FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Robichaud, DJ Scheer, AM Nimlos, MR Ellison, GB AF Robichaud, David J. Scheer, Adam M. Nimlos, Mark R. Ellison, G. B. TI Development of a REMPI/SPI-TOFMS for the detection of tar formation in biomass gasification SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Robichaud, David J.; Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Scheer, Adam M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Ellison, G. B.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. EM david_robichaud@nrel.gov; ascheer1@gmail.com; mark_nimlos@nrel.gov; barney@jila.colorado.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 85-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803792 ER PT J AU Robinson, DB Fares, SJ Ong, MD Arslan, I Tran, KL Clift, WM AF Robinson, David B. Fares, Stephen J. Ong, Markus D. Arslan, Ilke Tran, Kim L. Clift, W. Miles TI Bulk powders of nanoporous palladium and platinum SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Robinson, David B.; Fares, Stephen J.; Ong, Markus D.; Arslan, Ilke; Tran, Kim L.; Clift, W. Miles] Sandia Natl Labs, Energy Syst Dept, Livermore, CA 94551 USA. EM drobins@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 584-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805697 ER PT J AU Robinson, DB Buffleben, GM Zuckermann, RN AF Robinson, David B. Buffleben, George M. Zuckermann, Ronald N. TI Artificial polymers mimic bacteriophage capsid proteins and encapsulate nucleic acids SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Robinson, David B.; Buffleben, George M.] Sandia Natl Labs, Energy Syst Dept, Livermore, CA 94551 USA. [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Lab Mol Foundry, Berkeley, CA 94720 USA. EM drobins@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 206-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803387 ER PT J AU Robinson, DB Wu, CAM Jacobs, BW Ong, MD Tran, KL Pierson, BE AF Robinson, David B. Wu, Chung-An Max Jacobs, Benjamin W. Ong, Markus D. Tran, Kim L. Pierson, Bonnie E. TI Nanoporous gold electrodes demonstrate important supercapacitor design principles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Robinson, David B.; Wu, Chung-An Max; Jacobs, Benjamin W.; Ong, Markus D.; Tran, Kim L.] Sandia Natl Labs, Energy Syst Dept, Livermore, CA 94551 USA. [Pierson, Bonnie E.] N Carolina State Univ, Raleigh, NC 27695 USA. NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 371-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803380 ER PT J AU Rodriguez, JA AF Rodriguez, Jose A. TI PHYS 423-Water-gas shift on gold- and copper-oxide catalysts: Active phase and reaction mechanism SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 423-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808079 ER PT J AU Rosenbaum, E Shaw, DW Lynn, RJ Warzinski, RP AF Rosenbaum, Eilis Shaw, David W. Lynn, Ronald J. Warzinski, Robert P. TI Thermal conductivity and thermal diffusivity of methane hydrate using a single-sided approach SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Rosenbaum, Eilis; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Shaw, David W.] Geneva Coll, Dept Engn, Beaver Falls, PA 15010 USA. [Lynn, Ronald J.] Natl Energy Technol Lab, South Pk, PA 15129 USA. EM eilis.rosenbaum@netl.doe.gov; dws@geneva.edu; warzinsk@netl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 67-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803813 ER PT J AU Roy, LE Batista, ER AF Roy, Lindsay E. Batista, Enrique R. TI PHYS 45-Theoretical study on the stability of molecular platinum catalysts upon irradiation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Roy, Lindsay E.; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lroy@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 45-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808287 ER PT J AU Rundberg, RS AF Rundberg, Robert S. TI Nuclear isomers: Facts and fiction SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Rundberg, Robert S.] Los Alamos Natl Lab, C INC, Los Alamos, NM 87545 USA. EM rundberg@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 24-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805849 ER PT J AU Salaita, K Nair, PM Gray, JW Groves, JT AF Salaita, Khalid Nair, Pradeep M. Gray, Joe W. Groves, Jay T. TI Role of spatial organization in receptor function: Eph-ephrin signaling SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Salaita, Khalid; Nair, Pradeep M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94706 USA. [Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM Salaita@berkeley.edu; Pnair@berkeley.edu; JTGroves@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 445-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803429 ER PT J AU Sand, A Goering, J Burghaus, U Arey, BW Eidelman, O Zak, A Rosentsveig, R Tenne, R AF Sand, A. Goering, J. Burghaus, Uwe Arey, Bruce W. Eidelman, O. Zak, A. Rosentsveig, Rita Tenne, Reshef TI PHYS 356-Reactive and nonreactive interactions of thiophene with WS2 and MoS2 fullerene-like nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sand, A.; Goering, J.; Burghaus, Uwe] N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58102 USA. [Arey, Bruce W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Eidelman, O.] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Zak, A.] NanaoMaterials Ltd, IL-74140 Ness Ziona, Israel. EM andrew.sand.1@ndsu.edu; John.Goering@ndsu.edu; uwe.burghaus@ndsu.edu; reshef.tenne@weizmann.ac.il NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 356-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808036 ER PT J AU Santra, R AF Santra, Robin TI PHYS 443-Multichannel coherence in strong-field ionization SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Santra, Robin] Univ Chicago, Argonne Natl Lab, Argonne, IL 60439 USA. EM rsantra@anl.gov RI Santra, Robin/E-8332-2014 OI Santra, Robin/0000-0002-1442-9815 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 443-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808241 ER PT J AU Sasaki, D Liu, HQ Carroll-Portillo, A Bachand, GD Hayden, CC Abate, EA AF Sasaki, Darryl Liu, Haiqing Carroll-Portillo, Amanda Bachand, George D. Hayden, Carl C. Abate, Elisa A. TI Lipid nanotube formation from protein-membrane interactions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Hayden, Carl C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM dysasak@sandia.gov; hqliu@sandia.gov; cchayde@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 407-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803173 ER PT J AU Sasaki, D Hayden, CC Kent, MS Hwang, JS Abate, EA AF Sasaki, Darryl Hayden, Carl C. Kent, Michael S. Hwang, Jane S. Abate, Elisa A. TI Directed formation of lipid membrane microdomains via metal ion recognition SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Hayden, Carl C.; Hwang, Jane S.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Kent, Michael S.] Sandia Natl Labs, Albuquerque, NM 87111 USA. EM dysasak@sandia.gov; cchayde@sandia.gov; mskent@sandia.gov NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 49-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803171 ER PT J AU Sattelberger, A AF Sattelberger, Al TI New developments in technetium-99 chemistry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sattelberger, Al] Argonne Natl Lab, Energy Sci & Engn Directorate, Lemont, IL 60439 USA. EM asattelberger@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 12-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805834 ER PT J AU Saykally, RJ AF Saykally, Richard J. TI PHYS 163-X-ray absorption spectroscopy of liquid microjets: A new probe of ion hydration SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM saykally@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 163-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808150 ER PT J AU Scheer, AM Robichaud, DJ Ellison, B Nimlos, MR AF Scheer, Adam M. Robichaud, David J. Ellison, Barney Nimlos, Mark R. TI Thermal decomposition of anisole and the methoxyphenols SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Scheer, Adam M.; Ellison, Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Robichaud, David J.; Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ascheer1@gmail.com; david_robichaud@nrel.gov; barney@jila.colorado.edu; mark_nimlos@nrel.gov NR 0 TC 0 Z9 0 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 177-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803799 ER PT J AU Schlueter, JA Halder, GJ Park, H AF Schlueter, John A. Halder, Gregory J. Park, Hyunsoo TI Ultramicroporous triazole-based metal organic framework materials SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Schlueter, John A.; Halder, Gregory J.; Park, Hyunsoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM JASchlueter@anl.gov; halder@anl.gov; hpark@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 320-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805604 ER PT J AU Schneider, DA Huber, DL Crawford, C Sanchez, A AF Schneider, Duane A. Huber, Dale L. Crawford, Christine Sanchez, Arturo TI Microencapsulation of concentrated sulfuric acid with an epoxy vinyl ester shell SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Schneider, Duane A.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. [Huber, Dale L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Crawford, Christine] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Sanchez, Arturo] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Sanchez, Arturo] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. EM daschne@sandia.gov; dlhuber@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 320-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857807387 ER PT J AU Schoendorff, GE Dejong, WA Gordon, MS Windus, TL AF Schoendorff, George E. deJong, Wibe A. Gordon, Mark S. Windus, Theresa L. TI Theoretical studies of uranyl complexes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Schoendorff, George E.; Windus, Theresa L.] Iowa State Univ, Dept Chem, Ames, IA 50014 USA. [deJong, Wibe A.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM gschoend@iastate.edu; bert.dejong@pnl.gov; mark@si.msg.chem.iastate.edu; theresa@fi.ameslab.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 222-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803465 ER PT J AU Schwantes, JM Douglas, M Bonde, S Briggs, JD Farmer, OT Greenwood, LR Lepel, E Orton, C Wacker, J Luksic, A AF Schwantes, Jon M. Douglas, Matthew Bonde, S. Briggs, J. D. Farmer, Orville T., III Greenwood, Lawrence R. Lepel, E. Orton, C. Wacker, J. Luksic, A. TI Nuclear archeology in a bottle: Evidence of pre-Trinity US weapons activities from a waste burial site SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Douglas, Matthew; Greenwood, Lawrence R.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Bonde, S.; Briggs, J. D.; Farmer, Orville T., III; Orton, C.; Wacker, J.; Luksic, A.] Pacific NW Natl Lab, Natl Secur Div, Richland, WA 99352 USA. EM jon.schwantes@pnl.gov; matthew.douglas@pnl.gov; tom.farmer@pnl.gov; larry.greenwood@pnl.gov RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 71-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805865 ER PT J AU Schwartz, V More, K Overbury, SH Egbebi, A Spivey, JJ AF Schwartz, Viviane More, Karren Overbury, Steven H. Egbebi, Adefemi Spivey, James J. TI In situ FT-IR studies of CO and CO2 hydrogenation over titania supported Rh and Rh-Li catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [More, Karren] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. [Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. EM schwartzv@ornl.gov; morekl1@ornl.gov; overburysh@ornl.gov; aegbeb1@lsu.edu; jjspivey@lsu.edu RI More, Karren/A-8097-2016; Overbury, Steven/C-5108-2016 OI More, Karren/0000-0001-5223-9097; Overbury, Steven/0000-0002-5137-3961 NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 60-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803794 ER PT J AU See, KA Deutsch, TG Kaneshiro, J Turner, JA Cowley, SW AF See, Kimberly A. Deutsch, Todd G. Kaneshiro, Jess Turner, John A. Cowley, Scott W. TI Analysis of CuGaSe2 films for photoelectrochemical water splitting SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [See, Kimberly A.] Colorado Sch Mines, Dept Chem, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Deutsch, Todd G.; Turner, John A.] Natl Renewable Energy Lab, Hydrogen Technol & Syst Ctr, Golden, CO 80401 USA. [Kaneshiro, Jess] Univ Hawaii Manoa, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA. [Cowley, Scott W.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. EM ksee@mines.edu; Todd_Deutsch@nrel.gov; John_Turner@nrel.gov; scowley@mines.edu NR 0 TC 0 Z9 0 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 555-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857802076 ER PT J AU Shaughnessy, DA AF Shaughnessy, Dawn A. TI Collection of solid debris for the National Ignition Facility SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Shaughnessy, Dawn A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM shaughnessy2@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 22-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805847 ER PT J AU Shaw, WJ Linehan, JC AF Shaw, Wendy J. Linehan, John C. TI Biologically inspired catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Shaw, Wendy J.; Linehan, John C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM john.linehan@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 721-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805609 ER PT J AU Shen, TY Gnanakaran, S AF Shen, Tongye Gnanakaran, S. TI Thermostability of hydrogen bond network of cellulose SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Shen, Tongye; Gnanakaran, S.] Los Alamos Natl Labs, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Shen, Tongye] Los Alamos Natl Labs, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM tshen@lanl.gov; gnana@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 51-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803645 ER PT J AU Shen, TY Langan, P French, AD Johnson, GP Gnanakaran, S AF Shen, Tongye Langan, Paul French, Alfred D. Johnson, Glenn P. Gnanakaran, S. TI Self-assembly of cellulose polymers: Insights into different crystalline forms SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Shen, Tongye; Gnanakaran, S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Shen, Tongye] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [French, Alfred D.] USDA, So Reg Res Ctr, New Orleans, LA 70124 USA. [Johnson, Glenn P.] ARS, Cotton Struct & Qual Res Unit, USDA, SRRC, New Orleans, LA 70124 USA. EM tshen@lanl.gov; langan_paul@lanl.gov; al.french@ars.usda.gov; gnana@lanl.gov RI Langan, Paul/N-5237-2015 OI Langan, Paul/0000-0002-0247-3122 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 18-CELL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857801830 ER PT J AU Shin, Y Arey, BW Wang, CM Exarhos, GJ AF Shin, Yongsoon Arey, Bruce W. Wang, Chongmin Exarhos, Gregory J. TI Template synthesis of metal oxides on cellulose nanocrystal SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Shin, Yongsoon] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Arey, Bruce W.] Pacific NW Natl Lab, PNNL, Richland, WA 99352 USA. [Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Exarhos, Gregory J.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. EM yongsoon.shin@pnl.gov NR 0 TC 0 Z9 0 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 223-CELL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857801828 ER PT J AU Shuford, KL Park, SH AF Shuford, Kevin L. Park, Sung Ho TI PHYS 298-Optical properties of complex nanorod architectures SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Shuford, Kevin L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Park, Sung Ho] Sungkyunkwan Univ, Dept Chem, Suwon, South Korea. EM shufordkl@ornl.gov; spark72@skku.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 298-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808340 ER PT J AU Siegfried, MJ Hunyadi, SE Jacobs, S Liu, JM Hudson, JS Hu, TCC Serkiz, SM AF Siegfried, Matthew J. Hunyadi, Simona E. Jacobs, Stephanie Liu, Jimei Hudson, JoAn S. Hu, Tom C-C Serkiz, Steve M. TI Cellular uptake of manganese-based nanomaterials SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Siegfried, Matthew J.; Hunyadi, Simona E.; Serkiz, Steve M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Jacobs, Stephanie; Liu, Jimei; Hu, Tom C-C] Med Coll Georgia, Augusta, GA 30192 USA. [Hudson, JoAn S.] Clemson Univ, Clemson, SC 29634 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 24-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803375 ER PT J AU Sindhikara, DJ Roitberg, AE Voter, AF Kim, S AF Sindhikara, Daniel J. Roitberg, Adrian E. Voter, Arthur F. Kim, Seonah TI Stochastic thermostat induced synchronization of MD trajectories in biomolecules SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sindhikara, Daniel J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Roitberg, Adrian E.; Kim, Seonah] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Voter, Arthur F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sindhikara@phys.ufl.edu; afv@lanl.gov; kim@qtp.ufl.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 12-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803464 ER PT J AU Siperko, LM Porter, MD Lipert, RJ AF Siperko, Lorraine M. Porter, Marc D. Lipert, Robert J. TI Colorimetric-solid phase extraction (C-SPE) for the determination of trace level indicators of water quality SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Siperko, Lorraine M.; Porter, Marc D.] Univ Utah, Dept Chem, Salt Lake City, UT 84108 USA. [Siperko, Lorraine M.; Porter, Marc D.] Univ Utah, Dept Chem Engn & Bioengn, Salt Lake City, UT 84108 USA. [Lipert, Robert J.] Iowa State Univ, Inst Phys Res & Technol, Ames Lab USDOE, Ames, IA 50011 USA. EM lorraine.siperko@utah.edu; Marc.Porter@utah.edu; blipert@ameslab.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 126-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804022 ER PT J AU Siperko, LM Porter, MD Lipert, RJ AF Siperko, Lorraine M. Porter, Marc D. Lipert, Robert J. TI Application of the principles of negligible depletion to colorimetric-solid phase extraction SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Siperko, Lorraine M.] Univ Utah, Dept Chem, Salt Lake City, UT 84108 USA. [Siperko, Lorraine M.; Porter, Marc D.] Univ Utah, Dept Chem Engn & Bioengn, Salt Lake City, UT 84108 USA. [Lipert, Robert J.] Iowa State Univ, Inst Phys Res & Technol, Ames Lab USDOE, Ames, IA 50011 USA. EM lorraine.siperko@utah.edu; Marc.Porter@utah.edu; blipert@ameslab.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 217-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804023 ER PT J AU Skomurski, FN Kerisit, S Ilton, ES Rosso, KM AF Skomurski, Frances N. Kerisit, Sebastien Ilton, Eugene S. Rosso, Kevin M. TI U6+ interactions with Fe2+ in magnetite SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Skomurski, Frances N.; Rosso, Kevin M.] Pacific NW Natl Lab, Geochem Div, Richland, WA 99352 USA. [Kerisit, Sebastien; Ilton, Eugene S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM frances.skomurski@pnl.gov; sebastien.kerisit@pnl.gov; Eugene.Ilton@pnl.gov; Kevin.Rosso@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 60-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804421 ER PT J AU Smith, MW Berry, DA Shekhawat, D Haynes, D Spivey, JJ AF Smith, Mark W. Berry, David A. Shekhawat, Dushyant Haynes, Daniel Spivey, James J. TI Effect of oxide catalysts and oxygen-conducting supports on partial oxidation of liquid hydrocarbons SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Smith, Mark W.] REM Engn Serv, Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Berry, David A.] US DOE, Separat & Fuels Proc Div, Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Shekhawat, Dushyant] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Haynes, Daniel; Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. EM mark.smith@re.netl.doe.gov; David.Berry@netl.doe.gov; Dushyant.Shekhawat@netl.doe.gov; dhayne5@lsu.edu; jjspivey@lsu.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 170-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803827 ER PT J AU Smith, MB Johnson, JC Michl, J AF Smith, Millicent B. Johnson, Justin C. Michl, Josef TI PHYS 390-Noncovalent aggregates of 1,3 diphenylisobenzofuran for singlet fission studies SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Smith, Millicent B.; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Johnson, Justin C.] Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. EM smithm@eefus.colorado.edu; michl@eefus.colorado.edu RI Michl, Josef/G-9376-2014 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 390-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808177 ER PT J AU Solunke, RD Veser, G AF Solunke, Rahul D. Veser, Goetz TI Nanocomposite oxygen carriers for chemical looping combustion of sulfur-contaminated coal gas SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15261 USA. EM rds35@pitt.edu; gveser@pitt.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 7-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803710 ER PT J AU Somorjai, GA AF Somorjai, G. A. TI PHYS 82-Major successes of combined theoretical and experimental studies in surface chemistry and heterogeneous catalysis from the perspective of an experimental scientist SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Somorjai, G. A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, G. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM Somorjai@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 82-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808189 ER PT J AU Somorjai, GA AF Somorjai, G. A. TI Synthesis, characterization and reaction studies on metal nanoparticles in the 0.8-10 nm size range and controlled shape SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Somorjai, G. A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, G. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 78-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803158 ER PT J AU Sorescu, DC AF Sorescu, Dan C. TI PHYS 41-Theoretical investigations of the adsorption and activation properties of CO on iron and iron carbide surfaces SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM sorescu@netl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 41-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808111 ER PT J AU Spagnoli, D Gilbert, B Waychunas, GA Banfield, JF AF Spagnoli, Dino Gilbert, Benjamin Waychunas, Glenn A. Banfield, Jillian F. TI Predicting the effect of ordered water on the adsorption of ions on nanoparticle surfaces and aggregation of hematite nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Spagnoli, Dino; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Gilbert, Benjamin; Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. EM dspagnoli@berkeley.edu; BGilbert@lbl.gov; gawaychunas@lbl.gov; jbanfield@berkeley.edu RI Spagnoli, Dino/F-8641-2011; Gilbert, Benjamin/E-3182-2010 OI Spagnoli, Dino/0000-0001-6367-4748; NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 21-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804318 ER PT J AU Spencer, LP Yang, P Batista, ER Boncella, JM AF Spencer, Liam P. Yang, Ping Batista, Enrique R. Boncella, James M. TI Uranium(VI) bis(imido) dichalcogenate complexes: Synthesis and density functional theory analysis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Spencer, Liam P.; Boncella, James M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Yang, Ping; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lspencer@lanl.gov; boncella@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 589-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805204 ER PT J AU Sproules, S Milsmann, C George, SD Wieghardt, K AF Sproules, Stephen Milsmann, Carsten George, Serena DeBeer Wieghardt, Karl TI Homoleptic and heteroleptic Fe(III) and Fe(IV) complexes stabilized by sulfur-donor ligands SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sproules, Stephen; Milsmann, Carsten] Max Planck Soc, Max Planck Inst Bioinorgan Chem, D-45470 Mulheim, Germany. [George, Serena DeBeer] Stanford Univ, SSRL, SLAC, Stanford, CA 94309 USA. [Wieghardt, Karl] Max Planck Inst Bioinorgan Chem, D-45470 Mulheim, Germany. EM sproules@mpi-muelheim.mpg.de; milsmann@mpi-muelheim.mpg.de; serena@slac.stanford.edu; wieghardt@mpi-muelheim.mpg.de RI DeBeer, Serena/G-6718-2012; Wieghardt, Karl/B-4179-2014 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 122-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805156 ER PT J AU Spycher, N Weathers, T Barkouki, T Smith, RW Ginn, TR Zhang, GX Fujita, Y Wu, YX Ajo-Franklin, J Hubbard, S Sengor, SS AF Spycher, Nicolas Weathers, Tess Barkouki, Tammer Smith, Robert W. Ginn, Timothy R. Zhang, Guoxiang Fujita, Yoshiko Wu, Yuxin Ajo-Franklin, Jonathan Hubbard, Susan Sengor, Sema Sevinc TI Remediation of Sr-90 by induced calcite precipitation: Reactive transport modeling on several fronts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Spycher, Nicolas; Zhang, Guoxiang; Wu, Yuxin; Ajo-Franklin, Jonathan; Hubbard, Susan] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Weathers, Tess; Barkouki, Tammer; Ginn, Timothy R.; Sengor, Sema Sevinc] UC Davis, Dept Civil & Environm Engn, Davis, CA USA. [Smith, Robert W.] U Idaho, Ctr Adv Energy Studies, Idaho Falls, ID USA. [Fujita, Yoshiko] Idaho Natl Lab, Idaho Falls, ID USA. EM nspycher@lbl.gov RI Ajo-Franklin, Jonathan/G-7169-2015; Fujita, Yoshiko/S-2007-2016 OI Fujita, Yoshiko/0000-0002-4472-4102 NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 114-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804427 ER PT J AU Stechel, EB AF Stechel, Ellen B. TI WCC 3-Sunshine to petrol SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stechel, Ellen B.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RI Stechel, Ellen/B-1253-2012 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 3-WCC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857806658 ER PT J AU Stewart, CA Dickie, DA Parkes, MV Kemp, RA AF Stewart, Constantine A. Dickie, Diane A. Parkes, Marie V. Kemp, Richard A. TI Reactions of carbon dioxide, carbon disulfide and carbonyl sulfide with tin(II) silylamides SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stewart, Constantine A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Dickie, Diane A.; Parkes, Marie V.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM castew@sandia.gov; dadickie@unm.edu; marie.v.parkes@gmail.com; rakemp@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 559-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805510 ER PT J AU Stewart, CA Dickie, DA Kemp, RA AF Stewart, Constantine A. Dickie, Diane A. Kemp, Richard A. TI Substituted tetraazacyclotetradecane zinc(II) complexes: Synthesis, characterization and reaction chemistry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stewart, Constantine A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Dickie, Diane A.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM castew@sandia.gov; dadickie@unm.edu; rakemp@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 74-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805503 ER PT J AU Stockmaier, B AF Stockmaier, Bruce TI An overview of rules, regulations, consensus standards, and professional organization activities aimed at ensuring the safety of nano R&D SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stockmaier, Bruce] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM bcs@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 3-CHAS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857801935 ER PT J AU Stowe, AC Berseth, P Harter, A Zidan, R Blomqvist, A Araujo, CM Ahuja, R Jena, P AF Stowe, Ashley C. Berseth, Polly Harter, Andrew Zidan, Ragaiy Blomqvist, Andreas Araujo, C. Moyses Ahuja, Rajeev Jena, Puru TI Catalytic role of nanostructured carbon on NaAlH4 hydrogen sorption SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stowe, Ashley C.] Appl Technol, Oak Ridge, TN 37831 USA. [Berseth, Polly; Harter, Andrew; Zidan, Ragaiy] Savannah River Natl Lab, Aiken, SC USA. [Jena, Puru] Virginia Commonwealth Univ, Richmond, VA 23284 USA. [Blomqvist, Andreas; Araujo, C. Moyses; Ahuja, Rajeev] Uppsala Univ, Uppsala, Sweden. EM stoweac@y12.doe.gov RI Araujo, Moyses/L-6135-2013 OI Araujo, Moyses/0000-0001-5192-0016 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 84-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803790 ER PT J AU Stoyer, MA AF Stoyer, Mark A. TI Development of radiochemistry experiments at the National Ignition Facility SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stoyer, Mark A.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 21-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805842 ER PT J AU Strzelec, A Daw, CS Toops, TJ Foster, DE Rutland, C AF Strzelec, Andrea Daw, C. Stuart Toops, Todd J. Foster, David E. Rutland, Chris TI Impact of biofuel blending on diesel soot oxidation characteristics: Implications for aftertreatment catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Toops, Todd J.] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. [Foster, David E.; Rutland, Chris] Univ Wisconsin, Engine Res Ctr, Madison, WI 53706 USA. EM strzelecan@ornl.gov; dawcs@ornl.gov; toopstj@ornl.gov; rutland@engr.wisc.edu RI Rutland, Christopher/F-8261-2011 NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 123-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803712 ER PT J AU Sumpter, BG Meunier, V AF Sumpter, Bobby G. Meunier, Vincent TI PHYS 118-An electronic structure study on the manipulation and control of the structure, morphology and properties of carbon nanotubes and heterostructures SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sumpter, Bobby G.; Meunier, Vincent] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.; Meunier, Vincent] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sumpterbg@ornl.gov; meunierv@ornl.gov RI Sumpter, Bobby/C-9459-2013 OI Sumpter, Bobby/0000-0001-6341-0355 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 118-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808088 ER PT J AU Sun, XQ Cao, Y Niwayama, S Hase, WL Dang, LX AF Sun, Xiuquan Cao, Yang Niwayama, Satomi Hase, William L. Dang, Liem X. TI PHYS 403-Effects of sodium hydroxide on the solvation of dimethyl-succinate in water: A computational study SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Cao, Yang; Niwayama, Satomi; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM Xiuquan.Sun@pnl.gov; Yang.Cao@ttu.edu; satomi.niwayama@ttu.edu; liem.dang@pnl.gov RI Niwayama, Satomi/O-1598-2015 OI Niwayama, Satomi/0000-0001-6385-5274 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 403-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808153 ER PT J AU Sun, YG AF Sun, Yugang TI Direct growth of anisotropic metal nanostructures on semiconductor substrates SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM ygsun@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 652-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805020 ER PT J AU Sutton, AD Gordon, JC Clark, DL Scott, BL AF Sutton, Andrew D. Gordon, John C. Clark, David L. Scott, Brian L. TI Covalency within 4f-element complexes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sutton, Andrew D.; Gordon, John C.; Clark, David L.; Scott, Brian L.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM adsutton@lanl.gov; jgordon@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 371-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805671 ER PT J AU Swancutt, KL Mezyk, SP Martin, LR Paine, RT Binyamin, I Pailloux, S AF Swancutt, Katy L. Mezyk, Stephen P. Martin, Leigh R. Paine, Robert T. Binyamin, Iris Pailloux, Sylvie TI Radiolytic degradation of lanthanide/actinide separation ligands SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Swancutt, Katy L.; Mezyk, Stephen P.] Calif State Univ Long Beach, Dept Chem & Biochem, Long Beach, CA 90840 USA. [Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. [Paine, Robert T.; Binyamin, Iris; Pailloux, Sylvie] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. EM k_swancutt@yahoo.com; smezyk@csulb.edu; Leigh.Martin@inl.gov; rtpaine@unm.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 428-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805665 ER PT J AU Taube, AG AF Taube, Andrew G. TI PHYS 5-Developments in coupled-cluster molecular dynamics SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Taube, Andrew G.] Sandia Natl Labs, Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. EM agtaube@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 5-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808107 ER PT J AU Tretiak, S AF Tretiak, Sergei TI PHYS 204-Functionalized quantum dots and conjugated polymers for light harvesting applications: Theoretical insights SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM serg@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 204-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808245 ER PT J AU Tretiak, S Wu, C Malinin, SV Chernyak, V AF Tretiak, Sergei Wu, Chao Malinin, Sergey V. Chernyak, Vladimir TI Multiscale modeling of electronic excitations at the nanoscale SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wu, Chao; Malinin, Sergey V.; Chernyak, Vladimir] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. EM serg@lanl.gov; malinin@chem.wayne.edu; chernyak@chem.wayne.edu RI Chernyak, Vladimir/F-5842-2016 OI Chernyak, Vladimir/0000-0003-4389-4238 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 30-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803557 ER PT J AU Tsung, CK Kuhn, JN Huang, WY Yang, PD Somorjai, GA AF Tsung, Chia-Kuang Kuhn, John N. Huang, Wenyu Yang, Peidong Somorjai, Gabor A. TI Pyrrole hydrogenation over size and shape controlled platinum nanocrystals SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Tsung, Chia-Kuang; Kuhn, John N.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94709 USA. [Huang, Wenyu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM franktsung@gmail.com; kuhnj@berkeley.edu; whuang2@lbl.gov; p_yang@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 718-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805742 ER PT J AU Tuncer, E Sauers, I James, DR Ellis, AR More, KL AF Tuncer, Enis Sauers, Isidor James, D. Randy Ellis, Alvin R. More, Karren L. TI Dielectric breakdown in nanodielectrics SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Tuncer, Enis; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.; More, Karren L.] Oak Ridge Natl Lab, Div Fus Energy, Appl Superconduct Grp, Oak Ridge, TN 37831 USA. EM tuncere@ornl.gov RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 72-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857807025 ER PT J AU Turner, JA Deutsch, TG Huda, M AF Turner, John A. Deutsch, Todd G. Huda, Muhammad TI Properties and theoretical aspects for photoelectrochemical water splitting materials SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Turner, John A.; Deutsch, Todd G.; Huda, Muhammad] Natl Renewable Energy Lab, Hydrogen Technol & Syst Ctr, Golden, CO 80401 USA. EM John_Turner@nrel.gov; Todd_Deutsch@nrel.gov NR 0 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 129-IEC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857802797 ER PT J AU Ulrich, KU Veeramani, H Sharp, JO Bernier-Latmani, R Schofield, E Bargar, JR Giammar, DE AF Ulrich, Kai-Uwe Veeramani, Harish Sharp, Jonathan O. Bernier-Latmani, Rizlan Schofield, Eleanor Bargar, John R. Giammar, Daniel E. TI Speciation and reactivity of biogenic UO2 in water SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Ulrich, Kai-Uwe; Giammar, Daniel E.] Washington Univ, St Louis, MO 63130 USA. [Veeramani, Harish; Sharp, Jonathan O.; Bernier-Latmani, Rizlan] Ecole Polytech Fed Lausanne, Environm Microbiol Lab, CH-1015 Lausanne, Switzerland. [Schofield, Eleanor] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Stanford, CA 94305 USA. EM k.ulrich@seas.wustl.edu; rizlan.bernier-latmani@epfl.ch; eleanors@slac.stanford.edu; bargar@slac.stanford.edu; giammar@wustl.edu RI Bernier-Latmani, Rizlan/E-4398-2011 OI Bernier-Latmani, Rizlan/0000-0001-6547-722X NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 93-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804272 ER PT J AU Valone, SM Levy, M AF Valone, Steven M. Levy, Mel TI PHYS 209-Stretched hydrogen molecule from a constrained-search density functional perspective SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Valone, Steven M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Levy, Mel] Duke Univ, Dept Chem, Durham, NC 27708 USA. EM smv@lanl.gov; mlevy@tulane.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 209-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808145 ER PT J AU Varma, S Rempe, SB AF Varma, Sameer Rempe, Susan B. TI PHYS 67-Ab initio studies of ion-ligand interactions: Evidence for polarizability SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Varma, Sameer; Rempe, Susan B.] Sandia Natl Labs, Mol & Computat Biosci Grp, Albuquerque, NM 87185 USA. EM svarma@sandia.gov; slrempe@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 67-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808438 ER PT J AU Vasiliou, A Nimlos, M Ellison, GB AF Vasiliou, AnGayle Nimlos, Mark Ellison, G. Barney TI Mechanism of the thermal decomposition of furan SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Vasiliou, AnGayle; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Ellison, G. Barney] Univ Colorado, JILA, Boulder, CO 80309 USA. [Nimlos, Mark] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM angayle.vasiliou@colorado.edu; mark_nimlos@nrel.gov; barney@jila.colorado.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 176-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803760 ER PT J AU Vazquez-Mayagoitia, A Fuentes-Cabrera, M Sumpter, BG Huertas, O Luque, SFJ Orozco, M Di Felice, R AF Vazquez-Mayagoitia, Alvaro Fuentes-Cabrera, Miguel Sumpter, Bobby G. Huertas, Oscar Javier Luque, Spain F. Orozco, Modesto Di Felice, Rosa TI PHYS 276-Ab inito investigation of naphto and benzo homologated DNA bases and the effects of substituents. SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Vazquez-Mayagoitia, Alvaro] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Huertas, Oscar] Univ Barcelona, Fac Farm, Dept Quim Fis, E-08028 Barcelona, Spain. [Javier Luque, Spain F.] Univ Barcelona, Dept Farm, E-08028 Barcelona, Spain. [Orozco, Modesto] Inst Recerca Biomed, Unitat Modelitzacio Mol & Bioinformat, Barcelona 08024, Spain. [Di Felice, Rosa] Univ Modena & Reggio Emilia, Ist Nazl Fis Mat, I-41100 Modena, Italy. EM avazquel@utk.edu; sumpterbg@ornl.gov; oscar@mmb.pcb.ub.es; fjluque@ub.edu; modesto@mmb.pcb.ub.es; rosa@unimore.it RI Sumpter, Bobby/C-9459-2013; Vazquez-Mayagoitia, Alvaro/A-9755-2010; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 276-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808373 ER PT J AU Vazquez-Mayagoitia, A Fuentes-Cabrera, M Sumpter, BG Sponer, JE AF Vazquez-Mayagoitia, Alvaro Fuentes-Cabrera, Miguel Sumpter, Bobby G. Sponer, Judit E. TI PHYS 249-Ab initio study of alternative genetic systems SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Vazquez-Mayagoitia, Alvaro] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Sponer, Judit E.] Acad Sci Czech Republic, Inst Biophys, CS-61265 Brno, Czech Republic. EM avazquel@utk.edu; sumpterbg@ornl.gov; judit@ncbr.chemi.muni.cz RI Sponer, Judit/D-9918-2012; Sumpter, Bobby/C-9459-2013; Vazquez-Mayagoitia, Alvaro/A-9755-2010; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 NR 5 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 249-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808367 ER PT J AU Veith, GM Lupini, AR Dudney, NJ AF Veith, Gabriel M. Lupini, Andrew R. Dudney, Nancy J. TI Essential role of surface hydroxyls for the stabilization and catalytic activity of TiO2-supported gold nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Veith, Gabriel M.; Lupini, Andrew R.; Dudney, Nancy J.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. EM veithgm@ornl.gov RI Dudney, Nancy/I-6361-2016 OI Dudney, Nancy/0000-0001-7729-6178 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 160-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803808 ER PT J AU Vela, J Chen, YF Htoon, H Bussian, DA Casson, JL Werder, DJ Klimov, VI Hollingsworth, JA AF Vela, Javier Chen, Yongfen Htoon, Han Bussian, David A. Casson, Joanna L. Werder, Donald J. Klimov, Victor I. Hollingsworth, Jennifer A. TI Giant multishell II-VI quantum dots: Tunable-color, nonblinking and robust quantum dot fluorophores for applications in biology SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Vela, Javier; Chen, Yongfen; Htoon, Han; Bussian, David A.; Casson, Joanna L.; Werder, Donald J.; Klimov, Victor I.; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM jvelab@lanl.gov; yongfen@lanl.gov; htoon@lanl.gov; klimov@lanl.gov; jenn@lanl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 368-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805302 ER PT J AU Verduzco, R Chambers, M Jakli, A Sprunt, SN Gleeson, JT AF Verduzco, Rafael Chambers, Martin Jakli, Antal Sprunt, S. N. Gleeson, James T. TI Flexoelectric networks from bent-core nematic liquid crystal polymers SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Verduzco, Rafael] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Chambers, Martin; Sprunt, S. N.; Gleeson, James T.] Kent State Univ, Dept Phys, Kent, OH 44240 USA. [Jakli, Antal] Kent State Univ, Inst Liquid Crystal, Kent, OH 44242 USA. EM verduzcor@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 402-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857807162 ER PT J AU Vieira, DJ Jandel, M Bredeweg, TA Bond, EM Moody, KJ Stoyer, MA Wilk, PA Wu, CY AF Vieira, D. J. Jandel, M. Bredeweg, T. A. Bond, E. M. Moody, K. J. Stoyer, Mark A. Wilk, P. A. Wu, C. Y. TI Neutron capture and neutron-induced fission measurements on 241,242m,243Am at DANCE SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Vieira, D. J.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Moody, K. J.; Stoyer, Mark A.; Wilk, P. A.; Wu, C. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM vieira@lanl.gov; moody3@llnl.gov; stoyer1@llnl.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 28-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805855 ER PT J AU Virkar, AA Mannsfeld, SCB Toney, MF Bao, ZN AF Virkar, Ajay A. Mannsfeld, Stefan C. B. Toney, Michael F. Bao, Zhenan TI Controlled organic semiconductor growth via dieletric crystalline surface modification for high performance OTFTs SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Virkar, Ajay A.; Mannsfeld, Stefan C. B.; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. EM avirkar@stanford.edu; zbao@stanford.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 158-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857807072 ER PT J AU Wada, M Nishiyama, Y Heux, L Chanzy, H Langan, P AF Wada, Masahisa Nishiyama, Yoshiharu Heux, Laurent Chanzy, Henri Langan, Paul TI Structural pathways in the treatment of cellulose with amines SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wada, Masahisa] Univ Tokyo, Dept Biomat Sci, Bukyo Ku, Tokyo 1138657, Japan. [Nishiyama, Yoshiharu; Chanzy, Henri] CNRS, Ctr Rech Macromol Vegetales CERMAV, F-38041 Grenoble 9, France. [Heux, Laurent] Ctr Rech Macromol Vegetales CERMAV CNRS, F-38041 Grenoble, France. [Langan, Paul] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM awadam@mail.ecc.u-tokyo.ac.jp; Yoshiharu.Nishiyama@cermav.cnrs.fr; Laurent.Heux@cermav.cnrs.fr; langan_paul@lanl.gov RI Langan, Paul/N-5237-2015 OI Langan, Paul/0000-0002-0247-3122 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 15-CELL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857801776 ER PT J AU Walker, RC Stern, JV McGrath, WJ Mange, W AF Walker, Ross C. Stern, Julie V. McGrath, William J. Mange, Walter TI Insights into the activation pathway of the adenovirus protease enzyme: Large scale nudged elastic band simulations on NSF supercomputers SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Walker, Ross C.] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. [Stern, Julie V.; McGrath, William J.; Mange, Walter] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM rcw@sdsc.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 5-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803504 ER PT J AU Walukiewicz, W AF Walukiewicz, Wladek TI PHYS 484-New semiconductor materials for high efficiency solar cells SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM w_walukiewicz@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 484-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808329 ER PT J AU Wander, MCF Kerisit, S Rosso, KM AF Wander, Matthew C. F. Kerisit, Sebastien Rosso, Kevin M. TI Ferrous iron reduction of uranium(VI) in moderately acidic water SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wander, Matthew C. F.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Kerisit, Sebastien; Rosso, Kevin M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM mwander@wsu.edu; sebastien.kerisit@pnl.gov; kevin.rosso@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 62-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804255 ER PT J AU Wang, XQ Dai, S AF Wang, Xiqing Dai, Sheng TI Soft-template synthesis of mesoporous carbons under acidic conditions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Xiqing; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM xzw@ornl.gov; dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 NR 0 TC 0 Z9 0 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 370-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803205 ER PT J AU Wang, Y Stocks, GM Rusanu, A Nicholson, DMC Eisenbach, M AF Wang, Yang Stocks, G. Malcolm Rusanu, Aurelian Nicholson, Don M. C. Eisenbach, Markus TI Toward petaflop computing for electronic structure calculations SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Yang] Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA. [Stocks, G. Malcolm; Rusanu, Aurelian] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Nicholson, Don M. C.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Eisenbach, Markus] Oak Ridge Natl Lab, Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM ywg@psc.edu; stocksgm@ornl.gov; rusanua@ornl.gov; nicholsondm@ornl.gov; eisenbachm@ornl.gov RI Rusanu, Aurelian/A-8858-2013; Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X NR 0 TC 0 Z9 0 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 64-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803644 ER PT J AU Wang, YF Gao, HZ Brinker, CJ AF Wang, Yifeng Gao, Huizhen Brinker, C. Jeffrey TI Development of new generation nuclear waste form: Nano-immobilization and nanoencapsulation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Yifeng] Sandia Natl Labs, Dept Lower Barrier Syst, Albuquerque, NM 87123 USA. [Gao, Huizhen] Sandia Natl Labs, Dept Radiol Consequence Management & Response Tec, Albuquerque, NM 87123 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM ywang@sandia.gov; hgao@sandia.gov; cjbrink@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 369-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803100 ER PT J AU Wang, YG Gelabert, A Choi, Y Ha, J Gescher, J Bargar, JR Rogers, J Eng, P Cordova, CD Spormann, AM Brown, GE AF Wang, Yingge Gelabert, Alexandre Choi, Yongseong Ha, Juyoung Gescher, Johannes Bargar, John R. Rogers, Joe Eng, Peter Cordova, Carmen D. Spormann, Alfred M. Brown, Gordon E., Jr. TI Impact of Shewanella oneidensis MR-1 biofilm coatings on the reactivity of hematite SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Yingge; Ha, Juyoung] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Gelabert, Alexandre] Univ Paris 07, Dept Earth Sci, Paris, France. [Choi, Yongseong; Eng, Peter] Univ Chicago, GSECARS, Adv Photon Source, Argonne, IL 60439 USA. [Gescher, Johannes; Cordova, Carmen D.; Spormann, Alfred M.] Stanford Univ, Clark Ctr Biox, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Bargar, John R.; Rogers, Joe] Stanford Synchrotron Radiat Lightsource, Stanford, CA 94305 USA. EM bargar@slac.stanford.edu; gordon.brown@stanford.edu RI gelabert, alexandre/A-5684-2011; Gescher, Johannes/I-1672-2013 OI Gescher, Johannes/0000-0002-1625-8810 NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 157-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804386 ER PT J AU Wang, ZM Boily, JF Zachara, JM Xia, YX Moore, DA Liu, CX AF Wang, Zheming Boily, Jean-Francois Zachara, John M. Xia, Y. X. Moore, Dean A. Liu, Chongxuan TI A fluorescence spectroscopic study of U(VI) in Hanford 300 area groundwater fines SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Zheming; Moore, Dean A.] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Liu, Chongxuan] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM zheming.wang@pnl.gov; boily@pnl.gov; john.zachara@pnl.gov; chongxuan.liu@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 82-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804279 ER PT J AU Warner, MG Warner, CL Addleman, RS Droubay, TC Engelhard, M Davidson, JD Cinson, AD Nash, MA Yantasee, W AF Warner, Marvin G. Warner, Cynthia L. Addleman, R. Shane Droubay, Tim C. Engelhard, Mark Davidson, Joseph D. Cinson, Anthony D. Nash, Michael A. Yantasee, Wassana TI Synthesis of functionalized superparamagnetic iron oxide nanoparticles from a common precursor and their application as heavy metal and actinide sorbents SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Warner, Marvin G.; Droubay, Tim C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Warner, Cynthia L.; Cinson, Anthony D.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Addleman, R. Shane; Davidson, Joseph D.; Yantasee, Wassana] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Engelhard, Mark] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Nash, Michael A.] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. EM marvin.warner@pnl.gov; cynthia.warner@pnl.gov; shane.addleman@pnl.gov; Tim.Droubay@pnl.gov; mark.engelhard@pnl.gov; joseph.davidson@pnl.gov; anthony.cinson@pnl.gov; Wassana.Yantasee@pnl.gov RI Engelhard, Mark/F-1317-2010 NR 0 TC 0 Z9 0 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 465-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803059 ER PT J AU Warzinski, RP Zhang, W AF Warzinski, Robert P. Zhang, Wu TI Hydrate formation from single-phase aqueous solutions of CO2 in the presence of bentonite particles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Zhang, Wu] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM warzinsk@netl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 66-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803771 ER PT J AU Waychunas, GA Jun, YS Davis, JA Kubicki, JD AF Waychunas, Glenn A. Jun, Young-Shin Davis, James A. Kubicki, James D. TI The crystal chemistry of iron oxyhydroxide-silica interfacial reactions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Jun, Young-Shin] Washington Univ, St Louis, MO 63130 USA. [Davis, James A.] US Geol Survey, Menlo Pk, CA 94025 USA. [Kubicki, James D.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. EM gawaychunas@lbl.gov; ysjun@seas.wustl.edu; jadavis@usgs.gov; kubicki@geosc.psu.edu RI Kubicki, James/I-1843-2012; Davis, James/G-2788-2015 OI Kubicki, James/0000-0002-9277-9044; NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 103-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804350 ER PT J AU Waychunas, GA AF Waychunas, Glenn A. TI Sulfate sorption and incorporation into iron oxyhydroxide minerals SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM gawaychunas@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 33-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804349 ER PT J AU Westbrook, CK Pitz, WJ Carstensen, HH Dean, AM AF Westbrook, Charles K. Pitz, William J. Carstensen, Hans-Heinrich Dean, Anthony M. TI Development of detailed kinetic models for Fischer-Tropsch fuels SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Westbrook, Charles K.; Pitz, William J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Carstensen, Hans-Heinrich; Dean, Anthony M.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM westbrookl@llnl.gov; pitzl@llnl.gov; hcarsten@mines.edu; amdean@mines.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 21-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803805 ER PT J AU Westover, RD Pak, JJ Rodriguez, RG Fox, RV Long, GL Bajracharya, C AF Westover, Richard D. Pak, Joshua J. Rodriguez, Rene G. Fox, Robert V. Long, Gary L. Bajracharya, Cyril TI Greener approaches for the preparation of I-III-IV nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Westover, Richard D.; Pak, Joshua J.; Rodriguez, Rene G.; Long, Gary L.; Bajracharya, Cyril] Idaho State Univ, Dept Chem, Pocatello, ID 83209 USA. [Fox, Robert V.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM richardwestover@hotmial.com; pakjosh@isu.edu; bajacyri@isu.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 483-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805116 ER PT J AU Winans, RE Lee, B Seifert, S Lee, S Elam, JW Vajda, S AF Winans, Randall E. Lee, Byeongdu Seifert, S. Lee, Sungsik Elam, Jeffrey W. Vajda, Stefan TI Grazing incidence small-angle X-ray scattering studies of nanometal catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Winans, Randall E.; Lee, Byeongdu; Seifert, S.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Lee, Sungsik; Vajda, Stefan] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM rewinans@anl.gov; sungsiklee@anl.gov; vajda@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 53-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803786 ER PT J AU Wong, SS AF Wong, Stanislaus S. TI Green synthesis and applications of functional metal oxide nanostructures SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Dept Mat Sci, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 22-IEC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857802742 ER PT J AU Wright, KE Fujita, Y Janney, DE AF Wright, Karen E. Fujita, Yoshiko Janney, Dawn E. TI Induced precipitation of apatite as a strategy to reduce Sr-90 mobility in the subsurface SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wright, Karen E.; Fujita, Yoshiko; Janney, Dawn E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM karen.wright@inl.gov; dawn.janney@inl.gov RI Fujita, Yoshiko/S-2007-2016 OI Fujita, Yoshiko/0000-0002-4472-4102 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 6-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804390 ER PT J AU Wu, CY AF Wu, Ching-Yen TI Nuclear structure of 242Am and (n,gamma) reaction on 242mAm SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wu, Ching-Yen] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM wu24@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 29-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805838 ER PT J AU Xantheas, SS Fanourgakis, GS AF Xantheas, Sotiris S. Fanourgakis, George S. TI PHYS 446-An ab initio based transferable interaction potential for water SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Fanourgakis, George S.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, GR-71110 Iraklion, Greece. EM sotiris.xantheas@pnl.gov; fanourg@iesl.forth.gr RI Xantheas, Sotiris/L-1239-2015 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 446-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808348 ER PT J AU Xiong, YL Nemer, MB Ismail, AE Brush, LH AF Xiong, Yongliang Nemer, Martin B. Ismail, Ahmed E. Brush, Laurence H. TI Anoxic production of sulfate green rust II by the reduction of water and partial oxidation of Fe-2 (OH)(3)Cl center dot x H2O(s) SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Xiong, Yongliang; Brush, Laurence H.] Sandia Natl Labs, Repository Performance Dept, Carlsbad Programs Grp, Carlsbad, NM 88220 USA. [Nemer, Martin B.; Ismail, Ahmed E.] Sandia Natl Labs, Performance Assessment & Decis Anal Dept, Carlsbad Programs Grp, Carlsbad, NM 88220 USA. EM lhbrush@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 175-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804307 ER PT J AU Xu, Y Gordon, WO Senanayake, SD Mullins, DR Overbury, SH AF Xu, Ye Gordon, Wesley O. Senanayake, Sanjaya D. Mullins, David R. Overbury, Steven H. TI PHYS 12-Pathways and intermediates of formic acid decomposition on the CeO2(111) surface SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Xu, Ye] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gordon, Wesley O.; Senanayake, Sanjaya D.; Mullins, David R.; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM xuy2@ornl.gov; gordonwo@ornl.gov; mullinsdr@ornl.gov; overburysh@ornl.gov RI Overbury, Steven/C-5108-2016 OI Overbury, Steven/0000-0002-5137-3961 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 12-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808300 ER PT J AU Yang, PD AF Yang, Peidong TI PHYS 200-Semiconductor nanowires for solar energy harvesting SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM p_yang@uclink.berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 200-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808442 ER PT J AU Yanina, SV Boily, JF Gorski, CA Larese-Casanova, P Catalano, JG Fenter, P Scherer, MM Rosso, KM AF Yanina, Svetlana V. Boily, Jean-Francois Gorski, Christopher A. Larese-Casanova, Philip Catalano, Jeffrey G. Fenter, Paul Scherer, Michelle M. Rosso, Kevin M. TI Multiscale investigations of Fe(II) interaction with hematite (001) surfaces SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yanina, Svetlana V.; Boily, Jean-Francois; Rosso, Kevin M.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Gorski, Christopher A.; Scherer, Michelle M.] Univ Iowa, Seamans Ctr 4015, Iowa City, IA 52242 USA. [Larese-Casanova, Philip] Univ Tubingen, Ctr Appl Geosci ZAG, D-72074 Tubingen, Germany. [Catalano, Jeffrey G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM boily@pnl.gov; cgorski@engineering.uiowa.edu; philip.larese-casanova@uni-tuebingen.de; catalano@wustl.edu; fenter@anl.gov; schererm@engineering.uiowa.edu; kevin.rosso@pnl.gov RI Catalano, Jeffrey/A-8322-2013 OI Catalano, Jeffrey/0000-0001-9311-977X NR 0 TC 0 Z9 0 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 151-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804407 ER PT J AU Yoo, S Xantheas, SS AF Yoo, Soohaeng Xantheas, Sotiris S. TI PHYS 271-Water-mediated midrange attractive interaction of antiparallel -sheets SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yoo, Soohaeng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM syoo70@gmail.com; sotiris.xantheas@pnl.gov RI Xantheas, Sotiris/L-1239-2015 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 271-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808027 ER PT J AU Yu, JF Zhao, DC Liu, L Liu, XL Liu, C Chen, QR Liu, FQ AF Yu, Jingfeng Zhao, Dacheng Liu, Li Liu, Xiaoli Liu, Chang Chen, Qingrui Liu, Fengqi TI Study of gel fractions in the gelation of poly(acrylamide) and poly(acrylamide-co-N,N-dimethylacrylamide) SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yu, Jingfeng; Liu, Li; Liu, Xiaoli; Liu, Chang; Chen, Qingrui; Liu, Fengqi] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China. [Zhao, Dacheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jingfy2006@126.com; dzhao@lbl.gov; jingfy2006@126.com; liuxiaoli9123@sohu.com; liuchangbeckham@yahoo.com.cn; chenqr492@yahoo.com.cn; liufengqi@jlu.edu.cn NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 400-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857807041 ER PT J AU Zachara, JM Heald, SM McKinley, JP Fredrickson, J Peretyazhko, T Plymale, A AF Zachara, John M. Heald, Steve M. McKinley, James P. Fredrickson, James Peretyazhko, Tanya Plymale, Andrew TI Heterogeneous redox potential of different solid-phase Fe(II) forms defined by reaction with the pertechnetate anion SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [McKinley, James P.] Pacific NW Natl Lab, Environm Dynam & Simulat Grp, Richland, WA 99352 USA. [Heald, Steve M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Fredrickson, James] Pacific NW Natl Lab, Dept Microbiol, Richland, WA 99352 USA. [Peretyazhko, Tanya] Pacific NW Natl Lab, Environm Dynam & Simulat Grp, Richland, WA 99354 USA. EM john.zachara@pnl.gov; heald@aps.anl.gov; james.mckinley@pnl.gov; jim.fredrickson@pnl.gov; tetyana.peretyazhko@pnl.gov; plymale@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 91-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804304 ER PT J AU Zahariev, F Gordon, MS AF Zahariev, Federico Gordon, Mark S. TI PHYS 263-Linear and nonlinear response TDDFT/EFP SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM federico@si.msg.chem.iastate.edu; mark@si.msg.chem.iastate.edu NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 263-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808395 ER PT J AU Zaikowski, L Gelfond, C Selvaggio, ED Asaoka, S Takeda, N Yang, A Miller, J AF Zaikowski, Lori Gelfond, Claudia Selvaggio, Elicia D. Asaoka, Sadayuki Takeda, Norihiko Yang, Alex Miller, John TI PHYS 357-Reduction of poly-2,7-(9,9-dihexylfluorene) molecular wires to form polyanions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zaikowski, Lori; Selvaggio, Elicia D.] Dowling Coll, Dept Chem & Phys, Oakdale, NY 11769 USA. [Gelfond, Claudia] Dalton High Sch, New York, NY USA. [Asaoka, Sadayuki; Takeda, Norihiko; Miller, John] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yang, Alex] Brentwood High Sch, Brentwood, Essex, England. EM zaikowsL@dowling.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 375-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857808047 ER PT J AU Zajickova, Z Rubi, E Narciso, V Svec, F AF Zajickova, Zuzana Rubi, Emir Narciso, Vanessa Svec, Frantisek TI In situ synthesis of monolithic alumina columns for applications in microscale liquid chromatography SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zajickova, Zuzana; Rubi, Emir; Narciso, Vanessa] Barry Univ, Dept Phys Sci, Miami Shores, FL 33161 USA. [Svec, Frantisek] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM zzajickova@mail.barry.edu; RubiE@bucmail.barry.edu; NarcisoV@bucmail.barry.edu; fsvec@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 234-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857801464 ER PT J AU Zarzycki, P Kerisit, S Skomurski, FN Rosso, KM AF Zarzycki, Piotr Kerisit, Sebastien Skomurski, Frances N. Rosso, Kevin M. TI Theoretical description of electron exchange dynamics at Fe(II)/goethite interfaces SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zarzycki, Piotr] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kerisit, Sebastien; Rosso, Kevin M.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Skomurski, Frances N.] Pacific NW Natl Lab, Geochem Div, Richland, WA 99352 USA. EM piotr.zarzycki@pnl.gov; sebastien.kerisit@pnl.gov; frances.skomurski@pnl.gov; kevin.rosso@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 63-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804410 ER PT J AU Zhang, GX Senko, JM Kemner, KM Burgos, WD AF Zhang, Gengxin Senko, John M. Kemner, K. M. Burgos, William D. TI Long-term biostimulation in uranium-contaminated iron-rich saprolite, followed by reoxidation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zhang, Gengxin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Senko, John M.] Univ Akron, Dept Geol & Environm Sci, Akron, OH 44325 USA. [Kemner, K. M.] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. [Burgos, William D.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16801 USA. EM zhangg@ornl.gov; senko@uakron.edu; kemner@anl.gov; wdb3@psu.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 71-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857804393 ER PT J AU Zhang, MM Anderson, BJ Warzinski, RP Holder, GD AF Zhang, Meimei Anderson, Brian J. Warzinski, Robert P. Holder, Gerald D. TI Molecular dynamics simulation of hydrate lattice distortion SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zhang, Meimei; Holder, Gerald D.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Anderson, Brian J.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM Brian.Anderson@mail.wvu.edu; warzinsk@netl.doe.gov; holder@engrng.pitt.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 130-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803787 ER PT J AU Zhang, SJ Bucknall, D Hong, KL He, LH Mays, JW AF Zhang, Shanju Bucknall, David Hong, Kunlun He, Lihong Mays, Jimmy W. TI Novel thermally switchable smart polymer films SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zhang, Shanju; Bucknall, David] Georgia Inst Technol, Sch Polymer Text & Fiber Engn, Atlanta, GA 30332 USA. [Hong, Kunlun; He, Lihong; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hong, Kunlun; He, Lihong; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM szhang30@mail.gatech.edu; david.bucknall@ptfe.gatech.edu; hongkq@ornl.gov; jimmymays@utk.edu RI Zhang, Shanju/E-5119-2011; Bucknall, David/F-7568-2016 OI Bucknall, David/0000-0003-4558-6933 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 305-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857807082 ER PT J AU Zhang, ZY Nenoff, TM Huang, JY Berry, DT Provencio, PP AF Zhang, Zhenyuan Nenoff, Tina M. Huang, Jianyu Berry, Donald T. Provencio, Paula P. TI Synthesis of Ni-based nanoalloys at room temperature SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zhang, Zhenyuan; Nenoff, Tina M.] Sandia Natl Labs, Dept Surface & Interface Sci, Albuquerque, NM 87185 USA. [Huang, Jianyu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Berry, Donald T.] Sandia Natl Labs, Dept Hot Cells & Gamma Facil, Albuquerque, NM 87185 USA. [Provencio, Paula P.] Sandia Natl Labs, Dept Radiat Solid Interact, Albuquerque, NM 87185 USA. EM zhezhan@sandia.gov; tmnenof@sandia.gov; jhuang@sandia.gov RI Huang, Jianyu/C-5183-2008 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 21-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857805174 ER PT J AU Zhang, ZY Nenoff, TM Huang, JY Berry, DT Provencio, PP AF Zhang, Zhenyuan Nenoff, Tina M. Huang, Jianyu Berry, Donald T. Provencio, Paula P. TI Room temperature synthesis of Ag-Ni alloy nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zhang, Zhenyuan; Nenoff, Tina M.] Sandia Natl Labs, Dept Surface & Interface Sci, Albuquerque, NM 87185 USA. [Huang, Jianyu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Berry, Donald T.] Sandia Natl Labs, Dept Hot Cells & Gamma Facil, Albuquerque, NM 87185 USA. [Provencio, Paula P.] Sandia Natl Labs, Dept Radiat Solid Interact, Albuquerque, NM 87185 USA. EM zhezhan@sandia.gov; tmnenof@sandia.gov; jhuang@sandia.gov RI Huang, Jianyu/C-5183-2008 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 442-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803114 ER PT J AU Zhang, ZY Sanbonmatsu, KY Voth, GA AF Zhang, Zhiyong Sanbonmatsu, Kevin Y. Voth, Gregory A. TI Coarse-grained models to reflect functional dynamics of large biomolecules obtained by an elastic network model SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zhang, Zhiyong; Voth, Gregory A.] Univ Utah, Ctr Biophys Modeling & Simulat, Dept Chem, Salt Lake City, UT 84112 USA. [Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM zzhang@hec.utah.edu; kys@lanl.gov; voth@chem.utah.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 22 PY 2009 VL 237 MA 14-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V16GJ UT WOS:000207857803569 ER PT J AU Park, JY Qi, YB Ashby, PD Hendriksen, BLM Salmeron, M AF Park, Jeong Young Qi, Yabing Ashby, Paul D. Hendriksen, Bas L. M. Salmeron, Miquel TI Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atomic force microscopy; deformation; elemental semiconductors; friction; island structure; monolayers; organic compounds; self-assembly; silicon; surface conductivity; surface topography ID OCTADECYLTRICHLOROSILANE MONOLAYERS; ELECTRONIC TRANSPORT; ORGANIC-MOLECULES; ALKYL MONOLAYERS; CHAIN-LENGTH; FRICTION; FILMS; CALIBRATION; JUNCTIONS; ADHESION AB The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant (beta) of 0.52/A. C1 [Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L. M.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Qi, Yabing] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Park, JY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jypark@lbl.gov; mbsalmeron@lbl.gov RI Qi, Yabing/A-9243-2010; Park, Jeong Young/A-2999-2008; Hendriksen, Bas/B-8427-2013; Qi, Yabing/O-7807-2014 OI Qi, Yabing/0000-0002-4876-8049 FU Office of Energy Research, Office of Basic Energy Sciences, Molecular Foundry, Materials Sciences Division, U. S. Department of Energy through the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Korea Science and Engineering Foundation [31-2008-000-10055-0] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Molecular Foundry, Materials Sciences Division, U. S. Department of Energy through the Lawrence Berkeley National Laboratory (Contract No. DE-AC02-05CH11231). J. Y. P. acknowledges the partial support by the Korea Science and Engineering Foundation Grant (WCU program, 31-2008-000-10055-0). NR 33 TC 17 Z9 17 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 21 PY 2009 VL 130 IS 11 AR 114705 DI 10.1063/1.3089789 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 421TE UT WOS:000264380400031 PM 19317553 ER PT J AU Wang, MH Penner, JE Liu, XH AF Wang, Minghuai Penner, Joyce E. Liu, Xiaohong TI Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID CLOUD CONDENSATION NUCLEI; ATMOSPHERIC SULFURIC-ACID; PARTICLE FORMATION EVENTS; MARINE BOUNDARY-LAYER; SEA-SALT SULFATE; OFF-LINE MODEL; BLACK CARBON; VERSION-3 CAM3; CLIMATE MODEL; MICROPHYSICS MODEL AB Simulated aerosol fields from a coupled aerosol/atmospheric circulation model that includes prediction of both sulfate aerosol size and number are evaluated. Sensitivity tests are used to evaluate uncertainties due to the inclusion of primary emitted particulate sulfate as a means of representing nucleation of particles in subgrid-scale plumes, the use of two boundary layer aerosol nucleation mechanisms, and a three-mode sulfate aerosol representation. Simulated annual and global aerosol budgets are comparable to other model studies with the exception of carbonaceous aerosols and fine mode dust, where smaller mass concentrations are simulated. The model underestimates the accumulation mode aerosol number in the marine boundary layer over middle and low latitudes, which is consistent with an underestimate of fine mode sea salt mass in these locations. Primary emitted particulate sulfate contributes significantly to aerosol number at sites located in the boundary layer over Europe, but the absence of constraints on the number of such particles from either observations or fine-resolution models makes this treatment undesirable. Boundary layer nucleation mechanisms improve the comparison of simulated aerosol number concentrations with observations in the marine boundary layer, suggesting that a treatment of boundary layer nucleation is needed in global aerosol models, although more studies are needed to quantify how different nucleation mechanisms and condensable gases other than sulfuric acid affect aerosol number. The three-mode representation of sulfate aerosol simulates the observed increase in accumulation mode number concentration with altitude in the upper troposphere and improves the simulated Aitken mode aerosol number concentration there. This indicates the importance of a separate representation of freshly nucleated particles when nucleation is an important source of particle number concentrations. C1 [Wang, Minghuai; Penner, Joyce E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Liu, Xiaohong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, MH (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM minghuai@umich.edu RI Wang, Minghuai/E-5390-2011; Penner, Joyce/J-1719-2012; Liu, Xiaohong/E-9304-2011 OI Wang, Minghuai/0000-0002-9179-228X; Liu, Xiaohong/0000-0002-3994-5955 FU National Science Foundation [ATM-0333016]; NASA [NNG04GC01G] FX The authors acknowledge partial support from the National Science Foundation under grant ATM-0333016 and the support of NASA from grant NNG04GC01G. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 125 TC 42 Z9 42 U1 3 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 21 PY 2009 VL 114 AR D06302 DI 10.1029/2008JD010459 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 422PH UT WOS:000264439700001 ER PT J AU Fadleys, CS AF Fadleys, Charles S. TI X-ray photoelectron spectroscopy: From origins to future directions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Photoelectron spectroscopy; XPS; Photoemission; Synchrotron radiation ID ANGULAR-DISTRIBUTION PARAMETERS; AUGER-ELECTRON-SPECTROSCOPY; CORE-LEVEL PHOTOEMISSION; RANGE 100-5000 EV; CROSS-SECTIONS; BINDING ENERGIES; PHOTO-IONIZATION; SURFACE-ANALYSIS; SINGLE-CRYSTAL; VALENCE BANDS AB In this overview, I will briefly explore some of the earliest seeds of modern X-ray photoelectron spectroscopy, as pioneered by Siegbahn and collaborators, and then turn to some examples of how these seeds have sprouted in several present and promising future applications of this technique. Some of the future areas explored will be the use chemical shifts and multiplet splittings in the study of strongly correlated materials, photoelectron diffraction and holography for atomic structure determinations, standing-wave and hard X-ray excited photoemission for probing buried interfaces and bulk properties, valence-band mapping with soft and hard X-ray excitation, and time-resolved measurements with the sample at high ambient pressures in the multi-torr regime. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fadleys, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadleys, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fadleys, CS (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM fadley@physics.ucdavis.edu FU Office of Science; Office of Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation; Helmholtz Association FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231, by the Alexander von Humboldt Foundation and Helmholtz Association through a Helmholtz-Humboldt Award for the author, and by the julich Research Center. The author is very grateful to Claus Schneider of the Julich Research Center and Wilfried Wurth of the University of Hamburg for acting as hosts for this award. The author also thanks L. Plucinski, J. Minar, Y. Takata, E. Rotenberg, Z. Yin, and W.E. Pickett for providing results prior to publication. NR 108 TC 20 Z9 20 U1 6 U2 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 21 PY 2009 VL 601 IS 1-2 SI SI BP 8 EP 31 DI 10.1016/j.nima.2008.12.189 PG 24 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 429KC UT WOS:000264918300003 ER PT J AU Ogletree, DF Bluhm, H Hebenstreit, ED Salmeron, M AF Ogletree, D. Frank Bluhm, Hendrik Hebenstreit, Eleonore D. Salmeron, Miquel TI Photoelectron spectroscopy under ambient pressure and temperature conditions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE In situ electron spectroscopy; Environmental science; Catalysis ID SUM-FREQUENCY GENERATION; ADVANCED LIGHT-SOURCE; X-RAY MICROSCOPY; ELECTRON-SPECTROSCOPY; METHANOL SYNTHESIS; AQUEOUS-SOLUTIONS; SOLID-SURFACES; GAS-PHASE; WATER; LIQUID AB We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples. Published by Elsevier B.V. C1 [Ogletree, D. Frank; Hebenstreit, Eleonore D.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM salmeron@stm.lbl.gov RI Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 NR 67 TC 94 Z9 95 U1 7 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 21 PY 2009 VL 601 IS 1-2 BP 151 EP 160 DI 10.1016/j.nima.2008.12.155 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 429KC UT WOS:000264918300015 ER PT J AU Brocorens, P Van Vooren, A Chabinyc, ML Toney, MF Shkunov, M Heeney, M McCulloch, I Cornil, J Lazzoroni, R AF Brocorens, Patrick Van Vooren, Antoine Chabinyc, Michael L. Toney, Michael F. Shkunov, Maxim Heeney, Martin McCulloch, Iain Cornil, Jerome Lazzoroni, Roberto TI Solid-State Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units SO ADVANCED MATERIALS LA English DT Article ID FORCE-FIELD; MOLECULAR-DYNAMICS; CARRIER MOBILITY; THIN-FILMS; POLYMERS; POLY(3-ALKYLTHIOPHENES); POLY(3-HEXYLTHIOPHENE); POLYCARBONATES; TRANSPORT; WEIGHT AB We use molecular modeling and the simulation of X-ray diffraction patterns to determine the molecular packing of a thiophene-based polymer showing exceptionally high field-effect mobilities (up to 1 cm(2)V(-1)s(-1)). We focus on the organization of the polymer chains in lamellae and the orientation of these crystalline domains with respect to the substrate in thin films. The analysis is supported by XRD and NEXAFS experiments,and is complemented by calculating intermolecular transfer integrals, which govern the charge mobility. C1 [Brocorens, Patrick; Van Vooren, Antoine; Cornil, Jerome; Lazzoroni, Roberto] Univ Mons, Lab Chem Novel Mat, B-7000 Mons, Belgium. [Chabinyc, Michael L.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Shkunov, Maxim] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England. [Heeney, Martin] Univ London, Dept Mat, London E1 4NS, England. [McCulloch, Iain] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. RP Brocorens, P (reprint author), Univ Mons, Lab Chem Novel Mat, Pl Parc 20, B-7000 Mons, Belgium. EM patrick@averell.umh.ac.be RI Chabinyc, Michael/E-2387-2011; Heeney, Martin/O-1916-2013 OI Heeney, Martin/0000-0001-6879-5020 FU European Union [NMP4-CT-2004-500355]; Belgian Federal Science Policy Office [PAI 6/27]; FNRS-FRFC; Fonds pour la Formation la Recherche dans l'Industrie et dans l'Agriculture (FRIA) FX This work was supported by the European Union NAIMO Integrated Project (NMP4-CT-2004-500355), the Interuniversity Attraction Pole program of the Belgian Federal Science Policy Office (PAI 6/27), and by FNRS-FRFC. J. C. is an FNRS Research Associate; A. V. V. acknowledges a grant from Fonds pour la Formation la Recherche dans l'Industrie et dans l'Agriculture (FRIA). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. Supporting Information is available online from Wiley InterScience or from the author. NR 25 TC 41 Z9 42 U1 0 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD MAR 20 PY 2009 VL 21 IS 10-11 BP 1193 EP 1198 DI 10.1002/adma.200801668 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 425UN UT WOS:000264662900024 ER PT J AU Westphal, AJ Fakra, SC Gainsforth, Z Marcus, MA Ogliore, RC Butterworth, AL AF Westphal, A. J. Fakra, S. C. Gainsforth, Z. Marcus, M. A. Ogliore, R. C. Butterworth, A. L. TI MIXING FRACTION OF INNER SOLAR SYSTEM MATERIAL IN COMET 81P/WILD2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; comets: individual (81P/Wild2); Kuiper Belt; meteors, meteoroids; solar system: formation ID CRYSTALLINE SILICATES; CHONDRULE FORMATION; NEBULA; FE; MODEL; DUST; SPECTROSCOPY; ACCRETION; STARDUST; AEROGEL AB The presence of crystalline silicates in the comae of comets, inferred through infrared observations, has been a long-standing puzzle. Crystalline silicates are unexpected if comets are composed of pristine interstellar material, since interstellar silicates are almost entirely amorphous. Heating to > 1100 K can anneal silicates to crystallinity, but no protoplanetary heating sources have been identified that were sufficiently strong to heat materials in the outer nebula to such high temperatures. This conundrum led to the suggestion that large-scalemixing was important in the protoplanetary disk. Reports of refractory calcium-aluminum-rich inclusion-like objects and large concentrations of noble gases in Stardust samples underscore the need for such mixing. However, the evidence from the Stardust samples until now has been largely anecdotal, and it has not been possible to place quantitative constraints on the mixing fraction. Here we report synchrotron-based X-ray microprobe measurements of the relative concentrations of the chemical state of iron in material from a known comet, the Jupiter-family comet 81P/Wild2. We find that the comet is rich in iron sulfides. The elemental S/Fe ratio based on the sulfide concentration, S/Fe > 0.31(2 sigma), is higher than in most chondritic meteorites. We also found that Fe-bearing silicates are at least 50% crystalline. Based on these measurements, we estimate the fraction psi of inner nebular material in 81P/Wild2. With the lower bound on the crystalline Fe-bearing silicate fraction, we find that psi > 0.5. If the observed S depletion in the inner solar system predated or was contemporaneous with large-scale mixing, our lower bound on the S/Fe ratio gives an upper bound on psi of similar to 0.65. This measurement may be used to test mixing models of the early solar system. C1 [Westphal, A. J.; Gainsforth, Z.; Ogliore, R. C.; Butterworth, A. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fakra, S. C.; Marcus, M. