Mockler, T Moose, S Paterson, A Peterson, T Rokshar, D Souza, GM Springer, N Stein, N Timmermans, M Wang, GL Grotewold, E AF Gray, John Bevan, Michael Brutnell, Thomas Buell, C. Robin Cone, Karen Hake, Sarah Jackson, David Kellogg, Elizabeth Lawrence, Carolyn McCouch, Susan Mockler, Todd Moose, Stephen Paterson, Andrew Peterson, Thomas Rokshar, Daniel Souza, Glaucia Mendes Springer, Nathan Stein, Nils Timmermans, Marja Wang, Guo-Liang Grotewold, Erich TI A Recommendation for Naming Transcription Factor Proteins in the Grasses SO PLANT PHYSIOLOGY LA English DT Editorial Material ID ARABIDOPSIS-THALIANA; GENE FAMILY; MYB GENES; MAIZE; HOMOLOGY; DOMAIN; PLANTS C1 [Grotewold, Erich] Ohio State Univ, Dept Plant Cellular & Mol Biol, Columbus, OH 43210 USA. [Gray, John] Univ Toledo, Dept Biol Sci, Toledo, OH 43606 USA. [Bevan, Michael] John Innes Ctr, Dept Cell & Mol Biol, Norwich NR4 7UH, Norfolk, England. [Brutnell, Thomas] Cornell Univ, Boyce Thompson Inst, Ithaca, NY 14853 USA. [Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Cone, Karen] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. [Kellogg, Elizabeth] Univ Missouri, Dept Biol, Columbia, MO 65211 USA. [Hake, Sarah] Ctr Plant Gene Express, Albany, CA 94710 USA. [Jackson, David; Timmermans, Marja] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Lawrence, Carolyn] Corn Insects & Crop Genet Res Unit, Ames, IA 50201 USA. [Mockler, Todd] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Mockler, Todd] Oregon State Univ, Ctr Genome Res & Biocomp, Corvallis, OR 97331 USA. [McCouch, Susan] Univ Illinois, Dept Crop Sci & Energy, Biosci Inst, Urbana, IL 61801 USA. [Paterson, Andrew] Univ Georgia, Plant Genome Mapping Lab, Athens, GA 30602 USA. [Peterson, Thomas] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA. [Rokshar, Daniel] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Souza, Glaucia Mendes] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-01498 Sao Paulo, Brazil. [Springer, Nathan] Univ Minnesota, Ctr Plant & Microbial Genom, Dept Plant Biol, St Paul, MN 55108 USA. [Stein, Nils] Leibniz Inst Plant Genet & Crop Plant Res, Genebank Dept, D-06466 Gatersleben, Germany. [Wang, Guo-Liang] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA. [Grotewold, Erich] Ohio State Univ, Ctr Plant Biotechnol, Columbus, OH 43210 USA. RP Grotewold, E (reprint author), Ohio State Univ, Dept Plant Cellular & Mol Biol, Columbus, OH 43210 USA. EM grotewold.1@osu.edu RI Souza, Glaucia/E-6780-2012; 2, INCT/G-6506-2013; Bioetanol, Inct/I-1068-2013; Springer, Nathan/F-2680-2013; Brutnell, Thomas/M-2840-2013; FAPESP, BIOEN/H-6149-2012; Mockler, Todd/L-2609-2013; Kellogg, Elizabeth/M-2845-2013 OI Springer, Nathan/0000-0002-7301-4759; Brutnell, Thomas/0000-0002-3581-8211; Mockler, Todd/0000-0002-0462-5775; Kellogg, Elizabeth/0000-0003-1671-7447 NR 15 TC 22 Z9 25 U1 1 U2 8 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JAN PY 2009 VL 149 IS 1 BP 4 EP 6 DI 10.1104/pp.108.128504 PG 3 WC Plant Sciences SC Plant Sciences GA 391VE UT WOS:000262261500002 PM 19126689 ER PT J AU Li, CK Seguin, FH Frenje, JA Manuel, M Petrasso, RD Smalyuk, VA Betti, R Delettrez, J Knauer, JP Marshall, F Meyerhofer, DD Shvarts, D Stoeckl, C Theobald, W Rygg, JR Landen, OL Town, RPJ Amendt, PA Back, CA Kilkenny, JD AF Li, C. K. Seguin, F. H. Frenje, J. A. Manuel, M. Petrasso, R. D. Smalyuk, V. A. Betti, R. Delettrez, J. Knauer, J. P. Marshall, F. Meyerhofer, D. D. Shvarts, D. Stoeckl, C. Theobald, W. Rygg, J. R. Landen, O. L. Town, R. P. J. Amendt, P. A. Back, C. A. Kilkenny, J. D. TI Study of direct-drive capsule implosions in inertial confinement fusion with proton radiography SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 10th International Workshop on Fast Ignition of Fusion Targets CY JUN 09-18, 2008 CL Crete, GREECE ID RHO-R; OMEGA; COMPRESSION; UNIFORMITY; PLASMAS AB Implosions of spherical and cone-in-shell targets in direct-drive inertial confinement fusion (ICF) are studied with proton radiography. Time-gated, 15MeV proton images provide a unique and comprehensive picture of ICF implosions that cover all the implosion phases from acceleration, through coasting, deceleration to stagnation. A self-generated internal radial electric field that reserves the direction during the course of implosions is observed. It is initially directed inward (at similar to 10(9) Vm(-1)), eventually reverses direction (similar to 10(8) V m(-1)) and is probably the consequence of the electron pressure gradient. Monte Carlo simulations quantitatively confirm the observations of the electric field and its evolution. The observations are compared with self-emitted x-rays and hydrodynamic simulations. C1 [Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Smalyuk, V. A.; Betti, R.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Meyerhofer, D. D.; Shvarts, D.; Stoeckl, C.; Theobald, W.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA. [Shvarts, D.] Negev & Ben Gurion Univ, NRCN, IL-84105 Beer Sheva, Israel. [Rygg, J. R.; Landen, O. L.; Town, R. P. J.; Amendt, P. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Back, C. A.; Kilkenny, J. D.] Gen Atom Co, San Diego, CA 92186 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Manuel, Mario/L-3213-2015 OI Manuel, Mario/0000-0002-5834-1161 NR 29 TC 4 Z9 4 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2009 VL 51 IS 1 AR 014003 DI 10.1088/0741-3335/51/1/014003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 385SL UT WOS:000261833800005 ER PT J AU Endrino, JL Horwat, D Anders, A Andersson, J Gago, R AF Luis Endrino, Jose Horwat, D. Anders, A. Andersson, J. Gago, R. TI Impact of Annealing on the Conductivity of Amorphous Carbon Films Incorporating Copper and Gold Nanoparticles Deposited by Pulsed Dual Cathodic Arc SO PLASMA PROCESSES AND POLYMERS LA English DT Article; Proceedings Paper CT 11th International Conference on Plasma Surface Engineering CY SEP 15-19, 2008 CL Garmisch Partenkirchen, GERMANY SP European Joint Comm Plasma & Ion Surface Engn DE diamond-like-carbon; nanoclusters; plasma immersion implantation and deposition; synchrotron; XAFS ID DIAMOND-LIKE CARBON; HIGH-DENSITY PLASMA; LASER DEPOSITION; VACUUM-ARC; DLC FILMS; COATINGS; SILVER; AG AB The influence of annealing in argon at 300 degrees C on the conductivity, phase stability and electronic structure of hydrogen-free amorphous carbon (a-C) films containing copper (a-C:Cu) and gold (a-C:Au) nanoclusters was investigated. The motivation of this work is twofold: (1) to study the thermal stability of a-C:Cu and a-C:Au films and (2) to point out the relevance of X-ray absorption near edge structure (XANES) technique to study the structural evolution of metal-doped a-C nanocomposites. The films were produced at room temperature using a selective-bias pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas grazing incidence X-ray diffraction (GIXRD) was used to monitor phase transformation and identify the dispersion or agglomeration of the crystallites within the carbon matrix. XANES spectra at the C-K was used to investigate the effect of annealing in argon on the electronic structure of the a-C matrix, while Cu K and Au L-edges were investigated on a-C:Cu and a-C:Au samples, respectively, to study the nanocluster evolution. XANES showed that the a-C host matrix increased its graphitic character and that stress was relieved upon annealing. No relevant changes were observed in the Au arrangements in a-C:Au films. In the case of the a-C:Cu samples, the Cu-K XANES spectra indicated the formation of Cu(2)O crystals which correlated well with GIXRD spectra and the decrease in conductivity. C1 [Luis Endrino, Jose; Gago, R.] CSIC, Inst Ciencias Mat Madrid, E-28049 Madrid, Spain. [Luis Endrino, Jose; Anders, A.; Andersson, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. [Horwat, D.] Univ UPV Metz, Inst Jean Lamour, UMR CNRS 7198, Dept CP2S,CNRS Nancy,Ecole Mines Nancy, F-54042 Nancy, France. RP Endrino, JL (reprint author), CSIC, Inst Ciencias Mat Madrid, Plaza Murillo 2, E-28049 Madrid, Spain. EM jlendrino@icmm.csic.es RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009; Endrino, Jose/G-1103-2011; Gago, Raul/C-6762-2008; Horwat, David/I-8740-2012 OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505; Horwat, David/0000-0001-7938-7647; Endrino, Jose/0000-0002-3084-7910; Gago, Raul/0000-0003-4388-8241; NR 34 TC 5 Z9 5 U1 3 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1612-8850 J9 PLASMA PROCESS POLYM JI Plasma Process. Polym. PY 2009 VL 6 SU S BP S438 EP S443 DI 10.1002/ppap.200931003 PG 6 WC Physics, Applied; Physics, Fluids & Plasmas; Physics, Condensed Matter; Polymer Science SC Physics; Polymer Science GA 526PI UT WOS:000272302900088 ER PT S AU Wiederrecht, GP Hranisavljevic, J AF Wiederrecht, Gary P. Hranisavljevic, Jasmina BE Kawata, S Shalaev, VM Tsai, DP TI Ultrafast energy flow in hybrid plasmonic materials SO PLASMONICS: NANOIMAGING, NANOFABRICATION, AND THEIR APPLICATIONS V SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Plasmonics - Nanoimaging, Nanofabrication, and their Applications V CY AUG 02-06, 2009 CL San Diego, CA SP SPIE DE Plasmonics; hybrid nanostructures; excitons ID ENHANCED RAMAN-SCATTERING; SILVER ELECTRODE; ABSORPTION; NANOPARTICLES; SPECTROSCOPY; SPECTRA; FILMS; DYE; FLUORESCENCE; PARTICLES AB Nanoscale materials absorb, propagate, and dissipate energy very differently than their bulk counterparts. Furthermore, hybrid nanostructures consisting of molecular and plasmonic materials with strongly coupled electronic states can produce new optical states and decay pathways that provide additional handles with which to externally control energy flow in complex nanostructured systems. In this talk, we discuss our recent studies of electromagnetic coupling and associated temporal dynamics of molecular excitations with plasmonic resonances supported by either localized or extended planar geometries. Recent experimental results and theoretical analysis for observing and controlling coherences between molecular excitations and plasmonic polarizations are shown. Advances will explore new directions in ultrafast manipulation of energy dissipation processes in hybrid plasmonic structures, as well as ultrafast addressing and switching in plasmonics-based circuit architectures. Also discussed are recent synthetic advances in the creation of hybrid materials. Ultimately, these studies may impact a range of next-generation optical materials and devices, of relevance to new energy conversion materials, nanoscale photocatalysis, or plasmon-enhanced sensors. C1 [Wiederrecht, Gary P.; Hranisavljevic, Jasmina] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Wiederrecht, GP (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 32 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7685-2 J9 P SOC PHOTO-OPT INS PY 2009 VL 7395 AR 73950G DI 10.1117/12.825179 PG 9 WC Nanoscience & Nanotechnology; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Science & Technology - Other Topics; Optics; Radiology, Nuclear Medicine & Medical Imaging GA BVH41 UT WOS:000291561500007 ER PT J AU Das, D Pellegrini, M Gray, JW AF Das, Debopriya Pellegrini, Matteo Gray, Joe W. TI A Primer on Regression Methods for Decoding cis-Regulatory Logic SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID YEAST SACCHAROMYCES-CEREVISIAE; MESSENGER-RNA EXPRESSION; PROTEIN-DNA INTERACTIONS; FACTOR-BINDING SITES; TRANSCRIPTIONAL NETWORKS; COMPUTATIONAL TOOLS; MOTIF DISCOVERY; GENOME; ELEMENTS; IDENTIFICATION C1 [Das, Debopriya; Gray, Joe W.] Ernest O Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Pellegrini, Matteo] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA USA. [Gray, Joe W.] Univ Calif San Francisco, Ctr Comprehens Canc, San Francisco, CA 94143 USA. RP Das, D (reprint author), Ernest O Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. EM ddas@potternexus.lbl.gov FU U. S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [U54 CA 112970] FX DD and JWG were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract DE-AC02-05CH11231, and by the National Institutes of Health, National Cancer Institute grant U54 CA 112970 to JWG. NR 58 TC 13 Z9 13 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JAN PY 2009 VL 5 IS 1 AR e1000269 DI 10.1371/journal.pcbi.1000269 PG 7 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 415HG UT WOS:000263924300003 PM 19180174 ER PT J AU Burnett, JC Miller-Jensen, K Shah, PS Arkin, AP Schaffer, DV AF Burnett, John C. Miller-Jensen, Kathryn Shah, Priya S. Arkin, Adam P. Schaffer, David V. TI Control of Stochastic Gene Expression by Host Factors at the HIV Promoter SO PLOS PATHOGENS LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; NF-KAPPA-B; LONG TERMINAL REPEAT; TAR-INDEPENDENT ACTIVATION; HISTONE DEACETYLASE 1; CREB-BINDING-PROTEIN; RNA-POLYMERASE-II; HUMAN-FACTORS YY1; IN-VITRO; TRANSCRIPTIONAL ACTIVATION AB The HIV promoter within the viral long terminal repeat (LTR) orchestrates many aspects of the viral life cycle, from the dynamics of viral gene expression and replication to the establishment of a latent state. In particular, after viral integration into the host genome, stochastic fluctuations in viral gene expression amplified by the Tat positive feedback loop can contribute to the formation of either a productive, transactivated state or an inactive state. In a significant fraction of cells harboring an integrated copy of the HIV-1 model provirus (LTR-GFP-IRES-Tat), this bimodal gene expression profile is dynamic, as cells spontaneously and continuously flip between active (Bright) and inactive (Off) expression modes. Furthermore, these switching dynamics may contribute to the establishment and maintenance of proviral latency, because after viral integration long delays in gene expression can occur before viral transactivation. The HIV-1 promoter contains cis-acting Sp1 and NF-kappa B elements that regulate gene expression via the recruitment of both activating and repressing complexes. We hypothesized that interplay in the recruitment of such positive and negative factors could modulate the stability of the Bright and Off modes and thereby alter the sensitivity of viral gene expression to stochastic fluctuations in the Tat feedback loop. Using model lentivirus variants with mutations introduced in the Sp1 and NF-kappa B elements, we employed flow cytometry, mRNA quantification, pharmacological perturbations, and chromatin immunoprecipitation to reveal significant functional differences in contributions of each site to viral gene regulation. Specifically, the Sp1 sites apparently stabilize both the Bright and the Off states, such that their mutation promotes noisy gene expression and reduction in the regulation of histone acetylation and deacetylation. Furthermore, the NF-kappa B sites exhibit distinct properties, with kappa B site I serving a stronger activating role than kappa B site II. Moreover, Sp1 site III plays a particularly important role in the recruitment of both p300 and RelA to the promoter. Finally, analysis of 362 clonal cell populations infected with the viral variants revealed that mutations in any of the Sp1 sites yield a 6-fold higher frequency of clonal bifurcation compared to that of the wild-type promoter. Thus, each Sp1 and NF-kappa B site differentially contributes to the regulation of viral gene expression, and Sp1 sites functionally "dampen'' transcriptional noise and thereby modulate the frequency and maintenance of this model of viral latency. These results may have biomedical implications for the treatment of HIV latency. C1 [Burnett, John C.; Miller-Jensen, Kathryn; Shah, Priya S.; Schaffer, David V.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Burnett, John C.; Miller-Jensen, Kathryn; Shah, Priya S.; Schaffer, David V.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Arkin, Adam P.; Schaffer, David V.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Arkin, Adam P.; Schaffer, David V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Burnett, JC (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM aparkin@lbl.gov; schaffer@berkeley.edu RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Burnett, John/0000-0002-8817-6064 FU UC Berkeley Chancellor's Opportunity Fellowship; National Institutes of Health [R01-GM073058] FX This work was supported by the UC Berkeley Chancellor's Opportunity Fellowship (JCB) and National Institutes of Health R01-GM073058. NR 87 TC 60 Z9 60 U1 2 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD JAN PY 2009 VL 5 IS 1 AR e1000260 DI 10.1371/journal.ppat.1000260 PG 18 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 415IP UT WOS:000263927800027 PM 19132086 ER PT S AU Celina, M Dargaville, TR Jones, GD AF Celina, Mathew Dargaville, Tim R. Jones, Gary D. BE Celina, MC Wiggins, JS Billingham, NC TI Degradation of Piezoelectric Fluoropolymers in Space Environments SO POLYMER DEGRADATION AND PERFORMANCE SE ACS Symposium Series LA English DT Proceedings Paper CT Symposium on Polymer Performance Degradation and Materials Selection held at the ACS Spring Meeting CY MAR, 2007 CL Chicago, IL SP Amer Chem Soc ID FLUORIDE POLYMERS; PVDF POLYMERS; VACUUM UV; RADIATION; EXPOSURE; FEP AB The performance criteria of piezoelectric polymers based on polyvinylidene fluoride (PVDF) in complex space environments have been evaluated. Thin films of these materials are being explored as in-situ responsive materials for large aperture space-based telescopes with the shape deformation and optical features dependent on long-term degradation effects, mainly due to thermal cycling, vacuum UV exposure and atomic oxygen. A summary of previous studies related to materials testing and performance prediction based on a laboratory environment is presented. The degradation pathways are a combination of molecular chemical changes primarily induced via radiative damage and physical degradation processes due to temperature and atomic oxygen exposure resulting in depoling, loss of orientation and surface erosion. Experimental validation for these materials to be used in space is being conducted as part of MISSE-6 (Materials International Space Station Experiment) with an overview of the experimental strategies discussed here. C1 [Celina, Mathew; Jones, Gary D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Celina, M (reprint author), Sandia Natl Labs, Dept 1821,POB 5800, Albuquerque, NM 87185 USA. OI Dargaville, Tim/0000-0003-4665-9508 NR 16 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-6978-1 J9 ACS SYM SER PY 2009 VL 1004 BP 100 EP 112 PG 13 WC Polymer Science SC Polymer Science GA BQE85 UT WOS:000280805100009 ER PT S AU Maxwell, RS Chinn, SC Giuliani, JR Herberg, JL AF Maxwell, Robert S. Chinn, Sarah C. Giuliani, Jason R. Herberg, Julie L. BE Celina, MC Wiggins, JS Billingham, NC TI Probing Degradation in Complex Engineering Silicones by (1)H Multiple Quantum NMR SO POLYMER DEGRADATION AND PERFORMANCE SE ACS Symposium Series LA English DT Proceedings Paper CT Symposium on Polymer Performance Degradation and Materials Selection held at the ACS Spring Meeting CY MAR, 2007 CL Chicago, IL SP Amer Chem Soc ID OXIDATIVE-DEGRADATION; THERMAL-DEGRADATION; QUALITY-CONTROL; CROSS-LINKING; ELASTOMERS; POLYMERS; POLY(DIMETHYLSILOXANE); INHOMOGENEITIES; HETEROGENEITIES; SPECTROSCOPY AB Static (1)H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains. C1 [Maxwell, Robert S.; Chinn, Sarah C.; Giuliani, Jason R.; Herberg, Julie L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Maxwell, RS (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. RI Chinn, Sarah/E-1195-2011 NR 35 TC 1 Z9 1 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-6978-1 J9 ACS SYM SER PY 2009 VL 1004 BP 170 EP 179 PG 10 WC Polymer Science SC Polymer Science GA BQE85 UT WOS:000280805100015 ER PT S AU Wrobleski, DA Langlois, DA Orler, EB Labouriau, A Uribe, M Houlton, R Kress, JD Kendrick, B AF Wrobleski, Debra A. Langlois, David A. Orler, E. Bruce Labouriau, Andrea Uribe, Mariana Houlton, Robert Kress, Joel D. Kendrick, Brian BE Celina, MC Wiggins, JS Billingham, NC TI Accelerated Aging and Characterization of a Plasticized Poly(ester urethane) Binder SO POLYMER DEGRADATION AND PERFORMANCE SE ACS Symposium Series LA English DT Proceedings Paper CT Symposium on Polymer Performance Degradation and Materials Selection held at the ACS Spring Meeting CY MAR, 2007 CL Chicago, IL SP Amer Chem Soc ID HYDROLYSIS AB This chapter describes accelerated aging studies of a plasticized commercial poly(ester urethane) (Estane (R) 5703). Oxidative and hydrolytic degradation mechanisms were investigated based on environmental conditions. Both studies evaluate degradation by (1)H NMR and GPC molecular weight analysis. The oxidative degradation study is focused on the kinetics of the oxidation of the hard segments and its impact on mechanical properties. The hydrolytic degradation study is focused on chain scission reactions of the polyester soft segments and agrees with a proposed hydrolysis model. NMR spin-spin relaxation times have been evaluated for hydrolytic degradation of Estane. C1 [Wrobleski, Debra A.; Langlois, David A.; Orler, E. Bruce; Labouriau, Andrea; Uribe, Mariana] Los Alamos Natl Lab, Polymer & Coatings MST 7, Los Alamos, NM 87545 USA. RP Wrobleski, DA (reprint author), Los Alamos Natl Lab, Polymer & Coatings MST 7, Bikini Atoll Rd, Los Alamos, NM 87545 USA. NR 10 TC 2 Z9 2 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-6978-1 J9 ACS SYM SER PY 2009 VL 1004 BP 181 EP 196 PG 16 WC Polymer Science SC Polymer Science GA BQE85 UT WOS:000280805100016 ER PT S AU Kress, JD Wrobleski, DA Langlois, DA Orler, EB Lightfoot, JM Rodin, WA Huddleston, C Woods, L Russell, BG Salazar, MR Pauler, DK AF Kress, J. D. Wrobleski, D. A. Langlois, D. A. Orler, E. B. Lightfoot, J. M. Rodin, W. A. Huddleston, C. Woods, L. Russell, B. G. Salazar, M. R. Pauler, D. K. BE Celina, MC Wiggins, JS Billingham, NC TI Aging of the Binder in Plastic-Bonded Explosive PBX 9501 and Free Radical Oxidation SO POLYMER DEGRADATION AND PERFORMANCE SE ACS Symposium Series LA English DT Proceedings Paper CT Symposium on Polymer Performance Degradation and Materials Selection held at the ACS Spring Meeting CY MAR, 2007 CL Chicago, IL SP Amer Chem Soc ID DECOMPOSITION; HYDROLYSIS AB Estane (R) 5703 is a segmented poly(ester urethane) that binds HMX explosive crystals together and provides mechanical integrity to the composite plastic-bonded explosive PBX 9501. A mixture of bis-2,2-dinitropropyl acetal and formal is used to plasticize the Estane. Upon heating, this nitroplasticizer (NP) loses NO(2) groups and produces oxidizing species that can react with the urethane links of Estane. We report on aging studies of the oxidative degradation of Estane/NP/HMX mixtures for multiple temperatures between 40 degrees and 85 degrees C. Product gases (such as N(2)O, NO, N(2) and CO(2)) were identified and quantified as a function of aging time. Changes in molecular weight of the Estane as a function of aging time were measured by gel permeation chromatography (GPC). Oxidation products of both non-enriched and isotopically enriched Estane and Estane analogues were identified by (1)H NMR and LC/MS techniques and quantified as a function aging time. The gas product evolution rates, Estane crosslinking rates from GPC, and oxidation rates of Estane from NMR are compared. C1 [Kress, J. D.; Wrobleski, D. A.; Langlois, D. A.; Orler, E. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kress, JD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 11 TC 1 Z9 1 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-6978-1 J9 ACS SYM SER PY 2009 VL 1004 BP 227 EP 238 PG 12 WC Polymer Science SC Polymer Science GA BQE85 UT WOS:000280805100020 ER PT J AU Holoubek, J Baldrian, J Lednicky, F Lal, J AF Holoubek, Jaroslav Baldrian, Josef Lednicky, Frantisek Lal, Jyotsana TI Self-assembled structures in blends of disordered and lamellar block copolymers: SAXS, SANS and TEM study SO POLYMER INTERNATIONAL LA English DT Article DE diblock copolymers; copolymer blends; SANS; SAXS; self-assembly; TEM ID SYMMETRIC DIBLOCK COPOLYMERS; PHASE-BEHAVIOR; HOMOPOLYMER BLENDS; ORDERED STRUCTURE; MOLECULAR-WEIGHT; MICROPHASE SEPARATION; INTERACTION PARAMETER; BINARY BLENDS; MORPHOLOGY; DEPENDENCE AB BACKGROUND: The phase behaviour of copolymers and their blends is of great interest due to the phase transitions, self-assembly and formation of ordered structures. Phenomena associated with the microdomain morphology of parent copolymers and phase behaviour in blends of deuterated block copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA), i.e. (dPS-block-dPMMA)(1)/(dPS-block-PMMA)(2), were investigated using small-angle X-ray scattering, small-angle neutron scattering and transmission electron microscopy as a function of molecular weight, concentration of added copolymers and temperature. RESULTS: Binary blends of the diblock copolymers having different molecular weights and different original micromorphology (one copolymer was in a disordered state and the others were of lamellar phase) were prepared by a solution-cast process. The blends were found to be completely miscible on the molecular level at all compositions, if their molecular weight ratio was smaller than about 5. The domain spacing D of the blends can be scaled with M(n) by D similar to M(n)(2/3) as predicted by a previously published postulate (originally suggested and proved for blends of lamellar polystyrene-block-polyisoprene copolymers). CONCLUSIONS: The criterion for forming a single-domain morphology (molecularly mixed blend) taking into account the different solubilization of copolymer blocks has been applied to explain the changes in microdomain morphology during the self-assembling process in two copolymer blends. Evidently the criterion, suggested originally for blends of lamellar polystyrene-block-polyisoprene copolymers, can be employed to a much broader range of block copolymer blends. (C) 2008 Society of Chemical Industry C1 [Holoubek, Jaroslav; Baldrian, Josef; Lednicky, Frantisek] Acad Sci Czech Republic, Inst Macromol Chem, Prague, Czech Republic. [Lal, Jyotsana] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Holoubek, J (reprint author), Acad Sci Czech Republic, Inst Macromol Chem, Heyrovsky Sq 2, Prague, Czech Republic. EM holou@imc.cas.cz FU Academy of Sciences of the Czech Republic [A100500501]; Grant Agency of the Czech Republic [SON/06/E005]; US Department of Energy, BES-Materials Science [W-31-109-Eng-38] FX The authors gratefully acknowledge support of the Grant Agency of the Academy of Sciences of the Czech Republic (grant no. A100500501) and of the Grant Agency of the Czech Republic (SON/06/E005 as part of the GE-Eurocores programme). This work has benefited from the use of the Intense Pulsed Neutron Source at Argonne National Laboratory. This facility is funded by the US Department of Energy, BES-Materials Science, under contract W-31-109-Eng-38. NR 45 TC 5 Z9 5 U1 1 U2 19 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0959-8103 J9 POLYM INT JI Polym. Int. PD JAN PY 2009 VL 58 IS 1 BP 81 EP 87 DI 10.1002/pi.2496 PG 7 WC Polymer Science SC Polymer Science GA 391CZ UT WOS:000262212200011 ER PT J AU Green, O Grubjesic, S Lee, SW Firestone, MA AF Green, Omar Grubjesic, Simonida Lee, Sungwon Firestone, Millicent A. TI The Design of Polymeric Ionic Liquids for the Preparation of Functional Materials SO POLYMER REVIEWS LA English DT Review DE ionic liquids; nanomaterials; polymer composites; polymer electrolytes ID POLY(IONIC LIQUID)S; PHOTOPOLYMERIZATION KINETICS; CRYSTALLINE POLYMERS; THERMAL-PROPERTIES; CARBON NANOTUBES; CATION STRUCTURE; CO2 ABSORPTION; IMIDAZOLIUM; MONOMER; COMPOSITE AB The tunability of the chemical composition of ionic liquids (ILs), achieved by pairing various organic cations with numerous anions, allows for fine control of their physicochemical properties and has been widely used for the adjustment of the IL solvent characteristics. Exploitation of IL structural modularity coupled with chemical modification of the cation or anion to incorporate polymerizable groups is now an active area of research, resulting in the development of polymeric ionic liquids (poly(IL)s). The emergence of poly(IL)s as functional materials in the areas of polymer electrolytes, sorbents, dispersing agents, and nanomaterials is reviewed. C1 [Green, Omar; Grubjesic, Simonida; Lee, Sungwon; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM firestone@anl.gov FU Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy [DE-AC02-06CH1135] FX This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy, under contract No. DE-AC02-06CH1135. NR 87 TC 219 Z9 225 U1 35 U2 256 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1558-3724 J9 POLYM REV JI Polym. Rev. PY 2009 VL 49 IS 4 BP 339 EP 360 AR PII 916549582 DI 10.1080/15583720903291116 PG 22 WC Polymer Science SC Polymer Science GA 524JI UT WOS:000272139200004 ER PT B AU Berryman, JG AF Berryman, J. G. BE Ling, HI Smyth, A Betti, R TI Fluid Effects on Seismic Waves in Hard Rocks with Fractures and in Soft Granular Media SO PORO-MECHANICS IV LA English DT Proceedings Paper CT 4th Biot Conference on Poromechanics CY JUN 08-10, 2009 CL Columbia Univ, New York, NY SP Columbia Univ, Sch Engn & Appl Sci, Univ Oklahoma, Poromechan Inst, ASCE Engn Mech Inst, ADAMA Engn, ERG Construct Trade & Ins Co Inc HO Columbia Univ AB When fractures in otherwise hard rocks are filled with fluids (oil, gas, water, CO(2)), the type and physical state of the fluid (liquid or gas) can make a large difference in the wave speeds and attenuation properties of seismic waves. The present work summarizes methods of deconstructing these effects of fractures, together with any fluids contained within them, on wave propagation as observed in reflection seismic data. Additional studies of waves in fluid-saturated granular media show that the behavior can be quite different from that for fractured media, since these materials are typically much softer mechanically than are the fractured rocks (i.e., having very small drained moduli). Important fluid effects in such media are often governed as much by fluid viscosity as by fluid bulk modulus. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Berryman, JG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90R1116, Berkeley, CA 94720 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU DESTECH PUBLICATIONS, INC PI LANCASTER PA 439 DUKE STREET, LANCASTER, PA 17602-4967 USA BN 978-1-60595-006-8 PY 2009 BP 598 EP 603 PG 6 WC Materials Science, Multidisciplinary; Mechanics; Physics, Fluids & Plasmas SC Materials Science; Mechanics; Physics GA BLG88 UT WOS:000270143600089 ER PT B AU Korneev, VA Ponomarenko, AA Kashtan, BM AF Korneev, V. A. Ponomarenko, A. A. Kashtan, B. M. BE Ling, HI Smyth, A Betti, R TI Stoneley Guided Waves: What is Missing in Biot's Theory? SO PORO-MECHANICS IV LA English DT Proceedings Paper CT 4th Biot Conference on Poromechanics CY JUN 08-10, 2009 CL Columbia Univ, New York, NY SP Columbia Univ, Sch Engn & Appl Sci, Univ Oklahoma, Poromechan Inst, ASCE Engn Mech Inst, ADAMA Engn, ERG Construct Trade & Ins Co Inc HO Columbia Univ ID PROPAGATION; ATTENUATION; BOREHOLE AB Permeability values consistently demonstrate that measurements at field scale (hundreds of meters to kilometers) show an increase of several orders of magnitude compared to values obtained at laboratory scales. This behavior suggests that in reservoirs fluids flow primarily in fractures rather than in pores. Fluid-filled fractures are capable to carry two types of dispersive slow waves: Biot wave and Stoneley guided wave, which is not described by Biot's theory. Results of numerical modeling suggest that Stoneley guided wave has overwhelmingly large amplitude compared to all other waves excited by a source in a fracture. It is likely that Stoneley guided wave is a key phenomenon which might explain observed frequency-dependence and nonlinear behavior of fluid reservoirs. C1 [Korneev, V. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Korneev, VA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Kashtan, Boris/M-9147-2013 OI Kashtan, Boris/0000-0001-5138-3118 NR 21 TC 5 Z9 5 U1 0 U2 0 PU DESTECH PUBLICATIONS, INC PI LANCASTER PA 439 DUKE STREET, LANCASTER, PA 17602-4967 USA BN 978-1-60595-006-8 PY 2009 BP 706 EP 711 PG 6 WC Materials Science, Multidisciplinary; Mechanics; Physics, Fluids & Plasmas SC Materials Science; Mechanics; Physics GA BLG88 UT WOS:000270143600106 ER PT S AU Chemerisov, S Jonah, CD AF Chemerisov, S. Jonah, Charles D. BE Wang, SJ Chen, ZQ Wang, B Jean, YC TI Development of the positron facility at the Argonne National Laboratory's 20 MeV linac SO POSITRON AND POSITRONIUM CHEMISTRY SE Materials Science Forum LA English DT Proceedings Paper CT 9th International Workshop on Positron and Positronium Chemistry CY MAY 11-15, 2008 CL Wuhan Univ, Wuhan, PEOPLES R CHINA SP Hubei Provincial Govt, Chinese Nucl Phys Soc, Natl Nat Sci Fdn China, Adv Measurement Technol Inc HO Wuhan Univ DE Positron generation; moderation efficiency ID MODERATOR; ATOMS; BEAMS; TRAP AB We present an update on positron-facility development at Argonne National Laboratory. We will discuss advantages of using low energy electron accelerator, present our latest results on slow positron production simulations, and plans for further development of the facility. We have installed a new converter/moderator assembly that is appropriate for our electron energy and that allows increasing the yield about an order of magnitude. We have obtained a Penning trap and buncher from LLNL that we plan to install. We have simulated the relative yields of thermalized positrons as a function of incident positron energy on the moderator. We use these data to calculate positron yields that we compare with our experimental data as well as with available literature data. We will discuss the new design of the next generation positron front end utilizing reflection moderation geometry. C1 [Chemerisov, S.; Jonah, Charles D.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Chemerisov, S (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Chemerisov@anl.gov; CDJonah@anl.gov NR 17 TC 1 Z9 1 U1 0 U2 0 PU TRANS TECH PUBLICATIONS LTD PI STAFA-ZURICH PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND SN 0255-5476 J9 MATER SCI FORUM PY 2009 VL 607 BP 243 EP 247 PG 5 WC Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Materials Science; Physics GA BJC57 UT WOS:000264749800068 ER PT S AU Mahalatkar, K O'Brien, T Huckaby, ED Kuhman, J AF Mahalatkar, Kartikeya O'Brien, Thomas Huckaby, E. David Kuhman, John BE Nakagawa, M Luding, S TI Simulation of the Fuel Reactor of a Coal-Fired Chemical Looping Combustor SO POWDERS AND GRAINS 2009 SE AIP Conference Proceedings LA English DT Proceedings Paper CT 6th International Conference on the Micromechanics of Granular Media CY JUL 13-17, 2009 CL Golden, CO SP Assoc Study Micromech Granular Media, Univ Twente, Colorado Sch Mines DE carbon capture; carbon management; CO2 sequestration; chemical looping; fossil fuels; power generation ID POWER-GENERATION SYSTEM; OXYGEN CARRIERS; SOLID FUELS; REDUCTION; IRON; NICKEL AB Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO2 separation is the more costly component of CM, not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO2-rich gas stream. However, recently a process termed Chemical Looping Combustion (CLC) has been proposed, in which an oxygen-carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H2O and CO2 but requires two reaction vessels, an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal, the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot, vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel, yielding an exhaust gas stream of mainly H2O and CO2. This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration, hence the term "looping." The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However, CO2 separation is easily achieved, the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas-solid or granular flow. To utilize coal in the fuel reactor, in either a moving bed or bubbling fluidized bed, the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide, driving off moisture and volatile material. The remaining char must be gasified by H2O (or CO2), which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H2O and CO2. Further, the reduced M particles must be removed from the bed and returned to the air reactor without any accompanying unburned fuel. This paper presents a simulation of the gas-particle granular flow, with heat transfer and chemical reactions, in the FR. Accurate simulation of the segregation processes, depending on particle density and size differences between the carrier and the fuel, allows the design of a reactor with the desired behavior. C1 [Mahalatkar, Kartikeya; O'Brien, Thomas; Huckaby, E. David; Kuhman, John] ANSYS Fluent Inc, 3647 Collins Ferry Rd, Morgantown, WV 26505 USA. [O'Brien, Thomas; Huckaby, E. David] Natl Energy Technol Lab, POB 880, Morgantown, WV 26507 USA. [Kuhman, John] West Virginia Univ, Morgantown, WV 26506 USA. RP Mahalatkar, K (reprint author), ANSYS Fluent Inc, 3647 Collins Ferry Rd, Morgantown, WV 26505 USA. NR 23 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0682-7 J9 AIP CONF PROC PY 2009 VL 1145 BP 83 EP + PG 2 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA BLN80 UT WOS:000270602900014 ER PT S AU Snezhko, A Aranson, I Belkin, M AF Snezhko, Alexey Aranson, Igor Belkin, Maxim BE Nakagawa, M Luding, S TI Emergent Phenomena in Far-From-Equilibrium Magnetic Granular Ensembles at a Liquid-Air Interface SO POWDERS AND GRAINS 2009 SE AIP Conference Proceedings LA English DT Proceedings Paper CT 6th International Conference on the Micromechanics of Granular Media CY JUL 13-17, 2009 CL Golden, CO SP Assoc Study Micromech Granular Media, Univ Twente, Colorado Sch Mines DE dynamic self-assembly; magnetic microparticles; magnetic swimmer AB Remarkable nontrivially ordered self-assembled structures are formed in ensembles of magnetic microparticles suspended at a liquid/air interface and energized by an alternating magnetic field. These dynamic structures emerge as a result of a competition between magnetic and hydrodynamic forces. Each structure (snake) is accompanied by a hydrodynamic vortex quadrupole. Under certain conditions snakes spontaneously break the symmetry of surface flows and turn into swimmers. Observed phenomena have been successfully described by a phenomenological model. C1 [Snezhko, Alexey; Aranson, Igor; Belkin, Maxim] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Snezhko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013 NR 11 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0682-7 J9 AIP CONF PROC PY 2009 VL 1145 BP 143 EP 146 PG 4 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA BLN80 UT WOS:000270602900028 ER PT S AU Pannala, S Daw, CS Finney, CEA Benyahia, S Syamlal, M O'Brien, TJ AF Pannala, Sreekanth Daw, C. Stuart Finney, Charles E. A. Benyahia, Sofiane Syamlal, Madhava O'Brien, Thomas J. BE Nakagawa, M Luding, S TI Modeling the Collisional-Plastic Stress Transition for Bin Discharge of Granular Material SO POWDERS AND GRAINS 2009 SE AIP Conference Proceedings LA English DT Proceedings Paper CT 6th International Conference on the Micromechanics of Granular Media CY JUL 13-17, 2009 CL Golden, CO SP Assoc Study Micromech Granular Media, Univ Twente, Colorado Sch Mines DE Multiphase simulations; gas-solids computations; computational fluid dynamics; kinetic theory of granular materials; granular stress modeling ID FLUIDIZED-BEDS; FLOW AB We propose a heuristic model for the transition between collisional and frictional/plastic stresses in the flow of granular material. Our approach is based on a physically motivated, nonlinear 'blending' function that produces a weighted average of the limiting stresses, depending on the local void fraction in the flow field. Previously published stress models are utilized to describe the behavior in the collisional (Lun et al., 1984) and quasi-static limits (Schaeffer, 1987 and Syamlal et al., 1993). Sigmoidal and hyperbolic tangent functions are used to mimic the observed smooth yet rapid transition between the collisional and plastic stress zones. We implement our stress transition model in an open-source multiphase flow solver, MFIX (Multiphase Flow with Interphase eXchanges, www.mfix.org) and demonstrate its application to a standard bin discharge problem. The model's effectiveness is illustrated by comparing computational predictions to the experimentally derived Beverloo correlation. With the correct choice of function parameters, the model predicts bin discharge rates within the error margins of the Beverloo correlation and is more accurate than one of the alternative granular stress models proposed in the literature. Although a second granular stress model in the literature is also reasonably consistent with the Beverloo correlation, we propose that our alternative blending function is likely to be more adaptable to situations with more complex solids properties (e.g., 'sticky' solids). C1 [Pannala, Sreekanth; Daw, C. Stuart; Finney, Charles E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pannala, S (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Pannala, Sreekanth/F-9507-2010 NR 11 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0682-7 J9 AIP CONF PROC PY 2009 VL 1145 BP 657 EP 660 PG 4 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA BLN80 UT WOS:000270602900149 ER PT S AU Humrickhouse, PW AF Humrickhouse, Paul W. BE Nakagawa, M Luding, S TI 'Granular Elasticity' and the loss of elastic stability in granular materials SO POWDERS AND GRAINS 2009 SE AIP Conference Proceedings LA English DT Proceedings Paper CT 6th International Conference on the Micromechanics of Granular Media CY JUL 13-17, 2009 CL Golden, CO SP Assoc Study Micromech Granular Media, Univ Twente, Colorado Sch Mines DE Granular Elasticity; Hyperelastic Models; Non-linear Elasticity; Thermodynamic Stability ID PRESSURE; SOILS AB A recently proposed hyperelastic model for granular materials, called "granular elasticity", identifies a yield angle as a result of thermodynamic instability. GE gives yield angles that are smaller than those found in real materials; a generalization of the theory is considered here that includes dependence on the third strain invariant. This generalization proves unsuccessful, as it gives smaller, not larger, yield angles. Fully convex hyperelastic models are identified as a point for future investigation. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Humrickhouse, PW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 12 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0682-7 J9 AIP CONF PROC PY 2009 VL 1145 BP 1104 EP 1107 PG 4 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA BLN80 UT WOS:000270602900253 ER PT B AU Santori, C Fattal, D Vuckovic, J Pelton, M Solomon, GS Waks, E Press, D Yamamoto, Y AF Santori, Charles Fattal, David Vuckovic, Jelena Pelton, Matthew Solomon, Glenn S. Waks, Edo Press, David Yamamoto, Yoshihisa BE Matsko, AB TI Pillar Microcavities for Single-Photon Generation SO PRACTICAL APPLICATIONS OF MICRORESONATORS IN OPTICS AND PHOTONICS SE Optical Science and Engineering-CRC LA English DT Article; Book Chapter ID QUANTUM KEY DISTRIBUTION; CRITICAL LAYER THICKNESS; SPONTANEOUS-EMISSION; TURNSTILE DEVICE; CAVITY SYSTEM; FLUORESCENCE INTERMITTENCY; MONOLAYER COVERAGE; COULOMB-BLOCKADE; INAS ISLANDS; DOTS C1 [Santori, Charles; Fattal, David] Hewlett Packard Labs, Palo Alto, CA USA. [Vuckovic, Jelena; Press, David; Yamamoto, Yoshihisa] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. [Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Solomon, Glenn S.] Natl Inst Stand & Technol, Joint Quantum Inst, Gaithersburg, MD 20899 USA. [Solomon, Glenn S.] Univ Maryland, Gaithersburg, MD USA. [Waks, Edo] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Santori, C (reprint author), Hewlett Packard Labs, Palo Alto, CA USA. NR 131 TC 1 Z9 1 U1 0 U2 2 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6578-7 J9 OPT SCI ENG-CRC PY 2009 VL 146 BP 53 EP 132 D2 10.1201/9781420065794 PG 80 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BJT77 UT WOS:000267143400002 ER PT B AU Lester, WA AF Lester, William A., Jr. BE Leszczynski, J Shukla, MK TI Quantum Monte Carlo for Electronic Structure SO PRACTICAL ASPECTS OF COMPUTATIONAL CHEMISTRY: METHODS, CONCEPTS AND APPLICATIONS LA English DT Article; Book Chapter ID LOCAL ENERGY; RANDOM-WALK; MOLECULES; LOCALIZATION; POTENTIALS; ALGORITHM; SYSTEMS AB It is anticipated that quantum Monte Carlo methods will experience a tremendous growth in usage with the need for high accuracy in the determination of the electronic structure of atoms, molecules, and solids in increasingly more complicated systems. Complexity arising in biological systems, nanosystems in a variety of geometries, and a range of chemical composition will dictate the use of these methods because they provide the capability of rapid adaptation to large multiprocessor computing environments. C1 [Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Lester, William A., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov NR 35 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-2686-6 PY 2009 BP 315 EP 325 DI 10.1007/978-90-481-2687-3_15 PG 11 WC Chemistry, Applied; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Chemistry; Computer Science GA BMY74 UT WOS:000273946000015 ER PT J AU Soni, A AF Soni, Amarjit TI Precocious signs of new physics: Are we eight now? SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article DE CP; warped; extra dimension; fourth family ID TOP-QUARK; B-DECAYS; QCD FACTORIZATION; CP ASYMMETRIES; 4TH GENERATION; MODEL; SYMMETRY AB Although the CKM-paradigm seems to work to an accuracy of about 15-20%, we emphasize that there are by now several indications that suggest the need for a beyond the Standard Model CP-odd phase. The value of sin 2 beta measured via the gold-plated (tree) mode, B ->psi K-s is smaller than the value deduced by using improved lattice matrix elements. The value of sin 2 beta measured via 'penguin-dominated' (loop) decays tends to be even smaller still. There is also a rather large difference between the direct CP asymmetries in (B) over bar (0) -> K-pi(+) and B- -> K-pi(0) that is rather difficult to understand. More recently, CDF and D0 are finding about a 2 sigma signal in CP asymmetry in the corresponding gold-plated mode B-s -> psi phi. If true, this would be consistent with the indications of new CP-phase in penguin b -> s transitions seen at B-factories. After describing these possible signs of trouble for the SM-CKM paradigm, we give a brief discussion of some of the BSM scenarios that could be the underlying cause of these deviations. In particular, we find that the data are quite suggestive of a fourth family with m(t)' in the range of 400-600 GeV as perhaps the simplest BSM candidate which 'naturally' explains the data. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Soni, A (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM soni@bnl.gov FU US DOE [DE-AC02-98CH10886] FX I want to thank my collaborators, Anjan Giri, Ashutosh Alok, Rukmani Mohanta and Soumitra Nandi for many discussions. This work is supported in part by the US DOE grant DE-AC02-98CH10886. NR 56 TC 3 Z9 3 U1 0 U2 0 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 EI 0973-7111 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD JAN PY 2009 VL 72 IS 1 BP 161 EP 168 PG 8 WC Physics, Multidisciplinary SC Physics GA 418XT UT WOS:000264184000013 ER PT B AU Gibbons, DE AF Gibbons, Deborah E. BE Graen, GB Graen, JA TI STRATEGIC DEVELOPMENT OF NETWORK STRUCTURES THAT SUPPORT LEARNING AND ADAPTATION SO PREDATOR'S GAME-CHANGING DESIGNS: RESEARCH-BASED TOOLS SE LMX Leadership Series LA English DT Article; Book Chapter ID INFORMATION OVERLOAD; ORGANIZATION; COMMUNICATION AB As organizations' environments become more complex and dynamic, rapid responses that are increasingly needed can become decreasingly manageable by formal leaders alone. Many businesses, nonprofit organizations, and government agencies manage everyday activities through long-standing structures and policies that are not conducive to learning and adaptation. Even in organizations that regularly review and update their formal designs, prescribed structures cannot equal the adaptive and responsive capabilities of informal ties among organization members and between members and external entities. The informal networks change and grow as information and opportunities present themselves, creating fluid and adaptive conduits for subsequent diffusion of ideas and coordination of action. In this chapter; I describe research-based strategies to help emergent leaders develop effective informal networks that benefit participating individuals and the organizations that they support. C1 [Gibbons, Deborah E.] USN, Postgrad Sch, Monterey, CA USA. [Gibbons, Deborah E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Gibbons, Deborah E.] CDC, Atlanta, GA 30333 USA. NR 25 TC 0 Z9 0 U1 0 U2 1 PU INFORMATION AGE PUBLISHING-IAP PI CHARLOTTE PA PO BOX 79049, CHARLOTTE, NC 28271-7047 USA BN 978-1-60752-150-1 J9 LMX LEADERSH SER PY 2009 BP 19 EP 42 PG 24 WC Management SC Business & Economics GA BLI21 UT WOS:000270228800002 ER PT J AU Runge, JW Buddemeier, BR AF Runge, Jeffrey W. Buddemeier, Brooke R. TI Explosions and Radioactive Material: A Primer for Responders SO PREHOSPITAL EMERGENCY CARE LA English DT Article DE radioactivity; explosions; blast injuries; disaster planning; terrorism; cesium isotopes ID RADIOLOGICAL DISPERSAL DEVICE; CASUALTIES; ACCIDENT; CONTAMINATION; RADIATION AB A comprehensive primer on the threat posed by radiological dispersion devices, or odirty bombs,o and the management challenges for first responders is presented. The discussion is scenario-driven, presenting guidance for medical responders as to triage and treatment priorities in the face of radiation risk. Key questions are posed that present the need for operational and tactical planning, equipping, and training around this scenario. Decontamination priorities and potential medical management are discussed for both victims and responders. C1 [Runge, Jeffrey W.] Biologue Inc, Mclean, VA USA. [Buddemeier, Brooke R.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Runge, JW (reprint author), 8000 Greenwich Woods Dr, Mclean, VA 22102 USA. EM jeffreywrunge@gmail.com FU Radiological Threat Awareness Coalition; U.S. Department of Energy [DEAC52- 07NA27344]; United States government FX This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 47 TC 5 Z9 5 U1 1 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1090-3127 J9 PREHOSP EMERG CARE JI Prehosp. Emerg. Care PY 2009 VL 13 IS 4 BP 407 EP 419 AR PII 914289012 DI 10.1080/10903120902935371 PG 13 WC Emergency Medicine; Public, Environmental & Occupational Health SC Emergency Medicine; Public, Environmental & Occupational Health GA 491TM UT WOS:000269602500001 PM 19731151 ER PT J AU Field, RV Grigoriu, M AF Field, R. V., Jr. Grigoriu, M. TI Reliability of dynamic systems under limited information SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Nonlinear systems; Random vibration; Reliability; Translation processes ID RANDOM VIBRATION; MODEL AB A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of relevant examples and compare with results given by traditional statistical estimators. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grigoriu, M.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rvfield@sandia.gov; mdg12@cornell.edu OI Field, Richard/0000-0002-2765-7032 NR 26 TC 4 Z9 4 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JAN PY 2009 VL 24 IS 1 BP 16 EP 26 DI 10.1016/j.probengmech.2007.12.006 PG 11 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 389WC UT WOS:000262124200003 ER PT S AU Panaitescu, A AF Panaitescu, A. BE Antonelli, LA Limongi, M Menci, N Tornambe, A Brocato, E Raimondo, G TI Theory of Gamma-Ray Burst Afterglows SO PROBING STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Probing Stellar Populations Out to the Distant Universe CY SEP 07-19, 2008 CL Cefalu, ITALY SP Italian Inst Astrophys, Italian Inst Astrophys, Astron Observ Rome, Italian Inst Astrophys, Astron Observ Palermo, Italian Inst Astrophys, Astron Observ Teramo, Univ Cagliari, Dept Phys, Univ Palermo, Dept Phys & Astron Sci, Cefalu Local Author, Mondralisco Fdn, Assoc Cefalu & Astron DE gamma-rays: bursts; afterglows ID FIREBALL MODEL; LIGHT CURVES; OPTICAL FLASHES; RADIO AFTERGLOW; EMISSION; SHOCK; SWIFT AB I discuss some theoretical expectations for the synchrotron emission from a relativistic blast-wave interacting with the ambient medium, as a model for GRB afterglows, and compare them with observations. An afterglow flux evolving as a power-law in time, a bright optical flash during and after the burst, and light-curve breaks owing to a tight ejecta collimation are the major predictions that were confirmed observationally, but it should be recognized that light-curve decay indices are not correlated with the spectral slopes (as would be expected), optical flashes are quite rare, and jet-breaks harder to find in Swift X-ray afterglows. The slowing of the early optical flux decay rate is accompanied by a spectral evolution, indicating that the emission from ejecta (energized by the reverse shock) is dominant in the optical over that from the forward shock (which energizes the ambient medium) only up to 1 ks. However, a long-lived reverse shock is required to account for the slow radio flux decays observed in many afterglows after similar to 10 day. C1 Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. RP Panaitescu, A (reprint author), Los Alamos Natl Lab, ISR 1, MS D466,LANL, Los Alamos, NM 87545 USA. EM alin@lanl.gov NR 35 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0648-3 J9 AIP CONF PROC PY 2009 VL 1111 BP 362 EP 369 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BJK00 UT WOS:000266597500060 ER PT S AU Bruenn, SW Mezzacappa, A Hix, WR Blondin, JM Marronetti, P Messer, OEB Dirk, CJ Yoshida, S AF Bruenn, S. W. Mezzacappa, A. Hix, W. R. Blondin, J. M. Marronetti, P. Messer, O. E. B. Dirk, C. J. Yoshida, S. BE Antonelli, LA Limongi, M Menci, N Tornambe, A Brocato, E Raimondo, G TI Mechanisms of Core-Collapse Supernovae & Simulation Results from the CHIMERA Code SO PROBING STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Probing Stellar Populations Out to the Distant Universe CY SEP 07-19, 2008 CL Cefalu, ITALY SP Italian Inst Astrophys, Italian Inst Astrophys, Astron Observ Rome, Italian Inst Astrophys, Astron Observ Palermo, Italian Inst Astrophys, Astron Observ Teramo, Univ Cagliari, Dept Phys, Univ Palermo, Dept Phys & Astron Sci, Cefalu Local Author, Mondralisco Fdn, Assoc Cefalu & Astron DE core-collapse; supernovae; neutrinos ID SPECTRAL NEUTRINO TRANSPORT; ADVECTIVE-ACOUSTIC CYCLE; DRIVEN EXPLOSIONS; MASSIVE STARS; RADIATION HYDRODYNAMICS; MAGNETIC-FIELDS; ACCRETION SHOCK; CONVECTION; INSTABILITY; EVOLUTION AB Unraveling the mechanism for core-collapse supernova explosions is an outstanding computational challenge and the problem remains essentially unsolved despite more than four decades of effort. However, much progress in realistic modeling has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements have led to some key insights which may clarify the picture in the not too distant future. Here we briefly review the current status of the three explosion mechanisms (acoustic, MHD, and neutrino heating) that are currently under active investigation, concentrating on the neutrino heating mechanism as the one most likely responsible for producing explosions from progenitors in the mass range similar to 10 to similar to 25 M-circle dot. We then briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We finally describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M-circle dot progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 10,000 km. We finally very briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M-circle dot progenitor. C1 [Bruenn, S. W.; Marronetti, P.; Dirk, C. J.] Florida Atlantic Univ, Dept Phys, 777 W Glades Rd, Boca Raton, FL 33431 USA. [Mezzacappa, A.; Hix, W. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Blondin, J. M.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Messer, O. E. B.] Oak Ridge Natl Lab, Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Yoshida, S.] Albert Einstein Inst, Max Planck Inst Gravitatphy, Golm, Germany. RP Bruenn, SW (reprint author), Florida Atlantic Univ, Dept Phys, 777 W Glades Rd, Boca Raton, FL 33431 USA. EM bruenn@fau.edu RI Hix, William/E-7896-2011; Yoshida, Shin'ichirou/G-2396-2011; Messer, Bronson/G-1848-2012; Mezzacappa, Anthony/B-3163-2017 OI Hix, William/0000-0002-9481-9126; Messer, Bronson/0000-0002-5358-5415; Mezzacappa, Anthony/0000-0001-9816-9741 FU DOE Office of Science Scientific Discovery; NASA award [07- ATFP07-0011]; TACC Ranger [TG-MCA08X010]; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725]; [NSF-OCI-0749204] FX The authors would like to acknowledge partial funded by a grant from the DOE Office of Science Scientific Discovery through Advanced Computing Program. S. W. B. and P. M. acknowledge partial support from an NSF-OCI-0749204 award, a NASA award (07- ATFP07-0011), and a TACC Ranger (TG-MCA08X010) computational award. A.M., W.R.H., and O.E.B.M. are supported at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 57 TC 20 Z9 20 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0648-3 J9 AIP CONF PROC PY 2009 VL 1111 BP 593 EP + PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BJK00 UT WOS:000266597500097 ER PT J AU Fluss, MJ McCall, SK AF Fluss, M. J. McCall, S. K. TI EXPERIMENTAL DETERMINATION OF METAL FUEL POINT DEFECT PARAMETERS SO PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY LA English DT Article CT IAEA Technical Meeting on Accelerator Simulation and Theoretical Medeling of Radiation Effect CY JUN 09-13, 2008 CL Kharkov Inst Phys & Technol, Natl Res Ctr, Kharkov, UKRAINE SP IAEA HO Kharkov Inst Phys & Technol, Natl Res Ctr ID PLUTONIUM; IRRADIATION AB Nuclear metallic fuels are one of many options for advanced nuclear fuel cycles because they provide dimensional stability, mechanical integrity, thermal efficiency, and irradiation resistance while the associated pyro-processing is technically relevant to concerns about proliferation and diversion of special nuclear materials. In this presentation we will discuss recent success that we have had in studying isochronal annealing of damage cascades in Pu and Pu(Ga) arising from the self-decay of Pu as well as the annealing characteristics of non-interacting point defect populations produced by ion accelerator irradiation. Comparisons of the annealing properties of these two populations of defects arising from very different source terms are enlightening and point to complex defect and mass transport properties in the plutonium specimens which we are only now starting to understand as a result of many follow-on studies. More importantly however, the success of these measurements points the way to obtaining important mass transport parameters for comparison with theoretical predictions or to use directly in existing and future materials modelling of radiation effects in nuclear metallic fuels. The way forward on such measurements and the requisite theory and modelling will be discussed. We bring to the attention of the reader that this article is based wholly or in part on earlier publications of the authors. C1 [Fluss, M. J.; McCall, S. K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Fluss, MJ (reprint author), Lawrence Livermore Natl Lab, East Ave, Livermore, CA 94551 USA. RI McCall, Scott/G-1733-2014 OI McCall, Scott/0000-0002-7979-4944 NR 11 TC 0 Z9 0 U1 1 U2 3 PU KHARKOV INST PHYSICS & TECHNOLOGY PI KHARKOV PA NATL SCIENCE CTR, 1 AKADEMICHESKAYA ST, KHARKOV, 61108, UKRAINE SN 1562-6016 J9 PROBL AT SCI TECH JI Probl. At. Sci. Tech. PY 2009 IS 4 BP 61 EP 67 PG 7 WC Nuclear Science & Technology; Physics, Fluids & Plasmas; Physics, Nuclear; Physics, Particles & Fields SC Nuclear Science & Technology; Physics GA 512EU UT WOS:000271228300007 ER PT B AU Liese, E AF Liese, Eric GP ASME TI COMPARISON OF PRE-ANODE AND POST-ANODE CARBON DIOXIDE SEPARATION FOR IGFC SYSTEMS SO PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst ID HYBRID SYSTEM; FUEL-CELL; PERFORMANCE; SOFC AB This paper examines the arrangement of a solid oxide fuel cell (SOFC) within a coal gasification cycle, this combination generally being called an integrated gasification fuel cell cycle (IGFC). This work relies on a previous study performed by the National Energy Technology Laboratory (NETL) that details thermodynamic simulations of IGCC systems and considers various gasifier types and includes cases for 90% CO(2) capture [1]. All systems in this study assume a Conoco Philips gasifier and cold gas clean up conditions for the coal gasification system (Cases 3 and 4 in the NETL IGCC report). Four system arrangements, cases, are examined. Cases 1 and 2 remove the CO2 after the SOFC anode. Case 3 assumes steam addition, a water-gas-shift (WGS) catalyst and a Selexol process to remove the CO(2) in the gas cleanup section, sending a hydrogen-rich gas to the fuel cell anode. Case 4 assumes Selexol in the cold-gas cleanup section as in Case 3; however, there is no steam addition and the WGS takes places in the SOFC, and after the anode. Results demonstrate significant efficiency advantages compared to IGCC with CO(2) capture. The hydrogen-rich case (Case 3) has better net electric efficiency compared to typical post-anode CO(2) capture cases (Cases 1 and 2), with a simpler arrangement and similar SOFC area. Case 4 gives an efficiency similar to Case 3, but at a lower SOFC power density, or a lower efficiency at the same power density. Carbon deposition concerns are also discussed. C1 Natl Energy Technol Lab, Morgantown, WV USA. RP Liese, E (reprint author), Natl Energy Technol Lab, Morgantown, WV USA. EM eric.liese@netl.doe.gov NR 19 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4885-2 PY 2009 BP 77 EP 88 PG 12 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BON26 UT WOS:000277058700007 ER PT B AU Shelton, W Le, P Lear, WE Dennis, R Wimer, J AF Shelton, Walter Le, Patrick Lear, William E. Dennis, Richard Wimer, John GP ASME TI AN EXPLORATORY STUDY OF AN OXYFUEL COMBUSTION TURBINE CYCLE WITH VAPOR ABSORPTION REFRIGERATION AND WATER PRODUCTION SO PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst AB The preliminary findings of an exploratory study conducted on a novel Oxyfuel Combustion Turbine Cycle (OCTC) using ASPEN PLUS for a range of 40% to 90% CO(2) capture are presented. Starting from a GE Energy IGCC, the OCTC retains the Gasifier with a Radiant Cooler-only section and the Warm-Gas-Clean Up (WGCU) section with the desulfurization process eliminated for a combined carbon and sulfur co-sequestration approach. The conventional gas turbine combined cycle is also removed. With no integration between the Air Separation Unit (ASU) and the modified oxyfuel combustion turbine, the High Pressure (HP) ASU is replaced by a Low pressure (LP) ASU. The added attributes of this novel coal-based power system configuration are (1) the Vapor Absorption Refrigeration System (VARS), (2) the associated water production in the VARS evaporator, (3) the recirculation of combustor flue gas for lower NOx emissions and additional power production, as well as (4) an original concept of carbon dioxide compression as proposed by SouthWest Research Institute (SwRI) and Dresser Rand (D-R). Assuming a reasonable Coefficient of Performance (COP) for the VARS, the overall process efficiency results (about 35% HHV) were equivalent or even better when compared with studies of current simulated IGCC systems with CO(2) capture. Once an optimum scheme has been finalized in future activities, an economic analysis would be conducted. The combined performance and economic results could then be compared with alternate advanced coal based power systems. C1 [Shelton, Walter; Le, Patrick; Dennis, Richard; Wimer, John] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Lear, WE (reprint author), Univ Florida, Dept Mech & Aerosp Engn, POB 116300, Gainesville, FL 32611 USA. EM lear@ufl.edu NR 30 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4885-2 PY 2009 BP 207 EP 221 PG 15 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BON26 UT WOS:000277058700019 ER PT B AU Alvin, MA AF Alvin, M. A. GP ASME TI MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS SO PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst AB Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760 degrees C with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate matenals have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Alvin, MA (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4885-2 PY 2009 BP 737 EP 746 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BON26 UT WOS:000277058700070 ER PT B AU Pint, BA Brady, MP Yamamoto, Y Santella, ML Howe, JY Trejo, R Maziasz, PJ AF Pint, Bruce A. Brady, Michael P. Yamamoto, Yukinori Santella, Michael L. Howe, Jane Y. Trejo, Rosa Maziasz, Philip J. GP ASME TI DEVELOPMENT OF ALUMINA-FORMING AUSTENITIC ALLOYS FOR ADVANCED RECUPERATORS SO PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 5 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst ID FE-CR ALLOYS; STAINLESS-STEELS; WATER-VAPOR; OXIDATION BEHAVIOR; CREEP-RESISTANT; SCALE FORMATION; TEMPERATURE; VOLATILIZATION; TECHNOLOGIES; AIR AB A new class of corrosion- and creep-resistant austenitic stainless steels has been developed for advanced recuperator applications. The Al and Cr contents have been optimized to maintain a fully austenitic composition for creep strength while allowing the formation of a highly-protective external alumina scale at temperatures up to 900 degrees C in the presence of water vapor. Strengthening was achieved via the formation of stable nano-scale MC type carbides and creep properties were comparable to commercially available advanced austenitic stainless steel alloys. These properties are particularly well-suited for thin-walled recuperators for both small and large gas turbines and fuel cells. By forming an alumina scale, long-term problems with Cr evaporation in the presence of water vapor in the exhaust gas are eliminated. Laboratory data are presented from humid air and microturbine exhaust gas to illustrate the oxidation resistance of this class of alloys at 650 degrees-900 degrees C and compared to results for some current commercial alloys. Alloy development is continuing in order to determine the effect of composition on performance over this temperature range. C1 [Pint, Bruce A.; Brady, Michael P.; Yamamoto, Yukinori; Santella, Michael L.; Howe, Jane Y.; Trejo, Rosa; Maziasz, Philip J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; Brady, Michael/A-8122-2008; OI Pint, Bruce/0000-0002-9165-3335; Brady, Michael/0000-0003-1338-4747; Maziasz, Philip/0000-0001-8207-334X NR 39 TC 2 Z9 2 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4886-9 PY 2009 BP 271 EP 280 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BON28 UT WOS:000277059700028 ER PT B AU Chaiy, S Ciarlette, D Cross, B Manwani, S Iandoli, L Shore, B Strawbridge, C Zollo, G AF Chaiy, Soeil Ciarlette, Dan Cross, Ben Manwani, Sharm Iandoli, Luca Shore, Barry Strawbridge, Carl Zollo, Giuseppe BE Kocaoglu, DF Anderson, TR Daim, TU Jetter, A Weber, CM TI Developing a Body of Knowledge for the Management of Large-Scale International Science Projects SO PROCEEDINGS OF PICMET 09 - TECHNOLOGY MANAGEMENT IN THE AGE OF FUNDAMENTAL CHANGE, VOLS 1-5 LA English DT Proceedings Paper CT Conference of the Portland-International-Center-for-Management-of-Engineering-and-Technolo gy (PICMET 2009) CY AUG 02-06, 2009 CL Portland, OR SP Portland State Univ, Dept Engn & Technol Management, Portland State Univ, Meseeh Coll Engn & Comp Sci, Lemelson Fdn, IKON Off Solut AB Large-scale International Science Projects (LISPs) are different from conventional projects for which the body of knowledge in project management has been developed. LISPS can be defined as those projects where two or more countries formally agree to cooperate toward the achievement of a scientific, research and development, or engineering goal. In general only projects exceeding $1 billion US are considered LISPs. Agreements among participants typically cover several years and work is accomplished in stages, characterized by formal agreements. In addition the partners contribute hardware components, funds and/or personnel to the project. This paper introduces a preliminary study that identifies how these projects differ from conventional projects, why conventional approaches may be inadequate, and how these differences might affect project management practices. C1 [Chaiy, Soeil] Korea Univ, Seoul, South Korea. [Ciarlette, Dan; Strawbridge, Carl] US ITER, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Cross, Ben] Savannah Natl River Lab, Nucl Energy Programs, Aiken, SC 29808 USA. [Manwani, Sharm] Henley Business Sch, Greenwich RG9 3AU, England. [Iandoli, Luca; Zollo, Giuseppe] Univ Naples Federico II, Fed Secundo, I-80138 Naples, Italy. [Shore, Barry] Univ New Hampshire, Durham, NH 03824 USA. RP Chaiy, S (reprint author), Korea Univ, Seoul, South Korea. NR 6 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-8908-4319-9 PY 2009 BP 1438 EP + PG 3 WC Engineering, Electrical & Electronic SC Engineering GA BOT02 UT WOS:000277502500149 ER PT B AU Nie, JS Braverman, JI Hofmayer, CH Choun, YS Kim, MK Choi, IK AF Nie, Jinsuo Braverman, Joseph I. Hofmayer, Charles H. Choun, Young-Sun Kim, Min Kyu Choi, In-Kil GP ASME TI REVIEW OF RECENT AGING-RELATED DEGRADATION OCCURRENCES OF STRUCTURES AND PASSIVE COMPONENTS IN US NUCLEAR POWER PLANTS SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 2 LA English DT Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc AB The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends. C1 [Nie, Jinsuo; Braverman, Joseph I.; Hofmayer, Charles H.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Nie, JS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM jnie@bnl.gov NR 3 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4352-9 PY 2009 BP 235 EP 244 PG 10 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BUU41 UT WOS:000290372700029 ER PT B AU Stoots, CM Condie, KG O'Brien, JE Herring, JS Hartvigsen, JJ AF Stoots, Carl M. Condie, Keith G. O'Brien, James E. Herring, J. Stephen Hartvigsen, Joseph J. GP ASME TI TEST RESULTS FROM THE IDAHO NATIONAL LABORATORY 15KW HIGH TEMPERATURE ELECTROLYSIS TEST FACILITY SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 2 LA English DT Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc ID HYDROGEN-PRODUCTION; NUCLEAR-ENERGY; PERFORMANCE AB A 15 kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date. C1 [Stoots, Carl M.; Condie, Keith G.; O'Brien, James E.; Herring, J. Stephen] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Stoots, CM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 13 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4352-9 PY 2009 BP 831 EP 841 PG 11 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BUU41 UT WOS:000290372700100 ER PT B AU Harvego, EA O'Brien, JE McKellar, MG AF Harvego, E. A. O'Brien, J. E. McKellar, M. G. GP ASME TI SYSTEM ANALYSES OF HIGH AND LOW-TEMPERATURE INTERFACE DESIGNS FOR A NUCLEAR-DRIVEN HIGH-TEMPERATURE ELECTROLYSIS HYDROGEN PRODUCTION PLANT SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 2 LA English DT Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc AB As part of the Next Generation Nuclear Plant (NGNP) project, an evaluation of a low-temperature heat-pump interface design for a nuclear-driven high-temperature electrolysis (HTE) hydrogen production plant was performed using the UniSim process analysis software. The low-temperature interface design is intended to reduce the interface temperature between the reactor power conversion system and the hydrogen production plant by extracting process heat from the low temperature portion of the power cycle rather than from the high-temperature portion of the cycle as is done with the current Idaho National Laboratory (INL) reference design. The intent of this design change is to mitigate the potential for tritium migration from the reactor core to the hydrogen plant, and reduce the potential for high temperature creep in the interface structures. The UniSim model assumed a 600 MW, Very-High Temperature Reactor (VHTR) operating at a primary system pressure of 7.0 MPa and a reactor outlet temperature of 900 degrees C. The lowtemperature heat-pump loop is a water/steam loop that operates between 2.6 MPa and 5.0 MPa. The HTE hydrogen production loop operated at 5 MPa, with plant conditions optimized to maximize plant performance (i.e., 800 degrees C electrolysis operating temperature, area specific resistance (ASR) = 0.4 ohm-cm(2), and a current density of 0.25 amps/cm(2)). An air sweep gas system was used to remove oxygen from the anode side of the electrolyzer. Heat was also recovered from the hydrogen and oxygen product streams to maximize hydrogen production efficiencies. The results of the UniSim analysis showed that the low-temperature interface design was an effective heat-pump concept, transferring 31.5 MW, from the low-temperature leg of the gas turbine power cycle to the HTE process boiler, while consuming 16.0 MW(e) of compressor power. However, when this concept was compared with the current INL reference direct Brayton cycle design and with a modification of the reference design to simulate an indirect Brayton cycle (both with heat extracted from the high-temperature portion of the power cycle), the latter two concepts had higher overall hydrogen production rates and efficiencies compared to the low-temperature heat-pump concept, but at the expense of higher interface temperatures. Therefore, the ultimate decision on the viability of the low-temperature heat-pump concept involves a tradeoff between the benefits of a lower-temperature interface between the power conversion system and the hydrogen production plant, and the reduced hydrogen production efficiency of the low-temperature heat-pump concept compared to concepts using high-temperature process heat. C1 [Harvego, E. A.; O'Brien, J. E.; McKellar, M. G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Harvego, EA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 3 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4352-9 PY 2009 BP 847 EP 855 PG 9 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BUU41 UT WOS:000290372700102 ER PT B AU Raitses, G Todosow, M Galperin, A AF Raitses, Gilad Todosow, Michael Galperin, Alex GP ASME TI NON-PROLIFERATIVE, THORIUM-BASED, CORE AND FUEL CYCLE FOR PRESSURIZED WATER REACTORS SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 2 LA English DT Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc AB Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a "conventional" assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical "blanket") and the "driving" part of the core (a supercritical "seed"). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the amount of discharged spent fuel, for a given energy production, compared with standard VVER/PWR. The total Pu production rate of RTF cycles is only 30 % of standard reactor. In addition, the isotopic compositions of the RTF's and standard reactor grade Pu are markedly different due to the very high burnup accumulated by the RTF spent fuel. C1 [Raitses, Gilad; Todosow, Michael] Brookhaven Natl Lab, Upton, NY 11793 USA. RP Raitses, G (reprint author), Brookhaven Natl Lab, Upton, NY 11793 USA. NR 11 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4352-9 PY 2009 BP 897 EP 904 PG 8 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BUU41 UT WOS:000290372700108 ER PT B AU Garimella, R AF Garimella, Rao BE Clark, BW TI Conformal Refinement of Unstructured Quadrilateral Meshes SO PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE LA English DT Proceedings Paper CT 18th International Meshing Roundtable (IMR) CY OCT 25-28, 2009 CL Salt Lake City, UT ID FINITE-ELEMENT METHODS; QUALITY; OPTIMIZATION; GRIDS; PART AB A multilevel adaptive refinement technique is presented for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. It is demonstrated that by careful design of the refinement and coarsening strategy, high quality elements can be maintained in the refined mesh. The method is demonstrated on a number of examples with dynamically changing refinement regions. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Garimella, R (reprint author), Los Alamos Natl Lab, MS B284,POB 1663, Los Alamos, NM 87544 USA. EM rao@lanl.gov NR 18 TC 1 Z9 2 U1 0 U2 5 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-04318-5 PY 2009 BP 31 EP 44 DI 10.1007/978-3-642-04319-2_3 PG 14 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Multidisciplinary; Mathematics, Applied SC Computer Science; Engineering; Mathematics GA BRG31 UT WOS:000282669400003 ER PT B AU Shepherd, JF AF Shepherd, Jason F. BE Clark, BW TI Conforming Hexahedral Mesh Generation via Geometric Capture Methods SO PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE LA English DT Proceedings Paper CT 18th International Meshing Roundtable (IMR) CY OCT 25-28, 2009 CL Salt Lake City, UT DE Hexahedral; Mesh; Generation; Dual; Topology Modification AB An algorithm is introduced for converting a non-conforming hexahedral mesh that is topologically equivalent and geometrically similar to a given geometry into a conforming mesh for the geometry. The procedure involves embedding geometric topology information into the given non-conforming base mesh and then converting the mesh to a fundamental hexahedral mesh. The procedure is extensible to multi-volume meshes with minor modification, and can also be utilized in a geometry-tolerant form (i.e., unwanted features within a solid geometry can be ignored with minor penalty). Utilizing an octree-type algorithm for producing the base mesh, it may be possible to show asymptotic convergence to a guaranteed closure state for meshes within the geometry, and because of the prevalence of these types of algorithms in parallel systems, the algorithm should be extensible to a parallel version with minor modification. C1 Sandia Natl Labs, Livermore, CA 94550 USA. RP Shepherd, JF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM jfsheph@sandia.gov NR 17 TC 2 Z9 3 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-04318-5 PY 2009 BP 85 EP 102 DI 10.1007/978-3-642-04319-2_6 PG 18 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Multidisciplinary; Mathematics, Applied SC Computer Science; Engineering; Mathematics GA BRG31 UT WOS:000282669400006 ER PT B AU Owen, SJ Shepherd, JF AF Owen, Steven J. Shepherd, Jason F. BE Clark, BW TI Embedding Features in a Cartesian Grid SO PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE LA English DT Proceedings Paper CT 18th International Meshing Roundtable (IMR) CY OCT 25-28, 2009 CL Salt Lake City, UT DE grid-based; overlay grid; hexahedral mesh generation; topological equivalence; topology embedding ID HEXAHEDRAL MESH GENERATION AB Grid-based mesh generation methods have been available for many years and can provide a reliable method for meshing arbitrary geometries with hexahedral elements. The principal use for these methods has mostly been limited to biological-type models where topology that may incorporate sharp edges and curve definitions are not critical. While these applications have been effective, robust generation of hexahedral meshes on mechanical models, where the topology is typically of prime importance, impose difficulties that existing grid-based methods have not yet effectively addressed. This work introduces a set of procedures that can be used in resolving the features of a geometric model for grid-based hexahedral mesh generation for mechanical or topology-rich models. C1 [Owen, Steven J.; Shepherd, Jason F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Owen, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjowen@sandia.gov; jfsheph@sandia.gov NR 17 TC 4 Z9 5 U1 1 U2 6 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-04318-5 PY 2009 BP 117 EP 138 DI 10.1007/978-3-642-04319-2_8 PG 22 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Multidisciplinary; Mathematics, Applied SC Computer Science; Engineering; Mathematics GA BRG31 UT WOS:000282669400008 ER PT B AU Knupp, P AF Knupp, Patrick BE Clark, BW TI Label-Invariant Mesh Quality Metrics SO PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE LA English DT Proceedings Paper CT 18th International Meshing Roundtable (IMR) CY OCT 25-28, 2009 CL Salt Lake City, UT ID INITIAL MESHES; OPTIMIZATION AB Mappings from a master element to the physical mesh element, in conjunction with local metrics such as those appearing in the Target-matrix paradigm, are used to measure quality at points within an element. The approach is applied to both linear and quadratic triangular elements; this enables, for example, one to measure quality within a quadratic finite element. Quality within an element may also be measured on a set of symmetry points, leading to so-called symmetry metrics. An important issue having to do with the labeling of the element vertices is relevant to mesh quality tools such as Verdict and Mesquite. Certain quality measures like area, volume, and shape should be label-invariant, while others such as aspect ratio and orientation should not. It is shown that local metrics whose Jacobian matrix is non-constant are label-invariant only at the center of the element, while symmetry metrics can be label-invariant anywhere within the element, provided the reference element is properly restricted. C1 Sandia Natl Labs, Livermore, CA 94550 USA. RP Knupp, P (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM pknupp@sandia.gov NR 19 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-04318-5 PY 2009 BP 139 EP 155 DI 10.1007/978-3-642-04319-2_9 PG 17 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Multidisciplinary; Mathematics, Applied SC Computer Science; Engineering; Mathematics GA BRG31 UT WOS:000282669400009 ER PT B AU Quadros, WR Owen, SJ AF Quadros, William Roshan Owen, Steven J. BE Clark, BW TI Defeaturing CAD Models Using a Geometry-Based Size Field and Facet-Based Reduction Operators SO PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE LA English DT Proceedings Paper CT 18th International Meshing Roundtable (IMR) CY OCT 25-28, 2009 CL Salt Lake City, UT DE defeaturing; feature suppression; CAD simplification; facet reduction ID SIMPLIFICATION; GENERATION; MESHES AB We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant feature and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach. C1 [Quadros, William Roshan; Owen, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Quadros, WR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wrquadr@sandia.gov; sjowen@sandia.gov NR 15 TC 9 Z9 11 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-04318-5 PY 2009 BP 301 EP 318 DI 10.1007/978-3-642-04319-2_18 PG 18 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Multidisciplinary; Mathematics, Applied SC Computer Science; Engineering; Mathematics GA BRG31 UT WOS:000282669400018 ER PT B AU Williams, JB Mills, G Barnhurst, D Southern, S Garvin, N AF Williams, John B. Mills, Gary Barnhurst, Daniel Southern, Sherry Garvin, Noelle BE Uzochukwu, GA TI Transport and Degradation of a Trichloroethylene Plume Within a Stream Hyporheic Zone SO PROCEEDINGS OF THE 2007 NATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY LA English DT Proceedings Paper CT 3rd National Conference on Environmental Science and Technology CY SEP 12-14, 2007 CL Greensboro, NC SP Springer, NOAA Interdisciplinary Environm Technol Cooperat Sci Ctr, NSF Sci & Technol Ctr, Allied Waste Serv, OBrien & Gere, US DOE, Savannah River Site, US EPA, N Carolina A&T State Univ AB In predicting natural attenuation rates for contaminant plumes, it is vital to determine flow patterns, suitability of chemical and microbial conditions, and seasonality. Savannah River Site's CMP Pits operated from 1971 until 1979; receiving chemicals, metals, and pesticides. Now a Superfund site, monitoring-wells indicated perchloroethylene (PCE) and trichloroethylene (TCE) had seeped beneath the vadose zone. It was unknown how the plume was entering Pen Branch valley below and whether natural attenuation was degrading the contaminant load. Our study focused on plume transport and exchange within the critical hyporheic zone beneath Pen Branch and helped to ground-truth model the plume borders. We also determined reductive dechlorination of PCE and TCE into dichloroethylene and vinyl chloride. Over forty sampling holes were augered into the hyporheic zone and adjacent floodplain along with 12 stream stations. Chemical conditions linked to natural attenuation (e.g. H2S, Fe+2, and NH3) were monitored to identify reductive dechlorination suitability along with temperature, pH, redox, and dissolved oxygen. Plume flow displayed complex entry patterns, but natural attenuation was documented by higher levels of cis-dichloroethylene (cis-DCE) (61.5 mu g/l) compared to PCE or TCE. High means of hyporheic PCE (26.5 mu g/l) and TCE (6.7 mu g/l) compared to overlying stream water PCE (0.5 mu g/l) and TCE (0.2 mu g/l) raise new transport pathway questions. C1 [Williams, John B.] S Carolina State Univ, Orangeburg, SC 29117 USA. [Williams, John B.] S Carolina State Univ, Dept Biol Phys Sci, Orangeburg, SC USA. [Mills, Gary; Garvin, Noelle] Univ Georgia, SREL, Aiken, SC USA. [Barnhurst, Daniel] Wasington Savannah River Corp, Aiken, SC USA. [Southern, Sherry] US DOE, Aiken, SC USA. RP Williams, JB (reprint author), S Carolina State Univ, Orangeburg, SC 29117 USA. NR 5 TC 2 Z9 2 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-0-387-88482-0 PY 2009 BP 189 EP + DI 10.1007/978-0-387-88483-7_25 PG 2 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA BLM66 UT WOS:000270543200025 ER PT B AU Caffrey, M Morgan, K Roussel-Dupre, D Robinson, S Nelson, A Salazar, A Wirthlin, M Howes, W Richins, D AF Caffrey, Michael Morgan, Keith Roussel-Dupre, Diane Robinson, Scott Nelson, Anthony Salazar, Anthony Wirthlin, Michael Howes, William Richins, Daniel GP IEEE Computer Soc TI On-Orbit Flight Results from the Reconfigurable Cibola Flight Experiment Satellite (CFESat) SO PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES SE Annual IEEE Symposium on Field-Programmable Custom Computing Machines LA English DT Proceedings Paper CT 17th Annual IEEE Symposium on Field Programmable Custom Computing Machines CY APR 05-07, 2009 CL Napa, CA SP IEEE Comp Soc TCCA DE FPGA; fault tolerant computing; configurable computing AB The Cibola Flight Experiment (CFE) is an experimental small satellite developed at the Los Alamos National Laboratory to demonstrate the feasibility of using FPGA-based reconfigurable computing for sensor processing in a space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft. C1 [Caffrey, Michael; Morgan, Keith; Roussel-Dupre, Diane; Robinson, Scott; Nelson, Anthony; Salazar, Anthony] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Wirthlin, Michael; Howes, William; Richins, Daniel] Brigham Young Univ, NSF Ctr High Performance, Reconfigurable Computing CHREC, Dept Elect & Comp Engn, Provo, UT 84602 USA. RP Caffrey, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU Department of Energy (NNSA) [NA-22]; I/UCRC Program of the National Science Foundation [0801876] FX This work was supported by the Department of Energy (NNSA) NA-22. Approved for public release by Los Alamos National Laboratory under LA-UR 09-01710. This work was also supported in part by the I/UCRC Program of the National Science Foundation under Grant No. 0801876 NR 17 TC 10 Z9 12 U1 0 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3716-0 J9 ANN IEEE SYM FIELD P PY 2009 BP 3 EP + DI 10.1109/FCCM.2009.22 PG 2 WC Computer Science, Hardware & Architecture SC Computer Science GA BNN98 UT WOS:000275103200001 ER PT B AU DuBois, D DuBois, A Boorman, T Connor, C AF DuBois, David DuBois, Andrew Boorman, Thomas Connor, Carolyn GP IEEE Computer Soc TI Non-Preconditioned Conjugate Gradient on Cell and FPGA based Hybrid Supercomputer Nodes SO PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES SE Annual IEEE Symposium on Field-Programmable Custom Computing Machines LA English DT Proceedings Paper CT 17th Annual IEEE Symposium on Field Programmable Custom Computing Machines CY APR 05-07, 2009 CL Napa, CA SP IEEE Comp Soc TCCA ID IMPLEMENTATION AB This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture (TM) in conjunction with x86 Opteron (TM) processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings. C1 [DuBois, David; DuBois, Andrew; Boorman, Thomas; Connor, Carolyn] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP DuBois, D (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dhd@lanl.gov; ajd@lanl.gov; tmb@lanl.gov; connor@lanl.gov RI Connor, Carolyn/F-1262-2011 NR 25 TC 2 Z9 2 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3716-0 J9 ANN IEEE SYM FIELD P PY 2009 BP 201 EP 208 DI 10.1109/FCCM.2009.26 PG 8 WC Computer Science, Hardware & Architecture SC Computer Science GA BNN98 UT WOS:000275103200024 ER PT B AU Baker, ZK Monson, JS AF Baker, Zachary K. Monson, Joshua S. GP IEEE Computer Soc TI In-situ FPGA Debug Driven by On-Board Microcontroller SO PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES SE Annual IEEE Symposium on Field-Programmable Custom Computing Machines LA English DT Proceedings Paper CT 17th Annual IEEE Symposium on Field Programmable Custom Computing Machines CY APR 05-07, 2009 CL Napa, CA SP IEEE Comp Soc TCCA AB Often we are faced with the situation that the behavior of a circuit changes in an unpredictable way when a chassis cover is attached or the system is not easily accessible. For instance, it? a deployed environment, such as space, hardware can malfunction in unpredictable ways. What can a designer do to ascertain the cause of the problem ? Register interrogations only go so far, and sometimes the problem being debugged is register transactions themselves, or the problem ties in the FPGA programming. This work provides a solution; namely, the ability, to drive a JTAG chain via air on-board microcontroller and support a read/write register interface running a logic analyzer core. This is achieved without the use of a JTAG cable or an), external interface. We have demonstrated the functionality of the prototype system using a Xilinx Spartan 3E FPGA and a Microchip PIC18f2550 microcontroller This paper will discuss the implententation details as well as present case studies describing how the tools have aided satellite hardware development at Los Alamos National Laboratory. C1 [Baker, Zachary K.; Monson, Joshua S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Baker, ZK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zbaker@lanl.