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. NR 69 TC 38 Z9 38 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2009 VL 694 IS 1 BP 18 EP 28 DI 10.1088/0004-637X/694/1/18 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 420LQ UT WOS:000264291700003 ER PT J AU Farouqi, K Kratz, KL Mashonkina, LI Pfeiffer, B Cowan, JJ Thielemann, FK Truran, JW AF Farouqi, K. Kratz, K. -L. Mashonkina, L. I. Pfeiffer, B. Cowan, J. J. Thielemann, F. -K. Truran, J. W. TI NUCLEOSYNTHESIS MODES IN THE HIGH-ENTROPY WIND OF TYPE II SUPERNOVAE: COMPARISON OF CALCULATIONS WITH HALO-STAR OBSERVATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; stars: abundances; stars: Population II ID NEUTRON-CAPTURE ELEMENTS; METAL-POOR STARS; R-PROCESS NUCLEOSYNTHESIS; DRIVEN WINDS; NUCLEAR-STRUCTURE; EARLY GALAXY; 1ST STARS; MILKY-WAY; PHYSICS; RICH AB While the high-entropy wind ( HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N-r,N-circle dot = N-circle dot-N-s,N-circle dot by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N-r,N-circle dot pattern beyond Sn. For the lighter elements, from the Fe group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided a range of entropies are contributing. This explains recent halo-star observations of a clear noncorrelation of Zn and Ge and a weak correlation of Sr-Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd also seem to confirm a partial correlation with Sr as well as the main r-process elements (e.g., Eu). C1 [Farouqi, K.; Truran, J. W.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Farouqi, K.; Pfeiffer, B.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Kratz, K. -L.] Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany. [Mashonkina, L. I.] Russian Acad Sci, Inst Astron, RU-119017 Moscow, Russia. [Cowan, J. J.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Truran, J. W.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Farouqi, K (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. EM farouqi@uchicago.edu; klkratz@uni-mainz.de; lima@inasan.ru; BPfeiffe@uni-mainz.de; cowan@nhn.ou.edu; F-K.Thielemann@unibas.ch; truran@nova.uchicago.edu FU Deutsche Forschungsgemeinschaft (DFG); Helmholtz Gemeinschaft; NSF; DOE FX We thank R. Gallino for helpful discussions. Partial financial support for this research was provided by the Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Gemeinschaft, the NSF, the DOE as well as the Swiss NSF. NR 39 TC 54 Z9 55 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2009 VL 694 IS 1 BP L49 EP L53 DI 10.1088/0004-637X/694/1/L49 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 419CK UT WOS:000264196500011 ER PT J AU Seeliger, MA Kuriyan, J AF Seeliger, Markus A. Kuriyan, John TI A MAPK scaffold Lends a Helping Hand SO CELL LA English DT Editorial Material ID PROTEINS; KINASE AB The scaffold proteins of signaling pathways are thought to act as passive tethering devices bringing together catalytic components of signaling cascades. Good et al. (2009) now reveal that in the budding yeast the scaffold protein Ste5 acts as an allosteric activator of the mitogen-activated protein kinase Fus3, rendering it competent to be a kinase substrate for signal transmission. C1 [Seeliger, Markus A.; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Seeliger, Markus A.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Seeliger, Markus A.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu RI Seeliger, Markus/D-6409-2013 FU Howard Hughes Medical Institute NR 6 TC 5 Z9 5 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAR 20 PY 2009 VL 136 IS 6 BP 994 EP 996 DI 10.1016/j.cell.2009.03.002 PG 4 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 422CE UT WOS:000264403900004 PM 19303841 ER PT J AU Morris, JR Aga, RS Egami, T Levashov, VA AF Morris, James R. Aga, Rachel S. Egami, Takeshi Levashov, Valentin A. TI SIMULATING THE EFFECT OF POISSON RATIO ON METALLIC GLASS PROPERTIES SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 5th International Conference on Advanced Materials and Processing CY SEP 02-05, 2008 CL Harbin Inst Technol, Harbin, PEOPLES R CHINA SP Natl Key Lab Preis Hot Proc Metals, State Key Lab Adv Welding Product Technol, Natl Nat Sci Fdn China, Minerals, Metals & Mat Soc HO Harbin Inst Technol DE Metallic glass; Poisson ratio; molecular dynamics ID ENERGY LANDSCAPE; FORMING LIQUID; FCC METALS; TRANSITION AB Recent work has shown that many metallic glass properties correlate with the Poisson ratio of the glass. We have developed a new model for simulating the atomistic behavior of liquids and glasses that allows us to change the Poisson ratio, while keeping the crystalline phase cohesive energy, lattice constant, and bulk modulus fixed. A number of liquid and glass properties are shown to be directly affected by the Poisson ratio. An increasing Poisson ratio stabilizes the liquid structure relative to the crystal phase, as indicated by a significantly lower melting temperature and by a lower enthalpy of the liquid phase. The liquids clearly exhibit two changes in behavior: one at low temperatures, associated with the conventional glass transition T(g), and a second, higher temperature change associated with the shear properties of the liquids. This second crossover has a characteristic, measurable change in the liquid structure. C1 [Morris, James R.; Aga, Rachel S.; Egami, Takeshi] Oak Ridge Natl Lab, MS&T Div, Oak Ridge, TN 37831 USA. [Aga, Rachel S.] Wright State Univ, Dept Chem, Dayton, OH 45435 USA. [Morris, James R.; Egami, Takeshi; Levashov, Valentin A.] Univ Tennessee, Knoxville, TN 37996 USA. RP Morris, JR (reprint author), Oak Ridge Natl Lab, MS&T Div, Oak Ridge, TN 37831 USA. RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 18 TC 3 Z9 3 U1 0 U2 8 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAR 20 PY 2009 VL 23 IS 6-7 BP 1229 EP 1234 PG 6 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 446PX UT WOS:000266134700075 ER PT J AU Hale, L Gschneidner, KA Pecharsky, VK Mudryk, Y AF Hale, Lucas Gschneidner, K. A., Jr. Pecharsky, V. K. Mudryk, Y. TI Low temperature properties of some RIn3 compounds SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth compounds; Magnetically ordered intermetallics; Heat capacity; X-ray diffraction ID INDIUM AB The low temperature heat capacity of ErIn3 has been studied because of its potential as a regenerator material. Slight variations from stoichiometry and plastic deformation have been shown to affect the heat capacity of ErIn3. The (HoxEr1-x)In-3 system has been studied in detail revealing that the lattice parameter varies linearly as a function of x, while the Neel temperatures vary with a slight departure from linearity. An analysis of the concentration dependence of the Neel temperature in the (HoxEr1-x)In-3 system indicates that when the rare earth metal size is within 5.65% of the indium radius, a narrow solid solution region forms on the indium-rich side of the RIn3 phase. A high-resolution X-ray powder diffraction study does not reveal a structural distortion in ErIn3, or (Ho0.25In0.75)In-3, or HoIn3. Rare earth substitutions (R = Y, Ce, Pr, and Dy) for the Er in (RxEr1-x)In-3 shift the Neel temperature and may have a significant effect on the heat capacity, depending on the rare earth metal. (C) 2008 Elsevier B.V. All rights reserved C1 [Hale, Lucas; Gschneidner, K. A., Jr.; Pecharsky, V. K.; Mudryk, Y.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Hale, Lucas; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci, Ames, IA 50011 USA. [Hale, Lucas] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, US DOE, 255 Spedding, Ames, IA 50011 USA. EM cagey@ameslab.gov FU U.S. Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX The authors thank A.O. Tsokol for her comments. The Ames Laboratory is supported by the U.S. Department of Energy, Basic Energy Sciences under Contract no DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 16 TC 5 Z9 5 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAR 20 PY 2009 VL 472 IS 1-2 BP 24 EP 29 DI 10.1016/j.jallcom.2008.04.097 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 427CK UT WOS:000264757200012 ER PT J AU Nischang, I Svec, F Frechet, JMJ AF Nischang, Ivo Svec, Frantisek Frechet, Jean M. J. TI Effect of capillary cross-section geometry and size on the separation of proteins in gradient mode using monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) columns SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Porous polymer monolith; Scalability; Nano-LC; Conduit shape; Proteins; Reversed phase HPLC ID PERFORMANCE LIQUID-CHROMATOGRAPHY; CHIP ELECTROCHROMATOGRAPHY; HEIGHT EQUIVALENT; THEORETICAL PLATE; STATIONARY PHASES; INNER DIAMETERS; ASPECT RATIO; ELECTROPHORESIS; CHANNELS; POLYMER AB Porous polymer monoliths have been prepared in capillaries with circular or square cross-sections and lateral dimensions of 50, 75, 100 mu m as well as in a rectangular 38 mu m x 95 mu m capillary. These capillaries have been used to determine the effect of the size and shape of their cross-section on the porous and hydrodynamic properties of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths. The capillaries were studied by scanning electron microscopy and evaluated for their permeability to flow and their performance in the liquid chromatographic separation of a protein mixture comprising ribonuclease A.cytochrome c. myoglobin, and ovalbumin using a linear gradient of acetonitrile in the mobile phase. No differences resulting from channel geometry were found for the various capillary columns. These results demonstrate that standard capillaries with circular geometry area good and affordable alternative conduit for modeling the processes carried out in microfluidic chips with a variety of geometries. (c) 2009 Published by Elsevier B.V. C1 [Nischang, Ivo; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Svec, Frantisek; Frechet, Jean M. J.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Nischang, Ivo/B-8619-2013; OI Frechet, Jean /0000-0001-6419-0163 FU National Institute of General Medical Sciences; National Institutes of Health [GM48364]; US Department of Energy [DE-AC02-05CH11231] FX Support of this research by a grant of the National Institute of General Medical Sciences, National Institutes of Health (GM48364) is gratefully acknowledged. Characterization work carried out at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 40 Z9 40 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAR 20 PY 2009 VL 1216 IS 12 BP 2355 EP 2361 DI 10.1016/j.chroma.2009.01.007 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 419KH UT WOS:000264217800019 PM 19201413 ER PT J AU Lemons, DS Winske, D Daughton, W Albright, B AF Lemons, Don S. Winske, Dan Daughton, William Albright, Brian TI Small-angle Coulomb collision model for particle-in-cell simulations SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Collision algorithm; Particle-in-cell simulation; Plasma simulations; Numerical methods; Coulomb collisions in plasmas; Stochastic differential equations ID PLASMA SIMULATION; INTERPENETRATION AB We construct and investigate a set of stochastic differential equations that incorporate the physics of velocity-dependent small-angle Coulomb collisions among the plasma particles in a particle-in-cell simulation. Each particle is scattered stochastically from all the other particles in a simulation cell modeled as one or more Maxwellians. Total energy and momentum are conserved by linear transformation of the velocity increments. In two test simulations the proposed "particle-moment" collision algorithm performs well with time steps as large as 10% of the relaxation time - far larger than a particle-pairing collision algorithm, in which pairs of particles are scattered from one another, requires to achieve the same accuracy. (c) 2008 Elsevier Inc. All rights reserved. C1 [Lemons, Don S.] Bethel Coll, N Newton, KS 67117 USA. [Winske, Dan; Daughton, William; Albright, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lemons, DS (reprint author), Bethel Coll, N Newton, KS 67117 USA. EM lemons.don@gmail.com RI Daughton, William/L-9661-2013; OI Albright, Brian/0000-0002-7789-6525 FU Los Alamos by the NW Supporting Research Program FX This work is supported at Los Alamos by the NW Supporting Research Program. The authors acknowledge helpful conversations with Bruce Cohen of Lawrence Livermore National Laboratory. NR 28 TC 26 Z9 26 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 20 PY 2009 VL 228 IS 5 BP 1391 EP 1403 DI 10.1016/j.jcp.2008.10.025 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 407NC UT WOS:000263370600005 ER PT J AU Saurel, R Petitpas, F Berry, RA AF Saurel, Richard Petitpas, Fabien Berry, Ray A. TI Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Hyperbolic systems; Multifluid; Multiphase; Real gases; Cavitation; Multiphysic; Godunov ID TO-DETONATION TRANSITION; GODUNOV METHOD; LEVEL-SET; GRANULAR-MATERIALS; PROJECTION METHOD; FRONT TRACKING; 2-PHASE FLOW; MODEL; EQUATIONS; COMPUTATIONS AB Numerical approximation of the five-equation two-phase flow of Kapila et al. [A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024] is examined. This model has shown excellent capabilities for the numerical resolution of interfaces separating compressible fluids as well as wave propagation in compressible mixtures [A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, journal of Computational Physics 202(2) (2005) 664-698; R. Abgrall, V. Perrier, Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flows, SIAM Journal of Multiscale and Modeling and Simulation (5) (2006) 84-115; F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, journal of Computational Physics 225(2) (2007) 2214-2248]. However, its numerical approximation poses some serious difficulties. Among them, the non-monotonic behavior of the sound speed causes inaccuracies in wave's transmission across interfaces. Moreover, volume fraction variation across acoustic waves results in difficulties for the Riemann problem resolution, and in particular for the derivation of approximate solvers. Volume fraction positivity in the presence of shocks or strong expansion waves is another issue resulting in lack of robustness. To circumvent these difficulties, the pressure equilibrium assumption is relaxed and a pressure non-equilibrium model is developed. It results in a single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms. It fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them. This formulation considerably simplifies numerical resolution. Following a strategy developed previously for another flow model [R. Saurel, R. Abgrall, A multiphase Godunov method for multifluid and multiphase flows, journal of Computational Physics 150 (1999) 425-467], the hyperbolic part is first solved without relaxation terms with a simple, fast and robust algorithm, valid for unstructured meshes. Second, stiff relaxation terms are solved with a Newton method that also guarantees positivity and robustness. The algorithm and model are compared to exact solutions of the Euler equations as well as solutions of the five-equation model under extreme flow conditions, for interface computation and cavitating flows involving dynamics appearance of interfaces. In order to deal with correct dynamic of shock waves propagating through multiphase mixtures, the artificial heat exchange method of Petitpas et al. [F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, journal of Computational Physics 225(2) (2007) 2214-2248] is adapted to the present formulation. (c) 2008 Elsevier Inc. All rights reserved. C1 [Saurel, Richard; Petitpas, Fabien] Aix Marseille Univ, Polytech Marseille, F-13453 Marseille 13, France. [Saurel, Richard; Petitpas, Fabien] IUSTI INRIA, CNRS, SMASH Project, UMR 6595, F-13453 Marseille 13, France. [Saurel, Richard] Univ Inst France, F-13453 Marseille 13, France. [Berry, Ray A.] Idaho Natl Lab, Multiphys Methods Grp, Adv Nucl Energy Syst Dept, Idaho Falls, ID 83415 USA. RP Saurel, R (reprint author), Aix Marseille Univ, Polytech Marseille, 5 Rue E Fermi, F-13453 Marseille 13, France. EM Richard.Saurel@polytech.univ-mrs.fr RI Petitpas, Fabien/G-3164-2013; OI Saurel, Richard/0000-0001-7338-7371 NR 54 TC 101 Z9 103 U1 7 U2 31 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 20 PY 2009 VL 228 IS 5 BP 1678 EP 1712 DI 10.1016/j.jcp.2008.11.002 PG 35 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 407NC UT WOS:000263370600022 ER PT J AU Wu, MS Wang, MT Nix, J Hryshko, LV Zheng, L AF Wu, Mousheng Wang, Meitian Nix, Jay Hryshko, Larry V. Zheng, Lei TI Crystal Structure of CBD2 from the Drosophila Na+/Ca2+ Exchanger: Diversity of Ca2+ Regulation and Its Alternative Splicing Modification SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE Ca2+ regulation; crystal structures; Na+/Ca2+ exchanger; alternative splicing; Drosophila melanogaster ID CARDIAC NA+-CA2+ EXCHANGER; CA2+-BINDING DOMAIN; MUTATIONAL ANALYSIS; NCX1; ISOFORMS; MODEL; MELANOGASTER; REFINEMENT; KINETICS; BRAIN AB Na+/Ca2+ exchangers (NCXs) promote the extrusion of intracellular Ca2+ to terminate numerous Ca2+-mediated signaling processes. Ca2+, interaction at two Ca2+ binding domains (CBDs; CBD1 and CBD2) is important for tight regulation of the exchange activity. Diverse Ca2+ regulatory properties have been reported with several NCX isoforms; whether the regulatory diversity of NCXs is related to structural differences of the pair of CBDs is presently unknown. Here, we reported the crystal structure of CBD2 from the Drosophila melanogaster exchanger CALX1.1. We show that the CALX1.1-CBD2 is an immunoglobulin-like structure, similar to mammalian NCX1-CBD2, but the predicted Ca2+, interaction region of CALX1.1-CBD2 is arranged in a manner that precludes Ca2+ binding. The carboxylate residues that coordinate two Ca2+, in the NCX1-CBD1 structure are neutralized by two Lys residues in CALX1.1-CBD2. This structural observation was further confirmed by isothermal titration calorimetry. The CALX1.1-CBD2 structure also clearly shows the alternative splicing region forming two adjacent helices perpendicular to CBD2. Our results provide structural evidence that the diversity of Ca2+ regulatory properties of NCX proteins can be achieved by (1) local structure rearrangement of Ca2+ binding site to change Ca2+ binding properties of CBD2 and (2) alternative splicing variation altering the protein domain-domain conformation to modulate the Ca2+ regulatory behavior. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Wu, Mousheng; Zheng, Lei] Univ Texas Houston, Sch Med, Dept Biochem & Mol Biol, Ctr Membrane Biol, Houston, TX 77030 USA. [Wang, Meitian] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Nix, Jay] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Mol Biol Consortium, Berkeley, CA 94720 USA. [Hryshko, Larry V.] Univ Manitoba, St Boniface Hosp Res Ctr, Inst Cardiovasc Sci, Winnipeg, MB R2H 2A6, Canada. RP Zheng, L (reprint author), Univ Texas Houston, Sch Med, Dept Biochem & Mol Biol, Ctr Membrane Biol, 6431 Fannin St, Houston, TX 77030 USA. EM lei.zheng@uth.tmc.edu RI Wang, Meitian/D-3208-2013 FU American Heart Association [0830353N]; Canadian Institutes of Health Research; Canada Research Chair FX We thank John L. Spudich for valuable discussion and comments on the manuscript. This work has been supported by grants from the American Heart Association (0830353N to L.Z.) and the Canadian Institutes of Health Research (to L.V.H.). L.V.H. is also supported by a Canada Research Chair. NR 29 TC 28 Z9 28 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD MAR 20 PY 2009 VL 387 IS 1 BP 104 EP 112 DI 10.1016/j.jmb.2009.01.045 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 425AS UT WOS:000264610000009 PM 19361442 ER PT J AU Pedzisa, L Hay, BP AF Pedzisa, Lee Hay, Benjamin P. TI Aliphatic C-H center dot center dot center dot Anion Hydrogen Bonds: Weak Contacts or Strong Interactions? SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID GAS-PHASE ANIONS; SYNTHETIC RECEPTORS; HALIDE-IONS; MOLECULAR RECOGNITION; EXCHANGE EQUILIBRIA; STRUCTURAL CRITERIA; AQUEOUS-SOLUTION; HOST MOLECULES; BRONSTED ACIDS; NITRATE ANION AB Electronic structure calculations, MP2/aug-cc-pVDZ, are used to determine C-H center dot center dot center dot Cl(-) hydrogen bond energies for a series of XCH(3) donor groups in which the electron-withdrawing ability of X is varied over a wide range of values. When attached to polarizing substituents, aliphatic CH groups are moderate-to-strong hydrogen bond donors, exhibiting interaction energies comparable to those obtained with O-H and N-H groups. The results explain why aliphatic C-H donors are observed to function as competitive binding sites in solution and suggest that such C-H center dot center dot center dot anion contacts should be considered as possible contributors when evaluating the denticity of an anion receptor. C1 [Pedzisa, Lee; Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hay, BP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM haybp@ornl.gov RI Pedzisa, Lee/H-3061-2016 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Associated Colleges of the Midwest Oak Ridge Science Semester; Oak Ridge Associated Universities HERE Program FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract number DE-AC05-00OR22725 with Oak Ridge National Laboratory managed by UT-Battelle, LLC. L.P. was sponsored in part by the Associated Colleges of the Midwest Oak Ridge Science Semester and the Oak Ridge Associated Universities HERE Program. NR 71 TC 58 Z9 58 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD MAR 20 PY 2009 VL 74 IS 6 BP 2554 EP 2560 DI 10.1021/jo900018u PG 7 WC Chemistry, Organic SC Chemistry GA 417XI UT WOS:000264111400040 PM 19215106 ER PT J AU Yagci, B Filiz, S Romero, LL Ozdoganlar, OB AF Yagci, Baris Filiz, Sinan Romero, Louis L. Ozdoganlar, O. Burak TI A spectral-Tchebychev technique for solving linear and nonlinear beam equations SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID DYNAMIC STIFFNESS MATRIX; FREE-VIBRATION ANALYSIS; AMPLITUDE FREE-VIBRATIONS; LOADED TIMOSHENKO BEAM; MICROELECTROMECHANICAL SYSTEMS; TRANSVERSE VIBRATIONS; CHEBYSHEV POLYNOMIALS; HARMONIC EXCITATION; NONPRISMATIC BEAM; GENERAL ALGORITHM AB This paper presents a spectral-Tchebychev technique for solving linear and nonlinear beam problems. The technique uses Tchebychev polynomials as spatial basis functions, and applies Galerkin's method to obtain the spatially discretized equations of motion. Unlike alternative techniques that require different admissible functions for each different set of boundary conditions, the spectral-Tchebychev technique incorporates the boundary conditions into the derivation, and thereby enables the utilization of the solution for any linear boundary conditions without re-derivation. Furthermore, the proposed technique produces symmetric system matrices for self-adjoint problems. In this work, the spectral-Tchebychev solutions for Euler-Bernoulli and Timoshenko beams are derived. The convergence and accuracy characteristics of the spectral-Tchebychev technique is studied by solving eigenvalue problems with different boundary conditions. It is found that the convergence is exponential, and a small number of polynomials is sufficient to obtain machine-precision accuracy. The application of the technique is demonstrated by solving: (1) eigenvalue problems for tapered Timoshenko beams with different boundary conditions, taper ratios, and beam lengths; (2) an Euler-Bernoulli beam problem with spatially and temporally varying forcing, elastic boundary, and damping; (3) large-deflection (nonlinear) Euler-Bernoulli beam problems with different boundary conditions; and (4) a micro-beam problem with nonlinear electrostatic excitation. The results obtained from the spectral-Tchebychev solutions arc seen to be in excellent agreement with those presented in the literature. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Yagci, Baris; Filiz, Sinan; Ozdoganlar, O. Burak] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Romero, Louis L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ozdoganlar, OB (reprint author), Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. EM ozdoganlar@cmu.edu NR 56 TC 18 Z9 19 U1 2 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD MAR 20 PY 2009 VL 321 IS 1-2 BP 375 EP 404 DI 10.1016/j.jsv.2008.09.040 PG 30 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 421HG UT WOS:000264349400022 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, C Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Leight, W LeVine, MJ Li, C Li, N Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M Vander Molen, AM Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Walker, M Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Leight, W. LeVine, M. J. Li, C. Li, N. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X-H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. Vander Molen, A. M. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Walker, M. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yepes, P. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. TI Observation of Two-Source Interference in the Photoproduction Reaction AuAu -> AuAu rho(0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; TIME PROJECTION CHAMBER; COLLIDERS; PHYSICS; PHOTON AB In ultraperipheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a rho(0). The rho(0) production occurs in two well-separated (median impact parameters of 20 and 40 F for the cases considered here) nuclei, so the system forms a two-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing rho(0) production. Since the rho(0) decays before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled nonlocal wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is 87%+/- 5%(stat.)+/- 8%(syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors of 23% at the 90% confidence level. C1 [Bhasin, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] AS CR, Inst Phys Nucl, Rez 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] JINR, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Wissink, S. W.; Zoulkarneev, R.; Zoulkarneeva, Y.] JINR, Particle Phys Lab, Dubna, Russia. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Bombay, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Pandit, Y.; Rykov, V.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Bhasin, A.; Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Vander Molen, A. M.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, P.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Li, C.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X-H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, H. F.; Feng, A.; Li, N.; Liu, L.; Shi, S. S.; Wu, Y.] HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012 OI Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Fisyak, Yuri/0000-0002-3151-8377; Peitzmann, Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779 FU U. S. DOE Office of Science; U. S. NSF; Sloan Foundation; DFG Excellence Cluster EXC153 of Germany; CNRS/IN2P3; RA; RPL; EMN of France; STFC; EPSRC; FAPESP of Brazil; Russian Ministry of Science and Technology; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of The Netherlands; DAE; DST; CSIR of the Government of India; Swiss NSF; Polish State Committee for Scientific Research; Korea Science and Engineering Foundation FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL, and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the U. S. DOE Office of Science; the U. S. NSF; the Sloan Foundation; the DFG Excellence Cluster EXC153 of Germany; CNRS/IN2P3, RA, RPL, and EMN of France; STFC and EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the NNSFC, CAS, MoST, and MoE of China; IRP and GA of the Czech Republic; FOM of The Netherlands; DAE, DST, and CSIR of the Government of India; the Swiss NSF; the Polish State Committee for Scientific Research; and the Korea Science and Engineering Foundation. NR 27 TC 16 Z9 16 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 112301 DI 10.1103/PhysRevLett.102.112301 PG 7 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200020 PM 19392193 ER PT J AU Baily, SA Kohama, Y Hiramatsu, H Maiorov, B Balakirev, FF Hirano, M Hosono, H AF Baily, S. A. Kohama, Y. Hiramatsu, H. Maiorov, B. Balakirev, F. F. Hirano, M. Hosono, H. TI Pseudoisotropic Upper Critical Field in Cobalt-Doped SrFe2As2 Epitaxial Films SO PHYSICAL REVIEW LETTERS LA English DT Article ID NODELESS SUPERCONDUCTING GAPS AB We present resistivity measurements of the complete superconducting upper critical field (H-c2) phase diagram as a function of angle (theta) and temperature (T) for cobalt-doped SrFe2As2 epitaxial films to 0.5 K and 50 T. Although H-c2(theta) at 10 K is indistinguishable from that derived from a single-band anisotropy model, the apparent anisotropy H-c2(perpendicular to c)/H-c2(parallel to c) linearly decreases to 1 at low T, with H-c2(0)=47 T. The data are well described by a two-band model with small, opposing anisotropies for the bands. This unusual relationship is confirmed by the observation of a local maximum for H-c2(parallel to c) at low T. C1 [Baily, S. A.; Kohama, Y.; Balakirev, F. F.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Baily, S. A.; Maiorov, B.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Kohama, Y.] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Hiramatsu, H.; Hirano, M.; Hosono, H.] Japan Sci & Technol Agcy, Frontier Res Ctr, Tokyo Inst Technol, ERATO SORST, Yokohama, Kanagawa 2268503, Japan. RP Baily, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. EM sbaily@lanl.gov RI Hiramatsu, Hidenori/E-8882-2014; Hosono, Hideo/J-3489-2013; OI Hiramatsu, Hidenori/0000-0002-5664-5831; Hosono, Hideo/0000-0001-9260-6728; Maiorov, Boris/0000-0003-1885-0436 FU JSPS [19.9728]; NHMFL UCGP; U.S. NSF; U. S. DOE; state of Florida FX Grant-in-Aid JSPS (Grant No. 19.9728) provided support for Y.Kohama. This work is also supported by an NHMFL UCGP grant, the U.S. NSF, the U. S. DOE, and the state of Florida. NR 28 TC 87 Z9 87 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 117004 DI 10.1103/PhysRevLett.102.117004 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200058 PM 19392231 ER PT J AU Csaki, C Falkowski, A Nomura, Y Volansky, T AF Csaki, Csaba Falkowski, Adam Nomura, Yasunori Volansky, Tomer TI New Approach to the mu-B-mu Problem of Gauge-Mediated Supersymmetry Breaking SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a new approach to the mu-B-mu problem of gauge-mediated supersymmetry breaking. Rather than reducing the generically large contribution to B-mu we point out that acceptable electroweak symmetry breaking can be achieved with mu(2)< B-mu if at the same time B-mu < m(Hd)(2). This hierarchy can easily appear in models where the Higgs fields are directly coupled to the supersymmetry breaking sector. Such models can yield novel electroweak symmetry breaking vacua, can deal with the supersymmetric flavor and CP problems, allow for gauge coupling unification, and result in distinct phenomenological predictions for the spectrum of superparticles. C1 [Csaki, Csaba] Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. [Falkowski, Adam] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Nomura, Yasunori] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nomura, Yasunori] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Volansky, Tomer] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Csaki, C (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. NR 18 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 111801 DI 10.1103/PhysRevLett.102.111801 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200018 PM 19392191 ER PT J AU Gonzalez, C Guo, JD Ortega, J Flores, F Weitering, HH AF Gonzalez, C. Guo, Jiandong Ortega, J. Flores, F. Weitering, H. H. TI Mechanism of the Band Gap Opening across the Order-Disorder Transition of Si(111)(4x1)-In SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; METAL-INSULATOR-TRANSITION; SURFACE; SI(111); CHAINS; RECONSTRUCTIONS; INSTABILITY AB The ground state properties of indium atom chains on the Si(111)8x2-In surface and the nature of their insulator-metal (IM) transition near 120 K are under intense dispute. We compare experimental scanning tunneling microscopy (STM) images of the low temperature (LT) 8x2 phase with STM image calculations from Density Functional Theory (DFT). Our LT studies clearly indicate the existence of a frozen shear distortion between neighboring atom chains, resulting in the formation of indium hexagons. Tunneling spectra furthermore indicate that the IM transition coincides with the collapse of a similar to 0.3 eV surface-state band gap at the Gamma point of the 4x2 Brillouin zone. This implies that the IM transition is driven by a shear phonon, not by Fermi surface nesting. C1 [Gonzalez, C.; Ortega, J.; Flores, F.] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain. [Gonzalez, C.] Acad Sci Czech Republic, Inst Phys, Prague 16253, Czech Republic. [Ortega, J.; Weitering, H. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Guo, Jiandong] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Guo, Jiandong] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Weitering, H. H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Gonzalez, C (reprint author), Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain. RI Gonzalez, Cesar/C-4834-2011; Ortega Mateo, Jose/I-4358-2014; Flores, fernando/K-2362-2014; Guo, Jiandong/F-2081-2015 OI Gonzalez, Cesar/0000-0001-5118-3597; Ortega Mateo, Jose/0000-0001-9156-1038; Guo, Jiandong/0000-0002-7893-022X FU NSF [DMR 0606485]; Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725]; Spanish Ministerio de Ciencia e Innovacion [2007-0034, MAT-2007-60966] FX We thank E. W. Plummer and P. C. Snijders for stimulating discussions. The experimental work was funded by NSF Grant No. DMR 0606485 and by Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. The theory component was funded by the Spanish Ministerio de Ciencia e Innovacion under Grants Nos. 2007-0034 and MAT-2007-60966. NR 28 TC 30 Z9 30 U1 5 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 115501 DI 10.1103/PhysRevLett.102.115501 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200039 PM 19392212 ER PT J AU Lee, HJ Neumayer, P Castor, J Doppner, T Falcone, RW Fortmann, C Hammel, BA Kritcher, AL Landen, OL Lee, RW Meyerhofer, DD Munro, DH Redmer, R Regan, SP Weber, S Glenzer, SH AF Lee, H. J. Neumayer, P. Castor, J. Doeppner, T. Falcone, R. W. Fortmann, C. Hammel, B. A. Kritcher, A. L. Landen, O. L. Lee, R. W. Meyerhofer, D. D. Munro, D. H. Redmer, R. Regan, S. P. Weber, S. Glenzer, S. H. TI X-Ray Thomson-Scattering Measurements of Density and Temperature in Shock-Compressed Beryllium SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; EQUATION-OF-STATE; PLASMAS; MATTER; FLUID AB We present the first x-ray scattering measurements of the state of compression and heating in laser irradiated solid beryllium. The scattered spectra at two different angles show Compton and plasmon features indicating a dense Fermi-degenerate plasma state with a Fermi energy above 30 eV and with temperatures in the range of 10-15 eV. These measurements indicate compression by a factor of 3 in agreement with Hugoniot data and detailed radiation-hydrodynamic modeling. C1 [Lee, H. J.; Falcone, R. W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Neumayer, P.; Castor, J.; Doeppner, T.; Hammel, B. A.; Kritcher, A. L.; Landen, O. L.; Lee, R. W.; Munro, D. H.; Weber, S.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fortmann, C.; Redmer, R.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Meyerhofer, D. D.; Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Lee, HJ (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. RI Redmer, Ronald/F-3046-2013 FU U. S. Department of Energy [DE-AC52-07NA27344]; National Laboratory User Facility, Laboratory Directed Research and Development [08-ERI-002, 08-LW004]; Helmholtz association [VH-VI-104]; Deutsche Forschungsgemeinschaft [SFB 652] FX This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Work was also supported by the National Laboratory User Facility, Laboratory Directed Research and Development Grants No. 08-ERI-002 and No. 08-LW004, by the Helmholtz association (VH-VI-104) and by the Deutsche Forschungsgemeinschaft (SFB 652). NR 31 TC 96 Z9 96 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 115001 DI 10.1103/PhysRevLett.102.115001 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200033 PM 19392206 ER PT J AU Litvinenko, VN Derbenev, YS AF Litvinenko, Vladimir N. Derbenev, Yaroslav S. TI Coherent Electron Cooling SO PHYSICAL REVIEW LETTERS LA English DT Article AB Cooling intense high-energy hadron beams poses a major challenge for modern accelerator physics. The synchrotron radiation emitted from such beams is feeble; even in the Large Hadron Collider (LHC) operating with 7 TeV protons, the longitudinal damping time is about 13 hours. None of the traditional cooling methods seem able to cool LHC-class protons beams. In this Letter, we present a novel method of coherent electron cooling based on a high-gain free-electron laser (FEL). This technique could be critical for reaching high luminosities in hadron and electron-hadron colliders. C1 [Litvinenko, Vladimir N.] Brookhaven Natl Lab, Long Isl City, NY USA. [Derbenev, Yaroslav S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Litvinenko, VN (reprint author), Brookhaven Natl Lab, Long Isl City, NY USA. EM vl@bnl.gov FU U. S. Department of Energy. FX Authors thank Ilan Ben Zvi (BNL) for inspiring discussions and many interesting ideas related to the concept. We are grateful to Michael Blaskiewicz, Yue Hao, Dmitry Kayran, Eduard Pozdeyev, Gang Wang, and Vitaly Yakimenko (BNL); George I. Bell and David L. Bruhwiler (Tech X); Oleg A. Shevchenko, and N. A. Vinokurov (BINP, Novosibirsk); and Sven Reiche (PSI) for offering us a multitude of ideas, and posing challenging questions for resolution. Authors acknowledge support of the U. S. Department of Energy. NR 15 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 114801 DI 10.1103/PhysRevLett.102.114801 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200032 PM 19392205 ER PT J AU Rech, J Micklitz, T Matveev, KA AF Rech, Jerome Micklitz, Tobias Matveev, K. A. TI Conductance of Fully Equilibrated Quantum Wires SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIMENSIONAL ELECTRON-GAS; QUANTIZED CONDUCTANCE; BALLISTIC-RESISTANCE; POINT CONTACTS; TRANSPORT AB We study the conductance of a quantum wire in the presence of weak electron-electron scattering. In a sufficiently long wire the scattering leads to full equilibration of the electron distribution function in the frame moving with the electric current. At nonzero temperature this equilibrium distribution differs from the one supplied by the leads. As a result the contact resistance increases, and the quantized conductance of the wire acquires a quadratic in temperature correction. The magnitude of the correction is found by analysis of the conservation laws of the system and does not depend on the details of the interaction mechanism responsible for equilibration. C1 [Rech, Jerome; Micklitz, Tobias; Matveev, K. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rech, Jerome] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Rech, Jerome] Univ Munich, Ctr Nanosci, D-80333 Munich, Germany. RP Rech, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U. S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX We are grateful to A. V. Andreev and L. I. Glazman for helpful discussions. This work was supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 20 TC 25 Z9 25 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 116402 DI 10.1103/PhysRevLett.102.116402 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200047 PM 19392220 ER PT J AU Segal, Y Reiner, JW Kolpak, AM Zhang, Z Ismail-Beigi, S Ahn, CH Walker, FJ AF Segal, Y. Reiner, J. W. Kolpak, A. M. Zhang, Z. Ismail-Beigi, S. Ahn, C. H. Walker, F. J. TI Atomic Structure of the Epitaxial BaO/Si(001) Interface SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-DIFFRACTION; SILICON; GROWTH; OXIDES AB We present the structure of the interface responsible for epitaxy of crystalline oxides on silicon. Using synchrotron x-ray diffraction, we observe a 2x1 unit cell reconstruction at the interface of BaO grown on Si(001) terminated with 1/2 ML of Sr. Since this symmetry is not present in bulk BaO or Si, only the interface contributes to diffracted intensity. First principles calculations accurately predict the observed diffraction and identify the structure of the BaO/Si interface, including the elemental composition and a sub-A rumpling due to epitaxial strain of the 7 adjacent BaO and Si layers. C1 [Segal, Y.; Reiner, J. W.; Kolpak, A. M.; Ismail-Beigi, S.; Ahn, C. H.; Walker, F. J.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Segal, Y.; Reiner, J. W.; Kolpak, A. M.; Ismail-Beigi, S.; Ahn, C. H.; Walker, F. J.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. RP Segal, Y (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. RI Zhang, Zhan/A-9830-2008; Ismail-Beigi, Sohrab/F-2382-2014 OI Zhang, Zhan/0000-0002-7618-6134; Walker, Frederick/0000-0002-8094-249X; Ismail-Beigi, Sohrab/0000-0002-7331-9624 FU National Science Foundation [DMR 0520495, DMR 0705799]; SRC; DOE [DE-AC02-06CH11357] FX We thank the team of the ID33 beam line at the APS for technical assistance. We acknowledge support from the National Science Foundation under MRSEC DMR 0520495 and DMR 0705799, and SRC. Use of the Advanced Photon Source was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 18 TC 33 Z9 33 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 116101 DI 10.1103/PhysRevLett.102.116101 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200045 PM 19392218 ER PT J AU Snezhko, A Belkin, M Aranson, IS Kwok, WK AF Snezhko, A. Belkin, M. Aranson, I. S. Kwok, W. -K. TI Self-Assembled Magnetic Surface Swimmers SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERFACE AB We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation. C1 [Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Belkin, M.] IIT, Chicago, IL 60616 USA. RP Snezhko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013 FU US DOE [DE-AC02-06CH11357] FX This research was supported by US DOE, Grant No. DE-AC02-06CH11357. NR 23 TC 77 Z9 77 U1 3 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 118103 DI 10.1103/PhysRevLett.102.118103 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200068 PM 19392241 ER PT J AU Trionfi, A Wang, DH Jacobs, JD Tan, LS Vaia, RA Hsu, JWP AF Trionfi, A. Wang, D. H. Jacobs, J. D. Tan, L. -S. Vaia, R. A. Hsu, J. W. P. TI Direct Measurement of the Percolation Probability in Carbon Nanofiber-Polyimide Nanocomposites SO PHYSICAL REVIEW LETTERS LA English DT Article ID NONUNIVERSAL BEHAVIOR; CONTINUUM-SYSTEMS; CONDUCTIVITY; COMPOSITES; THRESHOLD; CLUSTER AB We present the first experimental measurement of the geometric critical exponent beta associated with the percolation probability, the probability a metallic filler belongs to the conducting network, of an electrical composite. The technique employs conducting-tip atomic force microscopy to obtain a conducting areal density, and is demonstrated on polyimide nanocomposites containing different concentrations of carbon nanofibers. We find beta approximate to 1 and t (the exponent for bulk conductivity) approximate to 3. These values are consistent with the predictions for the Bethe lattice and larger than the values predicted in the 3D lattice percolation model. Hence, this electrical composite likely belongs to the same universality class as the Bethe lattice. The ability to measure geometric and transport critical exponents on the same material is critical to drawing this conclusion. C1 [Trionfi, A.; Hsu, J. W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, D. H.; Jacobs, J. D.; Tan, L. -S.; Vaia, R. A.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. RP Trionfi, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM trionfia@mailaps.org; jwhsu@sandia.gov RI Wang, David/F-7492-2013 OI Wang, David/0000-0001-6710-7265 FU U. S. Department of Energy [DE-AC04-94AL85000] FX We would like to thank D. Schaefer, G. Beaucage, K. Lyo, and R. Fleming for useful discussion. This work was performed in part at the U. S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos and Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed- Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 26 TC 24 Z9 24 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 20 PY 2009 VL 102 IS 11 AR 116601 DI 10.1103/PhysRevLett.102.116601 PG 4 WC Physics, Multidisciplinary SC Physics GA 421TC UT WOS:000264380200050 PM 19392223 ER PT J AU Christensen, ST Elam, JW Rabuffetti, FA Ma, Q Weigand, SJ Lee, B Seifert, S Stair, PC Poeppelmeier, KR Hersam, MC Bedzyk, MJ AF Christensen, Steven T. Elam, Jeffrey W. Rabuffetti, Federico A. Ma, Qing Weigand, Steven J. Lee, Byeongdu Seifert, Soenke Stair, Peter C. Poeppelmeier, Kenneth R. Hersam, Mark C. Bedzyk, Michael J. TI Controlled Growth of Platinum Nanoparticles on Strontium Titanate Nanocubes by Atomic Layer Deposition SO SMALL LA English DT Article DE atomic layer deposition; nanoparticles; platinum; strontium titanate; X-ray analysis ID PARTICLE-SIZE; 1ST PRINCIPLES; METHANOL; CATALYSTS; FORMALDEHYDE; OXIDATION; HYDROGEN; SRTIO3; ELECTROOXIDATION; PHOTOCATALYSIS AB With an eye toward using surface morphology to enhance heterogeneous catalysis, Pt nanoparticles are grown by atomic layer deposition (ALD) on the surfaces of SrTiO(3) nanocubes. The size, dispersion, and chemical state of the Pt nanoparticles are controlled by the number of ALD growth cycles. The SrTiO(3) nanocubes average 60 nm on a side with {001} faces. The Pt loading increases linearly with Pt ALD cycles to a value of 1.1 X 10(-6) g cm(-2) after five cycles. Scanning electron microscopy images reveal discrete, well-dispersed Pt nanoparticles. Small- and wide-angle X-ray scattering show that the Pt nanoparticle spacing and size increase as the number of ALD cycles increases. X-ray absorption spectroscopy shows a progression from platinum(II) oxide to metallic platinum and a decrease in Pt-O bonding with an increase in Pt-Pt bonding as the number of ALD cycles increases. C1 [Christensen, Steven T.; Hersam, Mark C.; Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Rabuffetti, Federico A.; Stair, Peter C.; Poeppelmeier, Kenneth R.; Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Ma, Qing; Weigand, Steven J.] Northwestern Univ, DND CAT Synchrotron Res Ctr, Evanston, IL 60208 USA. [Lee, Byeongdu; Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Bedzyk, MJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM bedzyk@northwestern.edu RI Hersam, Mark/B-6739-2009; Bedzyk, Michael/B-7503-2009; Bedzyk, Michael/K-6903-2013; OI Lee, Byeongdu/0000-0003-2514-8805 FU US Department of Energy [DE-FG02-03ER15457, DE-AC02-06CH11357]; National Science Foundation [DMR-0520513] FX This work was supported by the Institute for Catalysis in Energy Processes, Northwestern University (NU) (US Department of Energy Grant DE-FG02-03ER15457) and by facilities support from the NU Materials Research Center (National Science Foundation MRSEC Grant DMR-0520513). Argonne National Laboratory (ANL) is a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC X-ray measurements were performed at ANL's Advanced Photon Source, Sector 12 (BESSRC), and at Sector 5 (DND-CAT) which is supported in part by. E. I. DuPont de Nemours & Co., Dow Chemical Co., and the State of Illinois. Electron microscopy was performed at ANL's Electron Microscopy Center for Materials Research. NR 40 TC 108 Z9 109 U1 10 U2 96 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD MAR 20 PY 2009 VL 5 IS 6 BP 750 EP 757 DI 10.1002/smll.200801920 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 429QC UT WOS:000264934200015 PM 19306465 ER PT J AU Greenfield, M McGrane, SD Moore, DS AF Greenfield, M. McGrane, S. D. Moore, D. S. TI Control of cis-Stilbene Photochemistry Using Shaped Ultraviolet Pulses SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID FEMTOSECOND QUANTUM CONTROL; CRYSTAL PHASE MODULATOR; FIELD LASER-PULSES; MOLECULAR-DYNAMICS; COHERENT CONTROL; LIQUID-PHASE; PHOTOISOMERIZATION REACTIONS; UNIMOLECULAR REACTIONS; SELECTIVE CHEMISTRY; RAMAN-SPECTROSCOPY AB We demonstrate product branching control of the photoisomerization and cyclization reactions of cis-stilbene dissolved in n-hexane. An acousto-optical modulator-based pulse shaper was used at 266 nm, in a shaped pump-supercontinuum probe technique, to enhance and suppress the relative yields of the cis- to trans-stilbene isomerization as well as the cis-stilbene to 4a,4b-dihydrophenanthrene cyclization. Global, local, and single variable optimization control schemes were all successful at controlling stilbene's excited-state intramolecular rearrangements. The presence of multiphoton transitions was determined to be crucial in changing the yield under the experimental conditions employed. We have mapped experimental conditions in which multiphoton absorption was successful in controlling photoproduct branching ratios in stilbene, illustrated that the intensity dependence of the product yields can provide details of reactive channel branching ratios of higher excited-states, and shown that under the experimental conditions employed (150 fs laser) intensity control was the only mechanism available to the optimal control methods employed that could affect reaction yields. C1 [Greenfield, M.; McGrane, S. D.; Moore, D. S.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Greenfield, M (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM margog@lanl.gov RI Moore, David/C-8692-2013; OI Mcgrane, Shawn/0000-0002-2978-3980 FU U.S. Department of Energy [DE-AC52-06NA25396] FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for this work. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. We also thank Dr. Mathias Roth for helpful advice in building the pulse shaper. NR 73 TC 28 Z9 28 U1 5 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 19 PY 2009 VL 113 IS 11 BP 2333 EP 2339 DI 10.1021/jp801758v PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417XE UT WOS:000264111000012 PM 19239213 ER PT J AU Leavitt, CM Bryantsev, VS de Jong, WA Diallo, MS Goddard, WA Groenewold, GS Van Stipdonk, MJ AF Leavitt, Christopher M. Bryantsev, Vyacheslav S. de Jong, Wibe A. Diallo, Mamadou S. Goddard, William A., III Groenewold, Gary S. Van Stipdonk, Michael J. TI Addition of H2O and O-2 to Acetone and Dimethylsulfoxide Ligated Uranyl(V) Dioxocations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MAIN-GROUP THERMOCHEMISTRY; POLAR MOLECULE COLLISIONS; GAS-PHASE; NONCOVALENT INTERACTIONS; SOLUTION CHEMISTRY; AQUO COMPLEXES; DENSITY; IONS; HYDRATION; METAL AB Gas-phase complexes of the formula [UO2(lig)](+) (lig = acetone (aco) or dimethylsulfoxide (dmso)) were generated by electrospray ionization (ESI) and studied by tandem ion-trap mass spectrometry to determine the general effect of ligand charge donation on the reactivity of UO2+ with respect to water and dioxygen. The original hypothesis that addition Of 02 is enhanced by strong a-donor ligands bound to UO2+ is supported by results from competitive collision-induced dissociation (CID) experiments, which show near exclusive loss of H2O from [UO2(dmso)(H2O)(O-2)](+), whereas both H2O and O-2 are eliminated from the corresponding [UO2(aco)(H2O)(O-2)](+) species. Ligand-addition reaction rates were investigated by monitoring precursor and product ion intensities as a function of ion storage time in the ion-trap mass spectrometer: these experiments suggest that the association of dioxygen to the UO2+ complex is enhanced when the more basic dmso ligand was coordinated to the metal complex. Conversely, addition of H2O is favored for the analogous complex ion that contains an aco ligand. Experimental rate measurements are supported by density function theory calculations of relative energies, which show stronger bonds between UO2+ and O-2 when dmso is the coordinating ligand, whereas bonds to H2O are stronger for the aco complex. C1 [Groenewold, Gary S.] Idaho Natl Lab, Interfacial Chem Grp, Idaho Falls, ID USA. [Leavitt, Christopher M.; Van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67208 USA. [Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; Goddard, William A., III] CALTECH, Beckman Inst 139 74, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. [de Jong, Wibe A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Van Stipdonk, MJ (reprint author), Idaho Natl Lab, Interfacial Chem Grp, Idaho Falls, ID USA. EM gary.groenewold@inl.gov; mike.vanstipdonk@wichita.edu RI DE JONG, WIBE/A-5443-2008; Bryantsev, Vyacheslav/M-5111-2016 OI DE JONG, WIBE/0000-0002-7114-8315; Bryantsev, Vyacheslav/0000-0002-6501-6594 FU U.S. National Science Foundation (NSF) [CAREER-0239800]; U.S. Department of Energy; INL LaboratoryNational Science Foundation [0506951 DE AC07 051D14517]; US Environmental Protection Agency [RD-83252501]; OBER FX Work by M. J. Van Stipdonk and C. M. Leavitt was supported through a grant from the U.S. National Science Foundation (NSF grant CAREER-0239800). Work by G, S. Groenewold was supported by the U.S. Department of Energy, INL Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE AC07 051D14517. Funding for this work was provided by the National Science Foundation (NIRT CTS Award # 0506951) and by the US Environmental Protection Agency (STAR Grant RD-83252501). Work by V. S. Bryantsev, M. S. Diallo, and W. A. Goddard, III, is performed in part using the MSCF in EMSL, a national Scientific user facility sponsored by the U.S. DOE, OBER and located at PNNL. W. A. de Jong's research was supported by the BES Heavy Element Chemistry program of the U.S. Department of Energy, Office of Science, and was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory, which is operated for the Department of Energy by Battelle. NR 48 TC 21 Z9 21 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 19 PY 2009 VL 113 IS 11 BP 2350 EP 2358 DI 10.1021/jp807651c PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417XE UT WOS:000264111000014 PM 19216506 ER PT J AU Bahng, MK Macdonald, RG AF Bahng, Mi-Kyung Macdonald, R. Glen TI Determination of the Rate Constants for the Radical-Radical Reactions NH2((X)over-tilde(2)B(1)) + NH(X-3 Sigma(-)) and NH2((X)over-tilde(2)B(1)) + H(S-2) at 293 K SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID 193 NM PHOTOLYSIS; KINETICS; AMMONIA; HYDRAZINE; MECHANISM; NH3; DECOMPOSITION; COMBUSTION; TRANSITION; GENERATION AB The rate constant for the reactions NH2((X) over tilde B-2(1)) + NH(X-3 Sigma) and NH2((X) over tilde B-2(1)) + H(S-2) were measured over a pressure range from 2 to 10 Torr in CF4, or Ar gases at 293 +/- 2 K. The radicals were produced by the 193 nm photolysis of NH3 dilute in the carrier gas. Both radicals were monitored simultaneously following the photolysis laser pulse using high-resolution time-resolved absorption spectroscopy. The NH2 radical was monitored using the (1)2(21) <- (1)3(11) rotational transition of the (0,7,0)(A) over tilde (2)A(1) <- (0,0,0) (X) over tilde B-2(1) vibronic band near 675 nm, and the NH radical was monitored using the R-1(3)(4) rotational transition on the 1-0 vibrational transition near 3084 nm. The data was analyzed using model simulations of the NH2 and NH temporal concentration profiles. The rate constants for the NH2 + NH and NH2 + H reactions were found to be (9.6 +/- 3.2) x 10(-11) and (7.7 +/- 14) x 10(-15) cm(3) molecule(-1) s(-1), respectively, where the uncertainty includes an estimate of both systematic and random errors. The measurements were independent of the nature of the diluents, CF4 or Ar, and total pressure. C1 [Bahng, Mi-Kyung; Macdonald, R. Glen] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Macdonald, RG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rgmacdonald@anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 40 TC 3 Z9 3 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 19 PY 2009 VL 113 IS 11 BP 2415 EP 2423 DI 10.1021/jp809643u PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417XE UT WOS:000264111000022 PM 19222176 ER PT J AU Mardis, KL Sutton, HM Zuo, XB Lindsey, JS Tiede, DM AF Mardis, Kristy L. Sutton, Heather M. Zuo, Xiaobing Lindsey, Jonathan S. Tiede, David M. TI Solution-State Conformational Ensemble of a Hexameric Porphyrin Array Characterized Using Molecular Dynamics and X-ray Scattering SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LIGHT-HARVESTING ARCHITECTURES; STRUCTURAL-CHARACTERIZATION; SUPRAMOLECULAR CHEMISTRY; ELECTRON-TRANSFER; ENERGY-FLOW; WHEEL; DIFFRACTION; SIMULATION; FLEXIBILITY; PATHWAYS AB Solution-phase X-ray scattering measurements in combination with coordinate-based modeling have been used to characterize the conformational ensemble of a hexameric, diphenylethyne-linked porphyrin array in solution. Configurationally broadened X-ray scattering patterns measured at room temperature for dilute toluene solutions of the porphyrin array were compared to scattering patterns calculated from structural ensembles in constant pressure and temperature molecular dynamics simulations. Thermal fluctuations sampled at picosecond intervals within nanosecond time scale dynamic simulations show large-amplitude motions that include porphyrin ring "tipping" around the porphyrin linkage axes and extended hexameric porphyrin array "breathing" motions involving torsional distortions collectively distributed along porphyrin and diphenylethyne groups. Each type of group motion produced characteristic, angle-dependent dampening of scattering features that are needed to reproduce dampening features in the experimental X-ray scattering. However, mismatches in the magnitudes of experimental and simulated dampening of high-angle X-ray scattering patterns show that large-amplitude hexamer array breathing-type motions are significantly under-represented in the simulated ensembles. This comparison between experiment and simulation provides a means not only to interpret scattering data in terms of an explicit atomic model but more generally demonstrates the use of solution X-ray scattering as an experimental benchmark for the development of simulation methods that more accurately predict configurational dynamics of supramolecular assemblies. C1 [Mardis, Kristy L.; Sutton, Heather M.] Chicago State Univ, Dept Chem & Phys, Chicago, IL 60628 USA. [Lindsey, Jonathan S.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Zuo, Xiaobing; Tiede, David M.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Mardis, KL (reprint author), Chicago State Univ, Dept Chem & Phys, Chicago, IL 60628 USA. EM kmardis@csu.edu; tiede@anl.gov RI Zuo, Xiaobing/F-1469-2010; Lindsey, Jonathan/J-7761-2012; OI Mardis, Kristy/0000-0003-2633-9304 FU National Science Foundation [HRD-0413000]; NIH-MBRS [R25GM59218]; Office of Science, Basic Energy Sciences, U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-96ER14632] FX This work was supported by the National Science Foundation IL-LSAMP grant HRD-0413000 (H.M.S. and K.L.M.), NIH-MBRS grant R25GM59218 (H.M.S.), and the Office of Science, Basic Energy Sciences, U.S. Department of Energy, under contract numbers DE-AC02-06CH11357 (D.M.T. and work at APS sector 12) and DE-FG02-96ER14632 (J.S.L.). K.L.M. thanks Dr. Sam Bowen for helpful discussions. We also acknowledge Dr. S. Seifert for his generous help and advice on synchrotron X-ray experiments. NR 46 TC 8 Z9 8 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 19 PY 2009 VL 113 IS 11 BP 2516 EP 2523 DI 10.1021/jp808318x PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417XE UT WOS:000264111000033 PM 19243123 ER PT J AU Hummer, DR Kubicki, JD Kent, PRC Post, JE Heaney, PJ AF Hummer, Daniel R. Kubicki, James D. Kent, Paul R. C. Post, Jeffrey E. Heaney, Peter J. TI Origin of Nanoscale Phase Stability Reversals in Titanium Oxide Polymorphs SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOCRYSTALLINE TIO2; POWDER DIFFRACTION; ANATASE-TIO2 NANOMATERIALS; TEMPERATURE-DEPENDENCE; SYNCHROTRON-RADIATION; THERMAL-STABILITY; GRAIN-GROWTH; TRANSFORMATION; KINETICS; RUTILE AB We have monitored the hydrothermal crystallization of titania nanoparticles by in situ X-ray diffraction (XRD). Using the refined average structures from the XRD measurements, we calculated potential energy variations with particle size on periodic bulk structures using density functional theory (DFT). These variations cannot account for the enthalpy required to stabilize anatase relative to rutile. Thus, the hypothesis that the strain of the surface structure of nanoparticles accounts for the stabilization of anatase is not applicable to the growth of titania in water. DFT calculations on model nanoparticles do generate lower surface energies for anatase than for rutile that are large enough to explain the stability reversal in nanoparticles relative to the bulk phase. Rather than arising from two-dimensional surface structure alone, as previously thought, the total surface energies are critically dependent upon defects associated with edges and corners of nanocrystals at particle sizes <= 3 nm (i.e., during the nucleation process). As the particles grow, the bulk free energy becomes relatively more important, causing rutile to become stable at larger particle sizes. This study quantifies for the first time the critical role of edge and vertex energies in determining the relative phase stabilities of TiO2 nanoparticles. C1 [Hummer, Daniel R.; Kubicki, James D.; Heaney, Peter J.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Post, Jeffrey E.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA. RP Hummer, DR (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. EM dhummer@geosc.psu.edu RI Kent, Paul/A-6756-2008; Kubicki, James/I-1843-2012 OI Kent, Paul/0000-0001-5539-4017; Kubicki, James/0000-0002-9277-9044 NR 52 TC 41 Z9 41 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 19 PY 2009 VL 113 IS 11 BP 4240 EP 4245 DI 10.1021/jp811332w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 417XH UT WOS:000264111300003 ER PT J AU Wang, ZW Guo, QX AF Wang, Zhongwu Guo, Qixun TI Size-Dependent Structural Stability and Tuning Mechanism: A Case of Zinc Sulfide SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INDUCED PHASE-TRANSITION; HIGH-PRESSURE PHASE; CDSE NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; FIXED-POINTS; ZNS; TRANSFORMATIONS; NANOPARTICLES; EQUATIONS; NANOBELTS AB Synchrotron X-ray diffraction and thermodynamic calculation combined with particle size dependent defect ratio, stress distribution, and surface energy have been used to tackle the structural stability and phase transformation of bulk and nano zincblende (ZnS). X-ray diffractions demonstrate that bulk zincblende-type ZnS transforms to a rocksalt phase at similar to 15.4 GPa associated with an in situ fracture. The transition pressure remains constant upon decreasing particle size to 15 rim. Below 15 nm, this phase transformation occurs at an elevated pressure; the particle does not break down and instead transforms to a smaller rocksalt grain with 18% volumetric shrinkage relative to zincblende. The two defined critical sizes of 3.4 and 15 nm represent the largest size for a particle that starts a defect extinction and homogeneous stress distribution, respectively, thus enabling interpretation of a combined effect of pressure and particle size. When the particle is larger than 15 nm, the hosted defect (or dislocation) acts to behave similar to that in bulk; the resultant stress concentration under compression is responsible for the deformation of zincblende and subsequent nucleation and fracture of rocksalt. Below 15 nm, a series of defect activities turns silent; alternatively, surface energy and multiparticle interaction begin directing the enhancement of structural stability. The surface energy of rocksalt is calculated as similar to 2.33 J/m(2), 0.57 J/m(2) greater than that of zincblende. The proposed mechanism enables not only a reconciliation of incompatible results but also a reasonable interpretation of the reversed Hall-Petch relation observed in materials at a critical size of 10-20 nm. This study provides important information for optimizing feasible routes for fabrication of multifunctional engineering materials with tailored properties. C1 [Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. [Guo, Qixun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, ZW (reprint author), Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. EM zw42@cornell.edu NR 78 TC 29 Z9 29 U1 0 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 19 PY 2009 VL 113 IS 11 BP 4286 EP 4295 DI 10.1021/jp808244a PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 417XH UT WOS:000264111300012 ER PT J AU Wang, RM Dmitrieva, O Farle, M Dumpich, G Acet, M Mejia-Rosales, S Perez-Tijerina, E Yacaman, MJ Kisielowski, C AF Wang, Rongming Dmitrieva, Olga Farle, Michael Dumpich, Guenter Acet, Mehmet Mejia-Rosales, Sergio Perez-Tijerina, Eduardo Yacaman, Miguel Jose Kisielowski, Christian TI FePt Icosahedra with Magnetic Cores and Catalytic Shells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SMALL PARTICLES; RESOLUTION; RECONSTRUCTION; NANOPARTICLES; OXYGEN AB Surprisingly oxidation resistant icosahedral FePt nanoparticles showing hard-magnetic properties have been fabricated by an inert-gas condensation method with in-flight annealing. High-resolution transmission electron microscopy (HRTEM) images with sub-Angstrom resolution of the nanoparticle have been obtained with focal series reconstruction, revealing noncrystalline nature of the nanoparticle. Digital dark-field method combined with structure reconstruction as well as HRTEM simulations reveal that these nanoparticles have icosahedral structure with shell periodicity. Localized lattice relaxations have been studied by extracting the position of individual atomic columns with a precision of about +/- 0.002 nm. The lattice spacings of (111) planes from the surface region to the center of the icosahedra are found to decrease exponentially with shell numbers. Computational studies and energy-filtered transmission electron microscopy analyses suggest that. a Pt-enriched surface layer is energetically favored and that site-specific vacancies are formed at the edges of facettes, which was experimentally observed. The presence of the Pt-enriched shell around an Fe/Pt core explains the environmental stability of the magnetic icosahedra and strongly reduces the exchange coupling between neighboring particles, thereby possibly providing the highest packing density for future magnetic storage media based on FePt nanoparticles. C1 [Wang, Rongming] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China. [Wang, Rongming; Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Dmitrieva, Olga; Farle, Michael; Dumpich, Guenter; Acet, Mehmet] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany. [Dmitrieva, Olga; Farle, Michael; Dumpich, Guenter; Acet, Mehmet] Univ Duisburg Essen, Ctr Nanointegrat CeNIDE, D-47048 Duisburg, Germany. [Mejia-Rosales, Sergio; Perez-Tijerina, Eduardo] Univ Autonoma Nuevo Leon, Fac Ciencias Fis Matemat, San Nicolas De Los Garza 66450, Nuevo Leon, Mexico. [Yacaman, Miguel Jose] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Wang, RM (reprint author), Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China. EM rmwang@buaa.edu.cn RI Acet, Mehmet/F-4442-2012; Mejia, Sergio/I-3223-2012; jose yacaman, miguel/B-5622-2009; Wang, Rongming/B-2163-2010; OI Mejia, Sergio/0000-0003-0053-2632; Wang, Rongming/0000-0003-4075-6956; Farle, Michael/0000-0002-1864-3261 FU National Natural Science Foundation of China [50671003]; New Century Excellent Talents in University [NCET-06-0175]; Director, Office of Science, Office of Basic Energy Science; U.S. Department of Energy [AC02-05CH11231]; Deutsche Forschungsgemeinschaft [SFB 445]; Council for Science and Technology of the State of Nuevo Leon, Mexico. FX This work was supported by the National Natural Science Foundation of China (No. 50671003), the Program for New Century Excellent Talents in University (NCET-06-0175), the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, the Berkeley Scholar Program, the Deutsche Forschungsgemeinschaft SFB 445, and the Council for Science and Technology of the State of Nuevo Leon, Mexico. NR 24 TC 49 Z9 49 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 19 PY 2009 VL 113 IS 11 BP 4395 EP 4400 DI 10.1021/jp811280k PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 417XH UT WOS:000264111300028 ER PT J AU Petrik, NG Kimmel, GA AF Petrik, Nikolay G. Kimmel, Greg A. TI Nonthermal Water Splitting on Rutile TiO2: Electron-Stimulated Production of H-2 and O-2 in Amorphous Solid Water Films on TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-HYDROGEN; ENERGY DEPOSITION; LIQUID WATER; D2O ICE; DISSOCIATION; PT(111); SURFACE; PHOTOCATALYSIS; DISTRIBUTIONS; ADSORPTION AB The electron-stimulated reactions leading to H-2 and O-2 and the electron-stimulated desorption (ESD) of H2O from 0 - 60 ML films of amorphous solid water (ASW) adsorbed on TiO2(110) are investigated as a function of film thickness and isotopic composition at 100 K. For 100 eV incident electrons, both the H-2 and O-2 ESD yields have maxima when the ASW coverage is similar to 20 monolayers (ML), while the H2O ESD yield increases monotonically with water coverage. All the products reach a coverage-independent yield above 40-50 ML. Experiments using layered films of H2O and D2O demonstrate that the molecular hydrogen is produced in reactions that occur preferentially at or near both the ASW/TiO2 interface and the ASW/vacuum interface. However, electronic excitations or ionic defects created within the interior of the ASW films by the energetic electrons can subsequently migrate to the interfaces where they initiate reactions. Electron irradiation of ASW films results in the formation of bridge-bonded hydroxyls on TiO2(110). These hydroxyls do not contribute to the H-2 produced near the ASW/TiO2 interface. Instead, the results suggest that this H-2 is produced from a stable precursor, trapped on or near the substrate. The proposed mechanism for the H-2 production near the ASW/TiO2(110) interface is supported by a kinetic model that semiquantitatively reproduces the main features of the nonthermal reactions. C1 [Petrik, Nikolay G.; Kimmel, Greg A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Mail Stop K8-88,POB 999, Richland, WA 99352 USA. EM gregory.kimmel@pnl.gov RI Petrik, Nikolay/G-3267-2015; OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440 FU U.S. Department of Energy (DOE); Office of Basic Energy Sciences, Chemical Sciences Division FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division. The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific User facility sponsored by DOE, Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 48 TC 22 Z9 22 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 19 PY 2009 VL 113 IS 11 BP 4451 EP 4460 DI 10.1021/jp805013b PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 417XH UT WOS:000264111300037 ER PT J AU Mei, DH Xu, LJ Henkelman, G AF Mei, Donghai Xu, Lijun Henkelman, Graeme TI Potential Energy Surface of Methanol Decomposition on Cu(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; FINDING SADDLE-POINTS; AUGMENTED-WAVE METHOD; PARTIAL OXIDATION; BASIS-SET; ADSORPTION; PT(111); DEHYDROGENATION; 1ST-PRINCIPLES; FORMATE AB Combining the dimer saddle point searching method and periodic density functional theory calculations, the potential energy surface of methanol decomposition on Cu(110) has been mapped out. Each elementary step in the methanol decomposition reaction into CO and hydrogen occurs via one of three possible mechanisms: O-H, C-H, or C-O bond scission. Multiple reaction pathways for each bond scission have been identified in the present work. Reaction pathway calculations are started from an initial (reactant) state with methanol adsorbed in the most stable geometry on Cu(110). The saddle point and corresponding final state of each reaction or diffusion mechanism were determined without assuming the reaction mechanism. In this way, the reaction paths are determined without chemical intuition. The harmonic pre-exponential factor of each identified reaction is calculated from a normal-mode analysis of the stationary points. Then, using harmonic transition state theory, the rate constant of each identified reaction pathway in the entire reaction network is obtained. The most favorable decomposition route for methanol on Cu(110) is found as follows: CH(3)OH -> CH(3)O -> CH(2)O. The rate-limiting step in this decomposition route is the dehydrogenation of methoxy to formaldehyde. Our calculations are in agreement with previous experimental observations and theoretical results. C1 [Mei, Donghai] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Xu, Lijun; Henkelman, Graeme] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Mei, Donghai/D-3251-2011; Henkelman, Graeme/A-9301-2008; Mei, Donghai/A-2115-2012 OI Henkelman, Graeme/0000-0002-0336-7153; Mei, Donghai/0000-0002-0286-4182 FU Laboratory Directed Research and Development (LDRD) project [1774641]; Pacific Northwest National Laboratory (PNNL).; National Energy Research Scientific Computing Center (NERSC).; NSF CAREER program [CHE-0645497]; Norman Hackerman Advanced Research Program; Welch Foundation [F-1601] FX This work was supported by a Laboratory Directed Research and Development (LDRD) project (1774641) of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, WA. Computing time was made available through a Computational Grand Challenge "Computational Catalysis", and user facility allocation EMSL-25428. Part of the computing time was also granted by the National Energy Research Scientific Computing Center (NERSC). G.H. gratefully acknowledges support from the NSF CAREER program (CHE-0645497), the Norman Hackerman Advanced Research Program, and the Welch Foundation (F-1601). NR 31 TC 61 Z9 61 U1 7 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 19 PY 2009 VL 113 IS 11 BP 4522 EP 4537 DI 10.1021/jp808211q PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 417XH UT WOS:000264111300046 ER PT J AU Lee, CF Leigh, DA Pritchard, RG Schultz, D Teat, SJ Timco, GA Winpenny, REP AF Lee, Chin-Fa Leigh, David A. Pritchard, Robin G. Schultz, David Teat, Simon J. Timco, Grigore A. Winpenny, Richard E. P. TI Hybrid organic-inorganic rotaxanes and molecular shuttles SO NATURE LA English DT Article ID WHEELS; MACHINES; RINGS AB The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks(1), dense and extended organic inorganic frameworks(2) and coordination polymers(3). Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes(4-7) and catenanes(6,8), and structures in which many inorganic clusters encircle polymer chains have been described(9). Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle'(10): the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems(11-15). The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers(16-18)-can influence, and potentially be influenced by, the organic portion of the molecule. C1 [Lee, Chin-Fa; Leigh, David A.; Schultz, David] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. [Pritchard, Robin G.; Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leigh, DA (reprint author), Univ Edinburgh, Sch Chem, Kings Bldg,W Mains Rd, Edinburgh EH9 3JJ, Midlothian, Scotland. EM david.leigh@ed.ac.uk; richard.winpenny@manchester.ac.uk RI Leigh, David/K-5965-2015 OI Leigh, David/0000-0002-1202-4507 FU Director, Office of Science; Office of Basic Energy Sciences; the US Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation; EPSRC Senior Research Fellow; Royal Society Wolfson Research Merit Award FX We thank J. Bella for the exchange spectroscopy NMR experiments, W. Sun for assistance with the preparation of thread 1c and the Engineering and Physical Sciences Research Council (EPSRC) National Mass Spectrometry Service Centre (Swansea, UK) for high-resolution mass spectrometry. This research was funded by the European Commission (through the NoE 'MAGMANet') and EPSRC. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. D. S. is a Swiss National Science Foundation postdoctoral fellow. D. A. L. is an EPSRC Senior Research Fellow and holds a Royal Society Wolfson Research Merit Award. NR 29 TC 166 Z9 167 U1 7 U2 116 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 19 PY 2009 VL 458 IS 7236 BP 314 EP 318 DI 10.1038/nature07847 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 420JH UT WOS:000264285600036 PM 19295605 ER PT J AU Kooijman, EE Vaknin, D Bu, W Joshi, L Kang, SW Gericke, A Mann, EK Kumar, S AF Kooijman, Edgar E. Vaknin, David Bu, Wei Joshi, Leela Kang, Shin-Woong Gericke, Arne Mann, Elizabeth K. Kumar, Satyendra TI Structure of Ceramide-1-Phosphate at the Air-Water Solution Interface in the Absence and Presence of Ca2+ SO BIOPHYSICAL JOURNAL LA English DT Article ID CYTOSOLIC PHOSPHOLIPASE A(2); CERAMIDE 1-PHOSPHATE; PHOSPHATIDIC-ACID; PHASE-TRANSITIONS; CHARGED INTERFACES; MEMBRANE-STRUCTURE; LIPID MONOLAYERS; BREWSTER-ANGLE; SPHINGOMYELIN; DOMAINS AB Ceramide-1-phosphate, the phosphorylated form of ceramide, gained attention recently due to its diverse intracellular roles, in particular in inflammation mediated-by cPLA(2 alpha). However, surprisingly little is known about the physical chemical properties of this lipid and its potential impact on physiological function. For example, the presence of Ca2+ is indispensable for the interaction of Cer-1-P with the C2 domain of cPLA(2 alpha). We report on the structure and morphology of Cer-1-P in monomolecular layers at the air/water solution interface in the absence and presence of Ca2+ using diverse biophysical techniques, including synchrotron x-ray reflectivity and grazing angle diffraction, to gain insight into the role and function of Cer-1-P in biomembranes. We show that relatively small changes in pH and the presence of monovalent cations dramatically affect the behavior of Cer-1-P. On pure water Cer-1-P forms a solid monolayer despite the negative charge of the phosphomonoester headgroup. In contrast, pH 7.2 buffer yields a considerably less solid-like monolayer, indicating that charge-charge repulsion becomes important at higher pH. Calcium was found to bind strongly to the headgroup of Cer-1-P even in the presence of a 100-fold larger Na+ concentration. Analysis of the x-ray reflectivity data allowed us to estimate how much Ca2+ is bound to the headgroup, similar to 0.5 Ca2+ and similar to 1.0 Ca2+ ions per Cer-1-P molecule for the water and buffer subphase respectively. These results can be qualitatively understood based on the molecular structure of Cer-1-P and the electrostatic/hydrogen-bond interactions of its phosphomonoester headgroup. Biological implications of our results are also discussed. C1 [Kooijman, Edgar E.] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA. [Vaknin, David; Bu, Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vaknin, David; Bu, Wei] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Joshi, Leela; Kang, Shin-Woong; Mann, Elizabeth K.; Kumar, Satyendra] Kent State Univ, Dept Phys, Kent, OH 44242 USA. [Gericke, Arne] Kent State Univ, Dept Chem, Kent, OH 44242 USA. [Kumar, Satyendra] Natl Sci Fdn, Div Mat Res, Arlington, VA 22203 USA. RP Kooijman, EE (reprint author), Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA. EM e.e.kooijman@gmail.com RI Kang, Shin-Woong/K-1827-2015; Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Kang, Shin-Woong/0000-0002-1789-9214; Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 FU U.S. National Science Foundation [DMR-0637221, CHE-0724082]; Ohio Board of Regents; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-Eng-38, DE-AC02-07CH11358] FX This work Was Supported, in part, by the U.S. National Science Foundation grants DMR-0637221 and CHE-0724082. and a Research Challenge award from the Ohio Board of Regents. Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science (contract No. W-31-109-Eng-38). The Midwest Universities Collaborative Access Team sector at the APS is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science. The work at Allies Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science (contract No. DE-AC02-07CH11358). NR 55 TC 12 Z9 12 U1 4 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD MAR 18 PY 2009 VL 96 IS 6 BP 2204 EP 2215 DI 10.1016/j.bpj.2008.11.062 PG 12 WC Biophysics SC Biophysics GA 450BT UT WOS:000266376700017 PM 19289047 ER PT J AU Volkow, ND Fowler, JS Logan, J Alexoff, D Zhu, W Telang, F Wang, GJ Jayne, M Hooker, JM Wong, C Hubbard, B Carter, P Warner, D King, P Shea, C Xu, YW Muench, L Apelskog-Torres, K AF Volkow, Nora D. Fowler, Joanna S. Logan, Jean Alexoff, David Zhu, Wei Telang, Frank Wang, Gene-Jack Jayne, Millard Hooker, Jacob M. Wong, Christopher Hubbard, Barbara Carter, Pauline Warner, Donald King, Payton Shea, Colleen Xu, Youwen Muench, Lisa Apelskog-Torres, Karen TI Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain Clinical Implications SO JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION LA English DT Article ID INDUCED WAKEFULNESS; DOUBLE-BLIND; ORAL METHYLPHENIDATE; C-11 RACLOPRIDE; BLOOD-FLOW; BINDING; DRUG; PET; AMPHETAMINE; INCREASES AB Context Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. Objective To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. Design, Setting, and Participants Positron emission tomography with [(11)C] raclopride (D(2)/D(3) radioligand sensitive to changes in endogenous dopamine) and [(11)C] cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007-2008) at Brookhaven National Laboratory. Main Outcome Measures Primary outcomes were changes in dopamine D(2)/D(3) receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. Results Modafinil decreased mean (SD) [(11)C] raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P = .02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P = .002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P = .02), reflecting increases in extracellular dopamine. Modafinil also decreased [(11)C] cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P < .001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P < .001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P = .001), reflecting occupancy of dopamine transporters. Conclusions In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain ( including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations. C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. [Volkow, Nora D.; Telang, Frank; Jayne, Millard; Muench, Lisa] NIAAA, Bethesda, MD USA. [Fowler, Joanna S.; Logan, Jean; Alexoff, David; Wang, Gene-Jack; Hooker, Jacob M.; Wong, Christopher; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Apelskog-Torres, Karen] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fowler, Joanna S.; Wang, Gene-Jack] Mt Sinai Sch Med, New York, NY USA. [Fowler, Joanna S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY USA. [Zhu, Wei] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, 6001 Execut Blvd,Room 5274,MSC 9581, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov OI Hooker, Jacob/0000-0002-9394-7708 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Office of Biological and Environmental Research; National Institutes of Health [K05DA020001]; National Institute on Alcohol Abuse; Alcoholism Intramural research program [F32EB997320]; National Institute of Biomedical Imaging and Bioengineering; General Research Clinical Centers [MO1RR10710] FX This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the US Department of Energy with infrastructure support from its Office of Biological and Environmental Research. Support was also provided by grant K05DA020001 (J.S.F.) from the National Institutes of Health, the National Institute on Alcohol Abuse and Alcoholism Intramural research program, grant F32EB997320 (J.M.H.) from the National Institute of Biomedical Imaging and Bioengineering, and grant MO1RR10710 from the General Research Clinical Centers. A Goldhaber distinguished fellowship provided support for Dr Hooker. NR 38 TC 248 Z9 249 U1 8 U2 25 PU AMER MEDICAL ASSOC PI CHICAGO PA 515 N STATE ST, CHICAGO, IL 60610-0946 USA SN 0098-7484 J9 JAMA-J AM MED ASSOC JI JAMA-J. Am. Med. Assoc. PD MAR 18 PY 2009 VL 301 IS 11 BP 1148 EP 1154 PG 7 WC Medicine, General & Internal SC General & Internal Medicine GA 419UC UT WOS:000264244200020 PM 19293415 ER PT J AU McFarlane, SA Kassianov, EI Barnard, J Flynn, C Ackerman, TP AF McFarlane, S. A. Kassianov, E. I. Barnard, J. Flynn, C. Ackerman, T. P. TI Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SAHARAN DUST; MINERAL AEROSOLS; FLUX DIVERGENCE; C-130 AIRCRAFT; OPTICAL DEPTH; CLOUD; MODEL; IRRADIANCE; SCATTERING; ATLANTIC AB The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 +/- 0.4 and 0.94 +/- 0.05, while during October December mean AOD and SSA were 0.33 +/- 0.25 and 0.99 +/- 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m(-2) and RMS differences less than 25 W m(-2). Sensitivity tests showed that the observed fluxes could be matched with variations of <10% in the inputs to the radiative transfer model. The calculated 24-h averaged SW instantaneous surface aerosol radiative forcing (ARF) was -21.1 +/- 14.3 W m(-2) and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January April (-28.5 +/- 13.5 W m(-2)) than October-December (-11.9 +/- 8.9 W m(-2)). C1 [McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Ackerman, T. P.] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. [Ackerman, T. P.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP McFarlane, SA (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM sally.mcfarlane@pnl.gov RI McFarlane, Sally/C-3944-2008 FU Atmospheric Radiation Measurement (ARM) Program, Office of Biological and Environment Research, U.S. Department of Energy; U.S. Department of Energy, Office of Science, [DE-AC06-76RL01830] FX The AMF was deployed to Niamey as part of the RADAGAST project through funding from the Atmospheric Radiation Measurement (ARM) Program, Office of Biological and Environment Research, U.S. Department of Energy. We thank Mark Miller, the AMF lead scientist, and everyone else whose hard work contributed to the successful AMF deployment. We also thank Dave Turner for providing the MWR retrievals and Jim Mather for the merged sounding profiles used in this study. Two anonymous reviewers provided insightful comments which improved the clarity and focus of the manuscript. Funding for this project was provided by the U.S. Department of Energy, Office of Science, as part of the ARM program under contract DE-AC06-76RL01830 to PNNL. PNNL is operated by Battelle for the U.S. Department of Energy. The RADAGAST proposal, which led to the Niamey deployment of the AMF, was largely the work of Anthony Slingo. His untimely death in 2008 has robbed us of a colleague, research collaborator, and dear friend. Tony was a person of great enthusiasm, insight, and wit in everything that he did, and his scientific acumen was an important component of the deployment choices and the aircraft studies during RADAGAST. The articles in this special issue, and further articles to come, are a further tribute to Tony's insights that led to the RADAGAST deployment. We will greatly miss Tony's excitement and enthusiasm in the scientific process, his willingness to share his knowledge and understanding with all of us, and the deep friendship that we had with him. NR 63 TC 29 Z9 29 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 18 PY 2009 VL 114 AR D00E06 DI 10.1029/2008JD010491 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 422PE UT WOS:000264439400001 ER PT J AU Hao, SQ Widom, M Sholl, DS AF Hao, Shiqiang Widom, M. Sholl, David S. TI Probing hydrogen interactions with amorphous metals using first-principles calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ALLOY MEMBRANES; PHASE-SEPARATION; PD; SOLUBILITY; DEUTERIUM; STORAGE; DIFFUSIVITY; PALLADIUM; SYSTEM AB Amorphous metals are interesting candidates for use as H-2 purification membranes and occur in some applications of H-2 storage. We introduce a general strategy combining density functional theory and statistical mechanics for quantitatively predicting the properties of interstitial H in amorphous metals. We systematically investigate H solubility in amorphous Fe3B, comparing our results with ones for a crystalline material with the same composition. H-H interactions in the amorphous material play a crucial role in determining the net solubility. H solubility in the amorphous and crystalline materials differs by orders of magnitude under conditions relevant for practical H-2 purification membranes. Our results give atomic-level insight into the properties of H in amorphous metals that has not been previously available. C1 [Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Hao, Shiqiang] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Hao, Shiqiang] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Widom, M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM david.sholl@chbe.gatech.edu RI Widom, Michael/P-2531-2014 OI Widom, Michael/0000-0001-5972-5696 FU US DOE Hydrogen Fuels; ONR [N00014-06-1-0492] FX SH and DSS were supported by funds from the US DOE Hydrogen Fuels Initiative. MW was supported by the DARPA Structural Amorphous Metals Program under ONR Grant No. N00014-06-1-0492. NR 49 TC 15 Z9 15 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 18 PY 2009 VL 21 IS 11 AR 115402 DI 10.1088/0953-8984/21/11/115402 PG 7 WC Physics, Condensed Matter SC Physics GA 411UQ UT WOS:000263677300014 PM 21693917 ER PT J AU Kittiratanawasin, L Smith, R Uberuaga, BP Sickafus, KE AF Kittiratanawasin, L. Smith, Roger Uberuaga, B. P. Sickafus, K. E. TI Radiation damage and evolution of radiation-induced defects in Er2O3 bixbyite SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DISORDER PHASE-TRANSFORMATION; EARTH SESQUIOXIDE DY2O3; ION IRRADIATION; SIMULATIONS; DYNAMICS AB Collision cascade simulations were performed in the Er2O3 sesquioxide. The resulting point defects observed at the end of the ballistic phase of the collision cascade were analysed and their evaluation over longer time examined using temperature accelerated dynamics and the kinetic Monte Carlo method. The result shows that the large mass difference between the Er and O atoms results in cascades with different structures where an initially energetic O atom can channel over long distances, depositing energy in smaller sub-regions, whereas denser cascades with vacancy-rich cores develop from Er primary knock-on atoms. The most mobile defect that can form is the isolated O vacancy but when this occurs as part of a larger defect cluster it becomes trapped. The energy barriers for all other defects to move are very high. C1 [Kittiratanawasin, L.; Smith, Roger] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England. [Uberuaga, B. P.; Sickafus, K. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kittiratanawasin, L (reprint author), Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England. RI Smith, Roger/C-2550-2013 FU Royal Thai Government; United States Department of Energy; National Nuclear Security Administration of the US DOE [DE-AC5206NA25396] FX LK would like to acknowledge a Higher Education Strategic Scholarship for Frontier Research from the Royal Thai Government. The work was also supported by United States Department of Energy, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC5206NA25396. NR 21 TC 11 Z9 11 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 18 PY 2009 VL 21 IS 11 AR 115403 DI 10.1088/0953-8984/21/11/115403 PG 11 WC Physics, Condensed Matter SC Physics GA 411UQ UT WOS:000263677300015 PM 21693918 ER PT J AU Vaknin, D Bu, W Sung, J Jeon, Y Kim, D AF Vaknin, David Bu, Wei Sung, Jaeho Jeon, Yoonnam Kim, Doseok TI Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY REFLECTIVITY; LIQUID-VAPOR INTERFACE; FLUID INTERFACES; SURFACES; FLUCTUATIONS; SCATTERING; THICKNESS AB The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths. C1 [Vaknin, David; Bu, Wei] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Vaknin, David; Bu, Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok] Sogang Univ, Interdisciplinary Program Integrated Biotechnol, Seoul 121742, South Korea. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Kim, Doseok/J-8776-2013; Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 FU US DOE, Basic Energy Sciences [DE-AC0207CH11358]; Quantum Photonic Science Research Center (SRC) [W-31-109-Eng-38]; World-Class University program FX We thank D S Robinson for technical support at the 6-ID beamline and A Travesset, BMOcko andMFukuto for helpful discussions. The MUCAT sector at the APS is supported by the US DOE, Basic Energy Sciences, Office of Science, through Ames Laboratory under contract under contract no. DE-AC0207CH11358. Use of the Advanced Photon Source is supported by the US DOE, Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38. DK acknowledges support from the Quantum Photonic Science Research Center (SRC) at Hanyang University and the World-Class University program. NR 31 TC 7 Z9 7 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 18 PY 2009 VL 21 IS 11 AR 115105 DI 10.1088/0953-8984/21/11/115105 PG 5 WC Physics, Condensed Matter SC Physics GA 411UQ UT WOS:000263677300007 PM 21693910 ER PT J AU Lee, DC Pietryga, JM Robel, I Werder, DJ Schaller, RD Klimov, VI AF Lee, Doh C. Pietryga, Jeffrey M. Robel, Istvan Werder, Donald J. Schaller, Richard D. Klimov, Victor I. TI Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OPTICAL-PROPERTIES; QUANTUM DOTS; GE; SILICON; SOLVENTS AB In this study, we synthesized Ge nanocrystals and studied the effects of variables such as solvents, reducing agents, reaction temperature, and capping ligands. The resulting nanocrystals showed infrared photoluminescence with quantum yields as high as similar to 8% and enhanced resistance to oxidation. Size analysis of the samples by transmission electron microscopy revealed that the size dependence of the emission is consistent with the effects of quantum confinement. C1 [Lee, Doh C.; Pietryga, Jeffrey M.; Robel, Istvan; Werder, Donald J.; Schaller, Richard D.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, C-PCS,MS-J567, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Robel, Istvan/D-4124-2011; Lee, Doh Chang/C-1835-2011; OI Robel, Istvan/0000-0002-9738-7728; Klimov, Victor/0000-0003-1158-3179 FU Chemical Science, Biosciences and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. DOE FX This work was supported by the Chemical Science, Biosciences and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. DOE, and by Los Alamos Laboratory Directed Research and Development funds. D.C.L. is a Los Alamos National Laboratory Director's Fellow. We thank Darrick J. Williams for performing X-ray diffraction. NR 25 TC 85 Z9 86 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 18 PY 2009 VL 131 IS 10 BP 3436 EP + DI 10.1021/ja809218s PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 427QA UT WOS:000264792600014 PM 19236047 ER PT J AU Vivero-Escoto, JL Slowing, II Wu, CW Lin, VSY AF Vivero-Escoto, Juan L. Slowing, Igor I. Wu, Chian-Wen Lin, Victor S. -Y. TI Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RESPONSIVE CONTROLLED-RELEASE; MESOSTRUCTURED SILICA; GUEST MOLECULES; NANOPARTICLES; NANOVALVES; NANOCONTAINERS; SYSTEM; DRIVEN; DNA AB A gold nanoparticle (AuNP)-capped mesoporous silica nanosphere (MSN)-based intracellular drug delivery system (PR-AuNPs-MSN) for the photoinduced controlled release of an anticancer drug, paclitaxel, inside of human fibroblast and liver cells was synthesized and characterized. We found that the mesopores of MSN could be efficiently capped by the photoresponsive AuNPs without leaking the toxic drug, paclitaxel, inside of live human cells. This "zero premature release" characteristic is of importance for delivery of toxic drugs in chemotherapy. Furthermore, we demonstrated that the cargo-release property of this PR-AuNPs-MSN system could be easily controlled by low-power photoirradiation under biocompatible and physiological conditions. We envision that our results would play a significant role in designing new generations of carrier materials for intracellular delivery of a variety of hydrophobic toxic drugs. C1 [Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM vsylin@iastate.edu RI Wu, Kevin C.-W. /F-8281-2012; Vivero-Escoto, Juan/I-8015-2014; OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0809521] FX This work was supported by the U.S. National Science Foundation (CHE-0809521). NR 23 TC 390 Z9 396 U1 24 U2 282 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 18 PY 2009 VL 131 IS 10 BP 3462 EP + DI 10.1021/ja900025f PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 427QA UT WOS:000264792600027 PM 19275256 ER PT J AU Smith, HL Howland, MC Szmodis, AW Li, QJ Daemen, LL Parikh, AN Majewski, J AF Smith, Hillary L. Howland, Michael C. Szmodis, Alan W. Li, Qijuan Daemen, Luke L. Parikh, Atul N. Majewski, Jaroslaw TI Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUPPORTED PHOSPHOLIPID-BILAYERS; LIPID VESICLES; ATHEROSCLEROSIS; REFLECTIVITY; DAMAGE; FLUID; FILMS; RAY AB Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid-liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 In intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer. after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100-150 angstrom into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. C1 [Smith, Hillary L.; Daemen, Luke L.; Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Howland, Michael C.] Univ Calif Davis, Chem Engn & Mat Sci Grad Grp, Davis, CA 95616 USA. [Szmodis, Alan W.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Li, Qijuan; Parikh, Atul N.] Univ Calif Davis, Appl Sci Grad Grp, Davis, CA 95616 USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM jarek@lanl.gov RI Lujan Center, LANL/G-4896-2012; PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 FU DOE [W7405-ENG-36]; BES, Department of Energy [DE-FG02-04ER46173]; Lawrence Livermore National Laboratory; NIGMS-NIH [T32-GM08799] FX This work was supported by Los Alamos National Laboratory under DOE Contract W7405-ENG-36, DOE Office of Basic Energy Science. Support for this work was provided by a grant from BES, Department of Energy under Award DE-FG02-04ER46173. A.W.S. is supported by Student Fellowships (UEPP and SEGRF) from Lawrence Livermore National Laboratory, and M.C.H. is supported by Grant T32-GM08799 from NIGMS-NIH. We thank Timothy Sanchez and Srinivas Iyer for assistance with mass spectroscopy measurements. NR 28 TC 36 Z9 36 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 18 PY 2009 VL 131 IS 10 BP 3631 EP 3638 DI 10.1021/ja807680m PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 427QA UT WOS:000264792600054 PM 19275260 ER PT J AU Yuhas, BD Yang, PD AF Yuhas, Benjamin D. Yang, Peidong TI Nanowire-Based All-Oxide Solar Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FILM DEPOSITION; CU2O AB We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU U.S. Department of Energy, Office of Basic Sciences FX This work was supported by the U.S. Department of Energy, Office of Basic Sciences. We thank Prof. A. P. Alivisatos for use of the solar simulator and the X-ray diffractometer. We thank the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, for the use of their facilities. NR 24 TC 231 Z9 242 U1 18 U2 166 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 18 PY 2009 VL 131 IS 10 BP 3756 EP 3761 DI 10.1021/ja8095575 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 427QA UT WOS:000264792600068 PM 19275263 ER PT J AU Bettge, M MacLaren, S Burdin, S Wen, JG Abraham, D Petrov, I Sammann, E AF Bettge, Martin MacLaren, Scott Burdin, Steve Wen, Jian-Guo Abraham, Daniel Petrov, Ivan Sammann, Ernie TI Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment SO NANOTECHNOLOGY LA English DT Article ID MOLECULAR-BEAM EPITAXY; LASER IRRADIATION; CATALYST; ARRAYS; NANOSTRUCTURES; ANODES; GOLD AB Vertically aligned silicon oxide nanowires can be synthesized over a large area by a low-temperature, ion-enhanced, reactive vapour-liquid-solid (VLS) method. Synthesis of these randomly ordered arrays begins with a thin indium film deposited on a Si or SiO(2) surface. At the processing temperature of 190 degrees C, the indium film becomes a self-organized seed layer of molten droplets, receiving atomic silicon from a DC magnetron sputtering source rather than from the gaseous precursors used in conventional VLS growth. Simultaneous vigorous ion bombardment aligns the objects vertically and expedites mixing of oxygen and silicon into the indium. Silicon oxide precipitates from each droplet in the form of multiple thin strands having diameters as small as 5 nm. These strands form a single loose bundle growing normal to the surface, eventually consolidating to form one nanowire. The vertical rate of growth can reach 300 nm min(-1) in an environment containing argon, hydrogen, and traces of water vapour. This paper discusses the physical and chemical factors leading to the formation of the nanostructures. It also demonstrates how the shape of the resulting nanostructures can be further controlled by sputtering, during both VLS growth and post-VLS processing. Key technological advantages of the developed process are nanowire growth at low substrate temperatures and the ability to form aligned nanostructure arrays, without the use of lithography or templates, on any substrate onto which a thin silicon film can be deposited. C1 [Bettge, Martin; MacLaren, Scott; Burdin, Steve; Wen, Jian-Guo; Petrov, Ivan; Sammann, Ernie] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Abraham, Daniel] Argonne Natl Lab, Argonne, IL 60439 USA. RP Bettge, M (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. EM bettge@mrl.uiuc.edu RI MacLaren, Scott/A-5075-2009; Petrov, Ivan/D-4910-2011 OI Petrov, Ivan/0000-0002-2955-4897 FU US Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471]; ANL [DOE ANL 1F-00861] FX The research was carried out in collaboration with Argonne National Laboratory (ANL) and the Center for Microanalysis of Materials (CMM) at the Frederick Seitz Materials Research Laboratory (FS-MRL), University of Illinois at UrbanaChampaign. The CMM is partially supported by the US Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471. Financial support was provided through ANL under Grant No. DOE ANL 1F-00861. The authors also would like to express their thanks to Doug Jeffers, who provided inexhaustible assistance during the experimental set-up, and to Ralph Nuzzo, whose donations of vacuum hardware made part of this work possible. NR 41 TC 15 Z9 15 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAR 18 PY 2009 VL 20 IS 11 AR 115607 DI 10.1088/0957-4484/20/11/115607 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 412JA UT WOS:000263719900017 PM 19420447 ER PT J AU Jaitly, N Mayampurath, A Littlefield, K Adkins, JN Anderson, GA Smith, RD AF Jaitly, Navdeep Mayampurath, Anoop Littlefield, Kyle Adkins, Joshua N. Anderson, Gordon A. Smith, Richard D. TI Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data SO BMC BIOINFORMATICS LA English DT Article ID MULTIPLY-CHARGED IONS; LC-MS; SPECTRA; DECONVOLUTION; PROTEOMICS; IDENTIFICATION; DISTRIBUTIONS; ALGORITHMS; REDUCTION; SELECTION AB Background: Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. Results: With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the biological sample. Conclusion: Decon2LS is an efficient software package for discovering and visualizing features in proteomics studies that require automated interpretation of mass spectra. Besides being easy to use, fast, and reliable, Decon2LS is also open-source, which allows developers in the proteomics and bioinformatics communities to reuse and refine the algorithms to meet individual needs. Decon2LS source code, installer, and tutorials may be downloaded free of charge at http://http:/ncrr.pnl.gov/software/. C1 [Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Adkins, Joshua N.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM ndjaitly@cs.utoronto.ca; anoop.mayampurath@pnl.gov; kalittle@u.washington.edu; joshua.adkins@pnl.gov; gordon.anderson@pnl.gov; dick.smith@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU NIH [RR018522]; U. S. Department of Energy (DOE) FX Portions of this research were supported by the NIH National Center for Research Resources (RR018522), and the U. S. Department of Energy (DOE) Office of Biological and Environmental Research. Datasets were obtained in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract No. DE- AC05- 76RLO 1830. NR 25 TC 112 Z9 113 U1 4 U2 25 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD MAR 17 PY 2009 VL 10 AR 87 DI 10.1186/1471-2105-10-87 PG 15 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 439DF UT WOS:000265607100002 PM 19292916 ER PT J AU Goksu, EI Nellis, BA Lin, WC Satcher, JH Groves, JT Risbud, SH Longo, ML AF Goksu, Emel I. Nellis, Barbara A. Lin, Wan-Chen Satcher, Joe H., Jr. Groves, Jay T. Risbud, Subhash H. Longo, Marjorie L. TI Effect of Support Corrugation on Silica Xerogel-Supported Phase-Separated Lipid Bilayers SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; MAGNETIC-RESONANCE; POROUS ALUMINA; MEMBRANE; DOMAINS; TRAFFICKING; DIFFUSION; GLASS AB Lipid bilayers supported by substrates with nanometer-scale surface corrugations hold interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g., porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, lateral diffusion coefficient, and lipid density in comparison to mica-supported lipid bilayers were characterized by atomic force microscopy, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the silica xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface in the fluid regions. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of fluid lipids on silica xerogel (similar to 1.7 mu m(2)/s) is lower than on mica (similar to 3.9 mu m(2)/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on silica xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase lipid bilayer that penetrates approximately midway into the first layer of similar to 50 nm silica xerogel beads. C1 [Goksu, Emel I.; Nellis, Barbara A.; Risbud, Subhash H.; Longo, Marjorie L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Nellis, Barbara A.; Satcher, Joe H., Jr.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. [Lin, Wan-Chen; Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. RP Longo, ML (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM mllongo@ucdavis.edu RI Lin, Wan-Chen/A-4348-2009; Wunder, Stephanie/B-5066-2012; Zdilla, Michael/B-4145-2011 FU NSF NIRT Program [CBET 0506602]; NSF MRSEC Program CPIMA [DMR 0213618]; U.S. Department of Energy; Lawrence Livermore National Laboratory [W-7405Eng-48, DE-AC52-07NA27344] FX We acknowledge funding by the NSF NIRT Program (CBET 0506602) and the NSF MRSEC Program CPIMA (NSF DMR 0213618). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405Eng-48 and in part under Contract DE-AC52-07NA27344. NR 24 TC 21 Z9 21 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 17 PY 2009 VL 25 IS 6 BP 3713 EP 3717 DI 10.1021/la803851b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 418JR UT WOS:000264145000057 PM 19708250 ER PT J AU Mortensen, NP Fowlkes, JD Sullivan, CJ Allison, DP Larsen, NB Molin, S Doktycz, MJ AF Mortensen, Ninell P. Fowlkes, Jason D. Sullivan, Claretta J. Allison, David P. Larsen, Niels B. Molin, Soren Doktycz, Mitchel J. TI Effects of Colistin on Surface Ultrastructure and Nanomechanics of Pseudomonas aeruginosa Cells SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ESCHERICHIA-COLI; POLYMYXIN-B; OUTER MEMBRANE; SALMONELLA-TYPHIMURIUM; PEPTIDE ANTIBIOTICS; CYSTIC-FIBROSIS; AFM; SPHEROPLASTS; ELASTICITY AB Chronic lung infections in cystic fibrosis patients are primarily caused by Pseudomonas aeruginosa. Though difficult to counteract effectively, colistin, an antimicrobial peptide, is proving useful. However, the exact mechanism of action of colistin is not fully understood. In this study, atomic force microscopy (AFM) was used to evaluate, in a liquid environment, the changes in P. aeruginosa morphology and nanomechanical properties due to exposure to colistin. The results of this work revealed that after 1 h of colistin exposure the ratio of individual bacteria to those found to be arrested in the process of division changed from 1.9 to 0.4 and the length of the cells decreased significantly. Morphologically, it was observed that the bacterial surface changed from a smooth to a wrinkled phenotype after 3 h exposure to colistin. Nanomechanically, in untreated bacteria, the cantilever indented the bacterial surface significantly more than it did after 1 h of colistin treatment (P-value = 0.015). Concurrently, after 2 h of exposure to colistin, a significant increase in the bacterial spring constant was also observed. These results indicate that the antimicrobial peptide colistin prevents bacterial proliferation by repressing cell division. We also found that treatment with colistin caused an increase in the rigidity of the bacterial cell wall while morphologically the cell surface changed from smooth to wrinkled, perhaps due to loss of lipopolysaccharides (LPS) or surface proteins. C1 [Fowlkes, Jason D.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biol & Nanoscale Syst Grp, Biosci Div, Oak Ridge, TN 37831 USA. [Mortensen, Ninell P.; Larsen, Niels B.] Tech Univ Denmark, Danish Polymer Ctr, Risoe Natl Lab, DK-4000 Roskilde, Denmark. [Mortensen, Ninell P.; Molin, Soren] Tech Univ Denmark, Bioctr, Dept Syst Biol, DK-2800 Lyngby, Denmark. [Mortensen, Ninell P.; Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. RP Doktycz, MJ (reprint author), Oak Ridge Natl Lab, Biol & Nanoscale Syst Grp, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. RI Doktycz, Mitchel/A-7499-2011; Larsen, Niels/A-9384-2008 OI Doktycz, Mitchel/0000-0003-4856-8343; Larsen, Niels/0000-0001-6506-3991 FU Idella Fond for a travel grant; Lundbeckfonden; Office of Biological and Environmental Research, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank the Idella Fond for a travel grant to N.P.M. and Lundbeckfonden for financial support. Additionally, J.D.F., C.J.S., D.P.A., and MJ.D. acknowledge support from the Office of Biological and Environmental Research, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 45 TC 37 Z9 38 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 17 PY 2009 VL 25 IS 6 BP 3728 EP 3733 DI 10.1021/la803898g PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 418JR UT WOS:000264145000059 PM 19227989 ER PT J AU Bouchard, LS Anwar, MS Liu, GL Hann, B Xie, ZH Gray, JW Wang, XD Pines, A Chen, FF AF Bouchard, Louis-S. Anwar, M. Sabieh Liu, Gang L. Hann, Byron Xie, Z. Harry Gray, Joe W. Wang, Xueding Pines, Alexander Chen, Fanqing Frank TI Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE dual-modality imaging; ferromagnetic nanoparticle; molecular imaging; MRI contrast; photoacoustic tomography ID BRAINS IN-VIVO; CONTRAST AGENT; GOLD NANORODS; OPTOACOUSTIC TOMOGRAPHY; HIGHLY EFFICIENT; BLOOD-VESSELS; QUANTUM DOTS; RAT-BRAIN; THERAPY; CANCER AB Multimodality imaging based on complementary detection principles has broad clinical applications and promises to improve the accuracy of medical diagnosis. This means that a tracer particle advantageously incorporates multiple functionalities into a single delivery vehicle. In the present work, we explore a unique combination of MRI and photoacoustic tomography (PAT) to detect picomolar concentrations of nanoparticles. The nanoconstruct consists of ferromagnetic (Co) particles coated with gold (Au) for biocompatibility and a unique shape that enables optical absorption over a broad range of frequencies. The end result is a dual-modality probe useful for the detection of trace amounts of nanoparticles in biological tissues, in which MRI provides volume detection, whereas PAT performs edge detection. C1 [Bouchard, Louis-S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Anwar, M. Sabieh] Lahore Univ Management Sci, Sch Sci & Engn, Lahore 54792, Pakistan. [Liu, Gang L.; Hann, Byron; Gray, Joe W.; Chen, Fanqing Frank] Univ Calif San Francisco, Ctr Comprehens Canc, San Francisco, CA 94143 USA. [Xie, Z. Harry] Bruker Opt Inc, Minispec Div, The Woodlands, TX 77381 USA. [Wang, Xueding] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA. [Pines, Alexander] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, Fanqing Frank] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Chen, Fanqing Frank] Zhejiang Univ, Zhejiang Calif Nanosyst Inst, Hangzhou 310029, Zhejiang, Peoples R China. RP Bouchard, LS (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM bouchard@chem.ucla.edu; sabieh@1ums.edu.pk; xdwang@umich.edu; pines@berkeley.edu; f.chen@lbl.gov OI Anwar, Muhammad Sabieh/0000-0001-5039-8828 FU Prostate Cancer Foundation; University of California, San Francisco (UCSF); Prostate Cancer Specialized Program of Research Excellence (SPORE); Camille and Henry Dreyfus Foundation; National Natural Science Foundation of China [NSFC-30828010]; Zhejiang California Nanosystem Institute; Department of Defense Breast Cancer Research Program [BC045345, BC061995]; University of California San Francisco Prostate Cancer SPORE; National Institutes of Health [P50 CA89520, R01 AR055179]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division; U. S. Department of Energy [DE-AC03-76SF00098]; Department of Defense Prostate Cancer Research Program [W81X WH-07-1-0231] FX This work was supported by the Prostate Cancer Foundation and University of California, San Francisco (UCSF), Prostate Cancer Specialized Program of Research Excellence (SPORE); Camille and Henry Dreyfus Foundation (L.-S. B.); National Natural Science Foundation of China Grant NSFC-30828010, the Zhejiang California Nanosystem Institute, Department of Defense Breast Cancer Research Program Grants BC045345 and BC061995, and University of California San Francisco Prostate Cancer SPORE award (National Institutes of Health Grant P50 CA89520) (F. F. C.); Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U. S. Department of Energy Contract DE-AC03-76SF00098; National Institutes of Health Grant R01 AR055179; and Department of Defense Prostate Cancer Research Program Grant W81X WH-07-1-0231. NR 41 TC 97 Z9 98 U1 0 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 17 PY 2009 VL 106 IS 11 BP 4085 EP 4089 DI 10.1073/pnas.0813019106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 420HD UT WOS:000264278800008 PM 19251659 ER PT J AU Dai, JH Si, QM Zhu, JX Abrahams, E AF Dai, Jianhui Si, Qimiao Zhu, Jian-Xin Abrahams, Elihu TI Iron pnictides as a new setting for quantum criticality SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE magnetism; phase transition; electron correlation ID SUPERCONDUCTIVITY; TRANSITION; SYSTEMS AB Two major themes in the physics of condensed matter are quantum critical phenomena and unconventional superconductivity. These usually occur in the context of competing interactions in systems of strongly correlated electrons. All this interesting physics comes together in the behavior of the recently discovered iron pnictide compounds that have generated enormous interest because of their moderately high-temperature superconductivity. The ubiquity of antiferromagnetic ordering in their phase diagrams naturally raises the question of the relevance of magnetic quantum criticality, but the answer remains uncertain both theoretically and experimentally. Here, we show that the undoped iron pnictides feature a unique type of magnetic quantum critical point, which results from a competition between electronic localization and itinerancy. Our theory provides a mechanism to understand the experimentally observed variation of the ordered moment among the undoped iron pnictides. We suggest P substitution for As in the undoped iron pnictides as a means to access this example of magnetic quantum criticality in an unmasked fashion. Our findings point to the iron pnictides as a much-needed setting for quantum criticality, one that offers a unique set of control parameters. C1 [Abrahams, Elihu] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08855 USA. [Dai, Jianhui] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China. [Si, Qimiao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Abrahams, E (reprint author), Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08855 USA. EM abrahams@physics.rutgers.edu OI Zhu, Jianxin/0000-0001-7991-3918 FU National Science Foundation of China, 973 Program; Program for Changjian Scholars and Innovative Research Team in University [RT-0754]; Education Ministry of China; Robert A. Welch Foundation; Department of Energy FX We thank G. Cao, P. Coleman, C. Geibel, A. Jesche, C. Krellner, Z.-Y. Lu, E. Morosan, D. Natelson, C. Xu, and Z. A. Xu for useful discussions. This work was supported by the National Science Foundation of China, the 973 Program, and the Program for Changjian Scholars and Innovative Research Team in University (RT-0754) of the Education Ministry of China (J. D.), the Robert A. Welch Foundation (Q. S.), and the Department of Energy (J.-X. Z.). NR 43 TC 127 Z9 129 U1 4 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 17 PY 2009 VL 106 IS 11 BP 4118 EP 4121 DI 10.1073/pnas.0900886106 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 420HD UT WOS:000264278800014 PM 19273850 ER PT J AU Anderson, BE Guyer, RA Ulrich, TJ Johnson, PA AF Anderson, Brian E. Guyer, Robert A. Ulrich, Timothy J. Johnson, Paul A. TI Time reversal of continuous-wave, steady-state signals in elastic media SO APPLIED PHYSICS LETTERS LA English DT Article DE elastic waves; elasticity ID ACOUSTICS; MIRROR AB Experimental observations of spatial focusing of continuous-wave, steady-state elastic waves in a reverberant elastic cavity using time reversal are reported here. Spatially localized focusing is achieved when multiple channels are employed, while a single channel does not yield such focusing. The amplitude of the energy at the focal location increases as the square of the number of channels used, while the amplitude elsewhere in the medium increases proportionally with the number of channels used. The observation is important in the context of imaging in solid laboratory samples as well as problems involving continuous-wave signals in Earth. C1 [Anderson, Brian E.; Guyer, Robert A.; Ulrich, Timothy J.; Johnson, Paul A.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. RP Anderson, BE (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. EM bea@byu.edu RI Anderson, Brian/G-8819-2012; OI Johnson, Paul/0000-0002-0927-4003 FU Institutional Support (LDRD) FX This work was supported by Institutional Support (LDRD) at the Los Alamos National Laboratory. The authors wish to thank Pierre-Yves Le Bas for his assistance in setting up the experiments and helpful discussions. The authors also wish to thank Michele Griffa and CarEne Larmat for their helpful discussions. NR 14 TC 7 Z9 7 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 16 PY 2009 VL 94 IS 11 AR 111908 DI 10.1063/1.3097811 PG 3 WC Physics, Applied SC Physics GA 421TD UT WOS:000264380300024 ER PT J AU Arenal, R Stephan, O Bruno, P Gruen, DM AF Arenal, R. Stephan, O. Bruno, P. Gruen, D. M. TI Spatially resolved electron energy loss spectroscopy on n-type ultrananocrystalline diamond films SO APPLIED PHYSICS LETTERS LA English DT Article DE diamond; electrical conductivity; electron energy loss spectra; nanostructured materials; thin films ID BONDING STRUCTURE; NITROGEN; CARBON AB The addition of nitrogen to the synthesis gas during synthesis of ultrananocrystalline-diamond (UNCD) films results in films uniquely exhibiting very high n-type electrical conductivity even at ambient temperatures. This result is due to the formation of nanowires having elongated diamond core nanostructures and a sp(2)-bonded C sheath surrounding the core. The work presented here provides detailed confirmation of this important result through spatially resolved-electron energy loss spectroscopy. The direct observation of nitrogen incorporated in the sheath has been enabled. The incorporation of this nitrogen provides strong support to a plausible mechanism for the n-type conduction characteristic of the UNCD films. C1 [Arenal, R.] Off Natl Etud & Rech Aerosp, CNRS, Lab Etud Microstruct, F-92322 Chatillon, France. [Arenal, R.; Bruno, P.; Gruen, D. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Stephan, O.] Univ Paris 11, Phys Solides Lab, UMR 8502, CNRS, F-91405 Orsay, France. RP Arenal, R (reprint author), Off Natl Etud & Rech Aerosp, CNRS, Lab Etud Microstruct, F-92322 Chatillon, France. EM raul.arenal@onera.fr RI bruno, paola/G-5786-2011; Arenal, Raul/D-2065-2009 OI Arenal, Raul/0000-0002-2071-9093 FU U. S. Department of Energy, Office of Science [DE-AC02-06CH11357.] FX This work was supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 18 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 16 PY 2009 VL 94 IS 11 AR 111905 DI 10.1063/1.3095663 PG 3 WC Physics, Applied SC Physics GA 421TD UT WOS:000264380300021 ER PT J AU Dai, Q Schubert, MF Kim, MH Kim, JK Schubert, EF Koleske, DD Crawford, MH Lee, SR Fischer, AJ Thaler, G Banas, MA AF Dai, Q. Schubert, M. F. Kim, M. H. Kim, J. K. Schubert, E. F. Koleske, D. D. Crawford, M. H. Lee, S. R. Fischer, A. J. Thaler, G. Banas, M. A. TI Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities SO APPLIED PHYSICS LETTERS LA English DT Article DE carrier density; dislocation density; gallium compounds; III-V semiconductors; indium compounds; nonradiative transitions; photoluminescence; semiconductor growth; semiconductor heterojunctions; semiconductor quantum wells; wide band gap semiconductors ID LIGHT-EMITTING-DIODES; GAN AB Room-temperature photoluminescence (PL) measurements are performed on GaInN/GaN multiple-quantum-well heterostructures grown on GaN-on-sapphire templates with different threading-dislocation densities. The selective optical excitation of quantum wells and the dependence of integrated PL intensity on excitation power allow us to determine the internal quantum efficiency (IQE) as a function of carrier concentration. The measured IQE of the sample with the lowest dislocation density (5.3x10(8) cm(-2)) is as high as 64%. The measured nonradiative coefficient A varies from 6x10(7) to 2x10(8) s(-1) as the dislocation density increases from 5.3x10(8) to 5.7x10(9) cm(-2), respectively. C1 [Dai, Q.; Schubert, M. F.; Kim, M. H.; Kim, J. K.; Schubert, E. F.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Dai, Q.; Schubert, M. F.; Kim, M. H.; Kim, J. K.; Schubert, E. F.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Koleske, D. D.; Crawford, M. H.; Lee, S. R.; Fischer, A. J.; Thaler, G.; Banas, M. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dai, Q (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM efschubert@rpi.edu FU DOE Office of Basic Energy Sciences; Laboratory Directed Research and Development program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The RPI authors thank Sandia National Laboratories, the National Science Foundation, New York State, Samsung Electro- Mechanics Co., Crystal IS, and Troy Research Corporation. The Sandia authors acknowledge the DOE Office of Basic Energy Sciences and the Laboratory Directed Research and Development program for partial funding of this study. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 19 TC 139 Z9 144 U1 6 U2 57 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 16 PY 2009 VL 94 IS 11 AR 111109 DI 10.1063/1.3100773 PG 3 WC Physics, Applied SC Physics GA 421TD UT WOS:000264380300009 ER PT J AU Deskins, NA AF Deskins, N. Aaron TI Ti 3p electrons: Core or valence? SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TITANIUM-DIOXIDE; OXYGEN VACANCIES; MOLECULAR-DYNAMICS; TRANSITION-METAL; 1ST PRINCIPLES; 110 SURFACE; RUTILE AB The debate over whether Ti 3p electrons should be treated as core or valence electrons when using pseudopotential-based density functional theory is addressed. Two pseudopotentials that treat the 3p electrons either as core or valence are compared by modeling bulk TiO(2) and Ti, TiO(2) surface adsorption and reduction, as well as TiCl(x) reactions. The present study shows that the 3p electrons can often be treated as core states, but frozen 3p electrons may be unsuitable for processes involving large electronic changes (for example charge transfer or chemical bonding). (C) 2009 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. RP Deskins, NA (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Battelle Blvd,K1-83, Richland, WA 99354 USA. EM nathaniel.deskins@pnl.gov RI Deskins, Nathaniel/H-3954-2012 FU Department of Energy; Office of Basic Energy Sciences FX The author wishes to acknowledge Roger Rousseau and Michel Dupuis for useful discussions and comments. Funding was provided by the Department of Energy, Office of Basic Energy Sciences. Computational resources were provided by the Molecular Science Computing Facility located at the Environmental Molecular Science Laboratory in Richland, WA and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. All work was performed at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 49 TC 10 Z9 10 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAR 16 PY 2009 VL 471 IS 1-3 BP 75 EP 79 DI 10.1016/j.cplett.2009.02.011 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417HX UT WOS:000264068200014 ER PT J AU Peng, HS Sun, XM AF Peng, Huisheng Sun, Xuemei TI Highly aligned carbon nanotube/polymer composites with much improved electrical conductivities SO CHEMICAL PHYSICS LETTERS LA English DT Article ID POLYMER NANOCOMPOSITES; NANOTUBES; FILMS; ARRAYS; FIBERS AB Carbon nanotube (CNT)/polymer composites are generally synthesized by coating CNT/polymer mixture solutions into films or powders. A main challenge is that CNTs are randomly dispersed in derived composites, which results in extremely low electrical conductivities. Here we report the synthesis of highly aligned CNT/polymer composites with much improved conductivities by incorporating polymers into aligned CNT arrays. The key point in this work is to grow dense and robust CNT arrays through a chemical vapor deposition process. (C) 2009 Elsevier B.V. All rights reserved. C1 [Peng, Huisheng; Sun, Xuemei] Fudan Univ, Adv Mat Lab, Shanghai 200438, Peoples R China. [Peng, Huisheng; Sun, Xuemei] Fudan Univ, Dept Macromol Sci, Shanghai 200438, Peoples R China. [Peng, Huisheng] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Peng, HS (reprint author), Fudan Univ, Adv Mat Lab, Shanghai 200438, Peoples R China. EM penghs@fudan.edu.cn RI Peng, Huisheng/G-8867-2011 NR 22 TC 58 Z9 59 U1 2 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAR 16 PY 2009 VL 471 IS 1-3 BP 103 EP 105 DI 10.1016/j.cplett.2009.02.008 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417HX UT WOS:000264068200019 ER PT J AU Spencer, LP Yang, P Scott, BL Batista, ER Boncella, JM AF Spencer, Liam P. Yang, Ping Scott, Brian L. Batista, Enrique R. Boncella, James M. TI Uranium(VI) Bis(imido) Chalcogenate Complexes: Synthesis and Density Functional Theory Analysis SO INORGANIC CHEMISTRY LA English DT Article ID URANYL ARYLOXIDE COMPLEXES; RAY CRYSTAL-STRUCTURE; COORDINATION CHEMISTRY; MOLECULAR-STRUCTURES; IMIDO ANALOGS; BOND; ACTINIDE; ION; SE; LA AB Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U((NBu)-Bu-t)(2)(EAr)(2)(OPPh3)(2) (EAr = O-2-(BuC6H4)-Bu-t, SPh, SePh, TePh) and U((NBu)-Bu-t)(2)(EAr)(2)(R(2)bpy) (EAr = SPh, SePh, TePh) (R(2)bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, Bu-t) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)(2)(EAr)(2)(OPPh3)(2) as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes. C1 [Spencer, Liam P.; Scott, Brian L.; Boncella, James M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Yang, Ping; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Boncella, JM (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MS J514, Los Alamos, NM 87545 USA. EM boncella@lanl.gov RI Yang, Ping/E-5355-2011; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Yang, Ping/0000-0003-4726-2860; Boncella, James/0000-0001-8393-392X NR 40 TC 41 Z9 41 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD MAR 16 PY 2009 VL 48 IS 6 BP 2693 EP 2700 DI 10.1021/ic802212m PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 417GG UT WOS:000264063900046 PM 19216556 ER PT J AU Nemura, H Ishii, N Aoki, S Hatsuda, T AF Nemura, Hidekatsu Ishii, Noriyoshi Aoki, Sinya Hatsuda, Tetsuo TI Hyperon-nucleon force from lattice QCD SO PHYSICS LETTERS B LA English DT Article DE Lattice QCD; Hyperon-nucleon interaction; Nuclear forces; Hypernuclei ID EFFECTIVE-FIELD THEORY; SCATTERING LENGTHS; HYPERNUCLEI; MATRIX AB We calculate potentials between a proton and a Xi(0) (hyperon with strangeness -2) through the equal-time Bethe-Salpeter wave function. employing quenched lattice QCD simulations with the plaquette gauge action and the Wilson quark action on (4.5 fm)(4) lattice at the lattice spacing a similar or equal to 0.14 fill. The ud quark mass in our Study corresponds to m(pi) similar or equal to 0.37 and 0.51 GeV, while the s quark mass corresponds to the physical value of m(K). The central p Xi(0) potential has a strong (weak) repulsive core in the S-1(0) (S-3(1)) channel for r less than or similar to 0.6 fm, while the potential has attractive well at medium and long distances (0.6 fm less than or similar to r less than or similar to 1.2 fm) in both channels. The sign of the p Xi(0) scattering length and its quark mass dependence indicate a net attraction in both channels at low energies. (C) 2009 Published by Elsevier B.V. C1 [Nemura, Hidekatsu] RIKEN, Nishina Ctr Accelerator Based Sci, Adv Meson Sci Lab, Wako, Saitama 3510198, Japan. [Ishii, Noriyoshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Hatsuda, Tetsuo] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Nemura, H (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Nucl Phys Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM nemura@riken.jp RI Hatsuda, Tetsuo/C-2901-2013 FU Large Scale Simulation [FY2007]; Japan Society for Promotion of Science (JSPS) [17740174]; Ministry of Education, Science, Sports and Culture [13135204, 15540254, 18540253, 19540261, 20340047] FX This work is Supported by the Large Scale Simulation Program No. 07-07 (FY2007) of High Energy Accelerator Research Organization (KEK). We are grateful for authors and rnaintainers of CPS++ [361, of which a modified version is used for measurement done in this work. H.N. is supported by tile Special Postcloctoral Researchers Program at RIKEN. This research was partly supported by Grants-in-Aid for Young Scientists (B) (No. 17740174) from the Japan Society for Promotion of Science (JSPS), and by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid (Nos. 13135204,15540254,18540253,19540261,20340047). NR 43 TC 69 Z9 69 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 16 PY 2009 VL 673 IS 2 BP 136 EP 141 DI 10.1016/j.physletb.2009.02.003 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 419QW UT WOS:000264235400005 ER PT J AU Cao, QH Ma, E Shaughnessy, G AF Cao, Qing-Hong Ma, Ernest Shaughnessy, Gabe TI Dark matter: The leptonic connection SO PHYSICS LETTERS B LA English DT Article ID NEUTRINO MASS AB Recent observations of high-energy positrons and electrons by the PAMELA and ATIC experiments may be an indication of the annihilation of (lark matter into leptons and not quarks. This leptonic connection was foreseen already some years ago in two different models of radiative neutrino mass. We discuss here the generic interactions (nu eta(0) - l eta(+))chi and l(c) zeta(-) chi(c) which allow this to happen, where chi and/or chi(c) are fermionic dark-matter candidates. We point out in particular the importance of chi chi -> l(+) l(-) gamma to both positron and gamma-ray signals within this framework. (C) 2009 Published by Elsevier B.V. C1 [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Cao, Qing-Hong; Shaughnessy, Gabe] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60439 USA. [Ma, Ernest] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92531 USA. RP Shaughnessy, G (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. EM g-shaughnessy@northwestern.edu NR 46 TC 63 Z9 63 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 16 PY 2009 VL 673 IS 2 BP 152 EP 155 DI 10.1016/j.physletb.2009.02.015 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 419QW UT WOS:000264235400008 ER PT J AU Rich, RL Papalia, GA Flynn, PJ Furneisen, J Quinn, J Klein, JS Katsamba, PS Waddell, MB Scott, M Thompson, J Berlier, J Corry, S Baltzinger, M Zeder-Lutzi, G Schoenemann, A Clabbers, A Wieckowski, S Murphy, MM Page, P Ryan, TE Duffner, J Ganguly, T Corbin, J Gautam, S Anderluh, G Bavdek, A Reichmann, D Yadav, SP Hommema, E Pol, E Drake, A Klakamp, S Chapman, T Kernaghan, D Miller, K Schuman, J Lindquist, K Herlihy, K Murphy, MB Bohnsack, R Andrien, B Brandani, P Terwey, D Millican, R Darling, RJ Wang, L Carter, Q Dotzlaf, J Lopez-Sagaseta, J Campbell, I Torreri, P Hoos, S England, P Liu, Y Abdiche, Y Malashock, D Pinkerton, A Wong, M Lafer, E Hinck, C Thompson, K Di Primo, C Joyce, A Brooks, J Torta, F Hagel, ABB Krarup, J Pass, J Ferreira, M Shikov, S Mikolajczyk, M Abe, Y Barbato, G Giannetti, AM Krishnamoorthy, G Beusink, B Satpaev, D Tsang, T Fang, E Partridge, J Brohawn, S Horn, J Pritsch, O Obal, G Nilapwar, S Busby, B Gutierrez-Sanchez, G Das Gupta, R Canepa, S Witte, K Nikolovska-Coleska, Z Cho, YH D'Agata, R Schlick, K Calvert, R Munoz, EM Hernaiz, MJ Bravman, T Dines, M Yang, MH Puskas, A Boni, E Li, JJ Wear, M Grinberg, A Baardsnes, J Dolezal, O Gainey, M Anderson, H Peng, JL Lewis, M Spies, P Trinh, Q Bibikov, S Raymond, J Yousef, M Chandrasekaran, V Feng, YG Emerick, A Mundodo, S Guimaraes, R McGirr, K Li, YJ Hughes, H Mantz, H Skrabana, R Witmer, M Ballard, J Martin, L Skladal, P Korza, G Laird-Offringa, I Lee, CS Khadir, A Podlaski, F Neuner, P Rothacker, J Rafique, A Dankbar, N Kainz, P Gedig, E Vuyisich, M Boozer, C Ly, N Toews, M Uren, A Kalyuzhniy, O Lewis, K Chomey, E Pak, BJ Myszka, DG AF Rich, Rebecca L. Papalia, Giuseppe A. Flynn, Peter J. Furneisen, Jamie Quinn, John Klein, Joshua S. Katsamba, Phini S. Waddell, M. Brent Scott, Michael Thompson, Joshua Berlier, Judie Corry, Schuyler Baltzinger, Mireille Zeder-Lutzi, Gabrielle Schoenemann, Andreas Clabbers, Anca Wieckowski, Sebastien Murphy, Mary M. Page, Phillip Ryan, Thomas E. Duffner, Jay Ganguly, Tanmoy Corbin, John Gautam, Satyen Anderluh, Gregor Bavdek, Andrej Reichmann, Dana Yadav, Satya P. Hommema, Eric Pol, Ewa Drake, Andrew Klakamp, Scott Chapman, Trevor Kernaghan, Dawn Miller, Ken Schuman, Jason Lindquist, Kevin Herlihy, Kara Murphy, Michael B. Bohnsack, Richard Andrien, Bruce Brandani, Pietro Terwey, Danny Millican, Rohn Darling, Ryan J. Wang, Liann Carter, Quincy Dotzlaf, Joe Lopez-Sagaseta, Jacinto Campbell, Islay Torreri, Paola Hoos, Sylviane England, Patrick Liu, Yang Abdiche, Yasmina Malashock, Daniel Pinkerton, Alanna Wong, Melanie Lafer, Eileen Hinck, Cynthia Thompson, Kevin Di Primo, Carmelo Joyce, Alison Brooks, Jonathan Torta, Federico Hagel, Anne Birgitte Bagge Krarup, Janus Pass, Jesper Ferreira, Monica Shikov, Sergei Mikolajczyk, Malgorzata Abe, Yuki Barbato, Gaetano Giannetti, Anthony M. Krishnamoorthy, Ganeshram Beusink, Bianca Satpaev, Daulet Tsang, Tiffany Fang, Eric Partridge, James Brohawn, Stephen Horn, James Pritsch, Otto Obal, Gonzalo Nilapwar, Sanjay Busby, Ben Gutierrez-Sanchez, Gerardo Das Gupta, Ruchira Canepa, Sylvie Witte, Krista Nikolovska-Coleska, Zaneta Cho, Yun Hee D'Agata, Roberta Schlick, Kristian Calvert, Rosy Munoz, Eva M. Hernaiz, Maria Jose Bravman, Tsafir Dines, Monica Yang, Min-Hsiang Puskas, Agnes Boni, Erica Li, Jiejin Wear, Martin Grinberg, Asya Baardsnes, Jason Dolezal, Olan Gainey, Melicia Anderson, Henrik Peng, Jinlin Lewis, Mark Spies, Peter Trinh, Quyhn Bibikov, Sergei Raymond, Jill Yousef, Mohammed Chandrasekaran, Vidya Feng, Yuguo Emerick, Anne Mundodo, Suparna Guimaraes, Rejane McGirr, Katy Li, Yue-Ji Hughes, Heather Mantz, Hubert Skrabana, Rostislav Witmer, Mark Ballard, Joshua Martin, Loic Skladal, Petr Korza, George Laird-Offringa, Ite Lee, Charlene S. Khadir, Abdelkrim Podlaski, Frank Neuner, Phillippe Rothacker, Julie Rafique, Ashique Dankbar, Nico Kainz, Peter Gedig, Erk Vuyisich, Momchilo Boozer, Christina Ly, Nguyen Toews, Mark Uren, Aykut Kalyuzhniy, Oleksandr Lewis, Kenneth Chomey, Eugene Pak, Brian J. Myszka, David G. TI A global benchmark study using affinity-based biosensors SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE Biacore; Kinetics; Optical biosensor; Surface plasmon resonance ID BIACORE TECHNOLOGY; RATE CONSTANTS; KINETICS; BINDING; USERS AB To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. (C) 2008 Elsevier Inc. All rights reserved. C1 [Rich, Rebecca L.; Papalia, Giuseppe A.; Myszka, David G.] Univ Utah, Sch Med, Ctr Biomol Interact Anal, Salt Lake City, UT 84132 USA. [Flynn, Peter J.] KaloBios Pharmaceut, San Francisco, CA 94080 USA. [Furneisen, Jamie] Schering Plough Biopharma, Palo Alto, CA 94304 USA. [Quinn, John] Nomadics, Oklahoma City, OK 73104 USA. [Klein, Joshua S.] CALTECH, Pasadena, CA 91125 USA. [Katsamba, Phini S.] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Waddell, M. Brent] St Jude Childrens Hosp, Hartwell Ctr Bioinformat & Biotechnol, Memphis, TN 38105 USA. [Scott, Michael] Univ Zurich, CH-8057 Zurich, Switzerland. [Thompson, Joshua; Berlier, Judie; Corry, Schuyler] Mol Probes Invitrogen, Eugene, OR 97402 USA. [Baltzinger, Mireille; Zeder-Lutzi, Gabrielle] Univ Strasbourg, F-67412 Illkirch Graffenstaden, France. [Schoenemann, Andreas] Merck KGaA, D-64293 Darmstadt, Germany. [Clabbers, Anca] Abbott Biores Ctr, Worcester, MA 01605 USA. [Wieckowski, Sebastien] Univ Strasbourg, Inst Mol & Cellular Biol, F-67084 Strasbourg, France. [Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.] Reichert, Depew, NY 14043 USA. [Duffner, Jay; Ganguly, Tanmoy] Momenta Pharmaceut, Cambridge, MA 02142 USA. [Corbin, John] XOMA US, Emeryville, CA 94608 USA. [Gautam, Satyen] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore. [Anderluh, Gregor; Bavdek, Andrej] Univ Ljubljana, Dept Biol, Ljubljana 1000, Slovenia. [Reichmann, Dana] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. [Yadav, Satya P.] Cleveland Clin Fdn, Mol Biotechnol Core Lab, Cleveland, OH 44195 USA. [Hommema, Eric] ThermoFisher Sci, Rockford, IL 61101 USA. [Pol, Ewa] Biacore GE Healthcare, SE-75450 Uppsala, Sweden. [Drake, Andrew; Klakamp, Scott] AstraZeneca, Hayward, CA 94545 USA. [Chapman, Trevor] GlaxoSmithKline Inc, Neurodegenerat Res Dept, Harlow CM19 5AW, Essex, England. [Kernaghan, Dawn; Miller, Ken] Medimmune Inc, Gaithersburg, MD 20878 USA. [Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.] Biacore GE Healthcare, Piscataway, NJ 08854 USA. [Bohnsack, Richard] Med Coll Wisconsin, Dept Biochem, Milwaukee, WI 53226 USA. [Andrien, Bruce] Alex Pharmaceut, Cheshire, CT 06410 USA. [Brandani, Pietro] Appl Biosyst Inc, Foster City, CA 94404 USA. [Terwey, Danny] DiaDexus, San Francisco, CA 94080 USA. [Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe] Eli Lilly & Co, Indianapolis, IN 46285 USA. [Lopez-Sagaseta, Jacinto] Univ Navarra, Ctr Appl Med Res, Lab Thrombosis & Haemostasis, E-31080 Pamplona, Spain. [Campbell, Islay] EMD Lexigen Res Ctr, Billerica, MA 01821 USA. [Torreri, Paola] Ist Super Sanita, Dept Cell Biol & Neurosci, I-00161 Rome, Italy. [Hoos, Sylviane; England, Patrick] Inst Pasteur, Dept Struct Biol & Chem, F-75724 Paris, France. [Liu, Yang] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA. [Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna] Pfizer Rinat Labs, San Francisco, CA 94080 USA. [Wong, Melanie] PDL BioPharma, Fremont, CA 94555 USA. [Lafer, Eileen; Hinck, Cynthia] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78229 USA. [Thompson, Kevin] Akubio, Cambridge CB4 0GJ, England. [Di Primo, Carmelo] Univ Bordeaux, Inst Europeen Chim & Biol, INSERM, U869, F-33607 Pessac, France. [Joyce, Alison; Brooks, Jonathan] Wyeth Res, Cambridge, MA 02140 USA. [Torta, Federico] Univ So Denmark, Dept Biochem & Mol Biol, DK-5230 Odense M, Denmark. [Hagel, Anne Birgitte Bagge; Krarup, Janus; Pass, Jesper] Novo Nordisk AS, DK-2820 Gentofte, Denmark. [Ferreira, Monica] Sodertorns Univ Coll, S-14152 Huddinge, Sweden. [Shikov, Sergei] Temple Univ, Dept Biochem, Philadelphia, PA 19140 USA. [Mikolajczyk, Malgorzata] US FDA, Bethesda, MD 20892 USA. [Abe, Yuki] UCL, Dept Biochem Engn, London WC1E 7JE, England. [Barbato, Gaetano] Merck, I-00040 Rome, Italy. [Giannetti, Anthony M.] Roche, Palo Alto, CA 94304 USA. [Krishnamoorthy, Ganeshram; Beusink, Bianca] Univ Twente, NL-7500 AE Enschede, Netherlands. [Satpaev, Daulet] Agensys, Santa Monica, CA 90404 USA. [Tsang, Tiffany; Fang, Eric] Novartis, Emeryville, CA 94608 USA. [Partridge, James; Brohawn, Stephen] MIT, Cambridge, MA 02139 USA. [Horn, James] No Illinois Univ, De Kalb, IL 60115 USA. [Pritsch, Otto; Obal, Gonzalo] Pasteur Inst Montevideo, Montevideo, Uruguay. [Nilapwar, Sanjay] Univ Manchester, Manchester M1 7ND, Lancs, England. [Busby, Ben] Univ Maryland, Dept Physiol, Baltimore, MD 21201 USA. [Gutierrez-Sanchez, Gerardo] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Das Gupta, Ruchira] Adnexus Therapeut, Waltham, MA 02453 USA. [Canepa, Sylvie] Univ Tours, F-37380 Nouzilly, France. [Witte, Krista] ForteBio, Menlo Pk, CA 94025 USA. [Nikolovska-Coleska, Zaneta] Univ Michigan, Ann Arbor, MI 48109 USA. [Cho, Yun Hee] Human Genome Sci, Rockville, MD 20850 USA. [D'Agata, Roberta] Univ Catania, Dept Chem Sci, I-95125 Catania, Italy. [Schlick, Kristian] Montana State Univ, Bozeman, MT 59717 USA. [Calvert, Rosy] GKT Sch Biomed Sci, London SE1 1UL, England. [Munoz, Eva M.; Hernaiz, Maria Jose] Univ Complutense, Organ & Pharmaceut Chem Dept, E-28040 Madrid, Spain. [Bravman, Tsafir; Dines, Monica] Biorad Haifa, IL-32000 Haifa, Israel. [Yang, Min-Hsiang] Acad Sinica, Inst Chem, Taipei 115, Taiwan. [Puskas, Agnes] Univ Texas Houston, Sch Med, Houston, TX 77030 USA. [Boni, Erica] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. [Li, Jiejin] Natl Inst Med Res UK, Div Mol Struct, London NW7 1AA, England. [Wear, Martin] Univ Edinburgh, Inst Struct & Mol Biol, Ctr Translat & Chem Biol, Edinburgh EH9 3JR, Midlothian, Scotland. [Grinberg, Asya] Acceleron Pharma, Cambridge, MA 02139 USA. [Baardsnes, Jason] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada. [Dolezal, Olan] CSIRO, Hlth Sci & Nutr, Parkville, Vic 3052, Australia. [Gainey, Melicia] Battelle Biomed Res Ctr, Columbus, OH 43201 USA. [Anderson, Henrik] Attana AB, SE-11347 Stockholm, Sweden. [Peng, Jinlin; Lewis, Mark] Corning Inc, Corning, NY 14831 USA. [Spies, Peter] Univ Appl Sci NW Switzerland, Sch Life Sci, Inst Chem & Bioanalyt, CH-4132 Muttenz, Switzerland. [Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy] Biorad, Hercules, CA 94547 USA. [Li, Yue-Ji] Monsanto Co, St Louis, MO 63198 USA. [Hughes, Heather] Genzyme, Cambridge, MA 02142 USA. [Mantz, Hubert] Univ Saarland, D-66041 Saarbrucken, Germany. [Skrabana, Rostislav] SAS, Inst Neuroimmunol, Bratislava 84510, Slovakia. [Witmer, Mark] Bristol Myers Squibb Co, Princeton, NJ 08543 USA. [Ballard, Joshua] Array Biopharma, Boulder, CO 80301 USA. [Martin, Loic] CEA, IBiTecs, Serv Ingn Mol Prot, F-91191 Gif Sur Yvette, France. [Skladal, Petr] Masaryk Univ, Dept Biochem, CS-61137 Brno, Czech Republic. [Korza, George] Univ Connecticut, Ctr Hlth, Farmington, CT 06030 USA. [Laird-Offringa, Ite; Lee, Charlene S.] Univ So Calif, Los Angeles, CA 90033 USA. [Khadir, Abdelkrim] GeminX Biotechnol, Montreal, PQ H2X 2H7, Canada. [Podlaski, Frank] Hoffmann La Roche Inc, Nutley, NJ 07110 USA. [Neuner, Phillippe] IRBM, I-00040 Rome, Italy. [Rothacker, Julie] Royal Melbourne Hosp, Ludwig Inst Canc Res, Parkville, Vic 3050, Australia. [Rafique, Ashique] Regeneron Pharmaceut Inc, Tarrytown, NY 10591 USA. [Dankbar, Nico] Univ Munster, D-48149 Munster, Germany. [Kainz, Peter] Salzburg Univ, Dept Mol Biol, A-5020 Salzburg, Austria. [Gedig, Erk] XanTec Bioanalyt, D-48149 Munster, Germany. [Vuyisich, Momchilo] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Boozer, Christina] Lumera, Bothell, WA 98011 USA. [Ly, Nguyen] Arizona State Univ, Tempe, AZ 85287 USA. [Toews, Mark] Dyax, Cambridge, MA 02139 USA. [Uren, Aykut] Georgetown Univ, Med Ctr, Lombardi Canc Ctr, Washington, DC 20057 USA. [Kalyuzhniy, Oleksandr] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Lewis, Kenneth] Zymogenet Inc, Seattle, WA 98102 USA. [Chomey, Eugene] Biorad Canada, Edmonton, AB T6R 2W6, Canada. [Pak, Brian J.] Biorad Canada, Toronto, ON, Canada. RP Myszka, DG (reprint author), Univ Utah, Sch Med, Ctr Biomol Interact Anal, Salt Lake City, UT 84132 USA. EM dmyszka@cores.utah.edu RI Horn, James/B-4011-2009; Li, Jiejin/G-4980-2010; Barbato, Gaetano/G-4904-2011; Anderluh, Gregor/C-6905-2014; Klakamp, Scott/D-7738-2014; Skladal, Petr/E-4308-2012; TORRERI, PAOLA/A-6656-2015; Dolezal, Olan/E-1691-2015 OI Anderluh, Gregor/0000-0002-9916-8465; Klakamp, Scott/0000-0002-1231-9655; Skladal, Petr/0000-0002-3868-5725; TORRERI, PAOLA/0000-0002-0488-956X; Katsamba, Phinikoula/0000-0003-3981-1604; FU NCI NIH HHS [P30 CA051008, P30 CA054174]; NCRR NIH HHS [S10 RR027551] NR 14 TC 46 Z9 46 U1 5 U2 52 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD MAR 15 PY 2009 VL 386 IS 2 BP 194 EP 216 DI 10.1016/j.ab.2008.11.021 PG 23 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 413JN UT WOS:000263789500009 PM 19133223 ER PT J AU Martin, NI Woodward, JJ Winter, MB Marletta, MA AF Martin, Nathaniel I. Woodward, Joshua J. Winter, Michael B. Marletta, Michael A. TI 4,4-Difluorinated analogues of L-arginine and N-G-hydroxy-L-arginine as mechanistic probes for nitric oxide synthase SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Nitric oxide synthase; Fluorinated substrate analogues; Mechanistic probes ID HEME DOMAIN; ELECTRON-TRANSFER; G-HYDROXYARGININE; TETRAHYDROBIOPTERIN; SUBSTRATE; NOS; HYDROXYGUANIDINES; CYTOCHROME-P450; PERSPECTIVE; REACTIVITY AB 4,4-Difluoro-L-arginine and 4,4-difluoro-N-G-hydroxy-L-arginine were synthesized and shown to be substrates for the inducible isoform of nitric oxide synthase (iNOS). Binding of both fluorinated analogues to the NOS active site was also investigated using a spectral binding assay employing a heme domain construct of the inducible NOS isoform (iNOS(heme)). 4,4-Difluoro-N-G-hydroxy-arginine was found to bind at the NOS active site in a unique manner consistent with a model involving ligation of the Fe-III heme center by the oxygen atom of the N-G-hydroxy moiety. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Woodward, Joshua J.; Winter, Michael B.; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Martin, Nathaniel I.] Univ Utrecht, Dept Med Chem & Chem Biol, NL-3584 CA Utrecht, Netherlands. [Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Chem, 556 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu NR 33 TC 5 Z9 5 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD MAR 15 PY 2009 VL 19 IS 6 BP 1758 EP 1762 DI 10.1016/j.bmcl.2009.01.076 PG 5 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 415KX UT WOS:000263933800050 PM 19230661 ER PT J AU Seeliger, MA Ranjitkar, P Kasap, C Shan, YB Shaw, DE Shah, NP Kuriyan, J Maly, DJ AF Seeliger, Markus A. Ranjitkar, Pratistha Kasap, Corynn Shan, Yibing Shaw, David E. Shah, Neil P. Kuriyan, John Maly, Dustin J. TI Equally Potent Inhibition of c-Src and Abl by Compounds that Recognize Inactive Kinase Conformations SO CANCER RESEARCH LA English DT Article ID CHRONIC MYELOGENOUS LEUKEMIA; CHRONIC MYELOID-LEUKEMIA; TYROSINE KINASE; CRYSTAL-STRUCTURE; IMATINIB RESISTANCE; STI-571 INHIBITION; DOMAIN MUTATIONS; STRUCTURAL BASIS; BLAST CRISIS; COMPLEX AB Imatinib is an inhibitor of the Abl tyrosine kinase domain that is effective in the treatment of chronic myelogenic leukemia. Although imatinib binds tightly to the Abl kinase domain, its affinity for the closely related kinase domain of c-Src: is at least 2,000-fold lower. Imatinib recognition requires a specific inactive conformation of the kinase domain, in which a conserved Asp-Phe-Gly (DFG) motif is flipped with respect to the active conformation. The inability of c-Src to readily adopt this flipped DFG conformation was thought to underlie the selectivity of imatinib for Abl over c-Src. Here, we present a series of inhibitors (DSA compounds) that are based on the core scaffold of imatinib but which bind with equally high potency to c-Src: and Abl. The DSA compounds bind to c-Src in the DFG-flipped conformation, as confirmed by crystal structures and kinetic analysis. The origin of the high affinity of these compounds for c-Src is suggested by the fact that they also inhibit clinically relevant Abl variants bearing mutations in a structural element, the P-loop, that normally interacts with the phosphate groups of ATP but is folded over a substructure of imatinib in Abl. Importantly, several of the DSA compounds block the growth of Ba/F3 cells harboring imatinib-resistant BCR-ABL mutants, including the Thr315Ile "gatekeeper" mutation, but do not suppress the growth of parental Ba/F3 cells. [Cancer Res 2009;69(6):2384-92] C1 [Ranjitkar, Pratistha; Maly, Dustin J.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kasap, Corynn; Shah, Neil P.] Univ Calif San Francisco, Sch Med, Dept Med, Div Hematol Oncol, San Francisco, CA 94143 USA. [Shaw, David E.] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY USA. RP Maly, DJ (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. EM kuriyan@berkeley.edu; maly@chem.washington.edu RI Seeliger, Markus/D-6409-2013 FU NIH [GM-086858, 5K99GM080097]; University of Washington; Leukemia and Lymphoma Society; Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX Grant support: NIH R01 grant GM-086858, University of Washington (D.J. Maly), and NIH 5K99GM080097 (M.A. Seeliger). J. Kuriyan acknowledges funding from the Leukemia and Lymphoma Society. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC02-05CH11231. NR 34 TC 74 Z9 74 U1 1 U2 11 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD MAR 15 PY 2009 VL 69 IS 6 BP 2384 EP 2392 DI 10.1158/0008-5472.CAN-08-3953 PG 9 WC Oncology SC Oncology GA 424BU UT WOS:000264541300031 PM 19276351 ER PT J AU Nakamae, H Wilbur, DS Hamlin, DK Thakar, MS Santos, EB Fisher, DR Kenoyer, AL Pagel, JM Press, OW Storb, R Sandmaier, BM AF Nakamae, Hirohisa Wilbur, D. Scott Hamlin, Donald K. Thakar, Monica S. Santos, Erlinda B. Fisher, Darrell R. Kenoyer, Aimee L. Pagel, John M. Press, Oliver W. Storb, Rainer Sandmaier, Brenda M. TI Biodistributions, Myelosuppression, and Toxicities in Mice Treated with an Anti-CD45 Antibody Labeled with the alpha-Emitting Radionuclides Bismuth-213 or Astatine-211 SO CANCER RESEARCH LA English DT Article ID HEMATOPOIETIC-CELL TRANSPLANTATION; TOTAL-BODY IRRADIATION; I-131-ANTI-CD45 ANTIBODY; MONOCLONAL-ANTIBODIES; ACUTE-LEUKEMIA; CYCLOPHOSPHAMIDE; CANCER; RADIOIMMUNOTHERAPY; MOLECULES; F(AB')2 AB We previously investigated the potential of targeted radiotherapy using a bismuth-213 ((213)Bi)-labeled anti-CD45 antibody to replace total body irradiation as conditioning for hematopoietic cell transplantation in a canine model. Although this approach allowed sustained marrow engraftment, limited availability, high cost, and short half-life of (213)Bi induced us to investigate an alternative et-emitting radionuclide, astatine-211 ((211)At), for the same application. Biodistribution and toxicity studies were conducted with conjugates of the anti-murine CD45 antibody 30F11 with either (213)Bi or (211)At. Mice were injected with 2 to 50 mu Ci on 10 mu g or 20 mu Ci on 2 or 40 mu g of 30F11 conjugate. Biodistribution studies showed that the spleen contained the highest concentration of radioactivity, ranging from 167 +/- 23% to 417 +/- 109% injected dose/gram (% ID/g) after injection of the (211)At conjugate and 45 +/- 9% to 166 +/- 11% ID/g after injection of the (213)Bi conjugate. The higher concentrations observed for (211)At-labeled 30F11 were due to its longer half-life, which permitted better localization of isotope to the spleen before decay. (211)At was more effective at producing myelosuppression for the same quantity of injected radioactivity. All mice injected with 20 or 50 mu Ci (211)At, but none with the same quantities of (213)Bi, had lethal myeloablation. Severe reversible acute hepatic toxicity occurred with 50 mu Ci (213)Bi, but not with lower doses of (213)Bi or with any dose of (211)At. No renal toxicity occurred with either radionuclide. The data suggest that smaller quantities of (211)At-labeled anti-CD45 antibody are sufficient to achieve myelosuppression and myeloablation with less nonhematologic toxicity compared with (213)Bi-labeled antibody. [Cancer Res 2009;69(6):2408-15] C1 [Nakamae, Hirohisa; Thakar, Monica S.; Santos, Erlinda B.; Kenoyer, Aimee L.; Pagel, John M.; Press, Oliver W.; Storb, Rainer; Sandmaier, Brenda M.] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA. [Wilbur, D. Scott; Hamlin, Donald K.] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Thakar, Monica S.] Univ Washington, Dept Pediat, Seattle, WA 98195 USA. [Pagel, John M.; Press, Oliver W.; Storb, Rainer; Sandmaier, Brenda M.] Univ Washington, Dept Med, Seattle, WA USA. [Press, Oliver W.] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sandmaier, BM (reprint author), Fred Hutchinson Canc Res Ctr, Div Clin Res, 1100 Fairview Ave N,Mail Stop D1-100,POB 19024, Seattle, WA 98109 USA. EM bsandmai@fhcrc.org FU NIH [CA118940, CA015704, CA109663, CA095448]; Frederick Kullman and Penny E. Petersen Memorial Foundations; Graduate School of Medicine, Osaka City University, Osaka, Japan; Lymphoma Research Foundation; Damon Runyon Cancer Foundation FX Grant support: NIH grants CA118940, CA015704, CA109663, and CA095448 and Frederick Kullman and Penny E. Petersen Memorial Foundations. H. Nakamae was funded by the Graduate School of Medicine, Osaka City University, Osaka, Japan. J.M. Pagel is supported by Career Development Awards from the Lymphoma Research Foundation and the Damon Runyon Cancer Foundation. NR 26 TC 19 Z9 19 U1 2 U2 4 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD MAR 15 PY 2009 VL 69 IS 6 BP 2408 EP 2415 DI 10.1158/0008-5472.CAN-08-4363 PG 8 WC Oncology SC Oncology GA 424BU UT WOS:000264541300034 PM 19244101 ER PT J AU Kaminker, PG Kim, SH Desprez, PY Campisi, J AF Kaminker, Patrick G. Kim, Sahn-Ho Desprez, Pierre-Yves Campisi, Judith TI A novel form of the telomere-associated protein TIN2 localizes to the nuclear matrix SO CELL CYCLE LA English DT Article DE alternative splicing; human fibroblasts; human mammary epithelial cells; telomerase; TRF1; TRF2; tankyrase ID MAMMARY EPITHELIAL-CELLS; MAMMALIAN TELOMERES; COMPLEX; LENGTH; TRF1; ORGANIZATION; SENESCENCE; GROWTH; POT1; FIBROBLASTS AB Telomeres are specialized heterochromatin at the ends of linear chromosomes. Telomeres are crucial for maintaining genome stability and play important roles in cellular senescence and tumor biology. Six core proteins-TRF1, TRF2, TIN2, POT1, TPP1 and Rap1 (termed the telosome or shelterin complex)-regulate telomere structure and function. One of these proteins, TIN2, regulates telomere length and structure indirectly by interacting with TRF1, TRF2 and TPP1, but no direct function has been attributed to TIN2. Here we present evidence for a TIN2 isoform (TIN2L) that differs from the originally described TIN2 isoform (TIN2S) in two ways: TIN2L contains an additional 97 amino acids, and TIN2L associates strongly with the nuclear matrix. Stringent salt and detergent conditions failed to extract TIN2L from the nuclear matrix, despite removing other telomere components, including TIN2S. In human mammary epithelial cells, each isoform showed a distinct nuclear distribution both as a function of cell cycle position and telomere length. Our results suggest a dual role for TIN2 in mediating the function of the shelterin complex and tethering telomeres to the nuclear matrix. C1 [Desprez, Pierre-Yves] Calif Pacific Med Ctr, Canc Res Inst, San Francisco, CA 94107 USA. [Kaminker, Patrick G.; Desprez, Pierre-Yves; Campisi, Judith] Buck Inst Age Res, Novato, CA USA. [Kaminker, Patrick G.; Kim, Sahn-Ho; Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Desprez, PY (reprint author), Calif Pacific Med Ctr, Canc Res Inst, 475 Brannan St,Suite 220, San Francisco, CA 94107 USA. EM pydesprez@cpmcri.org FU National Institutes of Health [AG09909, AG017242] FX We thank Dr. Martha Stampfer (Lawrence Berkeley National Laboratory, Berkeley, CA) for providing 184A1 human mammary epithelial cells. This work was supported by grants AG09909 and AG017242 from the National Institutes of Health. NR 49 TC 17 Z9 20 U1 0 U2 1 PU LANDES BIOSCIENCE PI AUSTIN PA 1002 WEST AVENUE, 2ND FLOOR, AUSTIN, TX 78701 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD MAR 15 PY 2009 VL 8 IS 6 BP 931 EP 939 DI 10.4161/cc.8.6.7941 PG 9 WC Cell Biology SC Cell Biology GA 426KG UT WOS:000264706600024 PM 19229133 ER PT J AU Sharp, JL Borkowski, JJ Schmoyer, D Daly, DS Purvine, S Cannon, WR Hurst, GB AF Sharp, Julia L. Borkowski, John J. Schmoyer, Denise Daly, Don S. Purvine, Samuel Cannon, William R. Hurst, Gregory B. TI Statistically appraising process quality of affinity isolation experiments SO COMPUTATIONAL STATISTICS & DATA ANALYSIS LA English DT Article ID PROTEIN IDENTIFICATIONS; PROTEOMICS AB Quality affinity isolation experiments are necessary to identify valid protein-protein interactions. Biological error, processing error, and random variability can reduce the quality of an experiment, and thus hinder the identification of protein interaction pairs. Appraising affinity isolation assay quality is essential to inferring protein associations. An important step of the assay is the mass spectrometric identification of proteins. To evaluate this step, a known mixture of proteins is processed through a mass spectrometer as a quality control mixture. If the mass spectrometer yields unexpected results, the process is currently qualitatively evaluated, tuned, and reset. Statistical quality control (SQC) procedures, including the use of cumulative sum, the individual measurement, and moving range charts are implemented to analyze the stability of the mass spectrometric analysis. The SQC measures presented can assist in establishing preliminary control limits to identify an out-of-control process and investigate assignable causes for shifts in the process mean in real time. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sharp, Julia L.] Clemson Univ, Dept Appl Econ & Stat, Clemson, SC 29634 USA. [Borkowski, John J.] Montana State Univ, Bozeman, MT 59717 USA. [Schmoyer, Denise; Hurst, Gregory B.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Daly, Don S.; Purvine, Samuel; Cannon, William R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sharp, JL (reprint author), Clemson Univ, Dept Appl Econ & Stat, 237 Barre Hall, Clemson, SC 29634 USA. EM jsharp@clemson.edu RI Cannon, William/K-8411-2014 OI Cannon, William/0000-0003-3789-7889 FU Genomics; U.S. Department of Energy Office of Advanced Scientific Computing Research [47901]; Office of Biological and Environmental Research [41966, 43930]; U.S. Department of Energy [DE-AC05-76RL01830, DE-AC05-00OR22725] FX We wish to thank Trish K. Lankford at Oak Ridge National Laboratory for her expert technical assistance. NR 14 TC 1 Z9 1 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9473 J9 COMPUT STAT DATA AN JI Comput. Stat. Data Anal. PD MAR 15 PY 2009 VL 53 IS 5 BP 1720 EP 1726 DI 10.1016/j.csda.2008.05.011 PG 7 WC Computer Science, Interdisciplinary Applications; Statistics & Probability SC Computer Science; Mathematics GA 427AH UT WOS:000264751000018 ER PT J AU Hellweg, S Demou, E Bruzzi, R Meijer, A Rosenbaum, RK Huijbregts, MAJ McKone, TE AF Hellweg, Stefanie Demou, Evangelia Bruzzi, Raffaella Meijer, Arien Rosenbaum, Ralph K. Huijbregts, Mark A. J. McKone, Thomas E. TI Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Review ID HUMAN HEALTH DAMAGES; ORGANIC-COMPOUNDS; WORKER EXPOSURE; INTAKE FRACTION; TRICHLOROETHYLENE; VENTILATION; MODEL; ROOM; PERCHLOROETHYLENE; RADIOACTIVITY AB Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers' or consumers' health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA. C1 [Hellweg, Stefanie; Demou, Evangelia] ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland. [Bruzzi, Raffaella] Univ Lausanne, Inst Occupat Hlth, CH-1015 Lausanne, Switzerland. [Meijer, Arien] Delft Univ Technol, Urban & Mobil Studies, OTB Res Inst Housing, NL-2600 AA Delft, Netherlands. [Rosenbaum, Ralph K.] Ecole Polytech, Dept Chem Engn, CIRAIG, Montreal, PQ H3C 3A7, Canada. [Huijbregts, Mark A. J.] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hellweg, S (reprint author), ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland. EM stefanie.hellweg@ifu.baug.ethz.ch RI Huijbregts, Mark/B-8971-2011; OI Hellweg, Stefanie/0000-0001-6376-9878; Rosenbaum, Ralph/0000-0002-7620-1568; Demou, Evangelia/0000-0001-8616-525X NR 61 TC 67 Z9 68 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2009 VL 43 IS 6 BP 1670 EP 1679 DI 10.1021/es8018176 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 417WI UT WOS:000264108800007 PM 19368156 ER PT J AU Kaplan, PO Decarolis, J Thorneloe, S AF Kaplan, P. Ozge Decarolis, Joseph Thorneloe, Susan TI Is It Better To Burn or Bury Waste for Clean Electricity Generation? SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MUNICIPAL SOLID-WASTE; DECISION-SUPPORT TOOL; LABORATORY-SCALE LANDFILLS; LIFE-CYCLE ASSESSMENT; ENERGY PROJECTS; MANAGEMENT; COMBUSTION; COMPONENTS; INVENTORY; MODEL AB The use of municipal solid Waste (MSW) to generate electricity through landfill-gas-to-energy (LFGTE) and waste-to-energy (WTE) projects represents roughly 14% of U.S. nonhydro renewable electricity generation. Although various aspects of LFGTE and WTE have been analyzed in the literature, this paper is the first to present a comprehensive set of life-cycle emission factors per unit of electricity generated for these energy recovery options. In addition, sensitivity analysis is conducted on key inputs (e.g., efficiency of the WTE plant, landfill gas management schedules, oxidation rate, and waste composition) to quantify the variability in the resultant life-cycle emissions estimates. While methane from landfills results from the anaerobic breakdown of biogenic materials, the energy derived from WTE results from the combustion of both biogenic and fossil materials. The greenhouse gas emissions for WTE ranges from 0.4 to 1.5 MTCO(2)e/MWh, whereas the most agressive LFGTE scenerio results in 2.3 MTCO(2)e/MWh. WTE also produces lower NO, emissions than LFGTE, whereas SO, emissions depend on the specific configurations of WTE and LFGTE. C1 [Decarolis, Joseph] US EPA, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Thorneloe, Susan] N Carolina State Univ, Dept Civil Engn, Raleigh, NC 27695 USA. RP Kaplan, PO (reprint author), US EPA, Oak Ridge Inst Res & Educ Postdoctoral Fellowship, Oak Ridge, TN USA. EM kaplan.ozge@epa.gov RI DeCarolis, Joseph/F-4869-2013; OI DeCarolis, Joseph/0000-0003-4677-4522 NR 28 TC 34 Z9 34 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2009 VL 43 IS 6 BP 1711 EP 1717 DI 10.1021/es802395e PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 417WI UT WOS:000264108800012 PM 19368161 ER PT J AU Price, PN Sohn, MD Lacommare, KSH McWilliams, JA AF Price, Phillip N. Sohn, Michael D. Lacommare, Kristina S. H. McWilliams, Jennifer A. TI Framework for Evaluating Anthrax Risk in Buildings SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BACILLUS-ANTHRACIS; QUANTITATIVE PCR; SURFACE; INHALATION; INFECTION; SPORES AB If Bacillus anthracis (BA), the organism that causes anthrax, is known or suspected to have contaminated a building, a critical decision is what level of contamination is unacceptable. This decision has two components: (1) what is the relationship between the degree of contamination and the risk to occupants, (2) and what is an acceptable risk to occupants? These lead to a further decision: (3) how many samples must be taken to determine whether a building is unacceptably contaminated? We discuss existing data that bear on these questions, and introduce a nomogram that can be used to investigate the relationship between risk of contracting anthrax, the surface concentration of BA, the probability of detection, and the number of samples needed to ensure detection with a given degree of certainty. The same approach could be used for other agents that are dangerous due to resuspension of deposited particles. C1 [Price, Phillip N.; Sohn, Michael D.; Lacommare, Kristina S. H.; McWilliams, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Price, PN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM pnprice@lbl.gov FU Office of Chemical and Biological Countermeasures of the Science and Technology Directorate of the Department of Homeland Security; U.S. Department of Energy [DE-AC02-705CH11231] FX This work was supported in part by the Office of Chemical and Biological Countermeasures of the Science and Technology Directorate of the Department of Homeland Security and performed under U.S. Department of Energy Contract No. DE-AC02-705CH11231. NR 13 TC 12 Z9 12 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2009 VL 43 IS 6 BP 1783 EP 1787 DI 10.1021/es802506p PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 417WI UT WOS:000264108800023 PM 19368172 ER PT J AU Michalsen, MM Peacock, AD Smithgal, AN White, DC Spain, AM Sanchez-Rosario, Y Krumholz, LR Kelly, SD Kemner, KM Mckinley, J Heald, SM Bogle, MA Watson, DB Istok, JD AF Michalsen, Mandy M. Peacock, Aaron D. Smithgal, Amanda N. White, David C. Spain, Anne M. Sanchez-Rosario, Yamil Krumholz, Lee R. Kelly, Shelly D. Kemner, Kenneth M. Mckinley, James Heald, Steve M. Bogle, Mary Anna Watson, David B. Istok, Jonathan D. TI Treatment of Nitric Acid-, U(VI)-, and Tc(VII)-Contaminated Groundwater in Intermediate-Scale Physical Models of an In Situ Biobarrier SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CONTAMINATED SUBSURFACE SEDIMENTS; PHOSPHOLIPID FATTY-ACID; REAL-TIME PCR; MICROBIAL COMMUNITIES; RIBOSOMAL-RNA; SP-NOV; FE(III)-REDUCING BACTERIA; REDUCING CONDITIONS; POROUS-MEDIUM; SAND COLUMNS AB Metal and hydrogen ion acidity and extreme nitrate concentratons at Department of Energy legacy waste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO(2))(3)(PO(4))(2)center dot 4H(2)O(s), which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater. C1 [Michalsen, Mandy M.] USA, Corps Engineers, Environm Engn & Technol Sect, Seattle, WA 98134 USA. [Peacock, Aaron D.; Smithgal, Amanda N.; White, David C.] Univ Tennessee, Ctr Biomarker Anal, Knoxville, TN 37932 USA. [Spain, Anne M.; Sanchez-Rosario, Yamil; Krumholz, Lee R.] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Mckinley, James] Pacific NW Natl Lab, William R Wiley Lab, Richland, WA 99352 USA. [Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bogle, Mary Anna; Watson, David B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Istok, Jonathan D.] Oregon State Univ, Dept Civil Engn, Corvallis, OR 97331 USA. RP Michalsen, MM (reprint author), USA, Corps Engineers, Environm Engn & Technol Sect, Seattle, WA 98134 USA. EM mandy.m.michalsen@usace.army.mil RI ID, MRCAT/G-7586-2011; Watson, David/C-3256-2016 OI Watson, David/0000-0002-4972-4136 FU DOE Office of Science (OS) [FG03-02ER63443, DE-FC02-96ER62278, FG02-OOER62986, FSU F48792, DE-AC02-06CH11357]; Office of Biological and Environmental Research (BER); Environmental Remediation Sciences Program (ERSP); Integrative Graduate Education and Research Traineeship (IGERT); National Science Foundation; NSERC FX This research was supported by Grants FG03-02ER63443, DE-FC02-96ER62278, and FG02-OOER62986 (subcontract FSU F48792) from the DOE Office of Science (OS), Office of Biological and Environmental Research (BER), Environmental Remediation Sciences Program (ERSP) (formerly Natural and Accelerated Bioremediation Research Program). Additional support was provided by Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation. The Advanced Photon Source (APS) is supported by the DOE OS, Office of Basic Energy Sciences under Contract DE-AC02-06CH11357. The Materials Research Collaborative Access Team (MR-CAT) operations are supported by the US DOE OS and the MR-CAT member institutions. The PNC/XOR facilities are supported by the US DOE OS, the APS, a major facilities access grant from NSERC, the University of Washington, and Simon Fraser University. We also thank Jesse Jones, Robert Laughman, Ben Garcia, Ellie Seiko, Melora Park, and Mohammad Azizian for their help in field and laboratory work. NR 84 TC 12 Z9 12 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2009 VL 43 IS 6 BP 1952 EP 1961 DI 10.1021/es8012485 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 417WI UT WOS:000264108800049 PM 19368198 ER PT J AU Wadia, C Alivisatos, AP Kammen, DM AF Wadia, Cyrus Alivisatos, A. Paul Kammen, Daniel M. TI Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOLAR-CELLS; ENERGY; TIME; RESOURCES; EMISSIONS; ECONOMICS; SILICON; TECHNOLOGY; PLANET AB Solar photovoltaics have great promise for a low-carbon future but remain expensive relative to other technologies. Greatly increased penetration of photovoltaics into global energy markets requires an expansion in attention from designs of high-performance to those that can deliver significantly lower cost per kilowatt-hour. To evaluate a new set of technical and economic performance targets, we examine material extraction costs and supply constraints for 23 promising semiconducting materials. Twelve composite materials systems were found to have the capacity to meet or exceed the annual worldwide electricity consumption of 17 000 TWh, of which nine have the potential for a significant cost reduction over crystalline silicon. We identify a large material extraction cost (cents/watt) gap between leading thin film materials and a number of unconventional solar cell candidates including FeS(2), CuO, and Zn(3)P(2). We find that devices performing below 10% power conversion efficiencies deliver the same lifetime energy output as those above 20% when a 3/4 material reduction is achieved. Here, we develop a roadmap emphasizing low-cost alternatives that could become a dominant new approach for photovoltaics research and deployment C1 [Wadia, Cyrus; Kammen, Daniel M.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Wadia, Cyrus; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kammen, Daniel M.] Univ Calif Berkeley, Goldman Sch Publ Policy, Berkeley, CA 94720 USA. [Kammen, Daniel M.] Univ Calif Berkeley, Renewable & Appropriate Energy Lab, Berkeley, CA 94720 USA. RP Kammen, DM (reprint author), Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. EM kammen@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Energy Foundation, the Karsten Family Foundation Endowment of the Renewable and Appropriate Energy Laboratory; Class of 1935 FX C.W. thanks The Environmental Protection Agency for the EPA STAR Fellowship and the Alivisatos Laboratory at U.C. Berkeley for continued support in the scientific exploration of new material systems. This work was supported by the Energy Foundation, the Karsten Family Foundation Endowment of the Renewable and Appropriate Energy Laboratory, and the Class of 1935. We thank Dr. Becca Jones, Dr. Ilan Gur, Dr. Neil Fromer, Naim Darghouth, Dr. Yue Wu, Dr. Joseph Luther, Dr. Brian Wright, and Dr. Eicke Webber for helpful discussions. NR 41 TC 579 Z9 587 U1 33 U2 272 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2009 VL 43 IS 6 BP 2072 EP 2077 DI 10.1021/es8019534 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 417WI UT WOS:000264108800067 PM 19368216 ER PT J AU Stubbs, JE Veblen, LA Elbert, DC Zachara, JM Davis, JA Veblen, DR AF Stubbs, Joanne E. Veblen, Linda A. Elbert, David C. Zachara, John M. Davis, James A. Veblen, David R. TI Newly recognized hosts for uranium in the Hanford Site vadose zone SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RARE-EARTH-ELEMENTS; PLASMA-MASS-SPECTROMETRY; ZIRCONIUM-PHOSPHATE; GEOLOGICAL-MATERIALS; EXCHANGE BEHAVIOR; ION-EXCHANGE; URANYL IONS; SORPTION; SEDIMENTS; U(VI) AB Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO(2))(2)(PO(4))(2)center dot 8H(2)O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Stubbs, Joanne E.; Veblen, Linda A.; Elbert, David C.; Veblen, David R.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Veblen, Linda A.] US Nucl Regulatory Commiss, Rockville, MD 20852 USA. [Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Davis, James A.] US Geol Survey, Menlo Pk, CA 94025 USA. RP Stubbs, JE (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. EM jstubbs1@jhu.edu RI Stubbs, Joanne/F-9710-2013 OI Stubbs, Joanne/0000-0002-8509-2009 FU USDOE BES [DE-FG01-06ER06-01]; U.S. Nuclear Regulatory Commission [JCN-N6375, JCN-Y6462] FX Funding support was provided by USDOE BES Grant # DE-FG01-06ER06-01 and the U.S. Nuclear Regulatory Commission Contract # JCN-N6375 and JCN-Y6462. EMPA, FIB work, and TEM were conducted at Johns Hopkins University. Chemical digestion and ICP-MS analysis for total Zr and U concentrations were conducted at the Washington State University GeoAnalytical Lab. We are grateful to our Associate Editor, Dr. Donald Sparks, and to Dr. Jeffrey Catalano and two anonymous reviewers, for their thoughtful comments and suggestions. NR 48 TC 52 Z9 52 U1 4 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 15 PY 2009 VL 73 IS 6 BP 1563 EP 1576 DI 10.1016/j.gca.2008.12.004 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 419ZQ UT WOS:000264258600003 ER PT J AU Froberg, M Hanson, PJ Trumbore, SE Swanston, CW Todd, DE AF Froberg, Mats Hanson, Paul J. Trumbore, Susan E. Swanston, Christopher W. Todd, Donald E. TI Flux of carbon from C-14-enriched leaf litter throughout a forest soil mesocosm SO GEODERMA LA English DT Article DE Soil organic carbon; Dissolved organic carbon; Radiocarbon; Forest soil ID DISSOLVED ORGANIC-MATTER; RESPIRATION; NITROGEN; STABILIZATION; THROUGHFALL; DEPOSITION; DYNAMICS; INPUT; C-14; CO2 AB The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from C-14-enriched (about 1000 parts per thousand) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms were placed in the field for 17 months during which time fluxes and C-14 content of DOC and CO2 were measured. Changes in C-14 in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and C-14 budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Delta C-14 signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retention was low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale. (C) 2008 Elsevier B.V. All rights reserved. C1 [Froberg, Mats; Hanson, Paul J.; Todd, Donald E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Trumbore, Susan E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Swanston, Christopher W.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Froberg, M (reprint author), SLU, Dept Soil & Environm, POB 7001, SE-75007 Uppsala, Sweden. EM mats.froberg@sml.slu.se RI Hanson, Paul J./D-8069-2011; Froberg, Mats/E-8741-2012; Trumbore, Susan/B-1948-2013 OI Hanson, Paul J./0000-0001-7293-3561; FU U.S. Department of Energy (DOE); Office of Science, Biological and Environmental Research; UT-Battelle; LLC [DE-AC05-00OR22725]; University of California; LLNL [W-7405-EngA8] FX Funding for the EBIS project was provided by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, as a part of the Terrestrial Carbon Processes Program. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. Work at Lawrence Livermore National Laboratory (LLNL) was performed under the auspices of the DOE by the University of California, LLNL, under Contract no. W-7405-EngA8. We wish to thank Tom Guilderson, Lawrence Livermore National Laboratory, for analyses of 14C. NR 24 TC 15 Z9 16 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 J9 GEODERMA JI Geoderma PD MAR 15 PY 2009 VL 149 IS 3-4 BP 181 EP 188 DI 10.1016/j.geoderma.2008.11.029 PG 8 WC Soil Science SC Agriculture GA 421LJ UT WOS:000264360100001 ER PT J AU Calton, MA Ersoy, BA Zhang, SM Kane, JP Malloy, MJ Pullinger, CR Bromberg, Y Pennacchio, LA Dent, R McPherson, R Ahituv, N Vaisse, C AF Calton, Melissa A. Ersoy, Baran A. Zhang, Sumei Kane, John P. Malloy, Mary J. Pullinger, Clive R. Bromberg, Yana Pennacchio, Len A. Dent, Robert McPherson, Ruth Ahituv, Nadav Vaisse, Christian TI Association of functionally significant Melanocortin-4 but not Melanocortin-3 receptor mutations with severe adult obesity in a large North American case-control study SO HUMAN MOLECULAR GENETICS LA English DT Article ID MORBID-OBESITY; GENE VARIANTS; BODY-MASS; METABOLIC SYNDROME; CHILDHOOD OBESITY; ONSET OBESITY; FAT MASS; PROTEIN; MC4R; POLYMORPHISMS AB Functionally significant heterozygous mutations in the Melanocortin-4 receptor (MC4R) have been implicated in 2.5% of early onset obesity cases in European cohorts. The role of mutations in this gene in severely obese adults, particularly in smaller North American patient cohorts, has been less convincing. More recently, it has been proposed that mutations in a phylogenetically and physiologically related receptor, the Melanocortin-3 receptor (MC3R), could also be a cause of severe human obesity. The objectives of this study were to determine if mutations impairing the function of MC4R or MC3R were associated with severe obesity in North American adults. We studied MC4R and MC3R mutations detected in a total of 1821 adults (889 severely obese and 932 lean controls) from two cohorts. We systematically and comparatively evaluated the functional consequences of all mutations found in both MC4R and MC3R. The total prevalence of rare MC4R variants in severely obese North American adults was 2.25% (CI(95%): 1.44-3.47) compared with 0.64% (CI(95%): 0.26-1.43) in lean controls (P < 0.005). After classification of functional consequence, the prevalence of MC4R mutations with functional alterations was significantly greater when compared with controls (P < 0.005). In contrast, the prevalence of rare MC3R variants was not significantly increased in severely obese adults [0.67% (CI(95%): 0.27-1.50) versus 0.32% (CI(95%): 0.06-0.99)] (P = 0.332). Our results confirm that mutations in MC4R are a significant cause of severe obesity, extending this finding to North American adults. However, our data suggest that MC3R mutations are not associated with severe obesity in this population. C1 [Calton, Melissa A.; Ersoy, Baran A.; Zhang, Sumei; Vaisse, Christian] Univ Calif San Francisco, Ctr Diabet, San Francisco, CA 94143 USA. [Kane, John P.; Malloy, Mary J.; Pullinger, Clive R.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. [Kane, John P.; Malloy, Mary J.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [Kane, John P.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. [Pullinger, Clive R.] Univ Calif San Francisco, Dept Physiol Nursing, San Francisco, CA 94143 USA. [Bromberg, Yana] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Bromberg, Yana] Columbia Univ, Ctr Computat Biol & Bioinformat C2B2, New York, NY 10032 USA. [Pennacchio, Len A.; Ahituv, Nadav] US DOE, Joint Genome Inst, Walnut Creek, CA 94720 USA. [Pennacchio, Len A.; Ahituv, Nadav] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Dent, Robert; McPherson, Ruth] Univ Ottawa, Div Cardiol, Inst Heart, Ottawa, ON K1Y 4W7, Canada. [Ahituv, Nadav] Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA. [Ahituv, Nadav] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA. RP Vaisse, C (reprint author), Univ Calif San Francisco, Ctr Diabet, 513 Parnassus Ave,HSW 1113, San Francisco, CA 94143 USA. EM vaisse@diabetes.ucsf.edu RI Vaisse, Christian/F-1067-2011; Ersoy, Baran/F-8192-2012; OI Ahituv, Nadav/0000-0002-7434-8144; Bromberg, Yana/0000-0002-8351-0844 FU NIDDK NIH HHS [DK60540, DK068152, R01 DK060540]; NIGMS NIH HHS [GM61390] NR 44 TC 66 Z9 68 U1 2 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0964-6906 J9 HUM MOL GENET JI Hum. Mol. Genet. PD MAR 15 PY 2009 VL 18 IS 6 BP 1140 EP 1147 DI 10.1093/hmg/ddn431 PG 8 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 413XT UT WOS:000263828100015 PM 19091795 ER PT J AU Mantic, V AF Mantic, V. TI Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Inclusion debond; Interface crack; Crack nucleation; Strength; Fracture toughness; Finite fracture mechanics; Size effect; Scaling; Brittleness number; Composites ID FINITE FRACTURE-MECHANICS; SINGLE-FIBER TEST; MICROMECHANICAL VIEW; POLYMERIC COMPOSITES; VOID NUCLEATION; MODE MIXITY; MATRIX; FAILURE; COMPRESSION; STRENGTH AB The plane strain problem of a single circular cylindrical inclusion embedded in an unbounded matrix subjected to a remote uniform uniaxial transverse tension is studied. A theoretical model for the simultaneous prediction of the initial size of a crack originated at the inclusion/matrix interface (or equivalently the initial polar angle of this crack) and of the critical remote tension required to originate this crack is developed. Isotropic and linear elastic behaviour of both materials, with the inclusion being stiffer than the matrix, is assumed. The interface is considered to be strong (providing continuity of displacements and tractions across the interface surface) and brittle. The model developed is based on the classical analytic solutions for the above-mentioned inclusion problem without and with a crack situated at the inclusion/matrix interface and a recently introduced coupled stress and energy criterion of failure by Leguillon [Eur. J. Mech. A/Solids 21 (2002) 61-72]. A new dimensionless structural parameter gamma, depending on bimaterial and interface properties together with the inclusion radius a, which plays a key role in characterizing the interface crack onset, is introduced. Asymptotic behaviour of the predicted critical remote tension and the interface crack length/polar angle at the onset are characterized for small and large values of gamma and a. A size effect inherent to this problem is predicted and analysed. The following asymptotic characteristics of this size effect are noteworthy: (i) for small inclusion radii a, the polar angle of the crack at onset is constant (independent of a), whereas the critical remote tension increases with decreasing a, being inversely proportional to the square root of a; (ii) for large inclusion radii a, the length of the crack at onset and the critical remote tension are approximately constant. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Mantic, V.] Univ Seville, Sch Engn, Grp Elast & Strength Mat, Seville 41092, Spain. RP Mantic, V (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM mantic@esi.us.es RI Mantic, Vladislav/G-1111-2010 OI Mantic, Vladislav/0000-0002-7569-7442 FU Spanish Ministry of Education, Culture and Sport [TRA2005-06764]; Junta de Andalucia [TEP1207]; Oak Ridge National Laboratory (ORNL) FX The author thanks Prof. Federico Paris for his motivation and continuous support of this work. Comments by Prof. Federico Paris and Dr. Enrique Graciani have substantially improved the final version of the manuscript. Stimulating discussions with Dr. Elena Correa and use of her Mathematica code of the Toya's solution are also gratefully acknowledged. This work was supported by the Spanish Ministry of Education, Culture and Sport through Project TRA2005-06764, and by the Junta de Andalucia, through the Project of Excellence TEP1207. Part of the present work was performed during a research stay at the Oak Ridge National Laboratory (ORNL) in 2008. The support of this stay by Dr. Len Cray (ORNL) and by the Junta de Andalucia (Estancia de excelencia) is also gratefully acknowledged. NR 46 TC 63 Z9 63 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD MAR 15 PY 2009 VL 46 IS 6 BP 1287 EP 1304 DI 10.1016/j.ijsolstr.2008.10.036 PG 18 WC Mechanics SC Mechanics GA 417AU UT WOS:000264047700002 ER PT J AU Anderson, GIR Wei, HX Porter, NA Harnchana, V Brown, AP Brydson, RMD Arena, DA Dvorak, J Han, XF Marrows, CH AF Anderson, G. I. R. Wei, H. -X. Porter, N. A. Harnchana, V. Brown, A. P. Brydson, R. M. D. Arena, D. A. Dvorak, J. Han, X. -F. Marrows, C. H. TI Changes in the layer roughness and crystallography during the annealing of CoFeB/MgO/CoFeB magnetic tunnel junctions SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE annealing; boron alloys; cobalt alloys; crystallography; interface roughness; iron alloys; magnesium compounds; spin polarised transport; transmission electron microscopy; tunnelling magnetoresistance ID ROOM-TEMPERATURE; MAGNETORESISTANCE; SCATTERING; COFEB AB Annealing is necessary to achieve giant tunneling magnetoresistance (TMR) values in sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs). In this study three complementary techniques were used to study the resulting changes in junction microstructure. The as-deposited TMR was modest, 5%, but rose to 101% after annealing at 325 degrees C for 1 h, corresponding to the tunneling spin polarization rising from 16% to 58%. Soft x-ray resonant magnetic scattering showed a roughening of the magnetic interfaces of the MTJ free layer, confirmed by transmission electron microscopy, which also showed the changes in the CoFeB and MgO to a lattice-matched polycrystalline form. C1 [Anderson, G. I. R.; Porter, N. A.; Marrows, C. H.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Wei, H. -X.; Han, X. -F.] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100080, Peoples R China. [Harnchana, V.; Brown, A. P.; Brydson, R. M. D.] Univ Leeds, Inst Mat Res, Leeds LS2 9JT, W Yorkshire, England. [Arena, D. A.] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. [Dvorak, J.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Anderson, GIR (reprint author), Cambridge Display Technol, Madingley Rise,Madingley Rd, Cambridge CB3 0TX, England. EM c.h.marrows@leeds.ac.uk RI Marrows, Christopher/D-7980-2011; OI Brown, Andy/0000-0001-9692-2154; Marrows, Christopher/0000-0003-4812-6393 FU Chinese MOST [2006CB932200]; National Natural Science Foundation of China [10874225, 50721001]; UK EPSRC; Royal Society; Department of Energy, Office of Basic Energy Sciences FX We would like to thank A. T. Hindmarch, C. J. Kinane, S. Roy, and S. K. Sinha for useful discussions. We are grateful to the UK EPSRC, the Royal Society, and the Department of Energy, Office of Basic Energy Sciences for support, as well as the partial support by the Chinese MOST fund No. 2006CB932200, National Natural Science Foundation of China fund Nos. 10874225 and 50721001. NR 22 TC 5 Z9 5 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 063904 DI 10.1063/1.3081652 PG 3 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000116 ER PT J AU Bowden, NS Bernstein, A Dazeley, S Svoboda, R Misner, A Palmer, T AF Bowden, N. S. Bernstein, A. Dazeley, S. Svoboda, R. Misner, A. Palmer, T. TI Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE neutrino detection; nuclear materials safeguards ID NEUTRINO; SPECTRA; POWER AB By operating an antineutrino detector of simple design during several fuel cycles, we observed long term changes in antineutrino flux that result from the isotopic evolution of a commercial pressurized water reactor. Measurements made with simple antineutrino detectors of this kind offer an alternative means for verifying fissile inventories at reactors, as part of International Atomic Energy Agency and other reactor safeguards regimes. C1 [Bernstein, A.; Dazeley, S.; Svoboda, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bowden, N. S.] Sandia Natl Labs, Livermore, CA 94550 USA. [Svoboda, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Misner, A.; Palmer, T.] Oregon State Univ, Dept Nucl Engn, Corvallis, OR 97331 USA. RP Bowden, NS (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM nbowden@llnl.gov OI Bowden, Nathaniel/0000-0002-6115-0956 NR 17 TC 17 Z9 17 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 064902 DI 10.1063/1.3080251 PG 8 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000183 ER PT J AU Hong, S Klug, JA Park, M Imre, A Bedzyk, MJ No, K Petford-Long, A Auciello, O AF Hong, Seungbum Klug, Jeffrey A. Park, Moonkyu Imre, Alexandra Bedzyk, Michael J. No, Kwangsoo Petford-Long, Amanda Auciello, Orlando TI Nanoscale piezoresponse studies of ferroelectric domains in epitaxial BiFeO3 nanostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 20th International Symposium on Integrated Ferroelectrics CY JUN, 2008 CL Biopolis, Singapore, SINGAPORE HO Biopolis ID THIN-FILMS; MICROSCOPE AB We report the dependence of the ferroelectric domain configuration and switching behavior on the shape (square versus round) of epitaxial BiFeO3 (BFO) nanostructures. We fabricated (001) oriented BFO(120 nm)/SrRuO3(SRO, 125 nm) film layers on (001) SrTiO3 single crystals by rf magnetron sputter deposition, and patterned them to square (500x500 nm(2)) and round (502 nm in diameter) shaped nanostructures by focused ion-beam lithography. The surface morphology and the crystalline structure of the nanostructures were characterized by scanning electron microscopy and x-ray diffraction, respectively, while the domain configuration was investigated using piezoelectric force microscopy. We found that the square-shaped nanostructures exhibit a single variant domain configuration aligned along the [(1) over bar1 (1) over bar] direction, whereas the round- shaped nanostructures exhibit seven variants of domain configuration along the [(1) over bar1 (1) over bar], [1 (1) over bar(1) over bar], [11 (1) over bar1], [111], [(1) over bar 11], [1(1) over bar1] and [(11) over bar1] directions. Moreover, local d(33) piezoelectric coefficient measurements showed hysteresis loops with a strong displacement in the voltage axis (strong imprint) for the square- shaped nanostructures, while the round- shaped ones exhibited more symmetric loops. These findings have critical implications for the development of nanocapacitors for gigabyte to terabyte nonvolatile ferroelectric memories. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3055412] C1 [Hong, Seungbum; Klug, Jeffrey A.; Park, Moonkyu; Imre, Alexandra; Bedzyk, Michael J.; Petford-Long, Amanda; Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Imre, Alexandra; Auciello, Orlando] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Klug, Jeffrey A.; Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. RP Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hong@anl.gov RI Bedzyk, Michael/B-7503-2009; Joshi-Imre, Alexandra/A-2912-2010; No, Kwangsoo/G-4891-2010; No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009; Klug, Jeffrey/A-3653-2013; Bedzyk, Michael/K-6903-2013; Petford-Long, Amanda/P-6026-2014 OI Joshi-Imre, Alexandra/0000-0002-4271-1623; Hong, Seungbum/0000-0002-2667-1983; Petford-Long, Amanda/0000-0002-3154-8090 NR 13 TC 28 Z9 28 U1 1 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 061619 DI 10.1063/1.3055412 PG 5 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000020 ER PT J AU Merkulov, IA Klein, KL Simpson, ML AF Merkulov, I. A. Klein, K. L. Simpson, M. L. TI A synergetic description of carbon nanofiber growth SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE carbon; catalysts; chemical potential; chemical vapour deposition; nanofibres; nanotechnology ID CHEMICAL-VAPOR-DEPOSITION; CATALYTIC GROWTH; NANOTUBES; FILAMENTS; MECHANISM; SURFACES; NUCLEATION AB A self-consistent mathematical model of the growth of carbon nanofiber in a catalytic chemical vapor deposition process has been developed. This model includes the balance equation for carbon transport through the catalyst and the equation for mechanical and chemical balance in the catalyst-nanofiber system. It is demonstrated that the most important parameter that governs the nanofiber growth behavior is the difference in the carbon chemical potentials in the catalyst and nanofiber. This parameter determines the carbon transport to the nanofiber. It is also responsible for the catalyst shape and topology of the interface between the catalyst and nanofiber. The solutions of the model are in qualitative agreement with numerous experimental results. The model can be used in designing experiments and explaining existing results. It leaves the opportunity for more a precise and complex mathematical calculation of different aspects of the growth process. C1 [Merkulov, I. A.] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia. [Merkulov, I. A.; Klein, K. L.; Simpson, M. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Knoxville, TN 37831 USA. [Klein, K. L.; Simpson, M. L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Knoxville, TN 37831 USA. [Klein, K. L.; Simpson, M. L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Merkulov, IA (reprint author), Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia. EM imp@mail.ornl.gov RI Simpson, Michael/A-8410-2011 OI Simpson, Michael/0000-0002-3933-3457 FU Division of Materials Sciences and Engineering Program of DOE Office of Science FX We would like to thank V. I. Merkulov and A. V. Melechko for fruitful discussion, G. Y. Merkulova, and M. Fuentes- Cabrera for the text revision. We acknowledge support from the Division of Materials Sciences and Engineering Program of DOE Office of Science. A portion of this research was conducted at the Center of Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities (DOE). NR 33 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 064305 DI 10.1063/1.3093687 PG 8 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000147 ER PT J AU Nguyen, DN Ashworth, SP Willis, JO AF Nguyen, Doan N. Ashworth, Stephen P. Willis, Jeffrey O. TI Numerical analysis of ac loss in bifilar stacks and coils of ion beam assisted deposition YBCO coated conductors SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE barium compounds; finite element analysis; high-temperature superconductors; ion beam assisted deposition; superconducting coils; superconducting tapes; yttrium compounds ID FAULT CURRENT LIMITER; HIGH-TEMPERATURE SUPERCONDUCTORS; FEM ANALYSIS; HTS AB In this paper we present a finite element model using the commercial COMSOL (R) software package for calculating the ac loss in bifilar stacks of high temperature superconducting tape. In the model, the current-voltage relationship characterizing the superconducting properties is assumed to follow a power law. The calculations were performed for infinite bifilar stacks with different values of layer-to-layer separation D. With appropriate settings for the boundary conditions, the numerical results agree well with the analytical data obtained from a recently proposed model [J. R. Clem, Phys. Rev. B 77, 134506 (2008)]. The numerical approach was also used to investigate the end effects in a bifilar stack to answer the following question: how many layers away from the end of a stack are required before the environment of a given layer is identical to that in an infinite stack? We find that the answer to this question depends strongly on the value of D. Based on this study, a model for calculating the ac loss in bifilar noninductively wound coils with a finite number of turns is proposed. C1 [Nguyen, Doan N.; Ashworth, Stephen P.; Willis, Jeffrey O.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RI Nguyen, Doan/F-3148-2010 NR 23 TC 10 Z9 10 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 063917 DI 10.1063/1.3100042 PG 7 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000129 ER PT J AU Singh, D Timofeeva, E Yu, W Routbort, J France, D Smith, D Lopez-Cepero, JM AF Singh, D. Timofeeva, E. Yu, W. Routbort, J. France, D. Smith, D. Lopez-Cepero, J. M. TI An investigation of silicon carbide-water nanofluid for heat transfer applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE heat transfer; nanofluidics; nanoparticles; optical microscopy; silicon compounds; thermal conductivity; viscosity; water; wide band gap semiconductors; X-ray scattering ID EFFECTIVE THERMAL-CONDUCTIVITY; BROWNIAN-MOTION; NANOPARTICLES; SUSPENSION; PARTICLES; MODEL AB Thermal conductivity and mechanical effects of silicon carbide nanoparticles uniformly dispersed in water were investigated. Mean size of SiC particles was 170 nm with a polydispersity of similar to 30% as determined from small-angle x-ray scattering and dynamic light scattering techniques. Room temperature viscosity of the nanofluids ranged from 2 to 3 cP for nominal nanoparticle loadings 4-7 vol %. On a normalized basis with water, viscosity of the nanofluids did not significantly change with the test temperature up to 85 degrees C. Optical microscopy of diluted nanofluid showed no agglomeration of the nanoparticles. Thermal conductivity of the fluid was measured as a function of the nominal nanoparticle loading ranging from 1 to 7 vol %. Enhancement in thermal conductivity was approximately 28% over that of water at 7 vol % particle loadings under ambient conditions. Enhancements in thermal conductivities for the nanofluids with varying nanoparticle loadings were maintained at test temperatures up to 70 degrees C. Results of thermal conductivity have been rationalized based on the existing theories of heat transfer in fluids. Implications of using this nanofluid for engineering cooling applications are discussed. C1 [Singh, D.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Timofeeva, E.; Yu, W.; Routbort, J.; France, D.; Smith, D.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Lopez-Cepero, J. M.] Univ Seville, Seville 41080, Spain. RP Singh, D (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dsingh@anl.gov RI Timofeeva, Elena/E-6391-2010 FU U. S. Department of Energy [DE-AC02-06CH11357] FX This work was sponsored by Michelin American Research and Development Corporation and by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory, managed by the University of Chicago Argonne LLC (USA). Use of the Advanced Photon Source was supported by the Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. Assistance from Dr. D. J. Cookson in performing SAXS run is highly appreciated. Authors are grateful to Dr. Steve Hartline of Saint Gobain for providing the SiC-water nanofluid formulations for this study. NR 25 TC 39 Z9 39 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 064306 DI 10.1063/1.3082094 PG 6 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000148 ER PT J AU Teixeira, FS Salvadori, MC Cattani, M Brown, IG AF Teixeira, F. S. Salvadori, M. C. Cattani, M. Brown, I. G. TI Gold-implanted shallow conducting layers in polymethylmethacrylate SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE atomic force microscopy; buried layers; conducting polymers; electrical conductivity; electron beam lithography; gold; ion implantation; Monte Carlo methods; plasma materials processing; polymer films; Rutherford backscattering; thin films ID ELECTRON-BEAM LITHOGRAPHY; DYNAMIC COMPOSITION CHANGES; POLY(METHYL METHACRYLATE); OPTICAL-PROPERTIES; ION-IMPLANTATION; SIMULATION; DEPOSITION; POLYMERS; NANOPARTICLES; PERCOLATION AB PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA. C1 [Teixeira, F. S.] Univ Sao Paulo, Polytech Sch, BR-05508900 Sao Paulo, Brazil. [Salvadori, M. C.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Brown, I. G.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Teixeira, FS (reprint author), Univ Sao Paulo, Polytech Sch, Ave Prof Luciano Gualberto,Travessa R 158, BR-05508900 Sao Paulo, Brazil. EM mcsalvadori@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. We thank the Laboratory of Integrated Systems of the Polytechnic School for the use of their HP 4140B facility for electrical measurements, and "Laboratorio de Materiais e Feixes Ionicos" of the Institute of Physics, University of Sao Paulo, for the RBS analysis. We are grateful to the Institute of Ion Beam Physics and Materials Research of the Forschungszentrum Dresden-Rossendorf, Germany, for making available to us their TRIDYN_FZR computer simulation code. NR 40 TC 23 Z9 23 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 064313 DI 10.1063/1.3088874 PG 5 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000155 ER PT J AU Wong-Ng, W Yang, Z Hu, YF Huang, Q Lowhorn, N Otani, M Kaduk, JA Li, Q AF Wong-Ng, W. Yang, Z. Hu, Y. F. Huang, Q. Lowhorn, N. Otani, M. Kaduk, J. A. Li, Q. TI Thermoelectric and structural characterization of Ba2Ho(Cu3-xCox)O6+y SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE barium compounds; crystal structure; electrical resistivity; high-temperature effects; holmium compounds; Seebeck effect; thermal conductivity; thermal stability ID SUBSTITUTED YBA2CU3O7-DELTA; SUPERCONDUCTIVITY; MERIT; BA2YCU3O7-DELTA; PEROVSKITE; ANOMALIES; CA3CO2O6; FIGURE; OXIDES; CHAINS AB The search for thermoelectric materials for power generation and for solid-state cooling has led to increased interest of layered cobalt-containing oxides because of their thermal stability at high temperature and their desirable thermoelectric properties. This paper examines the effect of substitution of Co in the layered pervoskite Ba2Ho(Cu3-xCox)O6+y (x=0.3, 0.4, 0.5, 0.6, and 1.0). Structural analysis using the neutron Rietveld refinement technique reveals that when x <= 0.4, Co substitutes mainly for Cu in the "chain sites" of the Ba2Ho(Cu3-xCox)O6+y structure. As x>0.4, Co also enters in the Cu-O "plane sites" as well. The thermoelectric properties of polycrystalline Ba2Ho(Cu3-xCox)O6+y samples were studied in the temperature range of 10-390 K. In general, as the cobalt content x increases, the resistivity and Seebeck coefficient of these samples increase while the thermal conductivity decreases. Among the five Ba2Ho(Cu3-xCox)O6+y compositions, the x=0.4 member gives the highest figure of merit ZT of approximate to 0.02 at approximately 270 K. C1 [Wong-Ng, W.; Yang, Z.; Huang, Q.; Lowhorn, N.; Otani, M.] NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Hu, Y. F.; Li, Q.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kaduk, J. A.] INEOS Res Ctr, Naperville, IL 60566 USA. RP Wong-Ng, W (reprint author), NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. EM winnie.wong-ng@nist.gov NR 39 TC 4 Z9 4 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 063706 DI 10.1063/1.3078810 PG 7 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000100 ER PT J AU Xie, Y Han, LB An, Q Zheng, LQ Luo, SN AF Xie, Yun Han, Li-Bo An, Qi Zheng, Lianqing Luo, Sheng-Nian TI Release melting of shock-loaded single crystal Cu SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE copper; heat transfer; melting; molecular dynamics method; shock wave effects; shock waves ID SIMULATION AB We investigate the melting of shock-loaded single crystal Cu during release from solid shock states with molecular dynamics simulations. Cu is subjected to planar shock loading along < 100 > with a piston velocity (u(p)) of 2-3 km s(-1) into the plastic regime. For u(p)>= 2.5 km s(-1) (above 170 GPa), release melting occurs continuously, and a sustained fully released state (liquid) can be achieved. The shocked crystal may undergo noticeable superheating before release melting. The release path can be regarded as an isentrope regardless of release melting. C1 [Xie, Yun; Han, Li-Bo; An, Qi] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. [Zheng, Lianqing] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32306 USA. [Luo, Sheng-Nian] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Xie, Y (reprint author), Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. EM sluo@lanl.gov RI Zheng, Lianqing/B-4171-2008; An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012 OI Luo, Sheng-Nian /0000-0002-7538-0541; FU NSF of China [40574043, 40537033]; U.S. Department of Energy [DE-AC5206NA25396] FX X.Y. and L.B.H. acknowledge the support from NSF of China Grant Nos. 40574043 and 40537033. L.Z. is grateful for W. Yang's support. S.N.L. is partially supported by an LDRD-DR project at LANL. LANL is under the auspices of U.S. Department of Energy under contract No. DE-AC5206NA25396. NR 18 TC 8 Z9 8 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 066103 DI 10.1063/1.3099597 PG 3 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000202 ER PT J AU Yao, K Auciello, O AF Yao, Kui Auciello, Orlando TI Preface to Special Topic: Selected Papers from the 20th International Symposium on Integrated Ferroelectrics, Biopolis, Singapore, June 2008 SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material DE ferroelectric storage; ferroelectric thin films; random-access storage C1 [Yao, Kui] ASTAR, Inst Mat Res & Engn, Singapore 117602, Singapore. [Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yao, K (reprint author), ASTAR, Inst Mat Res & Engn, 3 Res Link, Singapore 117602, Singapore. EM k-yao@imre.a-star.edu.sg RI Yao, Kui/K-7804-2012 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2009 VL 105 IS 6 AR 061501 DI 10.1063/1.3085784 PG 1 WC Physics, Applied SC Physics GA 427IW UT WOS:000264774000001 ER PT J AU Reysenbach, AL Hamamura, N Podar, M Griffiths, E Ferreira, S Hochstein, R Heidelberg, J Johnson, J Mead, D Pohorille, A Sarmiento, M Schweighofer, K Seshadri, R Voytek, MA AF Reysenbach, Anna-Louise Hamamura, N. Podar, M. Griffiths, E. Ferreira, S. Hochstein, R. Heidelberg, J. Johnson, J. Mead, D. Pohorille, A. Sarmiento, M. Schweighofer, K. Seshadri, R. Voytek, M. A. TI Complete and Draft Genome Sequences of Six Members of the Aquificales SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACTERIUM AQUIFEX-AEOLICUS; SP NOV.; SULFURIHYDROGENIBIUM-AZORENSE; MICROBIAL GENOMES AB The Aquificales are widespread in marine and terrestrial hydrothermal environments. Here, we report the complete and draft genome sequences of six new members of the Aquificales: two marine species, Persephonella marina strain EX-H1 and Hydrogenivirga strain 128-5-R1 (from the East Pacific Rise, 9 degrees 50.3'N, 104 degrees 17.5'W, and the Eastern Lau Spreading Center, 176 degrees 11.5'W, 20 degrees 45.8'S, respectively), and four terrestrial isolates, Sulfurihydrogenibium azorense strain Az-Fu1, Sulfurihydrogenibium yellowstonense strain SS-5, and Sulfurihydrogenibium strain Y03AOP1 (from Furnas, Azores, Portugal, and Calcite Springs and Obsidian Pool in Yellowstone National Park, United States, respectively), and the only thermoacidophilic isolate, Hydrogenobaculum strain Y04AAS1 (from a stream adjacent to Obsidian Pool). Significant differences among the different species exist that include nitrogen metabolism, hydrogen utilization, chemotaxis, and signal transduction, providing insights into their ecological niche adaptations. C1 [Reysenbach, Anna-Louise; Hamamura, N.] Portland State Univ, Dept Biol, Portland, OR 97201 USA. [Podar, M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Griffiths, E.] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8S 4L8, Canada. [Voytek, M. A.] US Geol Survey, Reston, VA 20192 USA. [Seshadri, R.] Synth Genom Inc, La Jolla, CA 92037 USA. [Schweighofer, K.] Affymetrix Corp, Santa Clara, CA 95051 USA. [Ferreira, S.; Johnson, J.; Sarmiento, M.] J Craig Venter Inst, Rockville, MD 20850 USA. [Hochstein, R.] Montana State Univ, Bozeman, MT 59715 USA. [Heidelberg, J.] Univ So Calif, Wrigley Inst Environm Studies, Dept Biol Sci, Avalon, CA 90704 USA. [Mead, D.] Lucigen Corp, Middleton, WI 53562 USA. [Pohorille, A.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94025 USA. RP Reysenbach, AL (reprint author), Portland State Univ, Dept Biol, Portland, OR 97201 USA. EM reysenbacha@pdx.edu RI Hamamura, Natsuko/D-8837-2013; OI Heidelberg, John/0000-0003-0673-3224; Podar, Mircea/0000-0003-2776-0205 FU NSF [0236856]; The Gordon and Betty Moore Foundation; Joint Genome Institute; GBMF FX We thank Jennifer Meneghin, Karl Rustenholtz, Isabel Ferreira, and all those who assisted in many different ways to see these genome sequences be made available to the scientific community. Many thanks in particular to Nikos Kyrpides and many others at JGI who were instrumental in facilitating the deposition of the data into IMG and data analysis. Thanks to Loren Hauser at Oak Ridge National Laboratory and the JGI annotation team for their help. We thank Jason Miller and Granger Sutton and their team for the ongoing development and maintenance of the Celera Assembler and related tools. We thank Robert Friedman for his leadership of the GBMF-funded project. We acknowledge the J. Craig Venter Institute (JCVI) Joint Technology Center, under the leadership of Yu-Hui Rogers, for producing the genomic libraries and the sequence data. NR 10 TC 48 Z9 520 U1 0 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR 15 PY 2009 VL 191 IS 6 BP 1992 EP 1993 DI 10.1128/JB.01645-08 PG 2 WC Microbiology SC Microbiology GA 413VB UT WOS:000263819500029 PM 19136599 ER PT J AU Lopez-Esteban, S Gutierrez-Gonzalez, CF Gremillard, L Saiz, E Tomsia, AP AF Lopez-Esteban, S. Gutierrez-Gonzalez, C. F. Gremillard, L. Saiz, E. Tomsia, A. P. TI Interfaces in graded coatings on titanium-based implants SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A LA English DT Article DE glass coating; enameling; titanium alloy; calcium phosphate; bioactivity; hydroxyapatite ID BIOACTIVE GLASS COATINGS; SIMULATED BODY-FLUID; SOL-GEL PROCESS; ELECTROPHORETIC DEPOSITION; MECHANICAL-PROPERTIES; APATITE FORMATION; IN-VITRO; HYDROXYAPATITE; TI6AL4V AB Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na(2)O-K(2)O-P(2)O(5) system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (> 60 wt % SiO(2)) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti(5)Si(3) layer. A surface layer containing a mixture of a low-silica glass (similar to 53 wt % SiO(2)) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 88A: 1010-1021, 2009 C1 [Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.; Gremillard, L.; Saiz, E.; Tomsia, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. [Gremillard, L.] Univ Lyon, INSA Lyon, CNRS, MATEIS,UMR 5510, F-69621 Villeurbanne, France. RP Lopez-Esteban, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 62R0203, Berkeley, CA 94720 USA. EM slopez@icmm.csic.es OI Gutierrez-Gonzalez, Carlos/0000-0002-4328-4635; Gremillard, Laurent/0000-0001-7258-6483 FU NIH/NIDCR [1R01DE11289] FX Contract grant sponsor: NIH/NIDCR; contract grant number: 1R01DE11289 NR 31 TC 14 Z9 14 U1 0 U2 8 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1549-3296 J9 J BIOMED MATER RES A JI J. Biomed. Mater. Res. Part A PD MAR 15 PY 2009 VL 88A IS 4 BP 1010 EP 1021 DI 10.1002/jbm.a.31935 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 407SD UT WOS:000263383700018 PM 18384170 ER PT J AU Zhao, R Ding, SJ Shen, YF Camp, DG Livesay, EA Udseth, H Smith, RD AF Zhao, Rui Ding, Shi-Jian Shen, Yufeng Camp, David G. Livesay, Eric A. Udseth, Harold Smith, Richard D. TI Automated metal-free multiple-column nanoLC for improved phosphopeptide analysis sensitivity and throughput SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Metal free nano-LC; On line SPE column; Phosphopeptide; Automation; Mass spectrometer ID TANDEM MASS-SPECTROMETRY; TYROSINE PHOSPHORYLATION; LIQUID-CHROMATOGRAPHY; PHOSPHOPROTEOME ANALYSIS; PROTEIN-PHOSPHORYLATION; SIGNALING NETWORKS; PROTEOMICS; ONLINE; MS/MS; CELLS AB We report on the development and characterization of automated metal-free multiple-column nanoLC instrumentation for sensitive and high-throughput analysis of phosphopeptides with mass spectrometry. The system employs a multiple-column capillary LC fluidic design developed for high-throughput analysis of peptides (Anal. Chem. 2001, 73, 3011-3021), incorporating modifications to achieve broad and sensitive analysis of phosphopeptides. The integrated nanoLC columns (50 mu m i.d. x 30 cm containing 5 mu m C18 particles) and the on-line solid phase extraction Columns (150 mu m i.d. x 4 cm containing 5 mu m C18 particles) were connected to automatic switching valves with non-metal chromatographic accessories. and other modifications to avoid the exposure of the analyte to any metal Surfaces during handling, separation. and electrospray ionization. The nanoLC developed provided a separation peak capacity of similar to 250 for phosphopeptides (and similar to 400 for normal peptides), A detection limit of 0.4 fmol was obtained when a linear ion trap tandem mass spectrometer (Finnegan LTQ) was coupled to a 50-mu m W. column of the nanoLC. The separation power and sensitivity provided by the nanoLC-LTQ enabled identification of similar to 4600 phosphopeptide candidates from similar to 60 mu g COS-7 cell tryptic digest followed by IMAC enrichment and similar to 520 tyrosine phosphopeptides from similar to 2 mg of human T cells digests followed by phosphotyrosine peptide immunoprecipitation. (C) Published by Elsevier B.V. C1 [Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR018522]; Laboratory Directed Research Development program at Pacific Northwest National Laboratory (PNNL); [DE-AC05-76RL01830] FX We thank Dr. Feng Yang for her key contributions to the LC cart design, including the use of metal-free valves and integrated ESI tips, application of the ESI voltage in the HPLC waste line, and selection of LC solvents and packing material for phosphopeptide analysis. We also thank Dr. Yang for her early research contributions to phosphopeptide enrichment, LC-MS/MS phosphopeptide analysis, and the data analysis of phosphopeptides. Additionally, we thank Drs. Yingchun Wang and Lee Opresko for providing COS-7 and HMEC cell lysates, respectively. Portions of this research were funded by the NIH National Center for Research Resources (RR018522) and the Laboratory Directed Research Development program at Pacific Northwest National Laboratory (PNNL). Work was performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated for the DOE by Battelle under Contract DE-AC05-76RL01830. NR 31 TC 23 Z9 23 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 J9 J CHROMATOGR B JI J. Chromatogr. B PD MAR 15 PY 2009 VL 877 IS 8-9 BP 663 EP 670 DI 10.1016/j.jchromb.2008.12.068 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 424NV UT WOS:000264574300001 PM 19217835 ER PT J AU Ptak, AJ France, R Jiang, CS Romero, MJ AF Ptak, A. J. France, R. Jiang, C. -S. Romero, M. J. TI Improved performance of GaInNAs solar cells grown by molecular-beam epitaxy using increased growth rate instead of surfactants SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Roughening; Segregation; Molecular-beam epitaxy; Semiconducting III-V materials; Solar cells ID DEPLETION-WIDTH GAINNAS; BISMUTH; NITROGEN AB GaInNAs is potentially useful for increasing the conversion efficiency of multijunction solar cells if low photocurrents and photovoltages can be increased. Wide-depletion width devices generate significant photocurrents using an n-i-p structure grown by molecular-beam epitaxy, but these wide depletion widths are only realized in a region of parameter space that leads to rough surface morphologies. Surfactants are effective at reducing the surface roughness, but lead to increased defect densities and changes in the net acceptor or donor concentration. Here, we show that increasing the growth rate of GaInNAs solar cells leads to smooth surfaces without the use of a surfactant, even at high In compositions and substrate temperatures. No degradation in material quality is observed when increasing the growth rate from 1.5 to 3.0 mu m/h, but a shunt resistance does appear for the high-growth-rate samples. This shunt is attributed to increased spitting of the Ga cell, leading to an increase in the oval defect density, at the higher effusion cell temperatures used to achieve high growth Fates. As with the case of Bi in GaInNAs, increased growth rates also appear to increase the net donor concentration, but it is not clear if these effects have the same cause. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ptak, A. J.; France, R.; Jiang, C. -S.; Romero, M. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ptak, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aaron_ptak@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU National Renewable Energy Laboratory under DOE [DE-AC36-99GO10337] FX We are grateful to Jian Li for the preliminary DLTS data, and DJ. Friedman and M. Steiner for useful conversations. This work was completed at the National Renewable Energy Laboratory under DOE Contract no. DE-AC36-99GO10337. NR 14 TC 7 Z9 7 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 15 PY 2009 VL 311 IS 7 BP 1876 EP 1880 DI 10.1016/j.jcrysgro.2008.09.184 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 439WW UT WOS:000265659300062 ER PT J AU Le Messurier, D Petkov, V Martin, SW Kim, Y Ren, Y AF Le Messurier, D. Petkov, V. Martin, S. W. Kim, Youngsik Ren, Y. TI Three-dimensional structure of fast ion conducting 0.5Li(2)S+0.5[(1-x)GeS2 + xGeO(2)] glasses from high-energy X-ray diffraction and reverse Monte Carlo simulations SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Sychrotron radiation; X-ray diffraction; Mixed-anion effect; Monte Carlo simulations; Structure; X-ray diffraction ID X-RAY-DIFFRACTION; GLASSES; SYSTEM; CRYSTALLINE; PROGRAM AB A high-energy X-ray diffraction study has been carried out on a series of 0.5Li(2)S + 0.5[(1 - x)GeS2 + xGeO(2)] glasses with x = 0.0, 0.1, 0,2, 0.4, 0.6 and 0.8. Structure factors were measured to wave vectors as high as 30 A(-1) resulting in atomic pair distribution functions with high real space resolution. The three dimensional atomic-scale structure of the glasses was modeled by reverse Monte Carlo simulations based on the diffraction data. Results from the simulations show that at the atomic-scale 0.5Li(2)S + 0.5[(1 - x)GeS2 + xGeO(2)] glasses may be viewed as an assembly of independent chains of (Li+ S-)(2)GeS2/2 and (Li+ O-)(2)GeO2/2 tetrahedra as repeat units, where the Li ions occupy the open space between the chains. The new structure data may help understand the reasons for the sharp maximum in the Li+ ion conductivity at x similar to 0.2. (C) 2009 Elsevier B.V. All rights reserved. C1 [Le Messurier, D.; Petkov, V.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Martin, S. W.; Kim, Youngsik] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50010 USA. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, Dow 203, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu RI Kim, Youngsik/B-3570-2014 FU NSF [DMR 0710564]; DoE [W-31-109-ENG-38] FX Work on the project was supported by NSF DMR Grant No. 0710564. The APS is supported by DoE Grant W-31-109-ENG-38. Thanks are due to Aleksandar Matic from Chalmers University for his useful comments on the manuscript. NR 21 TC 6 Z9 6 U1 7 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAR 15 PY 2009 VL 355 IS 7 BP 430 EP 437 DI 10.1016/j.jnoncrysol.2009.01.006 PG 8 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 430BE UT WOS:000264963000006 ER PT J AU Tobin, JG Yu, SW Chung, BW Waddill, GD AF Tobin, J. G. Yu, S. W. Chung, B. W. Waddill, G. D. TI Resolving the Pu electronic structure enigma: Past lessons and future directions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; SPECTROMETER AB The nature and limitations of the photoelectron spectroscopy (PES) of Pu is discussed, particularly the absence of detailed fine structure. A novel experiment, Fano Spectroscopy, is suggested as a means to obtain additional fine structure, with which to bench-mark and differentiate theoretical models. (C) 2008 Elsevier B.V. All rights reserved. C1 [Tobin, J. G.; Yu, S. W.; Chung, B. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Waddill, G. D.] Missouri Univ Sci & Technol, Rolla, MO USA. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, 700 E Ave, Livermore, CA 94550 USA. EM Tobin1@LLNL.Gov RI Chung, Brandon/G-2929-2012; Tobin, James/O-6953-2015 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Basic Energy Science and Campaign [2/WCI/LLNL] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported in part by the DOE Office of Basic Energy Science and Campaign 2/WCI/LLNL. NR 21 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 31 EP 34 DI 10.1016/j.jnucmat.2008.10.023 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600011 ER PT J AU Trouw, F Rhyne, JJ Mitchell, JN AF Trouw, F. Rhyne, J. J. Mitchell, J. N. TI Pu neutron scattering studies - Magnetism and structure SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DELTA-PLUTONIUM; ACTINIDES; STATE AB Neutron scattering results are presented on delta-phase Pu stabilized with 2% Ga performed on the time-of-flight instrument Pharos in zero magnetic field and also in an 8 T applied field over the temperature range from room temperature down to 1.7 K. Comparison of the field and temperature dependence of the diffraction patterns showed no evidence of peaks of magnetic origin, and thus no long-range order is induced even in an 8 T applied field. Due to the wave-vector character of the scattering, this result can not be explained by the possible cancellation of the orbital and spin components of the moment. Additional inelastic scattering experiments at room temperature did reveal a very weak inelastic feature at 90 meV which is tempting to ascribe to H impurities. However, the feature did not have the expected Q(2) intensity dependence as would be expected for H vibrations, and thus the origin of this 90 meV peak is unexplained. (C) 2008 Elsevier B.V. All rights reserved. C1 [Trouw, F.; Rhyne, J. J.; Mitchell, J. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rhyne, JJ (reprint author), Los Alamos Natl Lab, POB 1666, Los Alamos, NM 87545 USA. EM rhyne@lanl.gov RI Lujan Center, LANL/G-4896-2012; Mitchell, Jeremy/E-2875-2010 OI Mitchell, Jeremy/0000-0001-7109-3505 NR 11 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 35 EP 37 DI 10.1016/j.jnucmat.2008.09.052 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600012 ER PT J AU Batista, CD AF Batista, C. D. TI Effective Hamiltonian for metallic Pu SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DELTA-PLUTONIUM; ELECTRONS AB We derive a low-energy effective Hamiltonian (H) over tilde (Pu) for metallic Pu by assuming that intra-atomic Coulomb and spin-orbit interactions are much stronger than the kinetic energy terms. An important property of (H) over tilde (Pu) is the exact cancellation of the effective f - f hopping tensor that places Pu closer to lanthanide systems such as Ce or mixed valent Sm than to the rest of the actinides. The similarity between the low-energy models of Pu and these mixed valent lanthanide systems could be the common root for explaining the large volume expansions observed in all of them. (C) 2008 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Condensed Matter Grp T11, Los Alamos, NM 87545 USA. RP Batista, CD (reprint author), Los Alamos Natl Lab, Condensed Matter Grp T11, POB 1663, Los Alamos, NM 87545 USA. EM cdb@lanl.gov RI Batista, Cristian/J-8008-2016 NR 19 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 60 EP 62 DI 10.1016/j.jnucmat.2008.10.018 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600019 ER PT J AU Landa, A Soderlind, P Turchi, PEA Vitos, L Ruban, A AF Landa, Alex Soederlind, Per Turchi, Patrice E. A. Vitos, L. Ruban, A. TI Density-functional study of Zr-based actinide alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PHASE; TRANSITION; ZIRCONIUM; GRADIENT; APPROXIMATION; CALORIMETRY; DELTA-UZR2; STABILITY; ENTHALPY; ENERGY AB Density-functional formalism is applied to study the phase equilibria in the U-Zr system. The obtained ground-state properties of the gamma (bcc) and delta (02) phases are in good agreement with experimental data. The decomposition curve for the gamma-based U-Zr solutions is calculated. We argue that stabilization of the delta-UZr2 phase relative to the alpha-Zr (hcp) structure is due to an increase of the Zr d-band occupancy that occurs when U is alloyed with Zr. (C) 2008 Elsevier B.V. All rights reserved. C1 [Landa, Alex; Soederlind, Per; Turchi, Patrice E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vitos, L.; Ruban, A.] Royal Inst Technol, SE-10044 Stockholm, Sweden. RP Landa, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM landa1@llnl.gov RI Ruban, Andrei/B-7457-2012 FU LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344. NR 39 TC 10 Z9 10 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 68 EP 71 DI 10.1016/j.jnucmat.2008.09.029 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600022 ER PT J AU Dremov, VV Karavaev, AV Samarin, SI Sapozhnikov, FA Zocher, MA Preston, DL AF Dremov, V. V. Karavaev, A. V. Samarin, S. I. Sapozhnikov, F. A. Zocher, M. A. Preston, D. L. TI Molecular dynamics characterization of thermodynamic and mechanical properties of Pu as dependent upon alloying additions and defects concentration. Part I SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CASCADE SIMULATIONS; DELTA-PLUTONIUM; DENSITY CHANGES AB The paper presents - results of molecular dynamics (MD) simulations which were performed to investigate mobility of defects in the delta-PuGa alloy. The defects diffuse through thermal fluctuations and MD results provided parameters for the Arrhenius law describing defect diffusion versus temperature. On the basis of this information a model of radiation defect accumulation allowing for different types of defects and grain size was constructed. The annealing of the defects at elevated temperatures and the effect of accelerated ageing due to adding small quantities of Pu-238 upon defect accumulation were evaluated. (C) 2008 Elsevier B.V. All rights reserved. C1 [Dremov, V. V.; Karavaev, A. V.; Samarin, S. I.; Sapozhnikov, F. A.] Russian Fed Nucl Ctr, Inst Tech Phys, Theoret Div 2, Snezhinsk 456770, Chelyabinsk Reg, Russia. [Zocher, M. A.; Preston, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dremov, VV (reprint author), Russian Fed Nucl Ctr, Inst Tech Phys, Theoret Div 2, 13 Vasiliev Str, Snezhinsk 456770, Chelyabinsk Reg, Russia. EM vvd0531@mail.ru RI Karavaev, Alexey/D-5306-2013 OI Karavaev, Alexey/0000-0002-2661-9616 FU Institute of Technical Physics and Los Alamos National Laboratory [04783-000-99-35] FX The work was performed under Contract No. 04783-000-99-35 between the Institute of Technical Physics and Los Alamos National Laboratory. NR 11 TC 12 Z9 12 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 79 EP 82 DI 10.1016/j.jnucmat.2008.10.037 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600025 ER PT J AU Chung, BW Thompson, SR Lema, KE Hiromoto, DS Ebbinghaus, BB AF Chung, B. W. Thompson, S. R. Lema, K. E. Hiromoto, D. S. Ebbinghaus, B. B. TI Evolving density and static mechanical properties in plutonium from self-irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PU-238 ENRICHMENT; ALLOYS AB Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium ingrowth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 wt% of highly specific activity isotope (238)Pu into the (239)Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on (238)Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by similar to 0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys. (c) 2008 Elsevier B.V. All rights reserved. C1 [Chung, B. W.; Thompson, S. R.; Lema, K. E.; Hiromoto, D. S.; Ebbinghaus, B. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Chung, BW (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM chung7@llnl.gov RI Chung, Brandon/G-2929-2012 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 15 TC 13 Z9 14 U1 4 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 91 EP 94 DI 10.1016/j.jnucmat.2008.09.031 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600028 ER PT J AU Mitchell, JN Freibert, FJ Schwartz, DS Bange, ME AF Mitchell, J. N. Freibert, F. J. Schwartz, D. S. Bange, M. E. TI Unconventional delta-phase stabilization in Pu-Ga alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TRANSFORMATIONS; STABILITY AB Face-centered cubic delta-phase Pu stabilized with less than 3 at.% Ga will partially transform martensitically to monoclinic alpha'-phase at cryogenic temperatures. Thermal cycling of young alloys in a dilatometer tends to stabilize delta Pu by shifting the transformation to lower temperatures and reducing the amount of transformation. Similar experiments using samples aged naturally or by doping with (238)Pu Will stabilize delta Pu such that annealing at or above 150 degrees C is required before normal transformation behavior occurs. We discuss the role that radiation damage and recovery play in this unconventional stabilization of delta-phase Pu. Published by Elsevier B.V. C1 [Mitchell, J. N.; Freibert, F. J.; Schwartz, D. S.; Bange, M. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Mitchell, JN (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS E574, Los Alamos, NM 87545 USA. EM jeremy@lanl.gov RI Mitchell, Jeremy/E-2875-2010 OI Mitchell, Jeremy/0000-0001-7109-3505 FU United States Department of Energy [W-7405-ENG-36] FX This work was funded by the United States Department of Energy under Contract W-7405-ENG-36. NR 6 TC 5 Z9 5 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 95 EP 98 DI 10.1016/j.jnucmat.2008.10.022 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600029 ER PT J AU Chang, GS AF Chang, Gray S. TI Enhancing BWR proliferation resistance fuel with minor actinides SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the (238)Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ((237)Np and (241)Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of (238)Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO(2) fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm(3)) to the top (0.35 g/cm(3)) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ((237)Np and/or (241)Am), significantly increases the (238)Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate-term of nuclear energy reconnaissance. (c) 2008 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chang, GS (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM gray.chang@inl.gov NR 7 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 157 EP 160 DI 10.1016/j.jnucmat.2008.08.062 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600043 ER PT J AU Neuman, AD Davis, CC Nothwang, TA Hampel, FG Voit, SL Lopez, MR Martinez, AC AF Neuman, A. D. Davis, C. C. Nothwang, T. A. Hampel, F. G. Voit, S. L. Lopez, M. R. Martinez, A. C. TI Characterization of minor actinide mixed oxide fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID REACTOR AB The global nuclear energy partnership (GNEP) was created in order for 'fuel-cycle supplier' nations to provide assured supplies of nuclear fuel to 'fuel-cycle customer' nations. The customer nations would utilize the fuel for electricity generation and subsequently return it to the supplier nation after it is spent. This spent fuel would then be reprocessed by the supplier nation in order to recycle the actinide constituents, mainly uranium and plutonium, in advanced nuclear power reactors. and thus reduce waste volumes [1,2]. The International Atomic Energy Agency would control the nuclear materials. One of the thrust areas for the GNEP program is the development of these actinide bearing fuels for transmutation in a fast reactor. Published by Elsevier B.V. C1 [Neuman, A. D.; Davis, C. C.; Nothwang, T. A.; Hampel, F. G.; Lopez, M. R.; Martinez, A. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Voit, S. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Neuman, AD (reprint author), Los Alamos Natl Lab, MS E574, Los Alamos, NM 87545 USA. EM neuman@lanl.gov FU Department of Energy [(DOE)/NE-5]; Global Energy Partnership [DE-AC52-06NA25396] FX This work was supported by the Department of Energy (DOE)/NE-5, Global Energy Partnership, under contract DE-AC52-06NA25396. The authors would like to thank Harold Chacon, David Medina, Richard Mason, and David Alberstein for their support. NR 11 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 168 EP 172 DI 10.1016/j.jnucmat.2008.10.021 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600046 ER PT J AU Rudisill, TS AF Rudisill, Tracy S. TI Decontamination of Zircaloy cladding hulls from spent nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB The feasibility of decontaminating spent fuel cladding hulls using hydrofluoric acid (HF) was investigated as part of the Global Energy Nuclear Partnership (GNEP) Separations Campaign. The concentrations of the fission product and transuranic (TRU) isotopes in the decontaminated hulls were compared to the limits for determining the low level waste (LLW) classification in the United States (US). The (90)Sr and (137)Cs concentrations met the disposal criteria for a Class C LLW; although, in a number of experiments the criteria for disposal as a Class B LLW were met. The TRU concentration in the hulls generally exceeded the Class C LLW limit by at least an order of magnitude. The concentration decreased sharply as the initial 30-40 mu m of the cladding hull surface were removed. At depths beyond this point, the TRU activity remained relatively constant, well above the Class C limit. (C) 2008 Elsevier B.V. All rights reserved. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Rudisill, TS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM tracy.rudisill@srnl.doe.gov NR 10 TC 18 Z9 18 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2009 VL 385 IS 1 BP 193 EP 195 DI 10.1016/j.jnucmat.2008.10.016 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 425YS UT WOS:000264674600052 ER PT J AU Sinitsyn, NA AF Sinitsyn, N. A. TI The stochastic pump effect and geometric phases in dissipative and stochastic systems SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Review ID LOW-REYNOLDS-NUMBER; EXCEPTIONAL POINTS; MOLECULAR MOTORS; BROWNIAN MOTORS; BERRY PHASE; ENERGY TRANSDUCTION; POLARIZATION OPTICS; COUNTING STATISTICS; OSCILLATING FIELD; WAVE-PROPAGATION AB The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE). C1 Los Alamos Natl Lab, Computat & Stat Sci Div, Ctr Nonlinear Studies & Comp, Los Alamos, NM 87545 USA. RP Sinitsyn, NA (reprint author), Los Alamos Natl Lab, Computat & Stat Sci Div, Ctr Nonlinear Studies & Comp, Los Alamos, NM 87545 USA. RI Sinitsyn, nikolai/B-5617-2009 FU DOE [DE-AC52-06NA25396] FX The author thanks Allan Adler for insightful comments, which were used to substantially improve this review. The author also thanks Qian Niu and Ilya Nemenman for useful discussions and Maryna Anatska for the help with illustrations. This work was funded in part by DOE under contract No. DE-AC52-06NA25396. NR 176 TC 41 Z9 41 U1 1 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD MAR 15 PY 2009 VL 42 IS 19 AR 193001 DI 10.1088/1751-8113/42/19/193001 PG 33 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 442BO UT WOS:000265815000004 ER PT J AU Borole, AP LaBarge, S Spott, BA AF Borole, Abhijeet P. LaBarge, Samuel Spott, Benjamin A. TI Three-dimensional, gas phase fuel cell with a laccase biocathode SO JOURNAL OF POWER SOURCES LA English DT Article DE Enzyme fuel cell; Laccase; Gas phase; Biocathode; Three-dimensional; Alcohol vapor fuel ID ELECTRODES; REDUCTION; ENZYME; OXYGEN; COMPOSITE; CATHODE; WATER AB A fuel cell using an enzymatic biocathode operating in a gas phase mode is reported. The electrode was prepared using a three-dimensional conductive electrode matrix. An enzyme Solution containing laccase and a mediator was distributed into a hydrophilic matrix of carbon felt fibers creating a porous gas-flowing electrode. A Pt-based gas diffusion electrode served as the anode. A maximum power density of 9.4 W m (2) (2.9 kW m (3)) was obtained with 15 U of enzyme cm (2), with hydrogen as the fuel. Power density was found to be a function of the enzyme loading, air flow rate, volume of the liquid phase and the humidity of the air stream. The ability to use methanol and ethanol as vapors in gas phase was also shown. The introduction of three-dimensionality into the electrode architecture and operation of the fuel cell in a gas phase mode to Supply the fuel and the oxidant demonstrates an avenue for improving the power density of EFCs. (C) Published by Elsevier B.V. C1 [Borole, Abhijeet P.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [LaBarge, Samuel; Spott, Benjamin A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Borole, AP (reprint author), Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. EM borolea@ornl.gov RI Borole, AP/F-3933-2011; OI Borole, Abhijeet/0000-0001-8423-811X FU Laboratory Directed Research and Development Program (Seed Money Funds) of Oak Ridge National Laboratory (ORNL); ORISE FX Research sponsored by the Laboratory Directed Research and Development Program (Seed Money Funds) of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy. Support from ORISE to SL and BAS is greatly appreciated. The authors Would like to thank Costas Tsouris, Hugh O'Neill, Jonathan R. Mielenz. and Vojtech Svoboda for helpful comments and Lindsey Amason for editing the manuscript. NR 14 TC 14 Z9 14 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 15 PY 2009 VL 188 IS 2 BP 421 EP 426 DI 10.1016/j.jpowsour.2008.11.110 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 425OL UT WOS:000264646900011 ER PT J AU Yeh, WW Jaru-Ampornpan, P Nevidomskyte, D Asmal, M Rao, SS Buzby, AP Montefiori, DC Korber, BT Letvin, NL AF Yeh, Wendy W. Jaru-Ampornpan, Pimkwan Nevidomskyte, Daiva Asmal, Mohammed Rao, Srinivas S. Buzby, Adam P. Montefiori, David C. Korber, Bette T. Letvin, Norman L. TI Partial Protection of Simian Immunodeficiency Virus (SIV)-Infected Rhesus Monkeys against Superinfection with a Heterologous SIV Isolate SO JOURNAL OF VIROLOGY LA English DT Article ID INJECTION-DRUG USERS; TYPE-1 SUPERINFECTION; HIV-1 SUPERINFECTION; PRIMARY INFECTION; CYNOMOLGUS MONKEYS; RAPID PROGRESSION; ATTENUATED VIRUS; LONG-TERM; IMMUNE-RESPONSES; DUAL INFECTION AB Although there is increasing evidence that individuals already infected with human immunodeficiency virus type 1 (HIV-1) can be infected with a heterologous strain of the virus, the extent of protection against superinfection conferred by the first infection and the biologic consequences of superinfection are not well understood. We explored these questions in the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV-1/AIDS. We infected cohorts of rhesus monkeys with either SIVmac251 or SIVsmE660 and then exposed animals to the reciprocal virus through intrarectal inoculations. Employing a quantitative real-time PCR assay, we determined the replication kinetics of the two strains of virus for 20 weeks. We found that primary infection with a replication-competent virus did not protect against acquisition of infection by a heterologous virus but did confer relative control of the superinfecting virus. In animals that became superinfected, there was a reduction in peak replication and rapid control of the second virus. The relative susceptibility to superinfection was not correlated with CD4(+) T-cell count, CD4(+) memory T-cell subsets, cytokine production by virus-specific CD8(+) or CD4(+) cells, or neutralizing antibodies at the time of exposure to the second virus. Although there were transient increases in viral loads of the primary virus and a modest decline in CD4(+) T-cell counts after superinfection, there was no evidence of disease acceleration. These findings indicate that an immunodeficiency virus infection confers partial protection against a second immunodeficiency virus infection, but this protection may be mediated by mechanisms other than classical adaptive immune responses. C1 [Letvin, Norman L.] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Viral Pathogenesis, Boston, MA 02115 USA. [Rao, Srinivas S.] NIH, Vaccine Res Ctr, Bethesda, MD 20892 USA. [Montefiori, David C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Korber, Bette T.] Santa Fe Inst, Santa Fe, NM USA. RP Letvin, NL (reprint author), Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Viral Pathogenesis, CLS 1043,3 Blackfan Circle, Boston, MA 02115 USA. EM nletvin@bidmc.harvard.edu OI Korber, Bette/0000-0002-2026-5757 FU NIH NIAID PHS [K08-AI069995, AI-067854]; Center for HIV/AIDS Vaccine Immunology FX We thank Vanessa Hirsch for providing virus stock SIVsmE660. This work was supported by NIH NIAID PHS grants K08-AI069995 (W.W.Y.) and AI-067854 (W.W.Y. and N.L.L.) and the Center for HIV/AIDS Vaccine Immunology. NR 67 TC 28 Z9 28 U1 4 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD MAR 15 PY 2009 VL 83 IS 6 BP 2686 EP 2696 DI 10.1128/JVI.02237-08 PG 11 WC Virology SC Virology GA 411LG UT WOS:000263650500028 PM 19129440 ER PT J AU Leal-Cruz, AL Pech-Canul, MI Lara-Curzio, E Trejo, RM Peascoe, R AF Leal-Cruz, A. L. Pech-Canul, M. I. Lara-Curzio, E. Trejo, R. M. Peascoe, R. TI Selective synthesis and characterization of HYSYCVD-Si2N2O SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Ceramics; Nitrides; Chemical vapor deposition (CVD); Crystal structure ID IN-SITU SYNTHESIS; SOLID-PRECURSOR; SILICON; FILMS; CVD; NITRIDATION; OXIDATION; KINETICS; SI3N4 AB In this work, stoichiometric silicon oxynitride (Si2N2O) has been successfully synthesized using a selective approach via hybrid precursor system-chemical vapor deposition (HYSYCVD). The deposited oxynitride phase has the following structural parameters: formula sum: Si8.00N8.00O4.00: formula mass: 400.7352 g mol(-1); density: 2.8010 g cm(-3); orthorhombic structure with lattice parameters (angstrom): a = 8.898, b = 5.495, c = 4.858. The optimum conditions for maximizing the amount of Si2N2O are as follows: SiCp/Si-p substrate with 60% porosity, UHP-N-2 at a flow rate of 10 cm(3) min(-1), and no use of diluent. According to ANOVA, flow rate of nitrogen precursor is the processing parameter that most significantly affects Si2N2O formation, with a relative contribution of 46%, followed by the type of nitrogen precursor (44%). Regarding the best nitrogen precursor, thermodynamic predictions on the formation of Si2N2O are in good agreement with ANOVA results. Analysis by SEM shows that Si2N2O is deposited into the preforms as rough fibers, snow-like fibers and spheres. (c) 2008 Elsevier B.V. All rights reserved. C1 [Leal-Cruz, A. L.; Pech-Canul, M. I.] Cinvestav Saltillo, Saltillo 25900, Coahuila, Mexico. [Lara-Curzio, E.; Trejo, R. M.; Peascoe, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Leal-Cruz, AL (reprint author), Cinvestav Saltillo, Carr Saltillo Mty Km 13, Saltillo 25900, Coahuila, Mexico. EM analilia.leal@cinvestav.edu.mx RI Leal-Cruz, Ana/E-2216-2011; OI leal-cruz, ana lilia/0000-0002-4709-6471 FU National Council of Science and Technology (CONACYT); Conacyt (National Council of Science and Technology, Mexico) [2005-1/24322] FX The authors gratefully acknowledge Mr. L. Walker and Ms. L. Riester, with ORNL (Oak Ridge National Laboratory, High Temperature Materials Laboratory, HTML), for technical assistance. Ms. Christine Goudy, also with ORNL is thanked for administrative assistance. Dr. Leal-Cruz especially thanks National Council of Science and Technology (CONACYT) for granting a doctoral scholarship and COECYT-Coahuila for providing financial support during the internship at ORNL. Authors express their gratitude to Conacyt (National Council of Science and Technology, Mexico) for financial support under project no. CB-2005-1/24322. NR 21 TC 4 Z9 5 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD MAR 15 PY 2009 VL 114 IS 1 BP 376 EP 381 DI 10.1016/j.matchemphys.2008.09.042 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 405UL UT WOS:000263249600070 ER PT J AU Kaewgun, S Nolph, CA Lee, BI Wang, LQ AF Kaewgun, Sujaree Nolph, Christopher A. Lee, Burtrand I. Wang, Li-Qiong TI Influence of hydroxyl contents on photocatalytic activities of polymorphic titania nanoparticles SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Polymorphic titania; Lattice hydroxyls; Photocatalytic activity ID HYDROTHERMAL BARIUM-TITANATE; ELECTRON-PARAMAGNETIC-RES; CONDITION SOL PROCESS; SOLVOTHERMAL SYNTHESIS; H-1-NMR SPECTROSCOPY; PHASE-TRANSFORMATION; TIO2 NANOPARTICLES; FIBROUS TITANIA; SURFACE; RUTILE AB Polymorphic titania nanoparticles, prepared by a Water-based Ambient Condition Sol (WACS) process, were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec-butanol. All samples were characterized for phase composition, surface area, lattice hydroxyl contamination, and particle morphology by X-ray diffraction, N(2) physisorption, FT-IR, solid state Magic Angle Spinning (MAS) (1)H NMR and scanning electron microscopy. The results were compared to a commercial titania, Degussa P25. Evaluation of methyl orange degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania nanoparticles enhances photocatalytic activity. As-prepared titania and post-treated SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior photocatalytic activity came from a reduction in lattice hydroxyl content. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kaewgun, Sujaree; Nolph, Christopher A.; Lee, Burtrand I.] Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29634 USA. [Wang, Li-Qiong] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99354 USA. RP Lee, BI (reprint author), Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29634 USA. EM burt.lee@ces.clemson.edu FU state of South Carolina; American Chemical Society; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences U.S. Department of Energy (USDOE); US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA FX This research was supported by the state of South Carolina and the Petroleum Research Fund of American Chemical Society. The authors gratefully acknowledge Kimberly A. Ivey, School of Materials Science and Engineering, Clemson University for all FT-IR data. L.-Q. Wang was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences U.S. Department of Energy (USDOE). The NMR experiments described in this paper were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA. NR 44 TC 18 Z9 18 U1 2 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD MAR 15 PY 2009 VL 114 IS 1 BP 439 EP 445 DI 10.1016/j.matchemphys.2008.09.072 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 405UL UT WOS:000263249600082 ER PT J AU Mathaudhu, SN Derosset, AJ Hartwig, KT Kecskes, LJ AF Mathaudhu, S. N. deRosset, A. J. Hartwig, K. T. Kecskes, L. J. TI Microstructures and recrystallization behavior of severely hot-deformed tungsten SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 1st International Symposium on Bulk Nanostructures Materials - From Fundamentals to Innovations CY AUG 14-18, 2007 CL Ufa State Aviat Tech Univ, Ufa, RUSSIA HO Ufa State Aviat Tech Univ DE ECAE; Microstructure; Recrystallization; Severe plastic deformation; Tungsten; Ultrafine grains AB When coarse-grained (CG) tungsten (W) is heavily worked by equal-channel angular extrusion (ECAE), the grain size is reduced to the ultrafine-grained/nanocrystal line regimes (UFG/NC) and the strength and ductility increase. Because of the brittle nature of CG W, the material must be hot-extruded, and, if the temperatures are near the recrystallization temperature (T(rc)), gains in properties may not be maximized. In this study, the recrystallization behavior of ECAE-processed CG W is examined as a function of the imparted strain (i.e., number of extrusions) and the hot-working extrusion temperature. Up to four ECAE passes were performed in tooling with a 90 degrees channel intersection, and at temperatures of 1000 degrees C or 1200 degrees C. Subsequent 60 min annealing of the worked material to 1600 degrees C allowed for the determination of T(rc). Vickers microhardness measurements and scanning electron microscopy, were used to characterize the microstructures in the as-worked and recrystallized states. The ECAE-processed W shows increased microstructural break-up and refinement with increasing strain and decreasing hot-working temperature in the fully worked state. T(rc) was determined to be similar to 1400 degrees C, which is nearly independent of the number of extrusions and the working temperature. These results show that if ECAE is accomplished below 1400 degrees C (i.e., at 1000 degrees C or lower) the attractive properties of the UFG/NC-worked W may be retained. Specifically, below 1000 degrees C, with increasing strain imparted to the material, high hardness values with a concomitant grain size refinement (similar to 350 nm) could be expected. published by Elsevier B.V. C1 [Mathaudhu, S. N.; deRosset, A. J.; Kecskes, L. J.] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. [Mathaudhu, S. N.; deRosset, A. J.] ORISE ORAU Maryland, Aberdeen Proving Ground, MD 21010 USA. [Hartwig, K. T.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Mathaudhu, SN (reprint author), USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. EM Suveen.mathaudhu@arl.army.mil RI Mathaudhu, Suveen/B-4192-2009; Kecskes, Laszlo/F-6880-2014 OI Kecskes, Laszlo/0000-0002-1342-3729 NR 10 TC 20 Z9 25 U1 4 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 15 PY 2009 VL 503 IS 1-2 SI SI BP 28 EP 31 DI 10.1016/j.msea.2008.03.051 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 414OD UT WOS:000263873100007 ER PT J AU Semenova, IP Salimgareeva, GK Latysh, VV Lowe, T Valiev, RZ AF Semenova, I. P. Salimgareeva, G. Kh. Latysh, V. V. Lowe, T. Valiev, R. Z. TI Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 1st International Symposium on Bulk Nanostructures Materials - From Fundamentals to Innovations CY AUG 14-18, 2007 CL Ufa State Aviat Tech Univ, Ufa, RUSSIA HO Ufa State Aviat Tech Univ DE Fatigue; Ultrafine-grained Ti; Thermo-mechanical processing; Severe plastic deformation; Strength; Ductility ID ULTRAFINE-GRAINED METALS; POLYCRYSTALLINE NICKEL; BEHAVIOR AB The high-cycle fatigue behavior of smooth and notched samples of ultrafine-grained titanium prepared by severe plastic deformation is compared with the corresponding properties of conventional titanium. It is shown that the combination of high strength and enhanced ductility of ultrafine-grained titanium lead to an increase of the fatigue endurance limit. Using a combination of equal-channel angular pressing and subsequent thermal and mechanical treatment, it was possible to increase the fatigue endurance limit of commercial-purity titanium by a factor of 1.5. Furthermore, it is shown that post-deformation annealing can additionally enhance the ductility of the ultrafine-grained Ti and lower fatigue-notch sensitivity particularly in comparison with Ti-6Al-4V. (C) 2008 Elsevier B.V. All rights reserved. C1 [Semenova, I. P.; Salimgareeva, G. Kh.; Latysh, V. V.; Valiev, R. Z.] Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia. [Lowe, T.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Semenova, IP (reprint author), Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia. EM Semenova-ip@mail.ru RI Semenova, Irina/K-7508-2014 NR 19 TC 35 Z9 37 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 15 PY 2009 VL 503 IS 1-2 BP 92 EP 95 DI 10.1016/j.msea.2008.07.075 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 414OD UT WOS:000263873100023 ER PT J AU Saldana, C Yang, P Mann, JB Moscoso, W Gill, DD Chandrasekar, S Trumble, KP AF Saldana, C. Yang, P. Mann, J. B. Moscoso, W. Gill, D. D. Chandrasekar, S. Trumble, K. P. TI Micro-scale components from high-strength nanostructured alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 1st International Symposium on Bulk Nanostructures Materials - From Fundamentals to Innovations CY AUG 14-18, 2007 CL Ufa State Aviat Tech Univ, Ufa, RUSSIA HO Ufa State Aviat Tech Univ DE Severe plastic deformation; Machining; Nanostructured alloys; Micro-fabrication ID SEVERE PLASTIC-DEFORMATION; STRAIN; TEMPERATURE; REFINEMENT; TITANIUM AB A general approach for manufacturing of micro-scale components from high-strength, nanostructured materials is presented. The approach utilizes severe plastic deformation by large-strain extrusion machining to create the nanostructured material in a high-strength alloy system, and conventional micro-machining to produce the components. Manufacture of small-scale gears from nickel-based superalloy Inconel 718 is illustrated. (c) 2008 Elsevier B.V. All rights reserved. C1 [Saldana, C.; Mann, J. B.; Moscoso, W.; Chandrasekar, S.] Purdue Univ, Sch Ind Engn, Ctr Mat Proc & Tribol, W Lafayette, IN 47907 USA. [Trumble, K. P.] Purdue Univ, Sch Mat Engn, Ctr Mat Proc & Tribol, W Lafayette, IN 47907 USA. [Yang, P.; Gill, D. D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Chandrasekar, S (reprint author), Purdue Univ, Sch Ind Engn, Ctr Mat Proc & Tribol, W Lafayette, IN 47907 USA. EM chandy@ecn.purdue.edu NR 16 TC 4 Z9 7 U1 2 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 15 PY 2009 VL 503 IS 1-2 BP 172 EP 175 DI 10.1016/j.msea.2008.02.056 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 414OD UT WOS:000263873100043 ER PT J AU Coyle, SM Gilbert, WV Doudna, JA AF Coyle, Scott M. Gilbert, Wendy V. Doudna, Jennifer A. TI Direct Link between RACK1 Function and Localization at the Ribosome In Vivo SO MOLECULAR AND CELLULAR BIOLOGY LA English DT Article ID PROTEIN-KINASE-C; HETEROTRIMERIC G-PROTEIN; SACCHAROMYCES-CEREVISIAE; TRANSLATIONAL REGULATION; SIGNAL-TRANSDUCTION; SCAFFOLD PROTEIN; MAMMALIAN RACK1; MESSENGER-RNAS; BETA-SUBUNIT; WD-REPEAT AB The receptor for activated C-kinase (RACK1), a conserved protein implicated in numerous signaling pathways, is a stoichiometric component of eukaryotic ribosomes located on the head of the 40S ribosomal subunit. To test the hypothesis that ribosome association is central to the function of RACK1 in vivo, we determined the 2.1-angstrom crystal structure of RACK1 from Saccharomyces cerevisiae (Asc1p) and used it to design eight mutant versions of RACK1 to assess roles in ribosome binding and in vivo function. Conserved charged amino acids on one side of the beta-propeller structure were found to confer most of the 40S subunit binding affinity, whereas an adjacent conserved and structured loop had little effect on RACK1-ribosome association. Yeast mutations that confer moderate to strong defects in ribosome binding mimic some phenotypes of a RACK1 deletion strain, including increased sensitivity to drugs affecting cell wall biosynthesis and translation elongation. Furthermore, disruption of RACK1's position at the 40S ribosomal subunit results in the failure of the mRNA binding protein Scp160 to associate with actively translating ribosomes. These results provide the first direct evidence that RACK1 functions from the ribosome, implying a physical link between the eukaryotic ribosome and cell signaling pathways in vivo. C1 [Coyle, Scott M.; Gilbert, Wendy V.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI /0000-0003-2807-9657 FU NIH FX This work was supported by a grant from the NIH and a gift from Gilead Inc. to J. A. D.; W. V. G. is supported by a K99 award from the NIH. NR 44 TC 72 Z9 74 U1 0 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0270-7306 J9 MOL CELL BIOL JI Mol. Cell. Biol. PD MAR 15 PY 2009 VL 29 IS 6 BP 1626 EP 1634 DI 10.1128/MCB.01718-08 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 412JB UT WOS:000263720000021 PM 19114558 ER PT J AU Liang, ZT Wang, XN Zhou, J AF Liang, Zuo-tang Wang, Xin-Nian Zhou, Jian TI Multiple parton scattering in nuclei: Gauge invariance SO NUCLEAR PHYSICS A LA English DT Article ID MODIFIED FRAGMENTATION FUNCTIONS; FINAL-STATE INTERACTIONS; DRELL-YAN PROCESS; ENERGY-LOSS; DISTRIBUTIONS; DEPENDENCE AB Within the framework of it generalized collinear factorization for multiple parton scattering in nuclear medium. twist-4 contributions to DIS off a large nucleus can be factorized as a convolution of hard parts and two-parton correlation functions. The hard parts for the quark scattering in the light-cone gauge cot-respond to interaction with a transverse (physical) gluon in the target, while they are given by the second derivative of the cross section with it longitudinal gluon in the covariant gauge. We provide a general proof of the equivalence of the hard pails in file light-cone and covariant, gauge. We further demonstrate the equivalence in calculations of twist-4 contributions to semi-inclusive cross section of DIS in both lowest order and next leading order. Calculations of the nuclear transverse momentum broadening of the struck quark in the light-cone and covariant gauge are also discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wang, Xin-Nian; Zhou, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Liang, Zuo-tang; Wang, Xin-Nian; Zhou, Jian] Shandong Univ, Dept Phys, Jinan 250100, Peoples R China. RP Wang, XN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, MS 70R0319, Berkeley, CA 94720 USA. EM xnwang@lbl.gov OI Wang, Xin-Nian/0000-0002-9734-9967 FU US Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [10525523] FX This work is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231 and National Natural Science Foundation of China under Project No.10525523. NR 36 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD MAR 15 PY 2009 VL 819 BP 79 EP 97 DI 10.1016/j.nuclphysa.2008.11.009 PG 19 WC Physics, Nuclear SC Physics GA 424CI UT WOS:000264542700005 ER PT J AU Kulkarni, SS Lapedes, A Tang, H Gnanakaran, S Daniels, MG Zhang, M Bhattacharya, T Li, M Polonis, VR McCutchan, FE Morris, L Ellenberger, D Butera, ST Bollinger, RC Korber, BT Paranjape, RS Montefiori, DC AF Kulkarni, Smita S. Lapedes, Alan Tang, Haili Gnanakaran, S. Daniels, Marcus G. Zhang, Ming Bhattacharya, Tanmoy Li, Ming Polonis, Victoria R. McCutchan, Francine E. Morris, Lynn Ellenberger, Dennis Butera, Salvatore T. Bollinger, Robert C. Korber, Bette T. Paranjape, Ramesh S. Montefiori, David C. TI Highly complex neutralization determinants on a monophyletic lineage of newly transmitted subtype C HIV-1 Env clones from India SO VIROLOGY LA English DT Review DE HIV-1; Neutralizing antibodies; Envelope glycoproteins; Genetic signatures; Heatmap ID HUMAN-IMMUNODEFICIENCY-VIRUS; GP120 ENVELOPE GLYCOPROTEIN; PROXIMAL EXTERNAL REGION; CELL-SURFACE EXPRESSION; CORECEPTOR BINDING-SITE; GP41 CYTOPLASMIC TAIL; TYPE-1 ENVELOPE; ANTIBODY NEUTRALIZATION; MONOCLONAL-ANTIBODIES; GENETIC DIVERSITY AB Little is known about the neutralization properties of HIV-1 in India to optimally design and test vaccines. For this reason, a functional Env clone was obtained from each of ten newly acquired, heterosexually transmitted HIV-1 infections in Pune, Maharashtra, These clones formed a phylogenetically distinct genetic lineage within subtype C. As Env-pseudotyped Viruses the clones were mostly resistant to IgG1b12, 2G12 and 2F5 but all were sensitive to 4E10. When compared to a large multi-subtype panel of Env-pseudotyped viruses (subtypes B, C and CRF02_AG) in neutralization assays with a multi-subtype panel of HIV-1-positive plasma samples, the Indian Envs were remarkably complex. With the exception of the Indian Envs, results of a hierarchical clustering analysis showed a strong subtype association with the patterns of neutralization susceptibility. From these patterns we were able to identify 19 neutralization cluster-associated amino acid signatures in gp120 and 14 signatures in the ectodomain and cytoplasmic tail of gp41. We conclude that newly transmitted Indian Envs are antigenically complex in spite of close genetic similarity. Delineation of neutralization-associated amino acid signatures provides a deeper understanding of the antigenic structure of HIV-1 Env. (c) 2008 Elsevier Inc. All rights reserved. C1 [Tang, Haili; Li, Ming; Montefiori, David C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Kulkarni, Smita S.; Paranjape, Ramesh S.] Natl AIDS Res Inst, Pune, Maharashtra, India. [Lapedes, Alan; Gnanakaran, S.; Daniels, Marcus G.; Zhang, Ming; Bhattacharya, Tanmoy; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Polonis, Victoria R.; McCutchan, Francine E.] Walter Reed Army Inst Res, Rockville, MD 20850 USA. [Polonis, Victoria R.; McCutchan, Francine E.] Henry M Jackson Fdn, Rockville, MD 20850 USA. [Morris, Lynn] Natl Inst Communicable Dis, Johannesburg, South Africa. [Ellenberger, Dennis; Butera, Salvatore T.] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. [Bollinger, Robert C.] Johns Hopkins Sch Med, Dept Med, Div Infect Dis, Baltimore, MD USA. RP Montefiori, DC (reprint author), Duke Univ, Med Ctr, Dept Surg, Box 2926, Durham, NC 27710 USA. EM monte@duke.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; , Lynn/0000-0003-3961-7828; Gnanakaran, S/0000-0002-9368-3044; Korber, Bette/0000-0002-2026-5757 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID, NIH) [A130034]; NIAID, NIH [Al 33879-02]; NIH-NCRR OPD-GCRC [5MOIRR00722]; Indian Council of Medical Research FX We gratefully acknowledge the staff of the "Acute Pathogenesis of HIV-1 Infection" project, National AIDS Research Institute, Pune, India who helped in collecting the samples and in generating the data. This work was funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID, NIH) (A130034) and by the Bill and Melinda Gates Foundation (#38619). This work was also supported in part by NIAID, NIH (Al 33879-02), NIH-NCRR OPD-GCRC (5MOIRR00722), the NIH-Fogarty International Center (D43TW0000), and intramural research grants from the Indian Council of Medical Research. NR 111 TC 47 Z9 47 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD MAR 15 PY 2009 VL 385 IS 2 BP 505 EP 520 DI 10.1016/j.virol.2008.12.032 PG 16 WC Virology SC Virology GA 419XE UT WOS:000264252200024 PM 19167740 ER PT J AU Akin, MC Petrik, NG Kimmel, GA AF Akin, Minta C. Petrik, Nikolay G. Kimmel, Greg A. TI Electron-stimulated reactions and O-2 production in methanol-covered amorphous solid water films SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electron stimulated desorption; free radical reactions; ice; monolayers; organic compounds; reaction kinetics; surface chemistry; thin films ID OUTER SOLAR-SYSTEM; LOW-ENERGY ELECTRONS; HYDROGEN-PEROXIDE; MOLECULAR-HYDROGEN; LIQUID METHANOL; D2O ICE; CONDENSED METHANOL; GAMMA-RADIOLYSIS; CRYSTALLINE ICE; LIGHT-IONS AB The low-energy, electron-stimulated desorption (ESD) of molecular products from amorphous solid water (ASW) films capped with methanol is investigated versus methanol coverage (0-4x10(15) cm(-2)) at 50 K using 100 eV incident electrons. The major ESD products from a monolayer (ML) of methanol on ASW are quite similar to the ESD products from bulk methanol film: H-2, CH4, H2O, C2H6, CO, CH2O, and CH3OH. For 40 ML ASW films, the molecular oxygen, hydrogen, and water ESD yields from the ASW are suppressed with increasing methanol coverage, while the CH3OH ESD yield increases proportionally to the methanol coverage. The suppression of the water ESD products by methanol is consistent with the nonthermal reactions occurring preferentially at or near the ASW/vacuum interface and not in the interior of the film. The water and molecular hydrogen ESD yields from the water layer decrease exponentially with the methanol cap coverage with 1/e constants of similar to 6x10(14) and 1.6x10(15) cm(-2), respectively. In contrast, the O-2 ESD from the water layer is very efficiently quenched by small amounts of methanol (1/e similar to 6.5x10(13) cm(-2)). The rapid suppression of O-2 production by small amounts of methanol is due to reactions between CH3OH and the precursors for the O-2-mainly OH radicals. A kinetic model for the O-2 ESD, which semiquantitatively accounts for the observations, is presented. C1 [Petrik, Nikolay G.; Kimmel, Greg A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Akin, Minta C.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,M-S K8-88, Richland, WA 99352 USA. EM gregory.kimmel@pnl.gov RI Petrik, Nikolay/G-3267-2015 OI Petrik, Nikolay/0000-0001-7129-0752 FU U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical and Materials Sciences Division [DE-AC06-76RLO 1830]; Welch Foundation [F-1436] FX This work was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical and Materials Sciences Division. The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE, Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. M. C. A. was supported by the Welch Foundation (Grant No. F-1436) during her stay at Pacific Northwest National Laboratory. NR 99 TC 5 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 14 PY 2009 VL 130 IS 10 AR 104710 DI 10.1063/1.3081879 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 420IF UT WOS:000264281800036 PM 19292552 ER PT J AU Bardhan, JP Knepley, MG Anitescu, M AF Bardhan, Jaydeep P. Knepley, Matthew G. Anitescu, Mihai TI Bounding the electrostatic free energies associated with linear continuum models of molecular solvation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biochemistry; electrostatics; free energy; molecular biophysics; molecular configurations; molecular dynamics method; partial differential equations; proteins; solvation ID GENERALIZED BORN MODEL; IMPLICIT SOLVENT MODELS; BOUNDARY-ELEMENT METHOD; DIRICHLET-NEUMANN MAP; EXPLICIT SOLVENT; DYNAMICS SIMULATIONS; INTEGRAL OPERATOR; QUANTUM-MECHANICS; DIELECTRIC MEDIA; ANALYTICAL SHAPE AB The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model. C1 [Bardhan, Jaydeep P.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Bardhan, Jaydeep P.; Knepley, Matthew G.] Rush Univ, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA. [Knepley, Matthew G.; Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Bardhan, JP (reprint author), Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. EM jbardhan@alum.mit.edu RI Knepley, Matthew/C-1094-2015 OI Knepley, Matthew/0000-0002-2292-0735 FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC0206CH11357] FX The authors thank B. Roux for the use of CHARMM. J.P.B. gratefully acknowledges support from a Wilkinson Fellowship in Scientific Computing. This work was supported by the Mathematical, Information, and Computational Sciences Division Subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC0206CH11357. NR 94 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 14 PY 2009 VL 130 IS 10 AR 104108 DI 10.1063/1.3081148 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 420IF UT WOS:000264281800008 PM 19292524 ER PT J AU Crooks, GE AF Crooks, G. E. TI Comment regarding "On the Crooks fluctuation theorem and the Jarzynski equality" [J. Chem. Phys. 129, 091101 (2008)] and "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics" [J. Chem. Phys. 129, 144113 (2008)] SO JOURNAL OF CHEMICAL PHYSICS LA English DT Letter DE Brownian motion; fluctuations ID FREE-ENERGY DIFFERENCES; SYSTEMS AB The incongruous "unexpected inapplicability of the Crook's fluctuation theorem" is due to an inexplicable, inappropriate use of inconsistent expressions. The girding is secure. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Crooks, GE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM gecrooks@lbl.gov RI Crooks, Gavin/H-7111-2012 NR 6 TC 10 Z9 10 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 14 PY 2009 VL 130 IS 10 AR 107101 DI 10.1063/1.3080751 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 420IF UT WOS:000264281800042 PM 19292558 ER PT J AU Miller, RL Slingo, A Barnard, JC Kassianov, E AF Miller, R. L. Slingo, A. Barnard, J. C. Kassianov, E. TI Seasonal contrast in the surface energy balance of the Sahel SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE FLUX DIVERGENCE; ECLATS FIELD EXPERIMENT; LEAF-AREA INDEX; RAINFALL VARIABILITY; SAHARAN AEROSOLS; WEST-AFRICA; CLIMATE; BUDGET; PRECIPITATION; EVAPORATION AB Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing during a dust aerosol outbreak is balanced comparably by net surface longwave and the sensible heat flux during the dry season, with the sensible flux increasing in importance with the onset of the summer monsoon winds. Measurements of surface fluxes by the AMF indicate broader features of the West African monsoon circulation and should be used to evaluate model simulations of the Sahel climate. C1 [Miller, R. L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Barnard, J. C.; Kassianov, E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Miller, R. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Slingo, A.] Univ Reading, Environm Syst Sci Ctr, Reading, Berks, England. RP Miller, RL (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM rmiller@giss.nasa.gov RI Miller, Ron/E-1902-2012 FU Atmospheric Radiation Measurement (ARM) Program; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Sciences Division; National Science Foundation [ATM-06-20066]; The Pacific Northwest National Laboratory; Battelle Memorial Institute, Pacific Northwest Division; U.S. Department of Energy (DOE); Atmospheric Radiation Measurement (ARM) [AC05-76RL01830] FX Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Sciences Division. The article was improved by the comments of three anonymous reviewers. We also thank Nazim Bharmal, Chris Bishop, Brian Cairns, Anthony Del Genio, Hamidou Hama, Kenneth Kehoe, Randall Koster, Peter Lamb, Issa Lele, Sally McFarlane, Mark Miller, Sharon Nicholson, Randy Peppler, Michael Puma, Chris Taylor, Dave Turner, Peng Xian, and Wenze Yang for their comments and advice. In addition, we thank Didier Tanre for aerosol retrievals from the AERONET site at Banizoumbou, Niger, and the Boston University Group for their MODIS vegetation products. This work was supported by the Climate Dynamics Program of the National Science Foundation through ATM-06-20066. A. S. was supported by the United Kingdom Natural Environment Research Council. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute, Pacific Northwest Division, for the U.S. Department of Energy (DOE). This research was supported in part by the DOE office of Biological and Environmental Research through the Atmospheric Radiation Measurement (ARM) program under contract DE-AC05-76RL01830 to the Pacific Northwest National Laboratory. This article is dedicated to the memory of Christopher Bishop and Anthony Slingo. NR 54 TC 8 Z9 8 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 14 PY 2009 VL 114 AR D00E05 DI 10.1029/2008JD010521 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 419PG UT WOS:000264231000002 ER PT J AU Chen, CS Nelson, CM Khauv, D Bennett, S Radisky, ES Hirai, Y Bissell, MJ Radisky, DC AF Chen, Connie S. Nelson, Celeste M. Khauv, Davitte Bennett, Simone Radisky, Evette S. Hirai, Yohei Bissell, Mina J. Radisky, Derek C. TI Homology with Vesicle Fusion Mediator Syntaxin-1a Predicts Determinants of Epimorphin/Syntaxin-2 Function in Mammary Epithelial Morphogenesis SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID BINDING-PROTEIN-BETA; ENRICHED INHIBITORY PROTEIN; C/EBP-BETA; EPIMORPHIN EXPRESSION; MESSENGER-RNA; SNARE COMPLEX; TRANSCRIPTIONAL ACTIVATOR; BRANCHING MORPHOGENESIS; 3-DIMENSIONAL STRUCTURE; UBIQUITINATED-CARGO AB We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that, although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally. C1 [Chen, Connie S.; Bennett, Simone; Bissell, Mina J.; Radisky, Derek C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nelson, Celeste M.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Khauv, Davitte; Radisky, Evette S.; Radisky, Derek C.] Mayo Clin, Ctr Canc, Jacksonville, FL 32224 USA. [Hirai, Yohei] Kyoto Univ, Inst Frontier Med Sci, Dept Morphoregulat, Sakyo Ku, Kyoto 6068507, Japan. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS 977, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov; radisky.derek@mayo.edu RI Radisky, Evette/C-8526-2012 OI Radisky, Evette/0000-0003-3121-109X FU NCI NIH HHS [CA122086, CA128660, CA57621, CA64786] NR 67 TC 23 Z9 23 U1 1 U2 2 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAR 13 PY 2009 VL 284 IS 11 BP 6877 EP 6884 DI 10.1074/jbc.M805908200 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 415FF UT WOS:000263919000035 PM 19129200 ER PT J AU Dubini, A Mus, F Seibert, M Grossman, AR Posewitz, MC AF Dubini, Alexandra Mus, Florence Seibert, Michael Grossman, Arthur R. Posewitz, Matthew C. TI Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PYRUVATE FORMATE-LYASE; ESCHERICHIA-COLI; GENE-EXPRESSION; SUCCINIC ACID; SULFATE RESPIRATION; FE-HYDROGENASE; H-2 PRODUCTION; ATP SYNTHESIS; GREEN-ALGAE; PATHWAYS AB The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO(2) relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O(2). Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malate-forming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae. C1 [Dubini, Alexandra; Seibert, Michael; Posewitz, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dubini, Alexandra] Colorado Sch Mines, Environm Sci & Engn Div, Golden, CO 80401 USA. [Posewitz, Matthew C.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Mus, Florence; Grossman, Arthur R.] Carnegie Inst Washington, Dept Plant Biol, Stanford, CA 94305 USA. RP Posewitz, MC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM matthew_posewitz@nrel.gov RI dubini, alexandra /A-7252-2016 OI dubini, alexandra /0000-0001-8825-3915 FU Office of Biological and Environmental Research; GTL; Office of Science; United States Department of Energy; National Science Foundation [MCB 0235878]; Air Force Office of Scientific Research [FA9550-05-1-0365] FX This work was supported by the Office of Biological and Environmental Research, GTL Program, Office of Science, United States Department of Energy (to A. R. G., M. C. P., and M. S.), by National Science Foundation Grant MCB 0235878 (to A. R. G.), and by Air Force Office of Scientific Research Grant FA9550-05-1-0365 (to M. C. P.). NR 57 TC 68 Z9 68 U1 1 U2 18 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAR 13 PY 2009 VL 284 IS 11 BP 7201 EP 7213 DI 10.1074/jbc.M803917200 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 415FF UT WOS:000263919000067 PM 19117946 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzales, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Rekovic, V Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzales, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Rekovic, V. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of Resonance Parameters of Orbitally Excited Narrow B-0 Mesons SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-LIGHT MESONS; B-MESONS; DETECTOR; DECAYS; PACKAGE; PHYSICS AB We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B-0 mesons in decays to B(*)+pi(-) using 1.7 fb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B-2(*0) state are measured to be m(B-2(*0))=5740.2(-1.8)(+1.7)(stat)(-0.8)(+0.9)(syst) MeV/c(2) and Gamma(B-2(*0))=22.7(-3.2)(+3.8)(stat)(-10.2)(+3.2)(syst) MeV/c(2). The mass difference between the B-2(*0) and B-1(0) states is measured to be 14.9(-2.5)(+2.2)(stat)(-1.4)(+1.2)(syst) MeV/c(2), resulting in a B-1(0) mass of 5725.3(-2.2)(+1.6)(stat)(-1.5)(+1.4)(syst) MeV/c(2). This is currently the most precise measurement of the masses of these states and the first measurement of the B-2(*0) width. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, Athens 15771, Greece. [Attal, A.; Azfar, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Martinez, M.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Stelzer-Chilton, O.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzales, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Sez Padova Trento, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3,UMR7585, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Cavaliere, V.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Iori, M.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. Univ Oxford, Oxford OX1 3RH, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Bartsch, V.; Beecher, D.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; OI Canelli, Florencia/0000-0001-6361-2117; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak R D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, Spain; the Slovak R& D Agency; and the Academy of Finland. NR 37 TC 24 Z9 24 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 102003 DI 10.1103/PhysRevLett.102.102003 PG 7 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500016 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fleming, BT Ford, R Garcia, FG Garvey, GT Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Karagiorgi, G Kasper, P Katori, T Kobilarcik, T Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Liu, Y Louis, WC Mahn, KBM Marsh, W McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Nelson, RH Nguyen, VT Nienaber, P Nowak, JA Ouedraogo, S Patterson, RB Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Sodeberg, M Sorel, M Spentzouris, P Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M Van de Water, R Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Karagiorgi, G. Kasper, P. Katori, T. Kobilarcik, T. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Nelson, R. H. Nguyen, V. T. Nienaber, P. Nowak, J. A. Ouedraogo, S. Patterson, R. B. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Sodeberg, M. Sorel, M. Spentzouris, P. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. Van de Water, R. Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. TI Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLE-PRODUCTION; LSND EXPERIMENT; GEV/C; OSCILLATIONS; BERYLLIUM; PROTONS AB The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are observed compared to an expectation of 385.9 +/- 35.7 events. C1 [Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Karagiorgi, G.; Mahn, K. B. M.; Monroe, J.; Nguyen, V. T.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Mills, F.; Moore, C. D.; Prebys, E.; Russell, A. D.; Spentzouris, P.; Stefanski, R. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Polly, C. C.] Univ Illinois, Urbana, IL 61801 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Polly, C. C.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; McGregor, G.; Mills, G. B.; Ray, H.; Sandberg, V.; Schirato, R.; Van de Water, R.; White, D. H.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Conrad, J. M.; Karagiorgi, G.; Monroe, J.; Nguyen, V. T.] MIT, Cambridge, MA 02139 USA. [Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Sodeberg, M.] Yale Univ, New Haven, CT 06520 USA. [Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. RP Aguilar-Arevalo, AA (reprint author), Univ Alabama, Tuscaloosa, AL 35487 USA. RI Nowak, Jaroslaw/P-2502-2016; Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Yang, Haijun/O-1055-2015; OI Nowak, Jaroslaw/0000-0001-8637-5433; Wascko, Morgan/0000-0002-8348-4447; Raaf, Jennifer/0000-0002-4533-929X; Louis, William/0000-0002-7579-3709; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Sorel, Michel/0000-0003-2141-9508; Van de Water, Richard/0000-0002-1573-327X; Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Katori, Teppei/0000-0002-9429-9482; Schirato, Richard/0000-0002-4216-0235; Schmitz, David/0000-0003-2165-7389 FU Fermilab; Department of Energy; National Science Foundation; Los Alamos National Laboratory FX We acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation, and we acknowledge Los Alamos National Laboratory for LDRD funding. In addition, we acknowledge theoretical input from Tina Leitner and Ulrich Mosel on the Delta -> N gamma background. NR 38 TC 232 Z9 232 U1 3 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 101802 DI 10.1103/PhysRevLett.102.101802 PG 5 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500013 PM 19392103 ER PT J AU Battaglieri, M De Vita, R Szczepaniak, AP Adhikari, KP Aghasyan, M Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Batourine, V Bedlinskiy, I Bellis, M Benmouna, N Berman, BL Bibrzycki, L Biselli, AS Bookwalter, C Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bltmann, S Burkert, VD Calarco, JR Careccia, SL Carman, DS Casey, L Chen, S Cheng, L Clinton, E Cole, PL Collins, P Crabb, D Crannell, H Crede, V Cummings, JP Dale, D Daniel, A Dashyan, N De Masi, R De Sanctis, E Degtyarenko, PV Deur, A Dhamija, S Dharmawardane, KV Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Fersch, R Forest, TA Fradi, A Gabrielyan, MY Gan, L GarOon, M Gasparian, A Gavalian, G Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Glamazdin, O Goett, J Goetz, JT Gohn, W Golovatch, E Gordon, CIO Gothe, RW Graham, L Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kageya, T Kalantarians, N Keller, D Kellie, JD Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Klimenko, AV Konczykowski, P Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Lesniak, L Li, J Livingston, K Lowry, M Lu, HY MacCormick, M Malace, S Markov, N Mattione, P McCracken, ME McKinnon, B Mecking, BA Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Mineeva, T Minehart, R Mirazita, M Miskimen, R Mochalov, V Mokeev, V Moreno, B Moriya, K Morrow, SA Moteabbed, M Munevar, E Mutchler, GS Nadel-Turonski, P Nakagawa, I Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Paris, M Paterson, C Pereira, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Price, JW Prok, Y Protopopescu, D Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabati, F Saini, MS Salamanca, J Salgado, C Sandorfi, A Santoro, JP Sapunenko, V Schott, D Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Smith, ES Smith, LC Sober, DI Sokhan, D Starostin, A Stavinsky, A Stepanyan, S Stepanyan, SS Stokes, BE Stoler, P Stopani, KA Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Teymurazyan, A Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Wei, X Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yurov, M Zana, L Zhang, J Zhao, B Zhao, ZW AF Battaglieri, M. De Vita, R. Szczepaniak, A. P. Adhikari, K. P. Aghasyan, M. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Batourine, V. Bedlinskiy, I. Bellis, M. Benmouna, N. Berman, B. L. Bibrzycki, L. Biselli, A. S. Bookwalter, C. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bltmann, S. Burkert, V. D. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Chen, S. Cheng, L. Clinton, E. Cole, P. L. Collins, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dale, D. Daniel, A. Dashyan, N. De Masi, R. De Sanctis, E. Degtyarenko, P. V. Deur, A. Dhamija, S. Dharmawardane, K. V. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Fersch, R. Forest, T. A. Fradi, A. Gabrielyan, M. Y. Gan, L. GarOon, M. Gasparian, A. Gavalian, G. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Glamazdin, O. Goett, J. Goetz, J. T. Gohn, W. Golovatch, E. Gordon, C. I. O. Gothe, R. W. Graham, L. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kageya, T. Kalantarians, N. Keller, D. Kellie, J. D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Konczykowski, P. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Lee, T. Lesniak, L. Li, Ji Livingston, K. Lowry, M. Lu, H. Y. MacCormick, M. Malace, S. Markov, N. Mattione, P. McCracken, M. E. McKinnon, B. Mecking, B. A. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Mineeva, T. Minehart, R. Mirazita, M. Miskimen, R. Mochalov, V. Mokeev, V. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nakagawa, I. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Paris, M. Paterson, C. Pereira, S. Anefalos Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabati, F. Saini, M. S. Salamanca, J. Salgado, C. Sandorfi, A. Santoro, J. P. Sapunenko, V. Schott, D. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Starostin, A. Stavinsky, A. Stepanyan, S. Stepanyan, S. S. Stokes, B. E. Stoler, P. Stopani, K. A. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Teymurazyan, A. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Wei, X. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Yurov, M. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. TI Measurement of Direct f(0)(980) Photoproduction on the Proton SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZED PHOTONS; DECK MODEL; PI-PI; CHAMBER AB We report on the results of the first measurement of exclusive f(0)(980) meson photoproduction on protons for E-gamma=3.0-3.8 GeV and -t=0.4-1.0 GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the pi(+)pi(-) channel by performing a partial wave analysis of the reaction gamma p -> p pi(+)pi(-). Clear evidence of the f(0)(980) meson was found in the interference between P and S waves at M-pi(+)pi(-)similar to 1 GeV. The S-wave differential cross section integrated in the mass range of the f(0)(980) was found to be a factor of about 50 smaller than the cross section for the rho meson. This is the first time the f(0)(980) meson has been measured in a photoproduction experiment. C1 [Battaglieri, M.; De Vita, R.; Anghinolfi, M.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Sez Genova, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.; Starostin, A.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Cheng, L.; Crannell, H.; Hakobyan, R. S.; Juengst, H. G.; Klein, F. J.; Nadel-Turonski, P.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; GarOon, M.; Girod, F. X.; Konczykowski, P.; Sabati, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Hardie, J.; Heddle, D.; Prok, Y.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Dhamija, S.; Gabrielyan, M. Y.; Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Chen, S.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Riccardi, G.; Saini, M. S.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Juengst, H. G.; Munevar, E.; Nasseripour, R.; Paris, M.; Stokes, B. E.; Strakovsky, I. I.; Strauch, S.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Donnelly, J.; Gordon, C. I. O.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Melone, J. J.; Paterson, C.; Protopopescu, D.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Aghasyan, M.; De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bouchigny, S.; Fradi, A.; Guidal, M.; Hadjidakis, C.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Mochalov, V.] Inst High Energy Phys, Protvino 142281, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Teymurazyan, A.] Univ Kentucky, Lexington, KY 40506 USA. [Glamazdin, O.] Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.; Yurov, M.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Clinton, E.; Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Bibrzycki, L.; Lesniak, L.] Henryk Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Calarco, J. R.; Egiyan, H.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Lee, T.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA. [Gasparian, A.] N Carolina Agr & Tech State Univ, Greensboro, NC 27455 USA. [Daniel, A.; Hicks, K.; Hleiqawi, I.; Keller, D.; Mibe, T.; Tkabladze, A.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Amaryan, M. J.; Bagdasaryan, H.; Bltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Domin Univ, Norfolk, VA 23529 USA. [Cummings, J. P.; Goett, J.; Khetarpal, P.; Kubarovsky, V.; Li, Ji; Niyazov, R. A.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.; Todor, L.] Univ Richmond, Richmond, VA 23173 USA. [Nakagawa, I.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.; Stopani, K. A.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Baltzell, N. A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Graham, L.; Ilieva, Y.; Langheinrich, J.; Lu, H. Y.; Malace, S.; Nasseripour, R.; Park, K.; Park, S.; Strauch, S.; Tedeschi, D. J.; Tur, C.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Avakian, H.; Batourine, V.; Boiarinov, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Gyurjyan, V.; Hardie, J.; Heddle, D.; Ito, M. M.; Kageya, T.; Kramer, L. H.; Kubarovsky, V.; Laget, J. M.; Lowry, M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Paris, M.; Raue, B. A.; Sandorfi, A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Wei, X.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Kuleshov, S. V.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Minehart, R.; Pierce, J.; Pocanic, D.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Fersch, R.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Dashyan, N.; Egiyan, K. S.; Gevorgyan, N.; Hakobyan, H.; Hakobyan, R. S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Szczepaniak, A. P.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA. RP Battaglieri, M (reprint author), Sez Genova, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. RI Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Ishkhanov, Boris/E-1431-2012; Kuleshov, Sergey/D-9940-2013; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Goett, Johnny/D-1277-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013 OI Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Goett, Johnny/0000-0002-3685-2227; Glamazdin, Alexander/0000-0002-4172-7324; Sapunenko, Vladimir/0000-0003-1877-9043; RIPANI, Maurizio/0000-0003-4450-8511; Kuleshov, Sergey/0000-0002-3065-326X; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570 FU Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; U. S. Department of Energy; National Science Foundation; Korea Science and Engineering Foundation; Jefferson Science Associates; U. S. DOE [DE-AC05-060R23177] FX We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at Jefferson Lab that made this experiment possible. This work was supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the U. S. Department of Energy and National Science Foundation, and the Korea Science and Engineering Foundation. Jefferson Science Associates, LLC, operates Jefferson Lab for the United States Department of Energy under U. S. DOE contract DE-AC05-060R23177. NR 26 TC 16 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 102001 DI 10.1103/PhysRevLett.102.102001 PG 6 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500014 PM 19392104 ER PT J AU Checco, A AF Checco, Antonio TI Liquid Spreading under Nanoscale Confinement SO PHYSICAL REVIEW LETTERS LA English DT Article ID DROPS; PRECURSOR; PROFILES; SURFACES; DYNAMICS; FILMS; GLASS AB Dynamic atomic force microscopy in the noncontact regime is used to study the morphology of a nonvolatile liquid (squalane) as it spreads along wettable nanostripes embedded in a nonwettable surface. Results show that the liquid profile depends on the amount of lateral confinement imposed by the nanostripes, and it is truncated at the microscopic contact line in good qualitative agreement with classical mesoscale hydrodynamics. However, the width of the contact line is found to be significantly larger than expected theoretically. This behavior may originate from small chemical inhomogeneity of the patterned stripes as well as from thermal fluctuations of the contact line. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Checco, A (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM checco@bnl.gov FU Nanoscale Science, Engineering and Technology Program of the U. S. DOE [DE-AC02-98CH10886] FX This work is supported by the Nanoscale Science, Engineering and Technology Program of the U. S. DOE under Contract No. DE-AC02-98CH10886. The author thanks B. Ocko, S. Dietrich, M. Rauscher, and J. Koplik for stimulating discussions. NR 20 TC 12 Z9 12 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 106103 DI 10.1103/PhysRevLett.102.106103 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500040 PM 19392130 ER PT J AU Chen, H Wilks, SC Bonlie, JD Liang, EP Myatt, J Price, DF Meyerhofer, DD Beiersdorfer, P AF Chen, Hui Wilks, Scott C. Bonlie, James D. Liang, Edison P. Myatt, Jason Price, Dwight F. Meyerhofer, David D. Beiersdorfer, Peter TI Relativistic Positron Creation Using Ultraintense Short Pulse Lasers SO PHYSICAL REVIEW LETTERS LA English DT Article ID PAIR PRODUCTION; FEMTOSECOND-LASER; ELECTRON; PLASMA; CONDENSATION; GENERATION; TARGETS; PHOTON; BEAMS AB We measure up to 2x10(10) positrons per steradian ejected out the back of similar to mm thick gold targets when illuminated with short (similar to 1 ps) ultraintense (similar to 1x10(20) W/cm(2)) laser pulses. Positrons are produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. Modeling based on the measurements indicate the positron density to be similar to 10(16) positrons/cm(3), the highest ever created in the laboratory. C1 [Chen, Hui; Wilks, Scott C.; Bonlie, James D.; Price, Dwight F.; Beiersdorfer, Peter] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Liang, Edison P.] Rice Univ, Houston, TX 77005 USA. [Myatt, Jason; Meyerhofer, David D.] Univ Rochester, Rochester, NY 14623 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U. S. DOE [DE-AC52-07NA27344, LDRD-08-LW-058, DE-FC5208NA28302]; ILSA; NSF [AST-0406882] FX Work performed under the auspices of U. S. DOE by LLNL under Contract No. DE-AC52-07NA27344, LDRD-08-LW-058, and ILSA. Work by the U of R supported by U. S. DOE No. DE-FC5208NA28302, U of R, and the NY ERDA. Work performed by Rice U. under NSF No. AST-0406882. We gratefully acknowledge support from JLF staff, M. Eckart, W. Craig, W. Goldstein, and D. Correll, and discussions with R. Heeter, M. Schneider, and R. Shepherd. NR 35 TC 180 Z9 185 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 105001 DI 10.1103/PhysRevLett.102.105001 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500030 PM 19392120 ER PT J AU Chi, SX Schneidewind, A Zhao, J Harriger, LW Li, LJ Luo, YK Cao, GH Xu, ZA Loewenhaupt, M Hu, JP Dai, PC AF Chi, Songxue Schneidewind, Astrid Zhao, Jun Harriger, Leland W. Li, Linjun Luo, Yongkang Cao, Guanghan Xu, Zhu'an Loewenhaupt, Micheal Hu, Jiangping Dai, Pengcheng TI Inelastic Neutron-Scattering Measurements of a Three-Dimensional Spin Resonance in the FeAs-Based BaFe1.9Ni0.1As2 Superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article ID UPD2AL3 AB We use inelastic neutron scattering to study magnetic excitations of the FeAs-based superconductor BaFe1.9Ni0.1As2 above and below its T-c (=20 K). In addition to gradually open a spin gap at the in-plane antiferromagnetic ordering wave vector (1, 0, 0), the effect of superconductivity is to form a three-dimensional resonance with clear dispersion along the c axis. The intensity of the resonance develops like a superconducting order parameter, and the mode occurs at distinctively different energies at (1, 0, 0) and (1, 0, 1). If the resonance energy is associated with the superconducting gap energy Delta, then Delta is dependent on the wave vector transfers along the c axis. These results suggest that one must be careful in interpreting the superconducting gap energies obtained by surface sensitive probes such as scanning tunneling microscopy and angle resolved photoemission. C1 [Chi, Songxue; Zhao, Jun; Harriger, Leland W.; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Schneidewind, Astrid; Loewenhaupt, Micheal] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Li, Linjun; Luo, Yongkang; Cao, Guanghan; Xu, Zhu'an] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Chi, SX (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Cao, Guanghan/C-4753-2008; Dai, Pengcheng /C-9171-2012; Hu, Jiangping/A-9154-2010; Xu, Zhu'an/B-1419-2009; Zhao, Jun/A-2492-2010; Chi, Songxue/A-6713-2013; hu, jiangping /C-3320-2014; OI Dai, Pengcheng /0000-0002-6088-3170; Hu, Jiangping/0000-0003-4480-1734; Zhao, Jun/0000-0002-0421-8934; Chi, Songxue/0000-0002-3851-9153; Schneidewind, Astrid/0000-0002-7239-9888 FU U.S. NSF [DMR-0756568]; U. S. DOE [DE-FG02-05ER4620]; NSF of China; DFG; TU Dresden; FRM II FX This work is supported by the U.S. NSF No. DMR-0756568, U. S. DOE BES No. DE-FG02-05ER46202, and in part by the U.S. DOE, Division of Scientific User Facilities. The work at Zhejiang University is supported by the NSF of China. We further acknowledge support from DFG within Sonderforschungsbereich 463 and from the PANDA project of TU Dresden and FRM II. NR 31 TC 142 Z9 143 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 107006 DI 10.1103/PhysRevLett.102.107006 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500060 PM 19392150 ER PT J AU Leonard, F Talin, AA Swartzentruber, BS Picraux, ST AF Leonard, Francois Talin, A. Alec Swartzentruber, B. S. Picraux, S. T. TI Diameter-Dependent Electronic Transport Properties of Au-Catalyst/Ge-Nanowire Schottky Diodes SO PHYSICAL REVIEW LETTERS LA English DT Article ID GERMANIUM NANOWIRES; NANOSTRUCTURES; SILICON; DEVICES; GROWTH AB We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the dominant charge transport mechanism, with a diameter dependence of both the depletion width and the electron-hole recombination time. The recombination time is dominated by surface contributions and depends linearly on the nanowire diameter. C1 [Leonard, Francois; Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. [Swartzentruber, B. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Picraux, S. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Leonard, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM fleonar@sandia.gov FU U.S. Department of Energy; Los Alamos National Laboratory; Sandia National Laboratories FX We thank D. Kienle for contributions to the self-consistent computational approach. Work performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory and Sandia National Laboratories. NR 15 TC 68 Z9 68 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 106805 DI 10.1103/PhysRevLett.102.106805 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500054 PM 19392144 ER PT J AU Liu, MZ Lee, TW Gray, SK Guyot-Sionnest, P Pelton, M AF Liu, Mingzhao Lee, Tae-Woo Gray, Stephen K. Guyot-Sionnest, Philippe Pelton, Matthew TI Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLES; MOLECULE; DECAY AB We study theoretically a dipole emitter placed near a metal nanoparticle and near small chains of two and three nanoparticles. The emitter can efficiently excite dark, or nonradiative, surface-plasmon modes in the nanostructures, in addition to the well-known bright modes. In the case of coupled nanoparticles, the origins of the bright and dark modes can be understood in the context of plasmon hybridization. Excitation of dark modes in nanoparticle chains allows for subwavelength guiding of optical energy with no radiative losses and thus with improved propagation lengths. C1 [Liu, Mingzhao; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Tae-Woo; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Liu, Mingzhao; Guyot-Sionnest, Philippe] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Liu, MZ (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. EM liu13@fas.harvard.edu; pelton@anl.gov RI Liu, Mingzhao/A-9764-2011; Pelton, Matthew/H-7482-2013 OI Liu, Mingzhao/0000-0002-0999-5214; Pelton, Matthew/0000-0002-6370-8765 FU University of Chicago; MRSEC; NSF-DMR [DMR-0213745]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX M.Z.L. was supported by the University of Chicago MRSEC NSF-DMR under Grant No. DMR-0213745. Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 25 TC 117 Z9 117 U1 6 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 107401 DI 10.1103/PhysRevLett.102.107401 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500067 PM 19392157 ER PT J AU Lumsden, MD Christianson, AD Parshall, D Stone, MB Nagler, SE MacDougall, GJ Mook, HA Lokshin, K Egami, T Abernathy, DL Goremychkin, EA Osborn, R McGuire, MA Sefat, AS Jin, R Sales, BC Mandrus, D AF Lumsden, M. D. Christianson, A. D. Parshall, D. Stone, M. B. Nagler, S. E. MacDougall, G. J. Mook, H. A. Lokshin, K. Egami, T. Abernathy, D. L. Goremychkin, E. A. Osborn, R. McGuire, M. A. Sefat, A. S. Jin, R. Sales, B. C. Mandrus, D. TI Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON-SCATTERING; SUPERCONDUCTIVITY; UPD2AL3; SYSTEM AB Inelastic neutron scattering measurements on single crystals of superconducting BaFe1.84Co0.16As2 reveal a magnetic excitation located at wave vectors (1/2 1/2 L) in tetragonal notation. On cooling below T-C, a clear resonance peak is observed at this wave vector with an energy of 8.6(0.5) meV, corresponding to 4.5(0.3) k(B)T(C). This is in good agreement with the canonical value of 5 k(B)T(C) observed in the cuprates. The spectrum shows strong dispersion in the tetragonal plane but very weak dispersion along the c axis, indicating that the magnetic fluctuations are two dimensional in nature. This is in sharp contrast to the anisotropic three dimensional spin excitations seen in the undoped parent compounds. C1 [Lumsden, M. D.; Christianson, A. D.; Stone, M. B.; Nagler, S. E.; MacDougall, G. J.; Mook, H. A.; Egami, T.; Abernathy, D. L.; McGuire, M. A.; Sefat, A. S.; Jin, R.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Parshall, D.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lokshin, K.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Goremychkin, E. A.; Osborn, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Goremychkin, E. A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Lumsden, MD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Osborn, Raymond/E-8676-2011; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Mandrus, David/H-3090-2014; christianson, andrew/A-3277-2016; BL18, ARCS/A-3000-2012; Sefat, Athena/R-5457-2016; Lumsden, Mark/F-5366-2012 OI MacDougall, Gregory/0000-0002-7490-9650; McGuire, Michael/0000-0003-1762-9406; Nagler, Stephen/0000-0002-7234-2339; Osborn, Raymond/0000-0001-9565-3140; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; christianson, andrew/0000-0003-3369-5884; Sefat, Athena/0000-0002-5596-3504; Lumsden, Mark/0000-0002-5472-9660 FU Office of Basic Energy Sciences, DOE; DOE EPSCoR [DE-FG02-08ER46528] FX This work was supported by the Scientific User Facilities Division and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. Work at UT was supported by the DOE EPSCoR Implementation grant DE-FG02-08ER46528. NR 39 TC 194 Z9 194 U1 4 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 107005 DI 10.1103/PhysRevLett.102.107005 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500059 PM 19392149 ER PT J AU Nozar, M Salgado, C Weygand, DP Guo, L Adams, G Li, J Eugenio, P Amaryan, MJ Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bonner, BE Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Casey, L Cazes, A Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Cords, D Corvisiero, P Crabb, D Crannell, H Crede, V Cummings, JP Dale, D Dashyan, N De Masi, R De Vita, R De Sanctis, E Degtyarenko, PV Denizli, H Dennis, L Deur, A Dharmawardane, KV Dhuga, KS Dickson, R Djalali, C Dodge, GE Doughty, D Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Fatemi, R Fedotov, G Feuerbach, RJ Forest, TA Fradi, A Funsten, H Garcon, M Gavalian, G Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Lachniet, J Laget, JM Langheinrich, J Lawrence, D Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mehrabyan, S Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Mirazita, M Miskimen, R Mokeev, V Moreno, B Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Popa, I Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Rubin, PD Sabatie, F Salamanca, J Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Skabelin, AV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Thoma, U Tkabladze, A Tkachenko, S Todor, L Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, B Zhao, ZW AF Nozar, M. Salgado, C. Weygand, D. P. Guo, L. Adams, G. Li, Ji Eugenio, P. Amaryan, M. J. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Barrow, S. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bonner, B. E. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Carnahan, B. Casey, L. Cazes, A. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Cords, D. Corvisiero, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dale, D. Dashyan, N. De Masi, R. De Vita, R. De Sanctis, E. Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dharmawardane, K. V. Dhuga, K. S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Fatemi, R. Fedotov, G. Feuerbach, R. J. Forest, T. A. Fradi, A. Funsten, H. Garcon, M. Gavalian, G. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gothe, R. W. Griffioen, K. A. Guidal, M. Guillo, M. Guler, N. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. McAleer, S. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mehrabyan, S. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Mirazita, M. Miskimen, R. Mokeev, V. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. O'Rielly, G. V. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Philips, S. A. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Polli, E. Popa, I. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Qin, L. M. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Rossi, P. Rubin, P. D. Sabatie, F. Salamanca, J. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Skabelin, A. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Thoma, U. Tkabladze, A. Tkachenko, S. Todor, L. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. TI Search for the Photoexcitation of Exotic Mesons in the pi(+)pi(+)pi(-) System SO PHYSICAL REVIEW LETTERS LA English DT Article ID 18 GEV/C; PHOTOPRODUCTION; CEBAF; STATE AB A search for exotic mesons in the pi(+)pi(+)pi(-) system photoproduced by the charge exchange reaction gamma p ->pi(+)pi(+)pi(-)(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A partial wave analysis was performed on a sample of 83 000 events, the highest such statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic J(PC)=1(-+) resonant state in the 1 to 2 GeV mass range. Our partial wave analysis shows production of the a(2)(1320) and the pi(2)(1670) mesons, but no evidence for the a(1)(1260), nor the pi(1)(1600) exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic pi(1)(1600) cross section, less than 2% of the a(2)(1320) production. C1 [Nozar, M.; Salgado, C.; Weygand, D. P.; Guo, L.; Adams, G.; Li, Ji; Avakian, H.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Cords, D.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Girod, F. X.; Gyurjyan, V.; Hardie, J.; Heddle, D.; Ito, M. M.; Joo, K.; Kubarovsky, V.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niczyporuk, B. B.; Raue, B. A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Thoma, U.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA. [Biselli, A. S.; Cummings, J. P.; Niyazov, R. A.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Eugenio, P.; Barrow, S.; Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Hanretty, C.; McAleer, S.; Ostrovidov, A. I.; Riccardi, G.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Krahn, Z.; Kuhn, J.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Carnahan, B.; Casey, L.; Cheng, L.; Crannell, H.; Klein, F. J.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; Garcon, M.; Girod, F. X.; Laget, J. M.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Hardie, J.; Stepanyan, S. S.; Stepanyan, S.] Christopher Newport Univ, Newport News, VA 23606 USA. [Joo, K.; Markov, N.; Niyazov, R. A.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Strakovsky, I. I.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Polli, E.; Ronchetti, F.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Serz Genova, I-16146 Genoa, Italy. [Bouchigny, S.; Fradi, A.; Guidal, M.; Hadjidakis, C.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Boiarinov, S.; Kossov, M.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Skabelin, A. V.] MIT, Cambridge, MA 02139 USA. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, Moscow 119899, Russia. [Calarco, J. R.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Hicks, K.; Hleiqawi, I.; Mibe, T.; Niculescu, G.; Niculescu, I.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Niyazov, R. A.; Qin, L. M.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Denizli, H.; Dytman, S.; Mehrabyan, S.; Mueller, J.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Bonner, B. E.; Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.; Rubin, P. D.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Baltzell, N. A.; Cazes, A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Guillo, M.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Preedom, B. M.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Brooks, W. K.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Fatemi, R.; Pierce, J.; Pocanic, D.; Prok, Y.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Butuceanu, C.; Egiyan, H.; Egiyan, K. S.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Egiyan, K. S.; Gevorgyan, N.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Nozar, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Protopopescu, Dan/D-5645-2012; Kuleshov, Sergey/D-9940-2013; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012 OI Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Sapunenko, Vladimir/0000-0003-1877-9043; RIPANI, Maurizio/0000-0003-4450-8511; Bellis, Matthew/0000-0002-6353-6043; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Ireland, David/0000-0001-7713-7011; FU U. S. Department of Energy; U. S. National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; Korean Science and Engineering Foundation; United States Department of Energy [DE-AC05-060R23177] FX This work was supported in part by the U. S. Department of Energy, the U. S. National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, and the Korean Science and Engineering Foundation. Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-060R23177. NR 35 TC 26 Z9 27 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 102002 DI 10.1103/PhysRevLett.102.102002 PG 6 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500015 PM 19392105 ER PT J AU Smadici, S Lee, JCT Wang, S Abbamonte, P Logvenov, G Gozar, A Cavellin, CD Bozovic, I AF Smadici, S. Lee, J. C. T. Wang, S. Abbamonte, P. Logvenov, G. Gozar, A. Cavellin, C. Deville Bozovic, I. TI Superconducting Transition at 38 K in Insulating-Overdoped La2CuO4-La1.64Sr0.36CuO4 Superlattices: Evidence for Interface Electronic Redistribution from Resonant Soft X-Ray Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID RECONSTRUCTION; OXIDES AB We use resonant soft x-ray scattering (RSXS) to quantify the hole distribution in a superlattice of insulating La2CuO4 (LCO) and overdoped La2-xSrxCuO4 (LSCO). Despite its nonsuperconducting constituents, this structure is superconducting with T-c=38 K. We found that the conducting holes redistribute electronically from LSCO to the LCO layers. The LCO layers were found to be optimally doped, suggesting they are the main drivers of superconductivity. Our results demonstrate the utility of RSXS for separating electronic from structural effects at oxide interfaces. C1 [Smadici, S.; Lee, J. C. T.; Wang, S.; Abbamonte, P.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Logvenov, G.; Gozar, A.; Cavellin, C. Deville; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cavellin, C. Deville] Univ Paris 12, F-94010 Creteil, France. RP Smadici, S (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-06ER46285, DE-AC0298CH10886, DE-FG0207ER46453, DE-FG02-07ER46471]; [MA-509-MACA] FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy. RSXS studies were supported by Grant No. DE-FG02-06ER46285, with use of the NSLS supported under Contract No. DE-AC0298CH10886. Superlattice growth and characterization were supported under Contract No. MA-509-MACA. Work in the FSMRL was supported by Grants No. DE-FG0207ER46453 and No. DE-FG02-07ER46471. NR 18 TC 63 Z9 63 U1 3 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 107004 DI 10.1103/PhysRevLett.102.107004 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500058 PM 19392148 ER PT J AU Valla, T Camacho, J Pan, ZH Fedorov, AV Walters, AC Howard, CA Ellerby, M AF Valla, T. Camacho, J. Pan, Z.-H. Fedorov, A. V. Walters, A. C. Howard, C. A. Ellerby, M. TI Anisotropic Electron-Phonon Coupling and Dynamical Nesting on the Graphene Sheets in Superconducting CaC6 using Angle-Resolved Photoemission Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID GRAPHITE; INTERCALATION; ENERGY; STATE AB We present the first angle-resolved photoemission studies of electronic structure in CaC6, a superconducting graphite intercalation compound with T-c=11.6 K. We find that, contrary to theoretical models, the electron-phonon coupling on the graphene-derived Fermi sheets with high-frequency graphene-derived phonons is surprisingly strong and anisotropic. The shape of the Fermi surface is found to favor a dynamical intervalley nesting via exchange of high-frequency phonons. Our results suggest that graphene sheets play a crucial role in superconductivity in graphite intercalation compounds. C1 [Valla, T.; Camacho, J.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Pan, Z.-H.; Fedorov, A. V.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Walters, A. C.; Howard, C. A.; Ellerby, M.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Walters, A. C.; Howard, C. A.; Ellerby, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Valla, T (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM valla@bnl.gov FU U.S. Department of Energy; U.K. Engineering and Physical Science Research Council FX We acknowledge technical help from Antony Bollinger and useful discussions with Phil Allen, Matteo Calandra, Peter Johnson, Myron Strongin, Alexei Tsvelik, and Mary Upton. The research work described in this Letter was supported by the U.S. Department of Energy and the U.K. Engineering and Physical Science Research Council. NR 29 TC 46 Z9 46 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 107007 DI 10.1103/PhysRevLett.102.107007 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500061 PM 19392151 ER PT J AU Zurek, WH AF Zurek, Wojciech H. TI Causality in Condensates: Gray Solitons as Relics of BEC Formation SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; COSMOLOGICAL EXPERIMENTS; SYMMETRY-BREAKING; PHASE-TRANSITION; DEFECT FORMATION; VORTEX FORMATION; DIMENSIONS; VORTICES; DYNAMICS; STRINGS AB Symmetry breaking during phase transitions can lead to the formation of topological defects (such as vortex lines in superfluids). However, the usually studied Bose-Einstein condensates (BECs) have the shape of a cigar, a geometry that impedes vortex formation, survival, and detection. I show that, in elongated traps, one can expect the formation of gray solitons (long-lived, nontopological "phase defects") as a result of the same mechanism. Their number will rise approximately in proportion to the transition rate. This steep rise is due to the increasing size of the region of the BEC cigar where the phase of the condensate wave function is chosen locally (rather than passed on from the already formed BEC). C1 LANL, Div Theory, Los Alamos, NM 87545 USA. RP Zurek, WH (reprint author), LANL, Div Theory, MS B213, Los Alamos, NM 87545 USA. FU DOE FX I thank Brian Anderson, Malcolm Boshier, Bogdan Damski, and Peter Engels for stimulating discussions. This research was supported by DOE under the LDRD program at Los Alamos. NR 28 TC 60 Z9 60 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 13 PY 2009 VL 102 IS 10 AR 105702 DI 10.1103/PhysRevLett.102.105702 PG 4 WC Physics, Multidisciplinary SC Physics GA 418HO UT WOS:000264139500036 PM 19392126 ER PT J AU Bisgaard, CZ Clarkin, OJ Wu, GR Lee, AMD Gessner, O Hayden, CC Stolow, A AF Bisgaard, Christer Z. Clarkin, Owen J. Wu, Guorong Lee, Anthony M. D. Gessner, Oliver Hayden, Carl C. Stolow, Albert TI Time-Resolved Molecular Frame Dynamics of Fixed-in-Space CS2 Molecules SO SCIENCE LA English DT Article ID PHOTOELECTRON ANGULAR-DISTRIBUTIONS; LASER-PULSES; SPECTROSCOPY; STATE; PREDISSOCIATION; DIFFRACTION; DISSOCIATION; IONIZATION; NM AB Random orientation of molecules within a sample leads to blurred observations of chemical reactions studied from the laboratory perspective. Methods developed for the dynamic imaging of molecular structures and processes struggle with this, as measurements are optimally made in the molecular frame. We used laser alignment to transiently fix carbon disulfide molecules in space long enough to elucidate, in the molecular reference frame, details of ultrafast electronic-vibrational dynamics during a photochemical reaction. These three-dimensional photoelectron imaging results, combined with ongoing efforts in molecular alignment and orientation, presage a wide range of insights obtainable from time-resolved studies in the molecular frame. C1 [Bisgaard, Christer Z.; Clarkin, Owen J.; Wu, Guorong; Lee, Anthony M. D.; Stolow, Albert] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. [Clarkin, Owen J.; Lee, Anthony M. D.; Stolow, Albert] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada. [Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Hayden, Carl C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Stolow, A (reprint author), Natl Res Council Canada, Steacie Inst Mol Sci, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada. EM albert.stolow@nrc.ca RI Bisgaard, Christer/G-2099-2010 FU Natural Sciences and Engineering Research Council of Canada FX This work was supported by the Natural Sciences and Engineering Research Council of Canada (A.M.D.L. and A.S.). We gratefully acknowledge J. G. Underwood, S. Patchkovskii, C.-Y. Ng, M. Brouard, and D. M. Wardlaw for stimulating discussions. NR 28 TC 180 Z9 180 U1 8 U2 69 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 13 PY 2009 VL 323 IS 5920 BP 1464 EP 1468 DI 10.1126/science.1169183 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 417TP UT WOS:000264101700037 PM 19286552 ER PT J AU Dbouk, HA Mroue, RM El-Sabban, ME Talhouk, RS AF Dbouk, Hashem A. Mroue, Rana M. El-Sabban, Marwan E. Talhouk, Rabih S. TI Connexins: a myriad of functions extending beyond assembly of gap junction channels SO CELL COMMUNICATION AND SIGNALING LA English DT Review ID CELL-CELL COMMUNICATION; LENS FIBER CONNEXINS; MOUSE MAMMARY-GLAND; BREAST-CANCER CELLS; PROTEIN-KINASE-C; INTERCELLULAR COMMUNICATION; OCULODENTODIGITAL DYSPLASIA; CARDIAC MYOCYTES; OSTEOBLASTIC CELLS; TIGHT JUNCTIONS AB Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis. C1 [El-Sabban, Marwan E.] Amer Univ Beirut, Fac Med, Dept Human Morphol, Beirut, Lebanon. [Dbouk, Hashem A.; Mroue, Rana M.; Talhouk, Rabih S.] Amer Univ Beirut, Fac Arts & Sci, Dept Biol, Beirut, Lebanon. [Dbouk, Hashem A.] Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10467 USA. [Mroue, Rana M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP El-Sabban, ME (reprint author), Amer Univ Beirut, Fac Med, Dept Human Morphol, Beirut, Lebanon. EM hdbouk@aecom.yu.edu; RMMroue@lbl.gov; me00@aub.edu.lb; rtalhouk@aub.edu.lb RI Dbouk, Hashem/H-3350-2013; OI dbouk, hashem/0000-0002-4183-9481 FU University Research Board (American University of Beirut, Lebanon); Lebanese National Council for Scientific Research FX The authors are grateful to Dr. Colin Smith for his critical reading of the manuscript and to Ms. Hana'a Hariri and Mr. Gilbert Rahme for the preparation of the manuscript. This effort was supported by the University Research Board (American University of Beirut, Lebanon) and Lebanese National Council for Scientific Research. NR 243 TC 108 Z9 112 U1 3 U2 13 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1478-811X J9 CELL COMMUN SIGNAL JI Cell Commun. Signal. PD MAR 12 PY 2009 VL 7 AR 4 DI 10.1186/1478-811X-7-4 PG 17 WC Cell Biology SC Cell Biology GA 521GU UT WOS:000271909400001 PM 19284610 ER PT J AU Beilman, DW MacDonald, GM Smith, LC Reimer, PJ AF Beilman, David W. MacDonald, Glen M. Smith, Laurence C. Reimer, Paula J. TI Carbon accumulation in peatlands of West Siberia over the last 2000 years SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID PEAT BOG GROWTH; BOMB C-14 DATA; AGE CALIBRATION; CLIMATE-CHANGE; ORGANIC-CARBON; HOLOCENE; NORTHERN; HISTORY; CANADA; TREELINE AB We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years ( since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N-S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m(-2) since 2 ka. In contrast, peatlands south of 60 degrees N show larger accumulation of 42 to 88 kg C m(-2). Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0 degrees C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (similar to 40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60 degrees N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration. C1 [Beilman, David W.; MacDonald, Glen M.; Smith, Laurence C.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA. [Beilman, David W.; Reimer, Paula J.] Queens Univ Belfast, CHRONO Ctr Climate Environm & Chronol, Sch Geog Archaeol & Palaeoecol, Belfast BT9 6AX, Antrim, North Ireland. [Reimer, Paula J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Beilman, DW (reprint author), Univ Hawaii Manoa, Dept Geog, Honolulu, HI 96822 USA. EM beilman@hawaii.edu RI Smith, Laurence/E-7785-2012; Reimer, Paula/I-5915-2015 OI Smith, Laurence/0000-0001-6866-5904; FU NSF [SRB-0425625]; Geological Society of America; NSF RAISE [OPP-9818496]; NSF Carbon and Water in the Earth System [ATM-0628598] FX Research support was provided by an NSF doctoral dissertation research improvement grant (SRB-0425625) and a Geological Society of America graduate grant to DB. Initial collection and analyses was supported by an NSF RAISE grant to GM and LS (OPP-9818496), and further analysis for this study was supported by an NSF Carbon and Water in the Earth System (ATM-0628598) to GM. We thank Olga Borisova, Karen Frey, Kostya Kremenetski, and Lena Novenko for field assistance. DB thanks Chris Swanston and Tom Guilderson at LLNL-CAMS for radiocarbon advice. Comments from two anonymous reviewers improved the manuscript. NR 55 TC 51 Z9 51 U1 2 U2 46 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD MAR 12 PY 2009 VL 23 AR GB1012 DI 10.1029/2007GB003112 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 419MH UT WOS:000264223200001 ER PT J AU Meriaux, AS Sieh, K Finkel, RC Rubin, CM Taylor, MH Meltzner, AJ Ryerson, FJ AF Meriaux, A. -S. Sieh, K. Finkel, R. C. Rubin, C. M. Taylor, M. H. Meltzner, A. J. Ryerson, F. J. TI Kinematic behavior of southern Alaska constrained by westward decreasing postglacial slip rates on the Denali Fault, Alaska SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID WESTERN HAIYUAN FAULT; CORDILLERAN ICE-SHEET; 3 NOVEMBER 2002; YOUNGER-DRYAS; BRITISH-COLUMBIA; NORTH-AMERICA; SOUTHWESTERN ALASKA; COSMOGENIC NUCLIDES; HOLOCENE CLIMATE; SURFACE RUPTURE AB Long-term slip rates for the Denali Fault in southern Alaska are derived using 10 Be cosmogenic radionuclide (CRN) dating of offset glacial moraines at two sites. Correction of 10 Be CRN model ages for the effect of snow shielding uses historical, regional snow cover data scaled to the site altitudes. To integrate the time variation of snow cover, we included the relative changes in effective wetness over the last 11 ka, derived from lake-level records and delta O-18 variations from Alaskan lakes. The moraine CRN model ages are normally distributed around an average of 12.1 +/- 1.0 ka (n = 22, +/- 1 sigma). The slip rate decreases westward from similar to 13 mm/a at 144 degrees 49'W to about 7 mm/a at 149 degrees 26'W. The data are consistent with a kinematic model in which southern Alaska translates northwestward at a rate of similar to 14 mm/a relative to a stable northern Alaska with no rotation. This suggests progressive slip partitioning between the Denali Fault and the active fold and thrust belt at the northern front of the Alaska range, with convergence rates increasing westward from similar to 4 mm/a to 11 mm/a between similar to 149 degrees W and 145 degrees W. As the two moraines sampled for this study were emplaced synchronously, our suggestion of a westward decrease in the slip rate of the Denali Fault relies largely upon the measured offsets at both sites, regardless of any potential systematic uncertainty in the CRN model ages. C1 [Meriaux, A. -S.; Ryerson, F. J.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Sieh, K.; Meltzner, A. J.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Rubin, C. M.] Cent Washington Univ, Dept Geol Sci, Ellensburg, WA 98926 USA. RP Meriaux, AS (reprint author), Newcastle Univ, Sch Geog Polit & Sociol, Claremont Rd, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM a.s.meriaux@ncl.ac.uk RI Meriaux, Anne-Sophie/G-1754-2010; Meltzner, Aron/A-5585-2009; Taylor, Michael/D-9939-2011; OI Meltzner, Aron/0000-0002-2955-0896 FU NSF [EAR-0107114] FX The sample processing and dating work was performed under the auspices of the U. S. Department of Energy, at the University of California Lawrence Livermore National Laboratory, under contract W-7405-Eng-48 and under the sponsorship of the Laboratory Directed Research and Development program (UCRL-JRNL-228719). Field work was supported by the Gordon and Betty Moore Foundation, through the Tectonics Observatory at Caltech, and by grant NAG5-10406 from NASA to KS. This work was also supported by NSF research grant EAR-0107114 to CMR. We are grateful to John Galetzka, Ana Cadena, and Keegan Fengler for their help with the total station measurements. We thank J. Gosse and an anonymous reviewer for their thoughtful reviews together with the associate editor Gideon Rosenbaum for his comments. This is University of California UCRL-JRNL-228719 and Tectonics Observatory contribution 98. NR 78 TC 16 Z9 16 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAR 12 PY 2009 VL 114 AR B03404 DI 10.1029/2007JB005053 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 419PT UT WOS:000264232400001 ER PT J AU Dang, LX Hemminger, JC Rowland, FS Bigeleisen, J AF Dang, Liem X. Hemminger, John C. Rowland, F. Sherwood Bigeleisen, Jacob TI Tribute to Max Wolfsberg SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Biographical-Item C1 [Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hemminger, John C.; Rowland, F. Sherwood] Univ Calif Irvine, Irvine, CA USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 1871 EP 1885 DI 10.1021/jp900405v PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800001 ER PT J AU Myshakin, EM Jiang, H Warzinski, RP Jordan, KD AF Myshakin, Evgeniy M. Jiang, Hao Warzinski, Robert P. Jordan, Kenneth D. TI Molecular Dynamics Simulations of Methane Hydrate Decomposition SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PARTICLE MESH EWALD; THERMAL-CONDUCTIVITY; CLATHRATE-HYDRATE; LIQUID WATER; ANOMALOUS PRESERVATION; COMPUTER-SIMULATION; HEXAGONAL ICE; FORCE-FIELDS; 1 ATM; MODEL AB Molecular dynamics simulations have been carried out to study decomposition of methane hydrate at different cage occupancies. The decomposition rate is found to depend sensitively on the hydration number. The rate of the destruction of the cages displays Arrhenius behavior, consistent with an activated mechanism. During the simulations, reversible formation of partial water cages around methane molecules in the liquid was observed at the interface at temperatures above the Computed hydrate decomposition temperature. C1 [Myshakin, Evgeniy M.