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3716-0 J9 ANN IEEE SYM FIELD P PY 2009 BP 219 EP 222 DI 10.1109/FCCM.2009.9 PG 4 WC Computer Science, Hardware & Architecture SC Computer Science GA BNN98 UT WOS:000275103200026 ER PT B AU Byun, JH Ravindran, A Mukherjee, A Joshi, B Chassin, D AF Byun, Jong-Ho Ravindran, Arun Mukherjee, Arindam Joshi, Bharat Chassin, David GP IEEE Computer Soc TI Accelerating the Gauss-Seidel Power Flow Solver on a High Performance Reconfigurable Computer SO PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES SE Annual IEEE Symposium on Field-Programmable Custom Computing Machines LA English DT Proceedings Paper CT 17th Annual IEEE Symposium on Field Programmable Custom Computing Machines CY APR 05-07, 2009 CL Napa, CA SP IEEE Comp Soc TCCA DE reconfigurable computing; power flow computing; Gauss-Seidel; FPGA; bus voltage computations AB The computationally intensive power flow problem determines the voltage magnitude and phase angle at each bus in a power system for hundreds of thousands of buses under balanced three-phase steady-state conditions. We report an FPGA acceleration of the Gauss-Seidel based power flow solver employed in the transmission module of the GridLAB-D power distribution simulator and analysis tool. The prototype hardware is implemented on an SGI Altix-RASC system equipped with a Xilinx Virtex-II 6000 FPGA. Due to capacity limitations of the FPGA, only the bus voltage calculations of the power network are implemented on hardware while the branch current calculations are implemented in software. For a 200,000 bus system, the bus voltage calculation on the FPGA achieves a 48x speed-up with PQ buses and a 62 times for PV over an equivalent sequential software implementation. The average overall speed up of the CPU-FPGA implementation with 100 iterations of the Gauss-Seidel power solver is 2.6x over a software implementation, with the branch calculations on the CPU accounting for 85% of the total execution time. The CPU-FPGA implementation also shows linear scaling with increase in the size of the input power network. C1 [Byun, Jong-Ho; Ravindran, Arun; Mukherjee, Arindam; Joshi, Bharat] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA. [Chassin, David] Pacific NorthWest Natl Lab, Richland, WA 99352 USA. RP Byun, JH (reprint author), Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA. EM jbyun1@uncc.edu; arun.ravindran@uncc.edu; david.chassin@pnl.gov NR 6 TC 2 Z9 2 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3716-0 J9 ANN IEEE SYM FIELD P PY 2009 BP 227 EP + DI 10.1109/FCCM.2009.23 PG 2 WC Computer Science, Hardware & Architecture SC Computer Science GA BNN98 UT WOS:000275103200028 ER PT B AU Top, P Gokhale, M AF Top, Philip Gokhale, Maya GP IEEE Computer Soc TI Application Experiments: MPPA and FPGA SO PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES SE Annual IEEE Symposium on Field-Programmable Custom Computing Machines LA English DT Proceedings Paper CT 17th Annual IEEE Symposium on Field Programmable Custom Computing Machines CY APR 05-07, 2009 CL Napa, CA SP IEEE Comp Soc TCCA ID ARRAY AB This paper describes the mapping approach, programmability, and performance of the Ambric Massively Parallel Processor Array (MPPA), and compares these aspects to an FPGA. Two application kernels, a trellis decoder, and n-gram frequency counter, were ported to the Ambric development system and an Altera Stratix II. We find that the mapping strategies to Ambric and FPGAs are similar at the high level, but diverge quite a bit in implementation due to differences in granularity between the basic compute units of the two devices. Both require substantial refactoring from the baseline sequential algorithm. The FPGA proved superior in terms of performance, but the Ambric fares significantly better than the FPGA in programmability and ease of application development. C1 [Top, Philip; Gokhale, Maya] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Top, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM top1@llnl.gov; maya@llnl.gov NR 12 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3716-0 J9 ANN IEEE SYM FIELD P PY 2009 BP 291 EP 294 DI 10.1109/FCCM.2009.37 PG 4 WC Computer Science, Hardware & Architecture SC Computer Science GA BNN98 UT WOS:000275103200044 ER PT B AU Barreto, R Klasky, S Podhorszki, N Mouallem, P Vouk, M AF Barreto, Roselyne Klasky, Scott Podhorszki, Norbert Mouallem, Pierre Vouk, Mladen BE McQuay, W Smari, WW TI Collaboration Portal for Petascale Simulations SO PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON COLLABORATIVE TECHNOLOGIES AND SYSTEMS LA English DT Proceedings Paper CT International Symposium on Collaborative Technologies and Systems CY MAY 18-22, 2009 CL Baltimore, MD SP IEEE, ACM, IFIP DE Visualization; collaboration; workflows; dashboard; provenance; analytics ID PLASMA AB The emergence of petascale computing is creating a tsunami of data from peta-scale simulations. Typically, results are analyzed by dozens of scientists who often work as teams. Obviously, it is very important to help these teams by facilitating management, analysis, sharing, and visualization of the data produced by their simulations, and by the auxiliary programs and activities used in the scientific process. One aspect of this is leveraging of their collective knowledge and experiences through a scientific social network. This can be achieved through a combination of back-end IT services, provenance capturing, and easy to use front-end tools. "eSimMon", is one such tool. In this paper we describe this analysis support system, discuss its ease of use, its efficiency, and its ability to accelerate scientific discovery. C1 [Barreto, Roselyne; Klasky, Scott; Podhorszki, Norbert] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Mouallem, Pierre; Vouk, Mladen] North Carolina State Univ, Oak Ridge, TN USA. RP Barreto, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM barreto@ornl.gov; klasky@ornl.gov; pnorbert@ornl.gov; pmouall@ncsu.edu; vouk@ncsu.edu FU National Center for Computational Sciences (NCCS) at the Oak Ridge National Laboratory [DE-FC02-01ER25486, DE-FC02- ER25809]; SciDAC Fusion Simulation Prototype (FSP) Center for Plasma Edge Simulation (CPES); DOE SCIDAC-2 FX The research and development of eSimMon has been supported in part by the National Center for Computational Sciences (NCCS) at the Oak Ridge National Laboratory, by DOE SCIDAC-2: Scientific Data Management Center for Enabling Technologies (CET) grants DE-FC02-01ER25486 and DE-FC02- ER25809, and by SciDAC Fusion Simulation Prototype (FSP) Center for Plasma Edge Simulation (CPES). NR 18 TC 1 Z9 1 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-4585-1 PY 2009 BP 384 EP + DI 10.1109/CTS.2009.5067505 PG 2 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary SC Computer Science; Engineering GA BLS38 UT WOS:000270937300050 ER PT B AU Gorman, BL Resseguie, DR Tomkins-Tinch, C AF Gorman, B. L. Resseguie, D. R. Tomkins-Tinch, C. BE McQuay, W Smari, WW TI Sensorpedia: Information Sharing Across Incompatible Sensor Systems SO PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON COLLABORATIVE TECHNOLOGIES AND SYSTEMS LA English DT Proceedings Paper CT International Symposium on Collaborative Technologies and Systems CY MAY 18-22, 2009 CL Baltimore, MD SP IEEE, ACM, IFIP DE collaborative trusted sensor systems; interoperability AB The concept of adapting social media technologies is introduced as a means of achieving information sharing across incompatible sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing for enterprises with incompatible sensor systems. C1 [Gorman, B. L.; Resseguie, D. R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Tomkins-Tinch, C.] Rochester Inst Technol, Rochester, NY 14623 USA. RP Gorman, BL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM gormanbl@ornl.gov; gormanbl@ornl.gov; cht9339@rit.edu FU U.S. Department of Energy [2367-T103-06] FX This paper was prepared by Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6285 and supported in part by the U.S. Department of Energy under DOE Project No. 2367-T103-06. The authors would like to express their thanks to Colonel Arthur L. Clark, U.S. Army, for his insights and review of this paper. Colonel Clark is assigned to the Joint Chiefs of Staff, J-34, Deputy Directorate for Antiterrorism and Homeland Defense. NR 4 TC 11 Z9 12 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-4585-1 PY 2009 BP 448 EP + DI 10.1109/CTS.2009.5067513 PG 2 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary SC Computer Science; Engineering GA BLS38 UT WOS:000270937300058 ER PT B AU McIntyre, DL Woodruff, SD Ontko, JS AF McIntyre, Dustin L. Woodruff, Steven D. Ontko, John S. GP asme TI Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Fiber Coupled Diode End Pumped Passively Q-Switched Laser Spark Plug SO PROCEEDINGS OF THE 2009 SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION LA English DT Proceedings Paper CT Spring Technical Conference of the ASME-Internal-Combustion-Engine-Division CY MAY 03-06, 2009 CL Milwaukee, WI SP ASME, Internal Combust Engine Div AB An end pumped passively Q-switched laser igniter was developed to meet the ignition system needs of large bore lean burn stationary natural gas engines. The laser spark plug used an optical fiber coupled diode pump source to axially pump a passively Q-switched Nd:YAG laser and transmit the laser pulse through a custom designed lens. The optical fiber coupled pump source permits the excitation energy to be transmitted to the spark plug at relatively low optical power, less than 250 watts. The Q-switched laser then generates as much as 8 millijoules of light in 2.5 nanoseconds which is focused through an asymmetric biconvex lens to create a laser spark from a focused intensity of approximately 225 GW/cm(2). A single cylinder engine fueled with either natural gas only or hydrogen augmented natural gas was operated with the laser spark plug for approximately 10 hours in tests spanning 4 days. The tests were conducted with fixed engine speed, fixed boost pressure, no exhaust gas recirculation, and laser spark timing advance set at maximum brake torque timing. Engine operational and emissions data were collected and analyzed. C1 [McIntyre, Dustin L.; Woodruff, Steven D.; Ontko, John S.] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP McIntyre, DL (reprint author), 3610 Collins Ferry Rd,MS N05, Morgantown, WV 26507 USA. EM dustin.mcintyre@netl.doe.gov NR 17 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4340-6 PY 2009 BP 11 EP 19 PG 9 WC Engineering, Mechanical; Instruments & Instrumentation; Transportation Science & Technology SC Engineering; Instruments & Instrumentation; Transportation GA BMS47 UT WOS:000273471300002 ER PT B AU Biruduganti, M Gupta, S Bihari, B McConnell, S Sekar, R AF Biruduganti, Munidhar Gupta, Sreenath Bihari, Bipin McConnell, Steve Sekar, Raj GP asme TI AIR SEPARATION MEMBRANES - AN ALTERNATIVE TO EGR IN LARGE BORE NATURAL GAS ENGINES SO PROCEEDINGS OF THE 2009 SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION LA English DT Proceedings Paper CT Spring Technical Conference of the ASME-Internal-Combustion-Engine-Division CY MAY 03-06, 2009 CL Milwaukee, WI SP ASME, Internal Combust Engine Div AB Air Separation Membranes (ASM) could potentially replace Exhaust Gas Recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of Nitrogen Enriched Air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single cylinder spark ignited natural gas engine. Low Temperature Combustion (LTC) is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, Brake Thermal Efficiency (BTE), and unburned hydrocarbon (UHC) emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition (SI) was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from psi: 1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio (Psi) increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source such as LI could pave the pathway for realizing lower NOx emissions with a slight penalty in BTE. C1 [Biruduganti, Munidhar; Gupta, Sreenath; Bihari, Bipin; McConnell, Steve; Sekar, Raj] Argonne Natl Lab, Argonne, IL 60439 USA. RP Biruduganti, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4340-6 PY 2009 BP 21 EP 30 PG 10 WC Engineering, Mechanical; Instruments & Instrumentation; Transportation Science & Technology SC Engineering; Instruments & Instrumentation; Transportation GA BMS47 UT WOS:000273471300003 ER PT B AU Cooney, C Wallner, T McConnell, S Gillen, JC Abell, C Miers, SA Naber, JD AF Cooney, Christopher Wallner, Thomas McConnell, Steve Gillen, Jeffrey C. Abell, Clint Miers, Scott A. Naber, Jeffrey D. GP asme TI EFFECTS OF BLENDING GASOLINE WITH ETHANOL AND BUTANOL ON ENGINE EFFICIENCY AND EMISSIONS USING A DIRECT-INJECTION, SPARK-IGNITION ENGINE SO PROCEEDINGS OF THE 2009 SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION LA English DT Proceedings Paper CT Spring Technical Conference of the ASME-Internal-Combustion-Engine-Division CY MAY 03-06, 2009 CL Milwaukee, WI SP ASME, Internal Combust Engine Div AB The new U.S. Renewable Fuel Standard requires an increase of ethanol and advanced biofuels to 36 billion gallons by 2022. Due to its high octane number, renewable character and minimal toxicity, ethanol was believed to be one of the most favorable alternative fuels to displace gasoline in spark-ignited engines. However, ethanol fuel results in a substantial reduction in vehicle range when compared to gasoline. In addition, ethanol is fully miscible in water which requires blending at distribution sites instead of the refinery. Butanol, on the other hand, has an energy density comparable to gasoline and lower affinity for water than ethanol. Butanol has recently received increased attention due to its favorable fuel properties as well as new developments in production processes. The advantageous properties of butanol warrant a more in-depth study on the potential for butanol to become a significant component of the advanced biofuels mandate. This study evaluates the combustion behavior, performance, as well as the regulated engine-out emissions of ethanol and butanol blends with gasoline. Two of the butanol isomers; 1-butanol as well as iso-butanol, were tested as part of this study. The evaluation includes gasoline as a baseline, as well as various ethanol/gasoline and butanol/gasoline blends up to a volume blend ratio of 85% of the oxygenated fuel. The test engine is a spark ignition, direct-injection, (SIDI), four-cylinder test engine equipped with pressure transducers in each cylinder. These tests were designed to evaluate a scenario in terms of using these alcohol blends in an engine calibrated for pump gasoline operation. Therefore no modifications to the engine calibration were performed. Following this analysis of combustion behavior and emissions with the base engine calibration, future studies will include detailed heat release analysis of engine operation without exhaust gas recirculation. Also, knock behavior of the different fuel blends will be studied along with unregulated engine out emissions. C1 [Cooney, Christopher; Wallner, Thomas; McConnell, Steve] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cooney, C (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 20 TC 4 Z9 4 U1 0 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4340-6 PY 2009 BP 157 EP 165 PG 9 WC Engineering, Mechanical; Instruments & Instrumentation; Transportation Science & Technology SC Engineering; Instruments & Instrumentation; Transportation GA BMS47 UT WOS:000273471300017 ER PT B AU Kastengren, AL Powell, CF Liu, Z Fezzaa, K Wang, J AF Kastengren, A. L. Powell, C. F. Liu, Z. Fezzaa, K. Wang, J. GP asme TI HIGH-SPEED X-RAY IMAGING OF DIESEL INJECTOR NEEDLE MOTION SO PROCEEDINGS OF THE 2009 SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION LA English DT Proceedings Paper CT Spring Technical Conference of the ASME-Internal-Combustion-Engine-Division CY MAY 03-06, 2009 CL Milwaukee, WI SP ASME, Internal Combust Engine Div ID EMISSION; SPRAY AB Phase-enhanced x-ray imaging has been used to examine the geometry and dynamics of four diesel injector nozzles. The technique uses a high-speed camera, which allows the dynamics of individual injection events to be observed in real time and compared. Moreover, data has been obtained for the nozzles from two different viewing angles, allowing for the full three-dimensional motions of the needle to be examined. This technique allows the needle motion to be determined in situ at the needle seat and requires no modifications to the injector hardware, unlike conventional techniques. Measurements of the nozzle geometry have allowed the average nozzle diameter, degree of convergence or divergence, and the degree of rounding at the nozzle inlet to be examined. Measurements of the needle lift have shown that the lift behavior of all four nozzles consists of a linear increase in needle lift with respect to time until the needle reaches full lift and a linear decrease as the needle closes. For all four nozzles, the needle position oscillates at full lift with a period of 170-180 mu s. The full-lift position of the needle changes as the rail pressure increases, perhaps reflecting compression of the injector components. Significant lateral motions were seen in the two single-hole nozzles, with the needle motion perpendicular to the injector axis resembling a circular motion for one nozzle and linear oscillation for the other nozzle. The two VCO multihole nozzles show much less lateral motion, with no strong oscillations visible. C1 [Kastengren, A. L.; Powell, C. F.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Kastengren, AL (reprint author), Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. NR 17 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4340-6 PY 2009 BP 247 EP 258 PG 12 WC Engineering, Mechanical; Instruments & Instrumentation; Transportation Science & Technology SC Engineering; Instruments & Instrumentation; Transportation GA BMS47 UT WOS:000273471300025 ER PT B AU Cho, K Grover, RO Assanis, D Filipi, Z Szekely, G Najt, P Rask, R AF Cho, Kukwon Grover, Ronald O., Jr. Assanis, Dennis Filipi, Zoran Szekely, Gerald Najt, Paul Rask, Rod GP asme TI Combining Instantaneous Temperature Measurements and CFD for Analysis of Fuel Impingement on the DISI Engine Piston Top SO PROCEEDINGS OF THE 2009 SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION LA English DT Proceedings Paper CT Spring Technical Conference of the ASME-Internal-Combustion-Engine-Division CY MAY 03-06, 2009 CL Milwaukee, WI SP ASME, Internal Combust Engine Div AB A two-pronged experimental and computational study was conducted to explore the formation, transport, and vaporization of a wall film located on the piston surface within a four-valve, pent roof, direct-injection spark-ignition (DISI) engine, with the fuel injector located between the two intake valves. Negative temperature swings were observed at three piston locations during early injection, thus confirming the ability of fast-response thermocouples to capture the effects of impingement and heat loss associated with fuel film evaporation. Computational Fluid Dynamic (CFD) simulation results demonstrated that the fuel film evaporation process is extremely fast under conditions present during intake. Hence, the heat loss measured on the surface can be directly tied to the heating of the fuel film and its complete evaporation, with the wetted area estimated based on CFD predictions. This finding is critical for estimating the local fuel film thickness from measured heat loss. The simulated fuel film thickness and transport corroborated well temporally and spatially with measurements at thermocouple locations directly in the path of the spray, thus validating the spray and impingement models. Under the strategies tested, up to 23% of fuel injected impinges upon the piston and creates a fuel film with thickness of up to 1.2 mu m. In summary, the study demonstrates the usefulness of heat flux measurements to quantitatively characterize the fuel film on the piston top and allows for validation of the CFD code. C1 [Cho, Kukwon] Oak Ridge Natl Lab, Knoxville, TN USA. RP Cho, K (reprint author), Oak Ridge Natl Lab, Knoxville, TN USA. NR 24 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4340-6 PY 2009 BP 325 EP 336 PG 12 WC Engineering, Mechanical; Instruments & Instrumentation; Transportation Science & Technology SC Engineering; Instruments & Instrumentation; Transportation GA BMS47 UT WOS:000273471300032 ER PT S AU Macal, CM North, MJ AF Macal, Charles M. North, Michael J. GP IEEE TI AGENT-BASED MODELING AND SIMULATION SO PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4 SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT Winter Simulation Conference 2009 CY DEC 13-16, 2009 CL Austin, TX SP IEEE AB Agent-based modeling and simulation (ABMS) is a new approach to modeling systems comprised of autonomous, interacting agents'. Computational advances have made possible a growing number of agent-based models across a variety of application domains. Applications range from modeling agent behavior in the stock market, supply chains, and consumer markets, to predicting the spread of epidemics, mitigating the threat of bio-warfare, and understanding the factors that may be responsible for the fall of ancient civilizations. Such progress suggests the potential of ABMS to have far-reaching effects on the way that businesses use computers to support decision-making and researchers use agent-based models as electronic laboratories. Some contend that ABMS "is a third way of doing science" and could augment traditional deductive and inductive reasoning as discovery methods. This brief tutorial introduces agent-based modeling by describing the foundations of ABMS, discussing some illustrative applications, and addressing toolkits and methods for developing agent-based models. C1 [Macal, Charles M.] Argonne Natl Lab, Ctr Complex Adapt Syst Simulat, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [North, Michael J.] CAS, Argonne, IL 60439 USA. RP Macal, CM (reprint author), Argonne Natl Lab, Ctr Complex Adapt Syst Simulat, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM macal@anl.gov; north@anl.gov NR 38 TC 69 Z9 72 U1 2 U2 14 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-5770-0 J9 WINT SIMUL C PROC PY 2009 BP 86 EP + DI 10.1109/WSC.2009.5429318 PG 4 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BUJ11 UT WOS:000289492500009 ER PT S AU Ruth, M Diakov, V Goldsby, ME Sa, TJ AF Ruth, Mark Diakov, Victor Goldsby, Michael E. Sa, Timothy J. GP IEEE TI MACRO-SYSTEM MODEL: A FEDERATED OBJECT MODEL FOR CROSS-CUTTING ANALYSIS OF HYDROGEN PRODUCTION, DELIVERY, CONSUMPTION AND ASSOCIATED EMISSIONS SO PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4 SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT Winter Simulation Conference 2009 CY DEC 13-16, 2009 CL Austin, TX SP IEEE AB The introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological progress in several directions, such as production, delivery, consumption and related emissions. To analyze each of these, a suite of corresponding models have been developed by the DOE, involving inputs from several national laboratories. The macro-system model is being developed as a cross-cutting analysis tool which combines a set of hydrogen technology analysis models. Within the macro-system model (MSM), federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and will involve features of 'over-the-net' computation. C1 [Ruth, Mark; Diakov, Victor] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. [Goldsby, Michael E.; Sa, Timothy J.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Ruth, M (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM mark.ruth@nrel.gov; victor.diakov@nrel.gov; megolds@sandia.gov; tjsa@sandia.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors thank Johanna Levene, Witt Sparks, Chris Helms and Darlene Steward of the National Renewable Energy Laboratory; Keith Vanderveen and Andy Lutz of Sandia National Laboratory for technical assistance and useful discussions. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 7 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-5770-0 J9 WINT SIMUL C PROC PY 2009 BP 1522 EP + PG 3 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BUJ11 UT WOS:000289492501003 ER PT S AU Thulasidasan, S Eidenbenz, S AF Thulasidasan, Sunil Eidenbenz, Stephan GP IEEE TI ACCELERATING TRAFFIC MICROSIMULATIONS: A PARALLEL DISCRETE-EVENT QUEUE-BASED APPROACH FOR SPEED AND SCALE SO PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4 SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT Winter Simulation Conference 2009 CY DEC 13-16, 2009 CL Austin, TX SP IEEE AB We present Fast Trans - a parallel, distributed-memory simulator for transportation networks that uses a queue-based event-driven approach to traffic microsimulation. Queue-based simulation models have been shown to be significantly faster than cellular-automata type approaches, sacrificing spatial granularity for speed, while preserving link and intersection dynamics with high fidelity. Significant advances over previous work include the size of the simulated network, support for dynamic responses to congestion and the absence of precomputed routes - all routing calculations are executed online. We present initial results from a scalability study using a real-world network from the North-East region of the United States comprising over 1.5 million network elements and over 25 million vehicular trips. Simulation of an entire day's worth of realistic vehicular itineraries involving approximately five billion simulated events executes in less than an hour of wall-clock time on a distributed computing cluster. Initial results suggest almost linear speed-ups with cluster size. C1 [Thulasidasan, Sunil; Eidenbenz, Stephan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Thulasidasan, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sunil@lanl.gov; eidenben@lanl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-5770-0 J9 WINT SIMUL C PROC PY 2009 BP 2348 EP 2357 PG 10 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BUJ11 UT WOS:000289492501086 ER PT S AU Portante, EC Folga, SM Wulfkuhle, G Craig, BA Talaber, LE AF Portante, Edgar C. Folga, Stephen M. Wulfkuhle, Gustav Craig, Brian A. Talaber, Leah E. GP IEEE TI NEW MADRID AND WABASH VALLEY SEISMIC STUDY: SIMULATING THE IMPACTS ON NATURAL GAS TRANSMISSION PIPELINES AND DOWNSTREAM MARKETS SO PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4 SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT Winter Simulation Conference 2009 CY DEC 13-16, 2009 CL Austin, TX SP IEEE AB This paper summarizes the methodology, simulation tools, and major initial findings made by Argonne National Laboratory (Argonne) on the potential impact of simultaneous, high-intensity New Madrid and Wabash Valley Seismic Events on the natural gas interstate pipelines and their subsequent impacts on the downstream customers, particularly on the states under the purview of the Federal Emergency Management Agency (FEMA) Region V operations. Downstream impacts are expressed in terms of percent reduction in deliveries, population affected, and numbers of commercial and industrial customers shed. Damage functions and fragility curves are employed to identify specific pipelines that could potentially be affected, as well as the probable location(s) of the pipeline breaks and leaks. Effects of emergency remedial measures to mitigate impacts are also simulated. The methodology employed two models: (I) the FEMA-developed HAZUS MH-MR3 and (2) the Argonne-developed NGFast pipeline break simulation tool. The models are described, and their complementary roles are discussed. C1 [Portante, Edgar C.; Folga, Stephen M.; Craig, Brian A.; Talaber, Leah E.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Craig, Brian A.; Talaber, Leah E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Portante, EC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ecportante@anl.gov; sfolga@anl.gov; Gustav.Wulfkuhle@dhs.gov; bcraig@anl.gov; ltalaber@anl.gov NR 5 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-5770-0 J9 WINT SIMUL C PROC PY 2009 BP 2727 EP + PG 2 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BUJ11 UT WOS:000289492501124 ER PT S AU Kavicky, JA Jusko, MJ Craig, BA Portante, EC Folga, SM AF Kavicky, James A. Jusko, Mark J. Craig, Brian A. Portante, Edgar C. Folga, Stephen M. GP IEEE TI A NATURAL GAS MODELING FRAMEWORK FOR CONDUCTING INFRASTRUCTURE ANALYSIS STUDIES SO PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4 SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT Winter Simulation Conference 2009 CY DEC 13-16, 2009 CL Austin, TX SP IEEE AB Increased emphasis on national critical infrastructure protection has accelerated the need to respond to infrastructure assessment requests in a timely manner with reasonable certainty of system consequences following either natural or deliberate system disruptions. Natural gas supply, transmission, and distribution networks provide an important capability to dependent electric power, industrial, commercial, military, and residential customers. This paper describes the natural gas infrastructure analysis and modeling framework (NGtools) at Argonne National Laboratory that directly supports the analysis of the natural gas transmission network given various system disruptions. Infrastructure analysts, given the task to assess the resiliency of the natural gas infrastructure under various disruption scenarios, efficiently respond with increased certainty to various requests by using the in-house-developed analytical suite of tools within NGtools. Analysts use NGtools to identify critical system components and equipment, assess potential network-wide impacts, and suggest measures to mitigate undesirable system responses. C1 [Kavicky, James A.; Jusko, Mark J.; Craig, Brian A.; Portante, Edgar C.; Folga, Stephen M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kavicky, JA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kavicky@anl.gov; jusko@anl.gov; bcraig@anl.gov; ecportante@anl.gov; folga@anl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-5770-0 J9 WINT SIMUL C PROC PY 2009 BP 2751 EP 2761 PG 11 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BUJ11 UT WOS:000289492501126 ER PT S AU Kroc, L Eidenbenz, S Smith, JP AF Kroc, Lukas Eidenbenz, Stephan Smith, James P. GP IEEE TI SESSIONSIM: ACTIVITY-BASED SESSION GENERATION FOR NETWORK SIMULATION SO PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4 SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT Winter Simulation Conference 2009 CY DEC 13-16, 2009 CL Austin, TX SP IEEE AB We present SessionSim, a tool for generating realistic communication sessions such as phone calls, http and email data traffic. Realistic data traffic is a crucial requirement to gauge the realism of any larger communication network simulation study. SessionSim is part of a large-scale communication network simulation environment (MIITS: Multi-scale Integrated Information and Telecommunications System), where detailed information about the individuals in a synthetic population is available, including activities (e.g., sleep, work, lunch) and locations. The key aspect of the SessionSim modeling philosophy is the insight that communication behavior heavily depends on the type of activity people are engaged in; key model parameters in addition to the nature of this dependence are inter-session times, source-destination pairs, and the actual data content that determines session size or duration. We present a mix of empirical data, earlier models and intuition for determining session parameters for phone calls, http and email and briefly discuss validation studies showing that our generated communication sessions adequately mimic real-world data. We also discuss our implementation of SessionSim in the scalable OO-simulation framework called SimCore. C1 [Kroc, Lukas] Cornell Univ, 4106 Upson Hall, Ithaca, NY 14853 USA. [Eidenbenz, Stephan; Smith, James P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kroc, L (reprint author), Cornell Univ, 4106 Upson Hall, Ithaca, NY 14853 USA. EM kroc@cs.cornell.edu; eidenben@lanl.gov; jpsmith@lanl.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-5770-0 J9 WINT SIMUL C PROC PY 2009 BP 3020 EP + PG 3 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BUJ11 UT WOS:000289492501153 ER PT B AU McLerran, L AF McLerran, Larry BE Bartels, J Borras, K Gustafson, G Jung, H Kutak, K Levonian, S Mnich, J TI A Brief Introduction to the Color Glass Condensate and the Glasma SO PROCEEDINGS OF THE 38TH INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS LA English DT Proceedings Paper CT 38th International Symposium on Multiparticle Dynamics CY SEP 15-20, 2008 CL DESY, Hamburg, GERMANY HO DESY ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; WEINBERG-SALAM THEORY; HIGH-ENERGIES; SMALL-X; TRANSVERSE-MOMENTUM; SATURATION MOMENTUM; HADRON-COLLISIONS; AA COLLISIONS AB I provide a brief introduction to the theoretical ideas and phenomeno-logical Motivation for the Color Glass Condensate and the Glasma. C1 Brookhaven Natl Lab, RIKEN BNL Ctr, Upton, NY 11973 USA. RP McLerran, L (reprint author), Brookhaven Natl Lab, RIKEN BNL Ctr, Upton, NY 11973 USA. NR 97 TC 0 Z9 0 U1 0 U2 1 PU VERLAG DEUTSCHES ELEKTRONEN-SYNCHROTRON PI HAMBURG PA NOTKESTRASSE 85, HAMBURG, 22607, GERMANY BN 978-3-935702-31-7 PY 2009 BP 3 EP 18 DI 10.3204/DESY-PROC-2009-01/26 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BQH65 UT WOS:000281028200001 ER PT B AU McLerran, L AF McLerran, Larry BE Bartels, J Borras, K Gustafson, G Jung, H Kutak, K Levonian, S Mnich, J TI The Ridge, the Glasma and Flow SO PROCEEDINGS OF THE 38TH INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS LA English DT Proceedings Paper CT 38th International Symposium on Multiparticle Dynamics CY SEP 15-20, 2008 CL DESY, Hamburg, GERMANY HO DESY ID GLUON DISTRIBUTION-FUNCTIONS; TRANSVERSE-MOMENTUM; LARGE NUCLEI; CONDENSATE; COLLISIONS; EVOLUTION AB I discuss the ridge phenomena observed in heavy ion collisions at RHIC. I argue that the ridge may be due to flux tubes formed from the Color Glass Condensate in the early Glasma phase of matter produced in such collisions C1 Brookhaven Natl Lab, RIKEN BNL Ctr, Upton, NY 11973 USA. RP McLerran, L (reprint author), Brookhaven Natl Lab, RIKEN BNL Ctr, Upton, NY 11973 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU VERLAG DEUTSCHES ELEKTRONEN-SYNCHROTRON PI HAMBURG PA NOTKESTRASSE 85, HAMBURG, 22607, GERMANY BN 978-3-935702-31-7 PY 2009 BP 94 EP 98 DI 10.3204/DESY-PROC-2009-01/30 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BQH65 UT WOS:000281028200015 ER PT B AU Albrow, MG AF Albrow, Michael G. CA CDF Collaboration BE Bartels, J Borras, K Gustafson, G Jung, H Kutak, K Levonian, S Mnich, J TI Central Exclusive Production at the Tevatron SO PROCEEDINGS OF THE 38TH INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS LA English DT Proceedings Paper CT 38th International Symposium on Multiparticle Dynamics CY SEP 15-20, 2008 CL DESY, Hamburg, GERMANY HO DESY ID DOUBLE POMERON EXCHANGE; HADRON COLLIDERS; HIGGS; LHC AB In CDF we have observed several exclusive processes: gamma gamma -> e(+)e(-) and mu(+)mu(-), gamma + IP -> J/psi/psi(2S), and P + P -> chi c. The cross sections agree with QED, HERA photoproduction data, and theoretical estimates of gg -> chi(c) with another gluon exchanged to screen the color. This observation of exclusive chi(c), together with earlier observations of exclusive dijets and exclusive gamma gamma(,) candidates, support some theoretical predictions for P + P -> P + H + p at the LHC. Exclusive dileptons offer the best means of precisely calibrating forward proton spectrometers. C1 [Albrow, Michael G.; CDF Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Albrow, MG (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU VERLAG DEUTSCHES ELEKTRONEN-SYNCHROTRON PI HAMBURG PA NOTKESTRASSE 85, HAMBURG, 22607, GERMANY BN 978-3-935702-31-7 PY 2009 BP 158 EP 162 DI 10.3204/DESY-PROC-2009-01/22 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BQH65 UT WOS:000281028200027 ER PT B AU Yoshida, R AF Yoshida, R. BE Bartels, J Borras, K Gustafson, G Jung, H Kutak, K Levonian, S Mnich, J TI What HERA can tells us about saturation SO PROCEEDINGS OF THE 38TH INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS LA English DT Proceedings Paper CT 38th International Symposium on Multiparticle Dynamics CY SEP 15-20, 2008 CL DESY, Hamburg, GERMANY HO DESY ID LOW X; F(2); Q(2) AB Indications of gluon saturation in the proton in the HERA data are briefly discussed. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Yoshida, R (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU VERLAG DEUTSCHES ELEKTRONEN-SYNCHROTRON PI HAMBURG PA NOTKESTRASSE 85, HAMBURG, 22607, GERMANY BN 978-3-935702-31-7 PY 2009 BP 179 EP 182 DI 10.3204/DESY-PROC-2009-01/67 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BQH65 UT WOS:000281028200031 ER PT B AU Snead, LL Katoh, Y Windes, WE Shinavski, RJ Burchell, TD AF Snead, Lance L. Katoh, Yutai Windes, William E. Shinavski, Robert J. Burchell, Timothy D. GP ASME TI CERAMIC COMPOSITES FOR NEAR TERM REACTOR APPLICATION SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID MECHANICAL-PROPERTIES; NEUTRON-IRRADIATION; SILICON-CARBIDE; COMPONENTS; STRENGTH; FIBER AB Currently, two composites types are being developed for in-core application: carbon fiber carbon composite (CFC), and silicon carbide fiber composite (SiC/SiC.) Irradiation effects studies have been carried out over the past few decades yielding radiation-tolerant CFC's and a composite of SiC/SiC with no apparent degradation in mechanical properties to very high neutron exposure. While CFC's can be engineered with significantly higher thermal conductivity, and a slight advantage in manufacturability than SiC/SiC, they do have a neutron irradiation-limited lifetime. The SiC composite, while possessing lower thermal conductivity (especially following irradiation), appears to have mechanical properties insensitive to irradiation. Both materials are currently being produced to sizes much larger than that considered for nuclear application. In addition to materials aspects, results of programs focusing on practical aspects of deploying composites for near-term reactors will be discussed. In particular, significant progress has been made in the fabrication, testing, and qualification of composite gas-cooled reactor control rod sheaths and the ASTM standardization required for eventual qualification. C1 [Snead, Lance L.; Katoh, Yutai; Burchell, Timothy D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Snead, LL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. RI Burchell, Tim/E-6566-2017; OI Burchell, Tim/0000-0003-1436-1192; Katoh, Yutai/0000-0001-9494-5862 NR 25 TC 1 Z9 1 U1 0 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 1 EP 10 PG 10 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300001 ER PT B AU Wright, R Simpson, J Wertsching, A Swank, WD AF Wright, Richard Simpson, Joel Wertsching, Alan Swank, W. David GP ASME TI HIGH TEMPERATURE BEHAVIOR OF CANDIDATE VHTR HEAT EXCHANGER ALLOYS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID PRIMARY CIRCUIT HELIUM; GAS-COOLED REACTORS; CORROSION; IMPURITIES; INCONEL-617; MECHANISMS AB Several nickel based solid solution alloys arc under consideration for application in heat exchangers for very high temperature gas cooled reactors. The principal candidates being considered for this application by the Next Generation Nuclear Plant (NGNP) project are Inconel 617 and Haynes 230. While both of these alloys have an attractive combination of creep strength, fabricability, and oxidation resistance a good deal remains to be determined about their environmental resistance in the expected NGNP helium chemistry and their long term response to thermal aging. A series of experiments has been carried out in a He loop with controlled impurity chemistries within the range expected for the NGNP. The influence of oxygen partial pressure and carbon activity on the microstructure and mechanical properties of Alloys 617 and 230 has been characterized. A relatively simple phenomenological model of the environmental interaction for these alloys has been developed. C1 [Wright, Richard; Simpson, Joel; Wertsching, Alan; Swank, W. David] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wright, R (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 75 EP 79 PG 5 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300009 ER PT B AU Sham, TL Walker, KP AF Sham, T. -L. (Sam) Walker, Kevin P. GP ASME TI PRELIMINARY DEVELOPMENT OF A UNIFIED VISCOPLASTIC CONSTITUTIVE MODEL FOR ALLOY 617 WITH SPECIAL REFERENCE TO LONG TERM CREEP BEHAVIOR SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID DEFORMATION AB The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented In one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail. C1 [Sham, T. -L. (Sam)] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Sham, TL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM shamt@ORNL.gov NR 11 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 81 EP 89 PG 9 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300010 ER PT B AU Sham, TLS Jetter, RI Eno, DR AF Sham, T. -L. (Sam) Jetter, Robert I. Eno, Daniel R. GP ASME TI CREEP EFFECTS ON DESIGN BELOW THE TEMPERATURE LIMITS OF ASME SECTION III SUBSECTION NB SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB Some recent studies of material response have identified an issue that crosses over and blurs the boundary between ASME Boiler and Pressure Vessel Code Section III Subsection NB and Subsection NH. For very long design lives, the effects of creep show up at lower and lower temperature as the design life increases. Although true for the temperature at which the allowable stress is governed by creep properties, the effect is more apparent, e.g. creep effects show up sooner, at local structural discontinuities and peak thermal stress locations. This is because creep is a function of time, temperature and stress and the higher the localized stress, the lower in temperature creep begins to cause damage. If the threshold is below the Subsection NB to NH temperature boundary, 700 degrees F for ferritic steels and 800 degrees F for austenitic materials, then this potential failure mode will not be considered. Unfortunately, there is no experience base with very long lives at temperatures close to but under the Subsection NB to NH boundary to draw upon. This issue is of particular interest in the application of Subsection NB rules of construction to some High Temperature Gas Reactor (HTGR) concepts. The purpose of this paper is, thus, twofold; one part is about statistical treatment and extrapolation of sparse data for a specific material of interest, A533B; the other part is about how these results could impact current design procedures in Subsection NB. C1 [Sham, T. -L. (Sam)] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Sham, TL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM shamt@ORNL.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 97 EP 105 PG 9 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300012 ER PT B AU Schultz, RR AF Schultz, Richard R. GP ASME TI MEETING THE THERMAL-HYDRAULIC ANALYSIS NEEDS FOR ADVANCED GAS REACTOR SYSTEMS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB Simulation of some fluid phenomena associated with Generation IV reactors requires the capability of modeling mixing in two- or three-dimensional flow. At the same time, the flow condition of interest is often transient and depends upon boundary conditions dictated by the system behavior as a whole. Computational fluid dynamics (CFD) is an ideal tool for simulating mixing and three-dimensional flow in system components, whereas a system analysis tool is ideal for modeling the entire system. This paper presents the reasoning which has led to coupled CFD and systems analysis code software to analyze the behavior of advanced reactor fluid system behavior. In addition, the kinds of scenarios where this capability is important are identified. The important role of a coupled CFD/systems analysis code tool in the overall calculation scheme for a Very High Temperature Reactor is described. The manner in which coupled systems analysis and CFD codes will be used to evaluate the mixing behavior in a plenum for transient boundary conditions is described. The calculation methodology forms the basis for future coupled calculations that will examine the behavior of such systems at a spectrum of conditions, including transient accident conditions, that define the operational and accident envelope of the subject system. The methodology and analysis techniques demonstrated herein are a key technology that in part forms the backbone of the advanced techniques employed in the evaluation of advanced designs and their operational characteristics for the Generation IV advanced reactor systems. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Schultz, RR (reprint author), Idaho Natl Lab, POB 1625,2525 Fremt, Idaho Falls, ID 83415 USA. EM Richard.Schultz@inl.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 241 EP 253 PG 13 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300028 ER PT B AU Bhatt, V Friley, P Lee, J Reisman, A AF Bhatt, Vatsal Friley, Paul Lee, John Reisman, Ann GP ASME TI A METHODOLOGY TO EXAMINE THE LONG-TERM ENERGY, ENVIRONMENTAL AND ECONOMIC BENEFITS OF ADVANCED NUCLEAR TECHNOLOGIES SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC DE energy systems analysis; advanced nuclear technologies; economic incentives; climate change mitigation AB Nuclear energy is on the verge of a possible nuclear renaissance, driven by the simultaneous growing global demand for energy and a growing awareness of the need to combat climate change by lowering atmospheric carbon emissions. Widespread deployment of advanced nuclear technologies will require nuclear energy to be competitive in the energy market. Given the long lead-time and high cost of building capital-intensive nuclear facilities, it is important to perform analyses up-front to gain insight into what combinations of economic, environmental, technical and policy conditions will be required for nuclear to play a significant future role. This paper describes an analytical approach that can be used to define those conditions where nuclear energy could contribute. The methodology, using the MARKAL model, is both rich in technical detail and yet conceptually transparent. It is flexible, easy to modify for the needs of a particular analysis and can vary parameters of interest to address uncertainties in data and in future conditions. It can also examine the impacts of present or potential future government policies on the ultimate deployment of nuclear technologies over time. The example results provided in the paper illustrate some issues of interest to the nuclear and energy communities that can be addressed using MARKAL. C1 [Bhatt, Vatsal; Friley, Paul; Lee, John; Reisman, Ann] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bhatt, V (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 20 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 293 EP 301 PG 9 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300033 ER PT B AU McIlroy, HM McEligot, DM Pink, RJ AF McIlroy, Hugh M., Jr. McEligot, Donald M. Pink, Robert J. GP ASME TI IDAHO NATIONAL LABORATORY EXPERIMENTAL PROGRAM TO MEASURE THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR VALIDATION OF CFD CODES SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data oil measurements of flow phenomena in a scaled model of a prismatic gas-cooled reactor lower plenum using 3-D Particle linage Velocimetry (PIV) is presented. A description of the scaling analysis, experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained arc included. Samples of the data set that will be presented include the mean velocity field in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid. The benefit of the MIR technique is that it permits high-quality measurements to be obtained without locating intrusive transducers that disturb the flow field and without distortion of the optical paths. An advantage of the INL MIR system is its large size which allows obtaining improved spatial and temporal resolution compared to similar facilities at smaller scales. Results concentrate on the region of the lower plenum near its far reflector wall (away from the Outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal developing, non-uniform now in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet velocity profiles is also presented. C1 [McIlroy, Hugh M., Jr.; McEligot, Donald M.; Pink, Robert J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP McIlroy, HM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 12 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 311 EP 318 PG 8 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300035 ER PT B AU Chang, GS Grover, B Maki, JT Lillo, MA AF Chang, Gray S. Grover, Blaine Maki, John T. Lillo, Mist A. GP ASME TI THE FEASIBILITY STUDY OF AGR 7-POSITION FUEL TESTING ASSEMBLY IN NEFT POSITION SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB In order to support the Next Generation Nuclear Plant (NGNP) Program 2018 deployment schedule, the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program must reduce the AGR fuel irradiation testing time in the Advanced Test Reactor (ATR) from approximately 2 1/2 calendar years to 1 1/2 calendar years. The AGR fuel irradiation testing requirements are: (a) bum-up of at least 14% FIMA; (b) Fast neutron fluence (E > 0.18 MeV) - maximum < 5.1 x 10(25) n/m(2); (c) limit of fission power density is 350 W/cc; and (d) irradiation time < 1 1/2 calendar years. C1 [Chang, Gray S.; Grover, Blaine; Maki, John T.; Lillo, Mist A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chang, GS (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 323 EP 328 PG 6 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300037 ER PT B AU Stoots, CM O'Brien, JE Herring, JS Condie, KG Hartvigsen, JJ AF Stoots, Carl M. O'Brien, James E. Herring, J. Stephen Condie, Keith G. Hartvigsen, Joseph J. GP ASME TI IDAHO NATIONAL LABORATORY EXPERIMENTAL RESEARCH IN HIGH TEMPERATURE ELECTROLYSIS FOR HYDROGEN AND SYNGAS PRODUCTION SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO(2) feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to similar to 15 kW testing capacity (H(2) production rate based upon lower heating value). C1 [Stoots, Carl M.; O'Brien, James E.; Herring, J. Stephen; Condie, Keith G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Stoots, CM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 7 TC 0 Z9 0 U1 1 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 497 EP 508 PG 12 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300058 ER PT B AU Patterson, MW Park, CV AF Patterson, Michael W. Park, Charles V. GP ASME TI MAINTAINING A TECHNOLOGY-NEUTRAL APPROACH TO HYDROGEN PRODUCTION PROCESS DEVELOPMENT THROUGH CONCEPTUAL DESIGN OF THE NEXT GENERATION NUCLEAR PLANT SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The Energy Policy Act of 2005 (EPAct) charges the Department of Energy (DOE) with developing and demonstrating the technical and economic feasibility of using high temperature gas-cooled reactor (HTGR) technology for the production of electricity and/or hydrogen. The design, construction and demonstration of this technology in an HTGR proto-type reactor are termed the Next Generation Nuclear Plant (NGNP) Project. Currently, parallel development of three hydrogen production processes will continue until a single process technology is recommended for final demonstration in the NGNP - a technology neutral approach. This analysis compares the technology neutral approach to acceleration of the hydrogen process down-selection at the completion of the NGNP conceptual design to improve integration of the hydrogen process development and NGNP Project schedule. The accelerated schedule activities are based on completing evaluations and achieving technology readiness levels (TRLs) identified in NGNP systems engineering and technology roadmaps. The cost impact of accelerating the schedule and risk reduction strategies was also evaluated. The NGNP Project intends to design and construct a component test facility (CTF) to support testing and demonstration of HTGR technologies, including those for hydrogen production. The demonstrations will support scheduled design and licensing activities, leading to subsequent construction and operation of the NGNP. Demonstrations in the CTF are expected to start about two years earlier than similarly scaled hydrogen demonstrations planned in the technology neutral baseline. The schedule evaluation assumed that hydrogen process testing would be performed in the CTF and synchronized the progression of hydrogen process development with CTF availability. C1 [Patterson, Michael W.; Park, Charles V.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Patterson, MW (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. OI Patterson, Michael/0000-0002-8698-3284 NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 517 EP 526 PG 10 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300060 ER PT B AU Summers, WA Steimke, JL Hobbs, DT Colon-Mercado, HR Gorensek, MB AF Summers, William A. Steimke, John L. Hobbs, David T. Colon-Mercado, Hector R. Gorensek, Maximilian B. GP ASME TI DEVELOPMENT OF A SULFUR DIOXIDE DEPOLARIZED ELECTROLYZER FOR HYDROGEN PRODUCTION USING THE HYBRID SULFUR THERMOCHEMICAL PROCESS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The Hybrid Sulfur Process is a leading candidate among the thermochemical cycles being developed to use heat from advanced nuclear reactors to produce hydrogen via water-splitting. It has the potential for high efficiency, competitive cost of hydrogen, and it has been demonstrated at a laboratory scale to confirm performance characteristics. The major developmental issues with the HyS Process involve the design and performance of a sulfur dioxide depolarized electrolyzer, the key component for conducting the electrochemical step in the process. This paper will discuss the development program and current status for the SDE being conducted at the Savannah River National Laboratory. C1 [Summers, William A.; Steimke, John L.; Hobbs, David T.; Colon-Mercado, Hector R.; Gorensek, Maximilian B.] Savannah River Natl Lab, Aiken, SC USA. RP Summers, WA (reprint author), Savannah River Natl Lab, Aiken, SC USA. OI Gorensek, Maximilian/0000-0002-4322-9062 NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 527 EP 529 PG 3 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300061 ER PT B AU Gorensek, MB Summers, WA Lahoda, EJ Bolthrunis, CO Greyvenstein, R AF Gorensek, Maximilian B. Summers, William A. Lahoda, Edward J. Bolthrunis, Charles O. Greyvenstein, Renee GP ASME TI AN EFFICIENT HYBRID SULFUR PROCESS USING PEM ELECTROLYSIS WITH A BAYONET DECOMPOSITION REACTOR SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC C1 [Gorensek, Maximilian B.; Summers, William A.] Savannah River Natl Lab, Aiken, SC USA. RP Gorensek, MB (reprint author), Savannah River Natl Lab, Aiken, SC USA. OI Gorensek, Maximilian/0000-0002-4322-9062 NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 531 EP 532 PG 2 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300062 ER PT B AU Moore, R Parma, E Russ, B Sweet, W Helie, M Pons, N Pickard, P AF Moore, Robert Parma, Ed Russ, Ben Sweet, Wendi Helie, Max Pons, Nicolas Pickard, Paul GP ASME TI An Integrated Laboratory-Scale Experiment on the Sulfur-Iodine Thermochemical Cycle for Hydrogen Production SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB Sandia National Laboratories (SNL), General Atomics Corporation (GA) and the French Commissariat I'Energie Atomique (CEA) have been conducting laboratory-scale experiments to investigate the thermochemical production of hydrogen using the Sulfur-Iodine (S-I) process. This project is being conducted as an International Nuclear Energy Research Initiative (INERI) project supported by the CEA and US DOE Nuclear Hydrogen Initiative. In the S-I process, 1) H(2)SO(4) is catalytically decomposed at high temperature to produce SO(2), O(2) and H(2)O. 2) The SO(2) is reacted with H(2)O and I(2) to produce HI and H(2)SO(4). The H(2)SO(4) is returned to the acid decomposer. 3) The HI is decomposed to H(2) and I(2). The I(2) is returned to the HI production process. Each participant in this work is developing one of the three primary reaction sections. SNL is responsible for the H(2)SO(4) decomposition section, CEA, the primary HI production section and General Atomics, the HI decomposition section. The objective of initial testing of the S-I laboratory-scale experiment was to establish the capability for integrated operations and demonstrate H(2) production from the S-I cycle. The first phase of these objectives was achieved with the successful integrated operation of the SNL acid decomposition and CEA Bunsen reactor sections and the subsequent generation of H(2) in the GA HI decomposition section. This is the first time the S-I cycle has been realized using engineering materials and operated at prototypic temperature and pressure to produce hydrogen. C1 [Moore, Robert; Parma, Ed; Pickard, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moore, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 4 TC 1 Z9 1 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 541 EP 549 PG 9 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300064 ER PT B AU Harvego, EA McKellar, MG O'Brien, JE AF Harvego, E. A. McKellar, M. G. O'Brien, J. E. GP ASME TI SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency. C1 [Harvego, E. A.; McKellar, M. G.; O'Brien, J. E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Harvego, EA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4855-5 PY 2009 BP 571 EP 577 PG 7 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJI55 UT WOS:000266155300067 ER PT B AU Balls, VJ Duncan, DS Austad, SL AF Balls, Vondell J. Duncan, David S. Austad, Stephanie L. GP ASME TI THE COMPONENT TEST FACILITY -A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies. C1 [Balls, Vondell J.; Duncan, David S.; Austad, Stephanie L.] Idaho Natl Lab, Next Generat Nucl Plant Project, Idaho Falls, ID 83415 USA. RP Balls, VJ (reprint author), Idaho Natl Lab, Next Generat Nucl Plant Project, Idaho Falls, ID 83415 USA. NR 3 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 109 EP 115 PG 7 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100013 ER PT B AU Versluis, RM Venneri, F Petti, D Snead, L McEachern, D AF Versluis, Robert M. Venneri, Francesco Petti, David Snead, Lance McEachern, Donald GP ASME TI PROJECT DEEP-BURN: DEVELOPMENT OF TRANSURANIC FUEL FOR HIGH-TEMPERATURE HELIUM-COOLED REACTORS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC C1 [Versluis, Robert M.] US DOE, Germantown, MD USA. RP Versluis, RM (reprint author), US DOE, Germantown, MD USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 167 EP 170 PG 4 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100019 ER PT B AU Barnes, CM Richardson, WC Husser, D Ebner, M AF Barnes, Charles M. Richardson, W. C. (Clay) Husser, DeWayne Ebner, Matthias GP ASME TI FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB A major element of the Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is developing fuel fabrication processes to produce high quality uranium-containing fuel kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test, AGR-1, consisted of uranium oxycarbide (UCO) microspheres that were produced by an internal gelation process followed by high temperature steps to convert the UO(3) + C "green" microspheres to UO(2) + UC(x). The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels in their Lynchburg facility for the AGR-1 irradiation experiment, which went into the Advanced Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process prior and after these kernels were produced led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test, AGR-2. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run tithe, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment. C1 [Barnes, Charles M.; Ebner, Matthias] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Barnes, CM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 8 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 177 EP 188 PG 12 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100021 ER PT B AU Pappano, PJ Hunn, JD AF Pappano, Peter J. Hunn, John D. GP ASME TI Update on Overcoating and Compacting Activities for Coated Particles with 425 mu m Kernels SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The Advanced Gas Reactor (AGR) program is tasked with developing and qualifying fuel for the Next Generation Nuclear Plant (NGNP) [1, 2]. The first experiment, AGR-1, focused on TRISO coating 350 mu m uranium oxide/uranium carbide (UCO) kernels and compacting them into a right circular cylinder fuel form using an overcoating and compacting process. The AGR-1 fuel compacts are currently being irradiated at the Advanced Test Reactor (ATR). The AGR-2 experiment will focus on overcoating and compacting TRISO coated 425 pm UCO kernels. This paper summaries the work that has been done to date on preparing to make AGR-2 compacts. C1 [Pappano, Peter J.; Hunn, John D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Pappano, PJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 189 EP 195 PG 7 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100022 ER PT B AU Marshall, DW Barnes, CM AF Marshall, Douglas W. Barnes, Charles M. GP ASME TI MINING PROCESS AND PRODUCT INFORMATION FROM PRESSURE FLUCTUATIONS WITHIN A FUEL PARTICLE COATER SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID SPOUTED BEDS AB The Next Generation Nuclear Power/Advanced Gas Reactor (NGNP/AGR) Fuel Development and Qualification Program included the design, installation, and testing of a 6-inch diameter nuclear fuel particle coater to demonstrate quality TRISO fuel production on a small industrial scale. Scale-up from the laboratory-scale coater faced challenges associated with an increase in the kernel charge mass, kernel diameter, and a redesign of the gas distributor to achieve adequate fluidization throughout the deposition of the four TRISO coating layers. TRISO coatings are applied at very high temperatures in atmospheres of dense particulate clouds, corrosive gases, and hydrogen concentrations over 45% by volume. The severe environment, stringent product and process requirements, and the fragility of partially-formed coatings limit the insertion of probes or instruments into the coater vessel during operation. Pressure instrumentation were installed on the gas inlet line and exhaust line of the 6-inch coater to monitor the bed differential pressure and internal pressure fluctuations emanating from the fuel bed as a result of bed and gas "bubble" movement. These instruments are external to the particle bed and provide a glimpse into the dynamics of fuel particle bed during the coating process and data that could be used to help ascertain the adequacy of fluidization and, potentially, the dominant fluidization regimes. Pressure fluctuation and differential pressure data are not presently useful as process control instruments, but data suggest a link between the pressure signal structure and some measurable product attributes that could be exploited to get an early estimate of the attribute values. C1 [Marshall, Douglas W.; Barnes, Charles M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Marshall, DW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 237 EP 246 PG 10 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100028 ER PT B AU Barnes, CM Marshall, DW Hunn, J Tomlin, BL Keeley, JT AF Barnes, Charles M. Marshall, Douglas W. Hunn, John Tomlin, Bruce L. Keeley, Joe T. GP ASME TI RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID FUEL-PARTICLES; PERFORMANCE; FABRICATION AB The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISO-coated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two-inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (NITS) concentrations up to 3 cool %. Using only hydrogen as the fluidizing gas, the high concentration NITS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SIC densities were achieved with the high NITS gas fraction. C1 [Barnes, Charles M.; Marshall, Douglas W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Barnes, CM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 247 EP 255 PG 9 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100029 ER PT B AU Scates, DM Hartwell, JK Walter, JB Drigert, MW Harp, JM AF Scates, Dawn M. Hartwell, John K. Walter, John B. Drigert, Mark W. Harp, Jason M. GP ASME TI FISSION PRODUCT MONITORING OF TRISO COATED FUEL FOR THE ADVANCED GAS REACTOR-1 EXPERIMENT SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented. C1 [Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Scates, DM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. RI Harp, Jason/K-9289-2013 OI Harp, Jason/0000-0002-5345-8440 NR 23 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 349 EP 356 PG 8 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100040 ER PT B AU Ecker, L Saccheri, J Bowerman, B Ablett, J Milian, L Adams, J Ludwig, H Todosow, M AF Ecker, Lynne Saccheri, Jacopo Bowerman, Biays Ablett, James Milian, Laurence Adams, Jay Ludwig, Hans Todosow, Michael GP ASME TI AN INFILTRATION MANUFACTURING PROCESS FOR NUCLEAR FUELS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID CARBOTHERMIC SYNTHESIS; REACTORS AB The Infiltrated Kernel Nuclear Fuel (IKNF) process deposits nuclear fuel into the naturally occurring porosity in graphite. IKNF consists of infiltrating uranyl nitrate dissolved in an organic solvent into the graphite and then heat-treating the sample at low (<300 degrees C) temperatures to remove the solvent and convert the uranyl nitrate to UO(2). Complete conversion to UC(2) can then be accomplished by heating to temperatures higher than 3000 C. IKNF is extremely flexible: it is appropriate for very high temperature applications and heating the infiltrated product to intermediate temperatures (higher than 900 C) produces nuclear fuel with a range of chemistries in the U-C-O system (similar to the current US TRISO fuel). It is probable that the process can also be used to produce fuel containing transuranics. It is believed that IKNF will be less expensive, more robust and more suitable for on-line quality monitoring than current fuel fabrication method. Graphite infiltration involves a few, easily measurable and controllable variables. It is reproducible and predictable. C1 [Ecker, Lynne; Saccheri, Jacopo; Bowerman, Biays; Milian, Laurence; Adams, Jay; Ludwig, Hans; Todosow, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ecker, L (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 10 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 365 EP 371 PG 7 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100042 ER PT B AU Hiruta, H Ougouag, AM Gougar, HD Ortensi, J Nigg, DW Davis, CB Weaver, WL AF Hiruta, Hikaru Ougouag, Abderrafi M. Gougar, Hans D. Ortensi, Javier Nigg, David W. Davis, Cliff B. Weaver, Walter L., III GP ASME TI CYNOD: A NEUTRONICS CODE FOR PEBBLE BED MODULAR REACTOR COUPLED TRANSIENT ANALYSIS SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB In this paper, a new neutron kinetics solver for cylindrical R-Z geometry, CYNOD, is presented for the simulation of coupled transient problems for pebble bed reactors. The code utilizes the Direct Coarse Mesh Finite Difference method, in which a set of one-dimensional equations in each transverse direction is solved by means of the analytic Green's function method. A method that deals with control rod cusping problems is also presented. A heterogeneous fuel kernel model is implemented in order to accurately take into account Doppler feedback effects. Numerical results that demonstrate the accuracy of the code are also presented. C1 [Hiruta, Hikaru; Ougouag, Abderrafi M.; Gougar, Hans D.; Ortensi, Javier; Nigg, David W.; Davis, Cliff B.; Weaver, Walter L., III] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hiruta, H (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. RI Ortensi, Javier/B-4712-2017; OI Ortensi, Javier/0000-0003-1685-3916; Ougouag, Abderrafi/0000-0003-4436-380X NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 561 EP 566 PG 6 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100062 ER PT B AU Johnson, RW AF Johnson, Richard W. GP ASME TI DEVELOPMENT OF A CFD ANALYSIS PLAN FOR THE FIRST VHTR STANDARD PROBLEM SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC DE CFD; VHTR; NGNP; analysis plan; turbulence model; validation AB Data from a scaled model of a portion of the lower plenum of the helium-cooled very high temperature reactor (VHTR) are under consideration for acceptance as a computational fluid dynamics (CFD) validation data set or standard problem. A CFD analysis will help determine if the scaled model is a suitable geometry for validation data. The present article describes the development of an analysis plan for the CFD model. The plan examines the boundary conditions that should be used, the extent of the computational domain that should be included and which turbulence models need not be examined against the data. Calculations are made for a closely related 2D geometry to address these issues. It was found that a CFD model that includes only the inside of the scaled model in its computational domain is adequate for CFD calculations. The realizable k similar to epsilon model was found not to be suitable for this problem because it did not predict vortex-shedding. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Johnson, RW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 567 EP 574 PG 8 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100063 ER PT B AU Cogliati, JJ Ougouag, AM AF Cogliati, Joshua J. Ougouag, Abderrafi M. GP ASME TI PEBBLE BED REACTOR DUST PRODUCTION MODEL SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID ENVIRONMENT; GRAPHITE; WEAR AB The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors' PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production. C1 [Cogliati, Joshua J.; Ougouag, Abderrafi M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cogliati, JJ (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Joshua.Cogliati@inl.gov; Abderrafi.Ougouag@inl.gov OI Ougouag, Abderrafi/0000-0003-4436-380X NR 10 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 575 EP 578 PG 4 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100064 ER PT B AU Oh, CH Kim, ES AF Oh, Chang H. Kim, Eung S. GP ASME TI DESIGN OPTION OF HEAT EXCHANGER FOR THE NEXT GENERATION NUCLEAR PLANT SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water. reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. C1 [Oh, Chang H.; Kim, Eung S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Oh, CH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. NR 15 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 697 EP 707 PG 11 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100078 ER PT B AU Rodriguez, SB El-Genk, MS AF Rodriguez, Sal B. El-Genk, Mohamed S. GP ASME TI On Eliminating "Hot Streaking" and Stratification in the VHTR Lower Plenum Using Helicoid Inserts SO PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY, VOL 1 LA English DT Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID LARGE-EDDY SIMULATION; HEAT-TRANSFER; FLOW; JET AB The helium-cooled high temperature reactor (HTR) and Very High Temperature Reactor (VHTR) designs operate at exit temperatures ranging from 873 - 923 K and 1,123 - 1,223 K, respectively.(1) The high exit temperatures and the low heat capacity of helium require operating at a high flow velocity (> 70 m/s). The high temperature and flow velocity of the helium jets exiting the coolant channels in the prismatic reactor's lower plate in the lower plenum (LP) cause "hot spots" ("hot streaking") and stratification. To minimize or eliminate hot streaking and enhance mixing, this work investigated using static, quadruple helicoid inserts at the exit of the coolant channels. The helicoid inserts introduce radial and azimuthal momentum flow components, which with the extensive entrainment and mixing of the surrounding gas, significantly reduce the impingement onto the lower plate, thereby minimizing hot streaking and stratification in the LP. The present analysis was conducted using FUEGO, Sandia National Laboratories' 3D, finite element, incompressible, reactive flow, massively-parallel code with state-of-the art turbulence models. We used helium at 1,273 K and the dynamic Smagorinsky turbulence model. C1 [Rodriguez, Sal B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodriguez, SB (reprint author), Sandia Natl Labs, POB 5800,MS 0748, Albuquerque, NM 87185 USA. EM sbrodri@sandia.gov; mgenk@unm.edu NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4854-8 PY 2009 BP 783 EP 791 PG 9 WC Engineering, Mechanical; Physics, Nuclear SC Engineering; Physics GA BJH89 UT WOS:000265973100088 ER PT B AU VanOsdol, J Parsons, EL AF VanOsdol, John Parsons, Edward L., Jr. GP ASME TI USING STAGED COMPRESION AND EXPANSION TO ENHANCE THE PERFORMANCE OF A GAS TURBINE FUEL CELL HYBRID SYSTEM SO PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY LA English DT Proceedings Paper CT 7th International Conference on Fuel Cell Science, Engineering and Technology CY JUN 08-10, 2009 CL Newport Beach, CA SP ASME, Adv Energy Syst Div AB It has long been recognized that the heat generated from a solid oxide fuel cell (SOFC) is adequate to drive an external heat engine. The combination of the fuel cell plus the heat engine is called a gas turbine fuel cell hybrid power generation system. In most hybrid systems the heat engine consists of a single compressor and single turbine, arranged in either a Brayton cycle or a recuperated Brayton cycle. One characteristic of hybrid power cycles is that the compression costs are substantial. When this cycle is used in a coal fired hybrid system that is configured with an isolated anode stream to isolate and compress CO(2), the work to compress the cathode air can greatly exceed the work to compress the CO(2). It has also been shown for this same system that using intercooled compression for the cathode air reduces this compression cost. Since there have been no exhaustive studies performed which quantify these effects it is not clear exactly how much reduction in compression cost is possible. In this work we compare three hybrid systems. The first systems has a single compressor and turbine, run at a low pressure ratio as a recuperated Brayton cycle and at high pressure ratio as a simple Brayton cycle (see Figure 1). We then alter the recuperated Brayton cycle using both staged compression and staged expansion. The second system is thus configured with two compressors and two turbines. For this system an intercooler is placed between the compressors and the fuel cell stack is divided into two stacks each followed by a turbine (see Figure 3). Similarly the third system divides the compression and expansion legs of the cycle again into three compressors with intercoolers, and three fuel cell stacks each followed by its own turbine (see Figure 5). As the system configuration is altered by successive divisions of both the compression and expansion legs of the thermal heat engine cycle, the system configuration is transformed from a simple Brayton cycle to a staged approximation to an Ericsson cycle. We show that this new configuration for the gas turbine fuel cell hybrid system not only reduces the high cost of compression, but it makes more heat available for auxiliary system operations. In coal fired systems these auxiliary operations would include pre heating coal for the gasification system, reheating the syngas after cooling or even heating steam for a bottoming cycle. C1 [VanOsdol, John; Parsons, Edward L., Jr.