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15260 USA. [Myshakin, Evgeniy M.] Parsons, South Pk, PA 15129 USA. RP Myshakin, EM (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM evgeniy.myshakin@netl.doe.gov RI JIANG, HAO/C-3672-2008 OI JIANG, HAO/0000-0002-4363-0112 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX This technical effort is a part of the National Energy Technology Laboratory ongoing research in gas hydrates under contract DE-AC26-04NT41817, Subtask 41817.660.01.03. The authors are grateful to Dr. N. English for helpful discussions and for providing his computer code for the geometric hydrate-liquid distinction. NR 77 TC 57 Z9 57 U1 4 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 1913 EP 1921 DI 10.1021/jp807208z PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800006 PM 19128002 ER PT J AU Ruedenberg, K Schmidt, MW AF Ruedenberg, Klaus Schmidt, Michael W. TI Physical Understanding through Variational Reasoning: Electron Sharing and Covalent Bonding SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CHEMICAL-BOND; QUANTUM-MECHANICS; HYDROGEN MOLECULE; KINETIC-ENERGY; GROUND-STATE; VIRIAL; ION AB Energy changes of stationary states resulting from geometric parameter changes in the Hamiltonian can be understood by variational reasoning in terms of the physical attributes of the kinetic and the potential energy functionals. In atoms as well as molecules, the energy minimization determines the ground state as the optimal compromise between the potential pull of the nuclear attractions and the localization-resisting kinetic pressure of the electron cloud. This variational competition is analyzed for the exact ab initio ground-state wave function of the hydrogen molecule ion to elucidate the formation of the bond. Its electronic wave function is shown to differ from the ground-state wave function of the hydrogen atom by polarization, sharing, and contraction, and the corresponding contributions to the binding energy are examined in detail. All told, the critical feature is that a molecular orbital, contracting (in the variational context) toward two nuclei simultaneously, can lower its potential energy while maintaining a certain degree of delocalization. As a consequence, its kinetic energy functional has a lower value than that of an orbital contracting toward a single nucleus equally closely. By contrast, the potential energy functional is lowered equally effectively whether the orbital contracts toward one nucleus or simultaneously toward two nuclei. Because of this weaker kinetic energy pressure, the electrostatic potential pull of the nuclei in the molecule is able to attach the orbital more tightly to each of the nuclei than the pull of the single nucleus in the atom is able to do. The role of the virial theorem is clarified. Generalizations to other molecules are discussed. C1 [Ruedenberg, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Ruedenberg, K (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. FU Division of Chemical Sciences; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-07CH 11358] FX The authors wish to express their congratulations to Max Wolfsberg on the occasion of his 80th birthday for the body of insightful chemical theory that he has created over his fruitful scientific career. K.R. would like to thank him for his warm hospitality at Brookhaven National Laboratory in 1960. In the context of the present investigation, K.R. expresses his profound gratitude to the late John R. Platt for his mentoring friendship, inspiration, and stimulation half a century ago. The authors also acknowledge repeated illuminating interactions with W. H. E. Schwarz, W. Kutzelnigg, M.S. Gordon, and G. Frenking over the years. The present work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-07CH 11358 with Iowa State University through the Ames Laboratory. NR 51 TC 32 Z9 32 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 1954 EP 1968 DI 10.1021/jp807973x PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800010 PM 19228050 ER PT J AU Zhang, JX Lourderaj, U Addepalli, SV de Jong, WA Hase, WL AF Zhang, Jiaxu Lourderaj, Upakarasamy Addepalli, Srirangam V. de Jong, Wibe A. Hase, William L. TI Quantum Chemical Calculations of the Cl- + CH3I -> CH3Cl + I- Potential Energy Surface SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID S(N)2 NUCLEOPHILIC-SUBSTITUTION; GAS-PHASE S(N)2; DENSITY-FUNCTIONAL THEORY; POTENTIAL-ENERGY SURFACE; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; AB-INITIO; DIRECT DYNAMICS; VIBRATIONAL-EXCITATION; DISPLACEMENT-REACTIONS AB Electronic structure theory calculations, using MP2 theory and the DFT functionals OPBE, OLYP, HCTH407, BhandH, and B97-1, were performed to characterize the structures, vibrational frequencies, and energies for stationary points on the Cl- + CH3I -> ClCH3 + I- Potential energy surface. The aug-cc-pVDZ and aug-cc-pVTZ basis sets, with an effective core potential (ECP) for iodine, were employed. Single-point CCSD(T) calculations were performed to obtain the complete basis set (CBS) limit for the reaction energies. DFT was found to give significantly longer halide ion/carbon atom bond lengths for the ion-dipole complexes and central barrier transition state than MP2. BhandH, with either the aug-cc-pVDZ or aug-cc-pVTZ basis sets, gives good agreement with the experimental structures for both CH3I and CH3Cl. The frequencies of CH3I and CH3Cl, obtained with the different levels of theory and basis sets, are in excellent agreement with experiment. The major difference between the MP2 and DFT frequencies is for the imaginary frequency of the central barrier. Using the aug-cc-pVTZ basis the MP2 value for this frequency ranges from 1.26 to 1.59 times larger than those for the DFT functionals. Thus, the MP2 and DFT theories have different PES shapes in the vicinity of the [Cl--CH3--I](-) central barrier. The CCSD(T)/CBS energies are in good agreement with experiments for the complexation energies and reaction exothermicity, with a small I kcal/mol difference for the latter. The CCSD(T)/CBS central barrier height is lower than values deduced by using statistical theoretical models to fit the Cl- + CH3I -> ClCH3 + I- experimental rate constant, which is consistent with the expected nonstatistical dynamics for the reaction. The BhandH energies are in overall best agreement with the CCSD(T) values, with a largest difference of only 0.7 kcal/mol. C1 [Zhang, Jiaxu; Lourderaj, Upakarasamy; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Addepalli, Srirangam V.] Texas Tech Univ, Ctr High Performance Comp, Lubbock, TX 79409 USA. [de Jong, Wibe A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hase, WL (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM bill.hase@ttu.edu RI DE JONG, WIBE/A-5443-2008 OI DE JONG, WIBE/0000-0002-7114-8315 FU National Science Foundation [CHE-0615321]; Robert A. Welch Foundation [D-0005]; High-Performance Computing Center FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-0615321 and the Robert A. Welch Foundation under Grant No. D-0005. Support was also provided by the High-Performance Computing Center (HPCC) at Texas Tech University, under the direction of Philip W. Smith. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for the Department of Energy by Battelle. The authors wish to acknowledge important conversations with the Roland Wester research group, at the University of Freiburg, Germany, concerning dynamics of the Cl- + CH3I SN2 nucleophilic substitution reaction. NR 97 TC 14 Z9 14 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 1976 EP 1984 DI 10.1021/jp808146c PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800012 PM 19115824 ER PT J AU Ho, MH Klein, ML Kuo, IFW AF Ho, Ming-Hsun Klein, Michael L. Kuo, I. -F. William TI Bulk and Interfacial Aqueous Fluoride: An Investigation via First Principles Molecular Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LIQUID-VAPOR INTERFACE; PARTICLE-BASED SIMULATION; AIR/WATER INTERFACE; WATER-SURFACE; IONS; HYDRATION; DENSITY; SOLVATION; CHEMISTRY; ELECTRON AB Using first principles molecular dynamics simulation, we have studied a fluoride anion embedded in a periodically replicated water slab composed of 215 water molecules to mimic both bulk and interfacial solvation. In contrast to some recent experiments, our findings suggest that there are only small structural changes for fluoride and its first solvation shell in the bulk. Moreover, the presence of fluoride does not significantly alter the rotational dynamics of nearby water. In addition, we have computed the molecular dipole moments using Wannier centers. At the interface, the presence of fluoride increases the molecular dipole moments of nearby water molecules, whereas in the bulk, the dipole moments for water appear to be essentially invariant to the presence of fluoride in the vicinity. Previous studies of the air-water interface have showed interfacial water to have higher average HOMO energies and, thus, likely to be more prone to electrophilic attack. With the addition of fluoride, the most likely reactive site for electrophilic reactions shifts to the anion. This finding could explain the known large increase in reaction rates for heterogeneous process of interest in atmospheric science. The reactive properties of other anions near the air-water interface are of general interest in heterogeneous chemistry and can be elucidated using a similar type of analysis, as performed here for the fluoride anion. C1 [Kuo, I. -F. William] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. [Ho, Ming-Hsun; Klein, Michael L.] Univ Penn, Ctr Mol Modeling, Philadelphia, PA 19104 USA. [Ho, Ming-Hsun; Klein, Michael L.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. RP Kuo, IFW (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, POB 808, Livermore, CA 94551 USA. EM kuo2@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; National Institutes of Health (NIH) FX Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computing resources were provided by Livermore Computing. We thank LLNL Computing staff for their help. M.H.H. thanks the National Institutes of Health (NIH) for their financial support. NR 57 TC 16 Z9 16 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 2070 EP 2074 DI 10.1021/jp808735x PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800022 PM 19173578 ER PT J AU Maerzke, KA Murdachaew, G Mundy, CJ Schenter, GK Siepmann, JI AF Maerzke, Katie A. Murdachaew, Garold Mundy, Christopher J. Schenter, Gregory K. Siepmann, J. Ilja TI Self-Consistent Polarization Density Functional Theory: Application to Argon SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID VAN-DER-WAALS; GENERALIZED GRADIENT APPROXIMATION; EXCHANGE-CORRELATION FUNCTIONALS; SPACE GAUSSIAN PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS METHOD; VAPOR-LIQUID-EQUILIBRIA; AB-INITIO CALCULATIONS; RARE-GAS ATOMS; 1ST PRINCIPLES; DISPERSION CORRECTIONS AB We present a comprehensive set of results for argon, a case study in weak interactions, using the self-consistent polarization density functional theory (SCP-DFT). With minimal parametrization, SCP-DFT is found to give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking. C1 [Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Maerzke, Katie A.; Siepmann, J. Ilja] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Maerzke, Katie A.; Siepmann, J. Ilja] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Mundy, CJ (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM chris.mundy@pnl.gov; greg.schenter@pnl.gov RI Schenter, Gregory/I-7655-2014; OI Schenter, Gregory/0000-0001-5444-5484; Murdachaew, Garold/0000-0001-6958-6765 FU Summer Research Institute; National Science Foundation [CTS-0553911, CBET0756641] FX K.A.M. would like to acknowledge support from the Summer Research Institute at Pacific Northwest National Laboratory (PNNL). The work at the University of Minnesota is supported through research grants from the National Science Foundation (CTS-0553911 and CBET0756641). We are grateful for the computer resources provided by the National Energy Research Scientific Computing Center, the Minnesota Supercomputing Institute. C.J.M. acknowledges computer time on NWice of the Energy Smart Data Center housed in the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. C.J.M. and G.K.S. would also like to gratefully acknowledge numerous conversations with Juerg Hutter, Joost VandeVondele, and Teodoro Laino. A special thanks to Teodoro Laino for helping with the implementation of the restart capability for the SCP-DFT module in CP2K. G.M. gratefully acknowledges discussions with Krzysztof Szalewicz and earlier work and discussions on weak interactions with Giacinto Scoles. G.K.S., C.J.M., and G.M. are supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences Chemical, Geosciences and Biosciences division. PNNL is operated by Battelle for the U.S. DOE. NR 92 TC 16 Z9 16 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 2075 EP 2085 DI 10.1021/jp808767y PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800023 PM 19260723 ER PT J AU Slipchenko, LV Gordon, MS AF Slipchenko, Lyudmila V. Gordon, Mark S. TI Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-ORBITAL METHODS; SELF-CONSISTENT-FIELD; DIP INFRARED-SPECTROSCOPY; BASIS-SET CONVERGENCE; GAUSSIAN-BASIS SETS; PI-PI-INTERACTIONS; AB-INITIO; WAVE-FUNCTIONS; COUPLED OSCILLATORS; INTERNAL-ROTATION AB Structures and binding in small water-benzene complexes (1-8 water molecules and 1-2 benzene molecules) are studied using the general effective fragment potential (EFP) method. The lowest energy conformers of the clusters were found using a Monte Carlo technique. The binding energies in the smallest clusters (dimers, trimers, and tetramers) were also evaluated with second order perturbation theory (MP2) and coupled cluster theory (CCSD(T)). The EFP method accurately predicts structures and binding energies in the water-benzene complexes. Benzene is polarizable and consequently participates in hydrogen bond networking of water. Since the water-benzene interactions are only slightly weaker than water-water interactions, structures with different numbers of water-water, benzene-water, and benzene-benzene bonds often have very similar binding energies. This is a challenge for computational methods. C1 [Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RI Slipchenko, Lyudmila/G-5182-2012 FU Department of Energy SciDAC; National Science Foundation FX This work was supported in part by a Department of Energy SciDAC grant to the Ames Laboratory (MSG), and in part by a NIRT grant from the National Science Foundation (LVS). NR 68 TC 54 Z9 54 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 12 PY 2009 VL 113 IS 10 BP 2092 EP 2102 DI 10.1021/jp808845b PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 415ZK UT WOS:000263974800025 PM 19072625 ER PT J AU Huang, HJ Chen, M Bruno, P Lam, R Robinson, E Gruen, D Ho, D AF Huang, Houjin Chen, Mark Bruno, Paola Lam, Robert Robinson, Erik Gruen, Dieter Ho, Dean TI Ultrananocrystalline Diamond Thin Films Functionalized with Therapeutically Active Collagen Networks SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NECROSIS-FACTOR-ALPHA; TUMOR-NECROSIS; DRUG-DELIVERY; IN-VITRO; KAPPA-B; FLUORESCENT NANODIAMONDS; CARBON NANOTUBES; PROSTATE-CANCER; INTERLEUKIN-6; PH AB The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine. C1 [Huang, Houjin; Robinson, Erik; Ho, Dean] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. [Huang, Houjin; Lam, Robert; Robinson, Erik; Ho, Dean] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Chen, Mark] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chen, Mark] Northwestern Univ, Dept Biol Sci, Evanston, IL 60208 USA. [Bruno, Paola; Gruen, Dieter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ho, Dean] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA. RP Ho, D (reprint author), 2145 Sheridan Rd, Evanston, IL 60208 USA. EM d-ho@northwestern.edu RI Ho, Dean/B-7618-2009; bruno, paola/G-5786-2011; Mahapatra, Indrani/D-7506-2011; OI Chen, Mark/0000-0001-5616-9321 FU National Science Foundation Center for Scalable and Integrated NanoManufacturing (SINAM) [DMI-0327077]; Coulter Foundation Early Career Award in Translational Research; National Institutes of Health [U54 A1065359]; U.S. DOE, BES/Materials Sciences [DE-AC02-06CH11357] FX D.H. gratefully acknowledges support from a National Science Foundation CAREER Award, V Foundation for Cancer Research V Scholars Award, National Science Foundation Center for Scalable and Integrated NanoManufacturing (SINAM) Grant DMI-0327077, Wallace H. Coulter Foundation Early Career Award in Translational Research, and National Institutes of Health grant U54 A1065359. Work on UNCD film synthesis was performed under the auspices of the U.S. DOE, BES/Materials Sciences under Contract No. DE-AC02-06CH11357. NR 50 TC 17 Z9 17 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 12 PY 2009 VL 113 IS 10 BP 2966 EP 2971 DI 10.1021/jp9004086 PG 6 WC Chemistry, Physical SC Chemistry GA 415ZL UT WOS:000263974900002 PM 19708260 ER PT J AU Sarkar, A Ali, M Baker, GA Tetin, SY Ruan, QQ Pandey, S AF Sarkar, Abhra Ali, Maroof Baker, Gary A. Tetin, Sergey Y. Ruan, Qiaoqiao Pandey, Siddharth TI Multiprobe Spectroscopic Investigation of Molecular-level Behavior within Aqueous 1-Butyl-3-methylimidazolium Tetrafluoroborate SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Review ID TEMPERATURE IONIC LIQUID; SOLVATOCHROMIC PROBE BEHAVIOR; SODIUM DODECYL-SULFATE; ANGLE NEUTRON-SCATTERING; PHENOLATE BETAINE DYES; PREFERENTIAL SOLVATION; DEPENDENT FLUORESCENCE; PHYSICAL-PROPERTIES; SOLVENT POLARITIES; EXCIMER FORMATION AB In this work, an array of molecular-level solvent features-including solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusion-were investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probes-a watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroanitine, and 4-nitroaniline-were employed to determine E-T (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices, pi* (dipolarity/polarizability), alpha (hydrogen bond donor acidity), and P (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-l-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a "sphere-of-action" quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4]. C1 [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Sarkar, Abhra; Ali, Maroof; Pandey, Siddharth] Indian Inst Technol, Dept Chem, New Delhi 110016, India. [Tetin, Sergey Y.; Ruan, Qiaoqiao] Abbott Labs, Abbott Diagnost Div, Dept Biotechnol Core Res & Dev, Abbott Pk, IL 60064 USA. RP Baker, GA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bakerga1@ornl.gov; sipandey@chemistry.iitd.ac.in RI Ali, Maroof/A-3204-2014; Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 NR 102 TC 38 Z9 38 U1 4 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 12 PY 2009 VL 113 IS 10 BP 3088 EP 3098 DI 10.1021/jp8098297 PG 11 WC Chemistry, Physical SC Chemistry GA 415ZL UT WOS:000263974900016 PM 19260713 ER PT J AU Jacobson, AR Shao, XM Holzworth, R AF Jacobson, Abram R. Shao, Xuan-Min Holzworth, Robert TI Full-wave reflection of lightning long-wave radio pulses from the ionospheric D region: Numerical model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID NARROW BIPOLAR EVENTS; FIELDS REFLEXION COEFFICIENTS; ALAMOS SFERIC ARRAY; ELECTROMAGNETIC PULSES; FORTE SATELLITE; EMISSIONS; GUIDE; POLARIZATIONS; IONIZATION; SIMULATION AB A model is developed for calculating ionospheric reflection of electromagnetic pulses emitted by lightning, with most energy in the long-wave spectral region (f similar to 3 - 100 kHz). The building block of the calculation is a differential equation full-wave solution of Maxwell's equations for the complex reflection of individual plane waves incident from below, by the anisotropic, dissipative, diffuse dielectric profile of the lower ionosphere. This full-wave solution is then put into a summation over plane waves in an angular direct Fourier transform to obtain the reflection properties of curved wavefronts. This step models also the diffraction effects of long-wave ionospheric reflections observed at short or medium range (similar to 200 - 500 km). The calculation can be done with any arbitrary but smooth dielectric profile versus altitude. For an initial test, this article uses the classic D region exponential profiles of electron density and collision rate given by Volland. With even these simple profiles, our model of full-wave reflection of curved wavefronts captures some of the basic attributes of observed reflected waveforms recorded with the Los Alamos Sferic Array. A follow-on article will present a detailed comparison with data in order to retrieve ionospheric parameters. C1 [Jacobson, Abram R.; Holzworth, Robert] Univ Washington, Seattle, WA 98195 USA. [Shao, Xuan-Min] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. RP Jacobson, AR (reprint author), 2314 Samish Way, Bellingham, WA 98229 USA. EM abramj@u.washington.edu FU National Science Foundation [NSF 0809988] FX We are indebted to Patrick Colestock for insightful suggestions on the calculation of curved-wavefront solutions. Two of the authors (A. J. and R. H.) have been supported in this work by the National Science Foundation, under grant NSF 0809988, "Using Powerful, Low-Frequency Radio Waves from Lightning to Diagnose the D-region Ionosphere.'' NR 43 TC 17 Z9 17 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 11 PY 2009 VL 114 AR A03303 DI 10.1029/2008JA013642 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 419PX UT WOS:000264232800001 ER PT J AU Klimczuk, T Zandbergen, HW Huang, Q McQueen, TM Ronning, F Kusz, B Thompson, JD Cava, RJ AF Klimczuk, T. Zandbergen, H. W. Huang, Q. McQueen, T. M. Ronning, F. Kusz, B. Thompson, J. D. Cava, R. J. TI Cluster-glass behavior of a highly oxygen deficient perovskite, BaBi0.28Co0.72O2.2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 1st International Workshop on the Theoretical Calculation of Elnes and Xanes CY JUL 02-04, 2008 CL Nagoya, JAPAN ID SPIN-GLASS; MAGNETIC-PROPERTIES; LA1-XSRXCOO3 0-LESS-THAN-OR-EQUAL-TO-X-LESS-THAN-OR-EQUAL-TO-0.5; LOW-TEMPERATURE; SUSCEPTIBILITY; LA0.5SR0.5COO3; TRANSITION; VISCOSITY; SYSTEM; PHASE AB A highly oxygen deficient perovskite, BaBi0.28Co0.72O2.2, was synthesized by solid state reaction. The crystal structure was determined by means of neutron and x-ray powder diffraction. The material exhibits semiconducting behavior with an energy gap of 1.8 eV. The electron diffraction study does not reveal long range Bi: Co ordering; instead it shows the existence of short range ordering in this phase. The AC and DC magnetic susceptibility studies reveal cluster-glass behavior, which has its origin in the interacting ferromagnetic clusters present. C1 [Klimczuk, T.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.; Zandbergen, H. W.; McQueen, T. M.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Zandbergen, H. W.] Delft Univ Technol, Dept Nanosci, Natl Ctr HREM, NL-2682 AL Delft, Netherlands. [Huang, Q.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Kusz, B.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. RP Klimczuk, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Klimczuk, Tomasz/M-1716-2013; OI Klimczuk, Tomasz/0000-0003-2602-5049; Ronning, Filip/0000-0002-2679-7957 NR 42 TC 4 Z9 4 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 11 PY 2009 VL 21 IS 10 AR 105801 DI 10.1088/0953-8984/21/10/105801 PG 7 WC Physics, Condensed Matter SC Physics GA 409GF UT WOS:000263493500028 PM 21817439 ER PT J AU Kogan, VG Prozorov, R Petrovic, C AF Kogan, V. G. Prozorov, R. Petrovic, C. TI Superfluid density in gapless superconductor CeCoIn(5) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PENETRATION DEPTH; SCATTERING AB Temperature dependence of the London penetration depth lambda measured in single crystals of CeCoIn(5) is interpreted as being caused by a strong pair-breaking scattering that makes the superconductivity in this compound gapless. For a gapless d-wave superconductor, we derive lambda = lambda(0) (1 - T(2)/T(c)(2))(-1/2) caused by the combined effect of magnetic and non-magnetic scattering, in excellent agreement with the data in the full temperature range and with the gapless s-wave case of Abrikosov and Gor'kov. We also obtain the slope of the upper critical field at T(c) that compares well with the measured slope. C1 [Kogan, V. G.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kogan, V. G.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kogan, VG (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Petrovic, Cedomir/A-8789-2009; Prozorov, Ruslan/A-2487-2008 OI Petrovic, Cedomir/0000-0001-6063-1881; Prozorov, Ruslan/0000-0002-8088-6096 FU Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-07CH11358]; Alfred P Sloan Foundation; US DOE by Brookhaven Science Associates [DE-Ac02-98CH10886] FX We thank P Canfield, S Bud'ko and M Tanatar for many useful discussions. The work at the Ames Laboratory is supported by the Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-07CH11358. RP acknowledges the support of the Alfred P Sloan Foundation. Part of CP's work was carried out at the Brookhaven National Laboratory operated for the US DOE by Brookhaven Science Associates (DE-Ac02-98CH10886). NR 21 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 11 PY 2009 VL 21 IS 10 AR 102204 DI 10.1088/0953-8984/21/10/102204 PG 5 WC Physics, Condensed Matter SC Physics GA 409GF UT WOS:000263493500006 PM 21817417 ER PT J AU Pal, R Wang, LM Huang, W Wang, LS Zeng, XC AF Pal, Rhitankar Wang, Lei-Ming Huang, Wei Wang, Lai-Sheng Zeng, Xiao Cheng TI Structural Evolution of Doped Gold Clusters: MAux- (M = Si, Ge, Sn; x=5-8) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL CLUSTERS; LOW-SYMMETRY STRUCTURES; PHOTOELECTRON-SPECTROSCOPY; SILICON CLUSTERS; NANOCLUSTERS; CHEMISTRY; CAGE; AU; PSEUDOPOTENTIALS; APPROXIMATION AB We report a joint experimental and theoretical study on the structures of a series of gold clusters doped with a group-14 atom: MAux- (M = Si, Ge, Sn; x = 5-8). Well-resolved photoelectron spectra were obtained and compared to calculations at several levels of theory to identify the low-lying structures of MAu5-8-. We found that the structure of SiAu5- is dominated by the tetrahedrally coordinated Si motif, which can be viewed as built from the tetrahedral SiAu4- by an extra Au atom bonded to a terminal gold atom. However, SiAu6- and SiAu7- have quasi-planar structures, similar to those of GeAu6-/SnAu6- and GeAu7-/SnAu7-, respectively. SiAu8- again has a tetrahedrally coordinated Si structure, which displays a structural motif of a dangling Au-Si unit sifting on a gold cluster surface, resembling that of the larger Si-doped gold cluster SiAu16-. For M = Ge, Sn, our results show that the major isomers of GeAu5-8- have structures similar to those of the corresponding SnAu5-8- clusters, and they can be viewed as grown from the previously suggested square-pyramidal GeAu4- and SnAu4-, respectively. Population of minor isomers was observed for SnAu5-, GeAu6-, SnAu6-, and GeAu8-. The 3D to quasi-2D to 3D structural evolution for SiAu5- to SiAu8- and the structural convergence for MAux- (M = Si, Ge, Sn) at x = 6, 7 manifest competitions between the tendency of forming molecule-like structures around the group-14 dopant (optimizing M-Au interactions) and the strong tendency of forming planar structures for small gold anion clusters (optimizing Au-Au interactions). C1 [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Pal, Rhitankar; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov; xczeng@phase2.unl.edu RI Wang, Leiming/A-3937-2011 FU National Science Foundation [CHE-0749496]; DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory; National Science Foundation (CHE, CMMI, DMR/MRSEC); ARO; Nebraska Research Initiative; UNL Research Computing Facility and Holland Supercomputing Center at University of Nebraska-Omaha FX The experimental work done in Washington was supported by the National Science Foundation (CHE-0749496) and was performed at the EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle. The theoretical work done in Nebraska was supported by grants from the National Science Foundation (CHE, CMMI, DMR/MRSEC), ARO, the Nebraska Research Initiative, and the UNL Research Computing Facility and Holland Supercomputing Center at University of Nebraska-Omaha. We thank Dr. Satya Bulusu for helpful discussions. NR 54 TC 66 Z9 66 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 11 PY 2009 VL 131 IS 9 BP 3396 EP 3404 DI 10.1021/ja810093t PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 427PY UT WOS:000264792400059 PM 19216568 ER PT J AU Bamford, SP Nichol, RC Baldry, IK Land, K Lintott, CJ Schawinski, K Slosar, A Szalay, AS Thomas, D Torki, M Andreescu, D Edmondson, EM Miller, CJ Murray, P Raddick, MJ Vandenberg, J AF Bamford, Steven P. Nichol, Robert C. Baldry, Ivan K. Land, Kate Lintott, Chris J. Schawinski, Kevin Slosar, Anze Szalay, Alexander S. Thomas, Daniel Torki, Mehri Andreescu, Dan Edmondson, Edward M. Miller, Christopher J. Murray, Phil Raddick, M. Jordan Vandenberg, Jan TI Galaxy Zoo: the dependence of morphology and colour on environment SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE galaxies: clusters: general; galaxies: evolution; galaxies: fundamental parameters; galaxies: statistics; galaxies: structure ID DIGITAL-SKY-SURVEY; STAR-FORMATION HISTORIES; HUBBLE-SPACE-TELESCOPE; ARTIFICIAL NEURAL-NETWORKS; PASSIVE SPIRAL GALAXIES; BAND OPTICAL-PROPERTIES; TULLY-FISHER RELATION; EARLY DATA RELEASE; DENSITY RELATION; S0 GALAXIES AB We analyse the relationships between galaxy morphology, colour, environment and stellar mass using data for over 105 objects from Galaxy Zoo, the largest sample of visually classified morphologies yet compiled. We conclusively show that colour and morphology fractions are very different functions of environment. Both colour and morphology are sensitive to stellar mass. However, at fixed stellar mass, while colour is also highly sensitive to environment, morphology displays much weaker environmental trends. Only a small part of both the morphology-density and colour-density relations can be attributed to the variation in the stellar-mass function with environment. Galaxies with high stellar masses are mostly red in all environments and irrespective of their morphology. Low stellar-mass galaxies are mostly blue in low-density environments, but mostly red in high-density environments, again irrespective of their morphology. While galaxies with early-type morphology do always have higher red fractions, this is subdominant compared to the dependence of red fraction on stellar mass and environment. The colour density relation is primarily driven by variations in colour fractions at fixed morphology, in particular the fraction of spiral galaxies that have red colours, and especially at low stellar masses. We demonstrate that our red spirals primarily include galaxies with true spiral morphology, and that they constitute an additional population to the S0 galaxies considered by previous studies. We clearly show there is an environmental dependence for colour beyond that for morphology. The environmental transformation of galaxies from blue to red must occur on significantly shorter time-scales than the transformation from spiral to early-type. We also present many of our results as functions of the distance to the nearest galaxy group. This confirms that the environmental trends we present are not specific to the manner in which environment is quantified, but nevertheless provides plain evidence for an environmental process at work in groups. However, the properties of group members show little dependence on the total mass of the group they inhabit, at least for group masses greater than or similar to 10(13) M(circle dot). Before using the Galaxy Zoo morphologies to produce the above results, we first quantify a luminosity-, size- and redshift-dependent classification bias that affects this data set, and probably most other studies of galaxy population morphology. A correction for this bias is derived and applied to produce a sample of galaxies with reliable morphological-type likelihoods, on which we base our analysis. C1 [Bamford, Steven P.; Nichol, Robert C.; Thomas, Daniel; Torki, Mehri; Edmondson, Edward M.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Baldry, Ivan K.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Land, Kate; Lintott, Chris J.; Schawinski, Kevin] Univ Oxford, Oxford OX1 3RH, England. [Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Schawinski, Kevin] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Szalay, Alexander S.; Raddick, M. Jordan; Vandenberg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Andreescu, Dan] LinkLab, Bronx, NY 10471 USA. [Miller, Christopher J.] NOAO Cerro Tololo Inter Amer Observ, Tucson, AZ 85719 USA. [Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Co Down, North Ireland. RP Bamford, SP (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Mercantile House, Portsmouth PO1 2EG, Hants, England. EM steven.bamford@nottingham.ac.uk RI Bamford, Steven/E-8702-2010; OI Bamford, Steven/0000-0001-7821-7195; Schawinski, Kevin/0000-0001-5464-0888; Baldry, Ivan/0000-0003-0719-9385 FU STFC; Glasstone Research Fellowship; Christ Church, Oxford.; Henry Skynner Junior Research Fellowship at Balliol College, Oxford.; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, the University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, the Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 130 TC 231 Z9 234 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 11 PY 2009 VL 393 IS 4 BP 1324 EP 1352 DI 10.1111/j.1365-2966.2008.14252.x PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 412XV UT WOS:000263758400017 ER PT J AU Ropponen, T Tarvainen, O Jones, P Peura, P Kalvas, T Suominen, P Koivisto, H Arje, J AF Ropponen, T. Tarvainen, O. Jones, P. Peura, P. Kalvas, T. Suominen, P. Koivisto, H. Arje, J. TI The effect of magnetic field strength on the time evolution of high energy bremsstrahlung radiation created by an electron cyclotron resonance ion source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE ECR; Bremsstrahlung time evolution AB An electron cyclotron resonance (ECR) ion source is one of the most used ion source types for high charge state heavy ion production. In ECR plasma the electrons are heated by radio frequency microwaves in order to provide ionization of neutral gases. As a consequence, ECR heating also generates very high electron energies (up to MeV region) which can produce a vast amount of bremsstrahlung radiation causing problems with radiation shielding and heating superconducting cryostat of an ECR ion source. To gain information about the time evolution of the electron energies in ECR plasma radial bremsstrahlung measurements were performed. JYFL 14 GHz ECR ion source was operated in pulsed mode and time evolution measurements were done with different axial magnetic field strengths with oxygen and argon plasmas. Bremsstrahlung data were analyzed with a time interval of 2 ms yielding information at unprecedented detail about the time evolution of high energy bremsstrahlung radiation from an ECR ion source. It was observed, for example, that reaching the steady state phase of the plasma bremsstrahlung requires several hundred milliseconds and the steady state time can be different with different gases. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ropponen, T.; Jones, P.; Peura, P.; Kalvas, T.; Koivisto, H.; Arje, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Tarvainen, O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Suominen, P.] Prizztech Ltd, Magnet Technol Ctr, FI-28600 Pori, Finland. RP Ropponen, T (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. EM tommi.ropponen@phys.jyu.fi OI Peura, Pauli/0000-0002-8541-0169 FU EU [506065]; Academy of Finland; US Department of Energy [DE-AC52-06NA25396] FX This work has been supported by the EU 6th Framework programme "Integrating Infrastructure Initiative-Trans national Access", Contract no. 506065 (EURONS), by the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Nuclear and Accelerator Based Physics Programme at JYFL) and US Department of Energy contract DE-AC52-06NA25396. T. Ropponen would like to acknowledge financial support from the Graduate School in Particle and Nuclear Physics. The authors would also like to thank Dr. Daniela Leitner for valuable discussions. The use of germanium detector from the GAMMAPOOL resource is gratefully acknowledged. NR 11 TC 15 Z9 15 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 11 PY 2009 VL 600 IS 3 BP 525 EP 533 DI 10.1016/j.nima.2008.12.065 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 422ZO UT WOS:000264466400001 ER PT J AU Aryaeinejad, R Spencer, DF AF Aryaeinejad, R. Spencer, D. F. TI Stand-alone and network capable pocket radiation detection system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Networked radiation detection; Gamma detection; Neutron detection AB A multi-functional and networked pocket radiation detection system has been developed at the Idaho National Laboratory (INL) capable of detecting and storing gamma ray and neutron data. The device can be used as a stand-alone device or in conjunction with an array to cover a small or large area. The device has programmable alarm trigger levels that can be modified for specific applications. The data are stored with a date/time stamp and can be transferred and viewed on a PDA via direct connection or, in networked configuration, wireless connection to a remote central facility upon request. Data functional/bench tests have been completed successfully and the device was demonstrated to detect radiation from a 55.6 mu Ci (252)Cf source at 5 m and from 1.4 mCi (252)Cf source at 10 m which exceeds both ANSI and IAEA standards for pocket radiation detection. In terms of sensitivity. this detection system detects neutron and gamma-ray fields down to 10 mu rem/h levels and therefore can find the location of the radioactive source quickly. The detection system is small enough to be put in a pocket or clipped to a belt. (C) 2008 Elsevier B.V. All rights reserved. C1 [Aryaeinejad, R.; Spencer, D. F.] Idaho Natl Lab, Dept Reactor Phys Anal & Design, Idaho Falls, ID 83415 USA. RP Aryaeinejad, R (reprint author), Idaho Natl Lab, Dept Reactor Phys Anal & Design, POB 1625, Idaho Falls, ID 83415 USA. EM Rahmat.Aryaeinejad@inl.gov FU US Department of Energy [DE-AC07-05ID14517] FX This work was supported in part by the US Department of Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 7 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 11 PY 2009 VL 600 IS 3 BP 604 EP 608 DI 10.1016/j.nima.2008.11.146 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 422ZO UT WOS:000264466400010 ER PT J AU Mizuno, T Kanai, Y Kataoka, J Kiss, M Kurita, K Pearce, M Tajima, H Takahashi, H Tanaka, T Ueno, M Umeki, Y Yoshida, H Arimoto, M Axelsson, M Bettolo, CM Bogaert, G Chen, P Craig, W Fukazawa, Y Gunji, S Kamae, T Katsuta, J Kawai, N Kishimoto, S Klamra, W Larsson, S Madejski, G Ng, JST Ryde, F Rydstrom, S Takahashi, T Thurston, TS Varner, G AF Mizuno, T. Kanai, Y. Kataoka, J. Kiss, M. Kurita, K. Pearce, M. Tajima, H. Takahashi, H. Tanaka, T. Ueno, M. Umeki, Y. Yoshida, H. Arimoto, M. Axelsson, M. Bettolo, C. Marini Bogaert, G. Chen, P. Craig, W. Fukazawa, Y. Gunji, S. Kamae, T. Katsuta, J. Kawai, N. Kishimoto, S. Klamra, W. Larsson, S. Madejski, G. Ng, J. S. T. Ryde, F. Rydstrom, S. Takahashi, T. Thurston, T. S. Varner, G. TI A Monte Carlo method for calculating the energy response of plastic scintillators to polarized photons below 100 keV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Polarimetry; Monte Carlo; Plastic scintillator ID GAMMA-RAY POLARIMETER; CRAB-NEBULA; CALIBRATION; ASTRONOMY; EMISSION AB The energy response of plastic scintillators (Eljen Technology EJ-204) to polarized soft gamma-ray photons below 100 keV has been studied, primarily for the balloon-borne polarimeter, PoGOLite. The response calculation includes quenching effects due to low-energy recoil electrons and the position dependence of the light collection efficiency in a 20 cm long scintillator rod. The broadening of the pulse-height spectrum, presumably caused by light transportation processes inside the scintillator, as well as the generation and multiplication of photoelectrons in the photomultiplier tube, were studied experimentally and have also been taken into account. A Monte Carlo simulation based on the Geant4 toolkit was used to model photon interactions in the scintillators. When using the polarized Compton/Rayleigh scattering processes previously corrected by the authors, scintillator spectra and angular distributions of scattered polarized photons could clearly be reproduced, in agreement with the results obtained at a synchrotron beam test conducted at the KEK Photon Factory. Our simulation successfully reproduces the modulation factor, defined as the ratio of the amplitude to the mean of the distribution of the azimuthal scattering angles, within similar to 5% (relative). Although primarily developed for the PoGOLite mission, the method presented here is also relevant for other missions aiming to measure polarization from astronomical objects using plastic scintillator scatterers. (C) 2008 Elsevier B.V. All rights reserved. C1 [Mizuno, T.; Tanaka, T.; Umeki, Y.; Yoshida, H.; Fukazawa, Y.] Hiroshima Univ, Higashihiroshima 724, Japan. [Kanai, Y.; Kataoka, J.; Kurita, K.; Arimoto, M.; Kawai, N.] Tokyo Inst Technol, Meguro, Japan. [Kiss, M.; Pearce, M.; Bettolo, C. Marini; Klamra, W.; Larsson, S.; Ryde, F.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Tajima, H.; Chen, P.; Craig, W.; Kamae, T.; Madejski, G.; Ng, J. S. T.] Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. [Axelsson, M.; Larsson, S.; Rydstrom, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bogaert, G.] Ecole Polytech, Palaiseau, France. [Gunji, S.] Yamagata Univ, Yamagata 990, Japan. [Katsuta, J.; Takahashi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Kishimoto, S.] High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Thurston, T. S.] Thurston Co, Seattle, WA USA. [Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. RP Mizuno, T (reprint author), Hiroshima Univ, Higashihiroshima 724, Japan. EM mizuno@hep01.hepl.hiroshima-u.ac.jp FU Knut and Alice Wallenberg Foundation; Swedish National Space Board; Swedish Research Council; U.S. Department of Energy; Kavli Institute for Particle Astrophysics and Cosmology (KIPAC); Ministry of Education, Science, Sports, and Culture (Japan) [18340052]; Institute for Space and Astronautical Science (ISAS/JAXA); JSPS [18740154] FX We would like to thank the KEK-PF staff for their generous and friendly support. We also would like to thank members of X-ray Astronomy group of Nagoya University for their support for the experiment at SPring-8. We gratefully acknowledge support from the Knut and Alice Wallenberg Foundation, the Swedish National Space Board, the Swedish Research Council, the U.S. Department of Energy, and the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University. T.K. acknowledges support from the Ministry of Education, Science, Sports, and Culture (Japan) Grant-in-Aid in Science (No. 18340052). J.K was supported by a grant for the International Mission Research provided by the Institute for Space and Astronautical Science (ISAS/JAXA). T.M. acknowledges support by Grants-in-Aid for Young Scientists (B) from JSPS (No. 18740154). NR 21 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 11 PY 2009 VL 600 IS 3 BP 609 EP 617 DI 10.1016/j.nima.2008.11.148 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 422ZO UT WOS:000264466400011 ER PT J AU Ansong, C Yoon, H Porwollik, S Mottaz-Brewer, H Petritis, BO Jaitly, N Adkins, JN McClelland, M Heffron, F Smith, RD AF Ansong, Charles Yoon, Hyunjin Porwollik, Steffen Mottaz-Brewer, Heather Petritis, Brianne O. Jaitly, Navdeep Adkins, Joshua N. McClelland, Michael Heffron, Fred Smith, Richard D. TI Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation SO PLOS ONE LA English DT Article AB Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella. C1 [Ansong, Charles; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Yoon, Hyunjin; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR USA. [Mottaz-Brewer, Heather] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Porwollik, Steffen; McClelland, Michael] Sidney Kimmel Canc Ctr, San Diego, CA USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI McClelland, Michael/A-8583-2011; Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; McClelland, Michael/0000-0003-1788-9347 FU National Institute of Allergy and Infectious Diseases NIH/DHHS [Y1-AI-4894-01]; National Center for Research Resources [RR18522] FX Portions of this research were supported by the National Institute of Allergy and Infectious Diseases NIH/DHHS through interagency agreement Y1-AI-4894-01, and the National Center for Research Resources (RR18522). Portions of the work were performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA, using capabilities established by the DOE Office of Biological and Environmental Research. Battelle operates PNNL for the DOE under contract DE-AC05-76RLO01830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 64 TC 84 Z9 85 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 11 PY 2009 VL 4 IS 3 AR e4809 DI 10.1371/journal.pone.0004809 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437OF UT WOS:000265496100026 PM 19277208 ER PT J AU Bollen, J Van de Sompel, H Hagberg, A Bettencourt, L Chute, R Rodriguez, MA Balakireva, L AF Bollen, Johan Van de Sompel, Herbert Hagberg, Aric Bettencourt, Luis Chute, Ryan Rodriguez, Marko A. Balakireva, Lyudmila TI Clickstream Data Yields High-Resolution Maps of Science SO PLOS ONE LA English DT Article ID SCIENTIFIC LITERATURE; PUBLICATION DELAYS; USAGE STATISTICS; WEB; IMPACT AB Background: Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Methodology: Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Conclusions: Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data. C1 [Bollen, Johan; Van de Sompel, Herbert; Chute, Ryan; Balakireva, Lyudmila] Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA. [Hagberg, Aric; Bettencourt, Luis; Rodriguez, Marko A.] Los Alamos Natl Lab, Theoretical Div, Math Modeling & Anal Grp, Los Alamos, NM 87545 USA. [Hagberg, Aric; Bettencourt, Luis; Rodriguez, Marko A.] Los Alamos Natl Lab, Ctr Nonlinear Stud, Los Alamos, NM 87545 USA. [Bettencourt, Luis] Santa Fe Inst, Santa Fe, NM USA. RP Bollen, J (reprint author), Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA. EM jbollen@lanl.gov OI Balakireva, Lyudmila/0000-0002-3919-3634; Van de Sompel, Herbert/0000-0002-0715-6126 FU Andrew W. Mellon Foundation FX This research was funded as part of the MESUR project (http://www.mesur.org/) by the Andrew W. Mellon Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 86 Z9 86 U1 2 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 11 PY 2009 VL 4 IS 3 AR e4803 DI 10.1371/journal.pone.0004803 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437OF UT WOS:000265496100022 PM 19277205 ER PT J AU Li, HL Wolfe, MS Selkoe, DJ AF Li, Huilin Wolfe, Michael S. Selkoe, Dennis J. TI Toward Structural Elucidation of the gamma-Secretase Complex SO STRUCTURE LA English DT Review ID FAMILIAL ALZHEIMERS-DISEASE; INTRAMEMBRANE PROTEOLYSIS; BETA-CATENIN; PRESENILIN ENDOPROTEOLYSIS; ELECTRON CRYOMICROSCOPY; TRANSMEMBRANE DOMAIN; ANGSTROM RESOLUTION; MEMBRANE TOPOLOGY; CRYSTAL-STRUCTURE; GOLGI-APPARATUS AB gamma-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid beta-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating its detailed structure. C1 [Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Wolfe, Michael S.; Selkoe, Dennis J.] Harvard Univ, Sch Med, Ctr Neurol Dis, Boston, MA 02115 USA. [Wolfe, Michael S.; Selkoe, Dennis J.] Brigham & Womens Hosp, Boston, MA 02115 USA. RP Li, HL (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM hli@bnl.gov; dselkoe@rics.bwh.harvard.edu FU National Institutes of Health [AG15379, GM74985]; Brookhaven National Laboratory [LDRD 05-111, 06-60] FX We thank Tiffany Gagnon for illustrations used in Figures 1 and 2. Work in the authors' laboratories is supported in part by grants from the National Institutes of Health (AG15379 to M.S.W. and D.J.S.; GM74985 to H.L.) and by the Brookhaven National Laboratory (LDRD 05-111 and 06-60 to H.L.). NR 102 TC 50 Z9 53 U1 0 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD MAR 11 PY 2009 VL 17 IS 3 BP 326 EP 334 DI 10.1016/j.str.2009.01.007 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 421AR UT WOS:000264330800006 PM 19278647 ER PT J AU Mao, YB Tran, T Guo, X Huang, JY Shih, CK Wang, KL Chang, JP AF Mao, Yuanbing Tran, Thai Guo, Xia Huang, Jian Y. Shih, C. Ken Wang, Kang L. Chang, Jane P. TI Luminescence of Nanocrystalline Erbium-Doped Yttria SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID UP-CONVERSION LUMINESCENCE; CRYSTAL-FIELD ANALYSIS; RARE-EARTH IONS; OXIDE NANOTUBES; EU-GD2O3 NANOPARTICLES; HYDROTHERMAL SYNTHESIS; RED EMISSION; Y2O3; PHOTOLUMINESCENCE; BULK AB In this paper, the luminescence, including photoluminescence, upconversion and cathodoluminescence, from single-crystalline erbium-doped yttria nanoparticles with an average diameter of 80 nm, synthesized by a molten salt method, is reported. Outstanding luminescent properties, including sharp and well-resolved photoluminescent lines in the infrared region, outstanding green and red upconversion emissions, and excellent cathodoluminescence, are observed from the nanocrystalline erbium-doped yttria. Moreoaver, annealing by the high power laser results in a relatively large increase in photoluminescent emission intensity without causing spectral line shift. These desirable properties make these nanocrystals promising for applications in display, bioanalysis and telecommunications. C1 [Mao, Yuanbing; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Tran, Thai; Shih, C. Ken] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Guo, Xia; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Huang, Jian Y.] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. RP Mao, YB (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. EM jpchang@seas.ucla.edu RI Mao, Yuanbing/D-5580-2009; Huang, Jianyu/C-5183-2008 FU National Science Foundation [CTS0522534]; Office of Naval Research; Semiconductor Research Corporation; Focus Center Research Program (FCRP); U.S. Department of Energy; Office of Basic Energy Sciences; Laboratory Directed Research and Development (LDRD); Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the financial and program support from National Science Foundation (Grant CTS0522534), the Office of Naval Research (a Young Investigator Award), and the Semiconductor Research Corporation and its Focus Center Research Program (FCRP). The Center for integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility, is supported by Laboratory Directed Research and Development (LDRD), Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Supporting Information is available online from Wiley InterScience or from the author. NR 44 TC 88 Z9 89 U1 4 U2 51 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAR 10 PY 2009 VL 19 IS 5 BP 748 EP 754 DI 10.1002/adfm.200800880 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 423NC UT WOS:000264502000010 ER PT J AU Meakin, CA Seitenzahl, I Townsley, D Jordan, GC Truran, J Lamb, D AF Meakin, Casey A. Seitenzahl, Ivo Townsley, Dean Jordan, George C., IV Truran, James Lamb, Don TI STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; shock waves; stars: abundances; supernovae: general; white dwarfs ID FLUID DYNAMICAL SIMULATIONS; FAILED DEFLAGRATION MODEL; CHANDRASEKHAR-MASS MODELS; WHITE-DWARF SUPERNOVAE; SUBGRID SCALE-MODEL; THERMONUCLEAR SUPERNOVAE; DELAYED-DETONATION; REACTION-RATES; EXPLOSION; PROPAGATION AB We study the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia) through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single-point, off-center flame ignition in carbon-oxygen white dwarfs (WDs). The simulations are unique in terms of the degree to which nonidealized physics is used to treat the reactive flow, including weak reaction rates and a time-dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high-density core of the WD; and an efficient method for nucleosynthesis postprocessing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here a self-regulating process comprised of neutronization and stellar expansion results in final Ni-56 masses of similar to 1.1 M-circle dot. But, more energetic models result in larger total NSE and stable Fe-peak yields. The total yield of intermediate mass elements is similar to 0.1 M-circle dot and the explosion energies are all around 1.5 x 10(51) erg. The explosion models are briefly compared to the inferred properties of recent SN Ia observations. The potential for surface detonation models to produce lower-luminosity (lower Ni-56 mass) SNe is discussed. C1 [Meakin, Casey A.; Townsley, Dean; Jordan, George C., IV; Truran, James; Lamb, Don] Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. [Meakin, Casey A.; Townsley, Dean; Jordan, George C., IV; Truran, James; Lamb, Don] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Meakin, Casey A.; Seitenzahl, Ivo; Townsley, Dean; Truran, James] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Meakin, Casey A.] Univ Arizona, Steward Observ, Tucson, AZ USA. [Seitenzahl, Ivo; Truran, James] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Lamb, Don] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Meakin, CA (reprint author), Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. EM casey.meakin@gmail.com OI Seitenzahl, Ivo/0000-0002-5044-2988 FU Department of Energy [B523820]; ASC/Alliances Center for Astrophysical Thermonuclear Flashes; National Science Foundation [PHY 02-16783]; Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank Snezhana Abarzhi for bringing to our attention the literature on cumulative jets and shaped charges. We also thank Fang Peng for making her nuclear reaction network code available to us for this work. This work is supported in part at the University of Chicago by the Department of Energy under Grant B523820 to the ASC/Alliances Center for Astrophysical Thermonuclear Flashes, and the National Science Foundation under Grant PHY 02-16783 for the Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA), and at the Argonne National Laboratory by the U. S. Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357. NR 57 TC 54 Z9 54 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2009 VL 693 IS 2 BP 1188 EP 1208 DI 10.1088/0004-637X/693/2/1188 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 417RR UT WOS:000264095100013 ER PT J AU Bernstein, GM Nakajima, R AF Bernstein, Gary M. Nakajima, Reiko TI MULTIPOLE FORMULAE FOR GRAVITATIONAL LENSING SHEAR AND FLEXION SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing; methods: analytical ID DARK-MATTER; WEAK; GALAXIES; CLUSTER AB The gravitational lensing equations for convergence, potential, shear, and flexion are simple in polar coordinates and separate under a multipole expansion once the shear and flexion spinors are rotated into a "tangential" basis. We use this to investigate whether the useful monopole aperture-mass shear formulae generalize to all multipoles and to flexions. We re-derive the result of Schneider and Bartelmann that the shear multipole m at radius R is completely determined by the mass multipole at R, plus specific moments Q(in)((m)) and Q(out)((m)) of the mass multipoles internal and external, respectively, to R. The m >= 0 multipoles are independent of Q(out). But in contrast to the monopole, the m < 0 multipoles are independent of Q(in). These internal and external mass moments can be determined by shear (and/or flexion) data on the complementary portion of the plane, which has practical implications for lens modeling. We find that the ease of E/B separation in the monopole aperture moments does not generalize to m not equal 0: the internal monopole moment is the only nonlocal E/B discriminant available from lensing observations. We have also not found practical local E/B discriminants beyond the monopole, though they could exist. We show also that the use of weak-lensing data to constrain a constant shear term near a strong-lensing system is impractical without strong prior constraints on the neighboring mass distribution. C1 [Bernstein, Gary M.; Nakajima, Reiko] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Nakajima, Reiko] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bernstein, GM (reprint author), Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA. EM garyb@physics.upenn.edu; rnakajima@berkeley.edu FU National Science Foundation [AST-0607667]; Department of Energy [DOE-DE-FG02-95ER40893]; NASA [BEFS-04-0014-0018] FX This work is supported by grants AST-0607667 from the National Science Foundation, Department of Energy grant DOE-DE-FG02-95ER40893 and NASA BEFS-04-0014-0018. NR 10 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2009 VL 693 IS 2 BP 1508 EP 1513 DI 10.1088/0004-637X/693/2/1508 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 417RR UT WOS:000264095100042 ER PT J AU Smith, A Kaaret, P Holder, J Falcone, A Maier, G Pandel, D Stroh, M AF Smith, A. Kaaret, P. Holder, J. Falcone, A. Maier, G. Pandel, D. Stroh, M. TI LONG-TERM X-RAY MONITORING OF THE TeV BINARY LS I+61 303 WITH THE ROSSI X-RAY TIMING EXPLORER SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: binaries; X-rays: individual (LS I+61 303) ID ENERGY GAMMA-RAYS; MICROQUASAR LS-I+61-303; RADIO; LSI+61-DEGREES-303; VARIABILITY; DISCOVERY; SPECTRUM; I+61-DEGREES-303; +61-DEGREES-303; PECULIAR AB We report on the results of a long-term X-ray monitoring campaign of the galactic binary LS I +61 303 performed by the Rossi X-ray Timing Explorer. This data set consists of 1 ks pointings taken every other day between 2007 August 28 and 2008 February 2. The observations covered six full cycles of the 26.496 day binary period and constitute the largest continuous X-ray monitoring data set on LS I +61 303 to date with this sensitivity. There is no statistically strong detection of modulation of the flux or the photon index with orbital phase; however, we do find a strong correlation between the flux and photon index, with the spectrum becoming harder at higher fluxes. The data set contains three large flaring episodes, the largest of these reaching a flux level of 7.2(-0.2)(+0.1) x 10(-11) erg cm(-2) s(-1) in the 3-10 keV band, which is a factor 3 times larger than the flux levels typically seen in the system. Analysis of these flares shows the X-ray emission from LS I +61 303 changing by up to a factor of 6 over timescales of several hundred seconds as well as doubling times as fast as 2 s. This is the fastest variability ever observed from LS I +61 303 at this wavelength and places constraints on the size of the X-ray emitting region. C1 [Smith, A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Falcone, A.; Stroh, M.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Maier, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Smith, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM awsmith@anl.gov OI Pandel, Dirk/0000-0003-2085-5586 NR 41 TC 31 Z9 31 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2009 VL 693 IS 2 BP 1621 EP 1627 DI 10.1088/0004-637X/693/2/1621 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 417RR UT WOS:000264095100052 ER PT J AU Johnson, BM AF Johnson, Bryan M. TI SIMPLE WAVES IN IDEAL RADIATION HYDRODYNAMICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; radiative transfer ID 2 SPACE DIMENSIONS; MAGNETOHYDRODYNAMICS CODE; ASTROPHYSICAL FLOWS; ZEUS-2D; ALGORITHMS; TESTS AB In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large-scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure, and adiabatic index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Johnson, BM (reprint author), Lawrence Livermore Natl Lab, L-023,7000 E Ave, Livermore, CA 94550 USA. NR 11 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2009 VL 693 IS 2 BP 1637 EP 1644 DI 10.1088/0004-637X/693/2/1637 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 417RR UT WOS:000264095100054 ER PT J AU Joggerst, CC Woosley, SE Heger, A AF Joggerst, C. C. Woosley, S. E. Heger, Alexander TI MIXING IN ZERO- AND SOLAR-METALLICITY SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; hydrodynamics; instabilities; nuclear reactions, nucleosynthesis, abundances; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; RAYLEIGH-TAYLOR INSTABILITIES; METAL-POOR STARS; NEUTRINO-DRIVEN EXPLOSIONS; MASSIVE STARS; POSTEXPLOSION HYDRODYNAMICS; ABUNDANCE PATTERNS; 1ST STARS; SN-1987A; NUCLEOSYNTHESIS AB Two-dimensional simulations of mixing and fallback in nonrotating massive stars have been carried out using realistic initial models for the presupernova star and assuming standard spherically symmetric explosions of 1.2 x 10(51) erg. Stars of 15 and 25 M(circle dot) with both primordial and solar composition were modeled. The zero-metallicity supernova progenitors were compact blue stars, and the amount of Rayleigh-Taylor induced mixing in them was greatly reduced compared with what was seen in the red supergiants with solar metallicity. The compact zero-metal stars also experienced more fallback than their solar-metallicity counterparts. As a result, the ejected nucleosynthesis from the two populations was very different. For the simple explosion model assumed, low-metallicity stars ejected too little iron and intermediate-mass elements even to explain the abundance patterns in the most iron-poor stars found to date, suggesting that some important ingredient is missing. Rotation is likely to alter these conclusions by producing a greater fraction of red supergiants among Population III stars. The velocities of the heavy elements in all models considered-both red and blue supergiants-were less than observed in SN 1987A, suggesting that, at least occasionally, asymmetric aspects of the explosion mechanism and fallback play a major role in mixing. C1 [Joggerst, C. C.; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. [Joggerst, C. C.; Heger, Alexander] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Joggerst, CC (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. EM cchurch@ucolick.org FU NASA [NNG05GG08G]; DOE Program for Scientific Discovery (SciDAC) [DOE-FC02-01ER41176, DOE-FC02-06ER41438]; U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors thank Mike Zingale and Bruce Fryxell for assistance with the FLASH code, and Brian O'Shea and Gabriel Rockefeller for helpful comments on early drafts of this MS. The software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. This research has been supported by the NASA Theory Program NNG05GG08G and the DOE Program for Scientific Discovery through Advanced Computing (SciDAC; grants DOE-FC02-01ER41176 and DOE-FC02-06ER41438). At LANL, Heger and Joggerst performed this work under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 44 TC 65 Z9 65 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2009 VL 693 IS 2 BP 1780 EP 1802 DI 10.1088/0004-637X/693/2/1780 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 417RR UT WOS:000264095100067 ER PT J AU Acciari, VA Aliu, E Arlen, T Beilicke, M Benbow, W Bottcher, M Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Celik, O Cesarini, A Chow, YC Ciupik, L Cogan, P Cui, W Daniel, MK Dickherber, R Ergin, T Falcone, A Fegan, SJ Finley, JP Fortin, P Fortson, L Furniss, A Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Nagai, T Ong, RA Otte, N Pandel, D Perkins, JS Petry, D Pizlo, F Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, T Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Varlotta, A Vassiliev, VV Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Beilicke, M. Benbow, W. Boettcher, M. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Cui, W. Daniel, M. K. Dickherber, R. Ergin, T. Falcone, A. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Nagai, T. Ong, R. A. Otte, N. Pandel, D. Perkins, J. S. Petry, D. Pizlo, F. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Varlotta, A. Vassiliev, V. V. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI VERITAS OBSERVATIONS OF A VERY HIGH ENERGY gamma-RAY FLARE FROM THE BLAZAR 3C 66A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects: individual (3C 66A); galaxies: active; gamma rays: observations ID BL LACERTAE OBJECTS; ATMOSPHERIC CHERENKOV TELESCOPES; X-RAY; EMISSION; 3C-66A; DISCOVERY; RADIATION; ASTRONOMY; OPACITY; ARRAY AB The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007-2008 in VHE ( very high energy; E > 100 GeV) gamma rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hr live time). The observed integral flux above 200 GeV is 6% of the Crab Nebula's flux and shows evidence for variability on the timescale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +/- 0.4(stat) +/- 0.6(sys). The radio galaxy 3C 66B is excluded as a possible source of the VHE emission. C1 [Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boettcher, M.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cui, W.; Finley, J. P.; Gall, D.; Pizlo, F.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Falcone, A.] Penn State Univ, Davey Lab 525, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Furniss, A.; Otte, N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Otte, N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Perkins, JS (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM jperkins@cfa.harvard.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010; OI Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU U. S. Department of Energy; U. S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the UK FX This research was supported by grants from the U. S. Department of Energy, the U. S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. NR 31 TC 66 Z9 66 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2009 VL 693 IS 2 BP L104 EP L108 DI 10.1088/0004-637X/693/2/L104 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 419CJ UT WOS:000264196400012 ER PT J AU Sullivan, M Ellis, RS Howell, DA Riess, A Nugent, PE Gal-Yam, A AF Sullivan, M. Ellis, R. S. Howell, D. A. Riess, A. Nugent, P. E. Gal-Yam, A. TI THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmological parameters; supernovae: general; ultraviolet: general ID HUBBLE-SPACE-TELESCOPE; ULTRAVIOLET-SPECTRA; LIGHT CURVES; INDICATORS; EVOLUTION; REDSHIFT; OMEGA(M); DIAGRAM; MASS AB We examine the possibility of evolution with redshift in the mean rest-frame ultraviolet (UV; lambda less than or similar to 4500 angstrom) spectrum of Type Ia Supernovae (SNe Ia) sampling the redshift range 0 < z < 1.3. We find new evidence for a decrease with redshift in the strength of intermediate-mass element (IME) features, particularly Si II and to a lesser extent Ca II "H&K" and Mg II blends, indicating lower IME abundances in the higher redshift SNe. A larger fraction of luminous, wider light-curve width (higher "stretch") SNe Ia are expected at higher redshift than locally, so we compare our observed spectral evolution with that predicted by a redshift-evolving stretch distribution coupled with a stretch-dependent SN Ia spectrum. We show that the sense of the spectral evolution can be reproduced by this simple model, though the highest redshift events seem additionally deficient in Si and Ca. We also examine the mean SN Ia UV-optical colors as a function of redshift, thought to be sensitive to variations in progenitor composition. We find that the expected stretch variations are sufficient to explain the differences, although improved data at z similar to 0 will enable more precise tests. Thus, to the extent possible with the available data sets, our results support the continued use of SNe Ia as standardized candles. C1 [Sullivan, M.; Ellis, R. S.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Ellis, R. S.] CALTECH, Dept Astrophys, Pasadena, CA 91125 USA. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Riess, A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Nugent, P. E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gal-Yam, A.] Weizmann Inst Sci, Fac Phys, Astrophys Grp, IL-76100 Rehovot, Israel. RP Sullivan, M (reprint author), Univ Oxford, Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. EM sullivan@astro.ox.ac.uk OI Sullivan, Mark/0000-0001-9053-4820 FU Royal Society; US Department of Energy Scientific Discovery [DE-FG02-06ER06-04]; Benoziyo Center for Astrophysics; Peter and Patricia Gruber Awards; Eda Bess Novick New Scientists Fund at the Weizmann Institute FX M. S. and R. S. E. acknowledge support from the Royal Society. P. E. N. acknowledges support from the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. A. G. acknowledges support by the Benoziyo Center for Astrophysics, a research grant from Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. NR 28 TC 30 Z9 30 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2009 VL 693 IS 2 BP L76 EP L80 DI 10.1088/0004-637X/693/2/L76 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 419CJ UT WOS:000264196400006 ER PT J AU Vishnu, A Koop, M Moody, A Mamidala, A Narravula, S Panda, DK AF Vishnu, Abhinav Koop, Matthew Moody, Adam Mamidala, Amith Narravula, Sundeep Panda, Dhabaleswar K. TI Topology agnostic hot-spot avoidance with InfiniBand SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article CT 7th IEEE International Symposium on Cluster Computing and the Grid CY MAY 14-17, 2007 CL Rio de Janeiro, BRAZIL SP IEEE, Google, IBM, SUN Microsyst, NEC, sgi Innovat Results, CNPq, CAPES, FAPERJ, BNDES, Minist Ciencia Tecnol, BRASIL, Minist Desenvolvimento Ind Comercio Exterior, hp, Microsoft DE InfiniBand; MPI; hot-spot; Fat Tree; LMC; collective communication AB InfiniBand has become a very popular interconnect due to its advanced features and open standard. Large-scale InfiniBand clusters are becoming very popular, as reflected by the TOP 500 supercomputer rankings. However, even with popular topologies such as constant bi-section bandwidth Fat Tree, hot-spots may occur with InfiniBand due to inappropriate configuration of network paths, presence of other Jobs in the network and un-availability of adaptive routing. In this paper, we present a hot-spot avoidance layer (HSAL) for InfiniBand, which provides bot-spot avoidance using path bandwidth estimation and multi-pathing using LMC mechanism, without taking the network topology into account. We propose an adaptive striping policy with batch-based striping and sorting approach, for efficient utilization of disjoint network paths. Integration of HSAL with MPI, the de facto programming model of clusters, shows promising results with collective communication primitives and MPI applications. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Vishnu, Abhinav; Koop, Matthew; Mamidala, Amith; Narravula, Sundeep; Panda, Dhabaleswar K.] Dept Comp Sci & Engn, Columbus, OH 43210 USA. [Moody, Adam] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vishnu, A (reprint author), Dept Comp Sci & Engn, 395 Dreese Labs,2015 Neil Ave, Columbus, OH 43210 USA. EM vishnu@ese.ohio-state.edu NR 22 TC 2 Z9 2 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD MAR 10 PY 2009 VL 21 IS 3 BP 301 EP 319 DI 10.1002/cpe.1359 PG 19 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 410PB UT WOS:000263588900004 ER PT J AU Bekel, T Henckel, K Kuster, H Meyer, F Runte, VM Neuweger, H Paarmann, D Rupp, O Zakrzewski, M Puehler, A Stoye, J Goesmann, A AF Bekel, Thomas Henckel, Kolja Kuester, Helge Meyer, Folker Runte, Virginie Mittard Neuweger, Heiko Paarmann, Daniel Rupp, Oliver Zakrzewski, Martha Puehler, Alfred Stoye, Jens Goesmann, Alexander TI The Sequence Analysis and Management System - SAMS-2.0: Data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies SO JOURNAL OF BIOTECHNOLOGY LA English DT Article DE Whole genome shotgun sequencing; DNA sequence quality control; cDNA sequencing; EST clustering; Ultrafast sequencing ID COMPLETE GENOME SEQUENCE; LEGUME MEDICAGO-TRUNCATULA; TIGR GENE INDEXES; 454-PYROSEQUENCING TECHNOLOGY; ARBUSCULAR MYCORRHIZA; EST SEQUENCES; BACTERIUM; PLATFORM; REVEALS; TOOL AB DNA sequencing plays a more and more important role in various fields of genetics. This includes sequencing of whole genomes, libraries of cDNA clones and probes of metagenome communities. The applied sequencing technologies evolve permanently. Willi the emergence of ultrafast sequencing technologies, a new era of DNA sequencing has recently started. Concurrently, the needs for adapted bioinformatics tools arise. Since the ability to process current datasets efficiently is essential for modern genetics, a modular bioinformatics platform providing extensive sequence analysis methods, is designated to achieve well the constantly growing requirements. The Sequence Analysis and Management System (SAMS) is a bioinformatics software platform with a database backend designed to Support the computational analysis of (1) whole genome shotgun (WGS) bacterial genome sequencing, (2) cDNA sequencing by reading expressed sequence tags (ESTs) as well as (3) sequence data obtained by Ultrafast sequencing. It provides extensive bioinformatics analysis of sequenced single reads. sequencing libraries and fragments of arbitrary DNA sequences such as assembled contigs of metagenome reads for instance. The system has been implemented to cope with several thousands of sequences, efficiently processing them and storing the results for further analysis. With the project set up, SAMS automatically recognizes the data type. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bekel, Thomas; Henckel, Kolja; Neuweger, Heiko] Univ Bielefeld, Ctr Biotechnol CeBiTec, Int NRW Grad Sch Bioinformat & Genome Res, D-33594 Bielefeld, Germany. [Kuester, Helge] Leibniz Univ Hannover, Inst Plant Genet, D-30419 Hannover, Germany. [Meyer, Folker; Paarmann, Daniel] Argonne Natl Lab, Argonne, IL 60439 USA. [Puehler, Alfred] Univ Bielefeld, Lehrstuhl Genet, D-33594 Bielefeld, Germany. [Stoye, Jens] Univ Bielefeld, Tech Fak, AG Genominformat, D-33594 Bielefeld, Germany. RP Bekel, T (reprint author), Univ Bielefeld, Ctr Biotechnol CeBiTec, Int NRW Grad Sch Bioinformat & Genome Res, D-33594 Bielefeld, Germany. EM tbekel@CeBiTec.Uni-Bielefeld.DE RI Stoye, Jens/A-2709-2012; Kuster, Helge/A-4487-2013; OI Stoye, Jens/0000-0002-4656-7155; Meyer, Folker/0000-0003-1112-2284 FU Degussa GmbH; Bundesministerium fur Bildung und Forschung (BMBF); SysMAP [0313704]; International Graduate School in Bioinformatics and Genome Research; EU FX TB acknowledges financial Support from Degussa GmbH and the Bundesministerium fur Bildung und Forschung (BMBF), SysMAP project(grant 0313704). KH and FIN Would like to thank the International Graduate School in Bioinformatics and Genome Research for Providing financial Support. VMR and MZ received financial support from the EU Excellence Network of Marine Genomics. NR 48 TC 19 Z9 23 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD MAR 10 PY 2009 VL 140 IS 1-2 BP 3 EP 12 DI 10.1016/j.jbiotec.2009.01.006 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 430RV UT WOS:000265007100002 PM 19297685 ER PT J AU Liu, P Rodriguez, JA Takahashi, Y Nakamura, K AF Liu, Ping Rodriguez, Jose A. Takahashi, Yoshiro Nakamura, Kenichi TI Water-gas-shift reaction on a Ni2P(001) catalyst: Formation of oxy-phosphides and highly active reaction sites SO JOURNAL OF CATALYSIS LA English DT Article DE Water-gas-shift; Nickel phosphide; Hydrogen production; Reaction mechanism ID MOLYBDENUM CARBIDE; METAL-SURFACES; PT-RE; ADSORPTION; MECHANISM; NI2P; AU; CO; CU; HYDRODESULFURIZATION AB The water-gas-shift (WGS, CO + H2O -> H-2 + CO2) reaction was studied on the Ni2P(001) surface using a combination of experimental and theoretical methods. Our experimental measurements show that Ni2P(001) displays an activity larger than that of Ni(100) or even Cu(100), which is the best metal catalyst for the WGS process. The good behavior of Ni2P is associated with the Ni oxy-phosphides formed as a result of strong O <-> P interactions. Under reaction conditions, most of the P sites of Ni2P(001) are covered with oxygen. The addition of Cs to the nickel phosphide surface increases the saturation coverage of oxygen and enhances catalytic activity. As in the case of a [NiFe] hydrogenase enzyme, the active sites of O/Ni2P(001) involve the combination of a metal and a light atom. This configuration of the active sites leads to significant changes in the reaction mechanism with respect to that on Ni(100) or Cu(100). The O atoms on the Ni2P(001) surface facilitate the WGS reaction in both direct and indirect ways. On one hand, O helps to lower the barrier for water dissociation; on the other hand, it also deactivates the Ni sites in the surface to provide moderate bonding to the adsorbates, and the barriers for each elementary step in the WGS process become lower than 1.2 eV. Our results imply that the high performances of catalysts in the WGS rely heavily on the cooperation between oxygen and metal centers with moderate activity. Published by Elsevier Inc. C1 [Liu, Ping] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Takahashi, Yoshiro; Nakamura, Kenichi] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. RP Liu, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM pingliu3@bnl.gov FU US Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886] FX The research carried out at Brookhaven National Laboratory was supported by the US Department of Energy, Division of Chemical Sciences, under Contract DE-AC02-98CH10886. K.N. thanks the Nippon Foundation for Materials Science for research grants that made possible part of this work. The authors are grateful to J. Evans for his help in the design of the reaction cell in which kinetic studies were carried out and to T. Asakura for the initial cleaning and preparation of the Ni2P(001) crystal. NR 54 TC 64 Z9 66 U1 6 U2 52 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD MAR 10 PY 2009 VL 262 IS 2 BP 294 EP 303 DI 10.1016/j.jcat.2009.01.006 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 423OE UT WOS:000264504800013 ER PT J AU Lin-Jones, J Sohlberg, L Dose, A Breckler, J Hillman, DW Burnside, B AF Lin-Jones, Jennifer Sohlberg, Lorraine Dose, Andrea Breckler, Jennifer Hillman, David W. Burnside, Beth TI Identification and Localization of Myosin Superfamily Members in Fish Retina and Retinal Pigmented Epithelium SO JOURNAL OF COMPARATIVE NEUROLOGY LA English DT Article DE myosin; retina; photoreceptor; actin; fish; RPE ID GTPASE-ACTIVATING PROTEIN; NONSYNDROMIC HEARING-LOSS; UNCONVENTIONAL MYOSIN; USHER-SYNDROME; HAIR-CELLS; II-A; STRUCTURAL INTEGRITY; HEREDITARY DEAFNESS; VERTEBRATE RETINA; VI ISOFORM AB Myosins are cytoskeletal motors critical for generating the forces necessary for establishing cell structure and mediating actin-dependent cell motility. In each cell type a multitude of myosins are expressed, each myosin contributing to aspects of morphogenesis, transport, or motility occurring in that cell type. To examine the roles of myosins in individual retinal cell types, we first used polymerase chain reaction (PCR) screening to identify myosins expressed in retina and retinal pigmented epithelium (RPE), followed by immunohistochemistry to examine the cellular and subcellular localizations of seven of these expressed myosins. In the myosin PCR screen of cDNA from striped bass retina and striped bass RPE, we amplified 17 distinct myosins from eight myosin classes from retinal cDNA and 11 distinct myosins from seven myosin classes from RPE cDNA. By using antibodies specific for myosins IIA, IIB, IIIA, IIIB, VI, VIIA, and IXB, we examined the localization patterns of these myosins in retinas and RPE of fish, and in isolated inner/outer segment fragments of green sunfish photoreceptors. Each of the myosins exhibited unique expression patterns in fish retina. Individual cell types expressed multiple myosin family members, some of which colocalized within a particular cell type. Because much is known about the functions and properties of these myosins from studies in other systems, their cellular and subcellular localization patterns in the retina help us understand which roles they might play in the vertebrate retina and RPE. J. Comp. Neurol. 513:209-223, 2009. (c) 2009 Wiley-Liss, Inc. C1 [Lin-Jones, Jennifer; Sohlberg, Lorraine; Dose, Andrea; Burnside, Beth] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Sohlberg, Lorraine; Breckler, Jennifer] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Hillman, David W.] Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Lin-Jones, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 391 LSA 3200, Berkeley, CA 94720 USA. EM linjones@berkeley.edu FU National Eye Institute, National Institutes of Health [EY03575]; Research Infrastructure in Minority Institutions (RIMI) [5 P20 RR11805] FX Grant sponsor, National Eye Institute, National Institutes of Health; Grant number: EY03575 (to B.B.); Grant sponsor: Research Infrastructure in Minority Institutions (RIMI); Grant number: 5 P20 RR11805 (to J.B. and L.S.). NR 56 TC 13 Z9 13 U1 1 U2 6 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0021-9967 J9 J COMP NEUROL JI J. Comp. Neurol. PD MAR 10 PY 2009 VL 513 IS 2 BP 209 EP 223 DI 10.1002/cne.21958 PG 15 WC Neurosciences; Zoology SC Neurosciences & Neurology; Zoology GA 403MR UT WOS:000263087200007 PM 19137585 ER PT J AU Yuan, SW Kirklin, S Dorney, B Liu, DJ Yu, LP AF Yuan, Shengwen Kirklin, Scott Dorney, Brian Liu, Di-Jia Yu, Luping TI Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage SO MACROMOLECULES LA English DT Article ID METAL-ORGANIC FRAMEWORKS; INTRINSIC MICROPOROSITY PIMS; HIGH-SURFACE-AREA; POTENTIAL ADSORBENTS; ADSORPTION; NETWORKS; COPOLYMER AB This paper reports synthesis of several nanoporous polymers containing stereocontorted cores for hydrogen storage. The spirobifluorene and tetraphenylmethane cores were used as the building blocks for the cross-linked polymers. Trimerizations of acetylinic compounds or oxidative coupling of thiophenyl compound were used for the polymerization. Characterizations on structures and hydrogen storage capacities of the resulting polymers were performed. It was found that the polymers thus prepared generally have a narrow pore size distribution, and specific surface areas up to 1000 m(2)/g were obtained. It was shown that the reaction conditions affect the size of nanopores and the surface areas. Hydrogen adsorption capacities at liquid nitrogen and ambient temperatures were measured using a Sievert isotherm apparatus. C1 [Kirklin, Scott; Dorney, Brian; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Yuan, Shengwen; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Yuan, Shengwen; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Liu, DJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM djliu@anl.gov; lupingyu@midway.uchicago.edu FU U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies; Office of Energy Efficiency and Renewable Energy FX This work was supported by the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies program under the Office of Energy Efficiency and Renewable Energy. The authors thank Drs. Shengqian Ma and Junbing Yang for their experimental support and helpful discussions. NR 28 TC 107 Z9 110 U1 6 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAR 10 PY 2009 VL 42 IS 5 BP 1554 EP 1559 DI 10.1021/ma802394x PG 6 WC Polymer Science SC Polymer Science GA 414RN UT WOS:000263883000024 ER PT J AU Kong, X Wadhwa, K Verkade, JG Schmidt-Rohr, K AF Kong, Xueqian Wadhwa, Kuldeep Verkade, John G. Schmidt-Rohr, Klaus TI Determination of the Structure of a Novel Anion Exchange Fuel Cell Membrane by Solid-State Nuclear Magnetic Resonance Spectroscopy SO MACROMOLECULES LA English DT Article ID ALKALINE-SOLUTIONS; C-13 NMR; METHANOL; OXIDATION; SELECTION; CATHODES; NAFION AB A novel anion exchange fuel cell membrane was Successfully synthesized by chemically attaching proazaphosphatranium/phosphatranium cations under microwave treatment to the sulfonic groups of Nafion-F. Solid-state nuclear magnetic resonance (NMR) techniques were employed to determine the actual structure and composition of this anion exchange membrane. P-31 NMR showed two main signals with a 2:1 intensity ratio and chemical shift changes of +89 and +46 ppm, respectively, from the main peak of phosphatranium chloride. H-1-P-31 heteronuclear correlation (HetCor) NMR and H-1-P-31 recoupling experiments indicated that the proton originally bonded to phosphorus in phosphatranium chloride is replaced in the major component of the Nafion-proazaphosphatranium/phosphatranium composite. F-19 NMR experiments showed that the fluorine in the -SO2F group of the Nafion-F precursor is fully replaced. P-31{F-19} rotational-echo double-resonance (REDOR) experiments measured a P-F internuclear distance of similar to 0.4 nm, which showed that the proazaphosphatranium is covalently attached to Nafion through a S-P bond. C-13 NMR and H-1-C-13 HetCor spectra indicated that the proazaphosphatranium structure is maintained even after the microwave treatment at 180 degrees C and also showed indications of entrapped dimethylformamide solvent. C1 [Schmidt-Rohr, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM srohr@iastate.edu RI Kong, Xueqian/A-6406-2012 OI Kong, Xueqian/0000-0002-1901-9073 FU Department of Energy Basic Energy Sciences [DE-AC02-07CH11358]; Department of Defense AFRL [FA8650-05-C-2541] FX Work by X.K. and K.S.-R. at the Ames Laboratory was supported by the Department of Energy Basic Energy Sciences under Contract DE-AC02-07CH11358. Work by K.W. and J.G.V. was supported by the Department of Defense AFRL under Contract FA8650-05-C-2541. NR 35 TC 37 Z9 37 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD MAR 10 PY 2009 VL 42 IS 5 BP 1659 EP 1664 DI 10.1021/ma802613k PG 6 WC Polymer Science SC Polymer Science GA 414RN UT WOS:000263883000039 ER PT J AU Leung, BO Hitchcock, AP Brash, JL Scholl, A Doran, A AF Leung, Bonnie O. Hitchcock, Adam P. Brash, John L. Scholl, Andreas Doran, Andrew TI Phase Segregation in Polystyrene-Polylactide Blends SO MACROMOLECULES LA English DT Article ID IMMISCIBLE POLYMER BLENDS; X-RAY SPECTROMICROSCOPY; ADVANCED LIGHT-SOURCE; COPOLYMER THIN-FILMS; POLY(LACTIC ACID); LACTIC-ACID; FORCE MICROSCOPY; SURFACE; MORPHOLOGY; SPECTROSCOPY AB Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. ne surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air-polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt% loading) were annealed above the glass transition temperature (T(g)) of PLA. C1 [Leung, Bonnie O.; Hitchcock, Adam P.] McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. [Brash, John L.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4M1, Canada. [Scholl, Andreas; Doran, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hitchcock, AP (reprint author), McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca RI Scholl, Andreas/K-4876-2012; OI Doran, Andrew/0000-0001-5158-4569 FU Natural Science and Engineering Research Council (NSERC, Canada); Canada Research Chair programs; US Department of Energy [DE-AC03-76SF00098] FX This research is supported by the Natural Science and Engineering Research Council (NSERC, Canada) and the Canada Research Chair programs. X-ray microscopy was carried out using PEEM2 and the polymer STXM at the ALS which is supported by the US Department of Energy under Contract DE-AC03-76SF00098. NR 47 TC 23 Z9 23 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAR 10 PY 2009 VL 42 IS 5 BP 1679 EP 1684 DI 10.1021/ma802176b PG 6 WC Polymer Science SC Polymer Science GA 414RN UT WOS:000263883000042 ER PT J AU Yoder-Himes, DR Chain, PSG Zhu, Y Wurtzel, O Rubin, EM Tiedje, JM Sorek, R AF Yoder-Himes, D. R. Chain, P. S. G. Zhu, Y. Wurtzel, O. Rubin, E. M. Tiedje, James M. Sorek, R. TI Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cystic fibrosis; RNA-seq; soil; transcriptomics ID CYSTIC-FIBROSIS SPUTUM; CEPACIA COMPLEX; SIGNAL PEPTIDES; PREDICTION; GENOMES AB Determining how an organism responds to its environment by altering gene expression is key to understanding its ecology. Here, we used RNA-seq to comprehensively and quantitatively assess the transcriptional response of the bacterial opportunistic cystic fibrosis (CF) pathogen and endemic soil dweller, Burkholderia cenocepacia, in conditions mimicking these 2 environments. By sequencing 762 million bases of cDNA from 2 closely related B. cenocepacia strains (one isolated from a CF patient and one from soil), we identified a number of potential virulence factors expressed under CF-like conditions, whereas genes whose protein products are involved in nitrogen scavenging and 2-component sensing were among those induced under soil-like conditions. Interestingly, 13 new putative noncoding RNAs were discovered using this technique, 12 of which are preferentially induced in the soil environment, suggesting that ncRNAs play an important role in survival in the soil. In addition, we detected a surprisingly large number of regulatory differences between the 2 strains, which may represent specific adaptations to the niches from which each strain was isolated, despite their high degree of DNA sequence similarity. Compared with the CF strain, the soil strain shows a stronger global gene expression response to its environment, which is consistent with the need for a more dynamic reaction to the heterogeneous conditions of soil. C1 [Yoder-Himes, D. R.; Chain, P. S. G.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Chain, P. S. G.; Zhu, Y.; Rubin, E. M.] Joint Genome Inst, Dept Energy, Microbial Program, Wlanut Creek, CA 94598 USA. [Chain, P. S. G.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Wurtzel, O.; Sorek, R.] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel. [Rubin, E. M.] Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Tiedje, JM (reprint author), Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. EM tiedjej@msu.edu RI chain, patrick/B-9777-2013 FU US Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA27344]; National Science Foundation [516252]; National Institutes of Health [R21HL087833] FX Wethank Feng Chen, Dorothy Lang, Stephanie Malfatti, Wei Wang, and Dr. Robert Tempelman for help in sample preparation, figure preparation, and data analysis. R. S. was supported by the Y. Leon Benoziyo Institute for Molecular Medicine; the work at Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, under contract number DE-AC02-05CH11231 and DE-AC52-07NA27344; and the Michigan State University work supported by National Science Foundation Grant 516252 and National Institutes of Health Grant R21HL087833. NR 21 TC 164 Z9 172 U1 6 U2 38 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 10 PY 2009 VL 106 IS 10 BP 3976 EP 3981 DI 10.1073/pnas.0813403106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 416WT UT WOS:000264036900060 PM 19234113 ER PT J AU Ajami, NK Duan, Q Sorooshian, S AF Ajami, Newsha K. Duan, Qingyun Sorooshian, Soroosh TI Reply to Comment by B. Renard et al. on "An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction'' SO WATER RESOURCES RESEARCH LA English DT Editorial Material C1 [Ajami, Newsha K.] Univ Calif Berkeley, Berkeley Water Ctr, Berkeley, CA 94720 USA. [Duan, Qingyun] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Dept, Livermore, CA 94551 USA. [Sorooshian, Soroosh] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. RP Ajami, NK (reprint author), Univ Calif Berkeley, Berkeley Water Ctr, 413 OBrien Hall 1718, Berkeley, CA 94720 USA. EM newshaajami@berkeley.edu RI sorooshian, soroosh/B-3753-2008; Duan, Qingyun/C-7652-2011; Ajami, newsha/C-9151-2017 OI sorooshian, soroosh/0000-0001-7774-5113; Duan, Qingyun/0000-0001-9955-1512; Ajami, newsha/0000-0003-4421-3764 NR 3 TC 4 Z9 4 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR 10 PY 2009 VL 45 AR W03604 DI 10.1029/2008WR007215 PG 2 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 419QI UT WOS:000264233900005 ER PT J AU He, C Zheng, H Mitchell, JF Foo, ML Cava, RJ Leighton, C AF He, C. Zheng, H. Mitchell, J. F. Foo, M. L. Cava, R. J. Leighton, C. TI Low temperature Schottky anomalies in the specific heat of LaCoO3: Defect-stabilized finite spin states SO APPLIED PHYSICS LETTERS LA English DT Article DE crystal field interactions; excited states; excitons; g-factor; lanthanum compounds; Schottky defects; specific heat; spin dynamics; spin-orbit interactions ID TRANSITION AB Measurement of the low temperature specific heat of LaCoO3 single crystals reveals a previously unobserved Schottky anomaly with an energy level splitting, 0.5 meV, that is associated with the first excited spin state of the Co3+ ion. These states persist well below 2 K and have a g-factor around 3.5, consistent with the high-spin spin-orbit triplet, implying the existence of a low density (approximately 0.1% of the sites) of finite-spin Co ions even in the T=0 limit. We propose that these states are trapped at defects and are consistent with the magnetic excitons observed in earlier work. C1 [He, C.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Foo, M. L.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu RI Foo, Maw Lin/H-9273-2012 FU DoE [DE-FG02-06ER46275, DE-AC02-06CH11357]; NSF [DMR-0804432, DMR02-13706] FX Work supported primarily by DoE (Grant No. DE-FG02-06ER46275) with additional support from NSF (Grant No. DMR-0804432 and DMR02-13706). ANL is supported by DoE under Grant No. DE-AC02-06CH11357. NR 30 TC 23 Z9 23 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 9 PY 2009 VL 94 IS 10 AR 102514 DI 10.1063/1.3098374 PG 3 WC Physics, Applied SC Physics GA 420HO UT WOS:000264280000065 ER PT J AU Chen, M Torres, M Walsh, T AF Chen, Min Torres, Monica Walsh, Timothy TI Existence of traveling wave solutions of a high-order nonlinear acoustic wave equation SO PHYSICS LETTERS A LA English DT Article DE Nonlinear acoustic waves; Traveling wave solutions ID HELMHOLTZ RESONATORS; SOLITARY WAVES; PROPAGATION; TUNNEL; ARRAY AB In this Letter, we present an analytical study of a high-order acoustic wave equation in one dimension, and reformulate a previously given equation in terms of an expansion of the acoustic Mach number. We search for non-trivial traveling wave solutions to this equation, and also discuss the accuracy of acoustic wave equations in terms of the range of Mach numbers for which they are valid. (C) 2009 Published by Elsevier B.V. C1 [Chen, Min; Torres, Monica] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Walsh, Timothy] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Torres, M (reprint author), Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA. EM chen@math.purdue.edu; torres@math.purdue.edu; tfwalsh@sandia.gov FU National Science Foundation [DMS-0540869] FX Monica Torres's research was supported in part by the National Science Foundation under grant DMS-0540869. The authors would like to thank the anonymous referee for helpful comments. NR 20 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD MAR 9 PY 2009 VL 373 IS 11 BP 1037 EP 1043 DI 10.1016/j.physleta.2009.01.042 PG 7 WC Physics, Multidisciplinary SC Physics GA 418SR UT WOS:000264169600008 ER PT J AU Kocharian, AN Fernando, GW Palandage, K Davenport, JW AF Kocharian, A. N. Fernando, G. W. Palandage, K. Davenport, J. W. TI Electron coherent and incoherent pairing instabilities in inhomogeneous bipartite and nonbipartite nanoclusters SO PHYSICS LETTERS A LA English DT Article DE High T(c) superconductivity; Coherent and incoherent pairing; Charge and spin pseudogaps; Spin-charge separation; Magnetism ID C SUPERCONDUCTOR BI2SR2CACU2O8+DELTA; HUBBARD-MODEL; PHASE-SEPARATION; GROUND-STATE; LATTICE; ORIGIN; BAND; THERMODYNAMICS; FERROMAGNETISM; TRANSITIONS AB Exact calculations of collective excitations and charge/spin (pseudo) gaps in an ensemble of bipartite and nonbipartite clusters yield level crossing degeneracies, spin-charge separation. condensation and recombination of electron charge and spin driven by interaction strength, inter-site couplings and temperature. Near crossing degeneracies, the electron configurations of the lowest energies control the physics of electronic pairing, phase separation and magnetic transitions. Rigorous conditions are found for the smooth and dramatic phase transitions with competing stable and unstable inhomogeneities. Condensation of electron charge and spin degrees at various temperatures offers a new mechanism of pairing and a possible route to superconductivity in inhomogeneous systems, different from the BCS scenario. Small bipartite and frustrated clusters exhibit charge and spin inhomogeneities in many respects typical for nano and heterostructured materials. The calculated phase diagrams in various geometries may be linked to atomic scale experiments in high T(c) cuprates, manganites and other concentrated transition metal oxides. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. [Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA. [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Kocharian, AN (reprint author), Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. EM armen.kocharian@calstatela.edu FU US Department of Energy [DE-AC02-98CH10886] FX We thank Daniil Khomskii and Valery Pokrovsky for helpful discussions. This research was supported in part by US Department of Energy under Contract No. DE-AC02-98CH10886. NR 60 TC 14 Z9 14 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD MAR 9 PY 2009 VL 373 IS 11 BP 1074 EP 1082 DI 10.1016/j.physleta.2009.01.006 PG 9 WC Physics, Multidisciplinary SC Physics GA 418SR UT WOS:000264169600014 ER PT J AU Guzey, V Thomas, AW Tsushima, K AF Guzey, V. Thomas, A. W. Tsushima, K. TI Medium modifications of the bound nucleon GPDs and incoherent DVCS on nuclear targets SO PHYSICS LETTERS B LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; VIRTUAL COMPTON-SCATTERING; EMC; DEUTERIUM; IRON; SEA AB We study incoherent DVCS on He-4 in the He-4(e.e'gamma p)X reaction, which probes possible medium-modifications of the bound nucleon GPDs and elastic form factors. Assuming that the bound nucleon GPDs are modified in proportion to the corresponding bound nucleon elastic form factors, as predicted in the quark-meson coupling model, we develop an approach to calculate various incoherent nuclear DVCS observables. As an example, we compute the beam-spin DVCS asymmetry, and predict the x(B)- and t-dependence of the ratio of the bound to free proton asymmetries, A(LU)(p*)(phi)/A(LU)(p)(phi). We find that the deviation of AP(LU)(p*)(phi)/A(LU)(p)(phi) from unity is as Much as similar to 6%. (C) 2009 Elsevier B.V. All rights reserved. C1 [Guzey, V.; Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23178 USA. [Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Guzey, V (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. EM vguzey@jlab.org; awthomas@jlab.org; tsushima@jlab.org RI Thomas, Anthony/G-4194-2012; OI Thomas, Anthony/0000-0003-0026-499X; Guzey, Vadim/0000-0002-2393-8507 FU Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX Notice: Authored by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. NR 50 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 9 PY 2009 VL 673 IS 1 BP 9 EP 14 DI 10.1016/j.physletb.2009.01.064 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 419YR UT WOS:000264256100003 ER PT J AU Osprey, S Barnett, J Smith, J Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Ayres, DS Baller, B Barnes, PD Barr, GD Barrett, WL Becker, BR Belias, A Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Bower, C Buckley-Geer, E Cavanaugh, S Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Coleman, SJ Culling, AJ de Jong, JK Dierckxsens, M Diwan, MV Dorman, M Dytman, SA Escobar, CO Evans, JJ Falk, E Feldman, GJ Frohne, MV Gallagher, HR Godley, A Goodman, MC Gouffon, P Gran, R Grashorn, EW Grossman, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hatcher, R Himmel, A Holin, A Hylen, J Irwin, GM Ishitsuka, M Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Kim, JJ Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kreymer, A Kumaratunga, S Lang, K Ling, J Litchfield, PJ Litchfield, RP Loiacono, L Lucas, P Ma, J Mann, WA Marshak, ML Marshall, JS Mayer, N McGowan, AM Meier, JR Messier, MD Metelko, CJ Michael, DG Miller, L Miller, WH Mishra, SR Moore, CD Morfin, JG Mualem, L Mufson, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Ospanov, R Paley, J Paolone, V Pavlovic, Z Pawloski, G Pearce, GF Peck, CW Petyt, DA Pittam, R Plunkett, RK Rahaman, A Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Rodrigues, PA Rosenfeld, C Rubin, HA Ruddick, K Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Seun, SM Shanahan, P Smart, W Smith, C Smith, R Sousa, A Speakman, B Stamoulis, P Strait, M Symes, P Tagg, N Talaga, RL Tavera, MA Thomas, J Thompson, J Thomson, MA Thron, JL Tinti, G Tzanakos, G Urheim, J Vahle, P Viren, B Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C Wojcicki, SG Wright, DM Yang, T Zhang, K Zwaska, R AF Osprey, S. Barnett, J. Smith, J. Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Ayres, D. S. Baller, B. Barnes, P. D., Jr. Barr, G. D. Barrett, W. L. Becker, B. R. Belias, A. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Bower, C. Buckley-Geer, E. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Culling, A. J. de Jong, J. K. Dierckxsens, M. Diwan, M. V. Dorman, M. Dytman, S. A. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Himmel, A. Holin, A. Hylen, J. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Kim, J. J. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kreymer, A. Kumaratunga, S. Lang, K. Ling, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, L. Miller, W. H. Mishra, S. R. Moore, C. D. Morfin, J. G. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Ospanov, R. Paley, J. Paolone, V. Pavlovic, Z. Pawloski, G. Pearce, G. F. Peck, C. W. Petyt, D. A. Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ruddick, K. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Seun, S. M. Shanahan, P. Smart, W. Smith, C. Smith, R. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Symes, P. Tagg, N. Talaga, R. L. Tavera, M. A. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Yang, T. Zhang, K. Zwaska, R. TI Sudden stratospheric warmings seen in MINOS deep underground muon data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPOSPHERE AB The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere. Citation: Osprey, S., et al. (2009), Sudden stratospheric warmings seen in MINOS deep underground muon data, Geophys. Res. Lett., 36, L05809, doi: 10.1029/2008GL036359. C1 [Osprey, S.; Barnett, J.; Smith, J.; Barr, G. D.; Cobb, J. H.; Litchfield, R. P.; Pittam, R.; Rodrigues, P. A.; Smith, R.; Sousa, A.; Tinti, G.; Weber, A.; West, N.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Adamson, P.; Baller, B.; Bernstein, R. H.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Buckley-Geer, E.; Childress, S.; Choudhary, B. C.; Grossman, N.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Morfin, J. G.; Plunkett, R. K.; Rameika, R. A.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.; Wehmann, A.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Andreopoulos, C.; Belias, A.; Dorman, M.; Metelko, C. J.; Nicholls, T. C.; Pearce, G. F.; Raufer, T. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Arms, K. E.; Becker, B. R.; Grashorn, E. W.; Kasahara, S. M. S.; Kumaratunga, S.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Petyt, D. A.; Ruddick, K.; Speakman, B.; Strait, M.] Univ Minnesota Twin Cities, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Armstrong, R.; Bower, C.; Ishitsuka, M.; Mayer, N.; McGowan, A. M.; Messier, M. D.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Auty, D. J.; Falk, E.; Harris, P. G.; Hartnell, J.; Symes, P.; Tavera, M. A.] Univ Sussex, Dept Phys & Astron, Falmer BN1 9QH, E Sussex, England. [Ayres, D. S.; Goodman, M. C.; McGowan, A. M.; Reichenbacher, J.; Sanchez, M. C.; Talaga, R. L.; Thron, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnes, P. D., Jr.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Bhattacharya, D.; Dytman, S. A.; Naples, D.; Paolone, V.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bishai, M.; Dierckxsens, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.; Zhang, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blake, A.; Chapman, J. D.; Culling, A. J.; Marshall, J. S.; Thomson, M. A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Boehm, J.; Cavanaugh, S.; Feldman, G. J.; Seun, S. M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Coleman, S. J.; Kordosky, M.; Nelson, J. K.; Vahle, P.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [de Jong, J. K.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Dorman, M.; Evans, J. J.; Holin, A.; Kordosky, M.; Koskinen, D. J.; Nichol, R. J.; Smith, C.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Escobar, C. O.] Univ Estadual Campinas, Inst Fsica Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Godley, A.; Kim, J. J.; Ling, J.; Mishra, S. R.; Rahaman, A.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Grzelak, K.] Warsaw Univ, Fac Phys, PL-00681 Warsaw, Poland. [Himmel, A.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Peck, C. W.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Irwin, G. M.; Pawloski, G.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kopp, S.; Lang, K.; Loiacono, L.; Ma, J.; Ospanov, R.; Pavlovic, Z.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Mufson, S.] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA. [Stamoulis, P.; Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Watabe, M.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Osprey, S (reprint author), Univ Oxford, Dept Phys, Oxford OX1 3PU, England. EM sosprey@atm.ox.ac.uk; giles.barr@physics.ox.ac.uk RI Nichol, Ryan/C-1645-2008; Tinti, Gemma/I-5886-2013; Koskinen, David/G-3236-2014; Evans, Justin/P-4981-2014; Gouffon, Philippe/I-4549-2012; Osprey, Scott/P-6621-2016; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Koskinen, David/0000-0002-0514-5917; Evans, Justin/0000-0003-4697-3337; Gouffon, Philippe/0000-0001-7511-4115; Osprey, Scott/0000-0002-8751-1211; Ling, Jiajie/0000-0003-2982-0670; Hartnell, Jeffrey/0000-0002-1744-7955; Bernstein, Robert/0000-0002-7610-950X NR 21 TC 13 Z9 13 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 7 PY 2009 VL 36 AR L05809 DI 10.1029/2008GL036359 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 415PU UT WOS:000263947300001 ER PT J AU Bardhan, JP AF Bardhan, Jaydeep P. TI Numerical solution of boundary-integral equations for molecular electrostatics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POISSON-BOLTZMANN EQUATION; POLARIZABLE CONTINUUM MODEL; IMPLICIT SOLVENT MODELS; ELEMENT METHOD; SOLVATION ENERGIES; MACROMOLECULAR ELECTROSTATICS; DIELECTRIC-CONSTANTS; BIOMOLECULAR SYSTEMS; PROTEIN STRUCTURES; AB-INITIO AB Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3080769] C1 [Bardhan, Jaydeep P.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Bardhan, Jaydeep P.] Rush Univ, Dept Physiol & Mol Biophys, Chicago, IL 60612 USA. RP Bardhan, JP (reprint author), Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. EM jbardhan@alum.mit.edu NR 96 TC 21 Z9 21 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2009 VL 130 IS 9 AR 094102 DI 10.1063/1.3080769 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 423VD UT WOS:000264522900002 PM 19275391 ER PT J AU Chialvo, AA Horita, J AF Chialvo, Ariel A. Horita, Juske TI Liquid-vapor equilibrium isotopic fractionation of water: How well can classical water models predict it? SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE fractionation; free energy; liquid-vapour transformations; molecular dynamics method; Monte Carlo methods; potential energy functions; vapour pressure; water ID QUANTUM CORRECTIONS; MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; THERMODYNAMIC PROPERTIES; COEXISTENCE PROPERTIES; PHASE COEXISTENCE; SEPARATION FACTOR; TRIPLE POINT; PRESSURE; FLUIDS AB The liquid-vapor equilibrium isotopic fractionation of water is determined by molecular-based simulation, via Gibbs ensemble Monte Carlo and isothermal-isochoric molecular dynamics involving two radically different but realistic models, the extended simple point charge, and the Gaussian charge polarizable models. The predicted temperature dependence of the liquid-vapor equilibrium isotopic fractionation factors for (H2O)-O-18/(H2O)-O-16, (H2O)-O-17/(H2O)-O-16, and (HHO)-H-2-H-1-O-16/(H2O)-H-1-O-16 are compared against the most accurate experimental datasets to assess the ability of these intermolecular potential models to describe quantum effects according to the Kirkwood-Wigner free energy perturbation h(2)-expansion. Predictions of the vapor pressure isotopic effect for the (H2O)-O-18/(H2O)-O-16 and (H2O)-O-17/(H2O)-O-16 pairs are also presented in comparison with experimental data and two recently proposed thermodynamic modeling approaches. Finally, the simulation results are used to discuss some approximations behind the microscopic interpretation of isotopic fractionation based on the underlying rototranslational coupling. C1 [Chialvo, Ariel A.; Horita, Juske] Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 NR 61 TC 8 Z9 8 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2009 VL 130 IS 9 AR 094509 DI 10.1063/1.3082401 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 423VD UT WOS:000264522900022 PM 19275411 ER PT J AU Shen, MM Liu, DJ Jenks, CJ Thiel, PA Evans, JW AF Shen, Mingmin Liu, Da-Jiang Jenks, C. J. Thiel, P. A. Evans, J. W. TI Accelerated coarsening of Ag adatom islands on Ag(111) due to trace amounts of S: Mass-transport mediated by Ag-S complexes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorbed layers; density functional theory; monolayers; reaction kinetics theory; reaction-diffusion systems; scanning tunnelling microscopy; silver; silver compounds; surface chemistry; surface diffusion ID SCANNING-TUNNELING-MICROSCOPY; INITIO MOLECULAR-DYNAMICS; SELF-DIFFUSION; METAL-SURFACES; FILM GROWTH; SULFUR; AU(111); SILVER; OXYGEN; ATOMS AB Scanning tunneling microscopy studies reveal that trace amounts of adsorbed S below a critical coverage on the order of 10 mML have little effect on the coarsening and decay of monolayer Ag adatom islands on Ag(111) at 300 K. In contrast, above this critical coverage, decay is greatly accelerated. This critical value appears to be determined by whether all S can be accommodated at step edges. Accelerated coarsening derives from the feature that the excess S (above that incorporated at steps) produces significant populations on the terraces of metal-sulfur complexes, which are stabilized by strong Ag-S bonding. These include AgS2, Ag2S2, Ag2S3, and Ag3S3. Such complexes are sufficiently populous and mobile that they can potentially lead to greatly enhanced metal mass transport across the surface. This picture is supported by density functional theory analysis of the relevant energetics, as well as by reaction-diffusion equation modeling to assess the mechanism and degree of enhanced coarsening. C1 [Shen, Mingmin; Thiel, P. A.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Liu, Da-Jiang; Jenks, C. J.; Thiel, P. A.; Evans, J. W.] US DOE, Ames Lab, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Shen, MM (reprint author), Iowa State Univ, Dept Math, Ames, IA 50011 USA. EM evans@ameslab.gov RI Shen, Mingmin/A-9293-2012 FU U. S. DOE by Iowa State University [DE-AC02-07CH11358]; NSF [CHE-0809472]; Division of Chemical Sciences, BES, U. S. Department of Energy (U.S. DOE) FX We thank Karina Morgenstern for information on previous studies of Ag adatom island decay on S-free Ag (111). This work was supported by NSF Grant No. CHE-0809472. D.J.L. was supported by the Division of Chemical Sciences, BES, U. S. Department of Energy (U.S. DOE). This work was performed at Ames Laboratory, which is operated for the U. S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 51 TC 14 Z9 14 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2009 VL 130 IS 9 AR 094701 DI 10.1063/1.3078033 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 423VD UT WOS:000264522900023 PM 19275412 ER PT J AU Hollingsworth, JP Kuntz, JD Soules, TF AF Hollingsworth, Joel P. Kuntz, Joshua D. Soules, Thomas F. TI Neodymium ion diffusion during sintering of Nd:YAG transparent ceramics SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID YTTRIUM-ALUMINUM-GARNET AB Using an electron microprobe, we measured and characterized the Nd(3+) ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminium garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometres to tens of micrometres depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross-sectional area of grain boundaries. C1 [Hollingsworth, Joel P.; Kuntz, Joshua D.; Soules, Thomas F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hollingsworth, JP (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. FU US Department of Energy [W-7405-ENG-48] FX The authors gratefully acknowledge Dr Richard Landingham for many helpful suggestions, Rick Ryerson for the electron microprobe measurements and Ed Lindsey for the electron microscopy. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. NR 9 TC 8 Z9 8 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAR 7 PY 2009 VL 42 IS 5 AR 052001 DI 10.1088/0022-3727/42/5/052001 PG 5 WC Physics, Applied SC Physics GA 410GJ UT WOS:000263565200001 ER PT J AU Rahimi, R Miller, CM Raghavan, S Stinespring, CD Korakakis, D AF Rahimi, R. Miller, C. M. Raghavan, S. Stinespring, C. D. Korakakis, D. TI Electrical properties of strained nano-thin 3C-SiC/Si heterostructures SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SCHOTTKY-BARRIER HEIGHTS; SILICON-CARBIDE; HIGH-TEMPERATURE; OHMIC CONTACTS; GAS SENSORS; EPITAXIAL MULTILAYERS; RAMAN-SCATTERING; BAND-GAP; SI AB The effects of strain on the conduction mechanism in heterostructures consisting of strained nano-thin 3C-SiC films on Si are reported. These films exhibit significantly different electrical behaviours than the bulk material. Strained nano-thin 3C-SiC films were grown on n-type Si substrates by gas source molecular beam epitaxy. Reflection high-energy electron diffraction patterns show that these films are about 3% strained relative to the SiC lattice constant. In order to investigate the electrical properties of thin film structures, Al, Cr and Pt contacts to a nano-thin film 3C-SiC were deposited and characterized. The I-V measurements of the strained nano-thin films demonstrate back-to-back Schottky diode characteristics and the band offsets due to the biaxial tensile strain introduced within the 3C-SiC films were calculated and simulated. Based on the experimental and simulation results, an empirical model for the current transport in the heterostructures based on strained nano-thin films has been proposed. It was found that due to the band alignment of this structure, current is constrained at the surface which allows use of nano-thin films as surface sensors. C1 [Rahimi, R.; Miller, C. M.; Raghavan, S.; Korakakis, D.] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. [Stinespring, C. D.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Korakakis, D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Rahimi, R (reprint author), W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. EM rrahimi@mix.wvu.edu FU National Energy Technology Laboratory's [04NT41817.606.02.09]; WVNano Bridge Award, West Virginia University FX This technical effort was performed in support of the National Energy Technology Laboratory's under the DOE/RDS, LLC Contract No DE-AC-04NT41817.606.02.09. RR has been partially supported through the WVNano Bridge Award, West Virginia University. NR 48 TC 3 Z9 3 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAR 7 PY 2009 VL 42 IS 5 AR 055108 DI 10.1088/0022-3727/42/5/055108 PG 8 WC Physics, Applied SC Physics GA 410GJ UT WOS:000263565200026 ER PT J AU Wong, BM Morales, AM AF Wong, Bryan M. Morales, Alfredo M. TI Enhanced photocurrent efficiency of a carbon nanotube p-n junction electromagnetically coupled to a photonic structure SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID CRYSTAL-STRUCTURES AB We present photocurrent power-enhancement calculations of a carbon nanotube p-n junction electromagnetically coupled to a highly efficient photonic structure. Particular attention is paid to a GaAs photonic structure specifically modified to increase the intensity of infrared light onto the nanotube region for effective energy conversion. Using finite-difference time-domain calculations, we compute a significant increase in electric field intensity in the nanotube region which enables an estimation of power efficiency. These results demonstrate the potential of using a photonic structure to couple large-scale infrared sources with carbon nanotubes while still retaining all the unique optoelectronic properties found at the nanoscale. C1 [Wong, Bryan M.; Morales, Alfredo M.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. RP Wong, BM (reprint author), Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. EM bmwong@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Supported by the Laboratory Directed Research and Development program at Sandia National Laboratory, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 9 Z9 9 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAR 7 PY 2009 VL 42 IS 5 AR 055111 DI 10.1088/0022-3727/42/5/055111 PG 5 WC Physics, Applied SC Physics GA 410GJ UT WOS:000263565200029 ER PT J AU Perelson, AS Wiegel, FW AF Perelson, Alan S. Wiegel, Frederik W. TI Scaling aspects of lymphocyte trafficking SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE Scaling laws; Immunology; Lymphocyte; Immune repertoire; Lymphocyte trafficking ID IN-VIVO; METABOLIC-RATE; VIRUS; CELLS; SIZE; RECIRCULATION; REPERTOIRE; CHEMOKINES; MAMMALS; ANTIGEN AB We consider the long lived pool of B and T cells that recirculate through blood, tissues and the lymphatic system of an animal with body mass M. We derive scaling rules (allometric relations) for: (1) the rate of production of mature lymphocytes, (2) the accumulation of lymphocytes in the tissues, (3) the flux of lymphocytes through the lymphatic system, (4) the number of lymph nodes, (5) the number of lymphocytes per clone within a lymph node, and (6) the total number of lymphocytes within a lymph node. Mass-dependent aspects of immune learning and of the immunological self are shown to be not very significant. Our treatment is somewhat heuristic and aims at combining immunological data with recent progress in biological scaling. Published by Elsevier Ltd. C1 [Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wiegel, Frederik W.] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM asp@lanl.gov; f.w.wgl@hotniail.com FU US Department of Energy [DE-AC52-06NA25396]; NIH [AI28433, RR06555]; Human Frontiers Science Program [RPG10/2004] FX We thank Geoffrey West and Jason Bragg for valuable conversations about this work. We also thank the reviewers for many helpful comments and references. J. Bragg also supplied Fig. 1. Much of this work was inspired by G.I. Bell, a colleague, friend and collaborator for many years who died in May, 2000. Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06NA25396 and supported by NIH Grants AI28433 and RR06555. This work was also facilitated by interactions at the Santa Fe Institute and supported at the Santa Fe Institute by research Grant RPG10/2004 from the Human Frontiers Science Program. NR 46 TC 9 Z9 9 U1 2 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 EI 1095-8541 J9 J THEOR BIOL JI J. Theor. Biol. PD MAR 7 PY 2009 VL 257 IS 1 BP 9 EP 16 DI 10.1016/j.jtbi.2008.11.007 PG 8 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 414HQ UT WOS:000263854900002 PM 19084024 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Overloaded band profiles, acids and bases compounds; C(18) reversed-phase columns; Weak buffer capacity; Nonlinear chromatography; Competitive adsorption isotherms; Column heterogeneity; Silanol activity; Silica; pK(a) of the analyte ID SURFACE HETEROGENEITY; STATIONARY-PHASE; NONLINEAR CHROMATOGRAPHY; RETENTION MECHANISM; IONIZABLE COMPOUNDS; PERFORMANCE; PH; SIMULATION; SOLUTES; SOLVENT AB The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 mu L samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (s)(w)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1 g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase. (C) 2008 Elsevier B.V. All rights reserved. C1 [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu FU National Science Foundation [CHE-06-08659]; US Department of Energy [DE-FG05-88-ER-13869] FX This work was supported in part by grant CHE-06-08659 of the National Science Foundation, by Grant DE-FG05-88-ER-13869 of the US Department of Energy, and by the cooperative agreement between the University of Tennessee and the Oak Ridge National Laboratory. NR 41 TC 32 Z9 33 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAR 6 PY 2009 VL 1216 IS 10 BP 1776 EP 1788 DI 10.1016/j.chroma.2008.10.064 PG 13 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 416SK UT WOS:000264025600015 PM 18976999 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for High-Mass Resonances Decaying to Dimuons at CDF SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON COLLIDERS; HIERARCHY; PHENOMENOLOGY; VIOLATION; PARITY; MODELS AB We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp collisions at s=1.96 TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on sigma BR(pp -> X ->mu mu), where X is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, Z(') bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giokaris, N.; Glagolev, V.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; St.Denis, Richard/C-8997-2012; Lysak, Roman/H-2995-2014; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 42 TC 78 Z9 78 U1 5 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 091805 DI 10.1103/PhysRevLett.102.091805 PG 7 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900012 PM 19392510 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Measurement of the Lifetime of the B-c(+/-) Meson in the Semileptonic Decay Channel SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR; PHYSICS AB Using approximately 1.3 fb(-1) of data collected by the D0 detector between 2002 and 2006, we measure the lifetime of the B-c(+/-) meson in the B-c(+/-)-> J/psi mu(+/-)+X final state. A simultaneous unbinned likelihood fit to the J/psi+mu invariant mass and lifetime distributions yields a signal of 881 +/- 80(stat) candidates and a lifetime measurement of tau(B-c(+/-))=0.448(-0.036)(+0.038)(stat)+/- 0.032(syst) ps. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A III, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De la Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013 OI Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311 FU DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); Alexander von Humboldt Foundation FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation. NR 17 TC 35 Z9 35 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 092001 DI 10.1103/PhysRevLett.102.092001 PG 7 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900014 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CD DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for Anomalous Top-Quark Couplings with the D0 Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID EVENTS AB Anomalous Wtb couplings modify the angular correlations of the top-quark decay products and change the single top-quark production cross section. We present limits on anomalous top-quark couplings by combining information from W boson helicity measurements in top-quark decays and anomalous coupling searches in the single top-quark final state. We set limits on right-handed vector couplings as well as left-handed and right-handed tensor couplings based on about 1 fb(-1) of data collected by the D0 experiment. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Brown, D.; Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A III, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Kozelov, A. V.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Andrieu, B.; Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012 OI Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bargassa, Pedrame/0000-0001-8612-3332; Landsberg, Greg/0000-0002-4184-9380; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Carrera, Edgar/0000-0002-0857-8507; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; FU DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); Alexander von Humboldt Foundation ( Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 25 TC 24 Z9 24 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 092002 DI 10.1103/PhysRevLett.102.092002 PG 7 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900015 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E De Oliveira Martins, C DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. De Oliveira Martins, C. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Evidence for the Decay B-s(0)->(DsDs(*))-D-(*) and a Measurement of Delta Gamma(CP)(s)/Gamma(s) SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYSTEM AB We search for the semi-inclusive process B-s(0)->(DsDs(*))-D-(*) using 2.8 fb(-1) of pp collisions at s=1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We observe 26.6 +/- 8.4 signal events with a significance above background of 3.2 standard deviations yielding a branching ratio of B(B-s(0)->(DsDs(*))-D-(*))=0.035 +/- 0.010(stat.)+/- 0.011(syst.). Under certain theoretical assumptions, these double-charm final states saturate CP-even eigenstates in the B-s(0) decays resulting in a width difference of Delta Gamma(CP)(s)/Gamma(s)=0.072 +/- 0.021(stat.)+/- 0.022(syst.). C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Bauer, D.; Bertram, I.; Beuselinck, R.; Blekman, F.; Borissov, G.; Burdin, S.; Buszello, C. P.; Christoudias, T.; Davies, G.; Fox, H.; Gregores, E. M.; Harder, K.; Hays, J.; Jesik, R.; Jonsson, P.; Love, P.; Mommsen, R. K.; Osman, N.; Owen, M.; Peters, K.; Petteni, M.; Rakitine, A.; Ratoff, P. N.; Rich, P.; Robinson, S.; Scanlon, T.; Schwanenberger, C.; Soeldner-Rembold, S.; Sopczak, A.; Villeneuve-Seguier, F.; Vint, P.; Williams, M. R. J.; Wyatt, T. R.; Yang, W. -C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J.-F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, LPNHE, CNRS, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Andrieu, B.; Bernardi, G.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Li, Liang/0000-0001-6411-6107; Bertram, Iain/0000-0003-4073-4941; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 FU DOE; NSF ( USA);; CEA; CNRS/ IN2P3 ( France); FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico);; KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); TFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program; CFI; NSERC; WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); Alexander von Humboldt Foundation ( Germany) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/ IN2P3 ( France); FASI, Rosatom, and RFBR ( Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 18 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 091801 DI 10.1103/PhysRevLett.102.091801 PG 7 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900008 ER PT J AU Aguilera, DN Cirigliano, V Pons, JA Reddy, S Sharma, R AF Aguilera, Deborah N. Cirigliano, Vincenzo Pons, Jose A. Reddy, Sanjay Sharma, Rishi TI Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEMPERATURE DISTRIBUTION; THERMAL-CONDUCTIVITY; DENSE MATTER; EMISSION; CRUSTS AB We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B greater than or similar to 10(13) G. At a density of rho similar or equal to 10(12)-10(14) g/cm(3), the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature similar or equal to 10(8) K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences. C1 [Aguilera, Deborah N.] Comis Nacl Energia Atom, Tandar Lab, RA-1650 Buenos Aires, DF, Argentina. [Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pons, Jose A.] Univ Alicante, Dept Appl Phys, E-03080 Alicante, Spain. RP Aguilera, DN (reprint author), Comis Nacl Energia Atom, Tandar Lab, Ave Gral Paz 1499, RA-1650 Buenos Aires, DF, Argentina. RI PONS, JOSE/D-4687-2012 OI PONS, JOSE/0000-0003-1018-8126 FU Department of Energy [DE-AC52-06NA25396]; Spanish MEC [AYA 2004-08067-C03-02]; CONICET, Argentina; LDRD program at LANL [20080130DR] FX We thank the participants of the INT workshop on the neutron star crust, especially C. Horowitz and A. Cumming, for stimulating discussions. We also thank T. Bhattacharya, A. Chugunov, J. A. Miralles, and D. Yakovlev for discussions and correspondence. This research was supported by the Department of Energy under Contract No. DE-AC52-06NA25396, by the Spanish MEC Grant No. AYA 2004-08067-C03-02, and by CONICET, Argentina. The work of S. R. was funded in part by the LDRD program at LANL under Grant No. 20080130DR. NR 20 TC 39 Z9 39 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 091101 DI 10.1103/PhysRevLett.102.091101 PG 4 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900005 PM 19392503 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Direct CP, Lepton Flavor, and Isospin Asymmetries in the Decays B -> K((*))l(+)l(-) SO PHYSICAL REVIEW LETTERS LA English DT Article AB We measure branching fractions and integrated rate asymmetries for the rare decays B -> K((*))l(+)l(-), where l(+)l(-) is either e(+)e(-) or mu(+)mu(-), using a sample of 384x10(6) BB events collected with the BABAR detector at the PEP-II e(+)e(-) collider. We find no evidence for direct CP or lepton-flavor asymmetries. However, for dilepton masses below the J/psi resonance, we find evidence for unexpectedly large isospin asymmetries in both B -> Kl(+)l(-) and B -> K(*)l(+)l(-) which differ, respectively, by 3.2 sigma and 2.7 sigma, including systematic uncertainties, from the standard model expectations. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.; Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Benelli, G.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Sordini, V.] Univ Roma La Sapienza, I-00185 Rome, Italy. Univ Sassari, I-07100 Sassari, Italy. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; OI Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Raven, Gerhard/0000-0002-2897-5323 FU DOE and NSF (U.S.); NSERC ( Canada); CEA and CNRS-IN2P3 ( France); BMBF and DFG ( Germany); INFN ( Italy); FOM ( The Netherlands) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC ( Canada), CEA and CNRS-IN2P3 ( France), BMBF and DFG ( Germany), INFN ( Italy), FOM ( The Netherlands), NFR ( Norway), MES ( Russia), MEC ( Spain), and STFC ( U. K.). Individuals have received support from the Marie Curie EIF ( European Union) and the A. P. Sloan Foundation. NR 16 TC 45 Z9 45 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 091803 DI 10.1103/PhysRevLett.102.091803 PG 7 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900010 ER PT J AU Du, Y Deskins, NA Zhang, Z Dohnalek, Z Dupuis, M Lyubinetsky, I AF Du, Y. Deskins, N. A. Zhang, Z. Dohnalek, Z. Dupuis, M. Lyubinetsky, I. TI Two Pathways for Water Interaction with Oxygen Adatoms on TiO2(110) SO PHYSICAL REVIEW LETTERS LA English DT Article ID REDUCED TIO2(110); O-2 DISSOCIATION; SURFACE; H2O; ADSORPTION; RUTILE; SITES; STM AB Scanning tunneling microscopy and density functional theory studies show that oxygen adatoms (O-a), produced during O-2 exposure of reduced TiO2(110) surfaces, alter the water dissociation and recombination chemistry through two distinctive pathways. Depending on whether H2O and O-a are on the same or adjacent Ti4+ rows, O-a facilitates H2O dissociation and proton transfer to form a terminal hydroxyl pair, positioned along or across the Ti4+ row, respectively. The latter process has not been reported previously, and it starts from a "pseudodissociated" state of water. In both pathways, the reverse H transfer results in H2O reformation and O scrambling, as manifested by an apparent along- or across-row motion of O-a's. C1 [Deskins, N. A.; Zhang, Z.; Dohnalek, Z.; Dupuis, M.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Du, Y.; Lyubinetsky, I.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM Zdenek.Dohnalek@pnl.gov; Michel.Dupuis@pnl.gov; Igor.Lyubinetsky@pnl.gov RI Deskins, Nathaniel/H-3954-2012; OI Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 NR 29 TC 72 Z9 73 U1 2 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 096102 DI 10.1103/PhysRevLett.102.096102 PG 4 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900038 PM 19392536 ER PT J AU Erni, R Rossell, MD Kisielowski, C Dahmen, U AF Erni, Rolf Rossell, Marta D. Kisielowski, Christian Dahmen, Ulrich TI Atomic-Resolution Imaging with a Sub-50-pm Electron Probe SO PHYSICAL REVIEW LETTERS LA English DT Article ID MICROSCOPE; CORRECTOR; STEM AB Using a highly coherent focused electron probe in a fifth-order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29% contrast. Our experimental data show the 47 pm spacing of a Ge < 114 > crystal imaged with 11%-18% contrast at a 60%-95% confidence level, providing the first direct evidence for sub-50-pm resolution in annular dark-field scanning transmission electron microscopy imaging. C1 [Erni, Rolf; Rossell, Marta D.; Kisielowski, Christian; Dahmen, Ulrich] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Erni, R (reprint author), Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RI Erni, Rolf/P-7435-2014; Rossell, Marta/E-9785-2017 OI Erni, Rolf/0000-0003-2391-5943; FU Department of Energy, Office of Science, Basic Energy Sciences; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02 05CH11231] FX The TEAM project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. This work was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02 05CH11231. NR 18 TC 177 Z9 180 U1 11 U2 97 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 096101 DI 10.1103/PhysRevLett.102.096101 PG 4 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900037 PM 19392535 ER PT J AU Ito, TU Higemoto, W Ohishi, K Nishida, N Heffner, RH Aoki, Y Amato, A Onimaru, T Suzuki, HS AF Ito, T. U. Higemoto, W. Ohishi, K. Nishida, N. Heffner, R. H. Aoki, Y. Amato, A. Onimaru, T. Suzuki, H. S. TI Quantized Hyperfine Field at an Implanted mu(+) Site in PrPb3: Interplay between Localized f Electrons and an Interstitial Charged Particle SO PHYSICAL REVIEW LETTERS LA English DT Article ID MUON KNIGHT-SHIFT; STATE; CE AB The local effect of an interstitial hydrogenlike particle on localized f electrons was studied in PrPb3 by means of mu(+) spin rotation and relaxation. Spontaneous mu(+) spin precession with harmonic frequencies was observed for the first time in f electron compounds. We demonstrate that the signal is derived from a coupling between the mu(+) spin and the hyperfine-enhanced nuclear spin of nearest neighbor (NN) Pr-141 with Ising-like anisotropy. The signal also suggests a marked suppression of spin dynamics of the NN Pr-141 in comparison with that of the bulk Pr-141. These facts strongly indicate modification of the f electronic state due to the interstitial charged particle. C1 [Ito, T. U.; Nishida, N.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Ito, T. U.; Higemoto, W.; Ohishi, K.; Heffner, R. H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Heffner, R. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Aoki, Y.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Amato, A.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Onimaru, T.] Hiroshima Univ, ADSM, Dept Quantum Matter, Hiroshima 7398530, Japan. [Suzuki, H. S.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. RP Ito, TU (reprint author), Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. RI Ohishi, Kazuki/E-9592-2010; Onimaru, Takahiro/M-4413-2013; Aoki, Yuji/E-5494-2015; Amato, Alex/H-7674-2013; OI Ohishi, Kazuki/0000-0003-1494-6502; Aoki, Yuji/0000-0002-0957-3396; Amato, Alex/0000-0001-9963-7498; Ito, Takashi/0000-0003-1971-4313 FU Scientific Research on Priority Area "Skutterudite'', Ministry of Education, Culture, Sports, Science and Technology, Japan; KEK-MSL Inter-University Program for Oversea Muon Facilities, and 21st Century COE Program; Tokyo Tech Nanometer-Scale Quantum Physics. FX We thank staff of the muon facilities for experimental assistance, as well as Professors H. Shiba, H. Ishii, K. Nishiyama, Drs. S. Kambe, Y. Tokunaga, H. Sakai, H. Chudo, and T. D. Matsuda for helpful discussions. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area "Skutterudite'', Ministry of Education, Culture, Sports, Science and Technology, Japan, KEK-MSL Inter-University Program for Oversea Muon Facilities, and 21st Century COE Program at Tokyo Tech "Nanometer-Scale Quantum Physics.'' NR 16 TC 9 Z9 9 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 096403 DI 10.1103/PhysRevLett.102.096403 PG 4 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900042 PM 19392540 ER PT J AU Jeong, HK Noh, HJ Kim, JY Colakerol, L Glans, PA Jin, MH Smith, KE Lee, YH AF Jeong, H. -K. Noh, H. -J. Kim, J. -Y. Colakerol, L. Glans, P. -A. Jin, M. H. Smith, K. E. Lee, Y. H. TI Comment on "Near-Edge X-Ray Absorption Fine-Structure Investigation of Graphene" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID GRAPHITE OXIDES AB A Comment on the Letter by D. Pacile et al., Phys. Rev. Lett. 101, 066806 (2008). The authors of the Letter offer a Reply. C1 [Jeong, H. -K.; Jin, M. H.; Lee, Y. H.] Sungkyunkwan Adv Inst Nanotechnol, Ctr Nanotubes & Nanostructured Composites, Dept Energy Sci, Dept Phys, Suwon 440746, South Korea. [Noh, H. -J.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Kim, J. -Y.] POSTECH, Pohang Accelerator Lab, Pohang 790784, South Korea. [Kim, J. -Y.] POSTECH, Dept Phys, Pohang 790784, South Korea. [Colakerol, L.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Glans, P. -A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Jeong, HK (reprint author), Sungkyunkwan Adv Inst Nanotechnol, Ctr Nanotubes & Nanostructured Composites, Dept Energy Sci, Dept Phys, Suwon 440746, South Korea. EM leeyoung@skku.edu RI Lee, Young Hee/A-5424-2013; Glans, Per-Anders/G-8674-2016 NR 6 TC 45 Z9 46 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 099701 DI 10.1103/PhysRevLett.102.099701 PG 1 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900073 PM 19392571 ER PT J AU Konik, RM Adamov, Y AF Konik, Robert M. Adamov, Yury TI Renormalization Group for Treating 2D Coupled Arrays of Continuum 1D Systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; MAGNETIC-FIELD; ISING-MODEL AB We study the spectrum of two dimensional coupled arrays of continuum one-dimensional systems by wedding a density matrix renormalization group procedure to a renormalization group improved truncated spectrum approach. To illustrate the methodology, we study the spectrum of large arrays of coupled quantum Ising chains. We demonstrate explicitly that the method can treat the various regimes of chains, in particular, the three dimensional Ising ordering transition the chains undergo as a function of interchain coupling. C1 [Konik, Robert M.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Adamov, Yury] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Konik, RM (reprint author), Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. RI Konik, Robert/L-8076-2016 OI Konik, Robert/0000-0003-1209-6890 FU U.S. DOE [DE-AC02-98 CH 10886] FX R. M. K. and Y. A. acknowledge support from the U.S. DOE (DE-AC02-98 CH 10886) and useful discussions with A. Tsvelik. NR 20 TC 15 Z9 15 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 097203 DI 10.1103/PhysRevLett.102.097203 PG 4 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900061 PM 19392559 ER PT J AU Pacile, D Papagno, M Rodriguez, AF Grioni, M Papagno, L Girit, CO Meyer, JC Begtrup, GE Zettl, A AF Pacile, D. Papagno, M. Rodriguez, A. Fraile Grioni, M. Papagno, L. Girit, C. Oe. Meyer, J. C. Begtrup, G. E. Zettl, A. TI Comment on "Quantum Key Distribution with Classical Bob'' Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID GRAPHITE; STATES AB A Reply to the Comment by Hae-Kyung Jeong et al. C1 [Pacile, D.; Papagno, M.; Papagno, L.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. [Pacile, D.; Papagno, M.; Papagno, L.] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy. [Rodriguez, A. Fraile] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Grioni, M.] Ecole Polytech Fed Lausanne, IPN, CH-1015 Lausanne, Switzerland. [Girit, C. Oe.; Meyer, J. C.; Begtrup, G. E.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Girit, C. Oe.; Meyer, J. C.; Begtrup, G. E.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Pacile, D (reprint author), Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. RI Fraile Rodriguez, Arantxa/A-2446-2009; Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016; OI Fraile Rodriguez, Arantxa/0000-0003-2722-0882; Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X; Pacile, Daniela/0000-0001-6219-3889; Papagno, Marco/0000-0003-2623-1563 NR 8 TC 14 Z9 14 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2009 VL 102 IS 9 AR 099702 DI 10.1103/PhysRevLett.102.099702 PG 1 WC Physics, Multidisciplinary SC Physics GA 415CM UT WOS:000263911900074 ER PT J AU Wang, C Peng, S Chan, R Sun, SH AF Wang, Chao Peng, Sheng Chan, Ryan Sun, Shouheng TI Synthesis of AuAg Alloy Nanoparticles from Core/Shell-Structured Ag/Au SO SMALL LA English DT Article DE alloys; core/shell materials; gold; silver; surface plasmon resonance ID AU-FE3O4 DUMBBELL NANOPARTICLES; GALVANIC REPLACEMENT REACTION; SILVER NANOPARTICLES; GOLD NANOPARTICLES; PHASE SYNTHESIS; AG; SHAPE; NANOCRYSTALS; CHEMISTRY; CATALYSIS C1 [Wang, Chao; Peng, Sheng; Chan, Ryan; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Wang, C (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chaowang@anl.gov; ssun@brown.edu RI Peng, Sheng/E-7988-2010; Wang, Chao/F-4558-2012 OI Wang, Chao/0000-0001-7398-2090 FU NSF/DMR [0606264]; Brown University Seed Fund FX This work was supported by NSF/DMR 0606264 and the Brown University Seed Fund. NR 32 TC 79 Z9 80 U1 6 U2 112 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD MAR 6 PY 2009 VL 5 IS 5 BP 567 EP 570 DI 10.1002/smll.200801169 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 427PP UT WOS:000264791500005 PM 19189329 ER PT J AU Komarneni, M Sand, A Lu, M Burghaus, U AF Komarneni, M. Sand, A. Lu, M. Burghaus, U. TI Adsorption kinetics of small organic molecules on thick and thinner layers of carbon nanotubes SO CHEMICAL PHYSICS LETTERS LA English DT Article ID CATALYSTS; AU(111); ALKANES AB Using an ultra-high vacuum kinetics technique, we present unexpected experimental evidence that thick layers of carbon nanotubes (CNTs) show adsorption behavior that is kinetically distinct to that of thinner CNT films. Thick layers reveal much greater desorption temperatures (binding energies) for n-pentane and benzene compared to thinner CNT films. These results are significant in gaining an understanding of the interplay of kinetics and electronic effects as well as for applications in catalysis. (C) 2009 Elsevier B. V. All rights reserved. C1 [Komarneni, M.; Sand, A.; Burghaus, U.] N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58105 USA. [Lu, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Burghaus, U (reprint author), N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58105 USA. EM uwe.burghaus@ndsu.edu RI komarneni, mallikharjuna rao/E-1889-2015; OI komarneni, mallikharjuna rao/0000-0002-3269-1606; Sand, Andrew/0000-0002-7166-2066 FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX We acknowledge assistance of J. Goering (NDSU) with the initial stages of the project as well as discussions with D. Neu (St Cloud State University). Financial support from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy is acknowledged by NDSU. The SEM characterization at the Center for Nanoscale Materials (Argonne) was financially supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 5 Z9 5 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAR 5 PY 2009 VL 470 IS 4-6 BP 300 EP 303 DI 10.1016/j.cplett.2009.02.002 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413KJ UT WOS:000263791700029 ER PT J AU Sharifzadeh, S Huang, P Carter, EA AF Sharifzadeh, Sahar Huang, Patrick Carter, Emily A. TI All-electron embedded correlated wavefunction theory for condensed matter electronic structure SO CHEMICAL PHYSICS LETTERS LA English DT Article ID KONDO IMPURITY; EXCITED-STATES; BAND-STRUCTURE; DENSITY; SYSTEMS; SURFACES; CHEMISORPTION; PSEUDOPOTENTIALS; SOLIDS AB We present an extension of our embedded configuration interaction method [P. Huang, E. A. Carter, J. Chem. Phys. 125 (2006) 084102], which models localized phenomena in metallic crystals as a finite cluster, embedded in an effective potential derived from orbital-free density functional theory. Here we extend the previous pseudopotential implementation to a frozen core, all-electron description of the background. Benchmark studies of the all-electron formulation are presented and compared with pseudopotential-based embedding for a Cu(2) dimer in Cu(1 1 1) and a Co adatom on Cu(1 1 1). Although we find subtle differences between the two methods, the same conclusions are reached, thereby validating the new all-electron formulation. (C) 2009 Elsevier B. V. All rights reserved. C1 [Carter, Emily A.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Carter, Emily A.] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA. [Huang, Patrick] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Sharifzadeh, Sahar] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Carter, EA (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM eac@princeton.edu RI Sharifzadeh, Sahar/L-9367-2013; Carter, Emily/P-4075-2014; Sharifzadeh, Sahar/P-4881-2016; OI Sharifzadeh, Sahar/0000-0003-4215-4668; Huang, Patrick/0000-0003-4833-8134 FU Department of Energy, Basic Energy Sciences FX We are grateful to the Department of Energy, Basic Energy Sciences for support of this research. NR 46 TC 23 Z9 23 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAR 5 PY 2009 VL 470 IS 4-6 BP 347 EP 352 DI 10.1016/j.cplett.2009.01.072 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413KJ UT WOS:000263791700038 ER PT J AU Govind, N Sushko, PV Hess, WP Valiev, M Kowalski, K AF Govind, N. Sushko, P. V. Hess, W. P. Valiev, M. Kowalski, K. TI Excitons in potassium bromide: A study using embedded time-dependent density functional theory and equation-of-motion coupled cluster methods SO CHEMICAL PHYSICS LETTERS LA English DT Article ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; EXCITATION-ENERGIES; ELECTRONIC STATES; FULL EOMCCSDT; SURFACE; PSEUDOPOTENTIALS; ELEMENTS; MODEL; ATOMS AB We present a study of the lowest surface and bulk excitations of the well-studied potassium bromide (KBr) system using an embedded cluster method. The excited states of the embedded cluster are studied systematically using time-dependent density functional theory (TDDFT) and high-level equation-of-motion coupled cluster (EOMCC) methods. In particular, we have used EOMCC models with singles and doubles (EOMCCSD) and two approaches which account for the effect of triply excited configurations in non-iterative and iterative fashions. We compare and contrast the results between these theories as well as compare our results with experiment. The bulk-surface exciton shift is also calculated at the TDDFT level and compared with experiment. (C) 2009 Elsevier B. V. All rights reserved. C1 [Govind, N.; Valiev, M.; Kowalski, K.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Sushko, P. V.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 980, Japan. [Sushko, P. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Hess, W. P.] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. RP Govind, N (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM niri.govind@pnl.gov; karol.kowalski@pnl.gov RI Govind, Niranjan/D-1368-2011; Sushko, Peter/F-5171-2013; Albe, Karsten/F-1139-2011 OI Sushko, Peter/0000-0001-7338-4146; FU Office of Biological and Environmental Research in the U. S. Department of Energy [DE-AC06-76RLO-1830]; EMSL Intramural Program; Laboratory Directed Research and Development Program; DOE Basic Energy Science Division of Chemical Sciences; WPI-AIMR; Tohoku University; Royal Society FX We thank Professor Alex Shluger (UCL) for helpful discussions. This work has been performed using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory. The William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is funded by the Office of Biological and Environmental Research in the U. S. Department of Energy. The Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. N.G. and K. K. gratefully acknowledge support from the EMSL Intramural Program 2008. The effort leading to a better scalability of the CCSD, EOMCCSD, and CR-EOMCCSD(T) approaches was supported by the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (K. K.). Support to M. V. from the Advanced Scientific Computing Research program of the U. S. Department of Energy, Office of Science (DE-AC06-76RLO 1830) and DOE Basic Energy Science Division of Chemical Sciences is also gratefully acknowledged. W. P. H. is supported by the DOE Basic Energy Science Division of Chemical Sciences. P. V. S. is supported by the WPI-AIMR, Tohoku University, and Royal Society. NR 50 TC 25 Z9 25 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAR 5 PY 2009 VL 470 IS 4-6 BP 353 EP 357 DI 10.1016/j.cplett.2009.01.073 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413KJ UT WOS:000263791700039 ER PT J AU Takahashi, K Tezuka, H Satoh, T Katsumura, Y Watanabe, M Crowell, RA Wishart, JF AF Takahashi, Kenji Tezuka, Hiroaki Satoh, Toshifumi Katsumura, Yosuke Watanabe, Masayoshi Crowell, Robert A. Wishart, James F. TI Kinetic Salt Effects on an Ionic Reaction in Ionic Liquid/Methanol Mixtures-Viscosity and Coulombic Screening Effects SO CHEMISTRY LETTERS LA English DT Article ID SOLVENT-FREE; SOLAR-CELLS; LIQUIDS AB The kinetic salt effect on the disproportionation reaction between diiodide anions in methanol has been examined using two ionic liquids and one inorganic salt. The ionic reaction was accelerated significantly, depending on the cation of the salt, and the ionic liquids enhanced the reaction more effectively. At higher concentrations the reaction rates decrease owing to increasing viscosities. C1 [Takahashi, Kenji; Tezuka, Hiroaki] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kanazawa, Ishikawa 9201192, Japan. [Satoh, Toshifumi] Hokkaido Univ, Grad Sch Engn, Div Biotechnol & Macromol Chem, Sapporo, Hokkaido 0608628, Japan. [Katsumura, Yosuke] Univ Tokyo, Sch Engn, Dept Nucl Engn & Management, Tokyo 1138656, Japan. [Watanabe, Masayoshi] Yokohama Natl Univ, Dept Chem & Biotechnol, Yokohama, Kanagawa 2408501, Japan. [Crowell, Robert A.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Takahashi, K (reprint author), Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kanazawa, Ishikawa 9201192, Japan. EM ktkenji@t.kanazawa-u.ac.jp RI Satoh, Toshifumi/A-5316-2012; Takahashi, Kenji/C-8846-2011; Wishart, James/L-6303-2013; Takahashi, Kenji/F-4885-2014 OI Wishart, James/0000-0002-0488-7636; FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; U.S. Department of Energy Office of Science, Division of Chemical Sciences [DE-AC02-98CH10886] FX This work was supported by a Grant-in-Aid for Scientific Research (Priority Area 452 "Science of Ionic Liquids") from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy Office of Science, Division of Chemical Sciences, under contract DE-AC02-98CH10886. NR 7 TC 5 Z9 5 U1 1 U2 8 PU CHEMICAL SOC JAPAN PI TOKYO PA 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101-8307, JAPAN SN 0366-7022 EI 1348-0715 J9 CHEM LETT JI Chem. Lett. PD MAR 5 PY 2009 VL 38 IS 3 BP 236 EP 237 DI 10.1246/cl.2009.236 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 432VW UT WOS:000265163400020 ER PT J AU Bickmore, BR Rosso, KM Brown, ID Kerisit, S AF Bickmore, Barry R. Rosso, Kevin M. Brown, I. David Kerisit, Sebastien TI Bond-Valence Constraints on Liquid Water Structure SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; RAY-ABSORPTION SPECTROSCOPY; 1ST PRINCIPLES SIMULATIONS; MOLECULAR-DYNAMICS METHOD; H...O HYDROGEN-BONDS; AB-INITIO; POTENTIAL FUNCTIONS; CANONICAL ENSEMBLE; MODEL; ICE AB The recent controversy about the structure of liquid water pits a new model involving water molecules in relatively stable "rings-and-chains" structures against the standard model that posits water molecules in distorted tetrahedral coordination. Molecular dynamics (MD) simulations, both classical and ab initio, almost uniformly support the standard model, but because none of them can yet reproduce all of the anomalous properties of water, they leave room for doubt. We argue that it is possible to evaluate these simulations by testing them against their adherence to the bond-valence model, a well-known and quantitatively accurate empirical summary of the behavior of atoms in the bonded networks of inorganic solids. Here we use the results of ab initio MD simulations of ice, water, and several solvated aqueous species to show that the valence sum rule (the first axiom of the bond-valence model) is followed in both solid and liquid bond networks. We then test MD simulations of water, employing several popular potential models against this criterion and the experimental O-O RDF. It appears that most of those tested cannot satisfy both criteria well, except TIP4P, TIP4P/2005, and TIP5P. If the valence sum rule really can be applied to simulated liquid structures, then it follows that the bonding behaviors of atoms in liquids are in some ways identical to those in solids. We support this interpretation by showing that the simulations produce O-H center dot center dot center dot O geometries that are completely consistent with the range of geometries available in solids, and the distributions of instantaneous valence sums reaching the atoms in both the ice and liquid water simulations are essentially identical. Furthermore, we show that none of the extant asymmetric water potentials that produce "rings-and-chains" structures can satisfy our geometric criteria. Taken together, this is powerful evidence in favor of the standard distorted tetrahedral model of liquid water structure. C1 [Bickmore, Barry R.] Brigham Young Univ, Dept Geol Sci, Provo, UT 84097 USA. [Rosso, Kevin M.; Kerisit, Sebastien] Pacific NW Natl Lab, Div Mat Sci, Richland, WA 99352 USA. [Rosso, Kevin M.; Kerisit, Sebastien] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Brown, I. David] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. RP Bickmore, BR (reprint author), Brigham Young Univ, Dept Geol Sci, Provo, UT 84097 USA. EM barry_bickmore@byu.edu FU National Science Foundation [EAR-0525340]; U.S. Department of Energy's (DOE) Office of Biologic and Environmental Research (OBER); DOE Office of Basic Energy Sciences (OBES) Geosciences Program FX B.R.B. thanks the National Science Foundation (grant EAR-0525340) for supporting this work. A portion of this research was performed at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's (DOE) Office of Biologic and Environmental Research (OBER). K.M.R. acknowledges support from the DOE Office of Basic Energy Sciences (OBES) Geosciences Program and from the OBER for the Stanford Environmental Molecular Sciences Institute. Professor T. Head-Gordon kindly provided the output from a key MD simulation, and Professor A. Soper provided some helpful information about his work cited here. We also thank Johannes Lutzenkirchen for providing the initial idea for this project and two anonymous reviewers for helping us improve the manuscript. NR 78 TC 13 Z9 13 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 5 PY 2009 VL 113 IS 9 BP 1847 EP 1857 DI 10.1021/jp810364t PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 412NU UT WOS:000263732300023 PM 19199492 ER PT J AU Shen, X Allen, PB Hybertsen, MS Muckerman, JT AF Shen, Xiao Allen, Philip B. Hybertsen, Mark S. Muckerman, James T. TI Water Adsorption on the GaN (10(1)over-bar0) Nonpolar Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; GALLIUM NITRIDE; HIGH-PRESSURE; SADDLE-POINTS; LIQUID WATER; ALPHA-GAN; DISLOCATIONS AB We present a first-principles study of water adsorption on a wurtzite GaN (10 (1) over bar0) surface. We studied the structures and energetics of water adsorption, calculated the energy barrier for water dissociation, and analyzed the water-water interactions. The results are very different from water adsorption on ZnO (10 (1) over bar0). Water is found to adsorb dissociatively; the energy barrier for the dissociation is negligible. As a result of substrate strain-mediated interactions and hydrogen bonding, dense island agglomerates are energetically favored at submonolayer water coverage. C1 [Shen, Xiao; Hybertsen, Mark S.; Muckerman, James T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Shen, Xiao; Allen, Philip B.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Muckerman, JT (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM muckerma@bnl.gov RI Muckerman, James/D-8752-2013 NR 35 TC 25 Z9 25 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3365 EP 3368 DI 10.1021/jp809499d PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200001 ER PT J AU Kwon, KY Wang, E Chung, A Chang, N Lee, SW AF Kwon, Ki-Young Wang, Eddie Chung, Alice Chang, Neil Lee, Seung-Wuk TI Effect of Salinity on Hydroxyapatite Dissolution Studied by Atomic Force Microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CALCIUM HYDROXYAPATITE; CRYSTAL; BONE; FLUORAPATITE; SURFACE; GROWTH; OSTEOPOROSIS; MECHANISM; KINETICS; ENAMEL AB The complexity of bone tissue and the lack of techniques for directly probing bone surfaces in vivo have hindered studies on the fundamental mechanisms of bone mineral remodeling. Here, we addressed these issues by using single crystal hydroxyapatite (HAP) as a well-defined bone surface model and directly observe its surface using in situ atomic force microscopy. Specifically, we investigated the effects of NaCl concentration on the dissolution of HAP (100) surfaces and found that NaCl strongly suppressed HAP dissolution kinetics, including at physiological ion concentrations. These findings indicate that local ion concentrations in vivo may contribute significantly to the stability of bone mineral. Moreover, our analysis of HAP surfaces over a broad range of pH conditions suggests that only one kind of surface termination exists exclusively in the solutions we used. This observation is important for understanding the surface chemistry of HAP. Our molecular level, real-time observations of HAP dissolution are significant for understanding bone resorption and provide useful insights for the design of novel therapies for treating osteoporosis and other bone related diseases. C1 [Kwon, Ki-Young; Wang, Eddie; Chung, Alice; Chang, Neil; Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Phys Biosci Div,Berkeley Nanosci & Nanoengn Inst, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lee, SW (reprint author), Univ Calif Berkeley, Dept Bioengn, Phys Biosci Div,Berkeley Nanosci & Nanoengn Inst, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM leesw@berkeley.edu OI Wang, Eddie/0000-0002-9814-0102 NR 32 TC 24 Z9 25 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3369 EP 3372 DI 10.1021/jp810414z PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200002 ER PT J AU Chang, CL Sankaranarayanan, SKRS Engelhard, MH Shutthanandan, V Ramanathan, S AF Chang, Chia-Lin Sankaranarayanan, Subramanian K. R. S. Engelhard, Mark H. Shutthanandan, V. Ramanathan, Shriram TI On the Relationship between Nonstoichiometry and Passivity Breakdown in Ultrathin Oxides: Combined Depth-Dependent Spectroscopy, Mott-Schottky Analysis, and Molecular Dynamics Simulation Studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CORROSION PASSIVATION LAYER; LOW-TEMPERATURE OXIDATION; 304 STAINLESS-STEEL; POINT-DEFECT MODEL; ASSISTED OXIDATION; PIT INITIATION; IMPEDANCE MEASUREMENTS; TRANSITION-METALS; POSITRON LIFETIME; ATOMIC OXYGEN AB Understanding the relationship between nonstoichiometry and physical properties of ultrathin oxides is of great importance from both scientific and technological aspects. A specific example includes the onset of passivity breakdown in an ultrathin oxide film in aqueous medium leading to the onset of corrosion. In this work, using the model system of ultrathin oxide of alumina on aluminum synthesized by natural oxidation and photon-assisted oxidation processes, we demonstrate a direct correlation between passivity and quality of the oxide film quantitatively. Depth-dependent high-resolution X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nuclear reaction analysis (NRA) have been performed to characterize the physical and chemical properties of the oxide films, while detailed impedance measurements and Mott-Schottky studies have been performed to understand electronic transport. Combined NRA and TEM analysis reveal an 18% increase in oxygen density (for oxide films with near identical thicknesses similar to 3.8 nm) in the case of photon-assisted oxidation. The denser oxide film results in a similar to 34% more blockage of chloride ions transport as indicated by XPS analysis. Mott-Schottky measurements on these oxide films indicates a 43% reduction of defect levels for UV-synthesized alumina when compared to native one, suggestive of chloride ion transport via oxygen vacancies. Additionally, molecular dynamics simulations have been performed to provide insights into the structure of the oxides at the atomic level to correlate with the experimental measurements. These simulations employ dynamic charge transfer between atoms and are used to investigate nanoscale oxides grown on Al (100) surfaces because of atomic and molecular oxygen. Oxidation using molecular and atomic oxygen resulted in an amorphous oxide scale with self-limiting thickness of similar to 16 and 22 A, respectively, at 300 K. Structural and dynamic correlations indicate significant charge transfer to exist in the oxide film in both the cases. The oxide growth in both the cases occurs due to the inward oxygen and outward cation diffusion. The calculated in-plane and out-of-plane atomic diffusivities are 40-70% higher in case of atomic oxidation. In the presence of atomic oxygen, the O/Al ratio is more uniform and varies from 1.37 at the oxide-gas interface to 1.30 at the metal-oxide interface, whereas that formed by natural oxidation was substoichiometric and oxygen deficient with O/Al values varying from 1.27 (oxide-gas interface) to 1.05 (metal-oxide interface) at room temperature. The simulation results are consistent with the reported experimental investigations. C1 [Chang, Chia-Lin; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Engelhard, Mark H.; Shutthanandan, V.] Pacific NW Natl Lab, WR Wile Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chang, CL (reprint author), Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM clchang@fas.harvard.