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP VanOsdol, J (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM jvanos@netl.doe.gov; eparso@netl.doe.gov NR 16 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4881-4 PY 2009 BP 559 EP 571 PG 13 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BMS52 UT WOS:000273473100066 ER PT B AU Ibrahim, A Wendel, M Felde, D Riemer, B AF Ibrahim, Ashraf Wendel, Mark Felde, David Riemer, Bernard GP ASME TI Numerical Simulation of Bubble Formation in Co-Flowing Mercury SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE -2008, VOL 1, PT A AND B LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Conference CY AUG 10-14, 2008 CL Jacksonville, FL SP ASME, Fluids Engn Div ID GAS-BUBBLES AB In this work, we present computational fluid dynamics (CFD) simulations of helium bubble formation and detachment at a submerged needle in stagnant and co-flowing mercury. Since mercury is opaque, visualization of internal gas bubbles was done with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE(2)). The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The Volume of Fluid (VOF) model was used to simulate the unsteady two-phase flow of gas injection in mercury. The VOF model is validated by comparing detailed bubble sizes and shapes at various stages of the bubble growth and detachment, with the experimental measurements at 1.66 mg/min helium gas flow rate and different mercury velocities. The experimental and computational results show a two-stage bubble formation in stagnant mercury. The first stage involves growing bubble around the needle, and the second follows as the buoyancy overcomes wall adhesion. The comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth and detachment is in good agreement. C1 [Ibrahim, Ashraf; Wendel, Mark; Felde, David; Riemer, Bernard] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ibrahim, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM ibrahimaa@ornl.gov; wendelmw@ornl.gov; feldedk@ornl.gov; riemerbw@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 18 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4840-1 PY 2009 BP 43 EP 49 PG 7 WC Engineering, Aerospace; Engineering, Mechanical; Materials Science, Multidisciplinary; Physics, Applied; Transportation Science & Technology SC Engineering; Materials Science; Physics; Transportation GA BJH23 UT WOS:000265788300005 ER PT B AU Francois, MM Lowrie, RB Dendy, ED AF Francois, Marianne M. Lowrie, Robert B. Dendy, Edward D. GP ASME TI A MATERIAL INTERFACE TRANSITION ALGORITHM FOR MULTIPHASE FLOW SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE -2008, VOL 1, PT A AND B LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Conference CY AUG 10-14, 2008 CL Jacksonville, FL SP ASME, Fluids Engn Div ID VOLUME TRACKING; MODELS AB Volume tracking method, also referred to as the volume-of-fluid (VOF) method introduces "numerical surface tension" that breaks a filament into a series of droplets whenever the filament is under-resolved. Adaptive mesh refinement can help avoid under-resolution, but a folly-developed flow will still generate filaments that cannot be resolved without enormous computational cost. We propose a complementary new approach that consists of transitioning to a continuous interface representation (i.e. Without interface reconstruction) in regions of under-resolved interfacial curvature where volume tracking has become erroneous. The price of the continuous interface treatment is a small amount of numerical mass diffusion, even if the physical interface is immiscible. However, we have found that for certain measures, the overall accuracy is greatly improved by using our transitioning algorithm. The algorithm is developed in the context of the single fluid formulation of the incompressible Navier-Stokes equations. Numerical standard vortices advection test cases and Rayleigh-Taylor instability computations arc presented to illustrate the transition algorithm potential. C1 [Francois, Marianne M.; Lowrie, Robert B.] Los Alamos Natl Lab, Computat Phys Grp, Los Alamos, NM 87545 USA. RP Francois, MM (reprint author), Los Alamos Natl Lab, Computat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM mmfran@lanl.gov; lowrie@lanl.gov; dendy@lanl.gov NR 7 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4840-1 PY 2009 BP 173 EP 180 PG 8 WC Engineering, Aerospace; Engineering, Mechanical; Materials Science, Multidisciplinary; Physics, Applied; Transportation Science & Technology SC Engineering; Materials Science; Physics; Transportation GA BJH23 UT WOS:000265788300019 ER PT B AU Leishear, RA Restivo, ML Sherwood, DJ AF Leishear, Robert A. Restivo, Michael L. Sherwood, David J. GP ASME TI Bubble Formation in a Large Scale System SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE -2008, VOL 1, PT A AND B LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Conference CY AUG 10-14, 2008 CL Jacksonville, FL SP ASME, Fluids Engn Div DE Bubbles; superficial velocity; Bingham fluid; Newtonian fluid AB The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids. C1 [Leishear, Robert A.; Restivo, Michael L.] Savannah River Natl Lab, Aiken, SC 29803 USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. EM Robert.Leishear@SRS.gov; Michael.Restivo@SRS.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4840-1 PY 2009 BP 531 EP 540 PG 10 WC Engineering, Aerospace; Engineering, Mechanical; Materials Science, Multidisciplinary; Physics, Applied; Transportation Science & Technology SC Engineering; Materials Science; Physics; Transportation GA BJH23 UT WOS:000265788300061 ER PT B AU Wendel, M Felde, D Riemer, B West, D D'Urso, B Ibrahim, A AF Wendel, Mark Felde, David Riemer, Bernard West, David D'Urso, Brian Ibrahim, Ashraf GP ASME TI Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE - 2008, VOL 2 LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Conference CY AUG 10-14, 2008 CL Jacksonville, FL SP ASME, Fluids Engn Div AB The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design. C1 [Wendel, Mark; Felde, David; Riemer, Bernard; West, David; D'Urso, Brian; Ibrahim, Ashraf] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Wendel, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM wendelmw@ornl.gov; feldedk@ornl.gov; riemerbw@ornl.gov; westdl@ornl.gov; dursobr@ornl.gov; ibrahimaa@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4841-8 PY 2009 BP 23 EP 27 PG 5 WC Biophysics; Engineering, Mechanical; Nanoscience & Nanotechnology; Instruments & Instrumentation SC Biophysics; Engineering; Science & Technology - Other Topics; Instruments & Instrumentation GA BJK35 UT WOS:000266635000004 ER PT B AU Adamson, DJ AF Adamson, Duane J. GP ASME TI PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div AB Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin hydraulic cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Sixteen of these cycles were completed in the 24 '' IX Column (1/2 scale column). Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot scale testing was 3 times better than the design requirements of the WTP full-scale IX system. The RF resin bed showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. The hydraulic and chemical performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins. The pilot scale testing indicates that the RF resin is durable and should hold up to many hydraulic cycles in actual radioactive Cesium (Cs) separation. C1 Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Adamson, DJ (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, 786-5A, Aiken, SC 29808 USA. EM duane.adamson@srnl.doe.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 545 EP 553 PG 9 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200057 ER PT B AU Guerrero, HN Fowley, MD Sherwood, DJ AF Guerrero, Hector N. Fowley, Mark D. Sherwood, David J. GP ASME TI Irradiation and Temperature Effects on Anti-foam Agent Performance in a Non-Newtonian Waste Slurry Simulant SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div AB Foaming tests were performed in a bench-scale foam column and 1/9th-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) for a simulant of waste slurry from the Hanford Tank 241-AZ-101. This featured additions of DOW Coming Q2-3183A antifoam agent (AFA) to prevent foaming, especially in the evaporators. These waste slurries (typically 15 wt% solids) are particularly prone to particle-stabilized foaming. Previous studies have shown that up to 20% of the polydimethyl siloxane (PDMS) portion of the AFA mixture is degraded by radiation. The high temperature (90 degrees C) for 48 hrs of a caustic leaching process may have a similar effect on the polymer. The objective of this study was to determine how well degraded AFA works. Key results are that: Without addition of this AFA, the 1/9(th)-scale system had about 100% foaming at 1 mm/s air velocity and the bench-scale system had over 400% foaming for an air flow of 10 mm/s. The effect of irradiating 350 ppm AFA was to increase foaming from 6% to 30% in the foam column and 7.6% to 13.7% in the 1/9(th)-scale system at an air flow of 1 mm/s at room temperature. The effect of heating the AFA to 90 degrees C was to increase foaming by a factor of 1.6 in the foam column. But while the effectiveness of the irradiated AFA was reduced, it still provided a significant reduction in foaming. AFA additions required to mitigate the combined effects of high temperature and radiation were also determined. C1 [Guerrero, Hector N.; Fowley, Mark D.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Guerrero, HN (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM hector.guerrero@srnl.doe.gov; mark.fowley@srnl.doe.gov; djsherwo@bechtel.com NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 603 EP 609 PG 7 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200064 ER PT B AU Crandall, D Ahmadi, G Smith, DH AF Crandall, Dustin Ahmadi, Goodarz Smith, Duane H. GP ASME TI MODELING OF IMMISCIBLE, TWO-PHASE FLOWS IN A NATURAL ROCK FRACTURE SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div DE Single Fracture; Computational Fluid Dynamics (CFD); Stereolithography; Relative Permeability; Experiments AB One potential method of geologically sequestering carbon dioxide (CO(2)) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO(2) transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT (R) and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO(2) will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture. C1 [Crandall, Dustin; Smith, Duane H.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Crandall, D (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Dustin.Crandall@nr.netl.doe.dov; ahmadi@clarkson.edu; Duane.Smith@netl.doe.gov NR 19 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 639 EP 648 PG 10 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200069 ER PT B AU Crandall, D Ahmadi, G Smith, DH AF Crandall, Dustin Ahmadi, Goodarz Smith, Duane H. GP ASME TI MODELING OF GAS-LIQUID FLOW THROUGH AN INTERCONNECTED CHANNEL MATRIX SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div DE Flow in Porous Media; Drainage; Stereo lithography; Volume of Fluid; CFD ID POROUS-MEDIA; RELATIVE PERMEABILITY; SEQUESTRATION; DISPLACEMENTS; VISCOSITY AB The motion of a less viscous, non-wetting gas into a liquid-saturated porous medium is known as drainage. Drainage is an important process in environmental applications, such as enhanced oil recovery and geologic CO(2) sequestration. Understanding what conditions will increase the volume of gas that can saturate an initially water-saturated porous medium is of importance for predictions of the total CO(2) volume that can be sequestered in known geologic formations. To further the understanding of how drainage flow properties are related to different injection flow-rates, a porous medium consisting of interconnected channels and pores was manufactured to perform bench-top experiments of drainage. Additionally, a finite-volume model of this interconnected channel matrix was constructed. Numerical simulations of constant-rate injection into the model porous medium are first shown to compare favorably to the bench-top experiments. The fluid and injection properties of the drainage process were then varied to evaluate the flow conditions which would maximize the volume of gas trapped within the porous medium. In particular, CO(2) displacing brine within the porous medium was modeled, with representative subsurface temperatures and fluid properties. It was shown with these fluid conditions a higher final saturation of the invading less-viscous CO(2) was obtained, as compared to air into water experiments at similar injection rates. C1 [Crandall, Dustin; Smith, Duane H.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Crandall, D (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Dustin.Crandall@nr.netl.doe.gov; ahmadi@clarkson.edu; Duane.Smith@netl.doe.gov NR 22 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 773 EP 781 PG 9 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200084 ER PT B AU Abdou, A Wendel, M Felde, D Riemer, B AF Abdou, Ashraf Wendel, Mark Felde, David Riemer, Bernard GP ASME TI CFD Validation of Gas Injection in Flowing Mercury over Vertical Smooth and Grooved Wall SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div ID SURFACE AB The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL).The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) may be used as a diagnostic tool to visualize the behavior of the liquid mercury and guide the experimental efforts. In this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over smooth, vertically grooved and horizontally grooved walls are carried out with the commercially available CFD code Fluent-12 from ANSYS. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. V-shaped vertical and horizontal grooves with 0.5 mm pitch and about 0.7 mm depth were machined in the transparent wall of acrylic test sections. Flow visualization data of helium gas coverage through transparent test sections is obtained with a high-speed camera at the ORNL Target Test Facility (TTF). The helium gas mass flow rate is 8 mg/min and introduced through a 0.5 mm diameter port. The inlet mercury mass flow rate is 51 kg/s and the predicted local mercury velocity is 0.9 m/s. In this paper, the helium gas flow rate and the local mercury velocity are kept constant for the three cases. Time integration of predicted helium gas volume fraction over time is done to evaluate the gas coverage and calculate the average thickness of the helium gas layer. The predicted time-integrated gas coverage over vertically grooved and horizontally grooved test sections is better than over a smooth wall. The simulations show that the helium gas is trapped inside the grooves. C1 [Abdou, Ashraf; Wendel, Mark; Felde, David; Riemer, Bernard] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Abdou, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ibrahimaa@ornl.gov; wendelmw@ornl.gov; feldedk@ornl.gov; riemerbw@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 12 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 1061 EP 1067 PG 7 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200111 ER PT B AU Johnson, RW AF Johnson, Richard W. GP ASME TI EXAMINATION OF A PROPOSED VALIDATION DATA SET USING CFD CALCULATIONS SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div AB The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 degrees C to perhaps 1000 degrees C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present article presents new results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Johnson, RW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 6 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 2031 EP 2040 PG 10 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200222 ER PT B AU Crandall, D Bromhal, G Smith, DH AF Crandall, Dustin Bromhal, Grant Smith, Duane H. GP ASME TI CONVERSION OF A MICRO-CT SCANNED ROCK FRACTURE INTO A USEFUL MODEL SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting CY AUG 02-06, 2009 CL Vail, CO SP ASME, Fluids Engn Div DE Finite-Volume Meshing; CFD; Rock Fractures; Micro-CT Scanning ID TOMOGRAPHY; FLOW AB Within geologic reservoirs the flow of fluids through fractures is often orders of magnitude greater than through the surrounding, low-permeability rock. Because of the number and size of fractures in geological fields, reservoir-scale discrete-fracture simulators often model fluid motion through fractures as flow through narrow, parallel plates. In reality fractures within rock are narrow openings between two rough rock surfaces. In order to model the geometry of an actual fracture in rock, a similar to 9 cm by 2.5 cm fracture within Berea sandstone was created and the aperture distribution was obtained with micro-Computed Tomography (CT) scans by Karpyn et al. [1]. The original scans had a volume-pixel (voxel) resolution of 27 by 27 by 32 microns. This data was up-scaled to voxels with 120 microns to a side to facilitate data transfer and for practicality of use. Using three separate reconstruction techniques, six different fracture meshes were created from this up-scaled data set, each with slightly different final geometries. Flow through each of these fracture meshes was evaluated using the finite-volume simulator FLUENT. While certain features of the fracture meshes, such as the shape of the fracture aperture distributions and overall volume of the void, remained similar between the different geometric reconstructions, the flow in different models was observed to vary dramatically. Rough fracture walls induced more tortuous flow paths and a higher resistance to flow. Natural fractures do vary in-situ, due to sidewall dissolution and mineral precipitation, smoothing and coarsening fracture walls respectively. Thus for our study the range of fracture properties was actually beneficial, allowing us to describe the flow through a range of fracture types. A compromise between capturing the geometric details within a domain of interest and a tractable computational mesh must always be addressed when flow through a physical geometry is modeled. The fine level of detail that is currently available from micro-CT scanning equipment can compound this problem. This study evaluates several methods of obtaining rational CFD meshes from a complex physical geometry, and discusses the benefits and disadvantages of the different procedures as they pertain to flow through a natural fracture in rock. C1 [Crandall, Dustin; Bromhal, Grant; Smith, Duane H.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Crandall, D (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Dustin.Crandall@nr.netl.doe.gov; Grant.Bromhal@netl.doe.gov; Duane.Smith@netl.doe.gov NR 16 TC 0 Z9 0 U1 0 U2 7 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4372-7 PY 2009 BP 2101 EP 2108 PG 8 WC Engineering, Mechanical SC Engineering GA BPZ39 UT WOS:000280424200229 ER PT B AU Wong, CC AF Wong, C. Channy GP ASME TI MODELING HEAT CONDUCTION ACROSS THERMAL INTERFACE MATERIALS WITH MICRO-PARTICLES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 13, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition CY OCT 31-NOV 06, 2008 CL Boston, MA SP Amer Soc Mech Engineers ID COMPOSITES AB Different types of fillers with high electrical and thermal conductivities, e.g. graphite and alumina, have been added to adhesive polymers to create composite materials with improved mechanical and electrical properties. Previous modeling efforts have found that it is relatively difficult to predict the effective thermal conductivity of a composite polymeric material when incorporated with large Volume content of fillers. We have performed comprehensive computational analysis that models the thermal contacts between fillers. This unique setup can capture the critical heat conduction path to obtain the effective thermal conductivity of the composite materials. Results Of these predictions and its comparison with experimental data will be presented in this paper. C1 Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. RP Wong, CC (reprint author), Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. EM ccwong@sandia.gov NR 10 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4874-6 PY 2009 BP 49 EP 60 PG 12 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BJJ80 UT WOS:000266546900007 ER PT B AU Lam, PS Scarth, D Lidbury, D Wang, JJA Sham, TL Kim, Y AF Lam, Poh-Sang Scarth, Douglas Lidbury, David Wang, John Jy-An Sham, T. -L. (Sam) Kim, Yil BE ODowd, NP TI Applications of Fracture Mechanics in Failure Assessment Introduction SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div C1 [Lam, Poh-Sang] Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Lam, PS (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 1 EP 1 PG 1 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500001 ER PT B AU Yin, SJ Dickson, TL Williams, PT Bass, BR AF Yin, Shengjun Dickson, Terry L. Williams, Paul T. Bass, B. Richard BE ODowd, NP TI ANALYSIS OF EMBEDDED AND SURFACE FLAWS IN THE BELTLINE OF AN RPV SUBJECTED TO CYCLIC LOADING ASSOCIATED WITH NORMAL OPERATIONAL COOL-DOWN AND HEAT-UP TRANSIENTS - A SCOPING STUDY SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div AB The influence of thermal-hydraulic cyclic loading on postulated embedded and surface-breaking flaws in the beltline region of a reactor pressure vessel (RPV) are investigated numerically. Over the service life of a nuclear power plant, the RPV is expected to undergo a sequence of cool-down and heat-up thermal-hydraulic transients associated with, for example, scheduled refueling outages (RFOs) or other normal operational transients. With respect to postulated surface or embedded flaws in the RPV wall, these scheduled operational transients produce cyclic, variable-amplitude, nonlinear, multiaxial applied loadings, albeit with possibly long dwell times between the active portions of the cycles. The on-going scoping study indicates that for very large flaws, the driving force increases rapidly with cyclic hardening but tends to saturate after several loading cycles as a stabilized condition is approached; while the driving force tends to keep constant tinder the cyclic loading for those smaller flaws frequently used in the Pressurized Thermal Shock (PTS) study. C1 [Yin, Shengjun; Dickson, Terry L.; Williams, Paul T.; Bass, B. Richard] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Yin, SJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. NR 10 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 91 EP 101 PG 11 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500013 ER PT B AU Yin, SJ Williams, PT Bass, BR AF Yin, Shengjun Williams, Paul T. Bass, B. Richard BE ODowd, NP TI CLEAVAGE FRACTURE ANALYSIS OF CLADDED BEAMS WITH AN EMBEDDED FLAW UNDER FOUR-POINT BENDING SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div ID TRIAXIALITY PARAMETER; FAMILY; FIELDS AB Semi-large scale embedded flaw beams were tested at Nuclear Research Institute (NRI) Rez in the Czech Republic for the 6th Network for Evaluating Structural Components (NESC_VI) project. The experiments included, among others, a series of semi-large scale tests on cladded beam specimens containing simulated sub-clad flaws. Oak Ridge National Laboratory (ORNL) conducted numerical studies to analyze the constraint issues associated with embedded flaws using various fracture mechanics methods, including T-Stress, hydrostatic stress based Q(H) stress, and the Weibull stress model. The recently developed local approach using the modified Weibull stress model combined with the Master Curve methodology was also utilized to predict the failure probability (P-f) of semi-large scale beams. For this study, the Weibull statistical model associated with the Master Curve methodology was employed to stochastically simulate the fracture toughness data using the available Master Curve reference temperature T-0 for the tested base material from the "aged" WWER-440 Reactor Pressure Vessel (RPV). The study was also conducted to investigate the sensitivity of predicted probability of failure of semi-large scale beams with embedded flaw with different Weibull shape parameters, m. C1 [Yin, Shengjun; Williams, Paul T.; Bass, B. Richard] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Yin, SJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 103 EP 110 PG 8 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500014 ER PT B AU Wang, JJA Lara-Curzio, E King, T Hubbard, C AF Wang, John Jy-An Lara-Curzio, Edgar King, Tom Hubbard, Camden BE ODowd, NP TI EFFECTIVE LIFETIME ESTIMATE OF CRIMPED POWERLINE SPLICE CONNECTOR OPERATED AT HIGH TEMPERATURE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div DE power delivery; single stage splice connector; thermal cycling; steel-reinforced core aluminum conductor AB This paper addresses the thermal-mechanical properties and performance characteristics of full tension splice connectors under high temperature operation, in particular those used in overhead transmission and distribution lines. Due to the increase in power demand existing overhead power transmission lines often need to operate at temperatures higher than those originally considered for their design. This has led to the accelerated aging and degradation of splice connectors. The compressive residual stresses induced by the crimping process within the splice connector provide the clamping forces to secure the conductor and therefore, the determination of the state of compressive residual stresses in splice connectors is a necessary requirement to provide an accurate estimate of their service lifetime. This paper presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector assembly. C1 [Wang, John Jy-An; Lara-Curzio, Edgar; King, Tom; Hubbard, Camden] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, JJA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM Wangja@ornl.gov NR 11 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 139 EP 143 DI 10.1145/1698790.1698813 PG 5 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500019 ER PT B AU Choi, KS Pan, J AF Choi, K. S. Pan, J. BE ODowd, NP TI A GENERALIZED ANISOTROPIC HARDENING RULE BASED ON THE MROZ MULTI-YIELD-SURFACE MODEL SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div DE Mroz model; hardening rule; cyclic loading; hysteresis loop; closed-form solution ID NONPROPORTIONAL CYCLIC PLASTICITY; NON-PROPORTIONAL PATHS; BEHAVIOR; METALS AB In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model is derived. The evolution equation for the active yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function. As a special case, detailed incremental constitutive relations are derived for the Mises yield function. The closed-form solutions for one-dimensional stress-plastic strain curves are also derived and plotted for the Mises materials under cyclic loading conditions. The stress-plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. A user material subroutine based on the Mises yield function, the anisotropic hardening rule and the constitutive relations was then written and implemented into ABAQUS. Computations were conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule and the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress-strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress-strain data for the nonlinear kinematic hardening rule. C1 [Choi, K. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Choi, KS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. NR 29 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 171 EP 178 PG 8 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500023 ER PT B AU Marchi, CS Somerday, BP Tang, X Schiroky, GH AF Marchi, C. San Somerday, B. P. Tang, X. Schiroky, G. H. BE ODowd, NP TI HYDROGEN-ASSISTED FRACTURE OF TYPE 316 STAINLESS STEEL AT SUB-AMBIENT TEMPERATURE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div ID TENSILE PROPERTIES; EMBRITTLEMENT; STRAIN; LOCALIZATION; DEFORMATION; PLASTICITY; STRESS AB Applications requiring the containment and transport of hydrogen gas at pressures greater than 70 MPa are anticipated in the evolving hydrogen economy infrastructure. Since hydrogen is known to alter the mechanical properties of materials, data are needed to guide the selection of materials for structural components. Type 316 austenitic stainless steels are often considered one of the best choices for resistance to hydrogen-assisted fracture; however, at sub-ambient temperatures some alloy compositions of type 316 stainless steel can become more susceptible to hydrogen-assisted fracture than others. In this study, we report the tensile properties of two heats of type 316 stainless steel, emphasizing the effects of temperature and high concentrations of internal hydrogen on these properties. C1 [Marchi, C. San; Somerday, B. P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Marchi, CS (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 30 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 191 EP 199 PG 9 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500026 ER PT B AU Nibur, KA Somerday, BP Marchi, CS Balch, DK AF Nibur, K. A. Somerday, B. P. Marchi, C. San Balch, D. K. BE ODowd, NP TI MEASUREMENT OF SUSTAINED-LOAD CRACKING THRESHOLDS FOR STEELS IN HYDROGEN DELIVERY AND STORAGE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div ID FRACTURE; OXYGEN AB Threshold stress intensity factors at crack arrest have been measured for three commercial low alloy pressure vessel steels, SA372 grade J, DOT 3AAX and DOT 3T as well as X100 line pipe steel using sustained load testing. Testing conditions were consistent with the recently published Article KD-10 from Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code. Measured threshold values for these steels suggest a higher resistance to hydrogen-assisted fracture than previously expected, however some improvements to the methodology of Article KD-10 may be required to ensure conservative results are measured. Specifically, conservative measurements of threshold stress intensity factor for hydrogen-assisted fracture cannot be determined without crack propagation. C1 [Nibur, K. A.; Somerday, B. P.; Marchi, C. San; Balch, D. K.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Nibur, KA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 201 EP 210 PG 10 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500027 ER PT B AU Morgan, MJ AF Morgan, Michael J. BE ODowd, NP TI HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div AB The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 MPa and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation. C1 Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Morgan, MJ (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 217 EP 222 PG 6 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500029 ER PT B AU Morgan, MJ Hall, MC Lam, PS Thompson, WD AF Morgan, Michael J. Hall, Monica C. Lam, Poh-Sang Thompson, W. Dean BE ODowd, NP TI HYDROGEN EFFECTS ON THE BURST PROPERTIES OF TYPE 304L STAINLESS STEEL FLAWED VESSELS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div AB The effects of hydrogen and burst media on the burst properties of Type 304L stainless steel vessels were investigated. The purpose of the study was to compare the burst properties of hydrogen-charged stainless steel vessels burst with different media: water, helium gas, and deuterium gas. A second purpose was to provide data to improve an existing finite-element model for predicting burst behavior. Burst tests were conducted on hydrogen-charged and uncharged axially-flawed cylindrical vessels. The results indicate that samples burst pneumatically had lower volume ductility than those tested hydraulically. For pneumatic burst tests, samples burst with deuterium gas had slightly lower ductility than helium gas tests. For uncharged samples, burst pressure was not affected by burst media. For samples pre-charged with hydrogen, deuterium burst pressures were about 80% of the hydraulic or helium burst pressures. Hydrogen-charged samples had lower volume ductility and slightly higher burst pressures than uncharged samples. The results of the tests were used to verify and improve a previously developed predictive finite-element model. The existing finite-element model can qualitatively predict the expected changes in burst properties with hydrogen or tritium service, but a better material property database is required for quantitative predictions. C1 [Morgan, Michael J.; Hall, Monica C.; Lam, Poh-Sang; Thompson, W. Dean] Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Morgan, MJ (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 229 EP 233 PG 5 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500031 ER PT B AU Ren, WJ AF Ren, Weiju BE ODowd, NP TI PRELIMINARY CONSIDERATIONS OF MODIFIED 9CR-1MO STEEL FOR GEN IV NUCLEAR REACTOR APPLICATION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div AB Modified 9Cr-1Mo steel is currently identified as one of the leading candidate materials in the down selection for construction of the Gen IV nuclear reactor pressure vessel. Because of the stringent requirements in strength, size, safety, design life, and maintenance for the intended nuclear application, qualification of the material demands scrutiny in various aspects such as mechanical properties, data sufficiency, Codification, mechanical behavior modeling, metallurgical stability, environmental resistance, component manufacturability and transportation. In the present paper, history of the material development is briefly reviewed; requirements and challenges for the intended application are discussed; available information on the material is described. Further research and development activities are suggested to facilitate the materials selection. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, MS-6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov NR 46 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 753 EP 766 PG 14 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500092 ER PT B AU Sham, TL Eno, DR Jensen, KP AF Sham, T. -L. Eno, D. R. Jensen, K. P. BE ODowd, NP TI Treatment of High Temperature Tensile Data for Alloy 617 and Alloy 230 SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B LA English DT Proceedings Paper CT ASME Presure Vessels and Piping Conference 2008 CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels Piping Div AB Yield strength and tensile strength at temperature are used to set time independent primary stress limits for structural materials in various high temperature design codes. For the Ni-based Alloy 617 and HAYNES (R) 230 (R) alloy(1) (Alloy 230), the temperature trends for the yield strength and tensile strength change significantly above around 1100K and 1025K, respectively, from the lower temperature trends. It is shown that standard methods in obtaining design values for these parameters for Very High Temperature Reactor applications are not satisfactory. Improved methods for the treatment of tensile data are proposed, resulting in more consistent and quantifiable design margin over the full range of low to high temperatures. C1 [Sham, T. -L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sham, TL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM shamt@ornl.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4829-6 PY 2009 BP 767 EP 776 PG 10 WC Engineering, Mechanical SC Engineering GA BIW77 UT WOS:000263460500093 ER PT B AU Alexandreanu, B Chopra, OK Shack, WJ AF Alexandreanu, B. Chopra, O. K. Shack, W. J. BE Hasegawa, K Scarth, DA TI THE STRESS CORROSION CRACKING BEHAVIOR OF ALLOYS 690 AND 152 WELD IN A PWR ENVIRONMENT SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 1 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and 182, respectively. The latter two alloys are used as structural materials in pressurized water reactors (PWRs) and have been found to undergo stress corrosion cracking (SCC). The objective of this work is to determine the crack growth rates (CGRs) in a simulated PWR water environment for the replacement alloys. The study involved Alloy 690 cold-rolled by 26% and a laboratory-prepared Alloy 152 double-J weld in the as-welded condition. The experimental approach involved pre-cracking in a primary water environment and monitoring the cyclic CGRs to determine the optimum conditions for transitioning from the fatigue transgranular to intergranular SCC fracture mode. The cyclic CGRs of cold-rolled Alloy 690 showed significant environmental enhancement, while those for Alloy 152 were minimal. Both materials exhibited SCC of 10(-11) m/s under constant loading at moderate stress intensity factors. The paper also presents tensile property data for Alloy 690TT and Alloy 152 weld in the temperature range 25-870 degrees C. C1 [Alexandreanu, B.; Chopra, O. K.; Shack, W. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Alexandreanu, B (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 11 TC 0 Z9 1 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4824-1 J9 PRES VES P PY 2009 BP 153 EP 163 PG 11 WC Engineering, Mechanical SC Engineering GA BJB34 UT WOS:000264428100014 ER PT B AU Morton, DK Foster, GM Smith, RH Cannell, GR AF Morton, D. Keith Foster, Gerald M. Smith, R. Howard Cannell, Gary R. BE Hasegawa, K Scarth, DA TI STATUS OF CODE DEVELOPMENT FOR ASME B&PV CODE, SECTION III, DIVISION 3 SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 1 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Current activities of the American Society of Mechanical Engineers (ASME), Section III Subgroup on Containment Systems for Spent Fuel and High-Level Waste Transport Packagings (also known as Subgroup NUPACK) are reviewed with emphasis on the recent revision of Subsection WB (transportation containments). Also, brief insights on new proposals for the development of rules for internal support structures (e.g., spent fuel baskets) and for a strain-based acceptance criteria are provided. C1 [Morton, D. Keith] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Morton, DK (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Dana.Morton@inl.gov; gerald_foster@hsbct.com; hsmith@nacinti.com; gary_cannell@rl.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4824-1 J9 PRES VES P PY 2009 BP 261 EP 265 PG 5 WC Engineering, Mechanical SC Engineering GA BJB34 UT WOS:000264428100026 ER PT B AU Leishear, RA AF Leishear, Robert A. BE Rodery, CD TI Fluid Transients in a Pipeline With One Open End SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 3 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div DE Water hammer; two phase flow; air entrainment AB Water hammer during multi-phase flow is rather complex, but in some cases an upper limit to the pressure Surge magnitude during water hammer can be estimated. In the case considered here, a two mile long pipeline with a single high point was permitted to partially drain. Due to gravitational effects, air bubbles up through the pipe line to its highest point. but the time required for air to reach the top of the pipe is rather long. Consequently, some transients caused by valve operations are affected by air entrapment and some are not. The intent of this research was to investigate the complex interactions between air, water vapor, and liquid during water hammer in a long pipe with one end of the pipe open to atmospheric conditions. To understand the system dynamics. experimental data was obtained from a long pipeline with an open end and also from a short, transparent tube. Transient calculations were performed for valve closures and pump operations as applicable. The limitations of available calculation techniques were considered in detail. C1 Savannah River Natl Lab, Aiken, SC 29803 USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. EM Robert.Leishear@SRS.gov NR 6 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4826-5 J9 PRES VES P PY 2009 BP 99 EP 108 PG 10 WC Engineering, Mechanical SC Engineering GA BJB35 UT WOS:000264429200013 ER PT B AU Dickson, T EricksonKirk, M AF Dickson, Terry EricksonKirk, Mark BE Rodery, CD TI THE INCLUSION OF INNER SURFACE BREAKING FLAWS IN PROBABILISTIC FRACTURE MECHANICS ANALYSES OF REACTOR VESSELS SUBJECTED TO PLANNED NORMAL COOL-DOWN TRANSIENTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 3 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The current regulations, as set forth by the United States Nuclear Regulatory Commission (NRC), to insure that light-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to planned reactor startup (heat-up) and shutdown (cool-down) transients are specified in Appendix G to 10 CFR Part 50, which incorporates by reference Appendix G to Section XI of the ASME Code. The technical basis for these regulations contains many aspects that are now broadly recognized by the technical community as being unnecessarily conservative and some plants are finding it increasingly difficult to comply with the current regulations. Consequently, a goal of current NRC research is to derive a technical basis for a risk-informed revision to the current requirements that reduces the conservatism and also is consistent with the methods previously used to develop a risk-informed revision to the regulations for accidental transients such as pressurized thermal shock (PTS). Previous publications have been successful in illustrating potential methods to provide a risk-informed relaxation to the current regulations for normal transients. Thus far, probabilistic fracture mechanics (PFM) analyses have been performed at 60 effective full power years (EFPY) for one of the reactors evaluated as part of the PTS re-evaluation project. In these previous analyses / publications, consistent with the assumptions utilized for this particular reactor in the PTS re-evaluation, all flaws for this reactor were postulated to be embedded. The objective of this paper is to review the analysis results and conclusions from previous publications on this subject and to attempt to modify / generalize these conclusions to include RPVs postulated to contain only inner-surface breaking flaws or a combination of embedded flaws and inner-surface breaking flaws. C1 [Dickson, Terry] ORNL, Oak Ridge, TN USA. RP Dickson, T (reprint author), ORNL, Oak Ridge, TN USA. EM tvd@ornl.gov; mtk@nrc.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4826-5 J9 PRES VES P PY 2009 BP 283 EP 293 PG 11 WC Engineering, Mechanical SC Engineering GA BJB35 UT WOS:000264429200034 ER PT B AU Yip, M Haroldsen, B Puskar, J AF Yip, Mien Haroldsen, Brent Puskar, Joe BE Dixon, RD Springer, B AuYang, MK TI CODE CASE VALIDATION OF IMPULSIVELY LOADED EDS SUBSCALE VESSEL SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 5 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The Explosive Destruction System (EDS) was developed by Sandia National Laboratories for the US Army Product Manager for Non-Stockpile Chemical Materiel (PMNSCM) to destroy recovered, explosively configured, chemical munitions. PMNSCM currently has Five EDS units that have processed over 850 items. The system uses linear and conical shaped charges to open munitions and attack the burster followed by chemical treatment of the agent. The main component of the EDS is a stainless steel, cylindrical vessel, which contains the explosion and the subsequent chemical treatment. Extensive modeling and testing have been, and continue to be used, to design and qualify the vessel for different applications and conditions. This has included explosive overtests using small, geometrically scaled vessels to study overloads, plastic deformation, and failure limits. Recently the ASME Task Group on Impulsively Loaded Vessels has developed a Code Case under Section VIII Division 3 of the ASME Boiler and Pressure Vessel Code for the design of vessel like the EMS. In this article, a representative EDS subscale vessel is investigated against the ASME Design Codes for vessels subjected to impulsive loads. Topics include strain-based plastic collapse, fatigue and fracture analysis, and leak-before-burst. Vessel design validation is based on model results, where the high explosive (HE) pressure histories and subsequent vessel response (strain histories) are modeled using the analysis codes CTH and LS-DYNA, respectively. C1 [Yip, Mien; Haroldsen, Brent] Sandia Natl Labs, Livermore, CA 94551 USA. RP Yip, M (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM myip@sandia.gov; blharol@sandia.gov; jdpuska@sandia.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4828-9 J9 PRES VES P PY 2009 BP 81 EP 87 PG 7 WC Engineering, Mechanical SC Engineering GA BJB38 UT WOS:000264431300010 ER PT B AU Elgowainy, A Mintz, M Kelly, B Hooks, M Paster, M AF Elgowainy, Amngad Mintz, Marianne Kelly, Bruce Hooks, Matthew Paster, Mark BE Dixon, RD Springer, B AuYang, MK TI OPTIMIZATION OF COMPRESSION AND STORAGE REQUIREMENTS AT HYDROGEN REFUELING STATIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 5 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of Such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It Summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand. C1 [Elgowainy, Amngad; Mintz, Marianne] Argonne Natl Lab, Argonne, IL 60439 USA. RP Elgowainy, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 4 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4828-9 J9 PRES VES P PY 2009 BP 131 EP 136 PG 6 WC Engineering, Mechanical SC Engineering GA BJB38 UT WOS:000264431300015 ER PT B AU Doctor, SR AF Doctor, S. R. BE Dixon, RD Springer, B AuYang, MK TI THE HISTORY AND FUTURE OF NDE IN THE MANAGEMENT OF NUCLEAR POWER PLANT MATERIALS DEGRADATION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 5 SE PRESSURE VESSEL AND PIPING DIVISION OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The author has spent more than 25 years conducting engineering and research studies to quantify the performance of nondestructive evaluation (NDE) in nuclear power plant (NPP) applications and identifying improvements to codes and standards for NDE to manage materials degradation. This paper will review this fundamental NDE engineering/research work and then look to the future on how NDE can be optimized for proactively managing materials degradation in NPP components. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Doctor, SR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM steven.doctor@pnl.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4828-9 J9 PRES VES P PY 2009 BP 197 EP 207 PG 11 WC Engineering, Mechanical SC Engineering GA BJB38 UT WOS:000264431300025 ER PT B AU Gupta, NK AF Gupta, Narendra K. BE Gupta, NK TI Temperature Prediction in 3013 Containers in K-Area Material Storage (KAMS) Facility Using Regression Methods SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB 3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO(2) for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set LIP to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO(2) density, till heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Gupta, NK (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM nick.gupta@srnl.doe.gov; nick.gupta@srnl.doe.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 157 EP 163 PG 7 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000018 ER PT B AU Smith, AC Wu, TT AF Smith, Allen C. Wu, Tsu-Te BE Gupta, NK TI Comparison of Response of 9977 Test Packages to Analytical Results SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Each of the hypothetical accident test cases for the 9977 prototypes was included in the battery of finite element structural analyses performed for the package. Comparison of the experimental and analytical results provides a means of confirming that the analytical model correctly represents the physical behavior of the package. The ability of the analytical model to correctly predict the performance of the foam overpack material for the crush test is of particular interest. The dissipation of energy in the crushing process determines the deceleration of the package upon impact and the duration of the impact. In addition, if the analytical model correctly models the foam behavior., the predicted deformation of the package will match that measured on the test articles. This study compares the impact acceleration and impact duration for the test articles with those predicted by the analyses. In addition, the deformations of the test packages with the analytical predictions are compared. C1 [Smith, Allen C.; Wu, Tsu-Te] Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Smith, AC (reprint author), Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. EM allen.smith@srnml.doe.gov; tsu-te.wu@srnl.doe.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 165 EP 172 PG 8 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000019 ER PT B AU May, CG Smith, AC AF May, Cecil G. Smith, Allen C. BE Gupta, NK TI MODEL 9975 SHIPPING PACKAGE FABRICATION PROBLEMS AND SOLUTIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The Model 9975 Shipping Package is the latest in a series (9965, 9968, etc.) of radioactive material shipping packages that have been the mainstay for shipping radioactive materials for several years. The double containment vessels are relatively simple designs using pipe and pipe cap in conjunction with the Chalfont closure to provide a leak-tight vessel. The fabrication appears simple in nature, but the history of fabrication tells LIS there are pitfalls in the different fabrication methods and sequences. This paper will review the problems that have arisen during fabrication and precautions that should be taken to meet specifications and tolerances. The problems and precautions can also be applied to the Models 9977 and 9978 Shipping Packages. C1 [May, Cecil G.; Smith, Allen C.] Savannah River Natl Lab, Savannah, GA USA. RP May, CG (reprint author), Savannah River Natl Lab, Savannah, GA USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 173 EP 178 PG 6 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000020 ER PT B AU Morton, DK Blandford, RK Snow, SD AF Morton, Dana K. Blandford, Robert K. Snow, Spencer D. BE Gupta, NK TI IMPACT TESTING OF STAINLESS STEEL MATERIAL AT COLD TEMPERATURES SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein. C1 [Morton, Dana K.; Blandford, Robert K.; Snow, Spencer D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Morton, DK (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Dana.Morton@inl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 183 EP 193 PG 11 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000022 ER PT B AU Shah, VN AF Shah, Vikram N. BE Gupta, NK TI UNCERTAINTY OF PRELOADS IN CLOSURE BOLTS FOR TRANSPORTATION CASKS FOR HAZARDOUS AND RADIOACTIVE MATERIALS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Maintaining closure bolting integrity under normal and accident conditions is essential for the safe transportation of shipping casks bearing hazardous and radioactive materials. Bolt preload introduces a clamping force in the Joint that plays a critical role in ensuring a less-than-specified rates of leakage from such casks. Precise control over bolt preload is essential to introduce adequate clamping force in the joint. Uncertainty is introduced in the Closure bolt preloads when an individual bolt is tightened and then when the other bolts are tightened in a specified sequence. Tightening an individual bolt can introduce uncertainty as high as +/-35% mainly because of the variation in the coefficient of friction. Tightening the subsequent bolts in a specified sequence introduces uncertainty because the elastic interactions between bolts reduce the preloads already installed. This paper reviews the literature related to the methods employed for installing the preloads, factors introducing uncertainty in the preloads, methods for reducing the uncertainty, and the techniques available for measuring the preloads. It is concluded that the use of an elastic interaction matrix has a potential for providing the specified preload in the bolted joint and that ultrasonic measurements can be used to monitor the preload with +/-10% or less uncertainty. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Shah, VN (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vnshah@anl.gov NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 215 EP 223 PG 9 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000026 ER PT B AU Gorczyca, JL Wu, TT AF Gorczyca, Jennifer L. Wu, Tsu-Te BE Gupta, NK TI Foam Density Sensitivity Study for the 9977 Package SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Two layers of insulation fill the volume of the 9977 package between the drum liner and the shell. One of these layers is composed of General Plastics FR-3716 polyurethane foam (also known as Last-A-Foam (R)), poured through fill holes in the drum bottom and foamed in place. There was concern that the density of the foam insulating layer may vary due to the manufacturing process and that variations in foam density would compromise the safety basis of the package. Thus, a structural finite element analysis was performed to investigate this concern. The investigation examined the effect of replacing the material properties for the FR-3716 polyurethane foam, which has a density equal to 16 lb(m)/ft(3), with material properties of similar foam with varying densities through finite element analysis of hypothetical accident conditions (HAC) pertaining to impact conditions. The results showed that the functional performance of the containment vessel (CV) was not compromised under the conditions investigated. C1 [Gorczyca, Jennifer L.; Wu, Tsu-Te] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Gorczyca, JL (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Jennifer.Gorczyca@srnl.doe.gov; Tsu-Te.Wu@srnl.doe.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 235 EP 244 PG 10 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000028 ER PT B AU Wu, TT Gorczyca, JL Leduc, DR England, JL AF Wu, Tsu-te Gorczyca, Jennifer L. Leduc, Daniel R. England, Jeffery L. BE Gupta, NK TI Dynamic Analysis of Hanford Unirradiated Fuel Package Subjected to Sequential Lateral Loads in Hypothetical Accident Conditions SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Large fuel casks present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. This paper presents a numerical technique for evaluating the dynamic responses of large fuel casks subjected to sequential HAC loading. A nonlinear dynamic analysis was performed for a Hanford Unirradiated Fuel Package (HUFP) [1] to evaluate the cumulative damage after the hypothetical accident Conditions of a 30-foot lateral drop followed by a 40-inch lateral puncture as specified in 10CFR71. The structural integrity of the containment vessel is justified based on the analytical results in comparison with the stress criteria, specified in the ASME Code, Section III, Appendix F [2], for Level D service loads. The analyzed cumulative damages caused by the sequential loading of a 30-foot lateral drop and a 40-inch lateral puncture are compared with the package test data. The analytical results are in good agreement with the test results. C1 [Wu, Tsu-te; Gorczyca, Jennifer L.; Leduc, Daniel R.; England, Jeffery L.] Savannah River Natl Lab, Aiken, SC 29803 USA. RP Wu, TT (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. EM tsu-te.wu@srnl.doe.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 255 EP 262 PG 8 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000031 ER PT B AU Smith, AC Gupta, NK Hardy, BJ Eberl, KR AF Smith, Allen C. Gupta, Narendra K. Hardy, Bruce J. Eberl, Kurt R. BE Gupta, NK TI Evaluation of Thermal Conductivity of Installed-in-Place Polyurethane Foam Insulation by Experiment and Analysis SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB In the thermal analysis of the 9977 package, it was found that calculated temperatures, determined using a typical thermal analysis code, did not match those measured in the experimental apparatus. The analysis indicated that the thermal resistance of the overpack in the experimental apparatus was less than that expected, based on manufacturer's reported value of thermal conductivity. To resolve this question, the thermal conductivity of the installed foam was evaluated from the experimental results, using a simplified analysis. This Study confirmed that the thermal resistance of the experimental apparatus was lower than that which would result from the manufacturer's published values for thermal conductivity of the foam insulation. The test package was sectioned to obtain samples for measurement of material properties. In the course of the destructive examination a large uninsulated region was found at the bottom of the package, which accounted for the anomalous results. Subsequent measurement of thermal conductivity confirmed the manufacturer's published values. The study provides useful insight into the use of simplified, scoping calculations for evaluation of thermal performance of packages. C1 [Smith, Allen C.; Gupta, Narendra K.; Hardy, Bruce J.; Eberl, Kurt R.] Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Smith, AC (reprint author), Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. EM allen.smith@srnl.doe.gov; nick.gupta@srnl.doe.gov; bruce.hardy@srnl.doe.gov; kurt.eberl@srnl.doe.gov; nick.gupta@srnl.doe.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 279 EP 283 PG 5 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000034 ER PT B AU Feldman, MR AF Feldman, Matthew R. BE Gupta, NK TI Development of Testing Methodologies for Onsite Radioactive Material Storage Containers SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Based on a recommendation from the Defense Nuclear Facilities Safety Board, the Department of Energy (DOE) Office of Nuclear Safety Policy and Assistance (HS-21) has recently issued DOE Manual 441.1-1 entitled Nuclear Material Packaging Manual.([1]) This manual provides guidance regarding the use of non-engineered storage media for all special nuclear material throughout the DOE complex. As part of this development effort, HS-21 has funded the Oak Ridge National Laboratory (ORNL) Transportation Technologies Group (TTG) to develop and demonstrate testing protocols for such onsite containers. ORNL TTG to date has performed preliminary tests of representative onsite containers from Lawrence Livermore National Laboratory and Los Alamos National Laboratory. This paper will describe the testing processes that have been developed. C1 Oak Ridge Natl Lab, Transportat Technol Grp, Oak Ridge, TN USA. RP Feldman, MR (reprint author), Oak Ridge Natl Lab, Transportat Technol Grp, Oak Ridge, TN USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 293 EP 297 PG 5 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000036 ER PT B AU Hardy, BJ Harris, SP Arnold, MJ Hensel, SJ AF Hardy, Bruce J. Harris, Stephen P. Arnold, Matthew J. Hensel, Stephen J. BE Gupta, NK TI HEADSPACE GAS EVALUATION OF WELDED PLUTONIUM STORAGE CONTAINERS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The Can Puncture Device (CPD) serves as a containment vessel during the puncture of nested 3013 containers as part Of Surveillance operations in K-Area. The purpose of the CPD sampling process is to determine the original pressure and composition of gasses within the inner 3013 container. The relation between the composition of the gas sample drawn from the CPD and that originally in the inner 3013 container depends on the degree of mixing that Occurs over the interval of time from the Puncture to drawing the sample. Gas mixing is bounded by the extremes of no mixing of gases in the inner container and that of complete mixing, in which case the entire CPD system is of uniform composition. Models relating the sample composition and pressure to the initial (pre-puncture) inner can composition and pressure for each of these extremes were developed. Predictions from both models were compared to data from characterization experiments. In the comparison, it was found that the model that assumed complete gas mixing after puncture, the Uniform Mixing Model, showed significantly better agreement with the data than the model that assumed no change in the composition of the inner container, referred to as the Non-Uniform Mixing Model. Both models were implemented as Microsoft (R) Excel spreadsheet calculations, which utilize macros, to include the effects of uncertainties and biases in the Measurements of process parameters and in the models. Potential inleakage of gas from the glovebox is also addressed. The spreadsheet utilizing the Uniform Mixing Model, which was validated by data from the characterization tests, is used to evaluate the pre-puncture composition and pressure within the inner 3013 container. This spreadsheet model is called the Gas Evaluation Software Tool (GEST). C1 [Hardy, Bruce J.; Harris, Stephen P.; Arnold, Matthew J.; Hensel, Stephen J.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hardy, BJ (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 299 EP 306 PG 8 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000037 ER PT B AU Liu, Y Shah, V Fabian, R Shuler, J AF Liu, Yung Shah, Vikram Fabian, Ralph Shuler, James BE Gupta, NK TI CERTIFICATION OF THE NAC-LWT CASK FOR SHIPMENT OF SODIUM DEBRIS BED EXPERIMENTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The Department of Energy Headquarters Certifying Official has issued a Certificate of Compliance for the shipment of sodium debris bed experiments (DBE) in the NAC International's Legal Weight Truck (NAC-LWT) casks. The shipment is part of a major deinventory project at Sandia National Laboratories. The sodium debris bed experiments consist of crucibles containing UO(2) immersed in sodium. The uranium is 93% enriched U(235). Potential sodium-water reaction and criticality safety under hypothetical accident conditions of transport are the two major technical issues for the design and certification of the NAC-LWT casks for the DBE shipment. The certification review took approximate to 13 months, including one round of questions and responses and source-verification QA audits of the fabrication and welding of the DBE transport canisters at two locations. C1 [Liu, Yung; Shah, Vikram; Fabian, Ralph] Argonne Natl Lab, Argonne, IL 60439 USA. RP Liu, Y (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM yyliu@anl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 623 EP 630 PG 8 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000074 ER PT B AU Wu, TT AF Wu, Tsu-te BE Gupta, NK TI A Proposed Methodology for Strain-Based Failure Criteria SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB This paper proposes an alternative methodology to determine the failure criteria for use in dynamic simulations of radioactive material shipping packages in the events of hypothetical accident conditions. The current stress failure criteria defined in the Nuclear Regulatory Guide 7.6 [1] and the ASME Code, Section III, Appendix F [2] for Level D Service Loads are based on the ultimate strength Of uniaxial tensile test specimen rather than on the material fracture in the state of multi-axial stresses. On the other hand, the proposed strain-based failure criteria are directly related to the material failure mechanisms in multi-axial stresses. In addition, unlike the stress-based criteria, the strain-based failure criteria are applicable to the evaluation of cumulative damages caused by the sequential loads in the hypothetical accident events as required by the Nuclear Regulatory Guide 7.8 [4]. C1 Savannah River Natl Lab, Aiken, SC 29803 USA. RP Wu, TT (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. EM tsu-te.wu@srnl.doe.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 631 EP 637 PG 7 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000075 ER PT B AU Ammerman, DJ Bjorkman, GS AF Ammerman, Douglas J. Bjorkman, Gordon S. BE Gupta, NK TI STRAIN-BASED ACCEPTANCE CRITERIA FOR INELASTIC ANALYSIS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB Modem finite element codes used in the design of nuclear material transportation and storage casks can readily calculate the response of the packages beyond the elastic regime. These packages are designed to protect workers, the public, and the environment from the harmful effects of the transported radioactive material following a sequence of hypothetical accident conditions. Hypothetical accidents considered for transport packages include a 9-meter free drop onto an essentially unyielding target and a I-meter free fall onto a 30-cm diameter puncture spike. For storage casks, accident conditions can include drops, tip-over, and aircraft impact. All of these accident events are energy-limited rather than load-limited, as is typically the case for boilers and pressure vessels. Therefore, it makes sense to have analysis acceptance criteria that are more closely related to absorbed energy than to applied load. Strain-based acceptance criteria are the best way to meet this objective. As cask vendors' ability to perform non-linear impact analysis has improved, the need for a code-based method to interpret the results of this type of analysis has increased. The ASME Section III Working Group on Design of Division 3 Containments is working with Section III Working Group Design Methodology to develop strain-based acceptance criteria to use within the ASME Code for energy-limited events. This paper will briefly discuss the efforts within the ASME, detail the advantages of using strain-based criteria, discuss the problem areas associated with establishing strain-based criteria, and provide insights into inelastic analyses as applied to radioactive material transportation and storage casks in general. The views expressed represent those of the authors and not necessarily those of their respective organizations or the ASME. C1 [Ammerman, Douglas J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ammerman, DJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4830-2 PY 2009 BP 643 EP 649 PG 7 WC Engineering, Mechanical SC Engineering GA BJF62 UT WOS:000265455000077 ER PT B AU Spears, RE AF Spears, R. E. BE Karamanos, SA TI UNIQUE METHOD FOR GENERATING DESIGN EARTHQUAKE TIME HISTORIES SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 8 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB A method has been developed which takes a seed earthquake time history and modifies it to produce given design response spectra. It is a multi-step process with an initial scaling step and then multiple refinement steps. It is unique in the fact that both the acceleration and displacement response spectra are considered when performing the fit (which primarily improves the low frequency acceleration response spectrum accuracy). Additionally, no matrix inversion is needed. The features include encouraging the code acceleration, velocity, and displacement ratios and attempting to fit the pseudo velocity response spectrum. Also, "smoothing" is done to transition the modified time history to the seed time history at its start and end. This is done in the time history regions below a cumulative energy of 5% and above a cumulative energy of 95%. Finally, the modified acceleration, velocity, and displacement time histories are adjusted to start and end with an amplitude of zero (using Fourier transform techniques for integration). C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Spears, RE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Robert.Spears@inl.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4831-9 PY 2009 BP 3 EP 10 PG 8 WC Engineering, Mechanical SC Engineering GA BJF10 UT WOS:000265381300001 ER PT B AU Spears, RE AF Spears, R. E. BE Karamanos, SA TI UNIQUE METHOD FOR GENERATING DESIGN EARTHQUAKE TIME HISTORY SEEDS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 8 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB A method has been developed which takes a single seed earthquake time history and produces multiple similar seed earthquake time histories. These new time histories possess important frequency and cumulative energy attributes of the original while having a correlation less than 30% (per the ASCE/SEI 43-05 Section 2.4 [1]). They are produced by taking the fast Fourier transform of the original seed. The averaged amplitudes are then pared with random phase angles and the inverse fast Fourier transform is taken to produce a new time history. The average amplitude through time is then adjusted to encourage a similar cumulative energy curve. Next, the displacement is modified to approximate the original curve using Fourier techniques. Finally, the correlation is checked to ensure it is less than 30%. This process does not guarantee that the correlation will be less than 30% for all of a given set of new curves. It does provide a simple tool where a few additional iterations of the process should produce a set of seed earthquake time histories meeting the correlation criteria. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Spears, RE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Robert.Spears@inl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4831-9 PY 2009 BP 11 EP 16 PG 6 WC Engineering, Mechanical SC Engineering GA BJF10 UT WOS:000265381300002 ER PT B AU Nie, JS Xu, J Hofmayer, CH Ali, SA AF Nie, Jinsuo Xu, Jim Hofmayer, Charles H. Ali, Syed A. BE Karamanos, SA TI AN APPROACH FOR ASSESSING STRUCTURAL UPLIFTING USING BLAST MOTIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 8 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB When a nuclear power plant (NPP) structure is subjected to beyond-design-basis seismic motions, a localized nonlinear effect on the soil-structure system is attributed to separations between the structure and the surrounding soils such as basemat uplift. Experiments involving field tests for real seismic events are usually difficult because of the low probability for large earthquakes at any particular site. To this end, the magnitudes of blast-induced ground motions at a coal mine have been found to be predicatable and can reach very large values. An approach has been developed to investigate whether the strong ground motions recorded at this coal mine can be used to evaluate the basemat uplift effect. This approach involves the use of a scaled ground motion to establish the relationship between the basemat uplift and the peak ground acceleration (PGA). This paper summarizes the field measurements for the ground motions at a coal mine by the Japan Nuclear Safety Organization (JNES) and a method using large scale finite element analyses for basemat uplift assessment performed by Brookhaven National Laboratory for the US Nuclear Regulatory Commission. C1 [Nie, Jinsuo; Hofmayer, Charles H.] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Nie, JS (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM jnie@bnl.gov NR 13 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4831-9 PY 2009 BP 215 EP 224 PG 10 WC Engineering, Mechanical SC Engineering GA BJF10 UT WOS:000265381300026 ER PT B AU Nie, JS Braverman, JI Hofmayer, CH Ali, SA AF Nie, Jinsuo Braverman, Joseph I. Hofmayer, Charles H. Ali, Syed A. BE Karamanos, SA TI EVALUATION OF SIMPLIFIED METHODS FOR ESTIMATING SHEAR CAPACITY USING JNES/NUPEC LOW-RISE CONCRETE SHEAR WALL CYCLIC TEST DATA SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 8 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The simplified methods in current codes for determining the shear capacity of reinforced concrete shear walls had mostly been validated using the test results of single-element shear walls. Recently available JNES/NUPEC test data of reinforced concrete shear walls under multi-directional cyclic loadings provided a unique opportunity to investigate the adequacy of the simplified methods for use in situations with strong interaction effects. A total of I I test specimens with aspect ratios between 0.47 and 0.87 have been used in the assessment. Two simplified methods from the ACI 349-01 standard [1] and one from the ASCE 43-05 standard [2] have been evaluated. This paper also presents the development of an adjustment factor to consider the aspect ratio and the development of two approaches to consider interaction effects for one of the simplified methods. It concludes with the insights on the applicability of the code methods when interaction effects exist. C1 [Nie, Jinsuo; Braverman, Joseph I.; Hofmayer, Charles H.] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Nie, JS (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM jnie@bnl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4831-9 PY 2009 BP 263 EP 273 PG 11 WC Engineering, Mechanical SC Engineering GA BJF10 UT WOS:000265381300032 ER PT B AU Nie, JS DeGrassi, G Hofmayer, CH Ali, SA AF Nie, Jinsuo DeGrassi, Giuliano Hofmayer, Charles H. Ali, Syed A. BE Karamanos, SA TI NONLINEAR SEISMIC CORRELATION ANALYSIS OF THE JNES/NUPEC LARGE-SCALE PIPING SYSTEM TESTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 8 LA English DT Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 27-31, 2008 CL Chicago, IL SP ASME, Pressure Vessels & Piping Div AB The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the U.S. and Japan on seismic issues, the U.S. Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using detailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions. C1 [Nie, Jinsuo; DeGrassi, Giuliano; Hofmayer, Charles H.] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Nie, JS (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM jnie@bnl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4831-9 PY 2009 BP 275 EP 287 PG 13 WC Engineering, Mechanical SC Engineering GA BJF10 UT WOS:000265381300033 ER PT B AU Chahine, NO Collette, NM Thompson, H Loots, GG AF Chahine, Nadeen O. Collette, Nicole M. Thompson, Heather Loots, Gabriela G. GP ASME TI APPLICATION OF CARBON NANOTUBES IN CARTILAGE TISSUE ENGINEERING SO PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE 2008, PTS A AND B LA English DT Proceedings Paper CT ASME Summer Bioengineering Conference CY JUN 25-29, 2008 CL Marco Isl, FL SP Amer Soc Mech Engineers, Bioengn Div C1 [Chahine, Nadeen O.] Lawrence Livermore Natl Lab, Engn Technol Div, Livermore, CA 94550 USA. RP Chahine, NO (reprint author), Lawrence Livermore Natl Lab, Engn Technol Div, Livermore, CA 94550 USA. EM Loots1@llnl.gov OI Chahine, Nadeen/0000-0002-0478-6042 NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4321-5 PY 2009 BP 85 EP 86 PG 2 WC Engineering, Biomedical SC Engineering GA BIW31 UT WOS:000263364700043 ER PT B AU Chahine, NO Sulchek, TA AF Chahine, Nadeen O. Sulchek, Todd A. GP ASME TI INHOMOGENOUS STIFFNESS OF ARTICULAR CHONDROCYTES MEASURED BY ATOMIC FORCE MICROSCOPY SO PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE 2008, PTS A AND B LA English DT Proceedings Paper CT ASME Summer Bioengineering Conference CY JUN 25-29, 2008 CL Marco Isl, FL SP Amer Soc Mech Engineers, Bioengn Div C1 [Chahine, Nadeen O.; Sulchek, Todd A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chahine, NO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM chahine2@llnl.gov OI Chahine, Nadeen/0000-0002-0478-6042 NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4321-5 PY 2009 BP 319 EP 320 PG 2 WC Engineering, Biomedical SC Engineering GA BIW31 UT WOS:000263364700160 ER PT B AU Boyce, BL Nguyen, TD Jones, RE AF Boyce, B. L. Nguyen, T. D. Jones, R. E. GP ASME TI FULL-FIELD VISCOELASTIC INFLATION RESPONSE OF BOVINE CORNEA SO PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE 2008, PTS A AND B LA English DT Proceedings Paper CT ASME Summer Bioengineering Conference CY JUN 25-29, 2008 CL Marco Isl, FL SP Amer Soc Mech Engineers, Bioengn Div C1 [Boyce, B. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Boyce, Brad/H-5045-2012; Nguyen, Thao/A-3391-2010 OI Boyce, Brad/0000-0001-5994-1743; Nguyen, Thao/0000-0002-0312-1583 NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4321-5 PY 2009 BP 783 EP 784 PG 2 WC Engineering, Biomedical SC Engineering GA BIW31 UT WOS:000263364700392 ER PT B AU Singer, MA Henshaw, WD Wang, SL AF Singer, Michael A. Henshaw, William D. Wang, Stephen L. GP ASME TI TOWARDS THE OPTIMAL PLACEMENT OF INFERIOR VENA CAVA FILTERS: MODELING THE IMPACT OF RENAL INFLOW SO PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2009, PT A AND B LA English DT Proceedings Paper CT ASME Summer Bioengineering Conference CY JUN 17-21, 2009 CL Lake Tahoe, CA SP ASME Bioengn Div ID EQUATIONS C1 [Singer, Michael A.; Henshaw, William D.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Singer, MA (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4891-3 PY 2009 BP 429 EP 430 PG 2 WC Cell & Tissue Engineering; Engineering, Biomedical SC Cell Biology; Engineering GA BPV38 UT WOS:000280089000215 ER PT B AU More, KL Walker, LR Wang, YL Lara-Curzio, E Brummett, TM van Roode, M Price, JR Szweda, A Merrill, G AF More, Karren L. Walker, Larry R. Wang, Yanli Lara-Curzio, Edgar Brummett, Tracie M. van Roode, Mark Price, Jeffrey R. Szweda, Andy Merrill, Gary GP ASME TI MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF A HYBRID OXIDE CMC COMBUSTOR LINER AFTER 25,000-HOUR ENGINE TEST SO PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 1 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst AB A hybrid oxide ceramic matrix composite (CMC) outer combustor liner was tested in a Solar Turbines Incorporated Centaur (R) 50S engine between 2003 and 2006, accumulating >25,000 hours of field exposure. The hybrid CMC liner, which was similar to 76 cm in diameter, had an alumina matrix with a Nextel 720 fiber-reinforcement (A/N720). The CMC, produced by ATK-COI Ceramics, Inc., was coated with a ceramic insulation layer known as FGI (Friable Graded Insulation) developed by Siemens Energy Incorporated. Post-test microstructural and mechanical evaluation was conducted on the field-exposed liner at Oak Ridge National Laboratory (ORNL) to determine the types of surface and structural damage that occurred to the combustor liner during engine exposure to elevated temperatures (>1200 degrees C), thermal cycling (stop-start cycles), and combustion gases (especially water vapor). In this study, numerous sections were cut from the liner for mechanical and microstructural characterization that exhibited varying amounts of FGI and/or CMC degradation. In this way, damage accumulation was assessed (1) within the CMC and FGI layers, both on the gas-path surface and below the surface and (2) as a function of liner position (fore-to-aft) in the engine. The amount and type of damage observed was directly related to the starting CMC and FGI microstructures. The tensile strength of the hybrid liner after field exposure was found to be 19 MPa. The FGI layer remained well bonded to the CMC and the fracture surface of the CMC exhibited scissor-like features, which is typical of composites with +/- 45 degrees fiber architecture. The stress acting on the CMC at failure was 53 MPa. C1 [More, Karren L.; Walker, Larry R.; Wang, Yanli; Lara-Curzio, Edgar; Brummett, Tracie M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP More, KL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 NR 5 TC 1 Z9 1 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4882-1 PY 2009 BP 255 EP 263 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BON15 UT WOS:000277052900026 ER PT B AU Strakey, PA Eggenspieler, G AF Strakey, Peter A. Eggenspieler, Gilles GP ASME TI DEVELOPMENT AND VALIDATION OF A THICKENED FLAME MODELING APPROACH FOR LARGE EDDY SIMULATION OF PREMIXED COMBUSTION SO PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 2 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst ID TURBULENT COMBUSTION; ASYMPTOTIC STRUCTURE; DYNAMIC FORMULATION; WRINKLING MODEL; LES AB The development of a dynamic Thickened Flame (TF) turbulence chemistry interaction model is presented based on a novel approach to determine the sub-filter flame wrinkling efficiency. The basic premise of the TF model is to artificially decrease the reaction rates and increase the species and thermal diffusivities by the same amount which thickens the flame to a scale that can be resolved on the LES grid while still recovering the laminar flame speed. The TF modeling approach adopted here uses local reaction rates and gradients of product species to thicken the flame to a scale large enough to be resolved by the LES grid. The thickening factor, which is a function of the local grid size and laminar flame thickness, is only applied in the flame region and is commonly referred to as dynamic thickening. Spatial filtering of the velocity field is used to determine the efficiency function by accounting for turbulent kinetic energy between the grid-scale and the thickened flame scale. The TF model was implemented into the commercial CFD code FLUENT. Validation of the approach is conducted by comparing model results to experimental data collected in a lab-scale burner. The burner is based on an enclosed, scaled-down version of the Low Swirl Injector (LSI) developed at Lawrence Berkeley National Laboratory. A perfectly premixed lean methane-air flame was studied as well as the cold-flow characteristics of the combustor. Planar Laser Induced Fluorescence (PLIF) of the hydroxyl molecule was collected for the combusting condition as well as velocity field data using Particle Image Velocimetry (PIV). Thermal imaging of the quartz liner surface temperature was also conducted to validate the thermal wall boundary conditions applied in the LES calculations. C1 [Strakey, Peter A.] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Strakey, PA (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV USA. NR 20 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4883-8 PY 2009 BP 833 EP 844 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BON17 UT WOS:000277054300074 ER PT B AU Weiland, NT Strakey, PA AF Weiland, Nathan T. Strakey, Peter A. GP ASME TI NOx REDUCTION BY AIR-SIDE VS. FUEL-SIDE DILUTION IN HYDROGEN DIFFUSION FLAME COMBUSTORS SO PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 2 LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst ID GAS-TURBINE; EMISSIONS; ENGINE; NUMBER AB Lean-Direct-Injection (LDI) combustion is being considered at NETL as a means to attain low NOx emissions in a high-hydrogen gas turbine combustor. Integrated Gasification Combined Cycle (IGCC) plant designs can create a high-hydrogen fuel using a water-gas shift reactor and subsequent CO(2) separation. The IGCC's air separation unit produces a volume of N(2) roughly equivalent to the volume of H(2) in the gasifier product stream, which can be used to help reduce peak flame temperatures and NOx in the diffusion flame combustor. Placement of this diluent in either the air or fuel streams is a matter of practical importance, and has not been studied to date for LDI combustion. The current work discusses how diluent placement affects diffusion flame temperatures, residence times, and stability limits, and their resulting effects on NOx emissions. From a peak flame temperature perspective, greater NOx reduction should be attainable with fuel dilution rather than air or independent dilution in any diffusion flame combustor with excess combustion air, due to the complete utilization of the diluent as a heat sink at the flame front, although the importance of this mechanism is shown to diminish as flow conditions approach stoichiometric proportions. For simple LDI combustor designs, residence time scaling relationships yield a lower NOx production potential for fuel-side dilution due to its smaller flame size, whereas air-dilution yields a larger air entrainment requirement and a subsequently larger flame, with longer residence times and higher thermal NOx generation. For more complex staged-air LDI combustor designs, dilution of the primary combustion air at fuel-rich conditions can result in full utilization of the diluent for reducing the peak flame temperature, while also controlling flame volume and residence time for NOx reduction purposes. However, differential diffusion of hydrogen out of a diluted hydrogen/nitrogen fuel jet can create regions of higher hydrogen content in the immediate vicinity of the fuel injection point than can be attained with dilution of the air stream, leading to increased flame stability. By this mechanism, fuel-side dilution extends the operating envelope to areas with higher velocities in the experimental configurations tested, where faster mixing rates further reduce flame residence times and NOx emissions. Strategies for accurate CFD modeling of LDI combustors' stability characteristics are also discussed. C1 [Weiland, Nathan T.] W Virginia Univ, Natl Energy Technol Lab, Pittsburgh, PA USA. RP Weiland, NT (reprint author), W Virginia Univ, Natl Energy Technol Lab, Pittsburgh, PA USA. OI Weiland, Nathan/0000-0001-9382-6909 NR 37 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4883-8 PY 2009 BP 877 EP 887 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BON17 UT WOS:000277054300078 ER PT B AU Shih, TIP Chi, X Bryden, KM Alsup, C Dennis, RA AF Shih, T. I-P. Chi, X. Bryden, K. M. Alsup, C. Dennis, R. A. GP ASME TI Effects of Biot Number on Temperature and Heat-Flux Distributions in a TBC-Coated Flat Plate Cooled by Rib-Enhanced Internal Cooling SO PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 3, PTS A AND B LA English DT Proceedings Paper CT 54th ASME Turbo Expo 2009 CY JUN 08-12, 2009 CL Orlando, FL SP ASME, Int Gas Turbine Inst ID FLOWS AB Advanced turbines are designed to operate at near the material's maximum allowable temperature. Thus, there is very little room for mistakes in the design of cooling strategies. Since the heat-transfer coefficient varies significantly about ribs and pin fins in internal-cooling passages, different parts of the turbine material exposed to the hot gas are cooled at different rates by internal cooling, and this could produce substantial temperature variations within the material, including hot spots. For a given hot-gas temperature and a given coolant temperature, the amount of temperature variation within the material depends on the Biot number. in this study, conjugate heat-transfer analysis were performed to investigate the effects of Biot number on the temperature and heat flux in a TBC-coated flat plate exposed to hot gas on one side and rib-enhanced internal cooling on the other side. The Biot numbers (Bi) examined range from 0.4 to 6 if the length scale in Bi is based on the thickness of the TBC-coated plate (L) and 0.2 to 3 if based on L/2. This computational study uses 3-D steady RANS closed by the realizable k-epsilon turbulence model for the gas phase (wall functions not used) and the Fourier law for the solid phase. Results obtained show that for two geometrically similar TBC-coated plates exposed to the same hot-gas and coolant temperatures, if Bi is nearly the same, then the magnitude of the temperature will be nearly the same and contours of the temperatures will be nearly geometrically similar. The contours of heat flux, however, will be geometrically similar but have very different magnitudes because the gradients are different. Also, though the variations in temperature from the hot-gas to the coolant side of the TBC-coated plate decrease with decreasing Bi, the variation in temperature in the spanwise direction can actually increase with decreasing Bi. When the Bi based on L is between 0.4 to 1, that temperature variation in the super alloy next to the TBC can differ by as much as 25 K along the spanwise direction because of the large variations in the local heat-transfer coefficients induced by the ribs in the spanwise direction. C1 [Shih, T. I-P.; Chi, X.; Bryden, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Shih, TIP (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Bryden, Kenneth/G-6918-2012 NR 33 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4884-5 PY 2009 BP 641 EP 655 PG 15 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BON21 UT WOS:000277056900056 ER PT J AU Sivaramakrishnan, R Srinivasan, NK Su, MC Michael, JV AF Sivaramakrishnan, R. Srinivasan, N. K. Su, M. -C. Michael, J. V. TI High temperature rate constants for OH plus alkanes SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Rate constants; Shock tube; Bimolecular reaction; Ab-initio; Transition state theory ID HYDROGEN-ATOM ABSTRACTION; TRANSITION-STATE THEORY; REFLECTED SHOCK-WAVES; GAS-PHASE REACTIONS; KINETIC SPECTROSCOPY; RATE COEFFICIENTS; LASER PHOTOLYSIS; NORMAL-BUTANE; RADICALS; TUBE AB Rate constants for H-atom abstractions by OH radicals from a series of alkanes (propane, n-butane, i-butane and neo-pentane) have been measured at high temperatures with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 rim. The experiments represent the first direct measurements of these rate constants at T> 1000 K and span a wide T-range, 797-1259 K. The present work utilized 80 optical passes corresponding to a total path length of similar to 7 m. As a result of this increased path length, the high [OH] detection sensitivity permitted pseudo-first-order analysis for unambiguously measuring the total rate constants. The experimental rate constants can be represented in Arrhenius form as, k(C3H8+OH) = 6.671 x 10(-11) exp(-1543 K./T) cm(3) molecule(-1) s(-1) (797-1248 K) k(n-C4H10+OH) = 9.674 x 10(-11) exp(-1569 K/T) cm(3) molecule(-1) s(-1) (800-1236 K) k(l-C4H10+OH) = 9.114 x 10(-11) exp(-1654 K/T) cm(3) molecule(-1) s(-1) (846-1221 K) k(neo-C5H12+OH) = 1.060 x 10(-10) exp(-1947 K/T) cm(3) molecule(-1) s(-1) (841-1259 K) The present results have been combined with prior lower-T measurements to generate three-parameter rate expressions that adequately represent the available direct measurements (within 25%) over a wide temperature regime (250-1250 K). High-level ab-initio electronic structure theory computations of the molecular properties of reactants, products and transition states have been used to estimate theoretical rate constants with conventional transition state theory (CTST). The theoretical rate constants are excellent representations of the available experimental data (deviations less than 25%) and thereby offer a reliable method for extrapolation to higher-T as well as for extracting branching ratios for primary, secondary and tertiary abstractions. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sivaramakrishnan, R.; Srinivasan, N. K.; Michael, J. V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Su, M. -C.] Sonoma State Univ, Dept Chem, Rohnert Pk, CA 94928 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Bldg 200, Argonne, IL 60439 USA. EM jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX We thank Dr. Larry L. Reed for the GC-MS analysis of the n-butane sample used in the study. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357. NR 47 TC 22 Z9 22 U1 2 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 107 EP 114 DI 10.1016/j.proci.2008.05.018 PN 1 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800007 ER PT J AU Saxena, S Kiefer, JH Klippenstein, SJ AF Saxena, Saumitra Kiefer, John H. Klippenstein, Stephen J. TI A shock-tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Acetone pyrolysis; Kinetics; Shockwaves; Transition state theory ID TRANSITION-STATE THEORY; EVALUATED KINETIC DATA; FLASH-PHOTOLYSIS; ACETYL RADICALS; GAS-PHASE; RATE CONSTANTS; THERMAL-DECOMPOSITION; ABSTRACTION REACTIONS; PREDICTIVE THEORY; PYROLYSIS AB The dissociation of acetone: CH(3)C=OCH(3) -> CH(3)C=O + CH(3), quickly followed by CH(3)CO -> CH(3) + CO, has been examined with Laser-Schlieren measurements in incident shock waves over 32-717 Torr and 1429-1936 K using 5% acetone dilute in krypton. A few very low pressure experiments (similar to 10 Torr) were used in a marginal effort to resolve the extremely fast vibrational relaxation of this molecule. This effort was partly motivated as a test for molecular, "roaming methyl" reactions, and also as a source of methyl radicals to test the application of a recent high-temperature mechanism for ethane decomposition [J.H. Kiefer, S. Santhanam, N.K. Srinivasan, R.S. Tranter, S.J. Klippenstein, M.A. Oehlschlaeger, Proc. Combust. Inst. 30 (2005) 1129-1135] on the reverse methyl combination. The gradient profiles show strong initial positive gradients and following negative values fully consistent with methyl radical formation and its following recombination. Thus C-C fission is certainly a large part of the process and molecular channels cannot be responsible for more than 30% of the dissociation. Rates obtained for the C-C fission show strong falloff well fit by variable reaction coordinate transition state theory when combined with a master equation. The calculated barrier is 82.8 kcal/mol, the fitted (Delta E)(down) = 400 (T/298) cm(-1), similar to what was found in a recent study of C-C fission in acetaldehyde, and the extrapolated k(infinity) = 10(25.86) T(-2.72) exp(-87.7 (kcal/mol)/RT), which agrees with the literature rate for CH(3) + CH(3)CO. Large negative (exothermic) gradients appearing late from methyl combination are accurately fit in both time of onset and magnitude by the earlier ethane dissociation mechanism. The measured dissociation rates are in close accord with one earlier shock-tube study [K. Sato, Y. Hidaka, Combust. Flame 122 (2000) 291-311], but show much less falloff than the high pressure experiments of Ernst et al. [J. Ernst, K. Spindler, H.Gg. Wagner, Ber. Bunsenges. Phys. Client. 80 (1976) 645-650]. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Saxena, Saumitra; Kiefer, John H.] Univ Illinois, Dept Chem Engn, Chicago, IL 60680 USA. [Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Kiefer, JH (reprint author), Univ Illinois, Dept Chem Engn, Chicago, IL 60680 USA. EM kiefer@uic.edu OI Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FE-85ER13384, DE-AC02-06CH11357] FX The authors are indebted to Hui Xu and Kaustubli Gupte for their help with some of the calculations and the manuscript preparation. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under grant no. DE-FE-85ER13384 (SS and JK), and under contract number DE-AC02-06CH11357 (SJK). NR 32 TC 22 Z9 22 U1 2 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 123 EP 130 DI 10.1016/j.proci.2008.05.032 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800009 ER PT J AU Klippenstein, SJ Harding, LB AF Klippenstein, Stephen J. Harding, Lawrence B. TI Kinetics of the H plus NCO reaction SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE NCO; H plus NCO; Ab initio; Transition state theory ID MULTIREFERENCE PERTURBATION-THEORY; CORRELATED MOLECULAR CALCULATIONS; TRANSITION-STATE THEORY; GAUSSIAN-BASIS SETS; ISOCYANIC ACID; PHOTOINITIATED DECOMPOSITION; CONFIGURATION-INTERACTION; WAVE-FUNCTIONS; SHOCK-WAVES; HNCO AB Ab initio transition state theory (TST) based master equation simulations are used to predict the temperature and pressure dependence of the H + NCO reaction rate and product branching. The barrierless entrance channels to form singlet HNCO and NCOH are studied with variable reaction coordinate TST employing a potential energy surface obtained from mufti-reference configuration interaction ab initio calculations. The remaining channels, including reactions on the triplet surface, are studied with standard TST methods employing high level electronic structure results. The energy transfer parameters for the master equation simulations arise from a fit to the experimentally observed HNCO dissociation rate. The lowest energy threshold to formation of bimolecular products, (3)NH + CO, lies well below the reactants. The bottleneck for intersystem crossing, which precedes the formation of (3)NH + CO from the singlet adducts, becomes the dominant bottleneck for that channel at quite low energies relative to reactants. The effect of this bottleneck is studied with model calculations designed to reproduce detailed experimental observations of photolysis branching ratios. This bottleneck greatly reduces the flux from H + NCO to (3)NH + CO via the singlet adducts. As a result, stabilization and reaction on solely the triplet surface are significant components of the overall rate. The present predictions for the high pressure and collisionless limit rate coefficients are accurately reproduced over the 200-2500 K range by the expressions, 1.53 x 10(-5) T(-1.86)exp(-399/T) + 1.07 x 10(3)T(3.15)exp(-15219/T) and 5.62 x 10(-12)T(0.493)exp(148/T) cm(3) molecule(-1) s(-1), respectively, where T is in K. These predictions are in reasonably satisfactory agreement with the somewhat discordant experimental rate measurements. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Klippenstein, Stephen J.; Harding, Lawrence B.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Klippenstein, SJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sjk@anl.gov OI Klippenstein, Stephen/0000-0001-6297-9187 FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy, under contract number DE-AC02-06CH11357. NR 49 TC 9 Z9 9 U1 0 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 149 EP 155 DI 10.1016/j.proci.2008.06.135 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800012 ER PT J AU Westbrook, CK Pitz, WJ Westmoreland, PR Dryer, FL Chaos, M Osswald, P Kohse-Hoinghaus, K Cool, TA Wang, J Yang, B Hansen, N Kasper, T AF Westbrook, C. K. Pitz, W. J. Westmoreland, P. R. Dryer, F. L. Chaos, M. Osswald, P. Kohse-Hoeinghaus, K. Cool, T. A. Wang, J. Yang, B. Hansen, N. Kasper, T. TI A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Reaction mechanisms; Laminar flames; Oxygenates; Kinetic modeling ID ACETATE OXIDATION; METHYL BUTANOATE; DIESEL-ENGINES; COMBUSTION; ETHYL; FORMATE; FUELS AB A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate, and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low-pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions for each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Westbrook, C. K.; Pitz, W. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Westmoreland, P. R.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Dryer, F. L.; Chaos, M.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08555 USA. [Osswald, P.; Kohse-Hoeinghaus, K.] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Cool, T. A.; Wang, J.; Yang, B.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Hansen, N.; Kasper, T.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Westbrook, CK (reprint author), Lawrence Livermore Natl Lab, POB 808,700 E Ave, Livermore, CA 94550 USA. EM westbrook1@llnl.gov RI Yang, Bin/A-7158-2008; Kohse-Hoinghaus, Katharina/A-3867-2012; Hansen, Nils/G-3572-2012; Osswald, Patrick/N-3377-2013; Kasper, Tina/A-2975-2017 OI Yang, Bin/0000-0001-7333-0017; Osswald, Patrick/0000-0002-2257-2988; Kasper, Tina/0000-0003-3993-5316 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC52-07NA27344]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences U.S. Department of Energy; Chemical Sciences Division, Army Research Office; Deutsche Forschungsgemeinschaft [KO 1363/18-3]; Sandia Corporation, a Lockheed Martin Company [DE-AC04-94-SL85000] FX The computational portions of this work were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The experimental work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences U.S. Department of Energy; by the Chemical Sciences Division, Army Research Office; by the Deutsche Forschungsgemeinschaft KO 1363/18-3; and by the Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-SL85000. NR 21 TC 73 Z9 73 U1 7 U2 47 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 221 EP 228 DI 10.1016/j.proci.2008.06.106 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800021 ER PT J AU Walton, SM Wooldridge, MS Westbrook, CK AF Walton, S. M. Wooldridge, M. S. Westbrook, C. K. TI An experimental investigation of structural effects on the auto-ignition properties of two C-5 esters SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Biofuel; Ester; Ignition; Rapid compression facility; Chemical reaction mechanism ID HYDROCARBON GROWTH-PROCESSES; FLOW DIFFUSION FLAME; OXYGENATED HYDROCARBONS; FUEL DECOMPOSITION; ACETATE OXIDATION; METHYL ACETATE; COMBUSTION; ETHYL AB Ignition studies of two C-5 esters were performed using a rapid compression facility. Methyl butanoate and ethyl propanoate were chosen to have matching molecular weights and C:H:O ratios while varying the length of the constituent alkyl chains. The effect of functional group size on ignition delay time was investigated using pressure time-histories and high-speed digital imaging. Low-temperature, moderate-pressure conditions were selected for study due to the relevance to low temperature combustion strategies and internal combustion engine conditions. The experiments covered a range of conditions: T = 935-1117 K, P = 4.7-19.6 atm, and phi = 0.3-0.4. The experimental data are compared to previous high temperature studies and chemical modeling. A new mechanism for methyl butanoate and ethyl propanoate ignition is presented. The modeling and experimental data are in excellent agreement for methyl butanaote and yield good agreement for ethyl propanoate. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Walton, S. M.; Wooldridge, M. S.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Westbrook, C. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Walton, SM (reprint author), Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA. EM smwalton@umich.edu FU Department of Energy FX The authors acknowledge the generous support of the Department of Energy through the University of Michigan HCCI Consortium. NR 19 TC 48 Z9 48 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 255 EP 262 DI 10.1016/j.proci.2008.06.208 PN 1 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800025 ER PT J AU Zador, J Fernandes, RX Georgievskii, Y Meloni, G Taatjes, CA Miller, JA AF Zador, Judit Fernandes, Ravi X. Georgievskii, Yuri Meloni, Giovanni Taatjes, Craig A. Miller, James A. TI The reaction of hydroxyethyl radicals with O-2: A theoretical analysis and experimental product study SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Ethanol; Master equation; Mass spectrometry; Oxidation; Kinetics ID TRANSITION-STATE THEORY; SET MODEL CHEMISTRY; BETA-HYDROXYETHYLPEROXY; ALKYLPEROXY RADICALS; ETHANOL OXIDATION; MOLECULAR-OXYGEN; COMBUSTION; PHOTOIONIZATION; KINETICS; STABILITY AB Reactions of a-hydroxyethyl (CH3CHOH) and (beta-hydroxyethyl (CH2CH2OH) radicals with oxygen are of key importance in ethanol combustion. High-level ab initio calculations of the potential energy surfaces of these two reactions were coupled with master equation methods to compute rate coefficients and product branching ratios for temperatures of 250-1000 K. The x-hydroxyethyl + O-2 reaction is controlled by the barrierless entrance channel and shows negligible pressure dependence; in contrast, the reaction of the (3 isomer displays pronounced pressure dependence. The high pressure limit rate coefficients of both reactions are about the same at the temperatures investigated. Products of the reactions were monitored experimentally at 4 Torr and 300-600 K using tunable synchrotron photoionization mass spectrometry. Hydroxyethyl radicals were produced from the reaction of ethanol with chlorine atoms and the p isomer was also selectively produced by the addition reaction C2H4 + OH -> CH2CH2OH. Formaldehyde, acetaidehyde, vinyl alcohol and H2O2 products were detected, in qualitative agreement with the theoretical predictions. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Zador, Judit; Fernandes, Ravi X.; Georgievskii, Yuri; Meloni, Giovanni; Taatjes, Craig A.; Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Zador, J (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM jzador@sandia.gov RI Zador, Judit/A-7613-2008 OI Zador, Judit/0000-0002-9123-8238 FU United States Department of Energy; Office of Basic Sciences; Division of Chemical Sciences; Geosciences, and Biosciences; Sandia National Laboratories; Sandia Corporation, a Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000]; Office of Science; Office of Basic Energy Sciences; Materials Sciences Division; U.S. Department of Energy [DE-AC02-05CH11231] FX This work has been supported by the United States Department of Energy, Office of Basic Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and by Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 33 TC 45 Z9 45 U1 3 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 271 EP 277 DI 10.1016/j.proci.2008.05.020 PN 1 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800027 ER PT J AU Jasper, AW Klippenstein, SJ Harding, LB AF Jasper, Ahren W. Klippenstein, Stephen J. Harding, Lawrence B. TI Theoretical rate coefficients for the reaction of methyl radical with hydroperoxyl radical and for methylhydroperoxide decomposition SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Methylhydroperoxide; Methyl radical; Hydroperoxyl radical; Ab initio; Barrierless kinetics ID MULTIREFERENCE PERTURBATION-THEORY; CONFIGURATION-INTERACTION CALCULATIONS; TRANSITION-STATE THEORY; EVALUATED KINETIC-DATA; WAVE-FUNCTIONS; RATE CONSTANTS; BASIS-SETS; PREDICTIVE THEORY; METHANE; DENSITY AB The kinetics of the CH(3) + HO(2) bimolecular reaction and the thermal decomposition of CH(3)OOH are studied theoretically. Direct variable reaction coordinate transition state theory (VRC-TST), coupled with high level multireference electronic structure calculations, is used to compute capture rates for the CH(3) + HO(2) reaction and to characterize the transition state of the barrierless CH(3)O + OH product channel. The CH(2)O + H(2)O product channel and the CH(3) + HO(2) -> CH(4) + O(2) reaction are treated using variational transition state theory and the harmonic oscillator and rigid rotor approximations. Pressure dependence and product branching in the bimolecular and decomposition reactions are modeled using master equation simulations. The predicted rate coefficients for the major products channels of the bimolecular reaction, CH(3)O + OH and CH(4) + O(2), are found to be in excellent agreement with values obtained in two recent modeling studies. The present calculations are also used to obtain rate coefficients for the CH(3)O + OH association/decomposition reaction. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Klippenstein, Stephen J.; Harding, Lawrence B.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Jasper, AW (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM ajasper@sandia.gov RI Jasper, Ahren/A-5292-2011; OI Klippenstein, Stephen/0000-0001-6297-9187 FU Argonne [DE-AC02-06CH11357]; United States Department of Energy [DE-AC04-94-AL85000] FX This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. The work at Argonne was supported by contract number DE-AC02-06CH11357. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94-AL85000. NR 55 TC 33 Z9 33 U1 2 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 279 EP 286 DI 10.1016/j.proci.2008.05.036 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800028 ER PT J AU Zhang, HR Eddings, EG Sarofim, AF Westbrook, CK AF Zhang, Hongzhi R. Eddings, Eric G. Sarofim, Adel F. Westbrook, Charles K. TI Fuel dependence of benzene pathways SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Benzene formation pathways; Benzene formation potential; Structural dependence of benzene chemistry; Premixed flames ID STOICHIOMETRIC CYCLOHEXANE FLAME; AROMATIC-HYDROCARBON FORMATION; LIQUID TRANSPORTATION FUELS; SHOCK-TUBE; N-HEPTANE; THERMAL-DECOMPOSITION; ATMOSPHERIC-PRESSURE; CYCLOPENTENE FLAMES; PROPANE FLAME; C6H6 ISOMERS AB The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0-3.06), fuels (C(1)-C(12)), and pressures (20-760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30%, of the experimental data, Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C(3) and C(4) fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C(3) and C(4) species, were examined. Combination reactions of C(3) species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C(4)H(5) radicals are produced directly from the fuel, and in the n-decane flame where C(4)H(5) radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Zhang, Hongzhi R.; Eddings, Eric G.; Sarofim, Adel F.] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Zhang, HR (reprint author), Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA. EM westshanghai@yahoo.com FU University of Utah; Department of Energy, Lawrence Livermore National Laboratory [13341493] FX This research was funded by the University of Utah (C-SAFE), through a contract with the Department of Energy, Lawrence Livermore National Laboratory (13341493), NR 45 TC 28 Z9 29 U1 4 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 377 EP 385 DI 10.1016/j.proci.2008.06.011 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800040 ER PT J AU Sakai, Y Miyoshi, A Koshi, M Pitz, WJ AF Sakai, Yasuyuki Miyoshi, Akira Koshi, Mitsuo Pitz, William J. TI A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Modeling; PRF/toluene; Cross reaction; Ignition ID JET-STIRRED REACTOR; SHOCK-TUBE; SURROGATE FUEL; HIGH-PRESSURES; IGNITION; AUTOIGNITION; BENZENE; PLUS; RADICALS AB A detailed chemical kinetic model for the mixtures of primary reference fuel (PRF: n-heptane and isooctane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura, Y. Sakai, A. Miyoshi, M. Koshi, P. Dagaut, Energy Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [W.J. Pitz, R. Seiser, J.W. Bozzelli, et al., in: Chemical Kinetic Characterization of the Combustion of Toluene, Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute, 2001] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai, H.. Ozawa, T. Ogura, A. Miyoshi, M. Koshi, W.J. Pitz, Effects of Toluene Addition to Primary Reference Fuel at High Temperature, SAE 2007-01-4104, 2007]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of PRF/toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sakai, Yasuyuki; Miyoshi, Akira; Koshi, Mitsuo] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Pitz, William J.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA USA. RP Koshi, M (reprint author), Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, 2-11-16 Yayoi, Tokyo 1138656, Japan. EM koshi@rocketlab.t.u-tokyo.ac.jp FU U.S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work at LLNL was also performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 36 TC 55 Z9 57 U1 2 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 411 EP 418 DI 10.1016/j.proci.2008.06.154 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800044 ER PT J AU Prager, J Najm, HN Valorani, M Goussis, DA AF Prager, Jens Najm, Habib N. Valorani, Mauro Goussis, Dimitris A. TI Skeletal mechanism generation with CSP and validation for premixed n-heptane flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Reduced chemistry; Computational singular perturbation; n-Heptane oxidation; Premixed flame ID CHEMICAL KINETIC MECHANISMS; REDUCTION; OXIDATION; SIMPLIFICATION; TEMPERATURES; MODELS; NUMBER AB An automated procedure has been previously developed to generate simplified skeletal reaction mechanisms for the combustion of n-heptane/air mixtures at equivalence ratios between 0.5 and 2.0 and different pressures. The algorithm is based on a Computational Singular Perturbation (CSP)-generated database of importance indices computed from homogeneous n-heptane/air ignition solutions. In this paper, we examine the accuracy of these simplified mechanisms when they are used for modeling laminar n-heptane/air premixed flames. The objective is to evaluate the accuracy of the simplified models when transport processes lead to local mixture compositions that are not necessarily part of the comprehensive homogeneous ignition databases. The detailed mechanism was developed by Curran et al. and involves 560 species and 2538 reactions. The smallest skeletal mechanism considered consists of 66 species and 326 reactions. We show that these skeletal mechanisms yield good agreement with the detailed model for premixed n-heptane flames, over a wide range of equivalence ratios and pressures, for global flame properties. They also exhibit good accuracy in predicting certain elements of internal flame structure, especially the profiles of temperature and major chemical species. On the other hand, we find larger errors in the concentrations of many minor/radical species, particularly in the region where low-temperature chemistry plays a significant role. We also observe that the low-temperature chemistry of n-heptane can play an important role at very lean or very rich mixtures, reaching these limits first at high pressure. This has implications to numerical simulations of non-premixed flames where these lean and rich regions occur naturally. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved, C1 [Prager, Jens; Najm, Habib N.] Sandia Natl Labs, Livermore, CA 94550 USA. [Valorani, Mauro] Univ Roma La Sapienza, Rome, Italy. [Goussis, Dimitris A.] Natl Tech Univ Athens, Athens, Greece. RP Prager, J (reprint author), Sandia Natl Labs, 7011 E Ave,MS9051, Livermore, CA 94550 USA. EM jprager@sandia.gov OI VALORANI, Mauro/0000-0002-8260-6297 FU US Department of Energy (DOE); Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences. and Biosciences; Sandia National Laboratories [DE-AC04-94-AL85000]; Italian Ministry of University and Research (MIUR) FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences. and Biosciences. Sandia National Laboratories is a multiprogram laboratory Operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Under contract DE-AC04-94-AL85000. M.V. acknowledges the support of the Italian Ministry of University and Research (MIUR). NR 21 TC 20 Z9 22 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 509 EP 517 DI 10.1016/j.proci.2008.06.074 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800056 ER PT J AU Whitesides, R Domin, D Salomon-Ferrer, R Lester, WA Frenklach, M AF Whitesides, Russell Domin, Dominik Salomon-Ferrer, Romelia Lester, William A., Jr. Frenklach, Michael TI Embedded-ring migration on graphene zigzag edge SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Soot; PAH; Surface growth; Reaction mechanisms; HACA ID SOOT FORMATION; GROUND-STATES; LAYER GROWTH; REARRANGEMENT; MECHANISM; PATHWAYS; 5-MEMBER; SURFACE AB Reaction pathways are presented for hydrogen-mediated isomerization of a zigzag graphene edge containing a five-member carbon ring surrounded by six-member rings. A new reaction sequence in which this embedded five-member ring moves, or migrates, through the edge has been identified. The elementary steps of the pathways were analyzed using density functional theory (DFT). Rate coefficients were obtained by classical transition state theory utilizing the DFT energies, frequencies, and geometries. The results indicate that this new reaction sequence is competitive with the other important zigzag edge reactions allowing embedded five-member rings to move freely within a zigzag edge. The embedded rings have slight thermodynamic preference for the interior of the edge over the corner for large substrates. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Whitesides, Russell; Frenklach, Michael] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Whitesides, Russell; Frenklach, Michael] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Domin, Dominik; Salomon-Ferrer, Romelia; Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Salomon-Ferrer, Romelia; Lester, William A., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Whitesides, R (reprint author), Univ Calif Berkeley, Dept Mech Engn, 244 Hesse Hall 1740, Berkeley, CA 94720 USA. EM rawhites@me.berkeley.edu FU US Department of Energy [DE-AC03-76F00098]; National Science Foundation [HRD-0318519] FX Russell Whitesides, Romelia Salomon-Ferrer, William A. Lester Jr., and Michael Frenklach were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy, under Contract No. DE-AC03-76F00098, Dominik Domin was supported by the CREST Program of the National Science Foundation under Grant No. HRD-0318519. NR 32 TC 15 Z9 15 U1 1 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 577 EP 583 DI 10.1016/j.proci.2008.06.096 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800064 ER PT J AU Hansen, N Miller, JA Kasper, T Kohse-Hoinghaus, K Westmoreland, PR Wang, J Cool, TA AF Hansen, Nils Miller, James A. Kasper, Tina Kohse-Hoeinghaus, Katharina Westmoreland, Phillip R. Wang, Juan Cool, Terrill A. TI Benzene formation in premixed fuel-rich 1,3-butadiene flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE 1,3-Butadiene; Laminar flames; Modeling; Mass spectrometry; Benzene formation ID AROMATIC-HYDROCARBON FORMATION; COMBUSTION CHEMISTRY; FORMATION MECHANISMS; MASS-SPECTROMETRY; DIFFUSION FLAMES; RADICALS; OXIDATION; TEMPERATURES; PRECURSORS; ACETYLENE AB Detailed kinetic modeling and flame-sampling molecular-beam time-of-flight mass spectrometry are combined to unravel important pathways leading to the formation of benzene in a premixed laminar low-pressure 1,3-butadiene flame. The chemical kinetic model developed is compared with new experimental results obtained for a rich (phi = 1.8) 1,3-butudiene/O(2)/Ar flame at 30 Torr and with flame data for a similar but richer (phi = 2.4) flame reported by Cole et al. [Combust. Flame 56 (1) (1984) 51-70]. The newer experiment utilizes photoionization by tunable vacuum-ultraviolet synchrotron radiation, which allows for the identification and separation of combustion species by their characteristic ionization energies. Predictions of mole fractions as a function of distance from the burner of major combustion intermediates and products are in overall satisfactory agreement with experimentally observed profiles. The accurate predictions of the propargyl radical and benzene mole fractions permit an assessment of potential benzene formation pathways. The results indicate that C(6)H(6) is formed mainly by the C(3)H(3) + C(3)H(3) and i-C(4)H(5) + C(2)H(2) reactions, which are roughly of equal importance. Smaller contributions arise from C(3)H(3) + C(3)H(5). However, given the experimental and modeling uncertainties, other pathways cannot be ruled out. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Hansen, Nils; Miller, James A.; Kasper, Tina] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Kasper, Tina; Kohse-Hoeinghaus, Katharina] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Westmoreland, Phillip R.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Wang, Juan; Cool, Terrill A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. RP Hansen, N (reprint author), Sandia Natl Labs, Combust Res Facil, PO 969, Livermore, CA 94551 USA. EM nhansen@sandia.gov RI Kohse-Hoinghaus, Katharina/A-3867-2012; Hansen, Nils/G-3572-2012; Kasper, Tina/A-2975-2017 OI Kasper, Tina/0000-0003-3993-5316 FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U. S. Department of Energy [DE-FG02-91ER14192, DE-FG02-01ER15180]; Chemical Science Division of the U.S; Deutsche Forschungsgemeinschaft [KO 1363/18-3]; National Nuclear Security Administration [DE-AC04-94-AL85000] FX The authors thank Paul Fugazzi and Kevin Wilson for expert technical assistance. This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U. S. Department of Energy. in part under grants DE-FG02-91ER14192 (P.R.W.) and DE-FG02-01ER15180 (T.A.C., J.W.), and by the Chemical Science Division of the U.S. Army Research Office. T.K. and K.K.-H. are supported by the Deutsche Forschungsgemeinschaft under contract KO 1363/18-3. Sandia is it multi-program laboratory operated by Sandia Corporation, it Lockheed Martin Company, for the National Nuclear Security Administration Under contract DE-AC04-94-AL85000. NR 38 TC 53 Z9 54 U1 5 U2 51 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 623 EP 630 DI 10.1016/j.proci.2008.06.050 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800068 ER PT J AU Abid, AD Tolmachoff, ED Phares, DJ Wang, H Liu, Y Laskin, A AF Abid, A. D. Tolmachoff, E. D. Phares, D. J. Wang, H. Liu, Y. Laskin, A. TI Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Soot; Premixed flame; Particle size distribution; Morphology ID ANGLE NEUTRON-SCATTERING; MOBILITY PARTICLE SIZER; OXYGEN-ARGON FLAME; NUMERICAL-SIMULATION; INCIPIENT SOOT; NANOPARTICLES; GROWTH; MICROSCOPY; ACETYLENE AB Particle size distribution functions of nascent soot formed-in-four burner-stabilized, premixed ethylene-oxygen-argon flames were studied in a spatially resolved manner by online sampling/scanning mobility particle sizer. Particle morphology was analyzed by atomic force microscopy (AFM) of substrate-deposited samples. Two of the four flames were doped with benzene. An aerosol electrometer is introduced to extend the lower detection limit to around 1.5 nm in diameter. The results show that the bimodal behavior of particle size is applicable to all premixed ethylene flames studied. The variation of the size distribution from flame to flame is conclusively attributed to flame temperature variation. Under the condition of an equal carbon concentration, benzene doping leads to negligible changes in the characteristics of the size distribution. For all flames studied, AFM observations show that nascent soot is liquid-like and spreads extensively upon impact on a substrate surface. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Abid, A. D.; Tolmachoff, E. D.; Phares, D. J.; Wang, H.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Liu, Y.; Laskin, A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, H (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM haiw@usc.edu RI Abid, Aamir/B-7205-2008; Wang, Hai/A-1292-2009; liu, yong/F-6736-2012; OI Wang, Hai/0000-0001-6507-5503; Laskin, Alexander/0000-0002-7836-8417 FU Strategic Environmental Research and Developmental Program; National Science Foundation [CBET-0651990]; National Aeronautics and Space Administration [NNG06GE89G, NNG06GI51G]; EMSL; DOE's Office of Biological and Environmental Research; Pacific Northwest National Laboratory (PNNL); US Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This work at USC was supported by the Strategic Environmental Research and Developmental Program and by the National Science Foundation (CBET-0651990). The PNNL and USC groups also acknowledge support provided by the National Aeronautics and Space Administration (Grants NNG06GE89G and NNG06GI51G). The work was partially performed at EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the, US Department of Energy by Battelle Memorial Institute under contract No. DE-AC06-76RLO 1830. NR 29 TC 41 Z9 45 U1 1 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 681 EP 688 DI 10.1016/j.proci.2008.07.023 PN 1 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800075 ER PT J AU Kearney, SP Frederickson, K Grasser, TW AF Kearney, Sean P. Frederickson, Kraig Grasser, Thomas W. TI Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Fire science; Thermometry; Laser diagnostics; CARS ID CARS TEMPERATURE-MEASUREMENTS; NITROGEN; FLAME; INTERFERENCE AB We present a dual-pump coherent anti-Stokes Raman scattering (CARS) instrument, which has been constructed for the probing of temperature fluctuations in turbulent pool fires of meter-scale. The measurements were performed at the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility at Sandia National Laboratories, which provides a canonical fire plume in quiescent wind conditions, with well-characterized boundary conditions and access for modern laser-diagnostic probes. The details of the dual-pump CARS experimental facility for the fire-science application are presented, and single-laser-shot CARS spectra containing information from in-fire N(2), O(2), H(2), and CO(2) are provided. Single-shot temperatures are obtained from spectral fitting of the Raman Q-branch signature of N(2), from Which histograms that estimate the pdf of the enthalpy-averaged temperature fluctuations at the center of the fire plume are presented. Results from two different sooting fire experiments reveal excellent test-to-test repeatability of the fire plume provided by FLAME, as well as the CARS-measured temperatures. The accuracy and precision of the CARS temperatures is assessed from measurements in furnace-heated air, where the temperature can be accurately determined by a thermocouple. At temperatures in excess of 500 K, the furnace results show that the CARS measurements are accurate to within 2-3% and precise to within +/- 3-5% of the measured absolute temperature. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kearney, Sean P.; Frederickson, Kraig; Grasser, Thomas W.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Kearney, SP (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mail Stop 0826, Albuquerque, NM 87185 USA. EM spkearn@sandia.gov FU Sandia Laboratory Directed Research and Development (LDRD); United states Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work has been funded by the Sandia Laboratory Directed Research and Development (LDRD) program. The authors thank Dann Jernigan, Ciro Ramirez, Martin Sanchez and Jaime Castaneda. for their technical assistance. Sandia is a-multiprogram laboratory operated by Sandia Corporation a Lockheed-Martin Company, for the United states Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 23 TC 20 Z9 20 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 871 EP 878 DI 10.1016/j.proci.2008.06.148 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800098 ER PT J AU Schiessl, R Kaiser, S Long, M Maas, U AF Schiessl, Robert Kaiser, Sebastian Long, Marshall Maas, Ulrich TI Application of reduced state spaces to laser-based measurements in combustion SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Multi-scalar imaging measurements; Reduced state spaces; Rayleigh scattering; Turbulent flames ID FLAMES; FLOWS AB A systematic exploitation of state variable correlations for increasing the accuracy and significance of laser-based measurements in combustion is proposed, formally developed and applied to an example. Correlations between state variables (species concentrations and temperature) lead to the phenomenon that the realizable states in a combustion system are on or close to low-dimensional manifolds in state space, allowing an approximate description of the system state in terms of a few variables. This makes it feasible to approximately deter-mine the full state of a combustion system by means of just a few simultaneous laser-based measurements. As an example application of the method, a simple system with a low-dimensional manifold is constructed by steady and unsteady flamelets. The fuel and oxidizer correspond to a series of well-documented, turbulent, non-premixed methane/air jet flames (Sandia Flames A-F). This low-dimensional manifold is then used to determine state variables via polarized/depolarized Rayleigh-signals. The results show that even in very complex, turbulent flames, many quantities can be deter-mined by means of just two signals. Some quantities are more prone to errors than others. The errors originate in the sensitivities of species with respect to signal noise and with respect to deviations of the actual states from the assumed, steady/unsteady-flamelet-based low-dimensional manifold. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Schiessl, Robert; Maas, Ulrich] Univ Karlsruhe, Inst Tech Thermodynam, D-76128 Karlsruhe, Germany. [Kaiser, Sebastian] Sandia Natl Labs, Livermore, CA 94550 USA. [Long, Marshall] Yale Univ, Yale Ctr Laser Diagnost, New Haven, CT 06520 USA. RP Schiessl, R (reprint author), Univ Karlsruhe, Inst Tech Thermodynam, Kaiserstr 12, D-76128 Karlsruhe, Germany. EM schiessl@itt.uni-karlsruhe.de FU Deutsche Forschungsgemeinschaft (DFG) [436 RUS 113/707/5-1]; Sonderforschungsbereich (CRC) 606; DOE Office of Basic Energy Sciences [DE-FG02-88ER13966] FX Financial support for Robert SchieBI by the Deutsche Forschungsgemeinschaft (DFG) under contract No. 436 RUS 113/707/5-1. and Support Within the Sonderforschungsbereich (CRC) 606 is gratefully acknowledged. The Yale work is Supported by the DOE Office of Basic Energy Sciences (Dr. Frank Tully, Contract monitor) under contract DE-FG02-88ER13966. NR 20 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 887 EP 894 DI 10.1016/j.proci.2008.05.063 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800100 ER PT J AU Sick, V Westbrook, CK AF Sick, Volker Westbrook, Charles K. TI Diagnostic implications of the reactivity of fluorescence tracers SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE LIF; Fluorescence tracer; Kinetic mechanism ID OXIDATION; ENGINE; RATIO AB Measurements of fuel concentration distributions With planar laser-induced fluorescence of tracer molecules that are added to a base fuel are commonly used in combustion research and development. It usually is assumed that the tracer concentration follows the parent fuel concentration if physical properties such as those determining evaporation are matched. As an example to address this general issue a computational study of combustion of biacetyl/iso-octane mixtures was performed to investigate how well the concentration of biacetyl represents the concentration of iso-octane. For premixed mixture conditions with flame propagation the spatial concentration profiles of the two species in the flame front are separated by 110 mu m at 1 bar and by 11 mu m at 10 bar. For practical applications this spatial separation is insignificantly small. However, for conditions that mimic ignition and combustion in diesel and HCCI-like operation the differences in tracer and fuel concentration can be significant, exceeding hundreds of percent. At low-initial temperature biacetyl was found to be more stable whereas at higher temperature (>1000 K) iso-octane is more stable. Similar findings were obtained for a multi-component fuel comprised of iso-octane, n-heptane, methylcyclohexane, and toluene. It may be assumed that similar differences can exist for other tracer/fuel combinations. Caution has therefore to be applied when interpreting-PLIF measurements in homogeneous reaction conditions such as in HCCI engine studies. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sick, Volker] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sick, V (reprint author), Univ Michigan, Dept Mech Engn, 1231 Beal Ave,2023 WE Lay Automot Lab, Ann Arbor, MI 48109 USA. EM vsick@umich.edu RI Sick, Volker/A-3987-2008 OI Sick, Volker/0000-0001-5756-9714 FU General Motors RD; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by General Motors R&D within the GM-UM Collaborative Research Laboratory oil Engine Systems Research at The University of Michigan. The computational portion of this work was supported by the U.S. Department of Energy, Office of Freedom CAR and Vehicle Technologies. C.K.W. thanks program..managers Kevin Stork and Gurprect Singh.for their support, which wits performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 8 Z9 8 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 913 EP 920 DI 10.1016/j.proci.2008.05.012 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800103 ER PT J AU Barlow, RS Wang, GH Anselmo, P Sweeney, MS Hochgreb, S AF Barlow, R. S. Wang, G. -H. Anselmo-Filho, P. Sweeney, M. S. Hochgreb, S. TI Application of Raman/Rayleigh/LIF diagnostics in turbulent stratified flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Stratified flames; Premixed flames; Turbulent combustion; Raman scattering ID NUMERICAL-SIMULATION; SCALAR DISSIPATION; IMAGING-SYSTEM; COMBUSTION; GRADIENTS; FLOW AB Stratified flames are common in practical combustion systems. However, relatively little is known about the detailed structure of turbulent stratified flames. Multiscalar laser diagnostics, consisting of simultaneous line imaging of Raman scattering, Rayleigh scattering, and two-photon laser-induced fluorescence (LIF) of CO, combined with crossed planar imaging of OH LIF, are applied to turbulent premixed and stratified CH(4)/air flames stabilized above a slot burner. A new detection system for the line-imaged measurements allows a pixel resolution of 0.104 mm in the results for temperature, major species concentrations, and the local equivalence ratio. Results from premixed flames demonstrate that this diagnostic system is capable of resolving the internal structure of stratified flames at atmospheric pressure. In particular, the local equivalence ratio and the gradient in temperature are measured with good accuracy on a single-shot basis. Results from stratified flames reveal a broad range of-instantaneous conditions, and show that significant gradients in equivalence ratio can occur within the instantaneous thermal thickness of turbulent stratified flames. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Barlow, R. S.; Wang, G. -H.] Sandia Natl Labs, Livermore, CA 94551 USA. [Anselmo-Filho, P.; Sweeney, M. S.; Hochgreb, S.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. RP Barlow, RS (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM barlow@sandia.gov RI Barlow, Robert/C-2364-2013; OI Wang, Guanghua/0000-0002-6313-663X NR 21 TC 48 Z9 51 U1 2 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 945 EP 953 DI 10.1016/j.proci.2008.06.070 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800107 ER PT J AU Kulatilaka, WD Frank, JH Settersten, TB AF Kulatilaka, Waruna D. Frank, Jonathan H. Settersten, Thomas B. TI Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Planar laser-induced fluorescence; Imaging diagnostics; Two-photon LIF; H-atom; Picosecond laser ID LASER-INDUCED FLUORESCENCE; UNSTEADY STRAIN-RATE; COMBUSTION APPLICATIONS; H-ATOM; OXYGEN; NANOSECOND; CURVATURE AB Interference-free, two-photon-excited planar laser-induced fluorescence (PLIF) imaging of atomic hydrogen is demonstrated in steady premixed methane flames. PLIF measurements of atomic hydrogen present a challenge because of the relatively weak two-photon absorption cross-sections and the nonlinear dependence of the laser-induced fluorescence (LIF) signal on laser intensity. Previous two-photon LIF measurements of atomic hydrogen in hydrocarbon flames using nanosecond laser excitation have identified complications from photolytic production of hydrogen atoms by the excitation laser. Recent results from line-imaging studies in our laboratory indicate a significant advantage to using picosecond excitation for imaging atomic hydrogen with negligible photolytic interference. In the current study, we extend out capabilities for interference-free PLIF imaging of atomic hydrogen in steady premixed CH(4)/O(2)/N(2) flames. Peak single-shot signal-to-noise ratios of approximately 6-8 are achieved, and the estimated single-shot detection limit is on the order of 10(16)cm(-3). Avoidance of interference and stimulated emission and the effects of fluorescence quenching are discussed. Averaged composite PLIF images are generated by combining images from multiple axial locations in the flame. The images show enhanced number densities of atomic hydrogen near the flame tip, in accordance with numerical predictions of diffusional focusing of H-atoms resulting from the sharp curvature of the flame front. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kulatilaka, Waruna D.; Frank, Jonathan H.; Settersten, Thomas B.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969 MS 9055, Livermore, CA 94551 USA. EM tbsette@sandia.gov RI Settersten, Thomas/B-3480-2009 OI Settersten, Thomas/0000-0002-8017-0258 NR 31 TC 12 Z9 12 U1 3 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 955 EP 962 DI 10.1016/j.proci.2008.06.125 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800108 ER PT J AU Goulay, F Schrader, PE Nemes, L Dansson, MA Michelsen, HA AF Goulay, Fabien Schrader, Paul E. Nemes, Laszlo Dansson, Mark A. Michelsen, Hope A. TI Photochemical interferences for laser-induced incandescence of flame-generated soot SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE LII; Soot; Clusters; LIF: Flame ID PARTICLE-SIZE MEASUREMENTS; ABLATION CARBON PLUMES; OPTICAL-EMISSION; DIFFUSION FLAME; VOLUME FRACTION; TEMPERATURE-MEASUREMENTS; NANOPARTICLE FORMATION; INDUCED FLUORESCENCE; NANO-PARTICLES; CLUSTER SOURCE AB This paper presents measurements of spectrally and temporally resolved laser-induced incandescence (LII) from soot. The second harmonic (532 nm) from a nanosecond Nd:YAG laser was used to heat the soot over a wide range of fluences, The emission was spectrally resolved using a spectrograph attached to an intensified CCD camera with a gate width of similar to 1.5 ns. At fluences below 0.2 J/cm(2), corresponding to the sublimation threshold, spectra demonstrate broadband featureless emission characteristic of laser-induced incandescence, whereas at- higher fluences spectra show sharp features attributable to C-2 Swan band emission, C-3 Swings band emission, and Other species. These features perturb the LII signal at wavelengths between 380 and 680 nm, suggesting that this detection region should be avoided for L11 measurements made using a 532-nm laser beam at fluences of 0.2 J/cm(2) and above. The detection wavelength regions to be avoided are much more extensive than previously believed. (c) 2009 The Combustion Institute, Published by Elsevier-Ine. All rights reserved. C1 [Goulay, Fabien; Schrader, Paul E.; Dansson, Mark A.; Michelsen, Hope A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Nemes, Laszlo] Hungarian Acad Sci, Chem Res Ctr, Inst Struct Res, Laser Spect Lab, H-1025 Budapest, Hungary. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969 MS 9055, Livermore, CA 94551 USA. EM hamiche@sandia.gov FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U. S. Department of Energy; Sandia Corporation, a Lockheed Martin Company; National Nuclear Security Administration [DEAC04-94-AL85000] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U. S. Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration tinder contract DEAC04-94-AL85000. NR 60 TC 23 Z9 23 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 963 EP 970 DI 10.1016/j.proci.2008.05.030 PN 1 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800109 ER PT J AU Grcar, JF AF Grcar, Joseph F. TI A new type of steady and stable, laminar, premixed flame in ultra-lean, hydrogen-air combustion SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Cellular; Laminar; Lean; Hydrogen-air; Thermo-diffusive instability ID ADAPTIVE PROJECTION METHOD; OXYGEN-NITROGEN MIXTURES; NUMERICAL-SIMULATION; CELLULAR FLAMES; THERMAL INSTABILITIES; BALLS; STABILITY; PROPAGATION; EQUATIONS; DYNAMICS AB Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word "flamelet" when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Grcar, JF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Mail Stop 50A-1148,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jfgrcar@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The author wishes to. thank F.A. Williams for helpful discussions. NR 48 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1011 EP 1018 DI 10.1016/j.proci.2008.06.128 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800115 ER PT J AU Lee, UD Yoo, CS Chen, JH Frank, JH AF Lee, Uen Do Yoo, Chun Sang Chen, Jacqueline H. Frank, Jonathan H. TI Effects of H2O and NO on extinction and re-ignition of vortex-perturbed hydrogen counterflow flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Hydrogen; Extinction; Ignition; Nitric oxide; Vortex-flame interaction ID CHARACTERISTIC BOUNDARY-CONDITIONS; EDGE FLAMES; DIFFUSION FLAMES; IGNITION; UNSTEADY; AIR; COMBUSTION; SIMULATIONS; OXIDATION; FLOWS AB The influence of water vapor (H2O) and nitric oxide (NO) on the dynamics of extinction and re-ignition of a vortex-perturbed non-premixed hydrogen-air flame is investigated. A steady non-premixed flame is established in an axisymmetric counterflow configuration with a fuel stream of nitrogen-diluted hydrogen flowing against heated air containing 160 ppm of NO and various amounts of H2O ranging from 1.2% to 7.1% by volume. Local extinction is induced by a fuel-side vortex, and the temporal evolution of the hydroxyl radical (OH) field is measured during the extinction and subsequent re-ignition processes using planar laser-induced fluorescence (PLIF). The additives modify the flame recovery mode by affecting the competition between autoignition and edge-flame propagation. Doping with 160 ppm of NO can significantly enhance the re-ignition or hydrogen due to its catalytic effect, while H2O addition inhibits re-ignition because of its high specific heat and large third-body chaperon efficiency. In the flames considered here, direct numerical simulations are performed using a detailed H-2-air mechanism and are compared with experiments. The simulations show that a small amount of OH from NO-catalyzed reactions enhances autoignition in the extinguished region, whereas adding H2O inhibits re-ignition. Although flame propagation and extinction are largely unaffected by these additives, the induction time associated with the flame's recovery mode by autoignition is strongly affected. Hence, these additives can be used to control the recovery time following local extinction. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Lee, Uen Do; Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Frank, JH (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969,MS 9051, Livermore, CA 94551 USA. EM jhfrank@sandia.gov RI Yoo, Chun Sang/E-5900-2010 OI Yoo, Chun Sang/0000-0003-1094-4016 NR 28 TC 9 Z9 9 U1 0 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1059 EP 1066 DI 10.1016/j.proci.2008.06.150 PN 1 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800121 ER PT J AU Seshadri, K Lu, TF Herbinet, O Humer, SB Niemann, U Pitz, WJ Seiser, R Law, CK AF Seshadri, Kalyanasundaram Lu, Tianfeng Herbinet, Olivier Humer, Stefan B. Niemann, Ulrich Pitz, William J. Seiser, Reinhard Law, Chung K. TI Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Biodiesel; Methyl decanoate; Surrogate; Non premixed; Chemical-kinetic mechanism ID DIRECTED RELATION GRAPH; OXIDATION; COMBUSTION; MECHANISMS; REDUCTION; DECOMPOSITION; BUTANOATE; ISOOCTANE; PRESSURE AB Methyl decanoate is a large rnethyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate was investigated in non-premixed, non-uniform flows. Experiments were performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream was measured as a function of the strain rate at extinction, and critical conditions of ignition were measured in terms of the temperature of the oxidizer stream as a function of the strain rate. A detailed mechanism of 8555 elementary reactions and 3036 species has been developed previously to describe combustion of methyl decanoate. Since it is not possible to use this detailed mechanism to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources, a skeletal mechanism was deduced from this detailed mechanism using the "directed relation graph" method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of extinction and critical conditions of ignition were calculated using this skeletal mechanism and they were found to agree well with experimental data. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Seshadri, Kalyanasundaram; Humer, Stefan B.; Niemann, Ulrich; Seiser, Reinhard] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Lu, Tianfeng; Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Herbinet, Olivier; Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seshadri, K (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr,Mail Code 0411, La Jolla, CA 92093 USA. EM seshadri@ucsd.edu RI Law, Chung /E-1206-2013; herbinet, olivier/H-2571-2013; Lu, Tianfeng/D-7455-2014; Niemann, Ulrich/E-4737-2015; OI Lu, Tianfeng/0000-0001-7536-1976; Niemann, Ulrich/0000-0001-9268-5040; herbinet, olivier/0000-0002-2155-098X FU University of California at San Diego; UC Discovery/West biofuels [GCP06-10228]; Air Force Office of Scientific Research; US Department of Energy [DE-AC52-07NA27344]; Office of the Freedom CAR and Vehicle Technologies FX The research at the University of California at San Diego is supported by UC Discovery/West biofuels. Grant # GCP06-10228. The work at Princeton University was supported by the Air Force Office of Scientific Research under the technical monitoring of Dr. Julian M. Tishkoff, and a block grant awarded by BP and Ford on carbon mitigation. The work at LLNL was supported by the US Department of Energy, Office of the Freedom CAR and Vehicle Technologies, program manager Kevin Stork and Gurpreet Singh, and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 28 TC 79 Z9 81 U1 2 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1067 EP 1074 DI 10.1016/j.proci.2008.06.215 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800122 ER PT J AU Najm, HN Ponganis, D Prager, J AF Najm, Habib N. Ponganis, Denise Prager, Jens TI Analysis of NO structure in a methane-air edge flame SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE NO; NO(x); Edge flame; Triple flame ID SEMIIMPLICIT NUMERICAL SCHEME; CH4/AIR PREMIXED FLAMES; NITRIC-OXIDE FORMATION; TRIPLE FLAMES; REACTING FLOW; DETAILED CHEMISTRY; DIFFUSION FLAMES; COMBUSTION; STABILIZATION; MECHANISMS AB We present computations of a methane-air edge flame stabilized against an incoming flow mixing layer, using detailed methane-air chemistry, We analyze the computed edge flame, with a focus on NO-structure. We examine the spatial distribution of NO and its production/consumption rate. We investigate the breakdown of the NO source term among the thermal, prompt, N(2)O, and NO(2) pathways. We examine the contributions of the four pathways at different locations, as the edge flame structure changes with downstream distance, tending to a classical diffusion flame structure. We also examine the dominant reaction flux contributions in each pathway. We compare the results to those in premixed, non-premixed, and opposed-jet triple flames, (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Najm, Habib N.; Ponganis, Denise; Prager, Jens] Sandia Natl Labs, Livermore, CA 94550 USA. RP Najm, HN (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9051, Livermore, CA 94550 USA. EM hnnajm@sandia.gov FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC04-94-AL85000] FX This work was-supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under contract DE-AC04-94-AL85000. NR 33 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1117 EP 1124 DI 10.1016/j.proci.2008.07.032 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800128 ER PT J AU Grcar, JF Bell, JB Day, MS AF Grcar, Joseph F. Bell, John B. Day, Marcus S. TI The Soret effect in naturally propagating, premixed, lean, hydrogen-air flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Cellular flames; Lean hydrogen flames; Multicomponent transport; Soret effect; Thermal diffusion ID NUMERICAL-SIMULATION; SENSITIVITY-ANALYSIS; COMPLEX CHEMISTRY; TRANSPORT; COMBUSTION; MIXTURES; PRESSURE; VELOCITY; KINETICS; OXYGEN AB Comparatively little attention has been given to multicomponent diffusion effects in lean hydrogen-air flames, in spite of the importance of these flames in safety and their potential importance to future energy technologies. Prior direct numerical simulations either have considered only the mixture-averaged transport model, or have been limited to stabilized flames that do not exhibit the thermo-diffusive instability. The so-called full, multicomponent transport model with cross-diffusion is found to predict hotter, significantly faster flames with much faster extinction and division of cellular structures. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Grcar, Joseph F.; Bell, John B.; Day, Marcus S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Grcar, JF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Mail Stop 50A-1148,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jfgrcar@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported through the SciDAC program by the Director, Office of Science, Office of Advanced Scientific Computing, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 22 Z9 23 U1 0 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1173 EP 1180 DI 10.1016/j.proci.2008.06.075 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800135 ER PT J AU Lucassen, A Osswald, P Struckmeier, U Kohse-Hoinghaus, K Kasper, T Hansen, N Cool, TA Westmoreland, PR AF Lucassen, Arnas Osswald, Patrick Struckmeier, Ulf Kohse-Hoeinghaus, Katharina Kasper, Tina Hansen, Nils Cool, Terrill A. Westmoreland, Phillip R. TI Species identification in a laminar premixed low-pressure flame of morpholine as a model substance for oxygenated nitrogen-containing fuels SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Morpholine; Molecular beam mass spectrometry; Fuel-N; Biofuel combustion ID PHOTOIONIZATION MASS-SPECTROMETRY; CHEMISTRY; RADICALS AB The combustion chemistry of morpholine (1-oxa-4-aza-cyclohexane) was investigated under laminar, premixed low-pressure conditions. Morpholine, as a heterocyclic secondary amine with numerous industrial applications, was studied as it model fuel which simultaneously contains oxygen and nitrogen hetero-atoms. Stable and radical intermediates and products of the combustion process in a slightly fuel-rich Phi = 1.3 (C/O = 0.41) flat premixed morpholine-oxygen-argon flame at 40 mbar (4 kPa) were identified. A detailed fuel destruction scheme is proposed based on combined measurements using two different in situ molecular beam mass spectrometry (MBMS) techniques. The results are discussed with special attention to hydrocarbon, oxygenated and N-containing compounds important in pollutant emission. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All-rights reserved. C1 [Lucassen, Arnas; Osswald, Patrick; Struckmeier, Ulf; Kohse-Hoeinghaus, Katharina] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Kasper, Tina; Hansen, Nils] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Cool, Terrill A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Westmoreland, Phillip R.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. RP Lucassen, A (reprint author), Univ Bielefeld, Dept Chem, Univ Str 25, D-33615 Bielefeld, Germany. EM arnas.lucassen@pcl.uni-bielefeld.de; kkh@pcl.uni-bielefeld.de RI Kohse-Hoinghaus, Katharina/A-3867-2012; Hansen, Nils/G-3572-2012; Lucassen, Arnas/G-3803-2013; Osswald, Patrick/N-3377-2013; Kasper, Tina/A-2975-2017 OI Lucassen, Arnas/0000-0003-2967-2030; Osswald, Patrick/0000-0002-2257-2988; Kasper, Tina/0000-0003-3993-5316 FU DFG [KO 1363/18-3]; Office of Basic Energy Sciences (BES); U.S. Department of Energy (US-DOE) [DE-FG02-01ER1518]; NNSA [DE-AC04-94-AL85000]; USDOE/BES [DE-AC02-05CH11231] FX We thank Haralx Waterbor, Felxi Vietmeyer and Paul Fugazzi for technical assistance and Dietmar Kuck and Wolfgang Eisfeld for valuable discussions. This work is supported by the DFG under KO 1363/18-3, the Office of Basic Energy Sciences (BES). U.S. Department of Energy (US-DOE), under DE-FG02-01ER1518. Sandia is a multi-program laboratory operated by Sandia Corporation for NNSA under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by USDOE/BES under DE-AC02-05CH11231. NR 23 TC 20 Z9 20 U1 1 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1269 EP 1276 DI 10.1016/j.proci.2008.06.053 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800146 ER PT J AU Kasper, T Struckmeier, U Osswald, P Kohse-Hoinghaus, K AF Kasper, T. Struckmeier, U. Osswald, P. Kohse-Hoeinghaus, K. TI Structure of a stoichiometric propanal flame at low pressure SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Propanal; Molecular beam mass spectrometry; Laminar flame ID BEAM MASS-SPECTROMETRY; GAS-PHASE; ALKYLPEROXY RADICALS; RICH FLAMES; OXIDATION; COMBUSTION; FORMALDEHYDE; FUELS; CH2O; PHOTOIONIZATION AB In view of the steady increase in the use of oxygenated fuels, aldehydes play an increasingly important role as intermediates in combustion. The combustion chemistry of propanal (CH(3)CH(2)CHO) was studied in a stoichiometric low-pressure, premixed flat flame. Species mole fraction profiles were measured by electron-ionization molecular beam mass spectrometry (MBMS) for the combustion products, the majority of stable reaction intermediates and several radical species. Based on the mole fraction profiles reactions of the aldehyde fuel are discussed. A number of oxygenated species with a molecular mass exceeding that of the fuel suggests that addition reactions are formed during the early stages of the combustion process. Their presence of small radicals to fuel derived molecules with aldehyde functions play an important role in this flame. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kasper, T.; Struckmeier, U.; Osswald, P.; Kohse-Hoeinghaus, K.] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. RP Kasper, T (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave,POB 969,MS 9055, Livermore, CA 94551 USA. EM tkasper@sandia.gov RI Kohse-Hoinghaus, Katharina/A-3867-2012; Osswald, Patrick/N-3377-2013; Kasper, Tina/A-2975-2017 OI Osswald, Patrick/0000-0002-2257-2988; Kasper, Tina/0000-0003-3993-5316 FU Deutsche Forschungsgemeinschaft [KO 1363/18-3] FX The authors thank Harald Waterbor for expert technical assistance. We are grateful for helpful discussions with all members of the ALS flame team, especially Dr. N. Hansen, Prof P.R. Westmoreland and Prof. T.A. Cool. This work was supported by the Deutsche Forschungsgemeinschaft under Grant KO 1363/18-3. NR 36 TC 24 Z9 25 U1 1 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1285 EP 1292 DI 10.1016/j.proci.2008.06.040 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800148 ER PT J AU Williams, FA Grcar, JF AF Williams, Forman A. Grcar, Joseph F. TI A hypothetical burning-velocity formula for very lean hydrogen-air mixtures SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Laminar flames; Flammability limits; Hydrogen ID ADAPTIVE PROJECTION METHOD; NONADIABATIC FLAME BALLS; OXYGEN-NITROGEN MIXTURES; NUMERICAL-SIMULATION; CELLULAR FLAMES; CARBON-MONOXIDE; EQUATIONS; DYNAMICS; COMBUSTION; METHANE AB Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Williams, Forman A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Grcar, Joseph F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Williams, FA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM faw@ucsd.edu; jfgrcar@lbl.gov FU U.S. Department of Energy [DE-AC02-05CHI1231] FX F.A.W. is indebted to Guy Joulin and to Antonio Sanchez for their comments on earlier drafts of this paper and to Javier Urzay for help in preparing the manuscript. The work of J.F.G. was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CHI1231. NR 38 TC 16 Z9 17 U1 1 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1351 EP 1357 DI 10.1016/j.proci.2008.07.004 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800156 ER PT J AU Hawkes, ER Sankaran, R Chen, JH Kaiser, SA Frank, JH AF Hawkes, Evatt R. Sankaran, Ramanan Chen, Jacqueline H. Kaiser, Sebastian A. Frank, Jonathan H. TI An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Scalar dissipation rate; Direct numerical simulation; Non-premixed; Syngas; Reconstruction ID TURBULENT COMBUSTION; THERMAL DISSIPATION; HIGH-RESOLUTION; FLOWS; PDF AB The difficulty of experimental measurements of the scalar dissipation rate in turbulent flames has required researchers to estimate the true three-dimensional (3D) scalar dissipation rate from one-dimensional (ID) or two-dimensional (213) gradient measurements. In doing so, some relationship must be assumed between the true values and their lower dimensional approximations. We develop these relationships by assuming a form for the statistics of the gradient vector orientation, which enables several new results to be obtained and the true 3D scalar dissipation PDF to be reconstructed from the lower-dimensional approximations. We use direct numerical simulations (DNS) of turbulent plane jet flames to examine the orientation statistics, and verify our assumptions and final results. We develop and validate new theoretical relationships between the lower-dimensional and true moments of the scalar dissipation PDF assuming a log-normal true PDF. We compare PDFs reconstructed from lower-dimensional gradient projections with the true values and find an excellent agreement for a 2D simulated measurement and also for a I D simulated measurement perpendicular to the mean flow variations. Comparisons of PDFs of thermal dissipation from DNS with those obtained via reconstruction from 21) experimental measurements show a very close match. indicating this PDF is not unique to a particular flame configuration. We develop a technique to reconstruct the joint PDF of the scalar dissipation and any other scalar, Such as chemical species or temperature. Reconstructed conditional means of the hydroxyl mass fraction are compared with the true values and an excellent agreement is obtained. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Hawkes, Evatt R.] Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. [Sankaran, Ramanan] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Chen, Jacqueline H.; Kaiser, Sebastian A.; Frank, Jonathan H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Hawkes, ER (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. EM cvatt.hawkes@unsw.edu.au RI Sankaran, Ramanan/D-9254-2015; Hawkes, Evatt/C-5307-2012 OI Sankaran, Ramanan/0000-0002-5352-9915; Hawkes, Evatt/0000-0003-0539-7951 FU Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy (DOE) [DE-AC03-76SF00098, DE-AC05-00OR22725] FX This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy (DOE). This research used resources of the National Energy Research Computing Center (NERSC), of the National Center for Computational Sciences at Oak Ridge National Laboratory (NCCS/ORNL) which are supported by the Office of Science of the DOE under contract no. DE-AC03-76SF00098 and DE-AC05-00OR22725, respectively. We especially acknowledge the award from DOE's Innovative and Novel Computational Impact on Theory and Experiments (INCITE) Program. Thanks to F.L. Dryer for providing the detailed kinetic mechanism prior to its publication. NR 30 TC 23 Z9 23 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1455 EP 1463 DI 10.1016/j.proci.2008.06.122 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800168 ER PT J AU Bisetti, F Chen, JY Chen, JH Hawkes, ER AF Bisetti, Fabrizio Chen, J. -Y. Chen, Jacqueline H. Hawkes, Evatt R. TI Differential diffusion effects during the ignition of a thermally stratified premixed hydrogen-air mixture subject to turbulence SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Differential diffusion; Hydrogen combustion; HCCI; Turbulent premixed flames ID DIRECT NUMERICAL-SIMULATION; TEMPERATURE INHOMOGENEITIES; FRONT PROPAGATION; CONSTANT VOLUME; COMBUSTION; FLAMES; DIAGNOSTICS; ENGINES; FLOW AB Recent research efforts have focused on the usage of lean hydrogen-air mixtures in Homogeneous Charge Compression Ignition (HCCI) engines. In this work we investigate the effect of temperature stratification on the occurrence of differential diffusion during the autoignition of a lean premixed hydrogen-air mixture at high pressure, constant volume conditions. We employ a Direct Numerical Simulation methodology including hydrogen-air finite-rate chemistry and molecular transport based on a Lewis number formulation for individual species [E.R. Hawkes, R. Sankaran, P.P. Pebay, J.H. Chen, Combust. Flame 145 (1-2) (2006) 145-159]. At the highest level of temperature stratification tested, we find that differential diffusion has an impact on the heat release rate. Early in the ignition, regions with mixture fraction higher than the initial value are created by differential diffusion and they subsequently burn to achieve higher temperatures, which can be accounted for by simple equilibrium-calculations. Later in the ignition process, differential diffusion enhances heat release rate along positively stretched fronts and reduces it for negatively stretched regions, Finally, it is found that mixture fraction is not a conserved scalar due to differential diffusion. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Bisetti, Fabrizio; Chen, J. -Y.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Hawkes, Evatt R.] Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. RP Bisetti, F (reprint author), Univ Calif Berkeley, Dept Mech Engn, 246 Hesse Hall,Mailstop 1740, Berkeley, CA 94720 USA. EM fbisetti@me.berkeley.edu RI Hawkes, Evatt/C-5307-2012 OI Hawkes, Evatt/0000-0003-0539-7951 NR 25 TC 11 Z9 11 U1 1 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1465 EP 1472 DI 10.1016/j.proci.2008.09.001 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800169 ER PT J AU Lignell, DO Hewson, JC Chen, JH AF Lignell, David O. Hewson, John C. Chen, Jacqueline H. TI A-priori analysis of conditional moment closure modeling of a temporal ethylene jet flame with soot formation using direct numerical simulation SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE CMC; DNS; Nonpremixed flame; Ethylene; Soot ID NONPREMIXED FLAMES; TURBULENT; COMBUSTION; FLOW AB Modeling soot formation in turbulent nonpremixed combustion is a difficult problem. Unlike most gaseous combustion species, soot lacks a strong state relationship with the mixture fraction due to unsteady formation rates which overlap transport timescales, and strong differential diffusion between gaseous species and soot. The conditional moment Closure model (CMC) has recently been applied to the problem of turbulent soot formation. A challenge in CIVIC modeling is the treatment of differential diffusion. Three-dimensional direct numerical simulation (DNS) of a nonpremixed ethylene jet flame with soot formation has been performed using a 19 species reduced ethylene mechanism and a four-step, three-moment, semi-empirical soot model. The DNS provides full resolution of the, turbulent flow field and is used to perform a-priori analysis of a recent CIVIC model derived from the joint scalar PDF transport equation. Unlike other approaches, this CMC model does not require additional transport equations to treat differentially diffusing species. A budget of the terms of the CMC equation for both gaseous species and soot is presented. In particular, exact expressions for unclosed terms are compared to typical closure models for scalar dissipation, cross-dissipation, differential diffusion, and reactive source terms. The differential diffusion model for gaseous species is found to be quite accurate, while that for soot requires ail additional model for the residual term. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Lignell, David O.; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Hewson, John C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lignell, DO (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM david@crsim.utah.edu FU U.S Department of Energy, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC04-94-AL85000] FX This work was supported by the U.S Department of Energy, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. Simulations were performed at Sandia National Laboratories on the Redstorm supercomputer. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94-AL85000. NR 18 TC 13 Z9 13 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1491 EP 1498 DI 10.1016/j.proci.2008.07.007 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800172 ER PT J AU Cai, J Wang, DH Tong, CN Barlow, RS Karpetis, AN AF Cai, Jian Wang, Danhong Tong, Chenning Barlow, R. S. Karpetis, A. N. TI Investigation of subgrid-scale mixing of mixture fraction and temperature in turbulent partially premixed flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Turbulent flames; Large-eddy simulation; Filtered density function; Turbulent mixing ID METHANE/AIR JET FLAMES; FILTERED DENSITY-FUNCTION; LENGTH SCALES; DISSIPATION; DIFFUSION; COMBUSTION; SIMULATION AB The filtered mass density function (FMDF) of mixture fraction and temperature used in large eddy simulation (LES) of turbulent combustion is studied experimentally using line images obtained in turbulent partially premixed methane flames (Sandia flames D and E). Cross-stream filtering is employed to obtain the FMDF and other filtered variables. The mean of the FMDF conditional on the subgrid-scale (SGS) scalar variance at it given location are found to vary from unimodal to bimodal, cot-responding to quasi-equilibrium distributed reaction zones and laminar flamelets (including extinguished flamelets), respectively. The conditionally filtered mixture fraction dissipation for small SOS variances has a relatively weak dependence on the mixture fraction, and is not sensitive to temperature for extinguished samples. For large SOS variance the large dissipation is concentrated in the cliffs and increases with decreasing temperature. The conditionally filtered temperature dissipation for small SOS variances is the highest for intermediate temperature. For large SGS variance the dependence is more complex and the pilot gas appears to be playing an important role. The different SOS mixture fraction structures for small and large SOS variances, as reflected by the unimodal and bimodal FMDF, have a strong impact on the small-scale mixing and turbulence-chemistry interaction, as reflected by the results for the conditionally filtered temperature dissipation. The results have implications for understanding and modeling multiple reactive scalar SOS mixing. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Cai, Jian; Wang, Danhong; Tong, Chenning] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA. [Barlow, R. S.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Karpetis, A. N.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. RP Tong, CN (reprint author), Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA. EM ctong@ces.clemson.edu RI Barlow, Robert/C-2364-2013; Cai, Jian/O-2100-2014 OI Cai, Jian/0000-0002-8178-6302 FU Air Force Office of Scientific Research [FA9550-06-1-0036]; National Science Foundation [CBET-0651174]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy FX The work at Clemson wits supported by the Air Force Office of Scientific Research under Grant FA9550-06-1-0036 (Dr. Julian M. Tishkoff, program manager) and by the National Science Foundation under Grant CBET-0651174. The work at Sandia was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. We thank Professors Norbert Peters and Stephen B. Pope for valuable discussions. NR 17 TC 9 Z9 9 U1 0 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1517 EP 1525 DI 10.1016/j.proci.2008.05.026 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800175 ER PT J AU Sankaran, V Drozda, TG Oefelein, JC AF Sankaran, Vaidyanathan Drozda, Tomasz G. Oefelein, Joseph C. TI A tabulated closure for turbulent non-premixed combustion based on the linear eddy model SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Large eddy simulation; Linear eddy model; Turbulent combustion modeling ID CONDITIONAL MOMENT CLOSURE; FILTERED DENSITY-FUNCTION; SANDIA FLAME-D; REACTING FLOWS; JET FLAMES; SIMULATION; TRANSPORT; DIFFUSION; CHEMISTRY AB A tabulated closure based on conditional statistics from fully-resolved one-dimensional scalar profiles has been formulated for application using the large eddy simulation technique. These scalar profiles are obtained from both experiments (i.e., line imaging of Raman/Rayleigh/CO-LIF) and from the Simulations of linear eddy model. Such profiles provide a local description of species and temperature evolution due to the full range of turbulent scales in the predominant direction of scalar transport. Instantaneous realizations of these scalar profiles are processed as a function of pre-determined filter widths in space to obtain the conditional statistics of filtered scalars. Key statistical quantities needed for LES, are then parameterized as a function of a unique filtered state vector. Here, we use the filtered mixture fraction (Z) over tilde, filtered scalar dissipation rate (chi) over tilde, and the subgrid Reynolds number Re(Delta) Is the filtered state vector. Conditional PDF's of temperature P(T|(Z) over tilde, (chi) over tilde, Re(Delta)), species mass fractions P(T|(Z) over tilde, (chi) over tilde, Re(Delta)), and relevant thermodynamic and transport properties are tabulated as a function of (Z) over tilde, (chi) over tilde, and Re(Delta). A thermo-chemical state library is then constructed in a manner directly analogous to the conventional flamelet-library approach. The potentially novel feature of this approach is that the relation between filtered and instantaneous quantities is known directly. This eliminates the need for a posteriori models that link these quantities. An a priori analysis of the proposed model was carried out for non-premixed combustion using measurements obtained from CH(4)/H(2)/N(2) jet flames at a Reynolds numbers of 15,200. This flame exhibits an interesting range of Damkohler and Schmidt numbers through local extinction, reignition, and differential diffusion. Results show good quantitative agreement with measurements. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sankaran, Vaidyanathan; Drozda, Tomasz G.; Oefelein, Joseph C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Sankaran, V (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave,MS 9051, Livermore, CA 94551 USA. EM vsankar@sandia.gov FU US Department-of Energy [DE-AC04-94-AL-85000] FX We are grateful to Dr. Alan Kerstein for the numerous, helpful technical discussions. The US Department-of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences supported this work. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL-85000. NR 38 TC 14 Z9 14 U1 0 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1571 EP 1578 DI 10.1016/j.proci.2008.06.168 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CG UT WOS:000264756800181 ER PT J AU Kaiser, SA Frank, JH AF Kaiser, S. A. Frank, J. H. TI Spatial scales of extinction and dissipation in the near field of non-premixed turbulent jet flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Turbulent flames; Extinction; OH-LIF; Dissipation; Turbulence length scales ID THERMAL DISSIPATION; RAYLEIGH-SCATTERING; DIFFUSION FLAME; SHEAR FLOWS; TEMPERATURE; RESOLUTION; RAMAN; OH AB Simultaneous high-resolution Rayleigh scattering imaging and planar laser-induced fluorescence (PLIF) of OH are combined to Measure the dissipative scales associated with thermal mixing and the structure and scales of extinguished regions of the reaction zone. Measurements are performed throughout the near field (x/d = 5, 10, 15, 20) of two turbulent, non-premixed methane/hydrogen/nitrogen jet flames with Re = 15,200 and 22,800 (flames DLR-A and DLR-B of the TNF workshop). Locally extinguished regions are identified by discontinuities in the OH layers, and the extinction hole sizes are Measured. For each flame. the probability density function of the hole sizes is very similar throughout the entire near field, with the most likely hole size being 1.9 mm in DLR-A and 1.1 mm in DLR-B. Extinction events are equally probable at all measurement locations in DLR-A. In the DLR-B flame, there is a progression from frequent extinction close to the nozzle to more continuous reaction zones further downstream, The approximate instantaneous location of the stoichiometric contour is determined using the OH-PLIF images, enabling statistical analysis of dissipative scales conditioned on rich and lean conditions. The widths of the thin, elongated structures that dominate the thermal dissipation field are measured. statistics of this microscale are qualitatively similar in both flames, with the higher Reynolds number producing smaller scales throughout the flow field. For dissipation layers in rich regions, the layer widths increase significantly with increasing temperature, while on the lean side the layer widths decrease with increasing temperature. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Kaiser, S. A.; Frank, J. H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kaiser, SA (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969,MS 9053, Livermore, CA 94551 USA. EM sakaise@sandia.gov FU U.S. Department of Energy [DE-AC04-94-AL85000] FX The authors thank R.J. Sigurdsson for excellent technical assistance in the laboratory. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is it multiprogram laboratory operated by Sandia Corporation, it Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94-AL85000. NR 25 TC 16 Z9 16 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1639 EP 1646 DI 10.1016/j.proci.2008.05.082 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900001 ER PT J AU Richardson, ES Yoo, CS Chen, JH AF Richardson, E. S. Yoo, C. S. Chen, J. H. TI Analysis of second-order conditional moment closure applied to an autoignitive lifted hydrogen jet flame SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Turbulent autoignition; Second-order conditional moment closure ID TURBULENT REACTIVE FLOWS; LOCAL EXTINCTION; COMBUSTION; VARIANCE; DNS; REIGNITION; COVARIANCE; DIFFUSION; EQUATIONS; MODEL AB The timing and location of autoignition call be highly sensitive 10 turbulent fluctuations of composition. Second-order Conditional Moment Closure (CMC) provides transport equations for conditional (co)variances in turbulent reacting flows. CMC equations accounting for compressibility and differential diffusion are analyzed using data from direct numerical Simulation of all autoignitive lifted turbulent hydrogen jet flame [C.S. Yoo, R. Sankaran, J.H. Chen, Three-dimensional direct numerical simulation of turbulent lifted hydrogen/air jet flame in a heated coflow. Part 1. J Fluid. Mech., (2008)]. At the flame base. second-order moments were required to accurately model the conditional reaction rates. However, over 80% of the second-order reaction rate component was obtainable with a small subset (16%) of the species-temperature covariances. The balance of the second-order CMC equation showed that turbulent transport across spatial composition gradients initiates generation of conditional variances. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved, C1 [Richardson, E. S.; Yoo, C. S.; Chen, J. H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Richardson, ES (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM esrich@sandia.gov RI Yoo, Chun Sang/E-5900-2010 OI Yoo, Chun Sang/0000-0003-1094-4016 FU U.S. Department of Energy (DOE) [DE-AC04-94ALS5000, DE-AC05-00OR22725]; U.S. DOE SciDAC Program FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE). and the U.S. DOE SciDAC Program. Sandia National Laboratories (SNL) is a multiprogram laboratory operated by Sandia Corporation. a Lockheed Martin Company, For the U.S. DOE under Contract DE-AC04-94ALS5000. This research used the resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (NCCS/ORNL), which is supported by the Office of Science of the U.S. DOE under Contract DE-AC05-00OR22725. Figure I was provided by Hongfeng Yu and Kwan-Liu Ma of the SciDAC Institute for Ultrascale Visualization and University of California at Davis. NR 26 TC 14 Z9 15 U1 2 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1695 EP 1703 DI 10.1016/j.proci.2008.05.041 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900008 ER PT J AU Anselmo-Filho, P Hochgreb, S Barlow, RS Cant, RS AF Anselmo-Filho, P. Hochgreb, S. Barlow, R. S. Cant, R. S. TI Experimental measurements of geometric properties of turbulent stratified flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Stratified flames; Premixed flames; Turbulent combustion; Flame surface density; Flame curvature ID LASER-INDUCED FLUORESCENCE; NUMERICAL-SIMULATION; MIXTURES; ACETONE; TEMPERATURE; PROPAGATION; COMBUSTION; METHANE AB Combustion under stratified conditions is common in many systems. However, relatively little is known about the structure and dynamics of turbulent stratified flames. Two-dimensional imaging diagnostics are applied to premixed and stratified V-flames at a mean equivalence ratio of 0.77, and low turbulent intensity, within the corrugated flame range. The present results show that stratification affects the mean turbulent flame speed, structure and geometric properties. Stratification increases the flame Surface density above the premixed flame levels in all cases, with a maximum reached at intermediate levels of stratification. The flame surface density (FSD) of stratified flames is higher than that of premixed flames at the same mean equivalence ratio. Under the present conditions, the FSD peaks at a stratification ratio around 3.0. The FSD curves for stratified flames are further skewed towards the product side. The distribution of flame curvature in stratified flames is broader and more symmetric relative to premixed flames, indicating an additional mechanism of curvature generation. which is not necessarily due to cusping. These experiments indicate that flame stratification affects the intrinsic behaviour of turbulent flames and suggest that models may need to be revised in the light of the current evidence. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Anselmo-Filho, P.; Hochgreb, S.; Cant, R. S.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Barlow, R. S.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Hochgreb, S (reprint author), Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England. EM sh372@cam.ac.uk RI Barlow, Robert/C-2364-2013 FU Brazilian Council for Scientific and Technological Development (CNPq), Rolls-Royce; Royal Society; Royal Academy of Engineering FX P.A.-F. is supported by the Brazilian Council for Scientific and Technological Development (CNPq) and Rolls-Royce. S.H. acknowledges additional support from the Wolfson Merit Award from the Royal Society. A visit by R.S.B. to the university of Cambridge was supported by a Distinguistic Visiting Fellowship grant from the Royal Academy of Engineering. The authors also thank R. Slater for technical support and C.N. Markides for help with image processing NR 27 TC 45 Z9 46 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1763 EP 1770 DI 10.1016/j.proci.2008.05.085 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900016 ER PT J AU Dunn, MJ Masri, AR Bilger, RW Barlow, RS Wang, GH AF Dunn, M. J. Masri, A. R. Bilger, R. W. Barlow, R. S. Wang, G. -H. TI The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Turbulent premixed flames; Finite-rate chemistry; Distributed reaction regime; Flame front thickening; Reaction rate measurements ID SCALAR DISSIPATION; NONPREMIXED FLAMES; COMBUSTION; FLOW AB Simultaneous line measurements of major species and temperature by the Raman-Rayleigh technique, combined with CO two-photon laser-induced fluorescence and crossed-plane OH planar laser-induced fluorescence have been applied to a series of flames in the Piloted Premixed Jet Burner(PPJB). The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a stoichiometric pilot and a large coflow of hot combustion products. Four flames with increasing jet velocities and constant jet equivalence ratios are examined in this paper. The characteristics of these four flames range from stable flame brushes with reaction zones that can be described its thin and "flamelet-like" to flames that have thickened reaction zones and exhibit extinction re-ignition behaviour. Radial profiles of the mean temperature are reported. indicating the mean thermal extent of the pilot and spatial location of the mean flame brush. Measurements of carbon monoxide (CO) and the hydroxyl radical (OH) reveal a gradual decrease in the conditional mean as the jet velocity is increased and the flame approaches extinction. Experimental results for the conditional mean temperature gradient show a progressive trend of reaction zone thickening with increasing jet velocities, indicating the increased interaction of turbulence with the reaction zone at higher turbulence levels. For the compositions examined, the product of CO and OH mole fractions ([CO][OH]) is shown to be a good qualitative indicator for the net rate of production of carbon dioxide. The axial variation of [CO][OH] is shown to correlate well with the mean chemi-luminescence of the flames including the extinction re-ignition regions. The experimental findings reported in this paper further support the hypothesis of an initial ignition region followed by extinction and re-ignition regions for certain PPJB flames. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Dunn, M. J.; Masri, A. R.; Bilger, R. W.] Univ Sydney, Sch Aeronaut Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Barlow, R. S.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Dunn, MJ (reprint author), Univ Sydney, Sch Aeronaut Mech & Mechatron Engn, Sydney, NSW 2006, Australia. EM m.dunn@usyd.edu.au RI Barlow, Robert/C-2364-2013; OI Wang, Guanghua/0000-0002-6313-663X FU Australian Research Council; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy FX This research is supported by The Australian Research Council. Work at Sandia was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. Contributions by R. Harmon during these experiments are gratefully acknowledged. NR 20 TC 37 Z9 38 U1 0 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1779 EP 1786 DI 10.1016/j.proci.2008.08.007 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900018 ER PT J AU Weismiller, MR Malchi, JY Yetter, RA Foley, TJ AF Weismiller, M. R. Malchi, J. Y. Yetter, R. A. Foley, T. J. TI Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Nanoaluminum; Thermite; Pressure dependence; Convective burning ID COMBUSTION AB The pressure dependence of flame propagation in an Al/CuO nanoscale thermite wits studied. Experiments were performed by loosely packing the Al/CuO mixture in an instrumented burn tube, which vas placed in it large Volume, constant pressure chamber with optical windows. A high-speed camera Was used to take photographic data, and six pressure transducers equally spaced along the length of the burn tube were used to measure the local transient pressure. Ambient pressures were varied between 0 and 15 Wit, and three different pressurizing gases were used: argon, helium, and nitrogen. Three modes of propagation were observed. The pressure at which the mode of propagation changed was similar for argon and nitrogen, however.. when pressurized with helium, transition occurred at lower pressures. In the low-pressure regime (similar to 0-2 MPa) a constant velocity mode with speeds on the order of 1000 m/s was observed. In this region, a convective mode of propagation wits dominant. An accelerating regime was observed for it pressure range of approximately 2-5 MPa in argon and nitrogen, with speeds ranging from 100 to 800 m/s. In helium, however, if an accelerating region existed it Occurred over a narrow pressure range which was not observed in the present experiments. An oscillating regime wits observed in all three gases, in a pressure range of similar to 5-9 Wit for argon and nitrogen, and a range of similar to 2-4 MPa for helium. Velocities in this region are bimodal, and differ by orders of magnitude, suggesting that the propagation mechanism was oscillating between convective and conductive. At relatively high ambient pressures, a constant velocity mode with speeds on the order of I m/s was observed for all three gases. The conductive mode of propagation was likely dominant in this region. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Weismiller, M. R.; Malchi, J. Y.; Yetter, R. A.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Foley, T. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Weismiller, MR (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. EM mrw213@psu.edu FU US Army Research Office [W911NF-04-1-0178]; DoD/DOE FX This work was sponsored by the US Army Research Office under the Multi-University Research Initiative Contract No. W911NF-04-1-0178. The support and encouragement provided by Dr. Ralph Anthenien is gratefully acknowledged. T.J.F. was supported by the Joint Munitions Program (DoD/DOE) at the Los Alamos National Laboratory (LANL). NR 21 TC 43 Z9 48 U1 1 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 1895 EP 1903 DI 10.1016/j.proci.2008.06.191 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900031 ER PT J AU Shaddix, CR Molina, A AF Shaddix, Christopher R. Molina, Alejandro TI Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Coal; Ignition; Devolatilization; Oxy-fuel; CO(2) recycle ID BITUMINOUS COAL; CHAR COMBUSTION; MIXTURES; REACTIVITY; O-2/CO2; MODEL; AIR AB Oxy-fuel combustion of coal is a promising technology for cost-effective power production with carbon capture and sequestration that has ancillary benefits of emission reductions and lower flue gas cleanup costs. To fully understand the results of pilot-scale tests of oxy-fuel combustion and to accurately predict scale-up performance through CFD modeling, fundamental data are needed concerning coal and coat char-combustion properties under these unconventional conditions. In the work reported here, the ignition and devolatilization characteristics of both a high-volatile bituminous coal and a Powder River Basin subbituminous coal were analyzed in detail through single-particle imaging at a gas temperature of 1700 K over a range of 12-36 vol % O(2) in both N(2) and CO(2) diluent gases. The bituminous coal images show large,)lot soot cloud radiation whose size and shape vary with oxygen concentration and, to a lesser extent, with the use of N(2) versus CO(2) diluent gas. Subbituminous coal images show cooler, smaller emission signals during devolatilization that have the same characteristic size as the coal particles introduced into the flow (nominally 100 full). The measurements also demonstrate that the use of CO(2) diluent retards the onset of ignition and increases the duration of devolatilization, once initiated. For a given dilUent gas, a higher oxygen concentration yields shorter ignition delay and devolatilization times. The effect of CO(2) oil coal particle ignition is explained by its higher molar specific heat and its tendency to reduce the local radical pool. The effect OF O(2) on coal particle ignition results from its effect on the local mixture reactivity. CO(2) decreases the rate of devolatilization because of the lower mass diffusivity of volatiles in CO(2) mixtures, whereas higher O(2) concentrations increase the mass flux of oxygen to the volatiles flame and thereby increase the rate of devolatilization. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Shaddix, Christopher R.; Molina, Alejandro] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Shaddix, CR (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9052,7011 E Ave, Livermore, CA 94550 USA. EM crshadd@sandia.gov FU U.S. Department of Energy (DOE) through the National Energy Technology Laboratory's Power Systems Advanced Research Program; Lockheed Martin Company; DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was sponsored by the U.S. Department of Energy (DOE) through the National Energy Technology Laboratory's Power Systems Advanced Research Program, managed by Dr. Robert Romanosky. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 31 TC 123 Z9 134 U1 6 U2 53 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2091 EP 2098 DI 10.1016/j.proci.2008.06.157 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900055 ER PT J AU Linne, MA Paclaroni, M Berrocal, E Sedarsky, D AF Linne, Mark A. Paclaroni, Megan Berrocal, Edouard Sedarsky, David TI Ballistic imaging of liquid breakup processes in dense sprays SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Review DE Fuel sprays; Laser diagnostics; Primary breakup ID FUEL SPRAYS; ATOMIZING SPRAY; TURBID MEDIA; SINGLE-SHOT; NEAR-FIELD; SCATTERING; JET; DIAGNOSTICS; CORE AB Ballistic imaging is the name applied to a category of optical techniques that were originally developed for medical applications. Recently, ballistic imaging was adapted to acquire instantaneous images of the liquid core inside atomizing sprays; a region that has been heretofore inaccessible to spray researchers. An important difference between spray research and the medical imaging problem is the need for high fidelity single-shot (within 10 mu s) imaging in a spray whereas stationary tissue images can be averaged. Transient ballistic imaging diagnostics have been used to reveal details of the primary breakup process in it LOX injector. a turbulent water jet, a water jet in cross-flow, a transient diesel fuel spray, a rocket fuel injector, and an aerated spray. This paper briefly discusses various methods for imaging the liquid core, it introduces ballistic imaging and provides specific examples, it describes detailed studies of photon transmission through dense media, and it then discusses incorporation of those results into a model for a ballistic imaging instrument that can evaluate and optimize various concepts. Published by Elsevier Inc. oil behalf of The Combustion Institute. C1 [Linne, Mark A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Paclaroni, Megan; Berrocal, Edouard; Sedarsky, David] Lund Inst Technol, SE-22100 Lund, Sweden. RP Linne, MA (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM mlinne@sandia.gov RI Paciaroni, Megan/L-9619-2013; OI Paciaroni, Megan/0000-0002-6320-0291; Sedarsky, David/0000-0003-3012-9596 FU US Department of Energy, office of Basic Energy Sciences; VR (Swedish Research Council) [621-2004-5504]; Air Force EOARD [FA8655-06-1-3031]; Swedish Energy Agency; SSE (Swedish Foundation for Strategic Research); CECOST (Centre for Combustion Science and Technology) in Lund; Department of Education Graduate Assistance in Areas of National Need [P200A000447]; National Science Foundation Major Research Instrumentation [CTS-97111889]; Army Research Office Project [DAAD19-02-1-0221]; US Air Force Research Lab [FA8650-04-M-2442] FX Dr. Linne is supported by the US Department of Energy, office of Basic Energy Sciences. Mr. Sedarsky is supported by the VR (Swedish Research Council) Grant No. 621-2004-5504 and an Air Force EOARD Grant No. FA8655-06-1-3031. Dr. Paciaroni was supported by the Swedish Energy Agency and Dr. Berrocal has been financed by SSE (Swedish Foundation for Strategic Research). both postdoctoral fellowships through CECOST (Centre for Combustion Science and Technology) in Lund. We also gratefully acknowledge financial support provided in part by a Department of Education Graduate Assistance in Areas of National Need Grant P200A000447, a National Science Foundation Major Research Instrumentation Grant No. CTS-97111889, an Army Research Office Project DAAD19-02-1-0221, and funding from the US Air Force Research Lab under Contract No. FA8650-04-M-2442. NR 43 TC 53 Z9 53 U1 2 U2 41 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2147 EP 2161 DI 10.1016/j.proci.2008.07.040 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900062 ER PT J AU Kuhl, AL Reichenbach, H AF Kuhl, A. L. Reichenbach, H. TI Combustion effects in confined explosions SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Shock-dispersed-fuel explosions; TNT; Al particles; Calorimeter AB Results of shock-dispersed-fuel (SDF) explosion experiments are presented. The SDF charge consisted of a spherical 0.5-g PETN booster Surrounded by 1 g of fuel, either flake aluminum (Al) powder or TNT. The charge was placed at the center of a sealed chamber. Three cylindrical chambers (volumes of 6.6, 20, and 40 1 with L/D = 1) and three tunnels (L/D = 3.8, 4.65, and 12.5) were used to explore the influence of chamber volume and geometry on completeness of combustion. Detonation of the SDF charge created an expanding Cloud of explosion product gases and hot fuel (Al or TNT). When this fuel mixed with air, it formed a turbulent combustion cloud that consumed the fuel and liberated additional energy (31 kJ/g for Al or 15 kJ/g for TNT) over and above detonation of the booster (6 kJ/g) that created the explosion. Static pressure gauges were the main diagnostic. Pressure and impulse histories for explosions in air were much greater than those recorded for explosions in nitrogen-thereby demonstrating that combustion has a dramatic effect oil the chamber pressure. This effect increases as the confinement volume decreases and the excess air ratio approaches values between 2 and 3.5. (C) 2009 Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Kuhl, A. L.] Lawrence Livermore Natl Lab, WCI AX Div, Livermore, CA 94551 USA. [Reichenbach, H.] Ernst Mach Inst, D-79104 Freiburg, Germany. RP Kuhl, AL (reprint author), Lawrence Livermore Natl Lab, WCI AX Div, POB 808,7000 East Ave,Mail Stop L-030, Livermore, CA 94551 USA. EM kuhl2@llnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Defense Threat Reduction Agency [IAC-RO 08-43991] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work was sponsored by the Defense Threat Reduction Agency under IAC-RO 08-43991. Experiments were performed by Dr. Peter Neuwald at the Ernst Mach Institut in Freiburg, Germany; his untimely death in November 2006 brought an end to this experimental research. NR 14 TC 14 Z9 21 U1 2 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2291 EP 2298 DI 10.1016/j.proci.2008.05.001 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900078 ER PT J AU Jackson, SI Hill, LG AF Jackson, Scott I. Hill, Larry G. TI Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Porosity; Deflagration; PBX 9501; Confinement; Cookoff ID COMBUSTION; PBX-9501 AB This work predicts the critical conditions required for the onset of reaction runaway in a narrow high-explosive slot intended to Simulate a crack. A model is developed where slot pressurization is attributed to gas-dynamic choking at the slot exit. The combination of the choking and a pressure-dependent reaction rate is shown to be capable of predicting runaway reaction for it range of slot dimensions and pressures. even when the explosive regression is considered. This model agrees with experimental pressure measurements of reaction runaway in slots and provides a mechanism for the erratic burning observed with some explosives under high pressure. Published by Elsevier Inc. on behalf of The Combustion Institute, C1 [Jackson, Scott I.; Hill, Larry G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jackson, SI (reprint author), Los Alamos Natl Lab, POB 1663,MS P952, Los Alamos, NM 87545 USA. EM sjackson@lanl.gov OI Jackson, Scott/0000-0002-6814-3468 FU U.S. Department of Energy FX This work was funded by the U.S. Department of Energy. NR 10 TC 1 Z9 1 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2307 EP 2313 DI 10.1016/j.proci.2008.05.089 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900080 ER PT J AU Blythe, PA Kapila, AK Short, M AF Blythe, P. A. Kapila, A. K. Short, M. TI Shock-induced chain-branched ignition SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Shock-induced ignition; Chain-branching; Clarke equations ID GENERATED IGNITION; THERMAL-RUNAWAY; DETONATION-WAVE; MODEL; STABILITY; LIMIT AB Shock-induced ignition is considered for a three-step chain-branching mechanism at large activation energies. The nature of the ignition process depends critically oil the magnitude of the initial post-shock temperature relative to the chain-branching cross-over temperature. For the limits examined, the induction region is preceded by an exponentially weak initiation zone that provides relevant initial conditions for the induction phase. When the initial post-shock temperature is sufficiently close to the chain-branching temperature, ignition is characterized by logarithmic singular behaviors in the pressure and temperature perturbations and the structure has some similarities with the one-step chemistry problem. However, for larger initial post-shock temperatures, the logarithmic singularities are replaced by linear temporal growth. Suitable non-linear Clarke equations are deduced for both of these cases and numerical solutions are presented. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Blythe, P. A.] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. [Kapila, A. K.] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12181 USA. [Short, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Blythe, PA (reprint author), Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. EM pab0@lehigh.edu FU National Science Foundation; Los Alamos National Laboratory FX AKK Was supported by the National Science Foundation, and MS by Los Alamos National Laboratory. NR 19 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2371 EP 2377 DI 10.1016/j.proci.2008.05.071 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900088 ER PT J AU Hill, LG Morris, JS Jackson, SI AF Hill, L. G. Morris, J. S. Jackson, S. I. TI Peel-off case failure in thermal explosions observed by the deflagration cylinder test SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Deflagration; High explosive; Thermal explosion; Cookoff; Cylinder test ID PBX-9501 AB We have discovered a previously unidentified thermal explosion mode using the Los Alamos deflagration cylinder test (DFCT). The DFCT is a "pipe bomb"-style test similar to the detonation cylinder test (DTCT), which has been used for many years to calibrate detonation product equations of state. The shot is heated in all oven to a uniform test temperature. The pre-heated high explosive (HE) is triggered by a hot wire initiator on one end. The tube is back-illuminated by a bright light Source, and its combustion-driven deformation and subsequent break-up are observed by a high-speed Framing camera. Like the DTCT, the DFCT tube wall motion provides the primary diagnostic. A variety of reactive responses are possible, including quasi-steady deflagration and deflagration-to-detonation transition. This paper focuses on the behavior of the HMX-based explosive PBX 9501 at 155 degrees C. Under this condition burning appeared to occur only at the HE/tube interface, Causing the tube to peel away from the HE core. Peel-off propagated as a wave that traveled along the tube at similar to 500 m/s. This failure mode resulted in vigorous case venting, but the response was otherwise benign. We derive a steady peel-off-wave model that reproduces the essential observed features for realistic PBX 9501 parameter values. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Hill, L. G.; Morris, J. S.; Jackson, S. I.] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. RP Hill, LG (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, Mail Stop P952, Los Alamos, NM 87545 USA. EM lgh@lanl.gov; jsmorris@lanl.gov; sjackson@lanl.gov OI Jackson, Scott/0000-0002-6814-3468 FU U.S. Department of Energy FX The DFCT was conceived by Blaine Asay and Guillermo Terrones. The project leader was Pete Pittman. Bill Santistevan performed detailed design of the shot assembly. Brent Faulkner, Bob Mier, and Larry Vaughan provided shot assembly/fielding support. Blaine Asay, Bryan Henson, and Laura Smilowitz consulted on various experimental details. This project was funded by the U.S. Department of Energy. NR 13 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2379 EP 2386 DI 10.1016/j.proci.2008.05.034 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900089 ER PT J AU Dodd, AB Lautenberger, C Fernandez-Pello, AC AF Dodd, A. B. Lautenberger, C. Fernandez-Pello, A. C. TI Numerical examination of two-dimensional smolder structure in polyurethane foam SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Smolder; Two-dimensional; Polyurethane foam; Pyrolysis; Microgravity ID COMBUSTION; PROPAGATION; TRANSITION; MICROGRAVITY; WAVES; MODEL AB Although smolder combustion has been extensively studied both computationally and experimentally, relatively few theoretical studies have examined the two-dimensional structure of the smolder wave. In this paper. two-dimensional smolder in polyurethane foam is modeled with a two-dimensional numerical formulation that includes a seven-step kinetic model of the polyurethane smolder reaction mechanism. The two-dimensional model formulation includes the effects of heat, mass, species. and momentum transfer of the porous solid and gas phase. The seven-step decomposition reaction mechanism, which includes a secondary char oxidation and an additional char pyrolysis step, was developed using genetic algorithm optimization. The mechanism is capable of modeling both forward and opposed smolder. The model was used to study the two-dimensionality of a forward propagating smolder wave. The model results show a two-dimensional Structure in the temperature, species, and reaction profiles that agrees qualitatively with experimental observations. Oxygen is consumed at the reaction front, as expected, which leads to different reaction pathways governing the final products (i.e. thermal char and oxidative char). It was found that the model response is sensitive to boundary conditions, thermal properties, and heats of reaction for the char oxidation reaction. The incorporation of the secondary oxidation reaction step in the model paves the way to further analysis of the transition to flaming process. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Dodd, A. B.; Lautenberger, C.; Fernandez-Pello, A. C.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Dodd, A. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dodd, AB (reprint author), Univ Calif Berkeley, Dept Mech Engn, 63 Hesse Hall, Berkeley, CA 94720 USA. EM abdodd@me.berkeley.edu FU National Aeronautics and Space Administration [Grants NAG3-2026, NNC-05GA02G, NNC-04HA08H]; National Science Foundation [0730556] FX The research at UCB was supported by the National Aeronautics and Space Administration. under Grants NAG3-2026, NNC-05GA02G, and NNC-04HA08H and the National Science Foundation under Award 0730556. In addition, the authors Would like to acknowledge Dr. D. Urban for his support to this work, the comments of Dr. G. Rein, and Dr. C. Chao for providing the TGA data in electronic form. NR 31 TC 8 Z9 8 U1 0 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2497 EP 2504 DI 10.1016/j.proci.2008.06.196 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900103 ER PT J AU Blanchat, T O'Hern, T Kearney, S Ricks, A Jernigan, D AF Blanchat, Thomas O'Hern, Tim Kearney, Sean Ricks, Allen Jernigan, Dann TI Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Pool fires; Heat flux; Radiation partitioning; PIV; CARS ID HELIUM PLUME; FIELD AB An experimental study was performed to determine the fraction of the heat flux that is due to radiation (sometimes referred to as radiation partitioning of the total heat flux measurement) to a calorimeter engulfed in a large methanol pool fire to improve understanding and develop high-quality data for the validation of fire models. Diagnostics employed include Coherent Anti-Stokes Raman Spectroscopy (CARS), Particle Image Velocimetry (PIV), total and radiative thermometry, and thermocouples. Data are presented not only for the physics measurements but also for all initial and boundary conditions required as necessary inputs to computational models. The large physical scale, the experimental design (enhanced convection relative to radiation heat transfer), the use of independent measurement techniques, and the attention to data quality, provide a unique dataset that emphasizes the convective component to support numerical fire model validation for convective and radiative heat transfer in fires. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Blanchat, Thomas; Ricks, Allen; Jernigan, Dann] Sandia Natl Labs, Albuquerque, NM 87123 USA. [O'Hern, Tim; Kearney, Sean] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Blanchat, T (reprint author), Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA. EM tkblanc@sandia.gov NR 21 TC 5 Z9 5 U1 2 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2511 EP 2518 DI 10.1016/j.proci.2008.05.024 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900105 ER PT J AU Suo-Anttila, JM Blanchat, TK Ricks, AJ Brown, AL AF Suo-Anttila, Jill M. Blanchat, Thomas K. Ricks, Allen J. Brown, Alexander L. TI Characterization of thermal radiation spectra in 2 m pool fires SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Pool fires; Thermal radiation; Spectroscopy; Fuel absorption; Emission AB A mid-infrared spectrometer Was used to measure the thermal radiation spectra within the turbulent flame brush and vapor dome of a 2 m diameter well-controlled pool fire. Fuels used include ethanol, an ethanol/toluene blend, JP-8, and heptane. These unique data provide insight into the relative contributions of soot and gas species emissions to the overall emission. The), further assess the impact of absorption of thermal radiation from within the flame zone and the fuel rich region on the incident flux to the fuel pool. In addition, laboratory-scale experiments investigated the spectrally-resolved absorption of thermal radiation by the liquid fuel in the wavelength range of 1.3-4.8 mu m, corresponding to the majority of the expected emitted radiation from the fire. The dominant emission in the ethanol fires was from water and carbon dioxide, the products of combustion; while, emission from soot dominated the thermal radiation spectra from the other three fuels. The overall intensity of the thermal radiation reaching the fuel surface for the three soot producing fuels was reduced due to absorption by cold water, carbon dioxide, fuel vapor (due to the C-H bond stretching), and soot. The transmission of thermal radiation through liquid fuel revealed that a significant fraction (> 75% for JP-8 and > 90% for ethanol) of the thermal radiation that reaches the fuel surface is absorbed within the first 3 mm. All fuels were particularly opaque in the 3.2-3.6 mu m range and some fuels (heptane and JP-8) were relatively transparent at wavelengths less than 1.6 mu m and from 1.85 to 2.1 mu m, where a significant amount of thermal energy exists. These data sets provide a sound basis for assessing the thermal radiation incident upon the fuel surface and suggest the penetration depth of the incident flux through the liquid pool. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Suo-Anttila, Jill M.; Blanchat, Thomas K.; Ricks, Allen J.; Brown, Alexander L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Suo-Anttila, JM (reprint author), Sandia Natl Labs, POB 5800,MS 1135, Albuquerque, NM 87185 USA. EM jmsuoan@sandia.gov FU U.S. Department of Energy; Engineering Sciences Research Foundation program at Sandia National Laboratories FX The authors acknowledge the contributions of Dann Jernigan, Ciro Ramirez, Martin Sanchez, Patrick Brady, Bennie Belone. and Patick Drozda for their assistance in conducting the experiments. Yudaya Sivathanu and Jongmook Lim are gratefully acknowledged for their contribution regarding the analysis of the experimental data. Thorough reviews by Walter Gill and David Glaze are also appreciated. Funding for this research was provided by the U.S. Department of Energy through the Engineering Sciences Research Foundation program at Sandia National Laboratories. NR 18 TC 18 Z9 20 U1 2 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2567 EP 2574 DI 10.1016/j.proci.2008.06.044 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900112 ER PT J AU Dec, JE AF Dec, John E. TI Advanced compression-ignition engines-understanding the in-cylinder processes SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Review DE Compression-ignition; Engines; HCCI; LTC; In-cylinder ID SINGLE-STAGE; HCCI ENGINES; COMBUSTION; FUELS; AUTOIGNITION AB Advanced compression-ignition (CI) engines call deliver both high efficiencies and very low NO(X) and particulate (PM) emissions. Efficiencies are comparable to conventional diesel engines, but unlike conventional diesel engines, the charge is highly dilute and premixed (or partially premixed) to achieve low emissions. Dilution is accomplished by operating either lean or with large amounts of EGR. The development of these advanced Cl engines has evolved mainly along two lines. First, for fuels other than diesel, a combustion process commonly known as homogeneous charge compression-ignition (HCCI) is generally used. in which the charge is premixed before being compression ignited. Although termed "homogeneous." there are always some thermal or mixture inhomogencities in real HCCI engines, and it is sometimes desirable to introduce additional stratification. Second, for diesel fuel (which autoignites easily but has low volatility) an alternative low-temperature combustion (LTC) approach is used, ill which the autoignition IS Closely coupled to the fuel-injection event to provide control over ignition timing. To obtain dilute LTC, this approach relies on high levels of EGR, and injection timing is typically shifted 10-15 degrees CA earlier or later than for conventional diesel combustion so temperatures are lower, which delays ignition and provides more time for premixing. Although these advanced CI combustion modes have important advantages, there are difficulties to implementing them in practical engines. In this article, the principles of HCCI and diesel LTC engines are reviewed along with the results of research oil the in-cylinder processes. This research has resulted in substantial progress toward overcoming the main challenges facing these engines, including: improving low-load combustion efficiency, increasing the high-load limit. understanding fuel effects, and maintaining low NO(X) and PM emissions over the operating range. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Dec, JE (reprint author), Sandia Natl Labs, MS 9053,POB 969, Livermore, CA 94551 USA. EM jedec@sandia.gov FU U.S. Department of Energy, Office of Vehicle Technologies; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Support was provided by the U.S. Department of Energy, Office of Vehicle Technologies, managed by Gurpreet Singh. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 81 TC 300 Z9 313 U1 13 U2 121 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2727 EP 2742 DI 10.1016/j.proci.2008.08.008 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900131 ER PT J AU Genzale, CL Reitz, RD Musculus, MPB AF Genzale, Caroline L. Reitz, Rolf D. Musculus, Mark P. B. TI Effects of spray targeting on mixture development and emissions formation in late-injection low-temperature heavy-duty diesel combustion SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Low-temperature combustion; Diesel engine; Soot; Unburned hydrocarbons; Optical diagnostics AB The effects of fuel-spray targeting on mixture development, combustion, and pollutant formation were investigated for a late-injection low-temperature combustion (LTC) operating condition in an optically accessible heavy-duty diesel engine. Equivalence-ratio maps, derived from toluene fuel-tracer fluorescence measurements, quantify the effects of fuel-jet targeting oil mixture preparation processes Under non-combusting conditions. Planar laser-induced fluorescence of formaldehyde (H(2)CO), hydroxyl radical (OH), and polycyclic aromatic hydrocarbons (PAH) provide complementary measurements during the combustion process from fuel-lean to fuel-rich reaction zones. Three different injector nozzles with included angles of 124 degrees, 152 degrees and 160 degrees yield unique jet-wall and jet jet interactions. The baseline 152 degrees nozzle directs the fuel jet toward the vertical center of the piston bowl-wall, where the jets impinge oil the wall and merge with neighboring jets prior to the peak heat-release rate. Fuel-rich jet-jet interaction regions develop between the jets near the floor of the bowl, which is where the majority of soot and/or PAH formation occurs. These fuel-rich jet-jet interactions call be reduced by either a more narrow injection angle ( 124 degrees) or a wider angle injection (160 degrees), both of which lead to decreased soot formation. However, jet-wall interactions may play an important role for late-cycle bulk flows. With the 160 degrees injection, less bulk-fluid Motion in the piston bowl occurs, leading to extensive quenched regions throughout the center of the combustion chamber. By contrast, the 124 degrees injection enhances large-scale fluid motion, transporting hot second-stage ignition regions into the fuel-lean quenched Mixtures at the center of the chamber, potentially improving late-cycle oxidation of unburned hydrocarbons (UHC) and carbon monoxide (CO). (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Genzale, Caroline L.; Reitz, Rolf D.] Univ Wisconsin, Madison, WI 53705 USA. [Musculus, Mark P. B.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Genzale, CL (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53705 USA. EM genzale@wisc.edu FU (DOE) National Nuclear Security Administration [DE-AC04-94ALS5000]; DOE's Office of Vehicle Technologies; Curnmins Inc. FX The experiments were performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA. Sandia is a rnultiprograrn laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of' Energy is (DOE) National Nuclear Security Administration under contract DE-AC04-94ALS5000. DOE's Office of Vehicle Technologies provided financial support, program manager Gurpreet Singh. The authors thank David Cicone for assistance with engine operation, Curnmins Inc. for injection hardware, and Caterpillar Inc. for financial contributions. NR 15 TC 26 Z9 27 U1 1 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2767 EP 2774 DI 10.1016/j.proci.2008.06.072 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900135 ER PT J AU Pickett, LM Kook, S Persson, H Andersson, O AF Pickett, Lyle M. Kook, Sanghoon Persson, Helena Andersson, Oivind TI Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Diesel combustion; Lifted flames; Plasma ignition; Soot ID DENSITY AB The mechanisms affecting lift-off stabilization at diesel conditions were investigated by laser-igniting a diesel fuel jet upstream of its natural lift-off position. Single-nozzle fuel sprays penetrating into all optically accessible constant-volume chamber were ignited using laser-induced plasma formation both prior to natural autoignition or after a quasi-steady lift-off length was established. Fuel sprays ignited readily, with reaction kernels growing ill connected regions. After laser-ignition, the lift-off persists upstream of the natural lift-off position for a Substantial period of time indicating that upstream ignition has a strong influence on lift-off stabilization. While not discounting the role of flame propagation downstream of the ignition event, these results show that upstream ignition sites call start a chain of events that effectively controls lift-off. Lift-off eventually returns to its natural position, but only after injection times that are too long for practical engines. The time of return to the natural position depends upon the relative distance of the laser-ignition site to the natural lift-off length. A theory for fuel jet lift-off stabilization based oil flame propagation into pure fuel-ambient reactant streams fails to predict the long upstream stabilization away from the natural lift-off length because turbulent velocities are higher ill upstream regions of the fuel jet. Likewise, upstream lift-off stabilization by autoignition Of pure reactants (no mixing with combustion products) fails because of cooler temperatures and shorter residence times. A potential mechanism explaining the transient lift-off response to laser-ignition is offered based on turbulent mixing with high-temperature combustion products found at the jet edges. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Pickett, Lyle M.; Kook, Sanghoon] Sandia Natl Labs, Livermore, CA 94551 USA. [Persson, Helena; Andersson, Oivind] Lund Univ, Dept Energy Sci, S-22100 Lund, Sweden. RP Pickett, LM (reprint author), Sandia Natl Labs, POB 969,MS 9053, Livermore, CA 94551 USA. EM lmpicke@sandia.gov RI Kook, Sanghoon/C-5372-2009 OI Kook, Sanghoon/0000-0002-7620-9789 FU U.S. Department of Energy, Office of Vehicle Technologies. Sandia NNSA [DE-AC04-94AL85000] FX Support for this research was provided by the U.S. Department of Energy, Office of Vehicle Technologies. Sandia NNSA #DE-AC04-94AL85000. NR 19 TC 38 Z9 40 U1 2 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2793 EP 2800 DI 10.1016/j.proci.2008.06.082 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900138 ER PT J AU Rothamer, DA Snyder, JA Hanson, RK Steeper, RR Fitzgerald, RP AF Rothamer, David A. Snyder, Jordan A. Hanson, Ronald K. Steeper, Richard R. Fitzgerald, Russell P. TI Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE EGR; PLIF; Temperature AB Simultaneous planar laser-induced fluorescence (PLIF) imaging of exhaust residuals and temperature has been applied throughout the intake and compression strokes of an IC engine for two different kinetically controlled combustion strategies. The first strategy wits traditional homogeneous-charge compression-ignition (HCCI) combustion where intake air heating and a diesel-like fuel (n-heptane) were used in Conjunction with a homogeneous fuel distribution. The second combustion strategy studied was HCCI with a large negative-valve overlap (NVO) and direct injection or fuel during the NVO period. The evolution of the in-cylinder EGR and temperature distributions was measured, and the extent of EGR and temperature non-uniformity at the latest imaging timing determined. For traditional HCCI combustion the resulting distributions of EGR and temperature in-cylinder just prior to combustion achieved a uniform state with 1 sigma distribution widths of 2.2 mole fraction % for the EGR distribution and 4.9 K for the temperature distribution. Operation with large NVO had significantly wider EGR and temperature distributions just prior to combustion owing to the large level of retained exhaust gases with 1 sigma distribution widths of 6.2 mole fraction % for the EGR distribution and 24.5 K for the temperature distribution. The results illustrate that EGR retention can result in significant stratification in the temperature and EGR distributions, and as such may be capable of altering combustion phasing and duration for kinetically controlled combustion strategies. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Rothamer, David A.; Snyder, Jordan A.; Hanson, Ronald K.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Steeper, Richard R.; Fitzgerald, Russell P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Rothamer, DA (reprint author), Univ Wisconsin, Dept Mech Engn, 1500 Engn Dr,Room 127, Madison, WI 53706 USA. EM rothamer@wisc.edu OI Rothamer, David/0000-0002-5159-7842 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94ALS5000] FX Research at Sandia was supported by the U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94ALS5000. NR 18 TC 34 Z9 34 U1 3 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2869 EP 2876 DI 10.1016/j.proci.2008.07.018 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900147 ER PT J AU Glewen, WJ Wagner, RM Edwards, KD Daw, CS AF Glewen, William J. Wagner, Robert M. Edwards, K. Dean Daw, C. Stuart TI Analysis of cyclic variability in spark-assisted HCCI combustion using a double Wiebe function SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE HCCI; Nonlinear; Wiebe; Engine; Combustion AB A heuristic algorithm based oil a double Wiebe function is proposed for estimating the relative importance of distinct combustion modes (propagating flame and compression ignition) occurring within individual combustion cycles as an engine is transitioned from conventional spark-ignited (SI) combustion to homogeneous charge compression ignition (HCCI). The proposed algorithm automates the analysis and categorization of pressure measurements from large numbers of individual cycles, providing new insight into the unstable combustion processes occurring during mode transition. Similar techniques could potentially be utilized for on-line diagnostics and control of the balance between SI and HCCI combustion ill spark-assisted HCCI. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Wagner, Robert M.; Edwards, K. Dean; Daw, C. Stuart] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. [Glewen, William J.] Univ Wisconsin, Madison, WI 53706 USA. RP Wagner, RM (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM wagnerrm@ornl.gov FU US Department of Energy, Office of Vehicle Technologies FX This work was sponsored by the US Department of Energy, Office of Vehicle Technologies. Program Managers are Gurpreet Singh and Kevin Stork. NR 17 TC 14 Z9 15 U1 1 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2009 VL 32 BP 2885 EP 2892 DI 10.1016/j.proci.2008.06.029 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 427CH UT WOS:000264756900149 ER PT J AU Cheng, RK Littlejohn, D Strakey, PA Sidwell, T AF Cheng, R. K. Littlejohn, D. Strakey, P. A. Sidwell, T. TI Laboratory investigations of a low-swirl injector with H-2 and CH4 at gas turbine conditions SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Gas turbines; Lean premixed; Swirl; NOx; Hydrogen ID PREMIXED FLAME; COMBUSTION; TURBULENCE; EMISSIONS; BOILERS; BURNER; ZONE AB Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.1012.5X) of the low friction (non-scuffing) stage when sliding under starved lubrication. C1 [Qu, Jun; Blau, Peter J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. NR 7 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4336-9 PY 2009 BP 757 EP 759 PG 3 WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA BJJ09 UT WOS:000266325200195 ER PT S AU Hu, MZ Khatri, L Harris, MT AF Hu, Michael Z. Khatri, Lubna Harris, Michael T. BE Hinklin, T Lu, K TI MONODISPERSED ULTRAFINE ZEOLITE CRYSTAL PARTICLES BY MICROWAVE HYDROTHERMAL SYNTHESIS SO PROCESSING OF NANOPARTICLE STRUCTURES AND COMPOSITES SE Ceramic Transactions LA English DT Proceedings Paper CT Materials Science and Technology Conference and Exhibition (MS&T 08) CY OCT 05-09, 2008 CL Pittsburgh, PA ID SOL-GEL PROCESS; MORPHOLOGY CONTROL; FORCED HYDROLYSIS; MEMBRANE; CRYSTALLIZATION; NANOPARTICLES; SILICALITE-1; IRRADIATION; SILATRANE; NUCLEATION AB Monodispersed ultrafine crystal particles of zeolite (Silicalite-1) have been synthesized in batch reactor vessels by microwave irradiation heating of aqueous basic silicate precursor solutions with tetra propyl ammonium hydroxide as the templating molecule. The effects of major process parameters (such as synthesis temperature, microwave heating rate, volume ratio (i.e., the volume of the initial synthesis solution relative to the total volume of the reactor vessel), and synthesis time on the zeolite particle characteristics are studied using a computer-controlled microwave reactor system that allows real-time monitoring and control of reaction medium temperature. The changes in the morphology, size and crystal structure of the particles are investigated using scanning electron microscope, dynamic light scattering, X-ray diffraction, and BET surface analysis. We have found that the synthesis temperature, volume ratio, and heating rate play a significant role in controlling the particle size, uniformity, and morphology. Microwave processing has generated morphologies of zeolite particles (i.e., uniform block-shaped particles that contain mixed gel-nanocrystallites and agglomerated crystal particles) that are not typically made by conventional hydrothermal processes. At higher synthesis temperatures and lower volume ratios, irregular block-shaped particles were produced, whereas increasing the volume ratio promoted the formation of monodispersed single-crystal particles with uniform shape. Our results clearly demonstrate that faster microwave heating is advantageous to enhance the zeolite crystallization kinetics and produces larger-size crystal particles in shorter time. In addition, zeolite crystallization mechanisms, depending on the microwave heating rate, are also discussed. C1 [Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Khatri, Lubna] Univ Maryland, Dept Chem Engn, College Pk, MD 20742 USA. [Harris, Michael T.] Purdue Univ, Dept Chem Engn, Lafayette, LA 47905 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM HUM1@ORNL.GOV OI Hu, Michael/0000-0001-8461-9684 NR 45 TC 0 Z9 0 U1 1 U2 5 PU AMER CERAMIC SOC PI WESTERVILLE PA 735 CERAMIC PLACE, WESTERVILLE, OH 43081-8720 USA SN 1042-1122 BN 978-0-470-40846-9 J9 CERAM TRANS PY 2009 VL 208 BP 91 EP + DI 10.1002/9780470551523.ch11 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Ceramics; Materials Science, Composites SC Science & Technology - Other Topics; Materials Science GA BTR05 UT WOS:000287824800012 ER PT J AU Meakin, P Xu, ZJ AF Meakin, Paul Xu, Zhijie TI Dissipative Particle Dynamics and other particle methods for multiphase fluid flow in fractured and porous media SO PROGRESS IN COMPUTATIONAL FLUID DYNAMICS LA English DT Article; Proceedings Paper CT 6th International Conference on CFD in the Oil and Gas Metallurgical and Process Industries CY JUN, 2008 CL Trondheim, NORWAY DE CFD; particle methods; DPD; dissipative particle dynamics; SPH; smoothed particle hydrodynamics; MD; molecular dynamics; BD; Brownian dynamics ID MOLECULAR-DYNAMICS; APPLIED MECHANICS; HYDRODYNAMICS; EQUILIBRIUM; SIMULATION; SURFACES; THEOREM; MOTION; MODEL; WATER AB Particle methods are less computationally efficient than grid based numerical solution of the Navier Stokes equation. However, they have important advantages including rigorous mass conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing and code development effort is relatively low. We describe applications of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. C1 [Meakin, Paul; Xu, Zhijie] Ctr Adv Modeling & Simulat, Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Meakin, Paul] Multiphase Flow Assurance Innovat Ctr, Inst Energy Technol, NO-2027 Kjeller, Norway. [Meakin, Paul] Univ Oslo, NO-0316 Oslo, Norway. RP Meakin, P (reprint author), Ctr Adv Modeling & Simulat, Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Paul.Meakin@inl.gov; Zhijie.Xu@inl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 54 TC 8 Z9 8 U1 0 U2 9 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1468-4349 EI 1741-5233 J9 PROG COMPUT FLUID DY JI Prog. Comput. Fluid Dyn. PY 2009 VL 9 IS 6-7 BP 399 EP 408 PG 10 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 483SG UT WOS:000268987600012 ER PT S AU Karsch, F AF Karsch, Frithjof BE Faessler, A TI Lattice results on QCD at high temperature and non-zero baryon number density SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 2 SE PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review CT International Workshop on Nuclear Physics/30th Course on Heavy-Ion Collisions from the Coulomb Barrier to the Quark-Gluon Plasma CY SEP 16-24, 2008 CL Erice, ITALY SP Deutsche Forschungsgemein, European Phys Soc, Italian Minist Educat, Italian Minist Univ & Sci Res DE QCD thermodynamics; Quark-gluon plasma; Phase transitions; Lattice gauge theory ID QUARK-GLUON PLASMA; GAUGE-THEORY; COLLABORATION; PERSPECTIVE; COLLISIONS; SYMMETRY; FERMIONS AB Studies of QCD thermodynamics on the lattice now can be performed with an almost realistic quark mass spectrum and on quite large lattices. This will soon allow a controlled extrapolation to the continuum limit. We present recent results on the QCD equation of state, discuss deconfining and chiral symmetry restoring aspects of the QCD transition at vanishing chemical potential and show results on baryon number, electric charge and strangeness fluctuations. We briefly discuss the generic structure of Taylor expansion coefficients in the vicinity of the chiral phase transition and comment on the determination of the anticipated chiral critical point within the framework of Taylor expansions of the QCD partition function. (C) 2009 Published by Elsevier B.V. C1 [Karsch, Frithjof] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Karsch, Frithjof] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. RP Karsch, F (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM karsch@quark.phy.bnl.gov FU US Department of Energy [DE-AC02-98CH 10886] FX The numerical calculations presented here have been carried out on the QCDOC supercomputers of the RIKEN-BNL Research Center and the BlueGene/L computers at the New York Center for Computational Sciences and LLNL. The work of FK has been supported by the US Department of Energy under Contract No. DE-AC02-98CH 10886. NR 28 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 J9 PROG PART NUCL PHYS PY 2009 VL 62 IS 2 BP 503 EP 511 DI 10.1016/j.ppnp.2008.12.024 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BKK62 UT WOS:000268390200035 ER PT S AU Moretto, LG Elliott, JB Lake, PT Phair, L AF Moretto, L. G. Elliott, J. B. Lake, P. T. Phair, L. BE Faessler, A TI Phase transitions in hadronic systems and thermodynamics of a system with an exponential spectrum SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 2 SE PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review CT International Workshop on Nuclear Physics/30th Course on Heavy-Ion Collisions from the Coulomb Barrier to the Quark-Gluon Plasma CY SEP 16-24, 2008 CL Erice, ITALY SP Deutsche Forschungsgemein, European Phys Soc, Italian Minist Educat, Italian Minist Univ & Sci Res DE Quark gluon plasma phase transition; Hagedorn temperature AB Both nuclear matter and hadronic matter at high excitations can be described by a liquid-vapor phase transition. For the hadronic systems, a system with an exponential mass spectrum (Hagedorn-like or bag-like) leads to a thermodynamics which is identical to that of a two phase coexistence at a fixed temperature. (C) 2009 Elsevier B.V. All rights reserved. C1 [Moretto, L. G.; Elliott, J. B.; Lake, P. T.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nat Sci, Berkeley, CA 94720 USA. RP Moretto, LG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nat Sci, Berkeley, CA 94720 USA. EM lgmoretto@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 J9 PROG PART NUCL PHYS PY 2009 VL 62 IS 2 BP 529 EP 534 DI 10.1016/j.ppnp.2008.12.032 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BKK62 UT WOS:000268390200038 ER PT S AU Kuhn, SE Chen, JP Leader, E AF Kuhn, S. E. Chen, J. -P. Leader, E. BE Faessler, A TI Spin structure of the nucleon-status and recent results SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 63, NO 1 SE Progress in Particle and Nuclear Physics LA English DT Review DE Nucleon structure; Spin; QCD; Polarized parton densities; Sum rules; Duality ID DEEP-INELASTIC-SCATTERING; STRUCTURE-FUNCTION G(1); DEPENDENT STRUCTURE FUNCTIONS; POLARIZED STRUCTURE FUNCTIONS; ELECTRON-PROTON-SCATTERING; VIRTUAL COMPTON-SCATTERING; STRONG-COUPLING CONSTANT; STRUCTURE-FUNCTION G1(X); TARGET MASS CORRECTIONS; HIGH-ENERGY COLLISIONS AB After the initial discovery of the so-called "spin crisis in the parton model" in the 1980s, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the Q(2) dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure ill the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions g(1) and g(2) of the nucleon and their moments. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kuhn, S. E.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Chen, J. -P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Leader, E.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RP Kuhn, SE (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM Kuhn@jlab.org FU United States Department of Energy (DOE) [DE-FG02-96ER40960]; Thomas Jefferson National Accelerator Facility for the DOE [DE-AC05-84ER-40150] FX S.K. acknowledges the support from the United States Department of Energy (DOE) under grant DE-FG02-96ER40960. E.L. is grateful to M. Anselmino, A.V. Efremov, A.V. Sidorov and D.B. Stamenov for helpful discussions, and to jefferson Lab for its hospitality. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility for the DOE under contract DE-AC05-84ER-40150. NR 223 TC 78 Z9 79 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 J9 PROG PART NUCL PHYS PY 2009 VL 63 IS 1 BP 1 EP 50 DI 10.1016/j.ppnp.2009.02.001 PG 50 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BJY97 UT WOS:000267475500001 ER PT S AU Louis, WC AF Louis, W. C. BE Faessler, A TI Searches for muon-to-electron (anti) neutrino flavor change SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 63, NO 1 SE Progress in Particle and Nuclear Physics LA English DT Review ID LSND EXPERIMENT; OSCILLATIONS; DETECTOR; RATIO; KAMIOKANDE; FACILITY; FLUX AB Employing an 800 MeV, high-intensity proton beam, the LSND experiment performed a sensitive search for neutrino oscillations and obtained evidence for (nu) over bar (mu) -> (nu) over bar (e) flavor change. Although the KARMEN experiment observed no such evidence, a joint analysis of the two experiments shows that the data sets are compatible with neutrino oscillations occurring either in a band from 0.2 to 1 eV(2) or in a region around 7 eV(2). The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for neutrino oscillations [C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); 77, 3082 (1996); 81, 1774 (1998); A. Aguilar et al., Phys. Rev. D 64, 112007 (2001)]. The MiniBooNE oscillation result in neutrino mode [A. Aguilar-Arevalo et al., Phys. Rev. Lett. 98, 231801 (2007); A. Aguilar-Arevalo et al. arXiv:0812.2243] shows no significant excess of events at higher energies (E-nu > 475 MeV), although a sizeable excess is observed at lower energies (E. < 475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2 - nu oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos and whether the excess is related to the LSND signal. If the excess is consistent with being due to sterile neutrinos or other new physics, then future experiments at FNAL (MicroBooNE & BooNE) or ORNL (OscSNS) or with the Low-Energy Neutrino Spectrometer (LENS) detector could confirm their existence. (C) 2009 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Louis, WC (reprint author), Los Alamos Natl Lab, MS H846, Los Alamos, NM 87545 USA. EM louis@lanl.gov OI Louis, William/0000-0002-7579-3709 NR 53 TC 9 Z9 9 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 J9 PROG PART NUCL PHYS PY 2009 VL 63 IS 1 BP 51 EP 73 DI 10.1016/j.ppnp.2009.01.002 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BJY97 UT WOS:000267475500002 ER PT J AU Osterwald, CR McMahon, TJ AF Osterwald, C. R. McMahon, T. J. TI History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review SO PROGRESS IN PHOTOVOLTAICS LA English DT Review DE photovoltaics; module; terrestrial; testing; accelerated; qualification; lifetime ID SOLAR MODULES; RELIABILITY; PERFORMANCE; CORROSION; DEGRADATION; EXPOSURE AB We review published literature from 1975 to the present for accelerated stress testing of flat-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test sequences that have been adopted by national and international standards organizations, especially those of the International Electrotechnical Commission (IEC). The intent and history of these qualification tests, provided in this review, shows that standard module qualification test results cannot be used to obtain or infer a product lifetime. Closely related subjects also discussed include: other limitations of qualification testing, definitions of module lifetime, module product certification, and accelerated life testing. Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Osterwald, C. R.; McMahon, T. J.] Natl Renewable Energy Lab, Golden, CO USA. RP Osterwald, CR (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM carl_osterwald@nel.gov FU US Departrnent of Energy [DE-AC36-99GO10337] FX This work is supported or funded under US Departrnent of Energy Contract No. DE-AC36-99GO10337. The assistance of W. Zaaiman in providing a number of the CEC test specifications is especially appreciated. NR 172 TC 79 Z9 80 U1 3 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JAN PY 2009 VL 17 IS 1 BP 11 EP 33 DI 10.1002/pip.861 PG 23 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 396EV UT WOS:000262575900002 ER PT J AU Barnett, A Kirkpatrick, D Honsberg, C Moore, D Wanlass, M Emery, K Schwartz, R Carlson, D Bowden, S Aiken, D Gray, A Kurtz, S Kazmerski, L Steiner, M Gray, J Davenport, T Buelow, R Takacs, L Shatz, N Bortz, J Jani, O Goossen, K Kiamilev, F Doolittle, A Ferguson, I Unger, B Schmidt, G Christensen, E Salzman, D AF Barnett, Allen Kirkpatrick, Douglas Honsberg, Christiana Moore, Duncan Wanlass, Mark Emery, Keith Schwartz, Richard Carlson, Dave Bowden, Stuart Aiken, Dan Gray, Allen Kurtz, Sarah Kazmerski, Larry Steiner, Myles Gray, Jeffery Davenport, Tom Buelow, Roger Takacs, Laszlo Shatz, Narkis Bortz, John Jani, Omkar Goossen, Keith Kiamilev, Fouad Doolittle, Alan Ferguson, Ian Unger, Blair Schmidt, Greg Christensen, Eric Salzman, David TI Very High Efficiency Solar Cell Modules SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE high performance; module architecture; solar cell efficiency AB The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system-PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 +/- 2.5% are described. Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Barnett, Allen; Honsberg, Christiana; Jani, Omkar; Goossen, Keith; Kiamilev, Fouad] Univ Delaware, Newark, DE 19716 USA. [Kirkpatrick, Douglas] DARPA, Arlington, VA 22203 USA. [Moore, Duncan; Unger, Blair; Schmidt, Greg; Christensen, Eric] Univ Rochester, Rochester, NY 14627 USA. [Wanlass, Mark; Emery, Keith; Kurtz, Sarah; Kazmerski, Larry; Steiner, Myles] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Schwartz, Richard; Gray, Jeffery] Purdue Univ, W Lafayette, IN 47907 USA. [Carlson, Dave] BP Solar, Frederick, MD 21703 USA. [Bowden, Stuart] Univ Delaware, IEC, Newark, DE 19716 USA. [Aiken, Dan; Gray, Allen] EMCORE Corp, Albuquerque, NM 87123 USA. [Davenport, Tom] Opt Res Associates, Pasadena, CA 91107 USA. [Buelow, Roger; Takacs, Laszlo] Energy Focus, Solon, OH 44139 USA. [Shatz, Narkis; Bortz, John] Sci Applicat Int Corp, San Diego, CA 92121 USA. [Jani, Omkar; Doolittle, Alan; Ferguson, Ian] Georgia Inst Technol, Atlanta, GA 30332 USA. [Salzman, David] LightSpin Technol, Bethesda, MD 20824 USA. RP Barnett, A (reprint author), Univ Delaware, 201 Evans Hall, Newark, DE 19716 USA. EM abarnett@udel.edu FU Government under DARPA/ARO [W11NF-05-9-0005] FX The research reported in this document was prepared through participation in an Agreement sponsored by the Government under DARPA/ARO Agreement W11NF-05-9-0005. James Kiehl, NREL also did some of the measurements. Dr. Dan Laubacher, DuPont, provided valuable assistance. NR 19 TC 123 Z9 123 U1 4 U2 41 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JAN PY 2009 VL 17 IS 1 BP 75 EP 83 DI 10.1002/pip.852 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 396EV UT WOS:000262575900007 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm TI Solar Cell Efficiency Tables (Version 33) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID MULTICRYSTALLINE AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented Guidelines for inclusion of results into these tables are outlined and new entries since July 2008 are reviewed. Efficiencies are updated to the new reference solar spectrum tabulated in IEC 60904-3 Ed. 2 revised in April 2008 and an updated list of recognised test centres is also included Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, ARC Photvolta Ctr Excellence, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. RP Green, MA (reprint author), Univ New S Wales, ARC Photvolta Ctr Excellence, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au NR 53 TC 238 Z9 246 U1 4 U2 62 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JAN PY 2009 VL 17 IS 1 BP 85 EP 94 DI 10.1002/pip.880 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 396EV UT WOS:000262575900008 ER PT J AU Alder, BJ AF Alder, Berni J. TI In Memoriam: Thomas E. Wainwright September 22, 1927-November 27, 2007 SO PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT LA English DT Biographical-Item C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Alder, BJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0375-9687 J9 PROG THEOR PHYS SUPP JI Prog. Theor. Phys. Suppl. PY 2009 IS 178 BP 1 EP 4 PG 4 GA 442XG UT WOS:000265873400002 ER PT J AU Goh, HS Ibe, M AF Goh, Hock-Seng Ibe, Masahiro TI R-Axion: A New LHC Physics Signature Involving Muon Pairs SO PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT LA English DT Article; Proceedings Paper CT 16th Yukawa International Symposium on Particle Physics beyond the Standard Model CY MAR 09-13, 2009 CL Yukawa Inst Theoret Phys, Kyoto, JAPAN HO Yukawa Inst Theoret Phys ID LARGE TRANSVERSE-MOMENTUM; HIGGS-BOSON PRODUCTION; SUPERSYMMETRY BREAKING; HADRON SUPERCOLLIDERS; COLLIDERS; ENERGIES; DECAYS; MODEL AB In a class of models with gauge mediated supersymmetry breaking, the existence of a light pseudo scalar particle, R-axion, with a mass in hundreds MeV range is predicted. The striking feature of such a light R-axion is that it mainly decays into a pair of mucus and leaves a displaced vertex inside detectors once it is produced. In this talk, we show how we can search for the R-axion at the coming LHC experiments. C1 [Goh, Hock-Seng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Goh, Hock-Seng] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. [Ibe, Masahiro] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Goh, HS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. NR 23 TC 1 Z9 1 U1 0 U2 0 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0375-9687 J9 PROG THEOR PHYS SUPP JI Prog. Theor. Phys. Suppl. PY 2009 IS 180 BP 27 EP 34 PG 8 GA 516BB UT WOS:000271515600004 ER PT S AU Bennett, MC Sokolov, DA Kim, MS Janssen, Y Aronson, MC AF Bennett, M. C. Sokolov, D. A. Kim, M. S. Janssen, Y. Aronson, M. C. BE Zlatic, V Hewson, AC TI Quantum Criticality in Heavy Electron Compounds SO PROPERTIES AND APPLICATIONS OF THERMOELECTRIC MATERIALS: THE SEARCH FOR NEW MATERIALS FOR THERMOELECTRIC DEVICES SE NATO Science for Peace and Security Series B-Physics and Biophysics LA English DT Proceedings Paper CT NATO Advanced Research Workshop on Properties and Applications of Thermoelectric Materials CY SEP 21-26, 2008 CL Hvar, CROATIA SP NATO ID 1ST-ORDER VALENCE TRANSITION; FERMI-LIQUID BEHAVIOR; PHASE-TRANSITIONS; CRITICAL-POINT; MAGNETIC-FIELD; METALS; SYSTEMS; SUPERCONDUCTIVITY; TEMPERATURE; PRESSURE AB Heavy electron systems provide ideal venues to study a range of issues associated with quantum criticality, including unconventional electronic phases, moment formation, and complex phase diagrams with exotic critical phenomena. In the heavy electron anti ferromagnets studied so far, magnetic order occurs via a second order phase transition which can be tuned via pressure or field to a quantum critical point. Fermi liquid behavior is found beyond the quantum critical point, and the quasiparticle mass diverges at the quantum critical point, nucleating the moments required to enable magnetic order itself. We review here our experimental results on a new heavy electron system, Yb3Pt4, where antiferromagnetic order is weakly first order in zero field, but becomes second order at a critical endpoint with the application of magnetic field. No divergence of the quasiparticle mass is observed near the quantum critical field, and instead magnetic order is driven by the exchange enhancement of the Fermi liquid itself. These data support the thesis that there are multiple routes to quantum criticality in the heavy electron compounds. C1 [Bennett, M. C.; Aronson, M. C.] Stony Brook Uni, Dept Phys & Astron, Stony Brook, NY 11974 USA. [Sokolov, D. A.; Kim, M. S.; Janssen, Y.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bennett, MC (reprint author), Stony Brook Uni, Dept Phys & Astron, Stony Brook, NY 11974 USA. EM mcbennet@umich.edu; fermiliquid@gmail.com; mskim@bnl.gov; yjanssen@bnl.gov; maronson@bnl.gov RI Sokolov, D/G-7755-2011 FU National Science Foundation [NSF-DMR-0405961] FX The authors acknowledge useful conversations with C. Varma, Q. Si, P. Coleman, P. Chandra, E. Abrahams, G. Zwicknagl, and V. Zlatic. Work at Stony Brook University was supported by the National Science Foundation under grant NSF-DMR-0405961. NR 43 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1871-465X BN 978-90-481-2890-7 J9 NATO SCI PEACE SEC B PY 2009 BP 243 EP + DI 10.1007/978-90-481-2892-1_14 PG 3 WC Biophysics; Physics, Applied SC Biophysics; Physics GA BKN68 UT WOS:000268719800014 ER PT J AU Lee, J Kim, SH AF Lee, Jonas Kim, Sung-Hou TI High-throughput T7 LIC vector for introducing C-terminal poly-histidine tags with variable lengths without extra sequences SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE Histidine tag of variable lengths; Ligation independent cloning; Immobilized metal ion affinity chromatography; T7 bacterial expression; High-throughput protein purification ID ION AFFINITY-CHROMATOGRAPHY; ESCHERICHIA-COLI; LARGE-SCALE; PURIFICATION; PROTEINS AB Immobilized metal ion affinity chromatography (IMAC) has become one of the most popular protein purification methods for recombinant proteins with a hexa-histidine tag (His-tag) placed at the C- or N-terminus of proteins. Nevertheless, there are always difficult proteins that show weak binding to the metal chelating resin and thus low purity. These difficulties are often overcome by increasing the His-tag to 8 or 10 histidines. Despite their success, there are only few expression vectors available to easily clone and test different His-tag lengths. Therefore, we have modified Escherichia coli T7 expression vector pET21 a to accommodate ligation-independent cloning (LIC) that will allow easy and efficient parallel cloning of target genes with different His-tag lengths using a single insert. Unlike most LIC vectors available commercially, our vectors will not translate unwanted extra sequences by engineering the N-terminal linker to anneal before the open reading frame, and the C-terminal linker to anneal as a His-tag. (c) 2008 Elsevier Inc. All rights reserved. C1 [Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Lee, Jonas] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM SHKim@cchem.berkeley.edu FU National Institute of Health [GM 62412] FX We thank the UC Berkeley DNA Sequencing Facility for sequencing analysis and Drs. In-Geol Choi, Jose Henrique Pereira, Gregory Sims and Rosalind Kim for their advice. This work was supported by National Institute of Health GM 62412. NR 18 TC 22 Z9 23 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 EI 1096-0279 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD JAN PY 2009 VL 63 IS 1 BP 58 EP 61 DI 10.1016/j.pep.2008.09.005 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 374HT UT WOS:000261035100009 PM 18824233 ER PT J AU Beeby, M Bobik, TA Yeates, TO AF Beeby, Morgan Bobik, Thomas A. Yeates, Todd O. TI Exploiting genomic patterns to discover new supramolecular protein assemblies SO PROTEIN SCIENCE LA English DT Article DE supramolecular assembly; bacterial ultrastructure; paralog; homolog; self assembly; carboxysome; bacterial microcompartment ID HEAT-SHOCK PROTEINS; SALMONELLA-TYPHIMURIUM; CARBOXYSOME SHELL; THIOBACILLUS-NEAPOLITANUS; ELECTRON CRYOTOMOGRAPHY; BACTERIAL ORGANELLES; GEL ELECTROPHORESIS; PHB GRANULES; GAS VESICLES; GENES AB Bacterial microcompartments are supramolecular protein assemblies that function as bacterial organelles by compartmentalizing particular enzymes and metabolic intermediates. The outer shells of these microcompartments are assembled from multiple paralogous structural proteins. Because the paralogs are required to assemble together, their genes are often transcribed together from the same operon, giving rise to a distinctive genomic pattern: multiple, typically small, paralogous proteins encoded in close proximity on the bacterial chromosome. To investigate the generality of this pattern in supramolecular assemblies, we employed a comparative genomics approach to search for protein families that show the same kind of genomic pattern as that exhibited by bacterial microcompartments. The results indicate that a variety of large supramolecular assemblies fit the pattern, including bacterial gas vesicles, bacterial pili, and small heat-shock protein complexes. The search also retrieved several widely distributed protein families of presently unknown function. The proteins from one of these families were characterized experimentally and found to show a behavior indicative of supramolecular assembly. We conclude that cotranscribed paralogs are a common feature of diverse supramolecular assemblies, and a useful genomic signature for discovering new kinds of large protein assemblies from genomic data. C1 [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Beeby, Morgan; Yeates, Todd O.] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr E, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu RI Beeby, Morgan/G-2768-2013; OI Beeby, Morgan/0000-0001-6413-9835; Yeates, Todd/0000-0001-5709-9839 FU BER Program, U.S. Department of Energy Office of Science FX BER Program, U.S. Department of Energy Office of Science. NR 60 TC 18 Z9 18 U1 0 U2 11 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JAN PY 2009 VL 18 IS 1 BP 69 EP 79 DI 10.1002/pro.1 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 396TI UT WOS:000262613700009 PM 19177352 ER PT J AU Tanaka, S Sawaya, MR Phillips, M Yeates, TO AF Tanaka, Shiho Sawaya, Michael R. Phillips, Martin Yeates, Todd O. TI Insights from multiple structures of the shell proteins from the beta-carboxysome SO PROTEIN SCIENCE LA English DT Article DE bacterial organelles; carboxysome; protein assembly; molecular transport; CO(2) fixation ID CO2 CONCENTRATING MECHANISMS; INORGANIC CARBON FLUXES; THIOBACILLUS-NEAPOLITANUS; SYNECHOCOCCUS PCC7942; POLYHEDRAL BODIES; CYANOBACTERIA; MODEL; ORGANELLES; GENOMICS; MICROCOMPARTMENTS AB Carboxysomes are primitive bacterial organelles that function as a part of a carbon concentrating mechanism (CCM) under conditions where inorganic carbon is limiting. The carboxysome enhances the efficiency of cellular carbon fixation by encapsulating together carbonic anhydrase and the CO(2)-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The carboxysome has a roughly icosahedral shape with an outer shell between 800 and 1500 angstrom in diameter, which is constructed from a few thousand small protein subunits. In the cyanobacterium Synechocystis sp. PCC 6803, the previous structure determination of two homologous shell protein subunits, CcmK2 and CcmK4, elucidated how the outer shell is formed by the tight packing of CcmK hexamers into a molecular layer. Here we describe the crystal structure of the hexameric shell protein CcmK1, along with structures of mutants of both CcmK1 and CcmK2 lacking their sometimes flexible C-terminal tails. Variations in the way hexamers pack into layers are noted, while sulfate ions bound in pores through the layer provide further support for the hypothesis that the pores serve for transport of substrates and products into and out of the carboxysome. One of the new structures provides a high-resolution (1.3 angstrom) framework for subsequent computational studies of molecular transport through the pores. Crystal and solution studies of the C-terminal deletion mutants demonstrate the tendency of the terminal segments to participate in protein-protein interactions, thereby providing a clue as to which side of the molecular layer of hexameric shell proteins is likely to face toward the carboxysome interior. C1 [Tanaka, Shiho; Phillips, Martin; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Yeates, Todd O.] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu FU BER Program of the Department of Energy Office of Science FX BER Program of the Department of Energy Office of Science. NR 41 TC 52 Z9 52 U1 2 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JAN PY 2009 VL 18 IS 1 BP 108 EP 120 DI 10.1002/pro.14 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 396TI UT WOS:000262613700013 PM 19177356 ER PT J AU Keedy, DA Williams, CJ Headd, JJ Arendall, WB Chen, VB Kapral, GJ Gillespie, RA Block, JN Zemla, A Richardson, DC Richardson, JS AF Keedy, Daniel A. Williams, Christopher J. Headd, Jeffrey J. Arendall, W. Bryan, III Chen, Vincent B. Kapral, Gary J. Gillespie, Robert A. Block, Jeremy N. Zemla, Adam Richardson, David C. Richardson, Jane S. TI The other 90% of the protein: Assessment beyond the C alpha s for CASP8 template-based and high-accuracy models SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE homology modeling; protein structure prediction; all-atom contacts; full-model assessment ID STRUCTURE VALIDATION; ATOM CONTACTS; PREDICTION AB For template-based modeling in the CASP8 Critical Assessment of Techniques for Protein Structure Prediction, this work develops and applies six new full-model metrics. They are designed to complement and add value to the traditional template-based assessment by the global distance test (GDT) and related scores (based on multiple superpositions of C alpha atoms between target structure and predictions labeled "Model 1"). The new metrics evaluate each predictor group on each target, using all atoms of their best model with above-average GDT. Two metrics evaluate how "protein-like" the predicted model is: the MolProbity score used for validating experimental structures, and a mainchain reality score using all-atom steric clashes, bond length and angle outliers, and backbone dihedrals. Four other new metrics evaluate match of model to target for mainchain and side-chain hydrogen bonds, side-chain end positioning, and side-chain rotamers. Group-average Z-score across the six full-model measures is averaged with group-average GDT Z-score to produce the overall ranking for full-model, high-accuracy performance. Separate assessments are reported for specific aspects of predictor-group performance, such as robustness of approximately correct template or fold identification, and self-scoring ability at identifying the best of their models. Fold identification is distinct from but correlated with group-average GDT Z-score if target difficulty is taken into account, whereas self-scoring is done best by servers and is uncorrelated with GDT performance. Outstanding individual models on specific targets are identified and discussed. Predictor groups excelled at different aspects, highlighting the diversity of current methodologies. However, good full-model scores correlate robustly with high C alpha accuracy. C1 [Keedy, Daniel A.; Williams, Christopher J.; Headd, Jeffrey J.; Arendall, W. Bryan, III; Chen, Vincent B.; Kapral, Gary J.; Gillespie, Robert A.; Block, Jeremy N.; Richardson, David C.; Richardson, Jane S.] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA. [Headd, Jeffrey J.] Duke Univ, Computat Biol & Bioinformat Program, Durham, NC 27708 USA. [Zemla, Adam] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Richardson, JS (reprint author), 211 Nanaline Duke Bldg,3711 DUMC, Durham, NC 27710 USA. EM jsr@kinemage.biochem.duke.edu OI Keedy, Daniel/0000-0002-9184-7586 FU National Institutes of Health [GM073930, GM073919] FX We would like to thank the Prediction Center for their capable and timely support; Andriy Kryshtafovych in particular for special runs such as for "D9" alternative target definitions; Scott Schmidler for advice on statistics; the organizers and previous assessors for their work and insights; the experimentalists for providing targets; and the predictors for helpful discussions at the CASP8 meeting. This work was supported in part by National Institutes of Health grants GM073930 and GM073919. NR 37 TC 38 Z9 38 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PY 2009 VL 77 BP 29 EP 49 DI 10.1002/prot.22551 PG 21 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 525VL UT WOS:000272244700005 PM 19731372 ER PT J AU Meruelo, AD Bowie, JU AF Meruelo, Alejandro D. Bowie, James U. TI Identifying polymer-forming SAM domains SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE protein-complex threading; protein-protein interaction; polymer prediction; sterile alpha motif; pointed domain; scaffolding proteins ID PROTEIN-TYROSINE-PHOSPHATASE; POINTED DOMAIN; ALPHA; BINDING; KINASE; FAMILY; TEL; LAR; RNA; ORGANIZATION AB Sterile alpha motif (SAM) domains are common protein modules in eukaryotic cells. It has not been possible to assign functions to uncharacterized SAM domains because they have been found to participate in diverse functions ranging from protein-protein interactions to RNA binding. Here we computationally identify likely members of the subclass of SAM domains that form polymers. Sequences were virtually threaded onto known polymer structures and then evaluated for compatibility with the polymer. We find that known SAM polymers score better than the vast majority of known nonpolymers: 100% (7 of 7) of known polymers and only 8% of known nonpolymers (1 of 12) score above a defined threshold value. Of 2901 SAM family members, we find 694 that score above the threshold and are likely polymers, including SAM domains from the proteins Lethal Malignant Brain Tumor, Bicaudal-C, Liprin-beta, Adenylate Cyclase, and Atherin. C1 [Bowie, James U.] Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Meruelo, Alejandro D.] Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Med Scientist Training Program, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu RI Meruelo, Alejandro/L-3118-2016 OI Meruelo, Alejandro/0000-0001-6087-1818 FU NIH [R01 GM063919, T32-GM08042] FX Grant sponsor: NIH grant; Grant number: R01 GM063919; Grant sponsor: NIH MSTP grant; Grant number: T32-GM08042. NR 34 TC 22 Z9 22 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JAN PY 2009 VL 74 IS 1 BP 1 EP 5 DI 10.1002/prot.22232 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 384PY UT WOS:000261757900001 PM 18831011 ER PT J AU Pokkuluri, RR Londer, YY Wood, SJ Duke, NEC Morgado, L SaIgueiro, CA Schiffer, M AF Pokkuluri, R. R. Londer, Y. Y. Wood, S. J. Duke, N. E. C. Morgado, L. SaIgueiro, C. A. Schiffer, M. TI Outer membrane cytochrome c, OmcF, from Geobacter sulfurreducens: High structural similarity to an algal cytochrome c(6) SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE outer membrane cytochrome c; cytochrome c(6); Geobacter sulfurreducens; reduction potential; redox-Bohr effect; X-ray diffraction ID ANGSTROM RESOLUTION; EXPRESSION; REDUCTION; MODEL C1 [Pokkuluri, R. R.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Schiffer, M.] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. [Morgado, L.; SaIgueiro, C. A.] Univ Nova Lisboa, Requimte CQFB, Dept Quim, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. RP Pokkuluri, RR (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM rajp@anl.gov RI Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; OI Morgado, Leonor/0000-0002-3760-5180; Salgueiro, Carlos/0000-0003-1136-809X FU DOE [DE-AC02-06CH 11357] FX The use of SBC beamlines and APS are supported by DOE under contract No. DE-AC02-06CH 11357. NR 24 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD JAN PY 2009 VL 74 IS 1 BP 266 EP 270 DI 10.1002/prot.22260 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 384PY UT WOS:000261757900026 ER PT S AU Wang, Y Mishler, J Mukherjee, PP Mukundan, R Borup, RL AF Wang, Yun Mishler, Jeff Mukherjee, Partha P. Mukundan, Rangachary Borup, Rodney L. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Pseudo One-Dimensional Analysis of Polymer Electrolyte Fuel Cell Cold-Start SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID CATHODE ELECTRODE; LAYER ELECTRODES; REACTION-RATES; MODEL; TEMPERATURE; PERFORMANCE; DYNAMICS; CATALYST; PEFC AB This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Y. Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048.], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start. C1 [Wang, Yun; Mishler, Jeff] Univ Calif Irvine, Renewable Energy Resources Lab, Irvine, CA 92697 USA. [Mukherjee, Partha P.; Mukundan, Rangachary; Borup, Rodney L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, Y (reprint author), Univ Calif Irvine, Renewable Energy Resources Lab, Irvine, CA 92697 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU UC Irvine Academic Senate Council on Research; Computing and Library Resources (CORCLR) FX Partial support of this work by the UC Irvine Academic Senate Council on Research, Computing and Library Resources (CORCLR) is gratefully acknowledged. NR 26 TC 2 Z9 2 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 285 EP 294 DI 10.1149/1.3210579 PG 10 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500026 ER PT S AU Mukundan, R Lujan, RW Davey, JR Spendelow, JS Hussey, DS Jacobson, DL Arif, M Borup, RL AF Mukundan, Rangachary Lujan, Roger W. Davey, John R. Spendelow, Jacob S. Hussey, Daniel S. Jacobson, David L. Arif, Muhammad Borup, Rodney L. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Ice formation in PEM Fuel Cells Operated Isothermally at Sub-Freezing Temperatures SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID COLD START; PERFORMANCE; DURABILITY; PEFC AB The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature (approximate to -10 degrees C) and lower current density (0.02 A/cm(2)) operations. These results are consistent with the longerterm durability observations that show more severe degradation at the lower temperatures. C1 [Mukundan, Rangachary; Lujan, Roger W.; Davey, John R.; Spendelow, Jacob S.; Borup, Rodney L.] Los Alamos Natl Lab, MS D429,MPA 11, Los Alamos, NM 87545 USA. [Hussey, Daniel S.; Jacobson, David L.; Arif, Muhammad] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Mukundan, R (reprint author), Los Alamos Natl Lab, MS D429,MPA 11, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU Office of Hydrogen Fuel Cells and Infrastructure Technologies at the U.S. Department of Energy - Energy Efficiency and Renewable Energy; NIST Ionizing Radiation Division; Department of Energy [DE-AI01-01EE50660] FX This work was supported by the Office of Hydrogen Fuel Cells and Infrastructure Technologies at the U.S. Department of Energy - Energy Efficiency and Renewable Energy. This work was also supported by the U.S. Department of Commerce, the NIST Ionizing Radiation Division, the Directors Office of NIST, the NIST Center for Neutron Research, and the Department of Energy through interagency agreement no. DE-AI01-01EE50660. NR 15 TC 15 Z9 15 U1 0 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 345 EP 355 DI 10.1149/1.3210585 PG 11 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500032 ER PT S AU Chung, HT Johnston, CM Zelenay, P AF Chung, Hoon T. Johnston, Christina M. Zelenay, Piotr BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Synthesis and Evaluation of Heat-treated, Cyanamide-derived Non-precious Catalysts for Oxygen Reduction SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID PEM FUEL-CELLS; FE-BASED CATALYSTS; NITROGEN-CONTAINING CARBON; O-2 REDUCTION; ELECTROCHEMICAL REDUCTION; ACTIVE-SITES; PRECURSORS; ELECTROLYTE; PYROLYSIS; PORPHYRIN AB Metal-nitrogen-carbon type (M-N-C type) non-precious catalysts have been prepared using cyanamide as the nitrogen precursor and pyrolysis to improve the activity and stability. Good activity has been observed for the best catalyst prepared with 1050 degrees C pyrolysis: E-1/2 = 0.77 V by RDE, and current density = 80 mA at 0.80 V in H-2/O-2 fuel cell testing. M-N-C catalysts prepared using cyanamide as a nitrogen source show a complex dependence of activity on pyrolysis temperature: first increasing (up to 900 degrees C), then decreasing (1000 degrees C), before increasing again (1050 degrees C). The reappearance of activity may relate to an increase in defects induced at higher temperature, such as a greater exposure of the edges of graphene planes. The increased hydrophilicity of the sample after pyrolysis at 1050 degrees C suggests this outcome. Further study will be required to confirm the hypothesis. C1 [Chung, Hoon T.; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Chung, HT (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. OI Chung, Hoon/0000-0002-5367-9294 NR 29 TC 22 Z9 22 U1 2 U2 9 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 485 EP 492 DI 10.1149/1.3210598 PG 8 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500045 ER PT S AU Mukherjee, PP Mukundan, R Spendelow, JS Davey, JR Borup, RL Hussey, DS Jacobson, DL Arif, M AF Mukherjee, P. P. Mukundan, R. Spendelow, J. S. Davey, J. R. Borup, R. L. Hussey, D. S. Jacobson, D. L. Arif, M. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI High Resolution Neutron Imaging of Water in the Polymer Electrolyte Fuel Cell Membrane SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID NAFION(R) 117 MEMBRANES; TRANSPORT AB Water transport in the ionomeric membrane, typically Nafion (R), has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion (R) membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions. C1 [Mukherjee, P. P.; Mukundan, R.; Spendelow, J. S.; Davey, J. R.; Borup, R. L.] Los Alamos Natl Lab, MS D429,MPA 11, Los Alamos, NM 87545 USA. [Hussey, D. S.; Jacobson, D. L.; Arif, M.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Mukherjee, PP (reprint author), Los Alamos Natl Lab, MS D429,MPA 11, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU US Department of Energy; Office of Hydrogen, Fuel Cells and Infrastructure; Los Alamos National Laboratory LDRD Office FX This work was supported by US Department of Energy, Office of Hydrogen, Fuel Cells and Infrastructure and Los Alamos National Laboratory LDRD Office. The supply of the 40 mil membrane by Steve Grot at Ion Power is gratefully acknowledged. NR 14 TC 7 Z9 7 U1 0 U2 0 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 505 EP 512 DI 10.1149/1.3210600 PG 8 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500047 ER PT S AU Davey, JR Mukundan, R Spendelow, JS Mukherjee, P Hussey, DS Jacobson, DL Arif, M Borup, RL AF Davey, John R. Mukundan, Rangachary Spendelow, Jacob S. Mukherjee, Partha Hussey, Daniel S. Jacobson, David L. Arif, Muhammad Borup, Rodney L. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Wetting and Drying Responses of Gas Diffusion Layers and Proton Exchange Membrane to Current Transients SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID FUEL-CELL; WATER AB This study examined the hydration state of the PEM and GDLs in four PEM fuel cells, with various combinations of SGL Carbon carbon paper GDLs with different PTFE loadings, in response to current step up and step down transients. The goal was to determine the effect of these GDLs and their PTFE loadings in the substrates and MPLs on the water dynamics and performance. The fuel cells used Gore (TM) MEAs and were operated at 80 degrees C with stoich tracking gas flows at 50% inlet RHs. In situ HFR measurements were used for monitoring PEM hydration and in situ neutron imaging of the fuel cells was conducted at NIST with quantitative analysis to determine the liquid water content in the GDLs and channels. High PTFE loadings in the porous, open GDL substrates allow for greater water flux and lower water holding capacity, which facilitates cathode reaction water removal at high currents. In contrast, high PTFE loadings in the less porous, smaller pore size MPLs increase the water barrier attributes and seal in PEM water. Counter flow gas feed results in more even water distribution than co-flow feed. Counter flow feed with cathode air flowing against gravity increases cell hydration in dry operating conditions. C1 [Davey, John R.; Mukundan, Rangachary; Spendelow, Jacob S.; Mukherjee, Partha; Borup, Rodney L.] Los Alamos Natl Lab, MS D429,MPA 11, Los Alamos, NM 87545 USA. [Hussey, Daniel S.; Jacobson, David L.; Arif, Muhammad] Natl Inst Stand & Technol NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Davey, JR (reprint author), Los Alamos Natl Lab, MS D429,MPA 11, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU U.S. Department of Energy (DOE) Office of Hydrogen; Infrastructure Technology; U.S. Department of Commerce; NIST Ionizing Radiation Division; Director's Office of NIST; NIST Center for Neutron Research; Department of Energy [DE-AI01-01EE50660] FX This work was supported by the U.S. Department of Energy (DOE) Office of Hydrogen, Fuel Cells, and Infrastructure Technology (Program Manager: Nancy Garland). This work was also supported by the U.S. Department of Commerce, the NIST Ionizing Radiation Division, the Directors Office of NIST, the NIST Center for Neutron Research, and the Department of Energy through interagency agreement no. DE-AI01-01EE50660. We also thank Peter Wilde of SGL Group for providing the GDL materials. NR 4 TC 2 Z9 2 U1 1 U2 2 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 971 EP 983 DI 10.1149/1.3210651 PG 13 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500098 ER PT S AU Ball, S Burton, SL Fisher, J O'Malley, R Tessier, B Theobald, BRC Thompsett, D Zhou, WP Su, D Zhu, Y Adzic, R AF Ball, S. Burton, S. L. Fisher, J. O'Malley, R. Tessier, B. Theobald, B. R. C. Thompsett, D. Zhou, W. P. Su, D. Zhu, Y. Adzic, R. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Structure and Activity of Novel Pt Core-Shell Catalysts for the Oxygen Reduction Reaction SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID PLATINUM MONOLAYER ELECTROCATALYSTS; ENERGY ION-SCATTERING; FUEL-CELLS; O-2 REDUCTION; STABILITY; NANOPARTICLES; SURFACES; KINETICS; ACID AB Recent performance and cost studies predict that the high PGM loadings in the electrodes of today's direct hydrogen fuel cells will prove a limiting factor in their commercial viability for automotive applications. Significant breakthroughs in electrocatalyst technology yielding materials with high activity, low cost and good durability are required. This paper reports on a collaborative effort which has focussed on the exciting core-shell oxygen reduction catalysts pioneered by Brookhaven National Laboratory. These materials promise high catalyst activity and PGM thrifting although to date, are typically fabricated by in-situ electrochemical techniques. Following the development of scalable syntheses, extensive catalyst characterisation methods have been employed to analyse and verify the success of a scaled Pt-ML/Pd3Co/C catalyst. Although synthetic challenges remain, the scaled core-shell materials yield RDE activities of 0.72 A/mg(Pt) constituting an impressive 3.7x improvement in Pt activity relative to Pt/C and exceeding the 0.44 A/mg(Pt) automotive target. C1 [Ball, S.; Burton, S. L.; Fisher, J.; O'Malley, R.; Tessier, B.; Theobald, B. R. C.; Thompsett, D.] Johnson Matthey Fuel Cells Ltd, Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England. [Zhou, W. P.; Adzic, R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Su, D.; Zhu, Y.] Brookhaven Natl Lab, Ctr Funct Mat, Upton, NY 11973 USA. RP Ball, S (reprint author), Johnson Matthey Fuel Cells Ltd, Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England. FU U. S. Department of Energy via UTC Power Corporation, South Windsor [DE-FG36-07GO17019] FX This work was sponsored in part by the U. S. Department of Energy under a grant titled Highly Dispersed Alloy Cathode Catalyst for Durability (contract number: DE-FG36-07GO17019) via a subcontract from UTC Power Corporation, South Windsor, CT.The authors would like to acknowledge Dr R Smith and Mrs H Jobson in the JohnsonMatthey Analytical Department for XPS and XRD analysis and also Dr H Brongersmaand Dr R ter Veen at Tascon for LEIS measurements. NR 30 TC 9 Z9 9 U1 0 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1023 EP 1036 DI 10.1149/1.3210655 PG 14 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500102 ER PT S AU Friebel, D Miller, DJ Ogasawara, H Anniyev, T Bergmann, U Bargar, J Nilsson, A AF Friebel, Daniel Miller, Daniel J. Ogasawara, Hirohito Anniyev, Toyli Bergmann, Uwe Bargar, John Nilsson, Anders BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI In Situ GIXAFS and HERFD-XAS Studies of a Pt-Modified Rh(111) Electrode SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID RAY-ABSORPTION SPECTROSCOPY; OXYGEN REDUCTION; AU(111)/ELECTROLYTE INTERFACE; CATALYSTS; SURFACES; ELECTROCATALYSTS; DIFFRACTION; PT(111); CELL; STM AB The oxygen reduction reaction at Pt electrodes has a high overpotential which reduces the efficiency of fuel cells. The origin of the overpotential has been seen in the formation of stable Pt-O species at high potentials. Aiming at an unambiguous characterization of such species, we use in situ grazing incidence x-ray absorption spectroscopy at the Pt L-3 edge to study the geometric and electronic structure of ultrathin Pt layers on M(111) substrates. We present Pt L-3-edge grazing incidence x-ray absorption fine structure (GIXAFS) and high energy resolution fluorescence detection (HERFD) XAS measurements of Pt/Rh(111) in 0.01 M HClO4 solution. In the HERFD-XAS experiment, we used a multi-crystal analyzer to suppress the core hole lifetime broadening. The HERFD spectra reveal additional spectral features of the near-edge region which can be important for an accurate structure model of the Pt/electrolyte interface. C1 [Friebel, Daniel; Miller, Daniel J.; Ogasawara, Hirohito; Anniyev, Toyli; Bergmann, Uwe; Bargar, John; Nilsson, Anders] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Friebel, D (reprint author), Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RI Ogasawara, Hirohito/D-2105-2009 OI Ogasawara, Hirohito/0000-0001-5338-1079 NR 19 TC 0 Z9 0 U1 2 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1065 EP 1072 DI 10.1149/1.3210659 PG 8 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500106 ER PT S AU Wu, G Artyushkova, K Ferrandon, M Kropf, J Myers, D Zelenay, P AF Wu, Gang Artyushkova, Kateryna Ferrandon, Magali Kropf, Jeremy Myers, Deborah Zelenay, Piotr BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Performance Durability of Polyaniline-derived Non-Precious Cathode Catalysts SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID OXYGEN REDUCTION REACTION; WALLED CARBON NANOTUBES; PEM FUEL-CELL; METHANOL ELECTROOXIDATION; COMPOSITE FILMS; ELECTRODES; PARTICLES; IFEFFIT AB This research has focused on performance durability of the newly-developed polyaniline (PANI)-derived non-precious metal cathode catalysts. These catalysts show high oxygen-reduction activity in electrochemical and fuel cell testing, reflected by the onset and half-wave (E-1/2) potentials of oxygen reduction in RDE testing of 0.90 V and 0.77 V, respectively. Best-performing catalysts also exhibit insignificant H2O2 yield of less than 1%. Catalyst performance in fuel cell testing strongly depends on the choice of nitrogen precursors, transition metals used, and carbon supports. As expected, catalyst stability is affected by the operating voltage of the fuel cell, with more stable performance observed at low operating voltage and open cell voltage, than at intermediate voltages. Physical and electrochemical characterization of the catalysts, also in the presence of hydrogen peroxide, has been carried out to provide insight into the origin of possible degradation mechanisms. C1 [Wu, Gang; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. [Artyushkova, Kateryna] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Ferrandon, Magali; Kropf, Jeremy; Myers, Deborah] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wu, G (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. RI Wu, Gang/E-8536-2010; OI Wu, Gang/0000-0003-4956-5208; Artyushkova, Kateryna/0000-0002-2611-0422 FU DOE-EERE Hydrogen; Fuel Cells and Infrastructure Technologies Program as well as Los Alamos National Laboratory through Laboratory-Directed Research and Development program (LDRD) FX The authors are grateful to Dr. Jerzy Chlistunoff for very helpful discussions. Financial support of the DOE-EERE Hydrogen, Fuel Cells and Infrastructure Technologies Program as well as Los Alamos National Laboratory through Laboratory-Directed Research and Development program (LDRD) is gratefully acknowledged. NR 24 TC 81 Z9 84 U1 5 U2 28 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1299 EP 1311 DI 10.1149/1.3210685 PG 13 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500132 ER PT S AU Kim, S Pivovar, BS AF Kim, S. Pivovar, B. S. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Comparing Proton Conductivity of Polymer Electrolytes by Percent Conducting Volume SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID PERFORMANCE; MEMBRANES AB Proton conductivity is a critical property for polymer electrolytes used in fuel cells. Mass based water uptake and ion exchange capacity are typical characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity of different polymer electrolytes. In this paper, we report a length scale parameter, percent conducting volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity at low relative humidity are also discussed using the percent conducting volume parameter. C1 [Kim, S.] Los Alamos Natl Lab, MS D 429, Los Alamos, NM 87545 USA. [Pivovar, B. S.] Hydrogen Technol Syst Ctr, Natl Renewable Lab, Golden, CO 80401 USA. RP Kim, S (reprint author), Los Alamos Natl Lab, MS D 429, Los Alamos, NM 87545 USA. FU DOE EERE Hydrogen; Infrastructure Technologies program FX The authors thank Professor Jim McGrath for providing polymer samples and also thank the DOE EERE Hydrogen, Fuel Cells and Infrastructure Technologies program, program manager Dr. Nancy Garland for financial support. NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1425 EP 1431 DI 10.1149/1.3210698 PG 7 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500145 ER PT S AU Mukherjee, PP Wang, CY Schulz, VP Kang, Q Becker, J Wiegmann, A AF Mukherjee, P. P. Wang, C. Y. Schulz, V. P. Kang, Q. Becker, J. Wiegmann, A. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Two-Phase Behavior and Compression Effect in the PEFC Gas Diffusion Medium SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID ELECTROLYTE FUEL-CELLS; MODEL; FLOWS; GDL AB A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled with realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL. C1 [Mukherjee, P. P.; Kang, Q.] Los Alamos Natl Lab, MS T003, Los Alamos, NM 87545 USA. [Wang, C. Y.] Penn State Univ, Dept Mech & Nucl Engn, Ctr Electrochem Engine, University Pk, PA 16802 USA. [Schulz, V. P.] APL Landau GmbH, Landau, Germany. [Becker, J.; Wiegmann, A.] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany. RP Mukherjee, PP (reprint author), Los Alamos Natl Lab, MS T003, Los Alamos, NM 87545 USA. RI Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU Los Alamos National Laboratory LDRD program FX PPM would like to acknowledge the support of the Los Alamos National Laboratory LDRD program. NR 17 TC 1 Z9 1 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1485 EP 1494 DI 10.1149/1.3210705 PG 10 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500152 ER PT S AU Wood, D Mukundan, R Borup, R AF Wood, David Mukundan, Rangachary Borup, Rodney BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI In-Plane Mass-Transport Studies of GDL Variation Using the Segmented Cell Approach SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID ELECTROLYTE FUEL-CELLS AB The effects of cathode GDL variation on segmented cell performance were investigated using polarization analysis, AC impedance, and cyclic voltammetry. Three different SGL SIGRACET (R) materials were used with markedly different PTFE treatments operating under 100%/100% and 50%/50% (anode/cathode) relative humidity (RH) conditions. The total cell performance varied little under both wet and dry operating conditions for three different GDL types, but performance differences were observed for individual segments based on polarization and AC impedance data. When the different GDL types were arranged in a mixed configuration, an improvement over the base case GDL 24BC (5/23 wt% PTFE substrate/MPL) of 11% and 8% in current density at 0.6 V was seen for wet and dry conditions, respectively. When the three different GDL types were compared for ECSA loss after 300 operating hours, the GDL 24BC5 (5/5 wt% PTFE substrate/MPL) exhibited the largest decline, which was attributed to increased Pt particle agglomeration. The cell with the mixed configuration showed an ECSA decline comparable to GDL 24BC (5/23 wt% PTFE substrate/MPL) and GDL 24DI (20/10 wt% PTFE substrate/MPL). Therefore, it was demonstrated that moderate performance improvements can be realized by varying the in-plane GDL type in relation to its flow-field position without sacrificing durability. C1 [Wood, David; Mukundan, Rangachary; Borup, Rodney] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wood, D (reprint author), Los Alamos Natl Lab, MPA 11, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930; Wood, David/0000-0002-2471-4214 NR 4 TC 5 Z9 5 U1 0 U2 0 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1495 EP 1506 DI 10.1149/1.3210706 PG 12 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500153 ER PT S AU Garzon, FH Lopes, T Rockward, T Sansinena, JM Kienitz, B Mukundan, R Springer, T AF Garzon, Fernando H. Lopes, Thiago Rockward, Tommy Sansinena, Jose-Maria Kienitz, Brian Mukundan, Rangachary Springer, Thomas BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI The Impact of Impurities On Long Term PEMFC Performance SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp AB Electrochemical experimentation and modeling indicates that impurities degrade fuel cell performance by a variety of mechanisms. Electrokinetics may be inhibited by catalytic site poisoning by sulfur compounds and CO and by decreased local proton activity and mobility caused by the presence of foreign salt cations or ammonia. Cation impurity profiles vary with current density, valence and may change local conductivity and water concentrations in the ionomer. Nitrogen oxide and ammonia species may be electrochemically active under fuel cell operating conditions. The primary impurity removal mechanisms are electro-oxidation and water fluxes through the fuel cell. C1 [Garzon, Fernando H.; Lopes, Thiago; Rockward, Tommy; Sansinena, Jose-Maria; Mukundan, Rangachary; Springer, Thomas] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Lopes, Thiago] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13566970 Sao Paulo, Brazil. [Kienitz, Brian] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Garzon, FH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lopes, Thiago/I-6350-2013; OI Lopes, Thiago/0000-0002-1049-4679; Kienitz, Brian/0000-0002-0648-0303; Mukundan, Rangachary/0000-0002-5679-3930 FU U.S. Department of Energy; Office of Energy Efficiency and Renewable Energy Hydrogen; Fuel Cell and Infrastructure Program FX The authors would like to acknowledge the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cell and Infrastructure Program for support of this research. NR 8 TC 17 Z9 17 U1 2 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1575 EP 1583 DI 10.1149/1.3210713 PG 9 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500160 ER PT S AU Johnston, CM Lee, KS Rockward, T Labouriau, A Mack, N Kim, YS AF Johnston, Christina M. Lee, Kwan-Soo Rockward, Tommy Labouriau, Andrea Mack, Nathan Kim, Yu Seung BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Impact of Solvent on Ionomer Structure and Fuel Cell Durability SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID MORPHOLOGY AB Electrode structure within PEFCs, including the Pt-ionomer interface, is created while making electrodes from catalyst inks based on ionomer dispersed in solvent. The relationship between final electrode structure and processing conditions is poorly understood. We have varied the solvent used in cathode catalyst inks, and then subjected the resulting MEAs to hydrogen-air performance and durability testing. Specifically, cathodes cast from inks based on inonomer dispersions in water-propanol-isopropanol (W/P cathode) initially perform better than cathodes cast from glycerol-based dispersions (Gly cathode), but are far less durable. After 10,000 potential cycles from 0.60 V to 1.0 V in N-2, the performance on air of the W/P cathode falls significantly below that of the Gly cathode. NMR and neutron scattering measurements of ionomer dispersions, as well as AFM and TEM data from cast ionomer films, offer insight into how the effect of solvent choice on the ionomer structure may impact durability. C1 [Johnston, Christina M.; Lee, Kwan-Soo; Rockward, Tommy; Kim, Yu Seung] Los Alamos Natl Lab, Sensors & Electrochem Devices, MS D429, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Polymers & Coatings, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA. RP Johnston, CM (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices, MS D429, Los Alamos, NM 87545 USA. OI Lee, Kwan Soo/0000-0002-5315-3487; Labouriau, Andrea/0000-0001-8033-9132 FU Nancy Garland; DOE-EERE FX The authors thank Cindy Welch, Marilyn Hawley, Rex Hjelm, and Bruce Orler for related data that is referenced herein. We also thank Nancy Garland and the DOE-EERE program for financial support. NR 8 TC 7 Z9 7 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1617 EP 1622 DI 10.1149/1.3210717 PG 6 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500164 ER PT S AU Towne, S Carella, M Mustain, WE Viswanathan, V Rieke, P Pasaogullari, U Singh, P AF Towne, S. Carella, M. Mustain, W. E. Viswanathan, V. Rieke, P. Pasaogullari, U. Singh, P. BE Fuller, T Uchida, H Strasser, P Shirvanian, P Lamy, C Hartnig, C Gasteiger, HA Zawodzinski, T Jarvi, T Bele, P Ramani, V Cleghorn, S Jones, D Zelenay, P TI Performance of a Direct Borohydride Fuel Cell SO PROTON EXCHANGE MEMBRANE FUEL CELLS 9 SE ECS Transactions LA English DT Proceedings Paper CT 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC) Conducted Under the Auspices of the 216th Meeting of the Electrochemical-Society-Inc CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc Inc, Electrochem Soc, Energy Technol Div, Electrochem Soc, Ind Electrochemistry & Electrochem Engn Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Battery Div, Automot Fuel Cell Cooperat Corp, Ion Power, N E Chemcat Corp, Pine Res Instrumentat Inc, Tanaka Kikinzoku Kogyo, Toyota Motor Engn & Mfg Amer, Tokuyama Corp, Umicore AG & Co KG, UTC Power Corp ID OXIDATION AB In this work, we study the performance of a 10 cell DBFC stack. A peak power density of 410 mW/cm(2) was obtained at 80 degrees C. Here, a 40 wt% Pt/C cathode and 10 wt% MmNi(3.3)Al(0.2)Mn(0.6)Co(1.0) AB(5)-type anode catalysts have been used. The cathode fuel is 15 wt % H2O2 in 1M sulfuric acid. The anode fuel is 10 wt% NaBH4 in 20 wt % NaOH. Mitigating H-2 evolution at the anode and O-2 evolution at the cathode are also investigated. C1 [Towne, S.; Viswanathan, V.; Rieke, P.] Pacific NW Natl Lab, Richmond, WA 99354 USA. [Carella, M.; Mustain, W. E.; Singh, P.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. [Pasaogullari, U.] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. RP Towne, S (reprint author), Pacific NW Natl Lab, Richmond, WA 99354 USA. NR 11 TC 5 Z9 5 U1 1 U2 2 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-088-8 J9 ECS TRANSACTIONS PY 2009 VL 25 IS 1 BP 1951 EP 1957 DI 10.1149/1.3210751 PG 7 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BJQ12 UT WOS:000329585500198 ER PT B AU Keeler, GA Serkland, DK Overberg, ME Geib, KM Gill, DD Mukherjee, SD Hsu, AY Clevenger, JB Baiocchi, D Sweatt, WC AF Keeler, G. A. Serkland, D. K. Overberg, M. E. Geib, K. M. Gill, D. D. Mukherjee, S. D. Hsu, A. Y. Clevenger, J. B. Baiocchi, D. Sweatt, W. C. GP IEEE TI High-Speed Reflective S-SEEDs for Photonic Logic Circuits SO PS: 2009 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING LA English DT Proceedings Paper CT International Conference on Photonics in Switching CY SEP 15-19, 2009 CL Pisa, ITALY DE symmetric self-electrooptic effect device; S-SEED; optical switching; refractive micro-optics; photonic logic circuits AB We demonstrate the operation of low-power reflective S-SEEDs with 6-ps switching times at a 2-Volt bias. Efficient refractive micro-optics are used to optically interconnect multiple S-SEED gates. The technology platform is expected to enable dense photonic logic circuits for high-speed telecommunications-related applications. C1 [Keeler, G. A.; Serkland, D. K.; Overberg, M. E.; Geib, K. M.; Gill, D. D.; Mukherjee, S. D.; Hsu, A. Y.; Clevenger, J. B.; Sweatt, W. C.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Baiocchi, D.] RAND Corp, Santa Monica, CA 90407 USA. RP Keeler, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Information Assurance Research Laboratory FX The authors are grateful to T. M. Bauer, P. S. Finnegan and T. R. Fortune for their expert technical assistance. While D. Baiocchi is now at RAND Corporation, he contributed to this work while employed at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by the National Information Assurance Research Laboratory. NR 5 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-3857-0 PY 2009 BP 226 EP + PG 2 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BMZ07 UT WOS:000273962700098 ER PT J AU Sterling, NC Dinerstein, HL Hwang, S Redfield, S Aguilar, A Witthoeft, MC Esteves, D Kilcoyne, ALD Bautista, M Phaneuf, R Bilodeau, RC Ballance, CP McLaughlin, B Norrington, PH AF Sterling, N. C. Dinerstein, H. L. Hwang, S. Redfield, S. Aguilar, A. Witthoeft, M. C. Esteves, D. Kilcoyne, A. L. D. Bautista, M. Phaneuf, R. Bilodeau, R. C. Ballance, C. P. McLaughlin, B. Norrington, P. H. TI Improved Neutron-Capture Element Abundances in Planetary Nebulae SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA LA English DT Article DE planetary nebulae: general; nuclear reactions, nucleosynthesis, abundances; stars: AGB and post-AGB; atomic data ID ASYMPTOTIC GIANT BRANCH; S-PROCESS ABUNDANCES; R-MATRIX METHOD; CHEMICAL-COMPOSITION; ELECTRON-SCATTERING; STARS; NUCLEOSYNTHESIS; IDENTIFICATION; NGC-7027; KRYPTON AB Spectroscopy of planetary nebulae (PNe) provides the means to investigate s-process enrichments of neutron(n)-capture elements that cannot be detected in Asymptotic Giant Branch (AGB) stars. However, accurate abundance determinations of these elements present a challenge. Corrections for unobserved ions can be large and uncertain, since in many PNe only one ion of a given n-capture element has been detected. Furthermore, the atomic data governing the ionization balance of these species are not well-determined, inhibiting the derivation of accurate ionization corrections. We present initial results of a program that addresses these challenges. Deep high-resolution optical spectroscopy of similar to 20 PNe has been performed to detect emission lines from trans-iron species including Se, Br, Kr, Rb and Xe. The optical spectral region provides access to multiple ions of these elements, which reduces the magnitude and importance of uncertainties in the ionization corrections. In addition, experimental and theoretical efforts are providing determinations of the photoionization cross sections and recombination rate coefficients of Se, Kr and Xe ions. These new atomic data will make it possible to derive robust ionization corrections for these elements. Together, our observational and atomic data results will enable n-capture element abundances to be determined with unprecedented accuracy in ionized nebulae. C1 [Sterling, N. C.; Witthoeft, M. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dinerstein, H. L.; Hwang, S.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Redfield, S.] Wesleyan Univ, Dept Astron, Van Vleck Observ, Middletown, CT 06459 USA. [Aguilar, A.; Kilcoyne, A. L. D.; Bilodeau, R. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94270 USA. [Esteves, D.; Phaneuf, R.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Bautista, M.] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA. [Ballance, C. P.] Auburn Univ, Dept Phys, Auburn, AL USA. [McLaughlin, B.; Norrington, P. H.] Queens Univ Belfast, Sch Math & Phys, Ctr Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland. RP Sterling, NC (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. EM nicholas.c.sterling@nasa.gov RI Kilcoyne, David/I-1465-2013; OI Bilodeau, Rene/0000-0001-8607-2328; Redfield, Seth/0000-0003-3786-3486 FU US National Science Foundation [AST 0708245, 0406809]; US DOE [DE-FG02-05R54819, DE-FG02-99ER54367]; NASA [06-APRA206-0049] FX We gratefully acknowledge J. Bizau, who sent us experimental PI cross section data for Xe3+ through Xe6+. N.C.S. is supported by an appointment to the NASA Post-doctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. B. M. M. acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics. C. P. B. is supported by US DOE grants DE-FG02-05R54819 and DE-FG02-99ER54367. The DARC computations were conducted at the National Energy Research Scientific Computing Center in Oakland, CA. This work has been partially supported by NASA grant 06-APRA206-0049 and NSF grants AST 0708245 and 0406809. NR 31 TC 19 Z9 19 U1 0 U2 2 PU CSIRO PUBLISHING PI COLLINGWOOD PA 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA SN 1323-3580 J9 PUBL ASTRON SOC AUST JI Publ. Astron. Soc. Aust. PY 2009 VL 26 IS 3 BP 339 EP 344 DI 10.1071/AS08067 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 498ID UT WOS:000270131300035 ER PT J AU Tao, AR AF Tao, Andrea R. TI Nanocrystal assembly for bottom-up plasmonic materials and surface-enhanced Raman spectroscopy (SERS) sensing SO PURE AND APPLIED CHEMISTRY LA English DT Article DE colloidal synthesis; nanocrystals; nanowires; plasmonics; surface-enhanced Raman spectroscopy; chemical sensing ID RHODAMINE 6G MOLECULES; LARGE AG NANOCRYSTALS; SILVER NANOPARTICLES; SINGLE-MOLECULE; SCATTERING SERS; MONOLAYERS; GROWTH; ARRAYS; GOLD; NANOSTRUCTURES AB Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Sub-wavelength metallic features support surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. Ag nanocrystals (NCs) and nanowires (NWs) are ideal building blocks for the bottom-up fabrication of plasmonic materials for photonics, spectroscopy, and chemical sensing. Faceted Ag nanostructures are synthesized using a colloidal approach to regulate nucleation and crystallographic growth direction. Next, new methods of nanoscale organization using Langmuir-Blodgett (LB) compression are presented where one- and two-dimensional assemblies can be constructed with impressive alignment over large areas. Using this method, plasmon coupling between Ag nanostructures can be controlled by varying spacing and density, achieving for the first time a completely tunable plasmon response in the visible wavelengths. Lastly, these assemblies are demonstrated as exceptional substrates for surface-enhanced Raman spectroscopy (SERS) by achieving high chemical sensitivity and specificity, exhibiting their utility as portable field sensors, and integrating them into multiplexed "lab-on-a-chip" devices. C1 [Tao, Andrea R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tao, Andrea R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tao, AR (reprint author), Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Santa Barbara, CA 93106 USA. FU National Science Foundation; University of California President's Postdoctoral Fellowship FX A. R. Tao thanks: the National Science Foundation for a Graduate Research Fellowship and the University of California President's Postdoctoral Fellowship; Martin Mulvihill, Donald J. Sirbuly, and Jiaxing Huang for their collaborative spirit and exceptional work on arsenic sensing, microfluidic device integration, and I-D assembly projects, respectively; and Prof. Yang for being a thoughtful and supportive mentor throughout my graduate career and beyond. NR 50 TC 6 Z9 6 U1 1 U2 24 PU INT UNION PURE APPLIED CHEMISTRY PI RES TRIANGLE PK PA 104 TW ALEXANDER DR, PO BOX 13757, RES TRIANGLE PK, NC 27709-3757 USA SN 0033-4545 J9 PURE APPL CHEM JI Pure Appl. Chem. PD JAN PY 2009 VL 81 IS 1 BP 61 EP 71 DI 10.1351/PAC-CON-08-09-12 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 394OY UT WOS:000262457400006 ER PT J AU Anderson-Cook, CM AF Anderson-Cook, Christine M. TI Evaluating the Series or Parallel Structure Assumption for System Reliability SO QUALITY ENGINEERING LA English DT Article DE block diagram; hypothesis testing; system reliability; system structure AB The structure of a system is important for specifying a mathematical form for calculating reliability from component level data. For some systems, full-system reliability data are expensive or difficult to obtain, and using component-level data to improve the estimation of system reliability can be highly beneficial. However, if the intended structure of the system during design does not match the actual implementation after production, using the component-level data to estimate system reliability can give mis-leading results. Hence, we propose a test for assessing the appropriateness of assuming both independence of component failure mechanisms and a series system structure for a system when data at both the system and components level are available. Estimates are given for component and system reliabilities under the assumption of a series system. The test can also be easily adapted to test the assumption of a parallel system. Examples for both series and parallel systems are illustrated. C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM c-and-cook@lanl.gov NR 5 TC 6 Z9 6 U1 1 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0898-2112 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 1 BP 88 EP 95 DI 10.1080/08982110802317380 PG 8 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UT UT WOS:000208165600010 ER PT J AU Wendelberger, JR Moore, LM Hamada, MS AF Wendelberger, Joanne R. Moore, Leslie M. Hamada, Michael S. TI Making Tradeoffs in Designing Scientific Experiments: A Case Study with Multi-Level Factors SO QUALITY ENGINEERING LA English DT Article DE design optimality; factorial; fractional factorial; method of replacement; mixed-level design; near-orthogonal array; orthogonal array AB Experimentation is an important way that scientists learn; i.e., the scientific method. Planning scientific experiments involves a variety of challenges, both statistical and logistical in nature. Interesting statistical questions arise in planning scientific experiments that involve assessing the tradeoffs between the number of runs performed, the selection of experiment factor levels, the ability to estimate effects of different experiment factors, and the degree to which statistical optimality criteria such as orthogonality can be achieved. The relative merits of different types of experiment designs such as fractional factorials, orthogonal arrays, and near-orthogonal arrays for achieving desirable statistical properties need to be considered while facing the realities of practical constraints. These issues are examined as they arise in the process of designing experiments for materials studies. C1 [Wendelberger, Joanne R.; Moore, Leslie M.; Hamada, Michael S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Wendelberger, JR (reprint author), Los Alamos Natl Lab, Stat Sci Grp, MS F600, Los Alamos, NM 87545 USA. EM joanne@lanl.gov; lmoore@lanl.gov; hamada@lanl.gov OI Wendelberger, Joanne/0000-0001-5879-3945 NR 20 TC 3 Z9 3 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-2112 EI 1532-4222 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 2 BP 143 EP 155 DI 10.1080/08982110902723537 PG 13 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UU UT WOS:000208165700003 ER PT J AU Anderson-Cook, CM AF Anderson-Cook, Christine M. TI Opportunities and Issues in Multiple Data Type Meta-Analyses SO QUALITY ENGINEERING LA English DT Article DE Bayesian analysis; data synthesis; data types; multi-level data AB When tackling complex problems to help with decision-making, we may often have access to multiple sources of data, each of which provide partial information to answer a primary question of interest. By considering the totality of data simultaneously, instead of performing analyses on each data type separately, we can leverage across all types of data to deepen our understanding, appropriately calibrate the uncertainty in our estimates and predictions, as well as potentially reveal weaknesses in our underlying theory. We explore some of the objectives and complications associated with data combination, analysis, and design of experiments in meta-analyses by considering three examples from diverse applications. C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM c-and-cook@lanl.gov NR 23 TC 9 Z9 9 U1 0 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0898-2112 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 3 BP 241 EP 253 DI 10.1080/08982110903022533 PG 13 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UV UT WOS:000208165800004 ER PT J AU Anderson-Cook, CM AF Anderson-Cook, Christine M. TI Rejoinder for "Opportunities and Issues in Multiple Data Type Meta-Analyses'' SO QUALITY ENGINEERING LA English DT Editorial Material C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM c-and-cook@lanl.gov NR 3 TC 1 Z9 1 U1 0 U2 0 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0898-2112 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 3 BP 260 EP 261 DI 10.1080/08982110903022582 PG 2 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UV UT WOS:000208165800007 ER PT J AU Piepel, GF Landmesser, SM AF Piepel, Greg F. Landmesser, Samantha M. TI Mixture Experiment Alternatives to the Slack Variable Approach SO QUALITY ENGINEERING LA English DT Article DE experimental design; mixture components; model reduction; partial quadratic mixture models; variable selection AB A mixture experiment involves mixing components in various proportions and measuring one or more response variables on each mixture. This article presents mixture experiment approaches for designing experiments and/or modeling the resulting data in situations where the slack variable (SV) approach has been used. The SV approach designates one mixture component as the SV and then designs and analyzes the experiment in terms of the remaining components. In an SV design, the proportion of the SV is obtained by subtracting from one the sum of the proportions of the remaining components (thus "taking up the slack''). The mixture experiment approach designs and analyzes the experiment using all of the mixture components. The article considers four situations in which the SV approach is used and explains for each situation that it is generally preferable to use an appropriate mixture experiment approach. For each situation, the recommended mixture experiment approach is discussed and compared to the SV approach using an example. C1 [Piepel, Greg F.] Pacific NW Natl Lab, Stat & Sensor Analyt Grp, Richland, WA 99352 USA. [Landmesser, Samantha M.] Arsenal Capital Partners, New York, NY USA. [Landmesser, Samantha M.] Arsenal Capital Partners, Manhattan, KS USA. RP Piepel, GF (reprint author), Pacific NW Natl Lab, Stat & Sensor Analyt Grp, POB 999, Richland, WA 99352 USA. EM greg.piepel@pnl.gov FU Science Undergraduate Laboratory; U.S. Department of Energy FX Greg Piepel's work was conducted as personal research, not funded by any project at Pacific Northwest National Laboratory. Samantha Landmesser was a student intern at PNNL during Summer 2007 with funding from the Science Undergraduate Laboratory Intern program sponsored by the U.S. Department of Energy. The authors gratefully acknowledge this funding source. We also thank Scott Cooley of PNNL for running the automated mixture model reduction algorithm of Piepel and Cooley (2009) for the Situation 1 example, and also for performing a technical review of the manuscript. NR 26 TC 5 Z9 5 U1 0 U2 1 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0898-2112 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 3 BP 262 EP 276 DI 10.1080/08982110902862095 PG 15 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UV UT WOS:000208165800008 ER PT J AU Anderson-Cook, CM Robinson, TJ AF Anderson-Cook, Christine M. Robinson, Timothy J. TI A Designed Screening Study with Prespecified Combinations of Factor Settings SO QUALITY ENGINEERING LA English DT Article DE D-optimality; multicollinearity; multiple objectives; observational study; screening AB In many applications, the experimenter has limited options about what factor combinations can be chosen for a designed study. Consider a screening study for a production process involving five input factors whose levels have been previously established. The goal of the study is to understand the effect of each factor on the response, a variable that is expensive to measure and results in destruction of the part. From an inventory of available parts with known factor values, we wish to identify a best collection of factor combinations with which to estimate the factor effects. Though the observational nature of the study cannot establish a causal relationship involving the response and the factors, the study can increase understanding of the underlying process. The study can also help determine where investment should be made to control input factors during production that will maximally influence the response. Because the factor combinations are observational, the chosen model matrix will be nonorthogonal and will not allow independent estimation of factor effects. In this manuscript we borrow principles from design of experiments to suggest an "optimal" selection of factor combinations. Specifically, we consider precision of model parameter estimates, the issue of replication, and abilities to detect lack of fit and to estimate two-factor interactions. Through an example, we present strategies for selecting a subset of factor combinations that simultaneously balance multiple objectives, conduct a limited sensitivity analysis, and provide practical guidance for implementing our techniques across a variety of quality engineering disciplines. C1 [Anderson-Cook, Christine M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Robinson, Timothy J.] Univ Wyoming, Dept Stat, Laramie, WY 82071 USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM c-and-cook@lanl.gov NR 6 TC 3 Z9 3 U1 0 U2 0 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0898-2112 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 4 BP 392 EP 404 DI 10.1080/08982110903179069 PG 13 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UW UT WOS:000208165900008 ER PT J AU Hamada, MS Higdon, DM AF Hamada, M. S. Higdon, D. M. TI Illustrating the Future Prediction of Performance Based on Computer Code, Physical Experiments, and Critical Performance Parameter Samples SO QUALITY ENGINEERING LA English DT Article DE Bayesian; bias correction; Markov chain Monte Carlo; Monte Carlo AB In this article, we present a generic example to illustrate various points about making future predictions of population performance using a biased performance computer code, physical performance data, and critical performance parameter data sampled from the population at various times. We show how the actual performance data help to correct the biased computer code and the impact of uncertainty, especially when the prediction is made far from where the available data are taken. We also demonstrate how a Bayesian approach allows both inferences about the unknown parameters and predictions to be made in a consistent framework. C1 [Hamada, M. S.; Higdon, D. M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM Hamada@lanl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0898-2112 J9 QUAL ENG JI Qual. Eng. PY 2009 VL 21 IS 4 BP 405 EP 415 DI 10.1080/08982110903167809 PG 11 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA V20UW UT WOS:000208165900009 ER PT S AU Lu, XK Wu, QS Rao, NSV Wang, ZM AF Lu, Xukang Wu, Qishi Rao, Nageswara S. V. Wang, Zongmin BE Bartolini, N Nikoletseas, S Sinha, P Cardellini, V Mahanti, A TI Performance-Adaptive Prediction-Based Transport Control over Dedicated Links SO QUALITY OF SERVICE IN HETEROGENEOUS NETWORKS SE Lecture Notes of the Institute for Computer Sciences Social Informatics and Telecommunications Engineering LA English DT Proceedings Paper CT 6th Int ICST Conf on Heterogeneous Networking for Quality, Reliability, Security and Robustness/3rd Int Workshop on Adv Architectures and Algorithms for Internet Delivery and Appl CY NOV 23-25, 2009 CL Palmas, SPAIN SP ICST DE Transport control; dedicated networks; performance modeling AB Several research and production networks now provide multiple Gbps dedicated connections to meet the demands of large data transfers over wide-area networks. End users, however, have not been able to see corresponding increase in application goodputs mainly because (i) such rates have pushed the bottleneck from the network to the end system, and (ii) the traditional transport methods are not optimized for handling host dynamics. Due to the sharing with unknown background workloads, the data receiver oftentimes lacks sufficient system resources to process packets arriving from high-speed dedicated links, therefore leading to significant packet drops at the end system. We propose a rigorous design approach for a new class of transport protocols that explicitly account for the dynamics of the running environment to maximize application goodputs over dedicated connections. The control strategy of the proposed transport method combines two aspects: (i) the receiving bottleneck rate is predicted based on performance modeling, and (ii) the sending rate is stabilized at the estimated bottleneck rate based on stochastic approximation. We test the proposed method on a local dedicated connection and the experimental results illustrate its superior performance over existing methods. C1 [Lu, Xukang; Wu, Qishi] Univ Memphis, Dept Comp Sci, Memphis, TN 38142 USA. [Rao, Nageswara S. V.] Oak Ridge Natl Lab, Comp Sci Math Div, Oak Ridge, TN 37831 USA. [Wang, Zongmin] Zhengzhou Univ, Henan Key Lab Info Net, Zhengzhou 450052, Peoples R China. RP Lu, XK (reprint author), Univ Memphis, Dept Comp Sci, Memphis, TN 38142 USA. EM xlv@memphis.edu; qishiwu@memphis.edu; raons@ornl.gov; zmwang@zzu.edu.cn OI Rao, Nageswara/0000-0002-3408-5941 FU U.S. Department of Energy's Office of Science [DE-SC0002400]; National Science Foundation [CNS-0721980]; Oak Ridge National Laboratory, U.S. Department of Energy [4000056349] FX This research is sponsored by U.S. Department of Energys Office of Science under Grant No. DE-SC0002400, National Science Foundation under Grant No. CNS-0721980, and Oak Ridge National Laboratory, U.S. Department of Energy, under Contract No. PO 4000056349 with University of Memphis. NR 18 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1867-8211 BN 978-3-642-10624-8 J9 L N INST COMP SCI SO PY 2009 VL 22 BP 265 EP + PG 3 WC Telecommunications SC Telecommunications GA BBO74 UT WOS:000307744900017 ER PT S AU Sarovar, M Young, KC Schenkel, T Whaley, KB AF Sarovar, M. Young, K. C. Schenkel, T. Whaley, K. B. BE Lvovksy, A TI Using nanoscale transistors to measure single donor spins in semiconductors SO QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 9th International Conference on Quantum Communication, Measurement and Computing CY AUG 19-24, 2008 CL Calgary, CANADA SP Natl Inst Informat & Commun Technol, Canadian Inst Adv Res, QuantumWorks, Tamagawa Univ, Pacific Inst Math Sci, MIT, Res Lab Eletronic, Univ Calgary, Fac Sci, Dept Comp Sci & Dept Phys & Astron, Perimeter Inst, id Quantique, Inst Phys Publishing, SO Alberta Inst Technol DE Quantum computation; Quantum measurement ID SILICON; ELECTRON AB We propose a technique for measuring the state of a single donor electron spin using a field-effect transistor induced two-dimensional electron gas and electrically detected magnetic resonance techniques. The scheme is facilitated by hyperfine coupling to the donor nucleus. We analyze the potential sensitivity and outline experimental requirements. Our measurement provides a single-shot, projective, and quantum non-demolition measurement of an electron-encoded qubit state. C1 [Sarovar, M.; Whaley, K. B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Young, K. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Schenkel, T.] Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. RP Sarovar, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Sarovar, Mohan/B-5335-2012 NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0647-6 J9 AIP CONF PROC PY 2009 VL 1110 BP 309 EP + PG 2 WC Physics, Mathematical SC Physics GA BJR78 UT WOS:000267050900069 ER PT S AU Chapline, G DuBois, JL AF Chapline, George DuBois, Jonathan L. BE Donkor, EJ Pirich, AR Brandt, HE TI Topological Quantum Image Analysis SO QUANTUM INFORMATION AND COMPUTATION VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Information and Computation VII CY APR 16-17, 2009 CL Orlando, FL SP SPIE DE topological quantum computing; image analysis; topological insulators ID MECHANICS AB A new approach to analyzing visual images is proposed, based on the idea of converting an optical image into a spatially varying pattern of polarized squeezed light, which is then used to produce a pattern of chiral edge currents in a thin film topological insulator. Thin films of Bi or Bi doped with Sb which are punctured with an array of sub-micron holes may be a way of realizing this kind of optical quantum information processing. C1 [Chapline, George; DuBois, Jonathan L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Chapline, G (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. OI DuBois, Jonathan/0000-0003-3154-4273 NR 12 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7608-1 J9 PROC SPIE PY 2009 VL 7342 AR 73420C DI 10.1117/12.817053 PG 6 WC Computer Science, Hardware & Architecture; Optics SC Computer Science; Optics GA BCS48 UT WOS:000311280400009 ER PT S AU Humble, TS Bennink, RS Grice, WP Owens, IJ AF Humble, Travis S. Bennink, Ryan S. Grice, Warren P. Owens, Israel J. BE Donkor, EJ Pirich, AR Brandt, HE TI Sensing intruders using entanglement: a photonic quantum fence SO QUANTUM INFORMATION AND COMPUTATION VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Information and Computation VII CY APR 16-17, 2009 CL Orlando, FL SP SPIE DE Quantum information; sensing; entanglement; teleportation AB We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder's ability to spoof a sensor receiver using a 'classical' intercept-resend attack. Moreover, we employ the correlated measurement outcomes from polarization-entangled photons to protect against 'quantum' intercept-resend attacks, i.e., attacks using quantum teleportation. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements. C1 [Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Owens, Israel J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Humble, TS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Grice, Warren/L-8466-2013; OI Grice, Warren/0000-0003-4266-4692 FU U.S. Government [DE-AC05-00OR22725] FX The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes NR 9 TC 3 Z9 3 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7608-1 J9 PROC SPIE PY 2009 VL 7342 AR UNSP 73420H DI 10.1117/12.820221 PG 10 WC Computer Science, Hardware & Architecture; Optics SC Computer Science; Optics GA BCS48 UT WOS:000311280400012 ER PT J AU Voytchev, M Chiaro, P Radev, R AF Voytchev, M. Chiaro, P. Radev, R. TI Development of international standards for instrumentation used for detection of illicit trafficking of radioactive material SO RADIATION MEASUREMENTS LA English DT Article DE IEC; Standards; Radiation; Protection; Instrumentation; Illicit; Trafficking AB Subcommittee 45B "Radiation Protection Instrumentation" of the International Electrotechnical Commission (IEC) is charged with the development of international standards for instrumentation used for monitoring of illicit trafficking of radioactive material through international boarders and territories, as well as inside countries. Currently three IEC standards are published. The international participation and the main characteristics of the following three standards are discussed and presented: IEC 62327 "Hand-held Instruments for the Detection and Identification of Radionuclides and Additionally for the Indication of Ambient Dose Equivalent Rate from Photon Radiation", IEC 62401 "Alarming Personal Radiation Devices for Detection of Illicit Trafficking of Radioactive Material" and IEC 62244 "Installed Radiation Monitors for the Detection of Radioactive and Special Nuclear Materials at National Borders". (C) 2008 Elsevier Ltd. All rights reserved. C1 [Voytchev, M.] IRSN DSU SERAC BIREN CTHIR, F-91192 Gif Sur Yvette, France. [Chiaro, P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Radev, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Voytchev, M (reprint author), IRSN DSU SERAC BIREN CTHIR, BP 68, F-91192 Gif Sur Yvette, France. EM miroslav.voytchev@irsn.fr NR 9 TC 5 Z9 5 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD JAN PY 2009 VL 44 IS 1 BP 1 EP 5 DI 10.1016/j.radmeas.2008.10.008 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 424PY UT WOS:000264580100001 ER PT J AU Lowe, XR Bhattacharya, S Marchetti, F Wyrobek, AJ AF Lowe, Xiu R. Bhattacharya, Sanchita Marchetti, Francesco Wyrobek, Andrew J. TI Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease SO RADIATION RESEARCH LA English DT Article ID GENE-EXPRESSION CHANGES; IONIZING-RADIATION; NERVOUS-SYSTEM; HIPPOCAMPAL NEUROGENESIS; TRANSCRIPTION FACTORS; CRANIAL IRRADIATION; MOUSE-BRAIN; MICE; IMPAIRMENT; DEFICITS AB Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) Containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease. (C) 2009 by Radiation Research Society C1 [Lowe, Xiu R.; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lowe, Xiu R.] Kaiser Permanente Med Grp Inc, Dept Psychiat, Hayward, CA USA. RP Wyrobek, AJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM AJWyrobek@lbl.gov OI Marchetti, Francesco/0000-0002-9435-4867 FU U.S. Department of Energy; Lawrence Berkeley National Laboratory [DE-AC02-05CH 11231]; DOE Low Dose Research Program [SCW0391] FX We thank Dr. Eric Yin for mouse irradiation, RNA isolation from irradiated mouse brain and microarray hybridization, Dr. William J. Jagust for careful reading of the manuscript and helpful suggestions, Sandhya Bhatnagar for the qPCR experiments confirming GRIN down-regulation, and Stephanie Chu for editing. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory under contract DE-AC02-05CH 11231 and was funded in part by a DOE Low Dose Research Program grant (SCW0391) to AJW NR 65 TC 39 Z9 42 U1 0 U2 10 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JAN PY 2009 VL 171 IS 1 BP 53 EP 65 DI 10.1667/RR1389.1 PG 13 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 390TX UT WOS:000262187700006 PM 19138050 ER PT J AU Marchetti, AA McAninch, JE Rugel, G Ruhm, W Korschinek, G Martinelli, RE Faestermann, T Knie, K Egbert, SD Wallner, A Wallner, C Tanaka, K Endo, S Hoshi, M Shizuma, K Fujita, S Hasai, H Imanaka, T Straume, T AF Marchetti, A. A. McAninch, J. E. Rugel, G. Ruehm, W. Korschinek, G. Martinelli, R. E. Faestermann, T. Knie, K. Egbert, S. D. Wallner, A. Wallner, C. Tanaka, K. Endo, S. Hoshi, M. Shizuma, K. Fujita, S. Hasai, H. Imanaka, T. Straume, T. TI Fast Neutrons Measured in Copper from the Hiroshima Atomic Bomb Dome SO RADIATION RESEARCH LA English DT Article ID ACCELERATOR MASS-SPECTROMETRY; NI-63; EU-152; CO-60 AB The first measurements of (63)Ni produced by A-bomb fast neutrons (above similar to 1 MeV) in copper samples from Hiroshima encompassed distances from similar to 380 to 5062 m front the hypocenter (the point on the ground directly under the bomb). They included the region of interest to survivor studies (similar to 900 to 1500 m) and provided the first direct validation of fast neutrons in that range. However, a significant measurement gap remained between the hypocenter and 380 m. Measurements close to the hypocenter are important as a high-value anchor for the slope of the curve for neutron activation as a function of distance. Here we report measurements of (63)Ni in copper samples from the historic Hiroshima Atomic Bomb Dome, which is located similar to 150 m front the hypocenter. These measurements extend the range of our previously published data for (63)Ni providing a more comprehensive and consistent A-bomb activation curve. The results are also in good agreement with calculations based on the current dosimetry system (DS02) and give further experimental support to the accuracy of this system that forms the basis for radiation risk estimates worldwide. (C) 2009 by Radiation Research Society. C1 [Marchetti, A. A.; Martinelli, R. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McAninch, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rugel, G.; Korschinek, G.; Faestermann, T.; Knie, K.; Wallner, A.; Wallner, C.] Tech Univ Munich, Fak Phys, D-85748 Garching, Germany. [Ruehm, W.] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, D-85764 Neuherberg, Germany. [Egbert, S. D.] Sci Applicat Int Corp, San Diego, CA 92121 USA. [Tanaka, K.; Endo, S.; Hoshi, M.; Shizuma, K.] Hiroshima Univ, Hiroshima, Japan. [Fujita, S.] Radiat Effects Res Fdn, Hiroshima, Japan. [Hasai, H.] Hiroshima Kokusai Gakuin Univ, Hiroshima, Japan. [Imanaka, T.] Kyoto Univ, Inst Res Reactor, Kyoto 6068501, Japan. [Straume, T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Marchetti, AA (reprint author), Lawrence Livermore Natl Lab, L-096,7000 East Ave, Livermore, CA 94550 USA. EM marchetti@llnl.gov RI Wallner, Anton/G-1480-2011; Endo, Satoru/D-9091-2012; OI Wallner, Anton/0000-0003-2804-3670; Endo, Satoru/0000-0001-5961-681X; Faestermann, Thomas/0000-0002-6603-8787 FU U.S. Department of Energy [DEFG0300ER62963, DEFC0397SF21354]; U.S. National Academy of Sciences [E215099]; U.S. Army Surgeon General's Office; European Commission [FIGD-CT20000079]; German Federal Ministry of Environment; Nature Conservation and Nuclear Safety [StSch4235]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the Radiation Effects Research Foundation, Hiroshima University, and Hiroshima Kokusai Gakuin University for generously providing copper samples and related sample information for this study. We also thank the following organizations for supporting this work: the U.S. Department of Energy (grant DEFG0300ER62963, contract DEFC0397SF21354, TS), the U.S. National Academy of Sciences (grant E215099, TS), the U.S. Army Surgeon General's Office (TS), the European Commission (FIGD-CT20000079), the German Federal Ministry of Environment, Nature Conservation and Nuclear Safety (StSch4235). One of us (GR) would like to thank the Bavarian Government for a grant. Portions of this work were performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 17 TC 4 Z9 4 U1 1 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JAN PY 2009 VL 171 IS 1 BP 118 EP 122 DI 10.1667/RR1436.1 PG 5 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 390TX UT WOS:000262187700012 PM 19138052 ER PT J AU Blakely, WE Carr, Z Chu, MCM Dayal-Drager, R Fujimoto, K Hopmeir, M Kulka, U Lillis-Hearne, P Livingston, GK Lloyd, DC Maznyk, N Perez, MDR Romm, H Takashima, Y Voisin, P Wilkins, RC Yoshida, MA AF Blakely, William E. Carr, Zhanat Chu, May Chin-May Dayal-Drager, Renu Fujimoto, Kenzo Hopmeir, Michael Kulka, Ulrike Lillis-Hearne, Patricia Livingston, Gordon K. Lloyd, David C. Maznyk, Natalie Perez, Maria Del Rosario Romm, Horst Takashima, Yoshio Voisin, Phillipe Wilkins, Ruth C. Yoshida, Mitsuaki A. TI WHO 1st Consultation on the Development of a Global Biodosimetry Laboratories Network for Radiation Emergencies (BioDoseNet) SO RADIATION RESEARCH LA English DT Article ID BIOLOGICAL DOSIMETRY; ACCIDENTS; CYTOGENETICS; MANAGEMENT; EVENTS AB The World Health Organization (WHO) held a consultation meeting at WHO Headquarters, Geneva, Switzerland, December 17-18, 2007, to develop the framework for a global biodosimetry network. The WHO network is envisioned to enable dose assessment using multiple methods [cytogenetics, electron paramagnetic resonance (EPR), radionuclide bioassays, etc.]; however, the initial discussion focused on the cytogenetic bioassay (i.e., meta phase-sp read dicentric assay). Few regional cytogenetic biodosimetry networks have been established so far. The roles and resources available from United Nations (UN) agencies that provide international cooperation in biological dosimetry after radiological emergencies were reviewed. In addition, extensive reliance on the use of the relevant International Standards Organization (ISO) standards was emphasized. The results of a WHO survey of global cytogenetic biological dosimetry capability were reported, and while the survey indicates robust global capability, there was also a clear lack of global leadership and coordination. The expert group, which had a concentrated focus on cytogenetic biodosimetry, formulated the general scope and concept of operations for the development of a WHO global biodosimetry laboratory network for radiation emergencies (Bio-DoseNet). Follow-on meetings are planned to further develop technical details for this network. (C) 2009 by Radiation Research Society C1 [Carr, Zhanat; Chu, May Chin-May; Dayal-Drager, Renu; Perez, Maria Del Rosario] WHO, Dept Publ Hlth & Environm, CH-1211 Geneva, Switzerland. [Blakely, William E.; Lillis-Hearne, Patricia] Uniformed Serv Univ Hlth Sci, Armed Forces Radiobiol Res Inst, Bethesda, MD USA. [Fujimoto, Kenzo] IAEA, Incident & Emergency Ctr, A-1400 Vienna, Austria. [Hopmeir, Michael] Unconvent Concepts Inc, Arlington, VA USA. [Kulka, Ulrike; Romm, Horst] FB Strahlenschutz, Bundesamt Strahlenschutz, Oberschleissheim, Germany. [Livingston, Gordon K.] Oak Ridge Inst Sci & Educ, Radiat Emergency Assistance Ctr, Oak Ridge, TN USA. [Lloyd, David C.] Hlth Protect Agcy, Radiat Protect Div, Didcot, Oxon, England. [Maznyk, Natalie] AMS, Inst Med Radiol, Radiat Cytogenet Lab, Kharkov, Ukraine. [Takashima, Yoshio; Yoshida, Mitsuaki A.] Natl Inst Radiol Sci, Chiba 260, Japan. [Voisin, Phillipe] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France. [Wilkins, Ruth C.] Hlth Canada, Consumer & Clin Radiat Protect Bur, Ottawa, ON K1A 0L2, Canada. RP Carr, Z (reprint author), WHO, Dept Publ Hlth & Environm, 20 Ave Appia, CH-1211 Geneva, Switzerland. EM carrz@who.int OI Kulka, Ulrike/0000-0002-7734-3162 NR 33 TC 57 Z9 57 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JAN PY 2009 VL 171 IS 1 BP 127 EP 139 DI 10.1667/RR1549.1 PG 13 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 390TX UT WOS:000262187700014 PM 19138057 ER PT S AU Kim, EH Johnson, JR Cairns, IH Lee, DH AF Kim, Eun-Hwa Johnson, Jay R. Cairns, Iver H. Lee, Dong-Hun BE Bobkov, V Noterdaeme, JM TI Waves in Space Plasmas SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE linear mode conversion; Alfven waves; electromagnetic ion cyclotron wave; solar radio bursts ID FIELD LINE RESONANCES; KINETIC ALFVEN WAVES; MAGNETIC PULSATIONS; CYCLOTRON FREQUENCY; ULF WAVES; MAGNETOSPHERE; MAGNETOPAUSE; MERCURY; BURSTS AB Applications of linear mode conversion at Alfven/ion-ion hybrid resonances and at electron plasma frequency have been discussed. Alfven resonances play an important role on energy transport the outer to inner regions of magnetospheres. At Earth's magnetopause, the mode-converted kinetic Alfven waves also lead to solar wind particle entry and transverse ion heating. IIH resonant waves can explain of the generation of linearly polarized EMIC waves at Earth. Compressional waves can also interact with Mercury's magnetosphere exciting IIH resonances as global eigemnodes. Linear mode conversion (LMC) from Langmuir to electromagnetic waves is relevant to explain type II and III radio bursts. Through the LMC, both right- and left-hand polarized wave modes are produced and it provides the solutions for linear/partial polarized type II and III problems. C1 [Kim, Eun-Hwa; Johnson, Jay R.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Cairns, Iver H.] Univ Sydney, Sch Phys, Sydney, NSW 2001, Australia. [Lee, Dong-Hun] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 449701, South Korea. RP Kim, EH (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Cairns, Iver/0000-0001-6978-9765 NR 25 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 13 EP + PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400002 ER PT S AU Mayoral, ML Ongena, J Argouarch, A Baranov, Y Blackman, T Bobkov, V Budny, R Colas, L Czarnecka, A Delpech, L Durodie, F Ekedahl, A Gauthier, M Goniche, M Goulding, R Graham, M Hillairet, J Huygen, S Jacquet, P Johnson, T Kiptily, V Kirov, K Laxaback, M Lerche, E Mailloux, J Monakhov, I Nave, MFF Nightingale, M Plyusnin, V Petrzilka, V Rimini, F Van Eester, D Whitehurst, A Wooldridge, E Vrancken, M AF Mayoral, M. -L. Ongena, J. Argouarch, A. Baranov, Yu. Blackman, T. Bobkov, V. Budny, R. Colas, L. Czarnecka, A. Delpech, L. Durodie, F. Ekedahl, A. Gauthier, M. Goniche, M. Goulding, R. Graham, M. Hillairet, J. Huygen, S. Jacquet, Ph. Johnson, T. Kiptily, V. Kirov, K. Laxaback, M. Lerche, E. Mailloux, J. Monakhov, I. Nave, M. F. F. Nightingale, M. Plyusnin, V. Petrzilka, V. Rimini, F. Van Eester, D. Whitehurst, A. Wooldridge, E. Vrancken, M. CA JET-EFDA Task Force H JET-EFDA Contributors BE Bobkov, V Noterdaeme, JM TI Overview of Recent Results on Heating and Current Drive in the JET tokamak SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE JET; ICRF; LH; ELM tolerance; Heating; Current Drive; Rotation; Conjugate-T ID ICRF; ROTATION; PLASMAS AB In this paper, significant results in the heating and current drive domains obtained at JET in the past few years following systems upgrade and dedicated experimental time, will be reviewed. Firstly, an overview of the new Ion Cyclotron Resonance Frequency (ICRF) heating capabilities will be presented i.e. results from the ITER-Like ICRF antenna (ILA), the use of External Conjugate-T and 3dB hybrid couplers to increase the ICRF power during ELMy H-mode, Furthermore, experiments to study the influence of the phasing of the ICRF antenna on power absorption and coupling will be described. Looking at Low Hybrid (I-H) issues for ITER, the effect of the location of gas injection on the LH coupling improvement at large launcher-separatrix distances will be discussed as the possibility to operate at ITER-relevant power densities. Experiments to characterise the LH power losses in the Scrape-Off-Layer (SOL) and to determine the LH wave absorption and current drive using power modulation will be shown. Finally, plasma rotation studies in the presence of ICRF heating with standard and enhanced JET toroidal field ripple will be presented. C1 [Mayoral, M. -L.; Baranov, Yu.; Blackman, T.; Graham, M.; Jacquet, Ph.; Kiptily, V.; Kirov, K.; Mailloux, J.; Monakhov, I.; Nightingale, M.; Whitehurst, A.; Wooldridge, E.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ongena, J.; Durodie, F.; Huygen, S.; Lerche, E.; Van Eester, D.; Vrancken, M.] Ecole Royale Militaire, Plasma Phys Koninklijke Militaire Sch, Associat EURATOM, Belgian State Lab, B-1000 Brussels, Belgium. [Argouarch, A.; Colas, L.; Delpech, L.; Ekedahl, A.; Goniche, M.; Hillairet, J.] IRFM, DSM, CEA, Associat EURATOM CEA, Cadarache, France. [Bobkov, V.] Max Planck Inst Plasma Phys, EURATOM Assoziat, D-85748 Garching, Germany. [Budny, R.] Princeton Plasma Phys Lab, James Forrestal Campus, Plainsboro, NJ USA. [Czarnecka, A.] IPPLM, Associat Euratom, Warsaw, Poland. [Goulding, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Johnson, T.; Laxaback, M.] KTH, EES, Fus Plasma Phys, Associat EURATOM VR, SE-10044 Stockholm, Sweden. [Gauthier, M.; Laxaback, M.; Rimini, F.] Culham Sci Ctr, EFDA Close Support Unit, Abingdon OX14 3DB, Oxon, England. [Nave, M. F. F.; Plyusnin, V.] Inst Plasmas & Fus Nucl, IST, Associagao EURATOM, Lisbon, Portugal. [Petrzilka, V.] Inst Plasma Phys, Associat EURATOM IPPCR, Prague, Czech Republic. RP Mayoral, ML (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RI Nave, Maria/A-5581-2013; Plyusnin, Vladislav/N-1253-2013; gauthier, Maxence/K-2578-2014 OI Nave, Maria/0000-0003-2078-6584; Plyusnin, Vladislav/0000-0003-1277-820X; gauthier, Maxence/0000-0001-6608-9325 FU United Kingdom Engineering and Physical Sciences Research Council; European Communities under the contract of Association between EURATOM and UKAEA FX This work was partly funded by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of Association between EURATOM and UKAEA and was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission NR 30 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 39 EP + DI 10.1063/1.3273777 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400005 ER PT S AU Podesta, M Heidbrink, WW Liu, D Luo, Y Ruskov, E Bell, RE Fredrickson, ED Hosea, JC Medley, SS Burrell, KH Choi, M Pinsker, RI Harvey, RW AF Podesta, M. Heidbrink, W. W. Liu, D. Luo, Y. Ruskov, E. Bell, R. E. Fredrickson, E. D. Hosea, J. C. Medley, S. S. Burrell, K. H. Choi, M. Pinsker, R. I. Harvey, R. W. BE Bobkov, V Noterdaeme, JM TI Use of Fast Ion D-Alpha diagnostics for understanding ICRF effects SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Tokamak; ICRF; High harmonic fast wave; heating; current drive; fast ion D-alpha ID SPHERICAL TORUS EXPERIMENT; DIII-D; ACCELERATION; ABSORPTION AB Combined neutral beam injection and fast wave heating at cyclotron harmonics accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX) and in the DIII-D tokamak. Acceleration above the injected energy is evident in fast-ion D-alpha (FIDA) and volume-average neutron data. The FIDA diagnostic measures spatial profiles of the accelerated fast ions. In DIII-D, the acceleration is at a 4th or 5th cyclotron harmonic; the maximum enhancement in the high-energy FIDA signal is 8-10 cm beyond the resonance layer. In NSTX, acceleration is observed at five harmonics (7-11) simultaneously; overall, the profile of accelerated fast ions is much broader than in DIII-D. The energy distribution predicted by the CQL3D Fokker-Planck code agrees fairly well with measurements in DIII-D. However, the predicted profiles differ from experiment, presumably because the current version of CQL3D uses a zero-banana-width model. C1 [Podesta, M.; Heidbrink, W. W.; Liu, D.; Luo, Y.; Ruskov, E.] Univ Calif Irvine, Irvine, CA 92717 USA. [Bell, R. E.; Fredrickson, E. D.; Hosea, J. C.; Medley, S. S.] Princeton Plasma Phys Lab, Princeton, NJ USA. [Burrell, K. H.; Choi, M.; Pinsker, R. I.] Gen Atom, San Diego, CA 85608 USA. [Harvey, R. W.] CompX, Del Mar, CA USA. RP Podesta, M (reprint author), Univ Calif Irvine, Irvine, CA 92717 USA. FU US DOE [SC-G903402, DE-FC02-04ER54698, DE-AC02-76CH03073, DE-FG03-99ER54541] FX The assistence of the NSTX and DIII-D teams is gratefully acknowledged. Work supported by the US DOE under SC-G903402, DE-FC02-04ER54698, DE-AC02- 76CH03073, and DE-FG03-99ER54541. NR 16 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 69 EP + PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400009 ER PT S AU Pinsker, RI Heidbrink, WW Porkolab, M Baity, FW Choi, M Hosea, JC Zhu, Y AF Pinsker, R. I. Heidbrink, W. W. Porkolab, M. Baity, F. W. Choi, M. Hosea, J. C. Zhu, Y. BE Bobkov, V Noterdaeme, JM TI Synergy in Two-Frequency Fast Wave Cyclotron Harmonic Absorption in DIII-D SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Ion cyclotron heating; high harmonics ID D TOKAMAK AB Fast waves (FWs) at 60 MHz and at 90 MHz are coupled to DIII-D discharges for central heating and current drive at net FW power up to 3.5 MW. The primary absorption mechanism is intended to be direct electron damping in the plasma core. In discharges at B = 2 T with fast deuteron populations from neutral beam injection, 4th and 6th deuterium cyclotron harmonic absorption on the fast ions competes with direct electron damping. Previous experiments have shown that the 6 Omega(D) absorption of the 90 MHz FWs is weaker than the 4 Omega(D) absorption of 60 MHz FWs, in agreement with a model that includes unspecified edge losses. Recent experiments have shown that if the fast deuterons are accelerated by absorption of 60 MHz (4 Omega(D)) FWs, adding 90 MHz power (6 Omega(D)) can increase the fusion neutron rate by a larger increment than is obtained with 90 MHz power alone. Details of this synergy between 4 Omega(D) and 6 Omega(D) absorption are presented. C1 [Pinsker, R. I.; Choi, M.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Heidbrink, W. W.; Zhu, Y.] Univ Calif Irvine, Irvine, CA USA. [Porkolab, M.] MIT, Cambridge, MA 02139 USA. [Baity, F. W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hosea, J. C.] Princeton Plasma Phys Lab, Princeton, NJ USA. RP Pinsker, RI (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. FU U.S. Department of Energy [DE-FC02-04ER54698, SC-G903402, DE-AC05-00OR22725, DE-AC02-09CH11466] FX Work supported by the U.S. Department of Energy under DE-FC02-04ER54698, SC-G903402, DE-AC05-00OR22725, and DE-AC02-09CH11466 NR 8 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 77 EP + DI 10.1063/1.3273841 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400010 ER PT S AU Hosea, JC Bell, RE Feibush, E Harvey, RW Jaeger, EF LeBlanc, BP Maingi, R Phillips, CK Roquemore, L Ryan, PM Taylor, G Tritz, K Valeo, EJ Wilgen, J Wilson, JR AF Hosea, J. C. Bell, R. E. Feibush, E. Harvey, R. W. Jaeger, E. F. LeBlanc, B. P. Maingi, R. Phillips, C. K. Roquemore, L. Ryan, P. M. Taylor, G. Tritz, K. Valeo, E. J. Wilgen, J. Wilson, J. R. CA NSTX Team BE Bobkov, V Noterdaeme, JM TI Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE RF Heating; Electron Energy and Confinement Time; Spherical Torus ID ICRF ANTENNAS; PLASMAS; JET; OPERATION; HHFW AB The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (n(onset) proportional to B*k(parallel to)(2)/omega). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower k(phi) (- 8 m(-1) relative to 13 m(-1)) as for the L-mode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off layer (SOL) in the vicinity of the antenna and along the magnetic field lines to the lower outer divertor plate. Large type I ELMs, which are observed at both k(phi) values, appear after antenna arcs caused by precursor blobs, low level ELMs, or dust. For large ELMs without arcs, the source reflection coefficients rise on a 0.1 ms time scale, which indicates that the time derivative of the reflection coefficient can be used to discriminate between arcs and ELMs. C1 [Hosea, J. C.; Bell, R. E.; Feibush, E.; LeBlanc, B. P.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Valeo, E. J.; Wilson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Jaeger, E. F.; Maingi, R.; Ryan, P. M.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Hosea, JC (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU USDOE [DE-AC02-09CH11466] FX The authors wish to acknowledge the support of Dr. Masayuki Ono and Dr. Jonathan Menard, the NSTX team and the machine, RF, and neutral beam operations groups. This work is supported by USDOE Contract No. DE-AC02-09CH11466. NR 26 TC 9 Z9 9 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 105 EP + DI 10.1063/1.3273706 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400017 ER PT S AU Taylor, G Bell, RE Harvey, RW Hosea, JC Jaeger, EF LeBlanc, BP Phillips, CK Ryan, PM Valeo, EJ Wilgen, JB Wilson, JR AF Taylor, G. Bell, R. E. Harvey, R. W. Hosea, J. C. Jaeger, E. F. LeBlanc, B. P. Phillips, C. K. Ryan, P. M. Valeo, E. J. Wilgen, J. B. Wilson, J. R. CA NSTX Team BE Bobkov, V Noterdaeme, JM TI Recent Improvements in Fast Wave Heating in NSTX SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Spherical Torus; RF Heating; Electron Energy and Confinement Time AB Recent improvements in high-harmonic fast wave (HHFW) core heating in NSTX are attributed to using lithium conditioning, and other wall conditioning techniques, to move the onset density for perpendicular fast wave propagation further from the antenna. This has resulted in the first observation of HHFW core electron heating in deuterium plasma at a launched toroidal wavenumber, k(phi) = -3 m(-1), NSTX record core electron temperatures of 5 keV in helium and deuterium discharges and, for the first time, significant HHFW core electron heating of deuterium neutral-beam-fuelled H-mode plasmas. Also, k(phi) = -8 m(-1) heating of the plasma startup and plasma current ramp-up has resulted in significant core electron heating, even at central electron densities as low as similar to 4x10(18) m(-3). C1 [Taylor, G.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Jaeger, E. F.; Ryan, P. M.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Taylor, G (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU US DoE [DE-AC02-09CH11466, DE-AC05-00OR2272] FX Supported by US DoE contracts. DE-AC02-09CH11466 and DE-AC05-00OR2272. NR 12 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 113 EP + DI 10.1063/1.3273707 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400018 ER PT S AU LeBlanc, BP Bell, RE Bonoli, P Hosea, JC Mazzucato, E Phillips, CK Roquemore, AL Ryan, PM Taylor, G Wilson, JR Yuh, H AF LeBlanc, B. P. Bell, R. E. Bonoli, P. Hosea, J. C. Mazzucato, E. Phillips, C. K. Roquemore, A. L. Ryan, P. M. Taylor, G. Wilson, J. R. Yuh, H. BE Bobkov, V Noterdaeme, JM TI Analysis of High-T-e Plasmas Heated by HHFW in NSTX SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE NSTX; HHFW; NBI ID SPHERICAL TORUS EXPERIMENT; HARMONIC FAST-WAVE; ABSORPTION AB The implementation in TRANSP of a recent version of TORIC capable of calculating power deposition for HHFW conditions is used to analyze NSTX plasma under different operating conditions. The power deposition profile into the electrons is obtained for high-T-e conditions - T-e <= 5keV - obtained in He and D plasmas with ITB. HHFW heating of NBI-induced H-mode plasmas is discussed. At the RF onset the RF power is divided evenly between the electrons and the fast particles, but as the latter thermalize and the electron density increases, the HHFW power repartition shifts progressively toward the electrons. Power deposition profiles for the electrons and for the fast particles are shown. C1 [LeBlanc, B. P.; Bell, R. E.; Hosea, J. C.; Mazzucato, E.; Phillips, C. K.; Roquemore, A. L.; Taylor, G.; Wilson, J. R.] PPPL, Princeton, NJ 08540 USA. [Bonoli, P.] MIT, PSFC, Cambridge, MA 02139 USA. [Ryan, P. M.; Yuh, H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP LeBlanc, BP (reprint author), PPPL, Princeton, NJ 08540 USA. FU US Department of Energy [DE-AC02-76-CH03073, DE-AC05-00OR22725, W-7405-ENG-36, DE-FG02-99ER54524] FX This research was supported by the US Department of Energy under contracts DE-AC02-76-CH03073, DE-AC05-00OR22725, W-7405-ENG-36, and grant DE-FG02-99ER54524. NR 12 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 117 EP + DI 10.1063/1.3273708 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400019 ER PT S AU Nightingale, MPS Durodie, F Argouarch, A Beaumont, B Becoulet, A Bernard, JM Blackman, T Caughman, J Dumortier, P Edwards, D Fanthome, J Gassman, T Goulding, R Graham, M Hamlyn-Harris, C Hancock, D Huygen, S Jacquet, P Kazarian, F Koch, R Lamalle, PU Lerche, E Louche, F Maggiora, R Mayoral, ML Messiaen, AM Milanesio, D Monakhov, I Mukherjee, A Nicholls, K Noterdaeme, JM Ongena, J Rasmussen, D Rimini, F Sartori, R Stork, D Van Eester, D Vervier, M Vrancken, M Vulliez, K Whitehurst, A Wilson, D Wooldridge, E AF Nightingale, M. P. S. Durodie, F. Argouarch, A. Beaumont, B. Becoulet, A. Bernard, J-M Blackman, T. Caughman, J. Dumortier, P. Edwards, D. Fanthome, J. Gassman, T. Goulding, R. Graham, M. Hamlyn-Harris, C. Hancock, D. Huygen, S. Jacquet, P. Kazarian, F. Koch, R. Lamalle, P. U. Lerche, E. Louche, F. Maggiora, R. Mayoral, M-L. Messiaen, A. M. Milanesio, D. Monakhov, I. Mukherjee, A. Nicholls, K. Noterdaeme, J-M. Ongena, J. Rasmussen, D. Rimini, F. Sartori, R. Stork, D. Van Eester, D. Vervier, M. Vrancken, M. Vulliez, K. Whitehurst, A. Wilson, D. Wooldridge, E. CA JET EFDA Contributors BE Bobkov, V Noterdaeme, JM TI Overview on Experiments On ITER-like Antenna On JET And ICRF Antenna Design For ITER SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Tokamak; JET; ITER; ICRF; Antenna ID TOPICA; PLANS AB Following an overview of the ITER Ion Cyclotron Resonance Frequency (ICRF) system, the JET ITER-like antenna (ILA) will be described. The ILA was designed to test the following ITER issues: (a) reliable operation at power densities of order 8MW/m(2) at voltages up to 45kV using a close-packed array of straps; (b) powering through ELMs using an internal (in-vacuum) conjugate-T junction; (c) protection from arcing in a conjugate-T configuration, using both existing and novel systems; and (d) resilience to disruption forces. ITER-relevant results have been achieved: operation at high coupled power density; control of the antenna matching elements in the presence of high inter-strap coupling, use of four conjugate-T systems (as would be used in ITER, should a conjugate-T approach be used); operation with RF voltages on the antenna structures up to 42kV; achievement of ELM tolerance with a conjugate-T configuration by operating at 3 Omega real impedance at the conjugate-T point; and validation of arc detection systems on conjugate-T configurations in ELMy H-mode plasmas. The impact of these results on the predicted performance and design of the ITER antenna will be reviewed. In particular, the implications of the RF coupling measured on JET will be discussed. C1 [Nightingale, M. P. S.; Blackman, T.; Edwards, D.; Fanthome, J.; Graham, M.; Hamlyn-Harris, C.; Hancock, D.; Jacquet, P.; Mayoral, M-L.; Monakhov, I.; Nicholls, K.; Stork, D.; Whitehurst, A.; Wilson, D.; Wooldridge, E.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Durodie, F.; Dumortier, P.; Huygen, S.; Koch, R.; Lerche, E.; Louche, F.; Messiaen, A. M.; Ongena, J.; Van Eester, D.; Vervier, M.] Ecole Royale Mil, Koninklijke Mil Sch, Euratom Assoc, Plasma Phys Lab, B-1000 Brussels, Belgium. [Argouarch, A.; Becoulet, A.; Bernard, J-M; Caughman, J.; Goulding, R.; Rasmussen, D.] IRFM, CEA Cadarache, Euratom CEA Assoc, DSM, F-13108 St Paul Les Durance, France. [Beaumont, B.; Gassman, T.; Kazarian, F.; Lamalle, P. U.] ITER Org, F-13067 St Paul Les Durance, France. [Caughman, J.; Goulding, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Maggiora, R.; Milanesio, D.] Politecn Torino, Dept Elect, Turin, Italy. [Mukherjee, A.] ITET India, GIDC, Gandhinagar, Gujarat, India. [Noterdaeme, J-M.] IPP MPI, EIRATOM Assoc, Garching, Germany. [Rimini, F.] Culham Sci Ctr, EFDA Close Support Unit, Abingdon OX14 3DB, Oxon, England. [Sartori, R.] Fus Energy, E-08019 Barcelona, Spain. RP Nightingale, MPS (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RI Hancock, David/B-1998-2016; Goulding, Richard/C-5982-2016 OI Hancock, David/0000-0002-6250-2458; Goulding, Richard/0000-0002-1776-7983 FU United Kingdom Engineering and Physical Sciences Research Council; European Communities FX This work was partly fiinded by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of Association between EURATOM and UKAEA (and other associations listed within the author list) and was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 15 TC 9 Z9 9 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 213 EP + DI 10.1063/1.3273731 PG 3 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400040 ER PT S AU Vrancken, M Lerche, E Blackman, T Dumortier, P Durodie, F Evrard, M Goulding, RH Graham, M Huygen, S Jacquet, P Kaye, A Mayoral, ML Nightingale, MPS Ongena, J Van Eester, D Van Schoor, M Vervier, M Weynants, R AF Vrancken, M. Lerche, E. Blackman, T. Dumortier, P. Durodie, F. Evrard, M. Goulding, R. H. Graham, M. Huygen, S. Jacquet, P. Kaye, A. Mayoral, M. -L. Nightingale, M. P. S. Ongena, J. Van Eester, D. Van Schoor, M. Vervier, M. Weynants, R. CA JET-EFDA Contributors BE Bobkov, V Noterdaeme, JM TI Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE ICRF; Antenna; Arc Detection ID DESIGN AB The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma. C1 [Vrancken, M.; Lerche, E.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.] Assoc EURATOM Belgian State, LPP ERM KMS, Brussels, Belgium. Culham Sci Ctr, JET EFDA, Abingdon, Oxon, England. [Blackman, T.; Durodie, F.; Graham, M.; Jacquet, P.; Kaye, A.; Mayoral, M. -L.; Nightingale, M. P. S.] Culham Sci Ctr, EURATOM UKAEA Fus Associat, Abingdon, Oxon, England. [Goulding, R. H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Vrancken, M (reprint author), Assoc EURATOM Belgian State, LPP ERM KMS, Brussels, Belgium. RI Goulding, Richard/C-5982-2016 OI Goulding, Richard/0000-0002-1776-7983 FU European Communities; United Kingdom Engineering and Physical Sciences Research Council FX This work, supported by the European Communities under the contract of Association between EURATOM and Belgian state and between EURATOM and UKAEA, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The work carried out by UKAEA personnel was also funded by the United Kingdom Engineering and Physical Sciences Research Council. NR 6 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 237 EP + DI 10.1063/1.3273737 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400045 ER PT S AU Swain, D Goulding, R Rasmussen, D AF Swain, D. Goulding, R. Rasmussen, D. BE Bobkov, V Noterdaeme, JM TI Status of ITER ICH Matching System Design SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequence Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE ITER; ICH; ion; cyclotron; heating AB Work on the design of the ITER ICH matching system is progressing. The design has been significantly improved. The system will deliver a total power of 20 MW for long-pulse (> 3000 s) operation. The present matching system has hybrid comb iner-spl itter circuits for ELM resilience, active matching during a shot using a double-stub-tuner circuits decouplers between the eight inputs to each antenna, water-cooled transmission lines and matching components in the unmatched section, and air-cooled transmission lines using turbulent cooling. C1 [Swain, D.; Goulding, R.; Rasmussen, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Swain, D (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. NR 7 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 293 EP 296 DI 10.1063/1.3273751 PG 4 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400059 ER PT S AU Ryan, PM Baity, FW Caughman, JBO Goulding, RH Hosea, JC Greenough, NL Nagy, A Pinsker, RI Rasmussen, DA AF Ryan, P. M. Baity, F. W. Caughman, J. B. O. Goulding, R. H. Hosea, J. C. Greenough, N. L. Nagy, A. Pinsker, R. I. Rasmussen, D. A. BE Bobkov, V Noterdaeme, JM TI Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE DIII-D; RF Heating; Fast Wave Antenna AB A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs. C1 [Ryan, P. M.; Baity, F. W.; Caughman, J. B. O.; Goulding, R. H.; Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hosea, J. C.; Greenough, N. L.; Nagy, A.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Rasmussen, D. A.] Gen Atom, San Diego, CA 92186 USA. RP Ryan, PM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Goulding, Richard/C-5982-2016; Caughman, John/R-4889-2016 OI Goulding, Richard/0000-0002-1776-7983; Caughman, John/0000-0002-0609-1164 FU U.S. Dept of Energy [DE-AC-05-00OR22725] FX ORNL is managed by UT-Batelle, LLC, for the U.S. Dept of Energy under contract DE-AC-05-00OR22725. NR 3 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 305 EP + DI 10.1063/1.3273754 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400062 ER PT S AU Parker, R Bonoli, PT Meneghini, O Porkolab, M Schmidt, AE Shiraiwa, S Wallace, G Wilson, JR Hubbard, AE Hughes, JW Ko, JS McDermott, RM Reinke, ML Rice, JE Scott, S AF Parker, R. Bonoli, P. T. Meneghini, O. Porkolab, M. Schmidt, A. E. Shiraiwa, S. Wallace, G. Wilson, J. R. Hubbard, A. E. Hughes, J. W. Ko, J-S. McDermott, R. M. Reinke, M. L. Rice, J. E. Scott, S. BE Bobkov, V Noterdaeme, JM TI Modification of Current Profile, Toroidal Rotation and Pedestal by Lower Hybrid Waves in Alcator C-Mod SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower hybrid current drive; rotation in toroidal plasmas; plasma wave simulations ID DESIGN AB Recent results from the lower hybrid current drive experiments on Alcator C-Mod are presented. These include i) MSE measurements of broadened LHCD current profiles; ii) development of counter rotation comparable to the rate of injected wave momentum; iii) modification of pedestals and rotation in H-mode; and iv) development of a new FEM-based code that models LH wave propagation from the RF source to absorption in the plasma. An improved antenna concept that will be used in the upcoming C-Mod campaigns is also briefly described. C1 [Parker, R.; Bonoli, P. T.; Meneghini, O.; Porkolab, M.; Schmidt, A. E.; Shiraiwa, S.; Wallace, G.; Hubbard, A. E.; Hughes, J. W.; Ko, J-S.; McDermott, R. M.; Reinke, M. L.; Rice, J. E.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wilson, J. R.; Scott, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Parker, R (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU USDOE [DE-FC02- 99ER54512, DE-AC02-76CH03073] FX The authors gratefully acknowledge the contributions of the entire Alcator team, especially the LH engineering group headed by D. Terry. Work supported by USDOE awards DE-FC02- 99ER54512 and DE-AC02-76CH03073. NR 17 TC 6 Z9 6 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 319 EP + DI 10.1063/1.3273757 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400065 ER PT S AU Wilson, JR Parker, RR Bonoli, PT Hubbard, AE Hughes, JW Ince-Cushman, A Kessel, C Ko, JS Meneghini, O Porkolab, M Reinke, M Rice, JE Schmidt, AE Shiraiwa, S Scott, S Wallace, GM Wright, JC AF Wilson, J. R. Parker, R. R. Bonoli, P. T. Hubbard, A. E. Hughes, J. W. Ince-Cushman, A. Kessel, C. Ko, J. S. Meneghini, O. Porkolab, M. Reinke, M. Rice, J. E. Schmidt, A. E. Shiraiwa, S. Scott, S. Wallace, G. M. Wright, J. C. BE Bobkov, V Noterdaeme, JM TI Control of Internal Profiles via LHCD on Alcator C-Mod SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower Hybrid Current Drive; rotation in toroidal plasmas AB LHCD on Alcator C-Mod is being used in plasmas with parameters similar to those expected on ITER for the purpose of tailoring the plasma current profile. LHCD experiments have also produced intriguing results related to momentum transport and edge pedestal physics that affect the toroidal rotation profile and the temperature and density profiles. Quantitative comparisons between local measurements and theory/simulation have been performed, confirming the off-axis localization of the current drive, as well as its magnitude and location dependence on the launched till spectrum and electron temperature. Applying LHCD during the current ramp saves volt-seconds and delays the peaking of the current profile. Counter current toroidal rotation during LHCD has been observed in both L and H-mode plasmas. In H-mode plasmas the edge pedestal collisionality is reduced while the overall pressure in the pedestal increases slightly. C1 [Wilson, J. R.; Kessel, C.; Scott, S.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Wilson, J. R.; Parker, R. R.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; Ince-Cushman, A.; Ko, J. S.; Meneghini, O.; Porkolab, M.; Reinke, M.; Rice, J. E.; Schmidt, A. E.; Shiraiwa, S.; Wallace, G. M.; Wright, J. C.] MIT Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Wilson, JR (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU USDOE [DE-AC02-09CH11466, DE-FC02-99ER54512] FX The authors wish to acknowledge the support of the Alcator C-Mod team and the LH engineering group. This work is supported by USDOE Contract No. DE-AC02-09CH11466 and DE-FC02-99ER54512. NR 7 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 327 EP + DI 10.1063/1.3273759 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400066 ER PT S AU Schmidt, AE Bonoli, PT Parker, R Porkolab, M Wallace, G Wright, JC Wilson, JR Harvey, RW Smirnov, AP AF Schmidt, A. E. Bonoli, P. T. Parker, R. Porkolab, M. Wallace, G. Wright, J. C. Wilson, J. R. Harvey, R. W. Smirnov, A. P. BE Bobkov, V Noterdaeme, JM TI Measurement of Fast Electron Transport by Lower Hybrid Modulation Experiments in Alcator C-Mod SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE lower hybrid current drive; fast electrons; diffusion; pinch; power modulation; Bremsstrahlung; hard x-rays; transport ID DIFFUSION AB The Lower Hybrid Current Drive (LHCD) system on Alcator C-Mod can produce spectra with a wide range of peak parallel refractive index (n(parallel to)). An experiment in which LH power is square-wave modulated on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n(parallel to) spectra. Boxcar binning of hard x-rays during LH power modulation allows for time resolution sufficient to resolve the build-up, steady-state, and slowing-down of fast electrons, A transport model built in Matlab has been used to determine a fast electron pinch velocity for a high-n(parallel to) case of 1-2 m/s. C1 [Schmidt, A. E.; Bonoli, P. T.; Parker, R.; Porkolab, M.; Wallace, G.; Wright, J. C.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ USA. [Harvey, R. W.; Smirnov, A. P.] Compx Corp, Delmar, CA USA. RP Schmidt, AE (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Smirnov, Alexander /A-4886-2014 FU US DOE [DE-FC02-99ER54512, DE-AC02-76CH03073] FX Thank you to Craig Petty and Matt Reinke for valuable discussions regarding data analysis techniques. This work is supported by the US DOE awards DE-FC02-99ER54512 and DE-AC02-76CH03073. NR 6 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 339 EP + DI 10.1063/1.3273762 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400069 ER PT S AU Goniche, M Mailloux, J Baranov, Y Biewer, TM Coffey, I Delpech, L Ekedahl, A Hillairet, J Kirov, K Mayoral, ML Ongena, J Sergienko, G AF Goniche, M. Mailloux, J. Baranov, Y. Biewer, T. M. Coffey, I. Delpech, L. Ekedahl, A. Hillairet, J. Kirov, K. Mayoral, M. -L. Ongena, J. Sergienko, G. CA JET-EFDA Contributors BE Bobkov, V Noterdaeme, JM TI Impurity Radiation for Detecting Arcs during High Lower Hybrid Power Transmission at JET SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE LHCD; lower hybrid; impurity; radiation; arcing; JET; ITER AB During high power commissioning of the JET LH launcher, the radiation and impurity release has been analyzed from various diagnostics: VUV and visible spectroscopy, bolometry. These two last diagnostics have lines-of-sight viewing the launcher and can provide information about the electron and/or impurity source localisation. Using a database of 800 plasmas, it is concluded that the iron contamination (FeXV and FeXXIII) is very low for 94% of the pulses and increases linearly with LH power. During arcs, a strong and fast increase of the radiation along the line-of-sight viewing the launcher is observed. This diagnostic could provide a tool for arc detection complementary to the RF measurements aiming at reducing the metal contamination in the plasma. C1 [Goniche, M.; Delpech, L.; Ekedahl, A.; Hillairet, J.] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Mailloux, J.; Baranov, Y.; Coffey, I.; Kirov, K.; Mayoral, M. -L.; Sergienko, G.] UKAEA, EURATOM, Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Biewer, T. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ongena, J.] ERM KMS, EURATOM, Plasma Phys Lab, Brussels, Belgium. RP Goniche, M (reprint author), JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. OI Biewer, Theodore/0000-0001-7456-3509 FU European Communities [EFDA 07/1700-1572] FX This work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the contract EFDA 07/1700-1572. The views and opinions expressed herein do not necessarily reflect those of the European Commission NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 347 EP + DI 10.1063/1.3273764 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400071 ER PT S AU Wright, JC Bonoli, PT Phillips, CK Valeo, E Harvey, RW AF Wright, J. C. Bonoli, P. T. Phillips, C. K. Valeo, E. Harvey, R. W. BE Bobkov, V Noterdaeme, JM TI Full wave simulations of lower hybrid wave propagation in tokamaks SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke ID PLASMA; FIELD AB Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5 - 3) x nu t(e), where nu(te), equivalent to (2T(e)/m(e))(1/2) is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a >= 0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions. In typical plasma conditions with electron densities of several 10(19) m(-3) and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of I mm and the parallel wavelength is of the order of lcm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves. The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition. C1 [Wright, J. C.; Bonoli, P. T.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Phillips, C. K.; Valeo, E.] Princeton Plasma Phys Lab, Princeton, NJ USA. [Harvey, R. W.] Del Mar, Del Mar, CA 92014 USA. RP Wright, JC (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU U.S. Department of Energy [DE-FCO2-01ER54648] FX All simulation presented in this paper were performed on the MIT-PSFC Opteron/Infiniband cluster, Loki. Research sponsored by the U.S. Department of Energy, under Contract No. DE-FCO2-01ER54648. NR 16 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 351 EP + DI 10.1063/1.3273765 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400072 ER PT S AU Bonoli, PT Wright, JC Richardson, AS Schmidt, AE Phillips, CK Valeo, E AF Bonoli, P. T. Wright, J. C. Richardson, A. S. Schmidt, A. E. Phillips, C. K. Valeo, E. CA RF SciDAC Team BE Bobkov, V Noterdaeme, JM TI Full-Wave Studies of Lower Hybrid Wave Propagation in Tokamaks SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower hybrid waves; Plasma simulation AB A full-wave electromagnetic field solver valid the lower hybrid range of frequencies (LHRF) has been developed that utilizes a semi-spectral representation for the RF electric field. Spurious numerical behavior of the field solver that was found to be related to the inclusion of finite electron Larmor radius terms in the wave equation is discussed. The removal of these terms is shown to eliminate all spurious mode generation, leading to well-behaved electric field solutions for parameters typical of LH current drive experiments in present day sized tokamaks. C1 [Bonoli, P. T.; Wright, J. C.; Richardson, A. S.; Schmidt, A. E.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Phillips, C. K.; Valeo, E.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Bonoli, PT (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU US DoE [DE-FC02-01ER54648] FX This work was supported in part by the US DoE under Contract No. DE-FC02-01ER54648. Computer simulations using TORLH were carried out on the MIT PSFC parallel Opteron/Infiniband cluster Loki. Finally, we would like to acknowledge useful discussions with Professor R. Parker, Dr. S. Shiraiwa, and O. Meneghini. NR 12 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 359 EP + DI 10.1063/1.3273766 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400073 ER PT S AU Shiraiwa, S Meneghini, O Parker, R Wallace, G Wilson, J AF Shiraiwa, S. Meneghini, O. Parker, R. Wallace, G. Wilson, J. BE Bobkov, V Noterdaeme, JM TI Plasma wave simulation based on versatile FEM solver on Alcator C-mod SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower hybrid; full wave; finite element method AB The finite element method (FEM) has the potential of simulating plasma waves seamlessly from the core to the vacuum and antenna regions. We explored the possibility of using a versatile FEM solver package, COMSOL, for lower hybrid (LH) wave simulation. Special care was paid to boundary conditions to satisfy toroidal symmetry. The non-trivial issue of introducing hot plasma effects was addressed by an iterative algorithm. These techniques are verified both analytically and numerically. In the lower hybrid (LH) grill antenna coupling problem, the FEM solver successfully reproduced the solution that was obtained analytically. Propagation of LH waves on the Alcator C and Alcator C-MOD plasmas was compared with a ray-tracing code, showing good consistency. The approach based on the FEM is computationally less intensive compared to spectral domain solvers, and more suitable for the simulation of larger device such as ITER. C1 [Shiraiwa, S.; Meneghini, O.; Parker, R.; Wallace, G.] MIT, Plasma Sci Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wilson, J.] Princeton Plasma Phys Lab, Princeton, NJ USA. RP Shiraiwa, S (reprint author), MIT, Plasma Sci Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU USDOE [DE-FC02-99ER54512, DE-AC02-76CH03073] FX The authors acknowledge helpful discussions on LH wave physics with P. Bonoli and J. Wright, and support in using COMSOL from W. Beck. Work supported by USDOE awards DE-FC02-99ER54512 and DE-AC02-76CH03073. NR 6 TC 6 Z9 6 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 363 EP + DI 10.1063/1.3273767 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400074 ER PT S AU Carlsson, J Smithe, D Carter, M Kaufman, M AF Carlsson, Johan Smithe, David Carter, Mark Kaufman, Mike BE Bobkov, V Noterdaeme, JM TI Simulations of lower-hybrid coupling in the Madison Symmetric Torus SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE lower hybrid coupling; interdigital line; VORPAL; RANT3D; accessibility AB Simulations of Lower Hybrid (LH) coupling in the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP) will be presented. Due to the special requirements of the RFP configuration (tight-fitting conducting shell in which only minimal portholes are acceptable), an unusual interdigital line slow-wave antenna is used, mounted below the mid plane on the inboard side. A number of codes are used, including VORPAL, RANT3D/AORSA1D-H and MWS, each solving different equations and using different algorithms. Output from the different codes will be presented and compared to verify the simulation results. C1 [Carlsson, Johan; Smithe, David] Tech X Corp, Boulder, CO USA. [Carter, Mark] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Kaufman, Mike] Univ Wisconsin, Madison, WI 53706 USA. RP Carlsson, J (reprint author), Tech X Corp, Boulder, CO USA. OI Carlsson, Johan/0000-0003-4614-8150 FU National Laboratory; SciDAC Center FX Work funded by Oak Ridge National Laboratory and the SciDAC Center for Simulation of Wave-Particle Interaction (CS WPI) NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 367 EP + DI 10.1063/1.3273768 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400075 ER PT S AU Wallace, GM Parker, RR Bonoli, PT Harvey, RW Schmidt, AE Smirnov, AP Whyte, DG Wilson, JR Wright, JC Wukitch, SJ AF Wallace, G. M. Parker, R. R. Bonoli, P. T. Harvey, R. W. Schmidt, A. E. Smirnov, A. P. Whyte, D. G. Wilson, J. R. Wright, J. C. Wukitch, S. J. BE Bobkov, V Noterdaeme, JM TI Observations of Lower Hybrid Wave Absorption in the Scrape Off Layer of a Diverted Tokamak SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower Hybrid Current Drive; Density Limit; Scrape Off Layer; Bremsstrahlung ID CURRENT DRIVE AB The Lower Hybrid Current Drive (LHCD) system on Alcator C-Mod is designed to drive off-axis current in the core plasma, e.g. r/a <= 0.8, however several interesting observations indicate that the LH waves are depositing significant power in the Scrape Off Layer (SOL) in high density L-Mode discharges. These phenomena are observed in accessible plasmas below the so-called "density limit" attributed to Parametric Decay Instabilities as omega -> 2 omega(lh). Parallel current densities of similar to 500 kA/m(2) are measured on divertor Langmuir probes located just outside the separatrix during high power LH operation above (n) over bar (e) similar to 1 x 10(20) m(-3). These SOL currents rise at the same density at which the line integrated hard X-ray Bremsstrahlung emission drops sharply. Ray tracing/Fokker-Planck simulations over-estimate the line integrated X-ray emissivity by a factor of similar to 500 at (n) over bar (e) = 1.4 x 10(20) m(-3) as compared to a factor of 3-4 at (n) over bar (e) = 0.6 x 10(20) m(-3). Ray tracing simulations including a realistic SOL show similar trends in X-ray emission compared with the experimental observations. C1 [Wallace, G. M.; Parker, R. R.; Bonoli, P. T.; Schmidt, A. E.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ USA. [Harvey, R. W.; Smirnov, A. P.] Del Mar, Del Mar, CA USA. RP Wallace, GM (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Smirnov, Alexander /A-4886-2014 FU USDOE [DE-AC02-76CH03073, DE-FC02-99ER54512] FX Thanks to Dave Gwinn, Dave Johnson, Atma Kanokia, Pat MacGibbon, George MacKay, and Dave Terry for keeping the LHCD system running. This work supported by USDOE conttacts DE-AC02-76CH03073 and DE-FC02-99ER54512. NR 8 TC 7 Z9 8 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 395 EP + DI 10.1063/1.3273775 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400082 ER PT S AU Hoang, GT Becoulet, A Artaud, JF Berger-By, G Decker, J Delpech, L Ekedahl, A Garcia, J Giruzzi, G Goniche, M Guilhem, D Hillairet, J Imbeaux, F Litaudon, X Magne, R Peysson, Y Schneider, M Jacquinot, J Bae, YS Beaumont, B Belo, JH Bizarro, JPS Bonoli, P Cho, MH Kazarian, F Kessel, C Kim, SH Kwak, JG Jeong, JH Lister, JB Milora, S Mirizzi, F Maggiora, R Milanesio, D Namkung, W Noterdaeme, JM Park, SI Parker, R Rasmussen, D Sharma, PK Tanga, A Tuccillo, A Wan, YX AF Hoang, G. T. Becoulet, A. Artaud, J. F. Berger-By, G. Decker, J. Delpech, L. Ekedahl, A. Garcia, J. Giruzzi, G. Goniche, M. Guilhem, D. Hillairet, J. Imbeaux, F. Litaudon, X. Magne, R. Peysson, Y. Schneider, M. Jacquinot, J. Bae, Y. S. Beaumont, B. Belo, J. H. Bizarro, J. P. S. Bonoli, P. Cho, M. H. Kazarian, F. Kessel, C. Kim, S. H. Kwak, J. G. Jeong, J. H. Lister, J. B. Milora, S. Mirizzi, F. Maggiora, R. Milanesio, D. Namkung, W. Noterdaeme, J. M. Park, S. I. Parker, R. Rasmussen, D. Sharma, P. K. Tanga, A. Tuccillo, A. Wan, Y. X. BE Bobkov, V Noterdaeme, JM TI A Lower Hybrid Current Drive System for ITER and High Power CW Klystron Development SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower Hybrid Current Drive; ITER; Klystron ID STEADY-STATE SCENARIOS; TORE-SUPRA; TOKAMAK AB A 20 MW/5GHz Lower Hybrid Current Drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q=5 steady state target. Though not part of currently planned procurement phase, it is now under consideration for an earlier delivery. An LH program has been initiated under EFDA, following the ITER STAC recommendation, to provide a pre-design document including the conceptual design, costing, possible procurement allocation, WBS and R&D needs. C1 [Hoang, G. T.; Becoulet, A.; Artaud, J. F.; Berger-By, G.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Giruzzi, G.; Goniche, M.; Guilhem, D.; Hillairet, J.; Imbeaux, F.; Litaudon, X.; Magne, R.; Peysson, Y.; Schneider, M.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Bae, Y. S.] NFRI, Daejeon, South Korea. [Beaumont, B.; Kazarian, F.; Tanga, A.] ITER Org, Paul Lez Durance, France. [Belo, J. H.; Bizarro, J. P. S.] Associacao Euratom, IST, Lisbon, Portugal. [Bonoli, P.; Parker, R.] MIT, PSFC, Cambridge, MA 02139 USA. [Cho, M. H.; Jeong, J. H.; Namkung, W.; Park, S. I.] Pohang Univ Sci & Technol, Pohang, South Korea. [Kessel, C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kim, S. H.; Lister, J. B.] Assoc Euratom Confederat Suisse, CRPP EPFL, Lausanne, Switzerland. [Kwak, J. G.] KAERI, Yuseong Gu, Daejeon 350600, South Korea. [Milora, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Mirizzi, F.; Tuccillo, A.] ENEA, EURATOM Assoc, Frascati, Italy. [Maggiora, R.; Milanesio, D.] Politecnico Torino, Dept Elect, Turin, Italy. [Noterdaeme, J. M.] Max Planck Inst Plasma Phys, EURATOM Assoc, Garching, Germany. [Rasmussen, D.] US ITER Project Off, Oak Ridge, TN 37830 USA. [Sharma, P. K.] IPR, Gandhinagar, India. [Wan, Y. X.] Chinese Acad Sci, IPP, Hefei, Peoples R China. RP Hoang, GT (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. RI Decker, Joan/B-7779-2010; Artaud, Jean-Francois/G-8480-2011; Belo, Jorge/C-7100-2012; Bizarro, Joao P. S./F-4124-2011; Imbeaux, Frederic/A-7614-2013; Artaud, Jean-Francois/J-2068-2012 OI Decker, Joan/0000-0003-0220-2653; Belo, Jorge/0000-0001-5866-3083; Bizarro, Joao P. S./0000-0002-0698-6259; FU European Communities; CEA-IRFM FX CEA-IRFM was partly supported by the European Communities under the contract of Association between EURATOM and CEA, within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. One of the authors (GTH) would like to thank Dr. K. Ushigusa for providing the information on the progress of LHCD (Fig. 1) NR 27 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 411 EP + DI 10.1063/1.3273781 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400086 ER PT S AU Meneghini, O Shiraiwa, S Beck, W Irby, J Koert, P Parker, RR Viera, R Wilson, J Wukitch, S AF Meneghini, O. Shiraiwa, S. Beck, W. Irby, J. Koert, P. Parker, R. R. Viera, R. Wilson, J. Wukitch, S. BE Bobkov, V Noterdaeme, JM TI Integrated numerical design of an innovative Lower Hybrid launcher for Alcator C-Mod SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Lower Hybrid launcher; Alcator C-Mod AB The new Alcator C-Mod LHCD system (LH2) is based on the concept of a four way splitter [1] which evenly splits the RF power among the four waveguides that compose one of the 16 columns of the LH grill. In this work several simulation tools have been used to study the LH2 coupling performance and the launched spectra when facing a plasma, numerically verifying the effectiveness of the four way splitter concept and further improving its design. The TOPLHA code has been used for modeling reflections at the antenna/plasma interface. TOPLHA results have been then coupled to the commercial code CST Microwave Studio to efficiently optimize the four way splitter geometry for several plasma scenarios. Subsequently, the COMSOL Multiphysics code has been used to self consistently take into account the electromagnetic-thermal-structural interactions. This comprehensive and predictive analysis has proven to be very valuable for understanding the behavior of the system when facing the plasma and has profoundly influenced several design choices of the LH2. According to the simulations, the final design ensures even poloidal power splitting for a wide range of plasma parameters, which ultimately results in an improvement of the wave coupling and an increased maximum operating power. C1 [Meneghini, O.; Shiraiwa, S.; Beck, W.; Irby, J.; Koert, P.; Parker, R. R.; Viera, R.; Wukitch, S.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wilson, J.] Princeton Plasma Phys Lab, Princeton, NJ 0850 USA. RP Meneghini, O (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 16 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 423 EP + DI 10.1063/1.3273783 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400088 ER PT S AU Caughman, JBO Cappa, A Garcia-Regana, JM Castejon, F Fernandez, A Rasmussen, DA Wilgen, JB AF Caughman, J. B. O. Cappa, A. Garcia-Regana, J. M. Castejon, F. Fernandez, A. Rasmussen, D. A. Wilgen, J. B. BE Bobkov, V Noterdaeme, JM TI Characterization of Electron Bernstein Wave Emission from the TJ-II Stellarator SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Electron Bernstein waves; stellarator; TJ-II AB Thermal electron emission at 28 GHz has been measured on the TJ-II Stellarator. The microwave emission from over-dense neutral beam heated plasmas, where the plasma density is greater than the ordinary-mode (O-mode) cutoff density (>1.2 x 10(19) m(-3)), is consistent with electron thermal emission from mode-converted electron Bernstein waves (EBW) via the Bernstein wave to extraordinary mode to ordinary mode scenario (B-X-O). Electron Bernstein wave emission (EBE) measurements are being made to determine the optimum launch angle for planned EBW heating experiments and also to provide an indication of electron temperature evolution in over-dense plasma. A movable focusing mirror located inside the vacuum vessel is used to measure the emission as a function of viewing angle, and measurements are compared with ray-tracing calculations using the TRUBA code [1]. C1 [Caughman, J. B. O.; Rasmussen, D. A.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Cappa, A.; Garcia-Regana, J. M.; Castejon, F.; Fernandez, A.] EURATOM CIEMAT, Lab Nacional Fusion, Madrid, Spain. RP Caughman, JBO (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Caughman, John/R-4889-2016; Cappa, Alvaro/C-5614-2017; OI Caughman, John/0000-0002-0609-1164; Cappa, Alvaro/0000-0002-2250-9209; Castejon, Francisco/0000-0002-4654-0542 FU U.S. Dept. of Energy [DE-AC05-00OR22725]; Ministerio de Educacion y Ciencia [ENE2004-06957] FX Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. A part of this work is performed under support of Spanish "Subdireccion General de Proyectos de Investigacion, Ministerio de Educacion y Ciencia" with reference ENE2004-06957. NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 461 EP + DI 10.1063/1.3273792 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400096 ER PT S AU Urban, J Decker, J Peysson, Y Preinhaelter, J Taylor, G Vahala, L Vahala, G AF Urban, J. Decker, J. Peysson, Y. Preinhaelter, J. Taylor, G. Vahala, L. Vahala, G. BE Bobkov, V Noterdaeme, JM TI Coupled Ray-tracing and Fokker-Planck EBW Modeling for Spherical Tokamaks SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Fusion; tokamak; heating; current drive; electron Bernstein wave; EBW ID CURRENT DRIVE AB The AMR (Antenna-Mode-conversion Ray-tracing) code [1, 2] has been recently coupled with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study EBW heating and current drive performance under spherical tokamak (ST) configurations-typical NSTX discharges are employed. EBW parameters, such as frequency, antenna position and direction, are varied and optimized for particular configurations and objectives. In this way, we show the versatility of EBWs. C1 [Urban, J.; Preinhaelter, J.] EURATOM IPP CR Assoc, Prague 18200, Czech Republic. [Decker, J.; Peysson, Y.] EURATOM CEA, Cadarache, France. [Vahala, L.] Old Dominion Univ, Norfolk, VA 23529 USA. [Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Vahala, G.] Coll William & Mary, Williamsburg, VA 23185 USA. RP Urban, J (reprint author), EURATOM IPP CR Assoc, Prague 18200, Czech Republic. RI Decker, Joan/B-7779-2010; Preinhaelter, Josef/H-1394-2014; OI Decker, Joan/0000-0003-0220-2653; Urban, Jakub/0000-0002-1796-3597 FU EFDA Fusion Researcher Fellowship; Czech Science Foundation [202/08/0419]; U.S. Department of Energy; EURATOM; Academy of Sciences of the Czech Republic FX The work was partly supported by EFDA Fusion Researcher Fellowship, by the grant no. 202/08/0419 of Czech Science Foundation, by U.S. Department of Energy, by EURATOM and by the Academy of Sciences of the Czech Republic. NR 9 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 465 EP + DI 10.1063/1.3273793 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400097 ER PT S AU Bae, YS Jeong, JH Park, SI Cho, MH Namkung, W Jackson, GL Joung, M Yoon, SW Kim, JH Hahn, SH Kim, WC Yang, HL Oh, YK Humphreys, D Walker, ML Gorelov, Y Leuer, JA Hyatt, AW Eidietis, NW Mueller, D Bak, JS Kwon, M AF Bae, Y. S. Jeong, J. H. Park, S. I. Cho, M. H. Namkung, W. Jackson, G. L. Joung, M. Yoon, S. W. Kim, J. H. Hahn, S. H. Kim, W. C. Yang, H. L. Oh, Y. K. Humphreys, D. Walker, M. L. Gorelov, Y. Leuer, J. A. Hyatt, A. W. Eidietis, N. W. Mueller, D. Bak, J. S. Kwon, M. CA KSTAR Team BE Bobkov, V Noterdaeme, JM TI ECH-assisted startup at KSTAR SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE KSTAR; ECH; Pre-ionization; Startup AB The electron cyclotron heating (ECH)-assisted startup was successful in the Korea Superconducting Tokamak Advanced Research (KSTAR) first plasma campaign completed in June, 2008. It was observed that the second harmonic EC wave of 0.35 MW was sufficient to achieve breakdown in the ECH pre-ionization phase, to allow burn through, and to sustain the plasma during the current ramp with a low loop voltage of 2.0 V. This corresponds to a toroidal electric field of 0.24 Vm(-1) at the innermost vacuum vessel wall (R = 1.3 m). Since there is no feedback control of the plasma radial position in the initial phase of the KSTAR first plasma campaign, wall contact caused the plasma current fall to zero soon after the ECH beam was turned off. Extending pulse duration of the ECH power to 190 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA/s and the pulse duration of 210 ms. Later in the first plasma campaign, the plasma was sustained up to 865 ms with the help of additional heating of 350-ms long ECH beam and with the help of the plasma radial position feedback control. The plasma current in the pre-ionization phase was observed and it is considered to be pressure-driven Pfirsch-Schluter current. C1 [Bae, Y. S.; Joung, M.; Yoon, S. W.; Kim, J. H.; Hahn, S. H.; Kim, W. C.; Yang, H. L.; Oh, Y. K.; Bak, J. S.; Kwon, M.; KSTAR Team] Natl Fus Res Inst, Gwahangno 113, Taejon 305333, South Korea. [Jeong, J. H.; Park, S. I.; Cho, M. H.; Namkung, W.] Pohang Univ Sci & Technol, Pohang 790784, South Korea. [Jackson, G. L.; Humphreys, D.; Walker, M. L.; Gorelov, Y.; Leuer, J. A.; Hyatt, A. W.; Eidietis, N. W.] Gen Atom, San Diego, CA 92121 USA. [Mueller, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bae, YS (reprint author), Natl Fus Res Inst, Gwahangno 113, Taejon 305333, South Korea. OI Walker, Michael/0000-0002-4341-994X NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 495 EP + DI 10.1063/1.3273800 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400103 ER PT S AU Green, DL Jaeger, EF Berry, LA Choi, M AF Green, D. L. Jaeger, E. F. Berry, L. A. Choi, M. CA rf-SciDAC Team BE Bobkov, V Noterdaeme, JM TI Reconstruction in 3D of the fast wave fields in ITER, DIII-D, C-Mod and NSTX, including the coupling of full-wave and particle codes to resolve finite orbit effects SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke ID HEATED PLASMAS; ABSORPTION; TOKAMAK; SIMULATION; TRANSPORT AB The rf-SciDAC collaboration is developing computer simulations to predict the damping of radio frequency (rf) waves in fusion plasmas. Here we extend self-consistent quasi-linear calculations of ion cyclotron resonant heating to include the finite drift of ions from magnetic flux surfaces and rf induced spatial transport. The all-orders spectral wave solver AORSA is iteratively coupled with a particle based update of the plasma distribution function using a quasi-linear diffusion tersor representative of the (k) over right arrow spectrum. Initial results are presented for a high power minority heating scenario on the Alcator C-Mod tokamak and a high harmonic beam heating scenario on DIII-D. Finite orbit effects are shown to give a less peaked perpendicular energy profile and rf induced transport. C1 [Green, D. L.; Jaeger, E. F.; Berry, L. A.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Choi, M.] Gen Atom, San Diego, CA 92186 USA. RP Green, DL (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. FU SciDAC; Oak Ridge National Laboratory; US DOE [DE-AC-5-00OR22725] FX This work was sponsored by SciDAC and the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the US DOE under contract DE-AC-5-00OR22725. NR 23 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 569 EP + DI 10.1063/1.3273815 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400118 ER PT S AU Choi, M Chan, VS Green, D Heidbrink, WW Jaeger, EF Berry, LA AF Choi, M. Chan, V. S. Green, D. Heidbrink, W. W. Jaeger, E. F. Berry, L. A. CA RF SciDAC Team BE Bobkov, V Noterdaeme, JM TI Simulation of the DIII-D Beam Ion Heating Experiment Using A Monte-Carlo Particle Code Combined With a Full Wave Code SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Ion cyclotron heating; high harmonics AB To fully account for finite drift orbit effect of fast ions on wave-particle interaction in ion-cyclotron radio frequency (ICRF) beating experiments in tokamaks, the 5-D finite orbit Monte-Carlo plasma distribution solver ORBIT-RF is coupled with the 2-D full wave code AORSA in a self-consistent way. Comparison results of ORBIT-RF/AORSA simulation against fast-ion D-alpha (FIDA) measurement of fast-ion distribution as well as CQL3D/ray-tracing simulation with zero-orbit approximation in the DIII-D ICRF wave beam-ion acceleration experiment are presented. Preliminary ORBIT-RF/AORSA results suggest that finite orbit width effects may explain the outward radial shift of the spatial profile measured by FIDA. C1 [Choi, M.; Chan, V. S.] Gen Atom, San Diego, CA 92121 USA. [Green, D.; Jaeger, E. F.; Berry, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA USA. RP Choi, M (reprint author), Gen Atom, San Diego, CA 92121 USA. FU US Department of Energy [DE-FG03- 95ER54309, DE-AC05-00OR22725, SC-G903402.] FX This work was supported by the US Department of Energy under DE-FG03- 95ER54309, DE-AC05-00OR22725, and SC-G903402. NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 577 EP + DI 10.1063/1.3273816 PG 2 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400119 ER PT S AU Valeo, EJ Kramer, GJ Nazikian, R AF Valeo, E. J. Kramer, G. J. Nazikian, R. BE Bobkov, V Noterdaeme, JM TI 3D Full-Wave Simulations of Reflectometry SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequence Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke DE Plasma Reflectometry Simulation ID MICROWAVE REFLECTOMETRY; FUSION PLASMAS; FLUCTUATIONS; SENSITIVITY AB The characterization of fluctuation amplitudes, spatial correlation lengths, and wave vectors through measurement of the correlation properties of reflected microwave diagnostic signals depends on a quantitaive knowledge of propagation in toroidal, magnetized plasma. The disparity between the radiation wavelength (mm) and the plasma size makes full wave computations challenging. We extend a two dimensional model [1] which computes propagation in a poloidal plane to include toroidal variation. The model reduces the computational burden compared to that of solving the full-wave equation everywhere-but retains both diffraction and refraction-by merging a description appropriate to the under dense plasma (paraxial) with the required full-wave description near the reflection layer. Initial results for ITER-like profiles demonstrate the utility of the tool as an aid in specifying antenna positioning and setting sensitivity requirements. C1 [Valeo, E. J.; Kramer, G. J.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Valeo, EJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 10 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 649 EP 652 DI 10.1063/1.3273835 PG 4 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400137 ER PT S AU Goulding, RH Chen, G Meitner, S Baity, FW Caughman, JBO Owen, L AF Goulding, R. H. Chen, G. Meitner, S. Baity, F. W. Caughman, J. B. O. Owen, L. BE Bobkov, V Noterdaeme, JM TI Design of a high particle flux hydrogen helicon plasma source for used in plasma materials interaction studies SO RADIO FREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Topical Conference on Radio Frequency Power in Plasmas CY JUN 24-26, 2009 CL Ghent, BELGIUM SP Spinner GmbH, ITER Belgium, SCK CEN, Taylor & Francis Grp, Thomson Broadcast & Multimedia, Univ Gent, City Gent, Chocolaterie Van Hecke ID PSI AB Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n(e) >= 10(19)m(-3), T-e = 4-10 eV, particle flux Gamma(p) > 10(23) m(-3) s(-1), and magnetic field strength |B| up to I T in the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10 - 26 MHz, and power levels up to similar to 100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption. C1 [Goulding, R. H.; Chen, G.; Meitner, S.; Baity, F. W.; Caughman, J. B. O.; Owen, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Goulding, RH (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RI Chen, Guangye /K-3192-2012; Goulding, Richard/C-5982-2016; Caughman, John/R-4889-2016 OI Goulding, Richard/0000-0002-1776-7983; Caughman, John/0000-0002-0609-1164 NR 9 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0753-4 J9 AIP CONF PROC PY 2009 VL 1187 BP 667 EP 670 DI 10.1063/1.3273839 PG 4 WC Physics, Fluids & Plasmas SC Physics GA BOB00 UT WOS:000276069400140 ER PT J AU Wagner, AJ Guilderson, TP Slowey, NC Cole, JE AF Wagner, Amy J. Guilderson, Thomas P. Slowey, Niall C. Cole, Julia E. TI PRE-BOMB SURFACE WATER RADIOCARBON OF THE GULF OF MEXICO AND CARIBBEAN AS RECORDED IN HERMATYPIC CORALS SO RADIOCARBON LA English DT Article ID CAL KYR BP; AGE CALIBRATION; LOOP CURRENT; MONTASTREA-ANNULARIS; MARINE SAMPLES; C-14; VARIABILITY; FLORIDA; RINGS; BANK AB Radiocarbon measurements of hermatypic corals from 4 sites in the Gulf of Mexico (GOM) and Caribbean Sea were made to estimate the marine (14)C reservoir age (R) and the marine regional correction (Delta R) for this region. Coral skeletal material from the Flower Garden Banks (northern GOM continental shelf), Veracruz, Mexico, and 2 reefs from the Cariaco Basin, Venezuela, were analyzed. Annual and subannual samples from 1945-1955 were milled and (14)C composition was determined. In the Gulf of Mexico, average coral Delta(14)C is -52.6 +/- 0.7 parts per thousand and average Delta(14)C for the Cariaco Basin corals is -53.4 +/- 0.8 parts per thousand. Average values for the marine reservoir age and Delta R are computed with this data and compared with results derived from previous measurements made in the same regions. These values are important in calibrating the (14)C ages of carbonate samples from the area. C1 [Wagner, Amy J.; Slowey, Niall C.] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Cole, Julia E.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Wagner, AJ (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. EM amy.wagner@noaa.gov RI Wagner, Amy/A-7008-2009 FU Department of Energy Global Change Education Program; A Wagner and Texas Sea [02-404333]; US Department of Energy by the University of California Lawrence Livermore National Laboratory [W-7405-Eng-48] FX The authors would like to acknowledge the Department of Energy Global Change Education Program for funding A Wagner and Texas Sea Grant for support under Grant #02-404333. 14C analyses were performed under the auspices of the US Department of Energy by the University of California Lawrence Livermore National Laboratory (contract W-7405-Eng-48). We thank K Deslarzes for providing the Flower Garden Banks and Veracruz coral cores for analysis and P Zermefio and D Kurdyla for their assistance with preparation of graphite targets. We also thank J McGeehin and T Jull for their thoughtful reviews and comments on an earlier version of this manuscript. Data will be digitally archived at NOAA's World Data Center for Paleoclimatology (Boulder, Colorado, USA) and will be submitted to the CALIB Marine Reservoir Database (Queen's University, Belfast). NR 28 TC 8 Z9 8 U1 0 U2 4 PU UNIV ARIZONA DEPT GEOSCIENCES PI TUCSON PA RADIOCARBON 4717 E FORT LOWELL RD, TUCSON, AZ 85712 USA SN 0033-8222 J9 RADIOCARBON JI Radiocarbon PY 2009 VL 51 IS 3 BP 947 EP 954 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 544PE UT WOS:000273669700008 ER PT J AU Reimer, PJ Baillie, MGL Bard, E Bayliss, A Beck, JW Blackwell, PG Ramsey, CB Buck, CE Burr, GS Edwards, RL Friedrich, M Grootes, PM Guilderson, TP Hajdas, I Heaton, TJ Hogg, AG Hughen, KA Kaiser, KF Kromer, B McCormac, FG Manning, SW Reimer, RW Richards, DA Southon, JR Talamo, S Turney, CSM van der Plicht, J Weyhenmeye, CE AF Reimer, P. J. Baillie, M. G. L. Bard, E. Bayliss, A. Beck, J. W. Blackwell, P. G. Ramsey, C. Bronk Buck, C. E. Burr, G. S. Edwards, R. L. Friedrich, M. Grootes, P. M. Guilderson, T. P. Hajdas, I. Heaton, T. J. Hogg, A. G. Hughen, K. A. Kaiser, K. F. Kromer, B. McCormac, F. G. Manning, S. W. Reimer, R. W. Richards, D. A. Southon, J. R. Talamo, S. Turney, C. S. M. van der Plicht, J. Weyhenmeye, C. E. TI INTCAL09 AND MARINE09 RADIOCARBON AGE CALIBRATION CURVES, 0-50,000 YEARS CAL BP SO RADIOCARBON LA English DT Review ID PRECISION DECADAL CALIBRATION; KAURI AGATHIS-AUSTRALIS; LAST GLACIAL PERIOD; PAST 50,000 YEARS; PAPUA-NEW-GUINEA; DEEP-SEA CORALS; TIME-SCALE; C-14 CALIBRATION; ICE-CORE; KYR BP AB The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the (14)C and calendar timescales as established in 2002. No change was made to the curves from 0-12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and; ire available in the Supplemental Material at www.radiocarbon.org. C1 [Reimer, P. J.; Baillie, M. G. L.; McCormac, F. G.; Reimer, R. W.] Queens Univ Belfast, Sch Geog Archaeol & Pa Aeoecol, CHRONO Ctr Climate Environm & Chronol, Belfast BT7 1NN, Antrim, North Ireland. [Bard, E.] Univ Paul Cezanne Aix Marseille, Coll France, CNRS, IRD,CEREGE, F-13545 Aix En Provence 4, France. [Bayliss, A.] English Heritage, London EC1N 2ST, England. [Beck, J. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Blackwell, P. G.; Buck, C. E.; Heaton, T. J.] Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England. [Ramsey, C. Bronk] Univ Oxford Archaeol & Hist Art Res Lab, Oxford OX1 3QY, England. [Burr, G. S.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Edwards, R. L.] Univ Minnesota, Dept Geol & Geophys, Minneapolis, MN 55455 USA. [Friedrich, M.] Univ Hohenheim, Inst Bot 210, D-70593 Stuttgart, Germany. [Friedrich, M.; Kromer, B.] Heidelberger Akad Wissensch, D-69120 Heidelberg, Germany. [Grootes, P. M.] Univ Kiel, Leibniz Lab, D-24098 Kiel, Germany. [Guilderson, T. P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, T. P.] Univ Calif Santa Cruz, Ocean Sci Dept, Santa Cruz, CA 95064 USA. [Hajdas, I.] ETH, CH-8092 Zurich, Switzerland. [Hogg, A. G.] Univ Waikato, Radiocarbon Dating Lab, Hamilton, New Zealand. [Hughen, K. A.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Kaiser, K. F.] Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland. [Kaiser, K. F.] Univ Zurich Irchel, Dept Geog, CH-8057 Zurich, Switzerland. [Manning, S. W.] Cornell Univ, Cornell Tree Ring Lab, Malcolm & Carolyn Wiener Lab Aegean & Near E Dend, Ithaca, NY 14853 USA. [Richards, D. A.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Southon, J. R.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Talamo, S.] Max Planck Inst Evolutionary Anthropol, Dept Human Evolut, D-04103 Leipzig, Germany. [Turney, C. S. M.] Univ Exeter, Sch Geog, Exeter EX4 4RJ, Devon, England. [van der Plicht, J.] Univ Groningen, Ctr Isotopen Onderzock, NL-9747 AG Groningen, Netherlands. [van der Plicht, J.] Leiden Univ, Fac Archaeol, NL-2300 RA Leiden, Netherlands. [Weyhenmeye, C. E.] Syracuse Univ, Dept Earth Sci, Syracuse, NY 13244 USA. RP Reimer, PJ (reprint author), Queens Univ Belfast, Sch Geog Archaeol & Pa Aeoecol, CHRONO Ctr Climate Environm & Chronol, Belfast BT7 1NN, Antrim, North Ireland. RI Grootes, Pieter/F-4952-2011; Richards, David/B-7298-2008; Bronk Ramsey, Christopher/A-3277-2012; van der Plicht, Johannes/B-9994-2013; Bard, Edouard/G-7717-2014; Hajdas, Irka/C-6696-2011; Reimer, Paula/I-5915-2015; kohki, sowa/D-2955-2011; Blackwell, Paul/F-2885-2017; OI Richards, David/0000-0001-8389-8079; Blackwell, Paul/0000-0002-3141-4914; Turney, Chris/0000-0001-6733-0993 FU UK Natural Environment Research Council [NE/E018807/1]; IGBP PAGES FX We would like to acknowledge support for this project from the UK Natural Environment Research Council NE/E018807/1 and IGBP PAGES (Past Global Changes) for travel support for the paleoscientists on the IntCal Oversight Committee. Dr Maarten Blaauw has provided useful idea! and simulations to aid decisions about the curve construction. Drs Thorsten Kiefer and William Austin provided thorough and constructive reviews for which we are grateful. NR 116 TC 3162 Z9 3265 U1 23 U2 223 PU UNIV ARIZONA DEPT GEOSCIENCES PI TUCSON PA RADIOCARBON 4717 E FORT LOWELL RD, TUCSON, AZ 85712 USA SN 0033-8222 J9 RADIOCARBON JI Radiocarbon PY 2009 VL 51 IS 4 BP 1111 EP 1150 PG 40 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 554AI UT WOS:000274407500002 ER PT J AU Gates, JM Dragojevic, I Dvorak, J Ellison, PA Gregorich, KE Stavsetra, L Nitsche, H AF Gates, J. M. Dragojevic, I. Dvorak, J. Ellison, P. A. Gregorich, K. E. Stavsetra, L. Nitsche, H. TI Excitation function for the Se-74(O-18,p3n)Nb-88g reaction SO RADIOCHIMICA ACTA LA English DT Article DE Production of Nb-88; Se-74(O-18,p3n); Excitation function; Berkeley gas-filled separator (BGS) ID SHORT-LIVED ISOTOPES; NUCLEAR-REACTIONS; HEAVY-ELEMENTS; DECAY; CHEMISTRY AB The Se-74(O-18, p3n)Nb-88g excitation function was measured and a maximum cross section of 495 +/- 5 mb was observed at and O-18 energy of 74.0 MeV. Experimental cross sections were compared to theoretical calculations using the computer code ALICE-91 and the values were found to be in good agreement. The half-life of Nb-88g was determined to be around 14.56 +/- 0.11 min. C1 [Gates, J. M.; Dragojevic, I.; Dvorak, J.; Ellison, P. A.; Gregorich, K. E.; Stavsetra, L.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Gates, J. M.; Dragojevic, I.; Ellison, P. A.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Gates, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jmgates@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank the staff of the 88-inch cyclotron at Lawrence Berkeley National Laboratory for providing the 18O beams. The EVAPOR calculations for the 18O-based reactions were carried out by H. Mahmud, whom we gratefully acknowledge. We would also like to thank Ch. E. Dullmann for the HIVAP calculations. This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, US Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 2 Z9 2 U1 0 U2 3 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 2 BP 79 EP 82 DI 10.1524/ract.2009.1582 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 532ES UT WOS:000272728800003 ER PT J AU Gates, JM Sudowe, R Stavsetra, L Ali, MN Calvert, MG Dragojevic, I Ellison, PA Garcia, MA Gharibyan, N Gregorich, KE Nelson, SL Neumann, SH Parsons-Moss, T Nitsche, H AF Gates, J. M. Sudowe, R. Stavsetra, L. Ali, M. N. Calvert, M. G. Dragojevic, I. Ellison, P. A. Garcia, M. A. Gharibyan, N. Gregorich, K. E. Nelson, S. L. Neumann, S. H. Parsons-Moss, T. Nitsche, H. TI Extraction of niobium and tantalum isotopes using organophosphorus compounds. Part I - Extraction of "carrier-free" metal concentrations from HCl solutions SO RADIOCHIMICA ACTA LA English DT Article DE Niobium; Tantalum; Liquid-liquid extraction; HDEHP; BEHP; Kinetics ID BIS(2-ETHYL HEXYL)-ORTHOPHOSPHORIC ACID; INORGANIC EXTRACTION; SOLUTION CHEMISTRY; HYDROCHLORIC ACID; ELEMENT 105; SYSTEM; NB; TA; HYDROLYSIS; SEPARATION AB The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments is to find a system that demonstrates selectivity between the members of group five of the Periodic Table and is also suitable for the dubnium (Db, Z = 105). Experiments were performed at the trace level (10(-16) M Nb or Ta) using hydrochloric acid with concentrations ranging from 1-11 M and short-lived isotopes of Nb and Ta produced in nuclear reactions. When HDEHP was used as the extractant, the Nb extraction yield decreased with increasing acid concentrations above 6 M, while the amount of Ta extracted remained over 75% for all acid concentrations studied. Tantalum was found to be extracted by BEHP at acid concentrations above 6 M while niobium was not significantly extracted. The data obtained are used as the basis to discuss the speciation of Nb and Ta under the conditions studied and to evaluate possible extraction mechanisms. C1 [Gates, J. M.; Sudowe, R.; Stavsetra, L.; Calvert, M. G.; Dragojevic, I.; Ellison, P. A.; Garcia, M. A.; Gregorich, K. E.; Nelson, S. L.; Parsons-Moss, T.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Gates, J. M.; Ali, M. N.; Calvert, M. G.; Dragojevic, I.; Ellison, P. A.; Garcia, M. A.; Gharibyan, N.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumann, S. H.] Aachen Univ Appl Sci, Dept Appl Sci & Technol, D-52428 Julich, Germany. RP Gates, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jmgates@lbl.gov RI Garcia, Mitch/G-2413-2010; Ali, Mazhar/C-6473-2013 OI Ali, Mazhar/0000-0002-1129-6105 FU U.S. Department of Energy [DE-AC00-05CH11231] FX The authors gratefully acknowledge the staff of the 88-inch cyclotron at Lawrence Berkeley National Lahoratory for providing the 51V and 18O beams. Financial support was provided by the Director, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy, under contract DE-AC00-05CH11231. NR 21 TC 1 Z9 1 U1 2 U2 10 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 3 BP 167 EP 172 DI 10.1524/ract.2009.1583 PG 6 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 437LD UT WOS:000265488100007 ER PT J AU Gates, JM Stavsetra, L Sudowe, R Ali, MN Calvert, MG Draogjevic, I Dvorak, J Dvorakova, Z Ellison, PA Garcia, MA Gregorich, KE Nelson, SL Parsons-Moss, T Nitsche, H AF Gates, J. M. Stavsetra, L. Sudowe, R. Ali, M. N. Calvert, M. G. Draogjevic, I. Dvorak, J. Dvorakova, Z. Ellison, P. A. Garcia, M. A. Gregorich, K. E. Nelson, S. L. Parsons-Moss, T. Nitsche, H. TI Extraction of niobium and tantalum isotopes using organophosphorus compounds. Part II - Extraction of "carrier-free" concentrations from HCl/LiCl solutions SO RADIOCHIMICA ACTA LA English DT Article DE Niobium; Tantalum; Liquid-liquid extraction; HDEHP; BEHP; Kinetics ID SOLUTION CHEMISTRY; ELEMENT 105; TA; NB; HYDROLYSIS; HA AB We have studied the extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) as a function of hydrogen ion (H(+)) concentration. The amount of niobium extracted by both HDEHP and BEHP decreased with increasing hydrogen ion concentration. Equilibrium with niobium occured within 10s at all hydrogen ion concentrations for both systems. For tantalum, the amount extracted increased until 6-9 M H(+), before decreasing at higher H(+) concentrations when extracted by both HDEHP and BEHR. Equilibrium occured within 10 s at two H(+) concentrations when extracted by HDEHP. The data obtained are used as the basis to discuss the speciation of Nb and Ta under the conditions studied and to evaluate possible extraction mechanisms. C1 [Gates, J. M.; Stavsetra, L.; Sudowe, R.; Calvert, M. G.; Draogjevic, I.; Dvorak, J.; Ellison, P. A.; Garcia, M. A.; Gregorich, K. E.; Nelson, S. L.; Parsons-Moss, T.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Gates, J. M.; Ali, M. N.; Calvert, M. G.; Draogjevic, I.; Dvorakova, Z.; Ellison, P. A.; Garcia, M. A.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Gates, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jmgates@lbl.gov RI Garcia, Mitch/G-2413-2010; Ali, Mazhar/C-6473-2013 OI Ali, Mazhar/0000-0002-1129-6105 FU US Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge the staff of the 88-inch cyclotron at Lawrence Berkeley National Laboratory for providing the 51V and 18O beams. This work was supported by the Director, Office of Science. Office of High Energy and Nuclear Physics, Division of Nuclear Physics, US Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 0 Z9 0 U1 1 U2 6 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 3 BP 173 EP 176 DI 10.1524/ract.2009.1584 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 437LD UT WOS:000265488100008 ER PT J AU Dziewinska, KM Peters, AM LaVerne, JA Martinez, P Dziewinski, JJ Davenhall, LB Rajesh, P AF Dziewinska, K. M. Peters, A. M. LaVerne, J. A. Martinez, P. Dziewinski, J. J. Davenhall, L. B. Rajesh, P. TI In search of an optimum plutonium density measurement fluid SO RADIOCHIMICA ACTA LA English DT Article; Proceedings Paper CT 5th Conference on Plutonium Futures - the Science CY JUL 07-11, 2008 CL Dijon, FRANCE SP Atom Weapons Establish UK, French Commiss Energie Atom, European Commiss, Int Transuranium Elements, Los Alamos Natl Lab, Univ Calif, Lawrence Livermore Natl Lab DE Plutonium; Density measurements; Corrosion; Radiolysis AB Density measurements of plutonium metal and its alloys are performed at Los Alamos National Laboratory (LANL) using a technique based on the Archimedes principle. The goal is to find and characterize a fluid for density determination of large objects made of plutonium to replace the currently used monobromobenzene. Physical and chemical properties must be considered while selecting the fluid. Chemical properties of the fluid must ensure low corrosion rates and good resistance to radiological decomposition. The study was carried on to evaluate the corrosion rates of Pu metal cause by FC-43 and the FC-43 decomposition products of radiolysis. The results of these studies proved favourable for this application. The evaluation of the surface reactions between FC-43 and Pit metal will be conducted in the near future. C1 [Dziewinska, K. M.; Peters, A. M.; Martinez, P.; Dziewinski, J. J.; Davenhall, L. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [LaVerne, J. A.; Rajesh, P.] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. RP Dziewinska, KM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kdziewinska@lanl.gov NR 2 TC 1 Z9 1 U1 0 U2 2 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 4-5 BP 213 EP 217 DI 10.1524/ract.2009.1597 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 457XZ UT WOS:000266971400007 ER PT J AU Wilkerson, MP Berg, JM AF Wilkerson, M. P. Berg, J. M. TI Excitation spectra of near-infrared photoluminescence from Np(VI) in Cs2U(Np)O2Cl4 SO RADIOCHIMICA ACTA LA English DT Article; Proceedings Paper CT 5th Conference on Plutonium Futures - the Science CY JUL 07-11, 2008 CL Dijon, FRANCE SP Atom Weapons Establish UK, French Commiss Energie Atom, European Commiss, Int Transuranium Elements, Los Alamos Natl Lab, Univ Calif Lawrence Livermore Natl Lab DE Actinides; Luminescence; Near-infrared; Neptunium; Neptunyl; Uranium ID ELECTRONIC-STRUCTURE; ACTINYL IONS; INTRA-5F FLUORESCENCE; TRANSITIONS; CS2UO2CL4 AB Excitation spectra between 13200 and 21275 cm(-1) at 75 K are reported for single crystals of Cs2U(Np)O2Cl4. These excitation spectra are collected from an infra-5f near-infrared luminescence origin of the neptunyl ion, and the energies and intensities of the spectral transitions are consistent with 4.2 K plane-polarized absorption spectra reported by Denning. C1 [Wilkerson, M. P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Berg, J. M.] Los Alamos Natl Lab, Plutonium Mfg & Technol Div, Los Alamos, NM 87545 USA. RP Wilkerson, MP (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM mpw@lanl.gov OI Berg, John/0000-0002-6533-3573 NR 18 TC 6 Z9 6 U1 0 U2 5 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 4-5 SI SI BP 223 EP 226 DI 10.1524/ract.2009.1599 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 457XZ UT WOS:000266971400009 ER PT J AU Gelis, AV Vandegrift, GF Bakel, A Bowers, DL Hebden, AS Pereira, C Regalbuto, M AF Gelis, A. V. Vandegrift, G. F. Bakel, A. Bowers, D. L. Hebden, A. S. Pereira, C. Regalbuto, M. TI Extraction behaviour of actinides and lanthanides in TALSPEAK, TRUEX and NPEX processes of UREX SO RADIOCHIMICA ACTA LA English DT Article; Proceedings Paper CT 5th Conference on Plutonium Futures - the Science CY JUL 07-11, 2008 CL Dijon, FRANCE SP Atom Weapons Establish UK, French Commiss Energie Atom, European Commiss, Int Transuranium Elements, Los Alamos Natl Lab, Univ Calif, Lawrence Livermore Natl Lab DE Actinides; Lanthanides; TALSPEAK; NPEX; Separation; Pu; Np ID ACID; PURIFICATION; SEPARATION AB Bench-scale studies to determine the extraction behavior of Pu, Np, Am and lanthanides with the organophosphorus extractants TBP, CMPO and HDEHP have been carried out. Based on the results obtained using actual spent nuclear fuel solutions, enhancements to the NPEX, TRUER and TAL-SPEAK processes have been successful. In NPEX, > 99.94% of both Np and Pu were separated from the fission products. In TRUER, essentially complete recovery of the actinides (An) and the lanthanides (Ln) was achieved. In TALSPEAK, the complete separation of Pu, Np and Am from the lanthanides was demonstrated several times under various process conditions. The recovery of transuranics (TRU), including Am and Cm, is nearly 100% (below detection limit in the Ln stream), while the total recovery of Ln in the product stream exceeded 99.97%. C1 [Gelis, A. V.; Vandegrift, G. F.; Bakel, A.; Bowers, D. L.; Hebden, A. S.; Pereira, C.; Regalbuto, M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gelis, AV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM guelis@anl.gov NR 7 TC 21 Z9 21 U1 4 U2 17 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 4-5 BP 231 EP 232 DI 10.1524/ract.2009.1601 PG 2 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 457XZ UT WOS:000266971400011 ER PT J AU Lapka, JL Paulenova, A Alyapyshev, MY Babain, VA Herbst, RS Law, JD AF Lapka, J. L. Paulenova, A. Alyapyshev, M. Yu Babain, V. A. Herbst, R. S. Law, J. D. TI Extraction of uranium(VI) with diamides of dipicolinic acid from nitric acid solutions SO RADIOCHIMICA ACTA LA English DT Article DE UNEX; Extraction; Dipicolinic acid; Uranium; FS-13; Nitric acid ID RADIOACTIVE-WASTES; SOLVENT-EXTRACTION; SEPARATION; ACTINIDES; AMIDES; U(VI); LANTHANIDES; CHEMISTRY; TH(IV); TODGA AB Three structural isomers of diamides of dipicolinic acid (N,N'-diethyl-N,N'-ditolyi-dipicolinamide, EtTDPA) with varying position of the methyl group on the tolyl ring have been synthesized and investigated on extractability toward U(VI). The polar diluent FS-13 was used, and distribution ratios of U(VI) were studied as a function of nitric acid, ligand, and lithium nitrate concentrations. Extractability of uranium was shown to increase with increased concentration of nitrate and ligands. Infrared spectra of organic extraction phases indicate that nitric acid is coextracted as part of the neutral metal-ligand complex with U(VI) and EtTDPA through hydrogen bonding with the carbonyl group in the amide moiety. C1 [Lapka, J. L.; Paulenova, A.; Alyapyshev, M. Yu] Oregon State Univ, Corvallis, OR 97331 USA. [Alyapyshev, M. Yu; Babain, V. A.] VG Khlopin Radium Inst, St Petersburg 197022, Russia. [Herbst, R. S.; Law, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Paulenova, A (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. EM alena.paulenova@oregonstate.edu OI Law, Jack/0000-0001-7085-7542 FU INL Laboratory Directed Research and Development Program [NL 130A] FX This work Was funded by INL Laboratory Directed Research and Development Program NL 130A. NR 32 TC 35 Z9 36 U1 2 U2 18 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 6 BP 291 EP 296 DI 10.1524/ract.2009.1588 PG 6 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 475AC UT WOS:000268325400004 ER PT J AU Di Giandomenico, MV Le Naour, C Simoni, E Guillaumont, D Moisy, P Hennig, C Conradson, SD Den Auwer, C AF Di Giandomenico, M. V. Le Naour, C. Simoni, E. Guillaumont, D. Moisy, Ph. Hennig, C. Conradson, S. D. Den Auwer, C. TI Structure of early actinides(V) in acidic solutions SO RADIOCHIMICA ACTA LA English DT Article; Proceedings Paper CT 3rd Workshop on Chemical Speciation CY JAN, 2008 CL Montpellier, FRANCE DE Actinide; Protactinium; EXAFS; Quantum chemistry ID ABSORPTION FINE-STRUCTURE; AQUEOUS-SOLUTION; ELECTRON-DIFFRACTION; APPROXIMATION; SPECTROSCOPY; COMPLEXES; ENERGY; PROTACTINIUM(V); URANIUM(VI); OXOCATIONS AB Protactinium occupies a key position in the actinide series between thorium and uranium. In aqueous acidic solution, it is stable at oxidation state (V), occurring either as an oxocation or as a naked ion, depending on the media. Very few structural information on the hydration sphere of Pa(V) in acidic medium is available, in particular in hydrofluoric acid. Combined EXAFS and theoretical calculations have been used in this work to characterize the protactinium coordination sphere at various HF concentrations. The correlation of the XAFS data with quantum chemical calculations provides complementary structural and electronic models from ab initio techniques. At HF concentrations from 0.5 to 0.05 M, both theoretical calculations and EXAFS data suggest that the protactinium coordination sphere is mainly composed of fluoride ions. At the lowest HF concentration, the occurrence of a monooxo bond is observed with EXAFS, in agreement with the literature. A comparison of these data with related neptunium(V) and plutonium(V) diooxocations in perchloric acid is also presented. C1 [Guillaumont, D.; Moisy, Ph.; Den Auwer, C.] CEA Marcoule, DEN DRCP SCPS, F-30207 Bagnols Sur Ceze, France. [Di Giandomenico, M. V.; Le Naour, C.; Simoni, E.] Univ Paris 11, CNRS, Inst Phys Nucl, F-91406 Orsay, France. [Hennig, C.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Conradson, S. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Den Auwer, C (reprint author), CEA Marcoule, DEN DRCP SCPS, F-30207 Bagnols Sur Ceze, France. EM christophe.denauwer@cea.fr RI The Rossendorf Beamline at ESRF, ROBL/A-2586-2011; Guillaumont, Dominique/H-2508-2015; Moisy, Philippe/H-2477-2015 OI Guillaumont, Dominique/0000-0002-9329-5623; Moisy, Philippe/0000-0002-9331-0846 NR 35 TC 15 Z9 15 U1 6 U2 36 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 7 BP 347 EP 353 DI 10.1524/ract.2009.1620 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 479DV UT WOS:000268640800003 ER PT J AU Dullmann, CE Gregorich, KE Pang, GK Dragojevic, I Eichler, R Folden, CM Garcia, MA Gates, JM Hoffman, DC Nelson, SL Sudowe, R Nitsche, H AF Duellmann, Ch. E. Gregorich, K. E. Pang, G. K. Dragojevic, I. Eichler, R. Folden, C. M., III Garcia, M. A. Gates, J. M. Hoffman, D. C. Nelson, S. L. Sudowe, R. Nitsche, H. TI Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes SO RADIOCHIMICA ACTA LA English DT Article DE Zirconium; Hafnium; Hexafluoroacetylacetonates; Thermochromatography; Isothermal gas chromatogaphy; Physical preseparation ID PHYSICAL PRESEPARATION; CHEMISTRY EXPERIMENTS; PHASE CHROMATOGRAPHY; VAPOR-DEPOSITION; METAL-COMPLEXES; BETA-DIKETONES; JET SYSTEM; SEPARATION; ELEMENTS; HF AB Volatile metal complexes of the group 4 elements Zr and Hf with hexafluoroacetylacetonate (hfa) have been studied using short-lived radioisotopes of the metals. The new technique of physical preseparation has been employed where reaction products from heavy-ion induced fusion reactions are isolated in a physical recoil separator - the Berkeley Gas-filled Separator in our work - and made available for chemistry ex periments. Formation and decomposition of M(hfa)(4) (M = Zr, Hf) has been observed and the interaction strength with a fluorinated ethylene propylene. (FEP) Teflon surface has been studied. From the results of isothermal chromatography experiments, an adsorption enthalpy of -Delta H(a) = (57 +/- 3) kJ/mol was deduced. In optimization experiments, the time for formation of the complex and its transport to a counting setup installed outside of the irradiation cave was minimized and values of roughly one minute have been reached. The half-life of (165)Hf, for which conflicting values appear in the literature, was measured to be (73.9 +/- 0.8)s. Provided that samples suitable for alpha-spectroscopy can be prepared, the investigation of rutherfordium (Rf), the transactinide member of group 4, appears possible. In the future, based on the studies presented here, it appears possible to investigate short-lived single atoms produced with low rates (e.g., transactinide isotopes) in completely new chemical systems, e.g., as metal complexes with organic ligands as used here or as organometallic compounds. C1 [Duellmann, Ch. E.; Gregorich, K. E.; Pang, G. K.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Hoffman, D. C.; Sudowe, R.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Duellmann, Ch. E.; Pang, G. K.; Dragojevic, I.; Folden, C. M., III; Garcia, M. A.; Gates, J. M.; Hoffman, D. C.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Duellmann, Ch. E.] Gesell Schwerionenforsch mbH, GSI Helmholtzzentrum, Kernchem, D-64291 Darmstadt, Germany. [Eichler, R.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Eichler, R.] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. RP Dullmann, CE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM c.e.duellmann@gsi.de RI Garcia, Mitch/G-2413-2010; Eichler, Robert/G-5130-2011; Folden, Charles/F-1033-2015 OI Folden, Charles/0000-0002-2814-3762 FU Swiss National Science Foundation; Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC03-76SF00098, DE-AC02-05CH11231] FX We thank Yong Hee Chung, Hassan Mahmud, Sarah Gallaher, and Peter Zielinski for their help with the experiments and Wayne Lukens for interesting discussions. The mechanical shop at the 88-Inch Cyclotron built much of the experimental equipment which we gratefully acknowledge. We also thank the staff of the LBNL 88-Inch Cyclotron for providing the stable "cocktail" beams. R. Dressler made us aware of the controversial situation concerning the reported half-lives of 165Hf. These studies were supported in part by the Swiss National Science Foundation and the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, and the Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy under Contract Nos. DE-AC03-76SF00098 and DE-AC02-05CH11231. NR 75 TC 14 Z9 14 U1 0 U2 7 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 8 BP 403 EP 418 DI 10.1524/ract.2009.1630 PG 16 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 493HA UT WOS:000269725500003 ER PT J AU Mincher, BJ Mezyk, SP AF Mincher, B. J. Mezyk, S. P. TI Radiation chemical effects on radiochemistry: A review of examples important to nuclear power SO RADIOCHIMICA ACTA LA English DT Review DE Radioysis; Linear energy transfer; Redox reactions; Ligand degradation; Free radicals; Solvent extraction ID AQUEOUS PERCHLORATE-MEDIA; PULSE-RADIOLYSIS METHOD; HYDROPEROXYL RADICAL REACTIONS; GAS-LIQUID-CHROMATOGRAPHY; SULFURIC-ACID-SOLUTIONS; RATE CONSTANTS; GAMMA-RADIOLYSIS; HYDRATED ELECTRON; NITRIC-ACID; TRIBUTYL-PHOSPHATE AB Radiochemistry deals with the chemistry of the radioactive elements. In the nuclear industry successful fuel reprocessing, high-level waste treatment, and long-term storage of spent fuel depend on an understanding of the radiochemistry of actinides and fission products in these settings. Radiation chemistry is concerned with the chemical effects of ionizing radiation, with the most common types of radiation encountered by the radiochemist being low linear energy transfer (LET) beta(-) and gamma radiation, and higher LET alpha, radiation. These radiations can have profound and important effects on radiochemistry, including changes in metal oxidation states and degradation of the organic ligands designed to complex radioelements. This may occur by direct action of the incident radiation on compounds present with high abundance or by reaction with radiolytically produced reactive species for trace components, such as the complexing agents. This review examines the role of reactive species created in irradiated aqueous and organic solution and their effects on radiochemistry. The sources and nature of these reactive species are discussed. Examples of radiation chemical effects are provided related to solvent extraction of the actinides from acidic solution, metal complexation and technetium redox chemistry in alkaline tank waste, and the corrosion of spent fuel stored in repository brine. C1 [Mincher, B. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Mezyk, S. P.] Calif State Univ Long Beach, Long Beach, CA 90820 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Bruce.Mincher@inl.gov RI Mincher, Bruce/C-7758-2017 NR 153 TC 16 Z9 17 U1 3 U2 45 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2009 VL 97 IS 9 BP 519 EP 534 DI 10.1524/ract.2009.1646 PG 16 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 495KS UT WOS:000269890700010 ER PT B AU Vetter, PA Abo-Shaeer, J Freedman, SJ Maruyama, R AF Vetter, P. A. Abo-Shaeer, J. Freedman, S. J. Maruyama, R. BE Brown, BA Engel, J Haxton, W RamseyMusolf, M Romalis, M Savard, G TI THE BETA-NEUTRINO CORRELATION IN SODIUM-21 AND OTHER NUCLEI SO RARE ISOTOPES AND FUNDAMENTAL SYMMETRIES SE PROCEEDINGS FROM THE INSTITUTE FOR NUCLEAR THEORY LA English DT Proceedings Paper CT 4th Argonne/INT/MSU/JINA FRIB Theory Workshop on Rare Isotopes and Fundamental Symmetries CY SEP 19-22, 2007 CL Univ Washington, Inst Nucl Theory, Seattle, WA SP Facil Rare Isotope Beams, Michigan St Univ HO Univ Washington, Inst Nucl Theory ID RECOIL ENERGY-SPECTRUM; DECAY AB We have measured the beta-v correlation coefficient, alpha(beta nu), in (21)Na using a laser-trapped sample. We measure the energy spectrum of the recoil nuclei by measuring their time-of-flight in coincidence with the atomic electrons shaken off in beta decay. High detection efficiency of these low-energy electrons allows good counting statistics, even with low trap density, which suppresses the photoassociation of molecular sodium, which can cause a large systematic error. Our measurement, with a 1% fractional uncertainty, agrees with the Standard Model prediction but disagrees with our previous measurement which was susceptible to error introduced by molecular sodium. We summarize precise measurements of alpha(beta nu) and their consequences for searches for Beyond Standard Model scalar and tensor current couplings. C1 [Vetter, P. A.; Abo-Shaeer, J.; Freedman, S. J.; Maruyama, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94618 USA. RP Vetter, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94618 USA. EM pavetter@LBL.GOV RI Maruyama, Reina/A-1064-2013 OI Maruyama, Reina/0000-0003-2794-512X NR 17 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4271-72-1 J9 PROC INST NUCL THEOR PY 2009 VL 16 BP 11 EP 20 DI 10.1142/9789814271738_0002 PG 10 WC Physics, Applied; Physics, Nuclear SC Physics GA BJC83 UT WOS:000264850900002 ER PT B AU Liu, CP AF Liu, C. -P BE Brown, BA Engel, J Haxton, W RamseyMusolf, M Romalis, M Savard, G TI THE INTERPRETATION OF ATOMIC ELECTRIC DIPOLE MOMENTS: SCHIFF THEOREM AND ITS CORRECTIONS SO RARE ISOTOPES AND FUNDAMENTAL SYMMETRIES SE PROCEEDINGS FROM THE INSTITUTE FOR NUCLEAR THEORY LA English DT Proceedings Paper CT 4th Argonne/INT/MSU/JINA FRIB Theory Workshop on Rare Isotopes and Fundamental Symmetries CY SEP 19-22, 2007 CL Univ Washington, Inst Nucl Theory, Seattle, WA SP Facil Rare Isotope Beams, Michigan St Univ HO Univ Washington, Inst Nucl Theory DE electric dipole moments; Schiff theorem; Schiff moment AB Searches of permanent electric dipole moments (EDMs) using neutral systems are subject to an important screening effect, which is summarized in a famous theorem by Schiff. The interpretation of actual measured EDMs thus requires this effect being properly taken care of. In this talk, we briefly outline a recent re-formulation of the Schiff theorem by Liu et al.(?) and discuss its differences from previous derivations with an emphasis on the so-called Schiff moment operator. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Liu, CP (reprint author), Los Alamos Natl Lab, Div Theoret, T-16,B283, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4271-72-1 J9 PROC INST NUCL THEOR PY 2009 VL 16 BP 150 EP 159 DI 10.1142/9789814271738_0016 PG 10 WC Physics, Applied; Physics, Nuclear SC Physics GA BJC83 UT WOS:000264850900016 ER PT B AU Savard, G AF Savard, Guy BE Brown, BA Engel, J Haxton, W RamseyMusolf, M Romalis, M Savard, G TI THE NEW CONCEPT FOR FRIB AND ITS POTENTIAL FOR FUNDAMENTAL INTERACTION STUDIES SO RARE ISOTOPES AND FUNDAMENTAL SYMMETRIES SE PROCEEDINGS FROM THE INSTITUTE FOR NUCLEAR THEORY LA English DT Proceedings Paper CT 4th Argonne/INT/MSU/JINA FRIB Theory Workshop on Rare Isotopes and Fundamental Symmetries CY SEP 19-22, 2007 CL Univ Washington, Inst Nucl Theory, Seattle, WA SP Facil Rare Isotope Beams, Michigan St Univ HO Univ Washington, Inst Nucl Theory ID MOMENT AB Fundamental interaction studies at low energy can benefit From the unique properties of certain radioactive ion species. The proposed FRIB facility, an evolution on the RIA Concept, will he the highest intensity source for most rare isotope species and fundamental interaction studies will be an important part of its physics program. The FRIB concept will he described and its expected capabilities for fundamental interaction studies highlighted with some illustrative examples. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Savard, G (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 13 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE BN 978-981-4271-72-1 J9 PROC INST NUCL THEOR PY 2009 VL 16 BP 170 EP 179 DI 10.1142/9789814271738_0018 PG 10 WC Physics, Applied; Physics, Nuclear SC Physics GA BJC83 UT WOS:000264850900018 ER PT S AU Gallis, MA Torczynski, JR Rader, DJ Bird, GA AF Gallis, M. A. Torczynski, J. R. Rader, D. J. Bird, G. A. BE Abe, T TI An Improved-Accuracy DSMC Algorithm SO RAREFIED GAS DYNAMICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 26th International Symposium on Rarefied Gas Dynamics (RGD26) CY JUN 20-JUL 25, 2008 CL Kyoto, JAPAN SP Japan Soc Promot Sci, Japan Aerosp Explorat Agcy, Soc Promot Space Sci, Iwantani Naoji Fdn, Inoue Fdn Sci, Casio Sci Promot Fdn, Kaijma Fdn, IHI Corp, IHI Aerosp Engn Co Ltd, Osaka Vaccuun Ltd, Nissin Inc DE DSMC; sophisticated DSMC; algorithm; convergence; accuracy; rarefied gas dynamics AB The Direct Simulation Monte Carlo (DSMC) method is widely considered to be both an accurate and general method for simulating non-continuum gas flows and a computationally intense method because of its molecular nature. Recently, the originator of the method proposed a new variant of DSMC, termed "sophisticated DSMC". This new DSMC algorithm aims at improving the computational efficiency of DSMC without losing the accuracy of the original algorithm. In this paper the accuracy and convergence of the new DSMC method are investigated for one-dimensional combined Couette-Fourier flow. The primary convergence metrics studied, in harmony with previous work, arc the ratios of the DSMC-calculated thermal conductivity and viscosity to their corresponding infinite-approximation Chapman-Enskog theoretical values. As discretization errors are reduced, the sophisticated DSMC values are shown to approach the theoretical values to high precision. The convergence behavior of sophisticated DSMC is compared to that of standard DSMC and to predictions of Green-Kubo theory. The sophisticated algorithm is shown to significantly reduce the computational resources required for a DSMC simulation at a fixed level of accuracy. C1 [Gallis, M. A.; Torczynski, J. R.; Rader, D. J.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Bird, G. A.] GAB Consulting Pty Ltd, Sydney, NSW 2000, Australia. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 9 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0615-5 J9 AIP CONF PROC PY 2009 VL 1084 BP 299 EP + PG 2 WC Engineering, Aerospace; Physics, Fluids & Plasmas SC Engineering; Physics GA BJF97 UT WOS:000265564800048 ER PT S AU Trott, WM Rader, DJ Castaneda, JN Torczynski, JR Gallis, MA AF Trott, W. M. Rader, D. J. Castaneda, J. N. Torczynski, J. R. Gallis, M. A. BE Abe, T TI Measurement of Gas-Surface Accommodation SO RAREFIED GAS DYNAMICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 26th International Symposium on Rarefied Gas Dynamics (RGD26) CY JUN 20-JUL 25, 2008 CL Kyoto, JAPAN SP Japan Soc Promot Sci, Japan Aerosp Explorat Agcy, Soc Promot Space Sci, Iwantani Naoji Fdn, Inoue Fdn Sci, Casio Sci Promot Fdn, Kaijma Fdn, IHI Corp, IHI Aerosp Engn Co Ltd, Osaka Vaccuun Ltd, Nissin Inc DE gas-surface interaction; slip flow; accommodation; heat conduction; experimental methods ID DENSITY-DISTRIBUTION MEASUREMENTS; PARALLEL PLATES; HEAT-TRANSFER; RAREFIED-GAS; TEMPERATURE AB Thermal accommodation coefficients have been determined for a variety of gas-surface combinations using an experimental apparatus developed to measure both the pressure dependence of the conductive heat flux and the variation of gas density between parallel plates separated by a gas-filled gap. Effects of gas composition, surface roughness and surface contamination have been examined with this system, and the behavior of gas mixtures has also been explored. Results are discussed in comparison with previous parallel-plate experimental studies as well as numerical simulations. C1 [Trott, W. M.; Rader, D. J.; Castaneda, J. N.; Torczynski, J. R.; Gallis, M. A.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Trott, WM (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. NR 14 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0615-5 J9 AIP CONF PROC PY 2009 VL 1084 BP 621 EP 628 PG 8 WC Engineering, Aerospace; Physics, Fluids & Plasmas SC Engineering; Physics GA BJF97 UT WOS:000265564800100 ER PT S AU Torczynski, JR Gallis, MA Rader, DJ AF Torczynski, J. R. Gallis, M. A. Rader, D. J. BE Abe, T TI Nanoparticle Aerosols Form Knudsen Layers at Walls SO RAREFIED GAS DYNAMICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 26th International Symposium on Rarefied Gas Dynamics (RGD26) CY JUN 20-JUL 25, 2008 CL Kyoto, JAPAN SP Japan Soc Promot Sci, Japan Aerosp Explorat Agcy, Soc Promot Space Sci, Iwantani Naoji Fdn, Inoue Fdn Sci, Casio Sci Promot Fdn, Kaijma Fdn, IHI Corp, IHI Aerosp Engn Co Ltd, Osaka Vaccuun Ltd, Nissin Inc DE nanoparticles; aerosol; wall concentration; boundary condition; advection-diffusion; transport modeling AB An aerosol of nanoparticles forms a Knudsen layer when diffusing in a Brownian fashion toward a solid wall. More specifically, the particle number density in the gas by the wall approaches a nonzero value proportional to the flux. An approximate theory for the coefficient of proportionality as a function of the particle sticking probability at the wall and the drift velocity normal to the wall is compared to Langevin particle simulations. The results are used to formulate a boundary condition that enables accurate advection-diffusion simulations of nanoparticle-aerosol transport. C1 [Torczynski, J. R.; Gallis, M. A.; Rader, D. J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Torczynski, JR (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. NR 11 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0615-5 J9 AIP CONF PROC PY 2009 VL 1084 BP 991 EP 996 PG 6 WC Engineering, Aerospace; Physics, Fluids & Plasmas SC Engineering; Physics GA BJF97 UT WOS:000265564800159 ER PT S AU Yan, GH Eidenbenz, S Galli, E AF Yan, Guanhua Eidenbenz, Stephan Galli, Emanuele BE Kirda, E Jha, S Balzarotti, D TI SMS-Watchdog: Profiling Social Behaviors of SMS Users for Anomaly Detection SO RECENT ADVANCES IN INTRUSION DETECTION, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 12th International Symposium on Recent Advances in Intrusion Detection CY SEP 23-25, 2009 CL St Malo, FRANCE SP Direct Cent Securite Syst Informat, INRIA, EADS, Alcatel Lucent, Fondat Michel Metivier DE SMS; anomaly detection; relative entropy; JS-divergence AB With more than one trillion mobile messages delivered worldwide every year, SMS has been a lucrative playground for various attacks and frauds such as spamming, phishing and spoofing. These SMS-based attacks pose serious security threats to both mobile users and cellular network operators, such as information stealing, overcharging, battery exhaustion, and network congestion. Against the backdrop that approaches to protecting SMS security are lagging behind, we propose a lightweight scheme called SMS- Watchdog that can detect anomalous SMS behaviors with high accuracy. Our key contributions are summarized as follows: (1) After analyzing an SMS trace collected within a five-month period, we conclude that for the majority of SMS users, there are window-based regularities regarding whom she sends messages to and how frequently she sends messages to each recipient. (2) With these regularities, we accordingly propose four detection schemes that build normal social behavior profiles for each SMS user and then use them to detect SMS anomalies in an online and streaming fashion. Each of these schemes stores only a few states (typically, at most 12 states) in memory for each SMS user, thereby imposing very low overhead for online anomaly detection. (3) We evaluate these four schemes and also two hybrid approaches with realistic SMS traces. The results show that the hybrid approaches can detect more than 92% of SMS-based attacks with false alarm rate 8.5%, or about two thirds of the attacks without any false alarm, depending on their parameter settings. C1 [Yan, Guanhua; Eidenbenz, Stephan; Galli, Emanuele] Los Alamos Natl Lab, Informat Sci CCS 3, Los Alamos, NM 87545 USA. RP Yan, GH (reprint author), Los Alamos Natl Lab, Informat Sci CCS 3, Los Alamos, NM 87545 USA. EM ghyan@lanl.gov; eidenben@lanl.gov; egalli@lanl.gov NR 20 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-04341-3 J9 LECT NOTES COMPUT SC PY 2009 VL 5758 BP 202 EP 223 PG 22 WC Computer Science, Theory & Methods SC Computer Science GA BPK81 UT WOS:000279102200011 ER PT S AU Liu, L Yan, GH Zhang, XW Chen, SQ AF Liu, Lei Yan, Guanhua Zhang, Xinwen Chen, Songqing BE Kirda, E Jha, S Balzarotti, D TI VirusMeter: Preventing Your Cellphone from Spies SO RECENT ADVANCES IN INTRUSION DETECTION, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 12th International Symposium on Recent Advances in Intrusion Detection CY SEP 23-25, 2009 CL St Malo, FRANCE SP Direct Cent Securite Syst Informat, INRIA, EADS, Alcatel Lucent, Fondat Michel Metivier DE mobile malware; mobile device security; anomaly detection; power consumption AB Due to the rapid advancement of mobile communication technology, mobile devices nowadays can support a variety of data services that are not traditionally available. With the growing popularity of mobile devices in the last few years, attacks targeting them are also surging. Existing mobile malware detection techniques, which are often borrowed from solutions to Internet malware detection, do not perform as effectively due to the limited computing resources on mobile devices. In this paper, we propose Virus Meter, a novel and general malware detection method, to detect anomalous behaviors on mobile devices. The rationale underlying Virus Meter is the fact that mobile devices are usually battery powered and any malicious activity would inevitably consume some battery power. By monitoring power consumption on a mobile device, Virus Meter catches misbehaviors that lead to abnormal power consumption. For this purpose, Virus Meter relies on a concise user-centric power model that characterizes power consumption of common user behaviors. In a real-time mode, Virus Meter can perform fast malware detection with trivial runtime overhead. When the battery is charging (referred to as a battery-charging mode), Virus Meter applies more sophisticated machine learning techniques to further improve the detection accuracy. To demonstrate its feasibility and effectiveness, we have implemented a Virus Meter prototype on Nokia 5500 Sport and used it to evaluate some real cellphone malware, including FlexiSPY and Cabir. Our experimental results show that Virus Meter can effectively detect these malware activities with less than 1.5% additional power consumption in real time. C1 [Liu, Lei; Chen, Songqing] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA. [Yan, Guanhua] Los Alamos Natl Lab, Informat Sci Grp CCS 3, Los Alamos, NM USA. [Zhang, Xinwen] Samsung Informat Syst America, Comp Sci Lab, San Jose, CA USA. RP Liu, L (reprint author), George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA. FU U.S. AFOSR [FA9550-09-1-0071]; U.S. National Science Foundation [CNS-0509061, CNS-0621631, CNS-0746649] FX We thank the anonymous referees for providing constructive comments. The work has been supported in part by U.S. AFOSR under grant FA9550-09-1-0071, and by U.S. National Science Foundation under grants CNS-0509061, CNS-0621631, and CNS-0746649. NR 24 TC 25 Z9 25 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-04341-3 J9 LECT NOTES COMPUT SC PY 2009 VL 5758 BP 244 EP + PG 3 WC Computer Science, Theory & Methods SC Computer Science GA BPK81 UT WOS:000279102200013 ER PT S AU Balaji, P Buntinas, D Goodell, D Gropp, W Kumar, S Lusk, E Thakur, R Traff, JL AF Balaji, Pavan Buntinas, Darius Goodell, David Gropp, William Kumar, Sameer Lusk, Ewing Thakur, Rajeev Traeff, Jesper Larsson BE Ropo, M Westerholm, J Dongarra, J TI MPI on a Million Processors SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol ID INTERFACE AB Petascale machines with close to a million processors will soon be available. Although MPI is the dominant programming model today, some researchers and users wonder (and perhaps even doubt) whether MPI will scale to such large processor counts. In this paper, we examine this issue of how scalable is MPI. We first examine the MPI specification itself and discuss areas with scalability concerns and how they can be overcome. We then investigate issues that an MPI implementation must address to be scalable. We ran some experiments to measure MPI memory consumption at scale on up to 131,072 processes or 80% of the IBM Blue Gene/P system at Argonne National Laboratory. Based on the results, we tuned the MPI implementation to reduce its memory footprint. We also discuss issues in application algorithmic scalability to large process counts and features of MPI that enable the use of other techniques to overcome scalability limitations in applications. C1 [Balaji, Pavan; Buntinas, Darius; Goodell, David; Lusk, Ewing; Thakur, Rajeev] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gropp, William] Univ Illinois, Urbana, IL 61801 USA. [Kumar, Sameer] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Traeff, Jesper Larsson] NEC Lab Europe, Heidelberg, Germany. RP Balaji, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Dongarra, Jack/E-3987-2014; OI Gropp, William/0000-0003-2905-3029 FU U.S. Department of Energy [DEAC02-06CH11357, DE-FG02-08ER25835]; National Science Foundation [0837719] FX This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DEAC02-06CH11357 and award DE-FG02-08ER25835, and in part by the National Science Foundation award 0837719. NR 16 TC 22 Z9 22 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 20 EP + PG 3 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600002 ER PT S AU Ross, R Latham, R Gropp, W Lusk, E Thakur, R AF Ross, Robert Latham, Robert Gropp, William Lusk, Ewing Thakur, Rajeev BE Ropo, M Westerholm, J Dongarra, J TI Processing MPI Datatypes Outside MPI SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol AB The MPI datatype functionality provides a powerful tool for describing structured memory and file regions in parallel applications, enabling noncontiguous data to be operated on by MPI communication and I/O routines. However, no facilities are provided by the MPT standard to allow users to efficiently manipulate MPI datatypes in their own codes. We present MPITypes, an open source, portable library that enables the construction of efficient MPI datatype processing routines outside the MPI implementation. MPITypes enables programmers who are not MPI implementors to create efficient datatype processing routines. We show the use of MPITypes in three examples: copying data between user buffers and a "pack" buffer, encoding of data in a portable format, and transpacking. Our experimental evaluation shows that the implementation achieves rates comparable to existing MPI implementations. C1 [Ross, Robert; Latham, Robert; Lusk, Ewing; Thakur, Rajeev] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gropp, William] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. RP Ross, R (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rross@mcs.anl.gov; robl@mcs.anl.gov; wgropp@illinois.edu; lusk@mcs.anl.gov; thakur@mcs.anl.gov OI Latham, Rob/0000-0002-5285-6375; Gropp, William/0000-0003-2905-3029 FU U.S. Dept. of Energy [AC02-06CH11357]; U.S. Department of Energy [DE-FG02-08ER25835] FX We would like to thank our reviewers for their helpful suggestions. This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357, and in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy award DE-FG02-08ER25835. NR 11 TC 7 Z9 7 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 42 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600004 ER PT S AU Graham, RL Keller, R AF Graham, Richard L. Keller, Rainer BE Ropo, M Westerholm, J Dongarra, J TI Dynamic Communicators in MPI SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol AB This paper describes a proposal to add support for dynamic communicators to the MPI standard. This adds the ability to grow or shrink a specified communicator, under well defined conditions. The goal is to make it possible for a new class of applications - long-running, mission-critical, loosely coupled applications, running in a highly dynamic environment - to use MPI libraries for their communication needs, and to enable HPC applications to adjust to changing system resources. Implementation analysis indicates that performance impact on existing high-performance MPI applications should be minimal, or non-existent. The changes to MPI implementations are expected to be well compartmentalized. C1 [Graham, Richard L.; Keller, Rainer] Oak Ridge Natl Lab, Dept Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Graham, RL (reprint author), Oak Ridge Natl Lab, Dept Math & Comp Sci, Oak Ridge, TN 37831 USA. EM rlgraham@ornl.gov; keller@ornl.gov NR 8 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 116 EP 123 PG 8 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600011 ER PT S AU Sehrish, S Wang, J Thakur, R AF Sehrish, Saba Wang, Jun Thakur, Rajeev BE Ropo, M Westerholm, J Dongarra, J TI Conflict Detection Algorithm to Minimize Locking for MPI-IO Atomicity SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol ID ONE-SIDED COMMUNICATION AB Many scientific applications require high-performance concurrent I/O accesses to a file by multiple processes. Those applications rely indirectly on atomic I/O capabilities in order to perform updates to structured datasets, such as those stored in HDF5 format files. Current support for atomicity in MPI-IO is provided by locking around the operations, imposing lock overhead in all situations, even though in many cases these operations are non-overlapping in the file. We propose to isolate non-overlapping accesses from overlapping ones in independent I/O cases, allowing the non-overlapping ones to proceed without imposing lock overhead. To enable this, we have implemented an efficient conflict detection algorithm in MPI-IO using MPI file views and datatypes. We show that our conflict detection scheme incurs minimal overhead on I/O operations, making it an effective mechanism for avoiding locks when they are not needed. C1 [Sehrish, Saba; Wang, Jun] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA. [Thakur, Rajeev] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Sehrish, S (reprint author), Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA. FU US National Science Foundation [CNS-0646910, CNS-0646911, CCF-0621526, CCF-0811413]; US Department of Energy [DE-FG02-07ER25747] FX This work is supported in part by the US National Science Foundation under grants CNS-0646910, CNS-0646911, CCF-0621526, CCF-0811413, and the US Department of Energy Early Career Principal Investigator Award DE-FG02-07ER25747. NR 15 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 143 EP + PG 3 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600014 ER PT S AU Blas, JG Isaila, F Carretero, J Latham, R Ross, R AF Garcia Blas, Javier Isaila, Florin Carretero, J. Latham, Robert Ross, Robert BE Ropo, M Westerholm, J Dongarra, J TI Multiple-Level MPI File Write-Back and Prefetching for Blue Gene Systems SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol DE MPI-IO; Parallel I/O; Parallel File Systems; Supercomputers AB This paper presents the design and implementation of an asynchronous data-staging strategy for file accesses based on ROM-IO, the most popular MPI-IO distribution, and ZeptoOS, an open source operating system solution for Blue Gene systems. We describe and evaluate a two-level file write-back implementation and a one-level prefetching solution. The experimental results demonstrate that both solutions achieve high performance through a high degree of overlap between computation, communication, and file I/O. C1 [Garcia Blas, Javier; Isaila, Florin; Carretero, J.] Univ Carlos III, Carlos, Spain. [Latham, Robert; Ross, Robert] Argonne Natl Lab, Argonne, IL 60439 USA. RP Blas, JG (reprint author), Univ Carlos III, Carlos, Spain. EM fjblas@arcos.inf.uc3m.es; florin@arcos.inf.uc3m.es; jcarrete@arcos.inf.uc3m.es; robl@mcs.anl.gov; rross@mcs.anl.gov RI Isaila, Florin/B-6654-2012; OI Isaila, Florin/0000-0002-2455-2411; Latham, Rob/0000-0002-5285-6375 FU Spanish Ministry of Science and Innovation [TIN 2007/6309]; U.S. Dept. of Energy [DE-FC02-07ER25808, DE-FC02-01ER25485, DE-AC02-06CH11357]; NSF HECURA [CCF-0621443]; NSF [SDCIOCI-0724599]; NSF ST-HEC [CCF-0444405] FX This work was supported in part by Spanish Ministry of Science and Innovation under the project TIN 2007/6309, by the U.S. Dept. of Energy under Contracts DE-FC02-07ER25808, DE-FC02-01ER25485, and DE-AC02-06CH11357, and NSF HECURA CCF-0621443, NSF SDCIOCI-0724599, and NSF ST-HEC CCF-0444405. NR 17 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 164 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600016 ER PT S AU Siegel, SF Siegel, AR AF Siegel, Stephen F. Siegel, Andrew R. BE Ropo, M Westerholm, J Dongarra, J TI A Memory-Efficient Data Redistribution Algorithm SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol DE MADRE; redistribution; memory-limited; distributed; MPI AB Many memory-bound distributed applications require frequent redistribution of data. Pinar and Hendrickson investigated two families of memory-limited redistribution algorithms. The first family has many advantages, but fails on certain inputs, and, if not implemented carefully, may lead to an explosion in the number of local data copies. The second family eliminates the possibility of failure at the expense of considerable additional overhead. We carefully analyze these algorithms and develop a modified method that potentially combines advantages of each. The resulting algorithm has been implemented in MADRE and experiments reveal its performance to be superior to that of other MADRE algorithms in most cases. C1 [Siegel, Stephen F.] Univ Delaware, Dept Comp & Informat Sci, Verified Software Lab, Newark, DE 19716 USA. [Siegel, Andrew R.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Siegel, SF (reprint author), Univ Delaware, Dept Comp & Informat Sci, Verified Software Lab, Newark, DE 19716 USA. EM siegel@cis.udel.edu; siegela@mcs.anl.gov FU National Science Foundation [CCF-0733035, CCF-0540948] FX This research was supported by the National Science Foundation under Grants CCF-0733035 and CCF-0540948. NR 7 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 219 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600021 ER PT S AU Aananthakrishnan, S DeLisi, M Vakkalanka, S Vo, A Gopalakrishnan, G Kirby, RM Thakur, R AF Aananthakrishnan, Sriram DeLisi, Michael Vakkalanka, Sarvani Vo, Anh Gopalakrishnan, Ganesh Kirby, Robert M. Thakur, Rajeev BE Ropo, M Westerholm, J Dongarra, J TI How Formal Dynamic Verification Tools Facilitate Novel Concurrency Visualizations SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol ID MPI PROGRAMS AB With the exploding scale of concurrency, presenting valuable pieces of information collected by formal verification tools intuitively and graphically can greatly enhance concurrent system debugging. Traditional MPI program debuggers present trace views of MPI program executions. Such views are redundant, often containing equivalent traces that permute independent MPI calls. In our ISP formal dynamic verifier for MPI programs, we present a collection of alternate views made possible by the use of formal dynamic verification. Some of ISP's views help pinpoint errors, some facilitate discerning errors by eliminating redundancy, while others help understand the program better by displaying concurrent even orderings that must be respected by all MPI implementations, in the form of completes-before graphs. In this paper, we describe ISP's graphical user interface (GUI) capabilities in all these areas which are currently supported by a portable Java based GUI, a Microsoft Visual Studio GUI, and an Eclipse based GUI whose development is in progress. C1 [Aananthakrishnan, Sriram; DeLisi, Michael; Vakkalanka, Sarvani; Vo, Anh; Gopalakrishnan, Ganesh; Kirby, Robert M.] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. [Thakur, Rajeev] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Aananthakrishnan, S (reprint author), Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. FU NSF [CNS-00509379]; Microsoft HPC Institutes Program; Office of Advanced Scientific Computing Research, Office of Science; U.S. Department of Energy [DE-AC02-06CH11357] FX Supported in part by NSF CNS-00509379, Microsoft HPC Institutes Program, and the Mathematical, Information, and Computational Science Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 261 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600025 ER PT S AU Vo, A Vakkalanka, S Williams, J Gopalakrishnan, G Kirby, RM Thakur, R AF Vo, Anh Vakkalanka, Sarvani Williams, Jason Gopalakrishnan, Ganesh Kirby, Robert M. Thakur, Rajeev BE Ropo, M Westerholm, J Dongarra, J TI Sound and Efficient Dynamic Verification of MPI Programs with Probe Non-determinism SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol AB We consider the problem of verifying MPI programs that use MPI_Probe and MPI_Iprobe. Conventional testing tools, known to be inadequate in general, are even more so for testing MPT programs containing MPT probes. A few reasons are: (i) use of the MPI_ANY_SOURCE argument can make MPI probes non-deterministic, allowing them to match multiple senders, (ii) air MPI_Recv that; follows ail MPI probe need riot match the MPI_Send that; was successfully probed, and (iii) simply re-running the MPI program, even with schedule perturbations, is insufficient to bring out all behaviors of an MPT program using probes. We develop several key insights that help develop an elegant solution: prioritizing MPI processes during dynamic verification, handling nondeterminism, and safe handling of probe loops. These solutions are incorporated into a new version of our dynamic verification tool ISP. ISP is now able to efficiently and soundly verify larger MPI examples, including MPI-BLAST and ADLB. C1 [Vo, Anh; Vakkalanka, Sarvani; Williams, Jason; Gopalakrishnan, Ganesh; Kirby, Robert M.] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. [Thakur, Rajeev] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Vo, A (reprint author), Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. FU Microsoft; NSF [CNS-0509379, CCF-0811429]; Office of Advanced Scientific Computing Research, Office of Science; U.S. Department of Energy [DE-AC02-06CH11357] FX Supported in part by Microsoft, NSF CNS-0509379, CCF-0811429, and the Mathematical, Information, and Computational Science Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 19 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 271 EP + PG 3 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600026 ER PT S AU Trinitis, C Bader, M Schulz, M AF Trinitis, Carsten Bader, Michael Schulz, Martin BE Ropo, M Westerholm, J Dongarra, J TI 8(th) International Special Session on Current Trends in Numerical Simulation for Parallel Engineering Environments New Directions and Work-in-Progress ParSim 2009 SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol C1 [Trinitis, Carsten; Bader, Michael] Tech Univ Munich, Inst Informat, Boltzmannstr 3, D-85748 Garching, Germany. [Schulz, Martin] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Trinitis, C (reprint author), Tech Univ Munich, Inst Informat, Boltzmannstr 3, D-85748 Garching, Germany. EM Carsten.Trinitis@in.tum.de; Michael.Bader@in.tum.de; schulzm@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [LLNL-CONF-413824] FX Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-413824). NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 292 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600028 ER PT S AU Wozniak, JM Jacobs, B Latham, R Lang, S Son, SW Ross, R AF Wozniak, Justin M. Jacobs, Bryan Latham, Robert Lang, Sam Son, Seung Woo Ross, Robert BE Ropo, M Westerholm, J Dongarra, J TI Implementing Reliable Data Structures for MPI Services in High Component Count Systems SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol C1 [Wozniak, Justin M.; Jacobs, Bryan; Latham, Robert; Lang, Sam; Son, Seung Woo; Ross, Robert] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Wozniak, JM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wozniak@mcs.anl.gov; bryan.jacobs@rochester.edu; robl@mcs.anl.gov; slang@mcs.anl.gov; sson@mcs.anl.gov; rross@mcs.anl.gov OI Latham, Rob/0000-0002-5285-6375 NR 9 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 321 EP 322 PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600032 ER PT S AU Zhu, H Goodell, D Gropp, W Thakur, R AF Zhu, Hao Goodell, David Gropp, William Thakur, Rajeev BE Ropo, M Westerholm, J Dongarra, J TI Hierarchical Collectives in MPICH2 SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol DE MPI; Collective Communication ID WIDE-AREA SYSTEMS; COMMUNICATION AB Most parallel systems on which MPI is used are now hierarchical, such as systems with SMP nodes. Many papers have shown algorithms that exploit shared memory to optimize collective operations to good effect. But how much of the performance benefit comes from tailoring the algorithm to the hierarchical topology of the system? We describe an implementation of many of the MPI collectives based entirely on message-passing primitives that exploits the two-level hierarchy. Our results show that exploiting shared memory directly usually gives small additional benefit and suggests design approaches for where the benefit is large. C1 [Zhu, Hao; Gropp, William] Univ Illinois, Dept Comp Sci, 1304 W Springfield Ave, Urbana, IL 61801 USA. [Goodell, David; Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Zhu, H (reprint author), Univ Illinois, Dept Comp Sci, 1304 W Springfield Ave, Urbana, IL 61801 USA. OI Gropp, William/0000-0003-2905-3029 NR 4 TC 7 Z9 7 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 325 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600034 ER PT S AU Vakkalanka, S Szubzda, G Vo, A Gopalakrishnan, G Kirby, RM Thakur, R AF Vakkalanka, Sarvani Szubzda, Grzegorz Vo, Anh Gopalakrishnan, Ganesh Kirby, Robert M. Thakur, Rajeev BE Ropo, M Westerholm, J Dongarra, J TI Static-Analysis Assisted Dynamic Verification of MPI Waitany Programs (Poster Abstract) SO RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Parallel-Virtual-Machine-and-Message-Passing-Interface-Users-Group Meeting (PVM/MPI) CY SEP 07-10, 2009 CL Espoo, FINLAND SP European Parallel Virtual Machine & Message Passing Interface Users Grp, CSC IT Ctr Sci, Abo Akad Univ, Dept Informat Technol C1 [Vakkalanka, Sarvani; Szubzda, Grzegorz; Vo, Anh; Gopalakrishnan, Ganesh; Kirby, Robert M.] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. [Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Vakkalanka, S (reprint author), Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. FU Microsoft; NSF [CNS-0509379, CCF-0811429]; Mathematical, Information, and Computational Science Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX Supported in part by Microsoft, NSF CNS-0509379, CCF-0811429, and the Mathematical, Information, and Computational Science Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 3 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-03769-6 J9 LECT NOTES COMPUT SC PY 2009 VL 5759 BP 329 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BLZ68 UT WOS:000271607600036 ER PT S AU Kassner, ME Geantil, P Levine, LE Larson, BC AF Kassner, M. E. Geantil, P. Levine, L. E. Larson, B. C. BE Cabibbo, M Spigarelli, S TI Backstress, the Bauschinger Effect and Cyclic Deformation SO RECENT DEVELOPMENTS IN THE PROCESSING AND APPLICATIONS OF STRUCTURAL METALS AND ALLOYS SE Materials Science Forum LA English DT Proceedings Paper CT International Conference on Recent Developments in the Processing and Applications of Structural Metals and Alloys CY JUN 22-25, 2008 CL Marche Polytechn Univ, Dept Mech Engn, Como, ITALY HO Marche Polytechn Univ, Dept Mech Engn ID RANGE INTERNAL-STRESSES; COPPER SINGLE-CRYSTALS; LATTICE PLANE MISORIENTATIONS; BEAM ELECTRON-DIFFRACTION; RAY STRUCTURAL MICROSCOPY; PLASTIC-DEFORMATION; DISLOCATION MICROSTRUCTURE; DEFORMED COPPER; IN-SITU; PART II AB Backstresses or long range internal stresses (LRIS) in the past have been suggested by many to exist in plastically deformed crystalline materials. Elevated stresses can be present in regions of elevated dislocation density or dislocation heterogeneities in the deformed microstructures. The heterogeneities include edge dislocation dipole bundles (veins) and the edge dipole walls of persistent slip hands (PSBs) in cyclically deformed materials and cell and subgrain walls in monotonically deformed materials. The existence of long range internal stress is especially important for the understanding of cyclic deformation and also monotonic deformation. X-ray microbeam diffraction experiments performed by the authors using synchrotron x-ray microbeams determined the elastic strains within the cell interiors. The studies were performed using, oriented, monotonically deformed Cu single crystals. The results demonstrate that small long-range internal stresses are present in cell interiors. These LRIS vary substantially from cell to cell as 0 % to 50 % of the applied stress. The results are related to the Bauschinger effect, often explained in terms of LRIS. C1 [Kassner, M. E.; Geantil, P.] Univ Southern Calif, Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Levine, L. E.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Larson, B. C.] Oak Ridge Natl Lab, Mat Sci Tech Div, Oak Ridge, TN 37831 USA. RP Kassner, ME (reprint author), Univ Southern Calif, Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM kassner@usc.edu FU Office of Basic Energy Sciences (BES), DOE; DOE Office of Science, Basic Energy Sciences, Division of Materials Sciences Engineering; USDOE, Office of Science FX MEK and PG acknowledge support from the Office of Basic Energy Sciences (BES), DOE. Research at ORNL is supported by DOE Office of Science, Basic Energy Sciences, Division of Materials Sciences & Engineering. The XOR/UNI facilities on Sectors 33 and 34 at APS are supported by USDOE, Office of Science. NR 42 TC 10 Z9 10 U1 0 U2 11 PU TRANS TECH PUBLICATIONS LTD PI DURNTEN-ZURICH PA KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND SN 0255-5476 J9 MATER SCI FORUM PY 2009 VL 604-605 BP 39 EP + PG 3 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BIX28 UT WOS:000263555900005 ER PT S AU Castor, JI AF Castor, John I. BE Hubeny, I Stone, JM MacGregor, K Werner, K TI Toward a Fully Consistent Radiation Hydrodynamics SO RECENT DIRECTIONS IN ASTROPHYSICAL QUANTITATIVE SPECTROSCOPY AND RADIATION HYDRODYNAMICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT Conference on Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics held in honor of Dimitri Mihalas CY MAR 30-APR 03, 2009 CL Boulder, CO SP Natl Ctr Atmospher Res DE radiation transport; relativistic, hydrodynamics; relativistic, radiation transport, comoving-frame ID EQUATION; FLOWS AB Dimitri Mihalas set the standard for all work in radiation hydrodynamics since 1984. The present contribution builds on Foundations of Radiation Hydrodynamics to explore the relativistic effects that have prevented having a consistent non-relativistic theory. Much of what I have to say is in FRH, but the 3-D development is new. Results are presented for the relativistic radiation transport equation in the frame obtained by a Lorentz boost with the fluid velocity, and the exact momentumintegrated moment equations. The special-relativistic hydrodynamic equations are summarized, including the radiation contributions, and it is shown that exact conservation is obtained, and certain puzzles in the non-relativistic radhydro equations are explained.(1) C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Castor, JI (reprint author), Lawrence Livermore Natl Lab, L-016, Livermore, CA 94551 USA. NR 9 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0710-7 J9 AIP CONF PROC PY 2009 VL 1171 BP 230 EP 241 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQB69 UT WOS:000280587500021 ER PT B AU Greene, DL German, J Delucchi, MA AF Greene, David L. German, John Delucchi, Mark A. BE Sperling, D Cannon, JS TI Fuel Economy: The Case for Market Failure SO REDUCING CLIMATE IMPACTS IN THE TRANSPORTATION SECTOR LA English DT Proceedings Paper CT 11th Biennial Asilomar Conference on Transportation and Energy Policy CY AUG, 2007 CL Pacific Grove, CA ID LOSS AVERSION C1 [Greene, David L.] ORNL, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. RP Greene, DL (reprint author), ORNL, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. NR 31 TC 6 Z9 6 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS BN 978-1-4020-6978-9 PY 2009 BP 181 EP + DI 10.1007/978-1-4020-6979-6_11 PG 3 WC Transportation; Transportation Science & Technology SC Transportation GA BIT32 UT WOS:000262503200011 ER PT B AU Huzurbazar, AV Briand, D Cranwell, R AF Huzurbazar, Aparna V. Briand, Daniel Cranwell, Robert BE Hayworth, GI TI STATISTICAL RELIABILITY WITH APPLICATIONS TO DEFENSE SO RELIABILITY ENGINEERING ADVANCES LA English DT Article; Book Chapter ID SYSTEMS AB This chapter discusses selected current trends in engineering reliability modeling with a focus on applications in the defense sector. Our interests are in design for reliability, prognostics and health management (PHM), enterprise level logistics modeling and system-of-systems reliability modeling. It is not unusual for a new weapon system to be developed without fully considering the impact of reliability early in the design period for whatever reason: cost, necessity, technology, and so on. Today, part of that design for reliability can include PHM elements that will predict component failure far enough in advance so that maintenance and operations schedules can be optimized for the purposes of maximizing system availability and minimizing logistics costs. PHM modeling can be part of a real-time maintenance and operations management tool or an enhancement to enterprise level logistics modeling. Part of minimizing the logistics cost at the enterprise level requires that the supply and repair chain processes be simulated with enough detail to capture the real-world failure events. Accurate failure assessment can help determine the correct number of spares, maintenance support equipment, and qualified personnel necessary to complete the repairs. Ultimately. design for reliability, PHM, and enterprise level logistics modeling need to support the system's ability to operate within a system-of-systems framework, the modeling of which can be quite involved. This chapter will evaluate each of the concepts discussed above, identifying past successes, current applications, and future trends. C1 [Huzurbazar, Aparna V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Briand, Daniel; Cranwell, Robert] Sandia Natl Labs, Livermore, CA 94550 USA. RP Huzurbazar, AV (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 41 TC 0 Z9 0 U1 0 U2 0 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60692-329-0 PY 2009 BP 45 EP 75 PG 31 WC Engineering, Industrial SC Engineering GA BMQ32 UT WOS:000273344100002 ER PT S AU Alsem, DH van der Hulst, R Stach, EA Dugger, MT De Hosson, JTM Ritchie, RO AF Alsem, D. H. y van der Hulst, R. Stach, E. A. Dugger, M. T. De Hosson, J. Th M. Ritchie, R. O. BE Kullberg, RC Ramesham, R TI Tribological behavior of micron-scale polycrystalline silicon structural films in ambient air SO RELIABILITY, PACKAGING, TESTING, AND CHARACTERIZATION OF MEMS/MOEMS AND NANODEVICES VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices VIII CY JAN 28-29, 2009 CL San Jose, CA SP SPIE, Texas Instruments Inc, NanoInk, Inc, Photon Ctr Boston Univ, Ozen Engn Inc DE MEMS; polycrystalline silicon; wear; friction; tribology; wear mechanisms ID SELF-ASSEMBLED MONOLAYER; HIGH-CYCLE FATIGUE; MICROELECTROMECHANICAL SYSTEMS; MEMS; WEAR; MECHANISMS; FRICTION; DEVICES; RELIABILITY; PERFORMANCE AB As tribological properties are critical factors in the reliability of microelectromechanical systems, it is important to understand the physical processes and parameters governing wear and friction in silicon structural films. Dynamic friction, wear volumes and wear morphology have been studied for polysilicon devices from the Sandia SUMMiT V (TM) process actuated in ambient air at mu N loads. A total of seven devices were tested. Roughly half of the devices showed a peak in the friction coefficient at three times the initial value with failure after 10(5) cycles. The other half of the devices behaved similarly initially; however, following the friction coefficient peak they displayed a lower steady-state friction regime with no failure for millions of cycles. Additionally, the nanoscale wear coefficient and roughness increased in the first similar to 10(5) cycles and then slowly decayed over several million cycles. Transmission electron microscopy studies revealed amorphous oxygen-rich debris. These measurements show that after a short adhesive wear regime, abrasive wear is the governing mechanism with failures attributed to differences in the local nanoscale surface morphology. Changing the relative humidity, sliding speed and load was found to influence the friction coefficient, but re-oxidation of worn polysilicon surfaces was only found to have an effect after periods of inactivity. C1 [Alsem, D. H. y; Ritchie, R. O.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94709 USA. RP Alsem, DH (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94709 USA. EM DHAlsem@lbl.gov RI Stach, Eric/D-8545-2011; Ritchie, Robert/A-8066-2008 OI De Hosson, Jeff/0000-0002-2587-3233; Stach, Eric/0000-0002-3366-2153; Ritchie, Robert/0000-0002-0501-6998 NR 44 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7452-0 J9 PROC SPIE PY 2009 VL 7206 AR 72060A DI 10.1117/12.808348 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Characterization & Testing; Optics SC Science & Technology - Other Topics; Materials Science; Optics GA BSP99 UT WOS:000285331000009 ER PT S AU Falck, WE Seitz, R Pearl, M Audet, M Schmidt, P Fernandes, HM AF Falck, W. Eberhard Seitz, Roger Pearl, Mike Audet, Mark Schmidt, Peter Fernandes, Horst M. BE Voigt, G Fesenko, S TI REMEDIATION AS PART OF THE DECOMMISSIONING OF NUCLEAR FACILITIES SO REMEDIATION OF CONTAMINATED ENVIRONMENTS SE Radioactivity in the Environment LA English DT Article; Book Chapter C1 [Seitz, Roger] Savannah River Natl Lab, Aiken, SC 29808 USA. [Pearl, Mike] UKAEA, Chilton OX11 0RN, Oxon, England. [Audet, Mark] Atom Energy Canada Ltd, Chalk River Labs, Environm Technol Branch, CRL Site Invest & Groundwater Monitoring, Chalk River, ON K0J 1J0, Canada. [Schmidt, Peter] Wismut GmbH, D-09117 Chemnitz, Germany. [Fernandes, Horst M.] IAEA, NEFW, Waste Technol Sect, A-1440 Vienna, Austria. RP Falck, WE (reprint author), Cornelis Pronklaan 102, NL-1816 NR Alkmaar, Netherlands. EM wefalck@wefalck.eu OI Falck, W. Eberhard/0000-0002-3122-8820 NR 35 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4860 BN 978-0-08-091415-2 J9 RADIOACTIV ENVIRONM PY 2009 VL 14 BP 263 EP 342 DI 10.1016/S1569-4860(08)00206-4 PG 80 WC Engineering, Environmental; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BEH09 UT WOS:000316551600007 ER PT S AU Zamudio, JA AF Zamudio, Joseph A. BE Bedell, R Crosta, AP Grunsky, E TI Focusing Field Exploration Efforts, Using Results from Hyperspectral Data Analysis of the El Capitan Gold-Platinum Group Metals-Iron Deposit, New Mexico SO REMOTE SENSING AND SPECTRAL GEOLOGY SE Reviews in Economic Geology LA English DT Article; Book Chapter AB Recent exploration efforts at the El Capitan iron deposit in New, Mexico have identified potentially economic An, Ag, and Pt values in field samples and drill core. The El Capitan deposit is characterized by iron-rich calc-silicate skarn mineralogy and a later stage hematite-calcite dominant assemblage. Gold-platinum mineralization occurs mainly in the hematite-calcite assemblage. Although this assemblage occurs in skarn as apparently primary skarn minerals, it is believed to largely represent a later stage fracture-filling mineralizing event. All airborne hyperspectral survey was contracted to fly over the project area to aid in the exploration effort. The area is fairly rugged and contains a significant amount of vegetation so that conventional mineral exploration methods are tedious and time consuming. Six overlapping flight lines of airborne hyperspectral data were acquired to assist in the exploration effort. To help characterize important mineral absorption features, reflectance spectra of various rock and mineral samples were collected using a field spectrometer. Analysis of these field spectra has helped ill the interpretation of the airborne data. The focus of the hyperspectral mineral mapping was oil carbonate rocks, calc-silicate skarn minerals, hematite, and goethite. The analysis of hyperspectral data over the existing workings has helped direct analysis for exploration throughout the district. Several anomalous areas of hematite and/or goethite, and calc-silicates were identified in the data. The anomalies were field checked and several were found to have anomalous,old and platinum values. The focus of future exploration efforts, including drilling, will be oil some of these specific targets identified in the hyperspectral data. C1 [Zamudio, Joseph A.] Appl Spectral Imaging, Boulder, CO 80304 USA. [Zamudio, Joseph A.] US DOE, Remote Sensing Lab, Las Vegas, NV USA. RP Zamudio, JA (reprint author), Appl Spectral Imaging, 3035 11th St, Boulder, CO 80304 USA. EM jaz@hsigeo.biz NR 16 TC 1 Z9 1 U1 0 U2 0 PU SOC ECONOMIC GEOLOGISTS, INC PI LITTLETON PA 7811 SHAFFER PKWY, LITTLETON, CO 80127 USA SN 0741-0123 BN 978-1-934969-13-7 J9 REV ECON GEOL PY 2009 VL 16 BP 169 EP 176 PG 8 WC Geology; Remote Sensing; Mining & Mineral Processing SC Geology; Remote Sensing; Mining & Mineral Processing GA BKK76 UT WOS:000268394400014 ER PT S AU Berg, LK Mills, D Kassianov, EI Long, CN AF Berg, Larry K. Mills, David, Jr. Kassianov, Evgueni I. Long, Charles N. BE Picard, RH Schafer, K Comeron, A Kassianov, E Mertens, CJ TI Three-dimensional Effects and Shortwave Cloud Radiative Forcing Associated with Shallow Cumuli Over Central North America SO REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XIV SE Proceedings of SPIE LA English DT Proceedings Paper CT 14th Conference on Remote Sensing of Clouds and the Atmosphere CY AUG 31-SEP 01, 2009 CL Berlin, GERMANY SP SPIE Europe DE Radiative transfer; cumulus; cloud forcing ID COVER AB Shallow cumuli are ubiquitous over large areas of the globe, including both the interior of continents and the trade wind regions over the oceans. Measurements made at the Atmospheric Radiation Measurement (ARM) Climate Research Facility, located in central North America, provide a unique long-term data set that can be used to investigate the influence that these clouds have on the shortwave surface energy budget at a continental location. Using data collected for the summers of 2000 through 2007, inclusive, over 900 hours with fair-weather cumuli were identified using data from a Total Sky Imager, cloud-radar and lidar. Data from a suite of surface radiometers was used to determine the shortwave forcing. This analysis estimates the three-dimensional effects of shallow cumuli by examining the occurrences of both positive and negative shortwave forcing. We show that the average surface shortwave forcing is approximately -45.5 W m(-2). When the data are adjusted to account for periods without shallow clouds, the shortwave forcing over the entire summer (defined as May through August) are reduced in magnitude, with forcings of -2.1 W m(-2). C1 [Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Mills, David, Jr.] Univ S Carolina, Columbia, SC 29208 USA. RP Berg, LK (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM larry.berg@pnl.gov RI Berg, Larry/A-7468-2016 OI Berg, Larry/0000-0002-3362-9492 NR 12 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7780-4 J9 PROC SPIE PY 2009 VL 7475 AR UNSP 747504 DI 10.1117/12.832327 PG 8 WC Meteorology & Atmospheric Sciences; Remote Sensing; Optics SC Meteorology & Atmospheric Sciences; Remote Sensing; Optics GA BA7EJ UT WOS:000337499500003 ER PT S AU Kassianov, E Ovchinnikov, M Berg, LK McFarlane, SA Flynn, C Ferrare, R Hostetler, C AF Kassianov, Evgueni Ovchinnikov, Mikhail Berg, Larry K. McFarlane, Sally A. Flynn, Connor Ferrare, Richard Hostetler, Chris BE Picard, RH Schafer, K Comeron, A Kassianov, E Mertens, CJ TI The 3D Radiative Effects of Clouds in Aerosol Retrieval: Can we Remove Them? SO REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XIV SE Proceedings of SPIE LA English DT Proceedings Paper CT 14th Conference on Remote Sensing of Clouds and the Atmosphere CY AUG 31-SEP 01, 2009 CL Berlin, GERMANY SP SPIE Europe DE Aerosol optical depth; cumulus clouds; multi-spectral reflectance; Monte Carlo radiative transfer calculations; aircraft observations ID SPECTRAL-RESOLUTION LIDAR; MODIS AB We outline a new method, called the ratio method, developed to retrieve aerosol optical depth (AOD) under broken cloud conditions and present validation results from sensitivity and case studies. Results of the sensitivity study demonstrate that the ratio method, which exploits ratios of reflectances in the visible spectral range, has the potential for accurate AOD retrievals under different observational conditions and random errors in input data. Also, we examine the performance of the ratio method using aircraft data collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS). Results of the case study suggest that the ratio method has the ability to retrieve AOD from multi-spectral aircraft observations of the reflected solar radiation. C1 [Kassianov, Evgueni; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ferrare, Richard; Hostetler, Chris] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Evgueni.Kassianov@pnl.gov RI Berg, Larry/A-7468-2016 OI Berg, Larry/0000-0002-3362-9492 FU National Aeronautics and Space Administration ( NASA) through the Radiation Sciences Program; Office of Biological and Environmental Research ( OBER) of the U. S. Department of Energy ( DOE) as part of the Atmospheric Radiation Measurement ( ARM) Program; Atmospheric Science Program ( ASP); Battelle for the DOE [DE- AC0676RLO 1830]; OE, OBER and located at PNNL FX This work was supported by the National Aeronautics and Space Administration ( NASA) through the Radiation Sciences Program and the Office of Biological and Environmental Research ( OBER) of the U. S. Department of Energy ( DOE) as part of the Atmospheric Radiation Measurement ( ARM) Program and Atmospheric Science Program ( ASP). The Pacific Northwest National Laboratory ( PNNL) is operated by Battelle for the DOE under contract DE- AC0676RLO 1830. This research was performed in part using the Molecular Science Computing Facility ( MSCF) in the Environmental Molecular Sciences Laboratory ( EMSL), a national scientific user facility sponsored by the U. S. DOE, OBER and located at PNNL. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7780-4 J9 PROC SPIE PY 2009 VL 7475 AR UNSP 74750I DI 10.1117/12.830179 PG 7 WC Meteorology & Atmospheric Sciences; Remote Sensing; Optics SC Meteorology & Atmospheric Sciences; Remote Sensing; Optics GA BA7EJ UT WOS:000337499500013 ER PT J AU Wilkerson, EG Perlack, RD AF Wilkerson, Erin G. Perlack, Robert D. BE Solomon, B Luzadis, VA TI Resource assessment, economics and technology for collection and harvesting SO RENEWABLE ENERGY FROM FOREST RESOURCES IN THE UNITED STATES SE Routledge Explorations in Environmental Economics LA English DT Article; Book Chapter ID LOGGING RESIDUE; ENERGY; PRODUCTIVITY; BIOMASS; STANDS C1 [Wilkerson, Erin G.; Perlack, Robert D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Wilkerson, EG (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. NR 31 TC 1 Z9 1 U1 0 U2 0 PU ROUTLEDGE PI LONDON PA 11 NEW FETTER LANE, LONDON EC4P 4EE, ENGLAND BN 978-0-203-88842-1 J9 ROUTL EXPLOR ENVIRON PY 2009 BP 69 EP 91 PG 23 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA BNT65 UT WOS:000275492900006 ER PT J AU Vogt, DJ Vogt, KA Gordon, JC Miller, ML Mukumoto, C Upadhye, R Miller, MH AF Vogt, Daniel J. Vogt, Kristina A. Gordon, John C. Miller, Michael L. Mukumoto, Calvin Upadhye, Ravi Miller, Michael H. BE Solomon, B Luzadis, VA TI Wood methanol as a renewable energy source in the western United States SO RENEWABLE ENERGY FROM FOREST RESOURCES IN THE UNITED STATES SE Routledge Explorations in Environmental Economics LA English DT Article; Book Chapter ID BIOENERGY PRODUCTION; BIOFUELS; ETHANOL; BIOMASS; FUELS; SWITCHGRASS; BENEFITS; CYCLE; CO2 C1 [Vogt, Daniel J.; Vogt, Kristina A.] Univ Washington, Seattle, WA 98195 USA. [Upadhye, Ravi] Lawrence Livermore Natl Lab, Livermore, CA USA. [Mukumoto, Calvin] Mukumoto Associates, Bend, OR USA. [Gordon, John C.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06520 USA. RP Vogt, DJ (reprint author), Univ Washington, Seattle, WA 98195 USA. NR 56 TC 1 Z9 1 U1 0 U2 1 PU ROUTLEDGE PI LONDON PA 11 NEW FETTER LANE, LONDON EC4P 4EE, ENGLAND BN 978-0-203-88842-1 J9 ROUTL EXPLOR ENVIRON PY 2009 BP 299 EP 321 PG 23 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA BNT65 UT WOS:000275492900016 ER PT B AU Savage, B AF Savage, Buzz BA Greenberg, MR West, BM Lowrie, KW Mayer, HJ BF Greenberg, MR West, BM Lowrie, KW Mayer, HJ TI American Nuclear Society Position Statements SO REPORTER'S HANDBOOK ON NUCLEAR MATERIALS, ENERGY, AND WASTE MANAGEMENT LA English DT Article; Book Chapter C1 US DOE, Management Nucl Energy R&D Programs, Washington, DC 20585 USA. RP Savage, B (reprint author), US DOE, Management Nucl Energy R&D Programs, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU VANDERBILT UNIV PRESS PI NASHVILLE PA NASHVILLE, TN 37212 USA BN 978-0-8265-1661-9; 978-0-8265-1659-6 PY 2009 BP 245 EP 246 PG 2 WC Communication; Environmental Studies SC Communication; Environmental Sciences & Ecology GA BA4UJ UT WOS:000336310100029 ER PT B AU Greenberg, MR Savage, B AF Greenberg, Michael R. Savage, Buzz BA Greenberg, MR West, BM Lowrie, KW Mayer, HJ BF Greenberg, MR West, BM Lowrie, KW Mayer, HJ TI Background on Key Organizations Related to US Nuclear Programs SO REPORTER'S HANDBOOK ON NUCLEAR MATERIALS, ENERGY, AND WASTE MANAGEMENT LA English DT Article; Book Chapter C1 [Greenberg, Michael R.] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, Piscataway, NJ 08855 USA. [Savage, Buzz] US DOE, Nucl Energy R&D Programs, Washington, DC USA. RP Greenberg, MR (reprint author), Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, Piscataway, NJ 08855 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU VANDERBILT UNIV PRESS PI NASHVILLE PA NASHVILLE, TN 37212 USA BN 978-0-8265-1661-9; 978-0-8265-1659-6 PY 2009 BP 247 EP 248 PG 2 WC Communication; Environmental Studies SC Communication; Environmental Sciences & Ecology GA BA4UJ UT WOS:000336310100030 ER PT S AU Ramanathan, A Agarwal, PK Kurnikova, M Langmead, CJ AF Ramanathan, Arvind Agarwal, Pratul K. Kurnikova, Maria Langmead, Christopher J. BE Batzoglou, S TI An Online Approach for Mining Collective Behaviors from Molecular Dynamics Simulations SO RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 13th Annual International Conference on Research Computational Molecular Biology CY MAY 18-21, 2009 CL Tucson, AZ ID PROTEIN DYNAMICS; CYCLOPHILIN-A; MOTIONS; CATALYSIS; BARNASE; ISOMERIZATION; STABILITY; EVOLUTION; NETWORK; PATHWAY AB Collective behavior involving distally separate regions in a protein is known to widely affect its function. In this paper, we present an online approach to Study and characterize collective behavior in proteins as molecular dynamics simulations progress. Our representation of MD simulations as a stream of continuously evolving data allows us to succinctly capture spatial and temporal dependencies that may exist and analyze them efficiently using data mining techniques. By using multi-way analysis we identify (a) parts of the protein that are dynamically coupled. (b) constrained residues/hinge sites that may potentially affect protein function and (c) time-points during the simulation where significant deviation in collective behavior occurred. We demonstrate the applicability of this method on two different protein simulations for barnase and cyclophilin A. For both these proteins we were able to identify constrained/flexible regions, showing good agreement with experimental results and prior computational work. Similarly, for the two simulations, we were able to identify time windows where there were significant structural deviations. Of these time-windows, for both proteins, over 70% show collective displacements in two or more functionally relevant regions. Taken together, our results indicate that multi-way analysis techniques can be used to analyze protein dynamics and may be an attractive means to automatically track and monitor molecular dynamics simulations. C1 [Ramanathan, Arvind; Langmead, Christopher J.] Carnegie Mellon Univ, Lane Ctr Computat Biol, Pittsburgh, PA 15213 USA. [Kurnikova, Maria] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Langmead, Christopher J.] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA. [Agarwal, Pratul K.] Computat Biol Inst, Comp Sci & Math Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Langmead, CJ (reprint author), Carnegie Mellon Univ, Lane Ctr Computat Biol, Pittsburgh, PA 15213 USA.; Langmead, CJ (reprint author), Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA.; Langmead, CJ (reprint author), Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA. EM cjl@cs.cmu.edu RI Ramanathan, Arvind/E-5388-2010 FU U.S. Department of Energy (DOE); Laboratory Directed Research and Development; Oak Ridge National Laboratory FX We thank Christos Faloutsos and Jimeng Sun from the Computer Science Department at Carnegie Mellon for introducing us to dynamic tensor analysis (DTA) and providing us with the implementation of DTA.We thank Tatyana Mamonova from the Kurnikova group for providing us access to molecular dynamics simulations of barnase. We also thank Hetunandan Kamisetty from the Langmead Laboratory for constructive discussions. We thank the anonymous reviewers for their valuable comments. This work was supported in part by U.S. Department of Energy (DOE) Career Award and a grant from Microsoft Research to C.J.L. Pratul K. Agarwal would like to acknowledge the financial support from the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the DOE. NR 48 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-02007-0 J9 LECT NOTES COMPUT SC PY 2009 VL 5541 BP 138 EP + PG 4 WC Biochemical Research Methods; Computer Science, Information Systems; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Mathematical & Computational Biology GA BJI68 UT WOS:000266195700010 ER PT S AU Sharon, I Pati, A Markowitz, VM Pinter, RY AF Sharon, Itai Pati, Amrita Markowitz, Victor M. Pinter, Ron Y. BE Batzoglou, S TI A Statistical Framework for the Functional Analysis of Metagenomes SO RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 13th Annual International Conference on Research Computational Molecular Biology CY MAY 18-21, 2009 CL Tucson, AZ DE metagenomics; functional analysis; function comparison; Lander-Waterman ID OCEAN SAMPLING EXPEDITION; PROTEIN FAMILIES; MICROBIAL GENOMES; DATABASE; TOOL; SEA AB Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. We present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. We also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements. We tested our method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that our framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects. C1 [Sharon, Itai; Pinter, Ron Y.] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel. [Pati, Amrita] DOE Joint Genome Inst, Genome Biol Program, WalnutCreek, CA 94598 USA. [Markowitz, Victor M.] Lawrence Berkeley Natl Lab, Biol & Data Management & Technol Ctr, Berkeley, CA 94720 USA. RP Sharon, I (reprint author), Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel. EM itaish@cs.technion.ac.il; apati@lbl.gov; VMMarkowitz@lbl.gov; pinter@cs.technion.ac.il OI Sharon, Itai/0000-0003-0705-2316 FU Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy [DE-AC03-76SF00098] FX We would like to thank Rotem Sorek for sharing his data and to Zohar Yakhini, Ernest Szeto, and Konstantinos Mavromatis for fruitful discussions. The work presented in this article was partially supported by the Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy under Contract No. DE-AC03-76SF00098. NR 27 TC 8 Z9 8 U1 1 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-02007-0 J9 LECT NOTES COMPUT SC PY 2009 VL 5541 BP 496 EP + PG 4 WC Biochemical Research Methods; Computer Science, Information Systems; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Mathematical & Computational Biology GA BJI68 UT WOS:000266195700035 ER PT B AU Brandt, J Gentile, A Mayo, J Pebay, P Roe, D Thompson, D Wong, M AF Brandt, Jim Gentile, Ann Mayo, Jackson Pebay, Philippe Roe, Diana Thompson, David Wong, Matthew GP ACM TI Methodologies for Advance Warning of Compute Cluster Problems via Statistical Analysis: A Case Study SO RESILIENCE 2009: WORKSHOP ON RESILIENCY IN HIGH-PERFORMANCE COMPUTING LA English DT Proceedings Paper CT International Workshop on Resiliency in High Performance Computing (Resilience 2009) CY JUN09, 2009 CL Munich, GERMANY SP SIGARCH DE reliability; RAS; fault tolerance; failure prediction AB The ability to predict impending failures (hardware or software) on large scale high performance compute (HPC) platforms, augmented by checkpoint mechanisms could drastically increase the scalability of applications and efficiency of platforms. In this paper we present our findings and methodologies employed to date in our search for reliable, advance indicators of failures on a 288 node, 4608 core, Opteron based Cluster in production use at Sandia, National Laboratories. In support of this effort we have deployed OVIS, a, Sandia-developed scalable HPC monitoring, analysis, and visualization tool designed for this purpose. We demonstrate that for a particular error case, statistical analysis using OVIS would enable advanced warning of cluster problems on timescales that would enable application and system administrator response in advance of errors, subsequent system error log reporting, and job failures. This is significant as the utility of detecting such indicators depends on how far in advance of failure they can be recognized and how reliable they are. C1 [Brandt, Jim; Gentile, Ann; Mayo, Jackson; Pebay, Philippe; Roe, Diana; Thompson, David; Wong, Matthew] Sandia Natl Labs, Livermore, CA 94551 USA. RP Brandt, J (reprint author), Sandia Natl Labs, MS 9159,POB 969, Livermore, CA 94551 USA. EM brandt@sandia.gov; gentile@sandia.gov; jmayo@sandia.gov; pppebay@sandia.gov; dcroe@sandia.gov; dcthomp@sandia.gov; mhwong@sandia.gov OI Pebay, Philippe/0000-0002-2311-3775 NR 13 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-60558-587-1 PY 2009 BP 7 EP 14 PG 8 WC Computer Science, Hardware & Architecture SC Computer Science GA BNL77 UT WOS:000274868200002 ER PT B AU Naughton, T Bland, W Vallee, G Engelmann, C Scott, SL AF Naughton, Thomas Bland, Wesley Vallee, Geoffroy Engelmann, Christian Scott, Stephen L. GP ACM TI Fault Injection Framework for System Resilience Evaluation SO RESILIENCE 2009: WORKSHOP ON RESILIENCY IN HIGH-PERFORMANCE COMPUTING LA English DT Proceedings Paper CT International Workshop on Resiliency in High Performance Computing (Resilience 2009) CY JUN09, 2009 CL Munich, GERMANY SP SIGARCH DE Fault injection; Resilience AB As high-performance computing (HPC) systems increase in size and complexity they become more difficult to manage The enormous component counts associated with these large systems lead to significant challenges in system reliability and availability. This in turn is driving research into the resilience of large scale systems, which seeks to curb the effects of increased failures at large scales by masking the inevitable faults in these systems. The basic premise-being that failure must be accepted as a reality of large scale system and coped with accordingly through system resilience. A key component in the development and evaluation of system resilience techniques is having a means to conduct controlled experiments. A common method for perforating such experiments is to generate synthetic faults and study the resulting effects. In this paper we discuss the motivation and our initial use of software fault injection to support the evaluation of resilience for HPC systems. We mention background and related work in the area and discuss the design of a, tool to aid in fault, injection experiments for both user-space (application-level) and system-level failures. C1 [Naughton, Thomas; Bland, Wesley; Vallee, Geoffroy; Engelmann, Christian; Scott, Stephen L.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Naughton, T (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM naughtont@ornl.gov; blandwb@ornl.gov; valleegr@ornl.gov; engelmannc@ornl.gov; scottsl@ornl.gov NR 11 TC 4 Z9 4 U1 0 U2 6 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-60558-587-1 PY 2009 BP 23 EP 28 PG 6 WC Computer Science, Hardware & Architecture SC Computer Science GA BNL77 UT WOS:000274868200004 ER PT J AU Diefenderfer, HL Montgomery, DR AF Diefenderfer, Heida L. Montgomery, David R. TI Pool Spacing, Channel Morphology, and the Restoration of Tidal Forested Wetlands of the Columbia River, USA SO RESTORATION ECOLOGY LA English DT Article DE beaver dam; ecohydrology; floodplain forest; log jam; Picea sitchensis ID LARGE WOODY DEBRIS; ADAPTIVE MANAGEMENT; FLUVIAL PROCESSES; SALMONID HABITAT; RIPARIAN FORESTS; PUGET LOWLAND; QUEETS RIVER; WASHINGTON; PATTERNS; PROJECTS AB Tidal forested wetlands have sustained substantial areal losses associated with human land use, and restoration practitioners lack descriptions of ecosystem structures within these systems, in which surface water is a significant controlling factor on flora and fauna. In particular, the roles of large wood in tidal areas remain poorly described compared to terrestrial and riverine ecosystems. This study documents the role of large wood accumulations in forcing channel morphology in remnant Sitka spruce (Picea sitchensis)-dominated tidal freshwater wetlands (swamps) in the floodplain of the Columbia River, U.S.A., near the Pacific coast. The average pool spacing documented in channel surveys of three swamps near Grays Bay, 2.2-2.8 channel widths per pool, was not significantly different. There were higher numbers of pools on these tidal forested wetland channels (median 2.7 pools/100 m) than on a nearby diked agricultural site prior to restoration. Log jams were common in the swamps and nonexistent in the pasturelands prior to restoration. On the basis of pool spacing and observed sequences of log jams and pools, tidal forested wetland channels were classified consistent with a forced step-pool channel type. This new classification for tidal systems provides a basis for restoration project design involving placement of large wood and development of pool habitats for aquatic species. Modifications by beaver (Castor canadensis) observed on restoration and reference sites warrant further investigation to explore the interactions between these animals and restoration methods that affect channel structure and hydraulics in tidal forced step-pool channels. C1 [Diefenderfer, Heida L.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Diefenderfer, Heida L.] Univ Washington, Coll Forest Resources, Seattle, WA 98195 USA. [Montgomery, David R.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Montgomery, David R.] Univ Washington, Quaternary Res Ctr, Seattle, WA 98195 USA. RP Diefenderfer, HL (reprint author), Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. EM heida.diefenderfer@pnl.gov FU U.S. Army Corps of Engineers Anadromous Fish Evaluation Program FX Supported by the U.S. Army Corps of Engineers Anadromous Fish Evaluation Program. H.L.D. thanks her University of Washington College doctoral committee for reviewing this manuscript: Chair K. Vogt, K. Ewing, J. Skalski, and R. Thom. We also thank the Columbia Land Trust for access to research sites, and A. Borde, J. Cotton, V. Cullinan, L. Miller, I. Sinks, and S. Zimmerman for assistance in the field and in preparation of the manuscript. We are grateful for the comments made by two anonymous reviewers. NR 89 TC 7 Z9 8 U1 1 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-2971 EI 1526-100X J9 RESTOR ECOL JI Restor. Ecol. PD JAN PY 2009 VL 17 IS 1 BP 158 EP 168 DI 10.1111/j.1526-100X.2008.00449.x PG 11 WC Ecology SC Environmental Sciences & Ecology GA 392EW UT WOS:000262286700018 ER PT J AU Binley, J Wrin, T Pantophlet, R Phung, P Crooks, ET Lapedes, A Taylor, N Cavacini, L Steigler, G Kunert, R Katinger, H Petropoulos, C Richman, D Morris, L Sutthent, R Burton, DR AF Binley, J. Wrin, T. Pantophlet, R. Phung, P. Crooks, E. T. Lapedes, A. Taylor, N. Cavacini, L. Steigler, G. Kunert, R. Katinger, H. Petropoulos, C. Richman, D. Morris, L. Sutthent, R. Burton, D. R. TI Cross-clade neutralization analysis of plasmas from clade B, C and CRF01_AE HIV-infected donors SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Binley, J.; Crooks, E. T.] Torrey Pines Inst, San Diego, CA USA. [Wrin, T.; Phung, P.; Petropoulos, C.] MonoGramBio, San Francisco, CA USA. [Pantophlet, R.] Simon Fraser Univ, Vancouver, BC, Canada. [Lapedes, A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Taylor, N.; Morris, L.] Natl Inst Communicable Dis, Johannesburg, South Africa. [Cavacini, L.] Beth Israel Deaconess Med Ctr, Boston, MA USA. [Steigler, G.; Kunert, R.; Katinger, H.] Univ Agr Sci, Vienna, Austria. [Richman, D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Sutthent, R.] HIV Bioinformat Ctr, Bangkok, Thailand. [Burton, D. R.] Scripps Res Inst, La Jolla, CA 92037 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P31 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300084 ER PT J AU Fischer, W Apetrei, C Hahn, BH Letvin, NL Nabel, GJ Korber, BT AF Fischer, W. Apetrei, C. Hahn, B. H. Letvin, N. L. Nabel, G. J. Korber, B. T. TI Gene-to-gene differences in evolutionary rate between HIV-1 and natural SIV from sooty mangabeys: implications for vaccine tests in non-human primates SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Fischer, W.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Apetrei, C.] Tulane Univ, Dept Trop Med, New Orleans, LA 70118 USA. [Hahn, B. H.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Letvin, N. L.] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. [Letvin, N. L.] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Nabel, G. J.] NAID, Vaccine Res Ctr, NIH, Bethesda, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 MA P425 PG 2 WC Virology SC Virology GA 509KL UT WOS:000271015300476 ER PT J AU Fischer, W Keele, B Bhattacharya, T Lo, C Giorgi, E Hraber, P Leitner, T Han, C Gleasner, C Green, L Hahn, B Shaw, G Haynes, B Korber, B AF Fischer, W. Keele, B. Bhattacharya, T. Lo, C. Giorgi, E. Hraber, P. Leitner, T. Han, C. Gleasner, C. Green, L. Hahn, B. Shaw, G. Haynes, B. Korber, B. TI Deep sequencing of HIV-1 from acute infection: low initial diversity, and rapid but variable CTL escape SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Bhattacharya, T.] Los Alamos Natl Lab, Grp T2, Los Alamos, NM USA. [Keele, B.; Hahn, B.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Han, C.; Gleasner, C.; Green, L.] Los Alamos Natl Lab, Grp B6, Los Alamos, NM USA. [Hahn, B.] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. [Shaw, G.] Univ Alabama, Div Hematol Oncol, Birmingham, AL 35294 USA. [Haynes, B.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC USA. RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Fischer, Will/0000-0003-4579-4062 NR 0 TC 1 Z9 1 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P401 PG 2 WC Virology SC Virology GA 509KL UT WOS:000271015300452 ER PT J AU Gnanakaran, G Bhattacharya, T Daniels, M Lapedes, A Gao, F Kumar, A Li, M Tang, H Greene, K Gao, H Seaman, M Haynes, BF Montefiori, DC Korber, BT AF Gnanakaran, G. Bhattacharya, T. Daniels, M. Lapedes, A. Gao, F. Kumar, A. Li, M. Tang, H. Greene, K. Gao, H. Seaman, M. Haynes, B. F. Montefiori, D. C. Korber, B. T. TI Genetic signature analysis identifies the CD4i region of gp120 as a determinant of broadly NAb responses in HIV-1-infected individuals SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Gnanakaran, G.; Bhattacharya, T.; Daniels, M.; Lapedes, A.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Gao, F.; Kumar, A.; Li, M.; Tang, H.; Greene, K.; Gao, H.; Haynes, B. F.; Montefiori, D. C.] Duke Univ, Durham, NC 27706 USA. [Seaman, M.] Harvard Univ, Sch Med, Boston, MA USA. RI Bhattacharya, Tanmoy/J-8956-2013 OI Bhattacharya, Tanmoy/0000-0002-1060-652X NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P394 PG 2 WC Virology SC Virology GA 509KL UT WOS:000271015300445 ER PT J AU Hempel, U Buranapraditkun, S Chatkulkawin, P Pitakpolrat, P Phillips, LC Allgaier, RL Lorenzen, S Hildebrand, WH Leitner, T Matthews, P Goulder, P Walker, BD Ruxrungtham, K Allen, TM AF Hempel, U. Buranapraditkun, S. Chatkulkawin, P. Pitakpolrat, P. Phillips, L. C. Allgaier, R. L. Lorenzen, S. Hildebrand, W. H. Leitner, T. Matthews, P. Goulder, P. Walker, B. D. Ruxrungtham, K. Allen, T. M. TI HLA-B1302 is associated with viral control in clade CRF01_AE HIV-1 infection in Thailand SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Hempel, U.; Phillips, L. C.; Allgaier, R. L.; Walker, B. D.; Allen, T. M.] MIT & Harvard, Ragon Inst MGH, Boston, MA USA. [Buranapraditkun, S.; Chatkulkawin, P.; Pitakpolrat, P.; Lorenzen, S.; Ruxrungtham, K.] Chulalongkorn Univ, Vaccine & Cellular Immunol Lab, Bangkok, Thailand. [Hildebrand, W. H.] Univ Oklahoma, Dept Microbiol & Immunol, Oklahoma City, OK USA. [Leitner, T.] Los Alamos Lab, Los Alamos, NM USA. [Goulder, P.] Univ Oxford, Oxford, England. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P236 PG 2 WC Virology SC Virology GA 509KL UT WOS:000271015300287 ER PT J AU Hulot, SL Seaman, MS Dorosh, LA Korber, BT Letvin, NL AF Hulot, S. L. Seaman, M. S. Dorosh, L. A. Korber, B. T. Letvin, N. L. TI Immunization with a single HIV-I envelope sequence can generate CD8+T lymphocytes capable of recognizing multiple variant forms of envelope SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Hulot, S. L.; Seaman, M. S.; Dorosh, L. A.; Letvin, N. L.] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Viral Pathogenesis, Boston, MA 02215 USA. [Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P291 PG 2 WC Virology SC Virology GA 509KL UT WOS:000271015300342 ER PT J AU Ibarrondo, J Zuniga, R Farfan, M Suarez, J Mothe, B Llano, A Szinger, JJ Hildebrand, W Sanchez, J Korber, BT Brander, C AF Ibarrondo, J. Zuniga, R. Farfan, M. Suarez, J. Mothe, B. Llano, A. Szinger, J. J. Hildebrand, W. Sanchez, J. Korber, B. T. Brander, C. TI Crucial contribution of sub-dominant HLA-C allele restricted CTL responses to the control of HIV SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Ibarrondo, J.; Mothe, B.; Llano, A.; Brander, C.] Fundacio IrsiCaixa, HIVACAT, Badalona, Spain. [Zuniga, R.; Farfan, M.; Suarez, J.] Asociac Civil IMPACTA Salud & Educ, Lima, Peru. [Szinger, J. J.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Hildebrand, W.] Univ Oklahoma, Med Ctr, Oklahoma City, OK USA. [Sanchez, J.] Invest Med Salud INMENSA, Lima, Peru. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P253 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300304 ER PT J AU Liu, MK Ferrari, G Salazar, J Keele, B Tanner, RL Hraber, P Giorgi, E Ganusov, VV Learn, GH Salazar, MG Moore, SR Digleria, K Yu, Z Rostron, T DeBoer, C Williams, A Margaret, C Kopycinski, J Campion, SL Bourne, VE Brackenridge, S Hahn, B Cohen, M Borrow, P Weinhold, K Perelson, A Shaw, G Korber, BT Goonetilleke, N McMichael, AJ AF Liu, M. K. Ferrari, G. Salazar, J. Keele, B. Tanner, R. L. Hraber, P. Giorgi, E. Ganusov, V. V. Learn, G. H. Salazar, M. G. Moore, S. R. Digleria, K. Yu, Z. Rostron, T. DeBoer, C. Williams, A. Margaret, C. Kopycinski, J. Campion, S. L. Bourne, V. E. Brackenridge, S. Hahn, B. Cohen, M. Borrow, P. Weinhold, K. Perelson, A. Shaw, G. Korber, B. T. Goonetilleke, N. McMichael, A. J. TI The role of early T-cell responses in subjects with acute HIV-1 infection SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Liu, M. K.; Tanner, R. L.; Moore, S. R.; Digleria, K.; Yu, Z.; Rostron, T.; Campion, S. L.; Bourne, V. E.; Brackenridge, S.; Borrow, P.; Goonetilleke, N.; McMichael, A. J.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Ferrari, G.; Weinhold, K.] Duke Univ, Durham, NC USA. [Salazar, J.; Keele, B.; Salazar, M. G.; Hahn, B.; Shaw, G.] Univ Alabama, Birmingham, AL USA. [Hraber, P.; Giorgi, E.; Ganusov, V. V.; Learn, G. H.; Perelson, A.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Williams, A.; Margaret, C.] SCHARP, Seattle, WA USA. [Kopycinski, J.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cohen, M.] Univ N Carolina, Chapel Hill, NC USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR O40 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300041 ER PT J AU Moore, PL Ranchobe, N Lambson, B Gray, E Mlisana, K Karim, SA Williamson, C Gnanakaran, S Morris, L AF Moore, P. L. Ranchobe, N. Lambson, B. Gray, E. Mlisana, K. Karim, S. Abdool Williamson, C. Gnanakaran, S. Morris, L. TI Charge changes in the alpha2-helix in the C3 region of the HIV-1 subtype C envelope mediate neutralization escape SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Moore, P. L.; Ranchobe, N.; Lambson, B.; Gray, E.; Morris, L.] NICD, AIDS Virus Res Unit, Johannesburg, South Africa. [Mlisana, K.; Karim, S. Abdool] Ctr AIDS Programme Res S Africa CAPRISA, Durban, South Africa. [Williamson, C.] UCT, Inst Infect Dis & Mol Med, Cape Town, South Africa. [Gnanakaran, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P117 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300169 ER PT J AU Murphy, MK Rong, R Li, B Mulenga, J Allen, SA Gnanakaran, S Derdeyn, CA AF Murphy, M. K. Rong, R. Li, B. Mulenga, J. Allen, S. A. Gnanakaran, S. Derdeyn, C. A. TI Mutation of the gp120 alpha2 helix in early subtype C HIV-1 infection fails to alter neutralization sensitivity or efficiency of in vitro replication SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Murphy, M. K.; Rong, R.; Li, B.; Allen, S. A.; Derdeyn, C. A.] Emory Univ, Atlanta, GA 30322 USA. [Mulenga, J.] Zambia Blood Transfus Serv, Lusaka, Zambia. [Gnanakaran, S.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P114 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300166 ER PT J AU Ritchie, AJ Kopycinski, J Campion, S Moore, S Liu, M Tanner, R Kuldanek, K Legg, K Wang, M Moodie, Z Korber, B Fidler, S McMichael, A Goonetilleke, N AF Ritchie, A. J. Kopycinski, J. Campion, S. Moore, S. Liu, M. Tanner, R. Kuldanek, K. Legg, K. Wang, M. Moodie, Z. Korber, B. Fidler, S. McMichael, A. Goonetilleke, N. TI Characterisation of HIV-1 specific T-cell responses in exposed uninfected individuals from a London cohort SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Ritchie, A. J.; Kopycinski, J.; Campion, S.; Moore, S.; Liu, M.; Tanner, R.; McMichael, A.; Goonetilleke, N.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Kuldanek, K.; Legg, K.; Fidler, S.] St Marys Hosp, London, England. [Wang, M.; Moodie, Z.] Fred Hutchinson Canc Res Ctr, SCHARP, Seattle, WA 98104 USA. [Korber, B.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P271 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300322 ER PT J AU Rong, R Li, B Haaland, RE Murphy, MK Mulenga, J Allen, SA Blackwell, JL Pinter, A Shaw, GM Gnanakaran, S Hunter, E Robinson, JE Derdeyn, CA AF Rong, R. Li, B. Haaland, R. E. Murphy, M. K. Mulenga, J. Allen, S. A. Blackwell, J. L. Pinter, A. Shaw, G. M. Gnanakaran, S. Hunter, E. Robinson, J. E. Derdeyn, C. A. TI Autologous neutralizing antibodies in early subtype C HIV-1 infection target variable regions of envelope and drive multiple pathways of viral escape SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Haaland, R. E.] Ctr Dis Control & Prevent, Atlanta, GA USA. [Mulenga, J.] Zambia Blood Transfus Serv, Lusaka, Zambia. [Pinter, A.] Univ Med & Dent New Jersey, New Jersey Med Sch, Publ Hlth Res Inst, Newark, NJ 07103 USA. [Shaw, G. M.] Univ Alabama, Birmingham, AL USA. [Gnanakaran, S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Robinson, J. E.] Tulane Univ, New Orleans, LA 70118 USA. [Rong, R.; Li, B.; Murphy, M. K.; Allen, S. A.; Blackwell, J. L.; Hunter, E.; Derdeyn, C. A.] Emory Univ, Atlanta, GA 30322 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P125 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300177 ER PT J AU Sirivichayakul, S Felber, B Kulkarni, V Pavlakis, G Buranapraditkun, S Thantiworasit, P Pitakpolrat, P Allen, T Leitner, T Korber, B Ruxrungtham, K AF Sirivichayakul, S. Felber, B. Kulkarni, V. Pavlakis, G. Buranapraditkun, S. Thantiworasit, P. Pitakpolrat, P. Allen, T. Leitner, T. Korber, B. Ruxrungtham, K. TI Pre-clinical immunogenicity of mosaic Asian AE/B HIV-1 DNA vaccine in mice SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Sirivichayakul, S.; Buranapraditkun, S.; Thantiworasit, P.; Pitakpolrat, P.; Ruxrungtham, K.] Chulalongkorn Univ, Fac Med, Dept Med, Bangkok 10330, Thailand. [Felber, B.; Kulkarni, V.; Pavlakis, G.] NCI, Frederick, MD 21701 USA. [Allen, T.] Harvard Univ, Sch Med, Boston, MA USA. [Leitner, T.; Korber, B.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P321 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300372 ER PT J AU Yang, H Yan, H Li, W Zhang, X Fischer, W Zhang, H Wu, H Korber, BT McMichael, AJ Xu, X Goonetilleke, N AF Yang, H. Yan, H. Li, W. Zhang, X. Fischer, W. Zhang, H. Wu, H. Korber, B. T. McMichael, A. J. Xu, X. Goonetilleke, N. TI A greater breadth of HIV-1-specific T cell responses detected using mosaic peptides compare to consensus peptides SO RETROVIROLOGY LA English DT Meeting Abstract C1 [Yang, H.; McMichael, A. J.; Xu, X.; Goonetilleke, N.] Weatherall Inst Mol Med, MRC Human Immunol Unit, Oxford, England. [Yan, H.; Li, W.; Zhang, X.; Zhang, H.; Wu, H.] Capital Med Univ, YouAn Hosp, Beijing, Peoples R China. [Fischer, W.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PY 2009 VL 6 AR P242 PG 1 WC Virology SC Virology GA 509KL UT WOS:000271015300293 ER EF