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU Department of Energy's Office of Biological and Environmental Research; Office of Naval Research FX The authors acknowledge Hongtao Wang for assistance with TEM sample preparation and imaging. The authors gratefully acknowledge the computational facilities provided by CNS-NNIN at Harvard University and the research computing core at University of South Florida. Authors also thank Julian Gale for providing the molecular dynamics code GULP 3.1 and Will Smith for providing DL - POLY 2.14, which are modified and used in the current research. The XPS and NRA experiments were performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Financial support from the Office of Naval Research is gratefully acknowledged. NR 92 TC 19 Z9 19 U1 6 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3502 EP 3511 DI 10.1021/jp808424g PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200023 ER PT J AU Ilan, B Florio, GA Werblowsky, TL Muller, T Hybertsen, MS Berne, BJ Flynn, GW AF Ilan, Boaz Florio, Gina A. Werblowsky, Tova L. Mueller, Thomas Hybertsen, Mark S. Berne, B. J. Flynn, George W. TI Solvent Effects on the Self-Assembly of 1-Bromoeicosane on Graphite. Part II. Theory SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; LIQUID-SOLID INTERFACE; IMAGE-CONTRAST; INDUCED POLYMORPHISM; AU(111) SURFACES; NORMAL-ALKANE; STM IMAGES; N-HEXANE; MONOLAYERS; MOLECULES AB The phase ordering of 1-bromoeicosane (C20H41Br) at the liquid-graphite and vacuum-graphite interfaces is examined through a joint experimental (part I) and theoretical effort (part II). The stable morphologies under solvent and ultrahigh vacuum conditions are revealed by STM experiments to be the head-to-head structures with 90 degrees and 60 degrees lamella-backbone angles, respectively. At 90 degrees and 60 degrees close packing is attained, independent of the corrugation of the graphite lattice. The potential energy of the minimized 60 degrees structure is slightly lower than that of the 90 degrees structure under vacuum conditions. In addition, the basin of the potential energy surface about the 90 degrees form is very narrow. All-atom molecular dynamics simulations depict a 90 degrees-to-60 degrees phase transition in vacuum. Both morphologies are stable when an explicit solvent model is included. We speculate that the choice of the 90 degrees form under solvent is driven by symmetry considerations and the self-assembly pathway. For example, the 90 degrees structure may serve as a superior template for solvent capping. An implicit solvent model fails to stabilize the 90 degrees form; however, it does lower the potential energy of this structure relative to the 60 degrees geometry. C1 [Ilan, Boaz; Werblowsky, Tova L.; Mueller, Thomas; Berne, B. J.; Flynn, George W.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Ilan, Boaz; Florio, Gina A.; Werblowsky, Tova L.; Mueller, Thomas; Flynn, George W.] Columbia Univ, Ctr Electron Transport Mol Nanostruct, New York, NY 10027 USA. [Florio, Gina A.] St Johns Univ, Dept Chem, Queens, NY 11439 USA. [Florio, Gina A.] St Johns Univ, Dept Phys, Queens, NY 11439 USA. [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Berne, BJ (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM bb8@columbia.edu; gwfl@columbia.edu OI Hybertsen, Mark S/0000-0003-3596-9754 FU National Science Foundation [CHE-06-13401, CHE-07-01483]; NSEC Program [CHE-06-41523]; New York State Office of Science, Technology, and Academic Research (NYSTAR); U.S. Department of Energy at Brookhaven National Laboratory [DE-AC02-98CH10886]; Clare Boothe Luce Program of the Henry Luce Foundation, Inc. FX We would like to thank Harry A. Stern and David Rinaldo for stimulating discussions. This work was supported by the National Science Foundation under Grants CHE-06-13401 (to B.J.B.) and CHE-07-01483 (to G.W.F.), by the NSEC Program under Grant CHE-06-41523, by the New York State Office of Science, Technology, and Academic Research (NYSTAR), by the U.S. Department of Energy at Brookhaven National Laboratory (DE-AC02-98CH10886 to M.S.H) and by the Clare Boothe Luce Program of the Henry Luce Foundation, Inc. (to G.M.F.). NR 54 TC 8 Z9 8 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3641 EP 3649 DI 10.1021/jp809218r PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200042 ER PT J AU Chen, H Wen, W Wang, Q Hanson, JC Muckerman, JT Fujita, E Frenkel, AI Rodriguez, JA AF Chen, Haiyan Wen, Wen Wang, Qi Hanson, Jonathan C. Muckerman, James T. Fujita, Etsuko Frenkel, Anatoly I. Rodriguez, Jose A. TI Preparation of (Ga1-xZnx)(N1-xOx) Photocatalysts from the Reaction of NH3 with Ga2O3/ZnO and ZnGa2O4: In Situ Time-Resolved XRD and XAFS Studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ABSORPTION FINE-STRUCTURE; RAY-POWDER DIFFRACTION; VISIBLE-LIGHT-DRIVEN; SOLID-SOLUTION PHOTOCATALYST; MIXED-OXIDE NANOPARTICLES; GALLIUM OXIDE; OXYNITRIDE PHOTOCATALYST; CORE/SHELL NANOPARTICLES; HYDROGEN-PRODUCTION; CRYSTAL-STRUCTURE AB Gallium zinc oxynitrides (Ga1-xZnx)(N1-xOx) are important due to their visible-light photocatalytic activity. Using in situ time-resolved X-ray diffraction (XRD), we have monitored the formation of wurtzite (Ga1-xZnx)(N1-xOx) compounds during the solid-state reaction of NH3 with Ga2O3/ZnO mixtures or a ZnGa2O4 spinel. The ZnGa2O4 spinel was found to be a key intermediate in the formation of (Ga1-xZnx)(N1-xOx) and imposes a limit on the zinc content in the gallium zinc oxynitrides. Furthermore, after its formation, a wurtzite (Ga2/3Zn1/3)(N2/3O1/3) phase evolves to (Ga0.9Zn0.1)(N0.9O0.1) with increasing nitridation reaction time as a result of the removal of Zn and O atoms from the system. Once (Ga2/3Zn1/3)(N2/3O1/3) is formed, one must minimize exposure of the compound to NH3. Zinc and gallium K-edge X-ray absorption fine structure (XAFS) data revealed that the local structures around gallium and zinc atoms in the (Ga1-xZnx)(N1-xOx) systems are similar to those of GaN and ZnO, respectively, with relatively minor distortions in the Ga-N and Zn-O bond lengths. The Zn-O/N bonds prefer to align along the c-axis of the lattice, in agreement with the findings of DFT calculations reported in the literature. The corresponding Zn K-edge XANES spectra of (Ga1-xZnx)(N1-xOx) display a position red-shifted toward lower energies by similar to 0.5 eV with respect to that of ZnO, indicating a lower oxidation state of Zn in (Ga1-xZnx)(N1-xOx). N K-edge NEXAFS data show that the bonding geometry and electronic properties of the nitrogen atoms in (Ga1-xZnx)(N1-xOx) are similar to those in GaN. However, the O K-edge spectra exhibit a pre-edge feature not seen for ZnO or Ga2O3. This unique property of the oxygen atoms in (Ga1-xZnx)(N1-xOx) may be related to the existence of holes and affect visible light absorption and surface chemistry. C1 [Chen, Haiyan; Wen, Wen; Hanson, Jonathan C.; Muckerman, James T.; Fujita, Etsuko; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Muckerman, James T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Qi; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Frenkel, Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Chen, Haiyan/C-8109-2012; Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013; Hanson, jonathan/E-3517-2010 OI Frenkel, Anatoly/0000-0002-5451-1207; FU U.S. Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10086]; U.S. DOE [DE-FG02-03ER15476]; Synchrotron Catalysis Consortium [DE-FG0205ER15688]; Divisions of Materials and Chemical Sciences of DOE FX The research carried out at the Chemistry Department of Brookhaven National Laboratory was funded by the U.S. Department of Energy, Division of Chemical Sciences (Contract Number: DE-AC02-98CH10086). This work is part of a DOE BES Hydrogen Fuel Initiative Project entitled "Catalyzed Water Oxidation by Solar Irradiation of Bang-GapNarrowed Semiconductors." AIF and QW acknowledge support by U.S. DOE Grant No. DE-FG02-03ER15476. Beamlines X18B and X19A are supported in part by the Synchrotron Catalysis Consortium (U.S. DOE Grant No. DE-FG0205ER15688). The NSLS is supported by the Divisions of Materials and Chemical Sciences of DOE. The authors would like to thank Dr. Nebojsa Marinkovic from the University of Delaware for help with the beamline operation. NR 43 TC 39 Z9 40 U1 13 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3650 EP 3659 DI 10.1021/jp804551p PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200043 ER PT J AU Glezakou, VA Dang, LX AF Glezakou, Vassiliki-Alexandra Dang, Liem X. TI Spontaneous Activation of CO2 and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON-DIOXIDE CORROSION; DISSOCIATIVE ADSORPTION; MECHANISTIC MODEL; OXIDE INTERFACE; MILD-STEEL; CHEMISORPTION; CLEAVAGE; ENERGY; MONOXIDE; HYDROGEN AB Spin-polarized density functional theory (DFT) calculations and periodic slab models were used to study the reactive pathways leading to corrosion products on the low-index (100) surface of iron. We determined the binding energies of CO2 and the barrier to decomposition of adsorbed CO2 to O + CO, as well as to the formation of adsorbed CO32- and H2CO3 on the Fe(100) surface. The barriers of these pathways were determined with nudged elastic band (NEB) calculations. Short trajectories with DFT-based dynamics were employed to identify the most important species. These simulations (up to 0.5 ML coverage) show that CO2 is spontaneously activated and can bind with two or all three atoms assuming bent configurations strongly reminiscent of the radical CO2-. This spontaneous activation Of CO2 is possible through charge rearrangement of the slab density. The CO2 decomposition to O + CO has a barrier of 5.0 kcal/mol. The subsequent formation Of CO32- by reaction with an incoming CO2 is strongly favored thermodynamically. Interaction of H2O with the adsorbed CO2 forms a loosely bound complex that leads to the formation of surface-bound carbonic acid, with a barrier of approximately 35.0 kcal/mol. C1 [Glezakou, Vassiliki-Alexandra; Dang, Liem X.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Glezakou, VA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, MS K1-83,POB 999, Richland, WA 99352 USA. EM Vanda.Glezakou@pnl.gov FU National Energy Technology Laboratory of DOE's Office of Fossil Energy FX The computer resources were provided by the Division of Chemical and Materials Sciences. V.-A.G. and B.P.M. gratefully acknowledge support received from the National Energy Technology Laboratory of DOE's Office of Fossil Energy. LXD. acknowledges support from the Division of Chemical Sciences, Office of Basic Energy Sciences of the US DOE. The authors thank Dr. R. Rousseau for a critical review of the manuscript and useful discussions, as well as Dr. J. Jaffe, Dr. D. Mei and Dr. J. A. Franz for helpful comments. NR 55 TC 29 Z9 31 U1 5 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3691 EP 3696 DI 10.1021/jp808296c PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200048 ER PT J AU Wu, ZL Zhou, SH Zhu, HG Dai, S Overbury, SH AF Wu, Zili Zhou, Shenghu Zhu, Haoguo Dai, Sheng Overbury, Steven H. TI DRIFTS-QMS Study of Room Temperature CO Oxidation on AU/SiO2 Catalyst: Nature and Role of Different Au Species SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SUPPORTED GOLD NANOPARTICLES; DENSITY-FUNCTIONAL THEORY; WATER-GAS SHIFT; MESOPOROUS SILICA; CARBON-MONOXIDE; AU/TIO2 CATALYSTS; FTIR; ADSORPTION; TIO2; SIZE AB The nature and role of different Au species on a AU/SiO2 catalyst in room temperature (rt) CO oxidation have been studied by operando diffuse reflectance infrared spectroscopy (DRIFT) coupled with quadruple mass spectrometry (QMS). It has shown that different pretreatments (oxidative and reductive) of Au/SiO2, have a significant effect on the nature of Au species and thus the CO oxidation performance. High temperature (500 degrees C) O-2-treatment leads to cationic Au species which is inactive for rt CO oxidation. Reductive treatment (either H-2 or CO) results in metallic Au species that are immediately active for rt CO oxidation. Furthermore, CO oxidation activity is found in good correlation with the reduction degree of Au species, a clear indication of the essential role of metallic Au species played in rt CO oxidation. The accompanying slight deactivation with the oxidation of metallic Au species on reductively treated Au/SiO2 in CO oxidation suggests that cationic Au species may play a negative role in rt CO oxidation. The effect of water in rt CO oxidation on Au/SiO2 was also investigated. Two positive roles played by water in CO oxidation have been identified: activation of O-2 and assistance the reduction of cationic Au species. C1 [Wu, Zili] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wuzl@ornl.gov; overburysh@ornl.gov RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences; U.S. Department of Energ [DE-AC05-000R22725]; Oak Ridge National Laboratory; UT-Battelle, LLC FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-000R22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory, by the Division of Scientific Us' er Facilities, U.S. Department of Energy. The research was supported in part by the appointment for S.H.Z. and H.G.Z. to the ORNL Research Associates Program, administered jointly by ORNL and the Oak Ridge Associated Universities. NR 58 TC 49 Z9 49 U1 3 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3726 EP 3734 DI 10.1021/jp809220z PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200053 ER PT J AU Jiang, DE Dai, S AF Jiang, De-en Dai, Sheng TI Diffusion of the Linear CH3S-Au-SCH3 Complex on Au(111) from First Principles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; SCANNING-TUNNELING-MICROSCOPY; SELF-ASSEMBLED MONOLAYERS; TOTAL-ENERGY CALCULATIONS; THIOLATE-PROTECTED AU-38; AUGMENTED-WAVE METHOD; C(4 X-2) STRUCTURE; GOLD NANOCLUSTERS; CRYSTAL-STRUCTURE; BASIS-SET AB Recent experimental and computational advances have clearly established the importance of the linear alkylthiolate-Au-alkylthiolate (RS-Au-SR) complex at the interface between the thiolate groups and the gold surface. By using density functional theory-based first principles method, here we show that the elementary diffusion step of this linear complex on Au(111) has a barrier of only similar to 0.5 eV in the case of methylthiolate, indicating great mobility of the linear complex on Au(111). The role of this low barrier in the formation of a self-assembled monolayer of thiolate groups in the form of RS-Au-SR on Au(111) is discussed. C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy [DE-AC05-000R22725, DE-AC02-05CH11231]; UT-Battelle, LLC; National Energy Research Scientific Computing Center; Office of Basic Energy Sciences FX This work was supported by the , U.S. Department of Energy, under Contract No. DE-AC05-000R22725 with UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.Office of Basic Energy Sciences NR 38 TC 20 Z9 20 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2009 VL 113 IS 9 BP 3763 EP 3766 DI 10.1021/jp810404n PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 412OD UT WOS:000263733200058 ER PT J AU Cadoret, L Reuge, N Pannala, S Syamlal, M Rossignol, C Dexpert-Ghys, J Coufort, C Caussat, B AF Cadoret, L. Reuge, N. Pannala, S. Syamlal, M. Rossignol, C. Dexpert-Ghys, J. Coufort, C. Caussat, B. TI Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Powder Science and Technology - Powders and Sintered Material CY MAY 23-25, 2007 CL Albi, FRANCE DE Fluidized Bed; Chemical Vapor Deposition (CVD); Submicron powders; Silicon; Process modelling ID RAMAN-SPECTRA; CFD MODELS; PARTICLES; PYROLYSIS; SILANE; FLOW AB Titanium oxide (TiO(2)) submicron powders have been treated by Chemical Vapor Deposition (CVD) in a vibro-fluidized bed in order to deposit silicon layers of nanometer scale on each individual grain from silane (SiH(4)), Experimental results show that for the conditions tested, the original granular structure of the powders is preserved for 90% of the initial bed weight while the remaining 10% consists of agglomerates in millimetre range found near the distributor of the reactor. A comparison between experimental and modelling results using the MFIX code shows that for Geldart's Group B alumina particles (Al(2)O(3)), the model represents both the bed hydrodynamics and silane conversion rates quite well. The future objective is to extend the simulation capability to cohesive submicron powders in order to achieve better predictability of the phenomena governing ultrafine particles. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cadoret, L.; Reuge, N.; Coufort, C.; Caussat, B.] ENSIACET INPT, CNRS, Lab Genie Chim, UMR 5503, F-31106 Toulouse 1, France. [Pannala, S.] Oak Ridge Natl Lab, Computat Math Grp, Oak Ridge, TN 37831 USA. [Syamlal, M.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Rossignol, C.; Dexpert-Ghys, J.] CNRS, CEMES, UPR 8011, F-31055 Toulouse 4, France. RP Caussat, B (reprint author), ENSIACET INPT, CNRS, Lab Genie Chim, UMR 5503, 5 Rue Paulin Talabot,BP 1301, F-31106 Toulouse 1, France. EM Madhava.Syamlal@NETLDOE.GOV; jdexpert@cemes.fr; Brigitte.Caussat@ensiacet.fr RI Pannala, Sreekanth/F-9507-2010 NR 29 TC 13 Z9 17 U1 0 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD MAR 5 PY 2009 VL 190 IS 1-2 BP 185 EP 191 DI 10.1016/j.powtec.2008.04.083 PG 7 WC Engineering, Chemical SC Engineering GA 422MR UT WOS:000264432900033 ER PT J AU Fukunaga, R Doudna, JA AF Fukunaga, Ryuya Doudna, Jennifer A. TI dsRNA with 5 ' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants SO EMBO JOURNAL LA English DT Article DE dsRNA-binding; overhang; plant; RNA silencing; viral suppressor ID TRANS-ACTING SIRNAS; SMALL INTERFERING RNA; COILED COILS; ARABIDOPSIS; PROTEIN; SUPPRESSOR; SGS3; BIOGENESIS; RECOGNITION; METHYLATION AB In plants, SGS3 and RNA-dependent RNA polymerase 6 (RDR6) are required to convert single-to double-stranded RNA (dsRNA) in the innate RNAi-based antiviral response and to produce both exogenous and endogenous short-interfering RNAs. Although a role for RDR6-catalysed RNA-dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA-binding protein with unexpected substrate selectivity favouring 5'-overhang-containing dsRNA. The conserved XS and coiled-coil domains are responsible for RNA-binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi-based host immune response, is a dsRNA-binding protein with similar specificity to SGS3. In competition-binding experiments, V2 out-competes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5' overhang is required for subsequent steps in RNA-mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs. C1 [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, 708A Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI Fukunaga, Ryuya/0000-0002-5814-8206 FU NIH; JSPS Research Fellowships for Research Abroad FX We thank Dr Yedidya Gafni for providing the cDNA clone plasmids for SlSGS3 and V2. We also thank Dr Xuemei Chen for providing the cDNA clone plasmid for AtRDR6. We gratefully acknowledge members of the Doudna laboratory for discussions. This work was supported in part by a grant from the NIH to JAD; RF was supported by JSPS Research Fellowships for Research Abroad. NR 30 TC 69 Z9 70 U1 4 U2 12 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD MAR 4 PY 2009 VL 28 IS 5 BP 545 EP 555 DI 10.1038/emboj.2009.2 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 415XD UT WOS:000263968900011 PM 19165150 ER PT J AU Agarwal, A Biegler, LT Zitney, SE AF Agarwal, Anshul Biegler, Lorenz T. Zitney, Stephen E. TI Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID PROPER ORTHOGONAL DECOMPOSITION; FINITE-VOLUME METHOD; OPTIMAL-DESIGN; REDUCTION; SEPARATION; HYDROGEN; GAS; PURIFICATION; DYNAMICS; EQUATION AB Over the past three decades, pressure swing adsorption (PSA) processes have been widely used as energy-efficient gas separation techniques, especially for high purity hydrogen purification from refinery gases. Models for PSA processes are multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep fronts moving with time. As a result, the optimization of such systems represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approach to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. This study develops a reduced-order model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization and making the optimization problem computationally efficient. The method has been applied to the dynamic coupled PDE-based model of a two-bed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The reduced-order model has been successfully used to maximize hydrogen recovery by manipulating operating pressures, step times and feed and regeneration velocities, while meeting product purity and tight bounds on these parameters. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes. C1 [Agarwal, Anshul; Biegler, Lorenz T.; Zitney, Stephen E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Agarwal, Anshul; Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Biegler, LT (reprint author), Natl Energy Technol Lab, POB 880, Morgantown, WV 26507 USA. EM lb01@andrew.cmu.edu OI Agarwal, Anshul/0000-0003-3685-8052 FU National Energy Technology Laboratory's ongoing research in Process and Dynamic Systems Research under the RDS [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Process and Dynamic Systems Research under the RDS contract DE-AC26-04NT41817. NR 41 TC 28 Z9 29 U1 8 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAR 4 PY 2009 VL 48 IS 5 BP 2327 EP 2343 DI 10.1021/ie071416p PG 17 WC Engineering, Chemical SC Engineering GA 412LB UT WOS:000263725200007 ER PT J AU Keskin, S Liu, J Rankin, RB Johnson, JK Sholl, DS AF Keskin, Seda Liu, Jinchen Rankin, Rees B. Johnson, J. Karl Sholl, David S. TI Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal-Organic Framework Materials SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Review ID DENSITY-FUNCTIONAL THEORY; MONTE-CARLO-SIMULATION; VAN-DER-WAALS; HYDROGEN STORAGE MATERIALS; PATH-INTEGRAL SIMULATIONS; GAS SORPTION PROPERTIES; DYNAMICS SIMULATIONS; FORCE-FIELD; CARBON-DIOXIDE; ATOMISTIC SIMULATIONS AB Metal-organic framework (MOF) materials are a class of nanoporous materials that have many potential advantages over traditional nanoporous materials for adsorption and other chemical separation technologies. Because of the large number of different MOFs that exist, efforts to predict the performance of MOFs using molecular modeling can potentially play an important role in selecting materials for specific applications. We review the current state-of-the-art in the molecular modeling and quantum mechanical modeling of MOFs. Quantum mechanical calculations have been used to date to examine structural and electronic properties of MOFs and the calculation of MOF-guest interactions. Molecular modeling calculations using empirical classical potential calculations have been used to study pure and mixed fluid adsorption in MOFs. Similar calculations have recently provided initial information about the diffusive transport of adsorbed fluids in MOFs. C1 [Keskin, Seda; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Liu, Jinchen; Rankin, Rees B.; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Liu, Jinchen; Rankin, Rees B.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM david.sholl@chbe.gatech.edu RI Johnson, Karl/E-9733-2013; keskin, seda/H-3196-2016 OI Johnson, Karl/0000-0002-3608-8003; keskin, seda/0000-0001-5968-0336 FU National Science Foundation [CTS-0413027, CTS-0556831]; U.S. Department of Energy through the National Energy Technology Laboratory [41817M203841817M2000] FX S.K. and D.S.S. acknowledge partial support from the National Science Foundation through Grants CTS-0413027 and CTS-0556831. J.L., R.B.R., and J.K.J. acknowledge funding from the U.S. Department of Energy through the National Energy Technology Laboratory under Grant 41817M203841817M2000. NR 167 TC 192 Z9 192 U1 12 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAR 4 PY 2009 VL 48 IS 5 BP 2355 EP 2371 DI 10.1021/ie800666s PG 17 WC Engineering, Chemical SC Engineering GA 412LB UT WOS:000263725200009 ER PT J AU Tang, Z Monroe, J Dong, JH Nenoff, T Weinkauf, D AF Tang, Zhong Monroe, Justin Dong, Junhang Nenoff, Tina Weinkauf, Donald TI Platinum-Loaded NaY Zeolite for Aqueous-Phase Reforming of Methanol and Ethanol to Hydrogen SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID SUPPORTED COBALT CATALYSTS; FUEL-CELL APPLICATIONS; THERMODYNAMIC ANALYSIS; STEAM; HYDROCARBONS; CHEMISORPTION; PARTICLES; MIXTURES; ALKANES; WATER AB Platinum-loaded NaY zeolite (Pt/NaY) catalysts were synthesized and tested for the aqueous-phase reforming (APR) of methanol and ethanol solutions to produce hydrogen. The APR performance of the Pt/NaY catalysts was compared to the conventional gamma-alumina-supported platinum (Pt/gamma-Al(2)O(3)) catalysts. The results have shown that the Pt/NaY catalysts have higher catalytic performance for the APR of methanol and ethanol than the Pt/gamma-Al(2)O(3) catalysts. C1 [Tang, Zhong; Dong, Junhang] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Monroe, Justin; Weinkauf, Donald] New Mexico Inst Min & Technol, Dept Chem Engn, Socorro, NM 87801 USA. [Nenoff, Tina] Sandia Natl Labs, Surface & Interface Sci, Albuquerque, NM 87185 USA. RP Dong, JH (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM Junhang.dong@uc.edu FU U.S. DOE/HNIE; Sandia LDRD; Lockheed Martin Co.; U.S. DOE's NNSA [DE-AC04-94-A185000] FX This research was supported by the U.S. DOE/HNIE and Sandia LDRD. Sandia is a multiprogram laboratory operated by Lockheed Martin Co., for the U.S. DOE's NNSA (Contract No. DE-AC04-94-A185000). NR 34 TC 19 Z9 19 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAR 4 PY 2009 VL 48 IS 5 BP 2728 EP 2733 DI 10.1021/ie801222f PG 6 WC Engineering, Chemical SC Engineering GA 412LB UT WOS:000263725200052 ER PT J AU Still, CJ Riley, WJ Biraud, SC Noone, DC Buenning, NH Randerson, JT Torn, MS Welker, J White, JWC Vachon, R Farquhar, GD Berry, JA AF Still, C. J. Riley, W. J. Biraud, S. C. Noone, D. C. Buenning, N. H. Randerson, J. T. Torn, M. S. Welker, J. White, J. W. C. Vachon, R. Farquhar, G. D. Berry, J. A. TI Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and (COO)-O-18 exchanges SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Review ID CARBON-ISOTOPE DISCRIMINATION; GRASS ECHINOCHLOA-POLYSTACHYA; GLOBAL 3-DIMENSIONAL MODEL; GROSS PRIMARY PRODUCTION; SURFACE SOLAR-RADIATION; LEAF-AREA INDEX; WATER-VAPOR; C-4 GRASSES; STOMATAL CONDUCTANCE; ANHYDRASE ACTIVITY AB This study evaluates the potential impact of clouds on ecosystem CO2 and CO2 isotope fluxes ("isofluxes'') in two contrasting ecosystems (a broadleaf deciduous forest and a C-4 grassland) in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model (ISOLSM). Our model results indicate a large impact of clouds on ecosystem CO2 fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear-sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C-4 grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean delta O-18 of CO2 may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity. C1 [Still, C. J.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Berry, J. A.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Riley, W. J.; Biraud, S. C.; Torn, M. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Buenning, N. H.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Farquhar, G. D.] Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 0200, Australia. [Randerson, J. T.] Univ Calif Irvine, Earth Syst Sci Dept, Irvine, CA 92697 USA. [White, J. W. C.; Vachon, R.] Univ Colorado, INSTAAR, Boulder, CO 80309 USA. [Welker, J.] Univ Alaska Anchorage, Environm & Nat Resources Inst, Anchorage, AK 99508 USA. RP Still, CJ (reprint author), Univ Calif Santa Barbara, Dept Geog, 3611 Elison Hall, Santa Barbara, CA 93106 USA. EM still@icess.ucsb.edu RI Berry, Joseph/B-8211-2009; White, James/A-7845-2009; Welker, Jeffrey/C-9493-2013; Biraud, Sebastien/M-5267-2013; Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Berry, Joseph/0000-0002-5849-6438; White, James/0000-0001-6041-4684; Biraud, Sebastien/0000-0001-7697-933X; Riley, William/0000-0002-4615-2304; FU NOAA Climate Program Office [NA03OAR4310059]; NSF Earth System History program [0080952] FX We gratefully acknowledge support from the NOAA Climate Program Office (grant NA03OAR4310059). Data were obtained from the Atmospheric Radiation Measurement program sponsored by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Sciences Division. We also acknowledge meteorological data support provided by the Oklahoma and Kansas Mesonet program. The U. S. Network for Isotopes in Precipitation (http://www.uaa.alaska.edu/enri/usnip/index.cfm) contributed delta18O data for our simulations and was supported in part by NSF Earth System History program (0080952). Comments from anonymous reviewers and the associate editor improved the manuscript. NR 139 TC 41 Z9 43 U1 3 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAR 4 PY 2009 VL 114 AR G01018 DI 10.1029/2007JG000675 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 415QW UT WOS:000263950400001 ER PT J AU Creutz, C Chou, MH AF Creutz, Carol Chou, Mei H. TI Hydricities of d(6) Metal Hydride Complexes in Water SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ACIDIC CONDITIONS; CARBON-DIOXIDE; TRANSFER HYDROGENATION; AQUA COMPLEXES; CATALYST; EQUILIBRIUM; POTENTIALS; REDUCTION; SOLVATION; OXIDATION AB Hydricities of d(6) metal hydride complexes in water have been calculated from redox properties and acidities (cobalt and rhodium) or by equilibration with carbon dioxide/formate ion (ruthenium). C1 [Creutz, Carol; Chou, Mei H.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Creutz, C (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM ccreutz@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10884]; Biosciences of the Office of Basic Energy Sciences FX This research was carried Out at Brookhaven National Laboratory under Contract DE-AC02-98CH10884 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, and Biosciences of the Office of Basic Energy Sciences. NR 26 TC 42 Z9 42 U1 0 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 4 PY 2009 VL 131 IS 8 BP 2794 EP + DI 10.1021/ja809724s PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 427PX UT WOS:000264792300020 PM 19199429 ER PT J AU Dimitrijevic, NM Rozhkova, E Rajh, T AF Dimitrijevic, Nada M. Rozhkova, Elena Rajh, Tijana TI Dynamics of Localized Charges in Dopamine-Modified TiO2 and their Effect on the Formation of Reactive Oxygen Species SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRON-PARAMAGNETIC-RES; SINGLET OXYGEN; TITANIUM-DIOXIDE; VISIBLE-LIGHT; TIO2-ASSISTED PHOTODEGRADATION; SEMICONDUCTOR PHOTOCATALYSIS; AQUEOUS DISPERSIONS; EPR SPECTROSCOPY; SPIN-RESONANCE; COLLOIDAL TIO2 AB Modification of TiO2 nanoparticles with dopamine enables harvesting of visible light and promotes spatial separation of charges. The formation of reactive oxygen species (OH, O-1(2), O-2, HO2, H2O2) upon illumination of TiO2/dopamine was studied using complementary spin-trap EPR and radical-induced fluorescence techniques. The localization of holes on dopamine suppresses oxidation of adsorbed water molecules at the surface of nanoparticles, and thus formation of OH radicals. At the same time, dopamine does not affect electronic properties of photogenerated electrons and their reaction with dissolved oxygen to produce superoxide anions. Superoxide anions are proposed to generate singlet oxygen through dismutation reaction, resulting in a low yield of O-1(2) detected. C1 [Dimitrijevic, Nada M.; Rozhkova, Elena; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dimitrijevic, NM (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Dimitrijevic@anl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The work was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 52 TC 70 Z9 70 U1 15 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 4 PY 2009 VL 131 IS 8 BP 2893 EP 2899 DI 10.1021/ja807654k PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 427PX UT WOS:000264792300043 PM 19209860 ER PT J AU Gandon, V Agenet, N Vollhardt, KPC Malacria, M Aubert, C AF Gandon, Vincent Agenet, Nicolas Vollhardt, K. Peter C. Malacria, Max Aubert, Corinne TI Silicon-Hydrogen Bond Activation and Hydrosilylation of Alkenes Mediated by CpCo Complexes: A Theoretical Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FORBIDDEN CHEMICAL-REACTIONS; TRANSITION-METAL COMPOUNDS; MOLECULAR-ORBITAL METHODS; CHALK-HARROD MECHANISM; GAUSSIAN-TYPE BASIS; N-H ACTIVATION; C-H; SPIN-STATE; ORGANIC-MOLECULES; GAS-PHASE AB Using DFT techniques, we show that triplet cyclopentadienylcobalt activates Si-H bonds to generate singlet silylcobalt hydrides without the intervention of sigma-silanes. The cobalt is configurationally unstable, as evidenced by the diastereoisomerization of derivatives bearing chiral silyl ligands. Inversion at the metal proceeds in the singlet state via a bridging hydride. We demonstrate that a two-state mechanism for the transformation of silyl hydride cobalt complexes into disilyl dihydride cobalt species is feasible. Our calculations predict that catalytic hydrosilylation of alkenes should be achievable in the coordination sphere of cyclopentadienylcobalt. C1 [Gandon, Vincent; Agenet, Nicolas; Malacria, Max; Aubert, Corinne] Univ Paris 06, Inst Chim Mol FR 2769, CNRS, Chim Organ Lab UMR 7611, F-75252 Paris 05, France. [Vollhardt, K. Peter C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Vollhardt, K. Peter C.] Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Gandon, V (reprint author), Univ Paris 06, Inst Chim Mol FR 2769, CNRS, Chim Organ Lab UMR 7611, Case 229,4 Pl Jussieu, F-75252 Paris 05, France. EM vincent.gandon@upmc.fr RI Gandon, Vincent/C-1942-2014 OI Gandon, Vincent/0000-0003-1108-9410 FU CNRS; MRES; DGA; NSF [CHE 0451241]; CRIHAN, Plan Interregional du Bassin Parisien [2006-013] FX This work was supported by CNRS, MRES, DGA, and the NSF (CHE 0451241). M.M. is a member of the Institut Universitaire de France. We are grateful for the use of the computing facilities of CRIHAN, Plan Interregional du Bassin Parisien (Project 2006-013). We are thankful to Professors S. F. Vyboishchikov, G. I. Nikonov, and M. Brookhart for useful discussions. NR 69 TC 21 Z9 21 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 4 PY 2009 VL 131 IS 8 BP 3007 EP 3015 DI 10.1021/ja809100t PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 427PX UT WOS:000264792300057 PM 19209851 ER PT J AU Peterson, BK Hare, EE Iyer, VN Storage, S Conner, L Papaj, DR Kurashima, R Jang, E Eisen, MB AF Peterson, Brant K. Hare, Emily E. Iyer, Venky N. Storage, Steven Conner, Laura Papaj, Daniel R. Kurashima, Rick Jang, Eric Eisen, Michael B. TI Big Genomes Facilitate the Comparative Identification of Regulatory Elements SO PLOS ONE LA English DT Article AB The identification of regulatory sequences in animal genomes remains a significant challenge. Comparative genomic methods that use patterns of evolutionary conservation to identify non-coding sequences with regulatory function have yielded many new vertebrate enhancers. However, these methods have not contributed significantly to the identification of regulatory sequences in sequenced invertebrate taxa. We demonstrate here that this differential success, which is often attributed to fundamental differences in the nature of vertebrate and invertebrate regulatory sequences, is instead primarily a product of the relatively small size of sequenced invertebrate genomes. We sequenced and compared loci involved in early embryonic patterning from four species of true fruit flies (family Tephritidae) that have genomes four to six times larger than those of Drosophila melanogaster. Unlike in Drosophila, where virtually all non-coding DNA is highly conserved, blocks of conserved non-coding sequence in tephritids are flanked by large stretches of poorly conserved sequence, similar to what is observed in vertebrate genomes. We tested the activities of nine conserved non-coding sequences flanking the even-skipped gene of the teprhitid Ceratis capitata in transgenic D. melanogaster embryos, six of which drove patterns that recapitulate those of known D. melanogaster enhancers. In contrast, none of the three non-conserved tephritid non-coding sequences that we tested drove expression in D. melanogaster embryos. Based on the landscape of non-coding conservation in tephritids, and our initial success in using conservation in tephritids to identify D. melanogaster regulatory sequences, we suggest that comparison of tephritid genomes may provide a systematic means to annotate the non-coding portion of the D. melanogaster genome. We also propose that large genomes be given more consideration in the selection of species for comparative genomics projects, to provide increased power to detect functional non-coding DNAs and to provide a less biased view of the evolution and function of animal genomes. C1 [Peterson, Brant K.; Hare, Emily E.; Iyer, Venky N.; Storage, Steven; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Peterson, Brant K.; Hare, Emily E.; Eisen, Michael B.] Ernest Orlando Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. [Conner, Laura; Papaj, Daniel R.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Kurashima, Rick; Jang, Eric] US Dept Agr, Pacific Basin Agr Res Ctr, Hilo, HI USA. [Eisen, Michael B.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Calif Inst Quantitative Biosci, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Ctr Integrative Genom, Berkeley, CA 94720 USA. RP Peterson, BK (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mbeisen@berkeley.edu OI Eisen, Michael/0000-0002-7528-738X FU NIH [HG002779]; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy's Joint Genome Institute [Community Sequencing Grant] FX This work was supported by NIH grant HG002779 to MBE and by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Sequencing was conducted under a Community Sequencing Grant from the Department of Energy's Joint Genome Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 30 Z9 31 U1 1 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 4 PY 2009 VL 4 IS 3 AR e4688 DI 10.1371/journal.pone.0004688 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437MB UT WOS:000265490500008 PM 19259274 ER PT J AU Chen, YT Jakoncic, J Carpino, N Nassar, N AF Chen, Yunting Jakoncic, Jean Carpino, Nick Nassar, Nicolas TI Structural and Functional Characterization of the 2H-Phosphatase Domain of Sts-2 Reveals an Acid-Dependent Phosphatase Activity SO BIOCHEMISTRY LA English DT Article ID PROTEIN-TYROSINE PHOSPHATASES; DEPHOSPHORYLATION; PHOSPHORYLATION; CATALYSIS; KINASES; CLONING; CBL AB The suppressors of T cell receptor (TCR) signaling I and 2 (Sts-1 and -2, respectively) are multidomain proteins that negatively regulate the signaling of membrane-bound receptors, including TCR- and the epidermal growth factor receptor (EGFR). Sts-1 was recently shown to be a new type of protein tyrosine phosphatase (PTP), with the phosphatase activity located within its C-terminal phosphoglycerate mutase (PGM) homology domain and key for the regulation of TCR signaling in T cells. The activity of the related Sts-2 enzyme is significantly less than that of Sts-1. Here we investigate the phosphatase activity of the PGM domain of Sts-2, Sts-2(PGM). The crystal structure of Sts-2(PGM) is remarkably similar to StS-(1PGM), including conservation of all catalytic residues. Insight into mechanistic details is provided by the structures of the apo, tungstate-bound, and phosphate-bound enzyme. The active site shows stringent specificity, with the k(cat) optimum at pH 5.0 suggesting that Sts-2 might function as an acid-dependent phosphatase. Mutation of active site residues GIn372, Ala446, Glu481, Ser552, and Ser582 to their equivalents in Sts-1 increases the phosphatase activity of Sts-2pGm toward model substrates. Overall, our data demonstrate that Sts-2(PGM) adopts the conformation of an active phosphatase whose activity is fundamentally different from that of Sts-1 despite the strong structural homology. They also demonstrate that nonconserved active site residues are responsible for the difference in activity between the two isoforms. These differences reflect possible distinct physiological substrates. C1 [Chen, Yunting; Nassar, Nicolas] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. [Carpino, Nick] SUNY Stony Brook, Dept Mol Genet & Microbiol, Stony Brook, NY 11794 USA. [Jakoncic, Jean] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Nassar, N (reprint author), SUNY Stony Brook, Dept Physiol & Biophys, Basic Sci Tower, Stony Brook, NY 11794 USA. EM nicolas.nassar@sunysb.edu FU National Institutes of Health [CA-115611]; U.S. Department of Defense [NF060060]; The Arthritis Foundation [L107]; National Institute of Allergy and Infectious Diseases [R21AI075176]; The National Multiple Sclerosis Society through a Collaborative MS Research Center Award [CA1044A1]; U.S. Department of Energy [DE-AC0298CH10886]; National Institute of General Medical Sciences [Y1 GM-0080-03] FX Research in N.N.'s laboratory is supported in part by grants from the National Institutes of Health (CA-115611) and the U.S. Department of Defense (NF060060). Research in N.C.'s laboratory is supported by grants from The Arthritis Foundation (L107), the National Institute of Allergy and Infectious Diseases (R21AI075176), and The National Multiple Sclerosis Society through a Collaborative MS Research Center Award (CA1044A1). Research carried out at beamline X6A, National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy under Contract DE-AC0298CH10886. X6A is funded by the National Institute of General Medical Sciences under Grant Y1 GM-0080-03. NR 37 TC 11 Z9 13 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 3 PY 2009 VL 48 IS 8 BP 1681 EP 1690 DI 10.1021/bi802219n PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 412BD UT WOS:000263697300003 PM 19196006 ER PT J AU Akabayov, B Lee, SJ Akabayov, SR Rekhi, S Zhu, B Richardson, CC AF Akabayov, Barak Lee, Seung-Joo Akabayov, Sabine R. Rekhi, Sandeep Zhu, Bin Richardson, Charles C. TI DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure-Function Study of the Zinc-Binding Domain SO BIOCHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; CONFORMATIONAL FLEXIBILITY; TEMPLATE RECOGNITION; HELICASE ACTIVITY; GENE-4 PROTEIN; PK(A) VALUES; COORDINATION; PREDICTION; SEQUENCE; COMPLEXES AB Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences. C1 [Akabayov, Barak; Lee, Seung-Joo; Akabayov, Sabine R.; Zhu, Bin; Richardson, Charles C.] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Rekhi, Sandeep] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Richardson, CC (reprint author), Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. EM ccr@hms.harvard.edu RI Akabayov, Barak/D-1551-2011; OI Akabayov, Barak/0000-0002-3882-2742 FU United States Public Health Services [GM 54397] FX This research was supported by the United States Public Health Services Grant GM 54397. NR 38 TC 13 Z9 13 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 3 PY 2009 VL 48 IS 8 BP 1763 EP 1773 DI 10.1021/bi802123t PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 412BD UT WOS:000263697300011 PM 19206208 ER PT J AU Dera, P Lavina, B Borkowski, LA Prakapenka, VB Sutton, SR Rivers, ML Downs, RT Boctor, NZ Prewitt, CT AF Dera, Przemyslaw Lavina, Barbara Borkowski, Lauren A. Prakapenka, Vitali B. Sutton, Stephen R. Rivers, Mark L. Downs, Robert T. Boctor, Nabil Z. Prewitt, Charles T. TI Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID ADVANCED PHOTON SOURCE; HIGH-PRESSURE; X-RAY; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; AMORPHOUS ALLOY; SOLID-SOLUTIONS; P SYSTEM; TEMPERATURE; NICKEL AB High-pressure and high-temperature behavior of synthetic Ni2P has been studied in a laser-heated diamond anvil cell up to 50 GPa and 2200 K. Incongruent melting associated with formation of pyrite-type NiP2 and amorphous Ni-P alloy was found at an intermediate pressure range, between 6.5 and 40 GPa. Above 40 GPa, Ni2P melts congruently. At room conditions, Ni2P has hexagonal C22-type structure, and without heating it remains in this structure to at least 50 GPa. With a bulk modulus K-0 = 201(8) GPa and K' = 4.2(6), Ni2P is noticeably less compressible than hcp Fe, as well as all previously described iron phosphides, and its presence in the Earth core would favorably lower the core density. In contrast to Fe2P, the c/a ratio in Ni2P decreases on compression because of the lack of ferromagnetic interaction along the c direction. Lack of the C22 -> C23 transition in Ni2P rules out a stabilizing effect of Ni on the orthorhombic phase of natural (Fe1-xNix)(2)P allabogdanite. C1 [Dera, Przemyslaw; Lavina, Barbara; Prakapenka, Vitali B.; Sutton, Stephen R.; Rivers, Mark L.] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Borkowski, Lauren A.] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Borkowski, Lauren A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Downs, Robert T.; Prewitt, Charles T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Boctor, Nabil Z.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Dera, P (reprint author), Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Bldg 434A,9700 S Cass Ave, Argonne, IL 60439 USA. EM pdera@gl.ciw.edu RI Lavina, Barbara/A-1015-2010; Dera, Przemyslaw/F-6483-2013 OI Lavina, Barbara/0000-0002-8556-7916; NR 60 TC 4 Z9 6 U1 2 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAR 3 PY 2009 VL 114 AR B03201 DI 10.1029/2008JB005944 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 415SP UT WOS:000263955600003 ER PT J AU Pol, VG Thiyagarajan, P Acharya, S Ariga, K Felner, I AF Pol, Vilas G. Thiyagarajan, P. Acharya, Somobratra Ariga, Katsuhiko Felner, Israel TI Superconducting Nanocrystalline Tin Protected by Carbon SO LANGMUIR LA English DT Article ID SN NANOWIRES; NANOPARTICLES; GROWTH; TEMPERATURE; VAPOR AB Nanosized pure Sn crystals protected by in situ formed carbon synthesized by the thermolysis of allyltriphenyltin in an inert atmosphere under its autogenic pressure in closed reactor showed superconductivity at 3.7 K. C1 [Pol, Vilas G.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Thiyagarajan, P.] US DOE, Off Basic Energy Sci, Washington, DC 20585 USA. [Acharya, Somobratra; Ariga, Katsuhiko] Natl Inst Mat Sci, World Premier Int Res Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan. [Felner, Israel] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vilaspol@gmail.com RI ARIGA, Katsuhiko/H-2695-2011 FU U.S. Department of Energy [DE-AC02-06CH11357]; UChicago Argonne, LLC FX This work benefited from the use of facilities at IPNS, CNM, and EMC at ANL, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 16 TC 4 Z9 4 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 3 PY 2009 VL 25 IS 5 BP 2582 EP 2584 DI 10.1021/la804076k PG 3 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 413CP UT WOS:000263770800008 PM 19437682 ER PT J AU Werner, JH Montano, GA Garcia, AL Zurek, NA Akhadov, EA Lopez, GP Shreve, AP AF Werner, James H. Montano, Gabriel A. Garcia, Anthony L. Zurek, Nesia A. Akhadov, Elshan A. Lopez, Gabriel P. Shreve, Andrew P. TI Formation and Dynamics of Supported Phospholipid Membranes on a Periodic Nanotextured Substrate SO LANGMUIR LA English DT Article ID LIPID-BILAYER MEMBRANES; LATERAL DIFFUSION; POROUS ALUMINA; SILICON; SEPARATION; ELECTROPHORESIS; MONOLAYERS; ANISOTROPY; PROTEINS; MOBILITY AB We have studied and modeled the morphology and dynamics of fluid planar lipid bilayer membranes supported on a textured silicon substrate. The substrate is fabricated to have channels on its surface that are a few hundred nanometers across, with a channel depth of a few hundred nanometers perpendicular to the plane of observation. Using atomic force microscopy and quantitative fluorescence microscopy, we have shown that the bilayer assemblies conform to the underlying nanostructured substrate. As far as dynamics is concerned, when observed over length scales exceeding the dimensions of the nanostructured features, the macroscopic diffusion is anisotropic. However, the macroscopic anisotropy is well simulated using models of diffusion on the nanostructured surface that consider the lipids to diffuse homogeneously and isotropically on the supporting substrate. Consistent with previous observations on less well characterized or less periodic nanostructures, we find that the nanostructured substrate produces an effective anisotropy in macroscopic diffusion of the conformal membrane. More importantly, we demonstrate how quantitative analysis of dynamics probed by larger-scale fluorescence imaging can yield information on nanoscale thin-film morphology. C1 [Werner, James H.; Montano, Gabriel A.; Zurek, Nesia A.; Akhadov, Elshan A.; Shreve, Andrew P.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Garcia, Anthony L.; Lopez, Gabriel P.] Univ New Mexico, Ctr Biomed Engn, Dept Chem & Nucl Engn, Farris Engn Ctr 209, Albuquerque, NM 87131 USA. RP Werner, JH (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM jwerner@lanl.gov; gplopez@unm.edu; shreve@lanl.gov OI Werner, James/0000-0002-7616-8913 FU U.S. Department of Energy, Office of Basic Energy [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC0494AL85000]; National Science Foundation's PREM [DMR-0611616]; NIRT [CTS0404124] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (contract DE-AC52-06NA25396) and Sandia National Laboratories (contract DE-AC0494AL85000). Funding for this work was provided by the National Science Foundation's PREM (DMR-0611616) and NIRT (CTS0404124) programs. The facilities of the NSF-sponsored Nadonal Nanotechnology Infrastructure Network node at the University of New Mexico were used for the nanostructure fabrication. NR 36 TC 20 Z9 20 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 3 PY 2009 VL 25 IS 5 BP 2986 EP 2993 DI 10.1021/la802249f PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 413CP UT WOS:000263770800068 PM 19437708 ER PT J AU Harper, JC Polsky, R Wheeler, DR Lopez, DM Arango, DC Brozik, SM AF Harper, Jason C. Polsky, Ronen Wheeler, David R. Lopez, DeAnna M. Arango, Dulce C. Brozik, Susan M. TI A Multifunctional Thin Film Au Electrode Surface Formed by Consecutive Electrochemical Reduction of Aryl Diazonium Salts SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; SCANNING PROBE LITHOGRAPHY; ATOMIC-FORCE MICROSCOPY; CARBON SURFACES; COVALENT MODIFICATION; DNA IMMOBILIZATION; PLASMON RESONANCE; SOFT LITHOGRAPHY; OXYGEN REDUCTION; ARRAY BIOSENSOR AB A multifunctional thin film surface capable of immobilizing two diverse molecules on a single gold electrode was prepared by consecutive electrodeposition of nitrophenyl and phenylboronic acid pinacol ester (PBA-PE) diazonium salts. Activation of the stacked film toward binding platinum nanoparticles (PtNPs) and yeast cells occurred via chemical deprotection of the pinacol ester followed by electroreduction of nitro to amino groups. FTIR spectral analysis was used to study and verify film composition at each stage of preparation. The affect of electrodeposition protocol over the thickness of the nitrophenyl and PBA-PE layers was explored and had a profound impact on the film properties. Thicker nitrophenyl films led to diminished PBA-PE diazonium reduction currents during assembly and decreased phenylboronic acid (PBA) layer thickness while allowing for higher PtNP loading and catalytic currents from PtNP-mediated peroxide reduction. Multilayer PBA films could be formed over the nitrophenyl film; however, only submonlayer PBA films permitted access to the underlying layer. The sequence of functional group activation toward binding was also shown to be significant, as perchlorate used to remove pinacol ester also converted aminophenyl groups accessible to the solution to nitrophenyl groups, preventing electrostatic PtNP binding. Finally, SEM images show PtNPs immobilized in close proximity (nanometers) to captured yeast cells on the PBA-aminophenyl-Au film. Such multibinding functionality films that maintain conductivity for subsequent electrochemical measurements hold promise for the development of electrochemical and/or optical platforms for fundamental cell studies, genomic and proteomic analysis, and biosensing. C1 [Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Lopez, DeAnna M.; Arango, Dulce C.; Brozik, Susan M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brozik, SM (reprint author), Sandia Natl Labs, POB 5800,MS-0892, Albuquerque, NM 87185 USA. EM smbrozi@sandia.gov FU United States Department of Energy [DE-AC04-94AL8500] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL8500. NR 71 TC 38 Z9 38 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 3 PY 2009 VL 25 IS 5 BP 3282 EP 3288 DI 10.1021/la803215z PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 413CP UT WOS:000263770800112 PM 19437729 ER PT J AU Lou, XH Qian, JR Xiao, Y Viel, L Gerdon, AE Lagally, ET Atzberger, P Tarasow, TM Heeger, AJ Soh, HT AF Lou, Xinhui Qian, Jiangrong Xiao, Yi Viel, Lisan Gerdon, Aren E. Lagally, Eric T. Atzberger, Paul Tarasow, Theodore M. Heeger, Alan J. Soh, H. Tom TI Micromagnetic selection of aptamers in microfluidic channels SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microchannel; recombinant Botulinum neurotoxin type A; systematic evolution of ligands by exponential enrichment ID IN-VITRO SELECTION; CAPILLARY-ELECTROPHORESIS; SYSTEMATIC EVOLUTION; RNA APTAMERS; EXPONENTIAL ENRICHMENT; EQUILIBRIUM MIXTURES; AUTOMATED SELECTION; SELEX; DNA; LIGANDS AB Aptamers are nucleic acid molecules that have been selected in vitro to bind to their molecular targets with high affinity and specificity. Typically, the systematic evolution of ligands by exponential enrichment (SELEX) process is used for the isolation of specific, high-affinity aptamers. SELEX, however, is an iterative process requiring multiple rounds of selection and amplification that demand significant time and labor. Here, we describe an aptamer discovery system that is rapid, highly efficient, automatable, and applicable to a wide range of targets, based on the integration of magnetic bead-based SELEX process with microfluidics technology. Our microfluidic SELEX (M-SELEX) method exploits a number of unique phenomena that occur at the microscale and implements a design that enables it to manipulate small numbers of beads precisely and isolate high-affinity aptamers rapidly. As a model to demonstrate the efficiency of the M-SELEX process, we describe here the isolation of DNA aptamers that tightly bind to the light chain of recombinant Botulinum neurotoxin type A (with low-nanomolar dissociation constant) after a single round of selection. C1 [Lou, Xinhui; Xiao, Yi; Lagally, Eric T.; Heeger, Alan J.; Soh, H. Tom] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Lou, Xinhui; Qian, Jiangrong; Xiao, Yi; Viel, Lisan; Gerdon, Aren E.; Lagally, Eric T.; Soh, H. Tom] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Atzberger, Paul] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA. [Tarasow, Theodore M.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. RP Heeger, AJ (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM ajhe1@physics.ucsb.edu; tsoh@engineering.ucsb.edu RI Xiao, Yi/L-6606-2016 OI Xiao, Yi/0000-0001-7278-9811 FU University of California Directed Research and Development Program from Lawrence Livermore National Laboratories [8-594100-69758]; U. S. Army Research Office Institute for Collaborative Biotechnologies [DAAD1903D004]; Defense Advanced Research Projects Agency/Defense MicroElectronics Activity-Center for Nanoscience Innovation for Defense [H94003-05-2-0503] FX We thank Monte J. Radeke for help with real-time PCR experiments, Prof. Kevin Plaxco for his careful reading of the manuscript, and Prof. Patrick Daugherty for the use of the TECAN microplate reader and SPR BIAcore 3000. We gratefully acknowledge support from the University of California Directed Research and Development Program from Lawrence Livermore National Laboratories (Grant 8-594100-69758), U. S. Army Research Office Institute for Collaborative Biotechnologies Grant DAAD1903D004, and Defense Advanced Research Projects Agency/Defense MicroElectronics Activity-Center for Nanoscience Innovation for Defense Grant H94003-05-2-0503. NR 42 TC 159 Z9 168 U1 8 U2 90 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 3 PY 2009 VL 106 IS 9 BP 2989 EP 2994 DI 10.1073/pnas.0813135106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 414DM UT WOS:000263844100006 PM 19202068 ER PT J AU Wu, P Shui, WQ Carlson, BL Hu, N Rabuka, D Lee, J Bertozzi, CR AF Wu, Peng Shui, Wenqing Carlson, Brian L. Hu, Nancy Rabuka, David Lee, Julia Bertozzi, Carolyn R. TI Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE antibody engineering; bioorthogonal reaction ID FORMYLGLYCINE-GENERATING ENZYME; ANTIINFLAMMATORY ACTIVITY; BIOLOGICAL-ACTIVITY; FC; THERAPEUTICS; ANTIBODY; FAMILY; LIGASE; PROBES; GENE AB The properties of therapeutic proteins can be enhanced by chemical modification. Methods for site-specific protein conjugation are critical to such efforts. Here, we demonstrate that recombinant proteins expressed in mammalian cells can be site-specifically modified by using a genetically encoded aldehyde tag. We introduced the peptide sequence recognized by the endoplasmic reticulum (ER)-resident formylglycine generating enzyme (FGE), which can be as short as 6 residues, into heterologous proteins expressed in mammalian cells. Cotranslational modification of the proteins by FGE produced products bearing a unique aldehyde group. Proteins bearing this "aldehyde tag'' were chemically modified by selective reaction with hydrazide- or aminooxy-functionalized reagents. We applied the technique to site-specific modification of monoclonal antibodies, the fastest growing class of biopharmaceuticals, as well as membrane-associated and cytosolic proteins expressed in mammalian cells. C1 [Wu, Peng; Shui, Wenqing; Carlson, Brian L.; Hu, Nancy; Rabuka, David; Lee, Julia; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu FU National Institutes of Health [GM59907, 5PN2EY018241-02-NDC]; Optical Control of Biological Function [K99GM080585]; National Cancer Institute, Bethesda, MD FX This work was supported by National Institutes of Health Grants GM59907, 5PN2EY018241-02-NDC for the Optical Control of Biological Function, and K99GM080585). The plgG plasmid was provided by Dr. Christoph Rader at the National Cancer Institute, Bethesda, MD. NR 27 TC 125 Z9 125 U1 3 U2 54 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 3 PY 2009 VL 106 IS 9 BP 3000 EP 3005 DI 10.1073/pnas.0807820106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 414DM UT WOS:000263844100008 PM 19202059 ER PT J AU Chang, JH Cho, YH Sohn, SY Choi, JM Kim, A Kim, YC Jang, SK Cho, Y AF Chang, Jeong Ho Cho, Yong Hyun Sohn, Sun Young Choi, Jung Min Kim, Ahreum Kim, Young Chang Jang, Sung Key Cho, Yunje TI Crystal structure of the eIF4A-PDCD4 complex SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE translation inhibition; tumor suppressor; RNA helicase; domain closure; MA3 domain ID EUKARYOTIC TRANSLATION INITIATION; RNA-HELICASE; SUPPRESSOR PDCD4; PROTEIN PDCD4; FACTOR 4A; EIF4A; MA-3; TRANSFORMATION; INHIBITION; EXPRESSION AB Tumor suppressor programmed cell death protein 4 (PDCD4) inhibits the translation initiation factor eIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the 5'-untranslated region of mRNAs and controls the initiation of translation. Here, we determined the crystal structure of the human eIF4A and PDCD4 complex. The structure reveals that one molecule of PDCD4 binds to the two eIF4A molecules through the two different binding modes. While the two MA3 domains of PDCD4 bind to one eIF4A molecule, the C-terminal MA3 domain alone of the same PDCD4 also interacts with another eIF4A molecule. The eIF4A-PDCD4 complex structure suggests that the MA3 domain(s) of PDCD4 binds perpendicular to the interface of the two domains of eIF4A, preventing the domain closure of eIF4A and blocking the binding of RNA to eIF4A, both of which are required events in the function of eIF4A helicase. The structure, together with biochemical analyses, reveals insights into the inhibition mechanism of eIF4A by PDCD4 and provides a framework for designing chemicals that target eIF4A. C1 [Chang, Jeong Ho; Cho, Yong Hyun; Sohn, Sun Young; Choi, Jung Min; Cho, Yunje] Pohang Univ Sci & Technol, Natl Creat Initiat Struct Biol, Pohang, Kyungbook, South Korea. [Chang, Jeong Ho; Cho, Yong Hyun; Sohn, Sun Young; Choi, Jung Min; Kim, Ahreum; Jang, Sung Key; Cho, Yunje] Pohang Univ Sci & Technol, Dept Life Sci, Pohang, Kyungbook, South Korea. [Kim, Young Chang] Struct Biol Ctr, Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Cho, Y (reprint author), Pohang Univ Sci & Technol, Natl Creat Initiat Struct Biol, San31, Pohang, Kyungbook, South Korea. EM yunje@postech.ac.kr FU National Creative Research Initiatives FX We thank WooJae Kim and JunHyun Kim for help with translation assays. This work was supported by the National Creative Research Initiatives. NR 22 TC 54 Z9 60 U1 1 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 3 PY 2009 VL 106 IS 9 BP 3148 EP 3153 DI 10.1073/pnas.0808275106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 414DM UT WOS:000263844100033 PM 19204291 ER PT J AU Zhang, Z Alpert, D Francis, R Chatterjee, B Yu, Q Tansey, T Sabol, SL Cui, C Bai, YL Koriabine, M Yoshinaga, Y Cheng, JF Chen, F Martin, J Schackwitz, W Gunn, TM Kramer, KL De Jong, PJ Pennacchio, LA Lo, CW AF Zhang, Zhen Alpert, Deanne Francis, Richard Chatterjee, Bishwanath Yu, Qing Tansey, Terry Sabol, Steven L. Cui, Cheng Bai, Yongli Koriabine, Maxim Yoshinaga, Yuko Cheng, Jan-Fang Chen, Feng Martin, Joel Schackwitz, Wendy Gunn, Teresa M. Kramer, Kenneth L. De Jong, Pieter J. Pennacchio, Len A. Lo, Cecilia W. TI Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cardiogenesis; left-right; nodal ID LEFT-RIGHT ASYMMETRY; LEFT-RIGHT AXIS; LATERAL PLATE; GENOME; MOUSE; MICE; NODE; ESTABLISHMENT; GENERATION; MOLECULES AB Forward genetic screens with ENU (N-ethyl-N-nitrosourea) mutagenesis can facilitate gene discovery, but mutation identification is often difficult. We present the first study in which an ENU-induced mutation was identified by massively parallel DNA sequencing. This mutation causes heterotaxy and complex congenital heart defects and was mapped to a 2.2-Mb interval on mouse chromosome 7. Massively parallel sequencing of the entire 2.2-Mb interval identified 2 single-base substitutions, one in an intergenic region and a second causing replacement of a highly conserved cysteine with arginine (C193R) in the gene Megf8. Megf8 is evolutionarily conserved from human to fruit fly, and is observed to be ubiquitously expressed. Morpholino knockdown of Megf8 in zebrafish embryos resulted in a high incidence of heterotaxy, indicating a conserved role in laterality specification. Megf8(C193R) mouse mutants show normal breaking of symmetry at the node, but Nodal signaling failed to be propagated to the left lateral plate mesoderm. Videomicroscopy showed nodal cilia motility, which is required for left-right patterning, is unaffected. Although this protein is predicted to have receptor function based on its amino acid sequence, surprisingly confocal imaging showed it is translocated into the nucleus, where it is colocalized with Gfi1b and Baf60C, two proteins involved in chromatin remodeling. Overall, through the recovery of an ENU-induced mutation, we uncovered Megf8 as an essential regulator of left-right patterning. C1 [Zhang, Zhen; Alpert, Deanne; Francis, Richard; Chatterjee, Bishwanath; Yu, Qing; Tansey, Terry; Sabol, Steven L.; Cui, Cheng; Kramer, Kenneth L.; Lo, Cecilia W.] NHLBI, Dev Biol Lab, Bethesda, MD 20892 USA. [Bai, Yongli; Koriabine, Maxim; Yoshinaga, Yuko; De Jong, Pieter J.] Childrens Hosp, Oakland Res Inst, BACPAC Resources Ctr, Oakland, CA 94609 USA. [Cheng, Jan-Fang; Chen, Feng; Martin, Joel; Schackwitz, Wendy; Pennacchio, Len A.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Gunn, Teresa M.] Cornell Univ, Coll Vet Med, Dept Biomed Sci, Ithaca, NY 14853 USA. RP Lo, CW (reprint author), NHLBI, Dev Biol Lab, Bldg 10, Bethesda, MD 20892 USA. EM loc@nhlbi.nih.gov RI Francis, Richard/P-2524-2015; OI Francis, Deanne/0000-0002-4158-1521; Gunn, Teresa/0000-0003-2688-6420; Zhang, Zhen/0000-0002-9898-054X FU National Institutes of Health; Department of Energy [DE-AC02-05CH11231] FX We thank Blake Carrington for technical support, Drs. Stuart H. Orkin and Yuko Fujiwara (Dana Farber Cancer Institute, Boston, MA) for providing Gfi1b knockout embryos, and Drs. Michael Shen (Columbia University Medical Center, New York) and Brent McCright (Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD) for providing in situ hybridization probes. This work was supported by National Institutes of Health grants (to C. L, and P.J.D.J.), and Department of Energy Contract DE-AC02-05CH11231 (to L.A.P.). NR 32 TC 27 Z9 28 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 3 PY 2009 VL 106 IS 9 BP 3219 EP 3224 DI 10.1073/pnas.0813400106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 414DM UT WOS:000263844100045 PM 19218456 ER PT J AU Pruess, K AF Pruess, Karsten TI Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation SO WATER RESOURCES RESEARCH LA English DT Article ID MULTIPHASE FLOW; FRACTIONAL FLOW; SIMULATION AB From a mass balance for water dissolved into the flowing CO2 stream and a consideration of saturation profiles from the Buckley-Leverett fractional flow theory, we derive an equation that directly relates gas saturation S-g,S-d at the dry-out front to temperature, pressure, and salinity dependence of fluid properties. The equation is easily solved by iteration or interpolation. From gas saturation at the front we derive the average gas saturation in the dry-out region, from which we obtain the "solid saturation'' S-S, i.e., the fraction of pore space filled with solid precipitate. Values of S-S derived from this theory show excellent agreement with numerical simulations presented in the preceding companion paper. Thus, from relative permeabilities and fluid properties at in situ conditions prior to CO2 injection, it is possible to directly make an accurate estimate of solids precipitation, without having to perform a numerical simulation of the injection process. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Pruess, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM k_pruess@lbl.gov FU U. S. Department of Energy [DE-AC02-5CII11231] FX Thanks are due to Yu-Shu Wu for a careful review of the manuscript and the suggestion of improvements. I also thank Jan Nordbotten and three anonymous reviewers for valuable suggestions that have improved the paper. This work was supported by the Zero Emission Research and Technology project (ZERT) under contract DE-AC02-5CII11231 with the U. S. Department of Energy. NR 17 TC 3 Z9 4 U1 4 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR 3 PY 2009 VL 45 AR W03403 DI 10.1029/2008WR007102 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 415TX UT WOS:000263959600004 ER PT J AU Pruess, K Muller, N AF Pruess, Karsten Muller, Nadja TI Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation SO WATER RESOURCES RESEARCH LA English DT Article ID GEOTHERMAL-RESERVOIRS; NUMERICAL-SIMULATION; MULTIPHASE FLOW; TRANSPORT; DISPOSAL; BRINES; MEDIA; WATER; CODE; GAS AB Injection of CO2 into saline aquifers may cause formation dry-out and precipitation of salt near the injection well, which may reduce formation porosity, permeability, and injectivity. This paper uses numerical simulation to explore the role of different processes and parameters in the salt precipitation process and to examine injection strategies that could mitigate the effects. The main physical mechanisms affecting the dry-out and salt precipitation process include (1) displacement of brine away from the injection well by injected CO2, (2) dissolution (evaporation) of brine into the flowing CO2 stream, (3) upflow of CO2 due to gravity effects (buoyancy), (4) backflow of brine toward the injection point due to capillary pressure gradients that oppose the pressure gradient in the CO2-rich ("gas'') phase, and (5) molecular diffusion of dissolved salt. The different mechanisms operate on a range of spatial scales. CO2 injection at constant rate into a homogeneous reservoir with uniform initial conditions is simulated in 1-D radial geometry, to resolve multiscale processes by taking advantage of the similarity property, i.e., the evolution of system conditions as a function of radial distance R and time t depends only on the similarity variable R-2/t. Simulations in 2-D vertical cross sections are used to examine the role of gravity effects. We find that counterflow of CO2 and brine can greatly increase aqueous phase salinity and can promote substantial salt precipitation even in formations with low dissolved solids. Salt precipitation can accentuate effects of gravity override. We find that injecting a slug of fresh water prior to commencement of CO2 injection can reduce salt precipitation and permeability loss near the injection well. C1 [Pruess, Karsten] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Muller, Nadja] Shell Explorat & Prod, Exploratory Res, NL-2288 GS Rijswijk, Netherlands. RP Pruess, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM k_pruess@lbl.gov FU Zero Emission Research and Technology project (ZERT) with the U.S. Department of Energy [DE-AC02-05CH11231] FX Thanks are due to Christine Doughty for a careful review of the manuscript and the suggestion of improvements. We also thank two anonymous reviewers for their comments and suggestions. This work was supported by the Zero Emission Research and Technology project (ZERT) under contract DE-AC02-05CH11231 with the U.S. Department of Energy. NR 29 TC 81 Z9 86 U1 4 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR 3 PY 2009 VL 45 AR W03402 DI 10.1029/2008WR007101 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 415TX UT WOS:000263959600003 ER PT J AU Park, MY Hong, SB Kim, JY Kim, YS Buhlmann, S Kim, YK No, KS AF Park, Moonkyu Hong, Seungbum Kim, Jiyoon Kim, Yunseok Buehlmann, Simon Kim, Yong Kwan No, Kwangsoo TI Piezoresponse force microscopy studies of PbTiO3 thin films grown via layer-by-layer gas phase reaction SO APPLIED PHYSICS LETTERS LA English DT Article DE electric domains; ferroelectric coercive field; ferroelectric switching; ferroelectric thin films; lead compounds; sputter deposition ID FERROELECTRIC DOMAINS; FATIGUE AB We fabricated 20 nm thick PbTiO3 films via reactive magnetron sputtering and studied the domain switching phenomena and retention properties using piezoresponse force microscopy. We found that multistep deposited PbTiO3 thin films showed 29% smaller rms roughness (2.5 versus 3.5 nm), 28% smaller coercive voltage (1.68 versus 2.32 V), 100% higher d(33) value, and improved retention characteristic (89% versus 52% of remained poled domain area in 1280 min after poling) than single-step deposited PbTiO3 thin films. We attribute the improvement to the more complete chemical reaction between PbO and TiO2 during the film growth. C1 [Park, Moonkyu; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kim, Yong Kwan] Samsung Elect Co Ltd, Semicond R&D Ctr, Yongin 449771, South Korea. [Buehlmann, Simon] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Park, Moonkyu; Kim, Jiyoon; Kim, Yunseok; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. RP Hong, SB (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hong@anl.gov; ksno@kaist.ac.kr RI Buehlmann, Simon/B-4838-2010; No, Kwangsoo/G-4891-2010; No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU Samsung Advanced Institute of Technology; Korea Science and Engineering Foundation (KOSEF) [R01-2007-000-10953-0]; U.S. DOE Office of Science Laboratory [DE-AC02-06CH11357] FX The authors gratefully acknowledge the financial support of Samsung Advanced Institute of Technology and the Korea Science and Engineering Foundation (KOSEF) (Grant No. R01-2007-000-10953-0). The submitted manuscript has been in part created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. DOE Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The authors thank D. Fong and R. P. Nath for critical readings of the manuscript. NR 12 TC 14 Z9 14 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2009 VL 94 IS 9 AR 092901 DI 10.1063/1.3081120 PG 3 WC Physics, Applied SC Physics GA 423VF UT WOS:000264523100055 ER PT J AU Siemens, ME Li, Q Murnane, MM Kapteyn, HC Yang, RG Anderson, EH Nelson, KA AF Siemens, Mark E. Li, Qing Murnane, Margaret M. Kapteyn, Henry C. Yang, Ronggui Anderson, Erik H. Nelson, Keith A. TI High-frequency surface acoustic wave propagation in nanostructures characterized by coherent extreme ultraviolet beams SO APPLIED PHYSICS LETTERS LA English DT Article DE acoustic dispersion; acoustic wave propagation; acousto-optical effects; nanostructured materials; nickel; sapphire; surface acoustic waves AB We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series. These measurements are critical for accurate characterization of interfaces beneath very thin films using this technique. C1 [Siemens, Mark E.; Li, Qing; Murnane, Margaret M.; Kapteyn, Henry C.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Nelson, Keith A.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Yang, Ronggui] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Siemens, Mark E.; Li, Qing; Murnane, Margaret M.; Kapteyn, Henry C.] Univ Colorado, JILA, Boulder, CO 80309 USA. RP Siemens, ME (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM siemens@colorado.edu RI Yang, Ronggui/H-1278-2011; Kapteyn, Henry/H-6559-2011 OI Kapteyn, Henry/0000-0001-8386-6317 FU Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences; U.S. Department of Energy [DE-FG02-00ER15087]; NSF Engineering Research Center; EUV Science and Technology FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy, Grant No. DE-FG02-00ER15087 and the NSF Engineering Research Center in EUV Science and Technology. NR 12 TC 38 Z9 38 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2009 VL 94 IS 9 AR 093103 DI 10.1063/1.3090032 PG 3 WC Physics, Applied SC Physics GA 423VF UT WOS:000264523100063 ER PT J AU Tomiyasu, K Fujita, M Kolesnikov, AI Bewley, RI Bull, MJ Bennington, SM AF Tomiyasu, K. Fujita, M. Kolesnikov, A. I. Bewley, R. I. Bull, M. J. Bennington, S. M. TI Conversion method of powder inelastic scattering data for one-dimensional systems SO APPLIED PHYSICS LETTERS LA English DT Article DE magnetic structure; neutron diffraction; powders ID COMPOUND (VO)(2)P2O7; EXCITATIONS AB Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO(3) and Rb(2)Cu(2)Mo(3)O(12). For many such materials, it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations. C1 [Tomiyasu, K.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Fujita, M.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Bewley, R. I.; Bull, M. J.; Bennington, S. M.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Tomiyasu, K (reprint author), Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. EM tomiyasu@imr.tohoku.ac.jp RI Fujita, Masaki/D-8430-2013; Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 FU Ministry of Education, Culture, Sports, Science and Technology of Japan [17001001]; Young Scientists [17684016]; Scientific Research [19340090]; Japan-UK Collaboration Program on Neutron Scattering; World Premier International (WPI) Research Initiative; High Energy Accelerator Research Organization (KEK); Argonne National Laboratory (ANL); Office of Basic Energy Sciences; Division of Materials Sciences; U. S. Department of Energy [DE-AC02-06CH11357]; UT-Battelle; LLC [DE-AC05-00OR22725] FX We thank Professors K. Yamada and K. Ohoyama for fruitful discussion, Dr. C. D. Frost for providing us the single-crystal data, Drs. R. Stevens, A. Llobet, and F. Trouw for preliminary neutron experiments on Pharos at LANSCE, and Mrs. L. Jirik for the supports of neutron experiments at IPNS. This work was supported mainly by Grants in Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan for Specially Promoted Research (Grant No. 17001001) and partially by those for Young Scientists (A) (Grant No. 17684016) and Scientific Research (B) (Grant No. 19340090), the Japan-UK Collaboration Program on Neutron Scattering, World Premier International (WPI) Research Initiative, and the collaboration on neutron science between High Energy Accelerator Research Organization (KEK) and Argonne National Laboratory (ANL). The experiments at ANL were supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U. S. Department of Energy, under Contract No. DE-AC02-06CH11357, and work at ORNL/SNS was managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. NR 7 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2009 VL 94 IS 9 AR 092502 DI 10.1063/1.3089566 PG 3 WC Physics, Applied SC Physics GA 423VF UT WOS:000264523100049 ER PT J AU Wang, YB Ho, JC Cao, Y Liao, XZ Li, HQ Zhao, YH Lavernia, EJ Ringer, SP Zhu, YT AF Wang, Y. B. Ho, J. C. Cao, Y. Liao, X. Z. Li, H. Q. Zhao, Y. H. Lavernia, E. J. Ringer, S. P. Zhu, Y. T. TI Dislocation density evolution during high pressure torsion of a nanocrystalline Ni-Fe alloy SO APPLIED PHYSICS LETTERS LA English DT Article DE deformation; dislocation density; grain boundaries; high-pressure effects; iron alloys; nanostructured materials; nickel alloys; torsion; transmission electron microscopy; X-ray diffraction ID MOLECULAR-DYNAMICS SIMULATION; GRAIN-GROWTH; PLASTIC-DEFORMATION; NICKEL; BOUNDARIES; METALS; COPPER; AL AB High-pressure torsion (HPT) induced dislocation density evolution in a nanocrystalline Ni-20 wt %Fe alloy was investigated using x-ray diffraction and transmission electron microscopy. Results suggest that the dislocation density evolution is fundamentally different from that in coarse-grained materials. The HPT process initially reduces the dislocation density within nanocrystalline grains and produces a large number of dislocations located at small-angle subgrain boundaries that are formed via grain rotation and coalescence. Continuing the deformation process eliminates the subgrain boundaries but significantly increases the dislocation density in grains. This phenomenon provides an explanation of the mechanical behavior of some nanostructured materials. C1 [Wang, Y. B.; Ho, J. C.; Cao, Y.; Liao, X. Z.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Li, H. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhao, Y. H.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Ringer, S. P.] Univ Sydney, Australian Key Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Liao, XZ (reprint author), Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. EM xliao@usyd.edu.au RI Lavernia, Enrique/I-6472-2013; Zhu, Yuntian/B-3021-2008; Li, Hongqi/B-6993-2008; Liao, Xiaozhou/B-3168-2009; Wang, Yanbo/B-3175-2009; Zhao, Yonghao/A-8521-2009; Cao, Yang/C-4942-2011; Ringer, Simon/E-3487-2012; Lujan Center, LANL/G-4896-2012 OI Lavernia, Enrique/0000-0003-2124-8964; Zhu, Yuntian/0000-0002-5961-7422; Liao, Xiaozhou/0000-0001-8565-1758; Ringer, Simon/0000-0002-1559-330X; FU Australian Research Council [DP0772880]; Los Alamos National Laboratory; Office of Naval Research [N00014-041-0370, N00014-08-1-0405]; U. S. DOE IPP Program FX The authors are grateful for scientific and technical input and support from the Australian Microscopy & Microanalysis Research Facility node at the University of Sydney. This project is supported by the Australian Research Council [Grant No. DP0772880 (Y.B.W., J.C.H, Y.C., and X.Z.L.)], the LDRD program of Los Alamos National Laboratory (H.Q.L.), Office of Naval Research [Grant Nos. N00014-041-0370 and N00014-08-1-0405 (Y.H.Z. and E.J.L.)], and the U. S. DOE IPP Program (Y.T.Z.). NR 22 TC 28 Z9 29 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2009 VL 94 IS 9 AR 091911 DI 10.1063/1.3095852 PG 3 WC Physics, Applied SC Physics GA 423VF UT WOS:000264523100033 ER PT J AU Yang, G Ramasse, Q Klie, RF AF Yang, Guang Ramasse, Quentin Klie, Robert F. TI Direct measurement of Co-ion spin state transitions in Ca3Co4O9 using variable-temperature electron energy-loss spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article DE calcium compounds; electrical resistivity; electron energy loss spectra; heat treatment; magnetic susceptibility; solid-state phase transformations; spin dynamics ID GRAIN-BOUNDARIES; OXIDES; MISFIT AB Previous studies of Ca3Co4O9 suggested that the abrupt changes in the magnetic susceptibility and electrical resistivity at similar to 420 K can be attributed to Co spin state transitions. In this letter, we study the possible transitions above 420 K by variable-temperature Z-contrast imaging and electron energy-loss spectroscopy. We find that there is no observable change in the structure and Co valence state upon in situ heating to 500 K, compared to room temperature. However, an intensity decrease of the prepeak in the O K-edge near edge fine structure indicates a Co3+-ion spin state transition has occurred from a low to an intermediate spin state. C1 [Yang, Guang; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Ramasse, Quentin] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Yang, G (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM guangy@uic.edu RI Yang, Guang/C-9022-2011 OI Yang, Guang/0000-0003-1117-1238 NR 18 TC 15 Z9 15 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2009 VL 94 IS 9 AR 093112 DI 10.1063/1.3081118 PG 3 WC Physics, Applied SC Physics GA 423VF UT WOS:000264523100072 ER PT J AU Zhang, Y Jiang, CS Friedman, DJ Geisz, JF Mascarenhas, A AF Zhang, Yong Jiang, C. -S. Friedman, D. J. Geisz, J. F. Mascarenhas, A. TI Tailoring the electronic properties of GaxIn1-xP beyond simply varying alloy composition SO APPLIED PHYSICS LETTERS LA English DT Article DE electroreflectance; energy gap; gallium compounds; III-V semiconductors; indium compounds; scanning probe microscopy; semiconductor epitaxial layers ID OPTICAL-PROPERTIES; ORDERED GAINP2; POLARIZATION; GAINP/GAAS; ELECTROREFLECTANCE; SUPERLATTICES; MICROSCOPY; FIELDS AB Spontaneous ordering in GaxIn1-xP provides the possibility of tuning electronic structure and improving transport properties. A quasiperiodic twinning structure of two ordered variants offers additional flexibilities in designing the material properties. The superstructure is shown to have distinctively different electronic and electrical properties from the single-variant ordered structure, as revealed in polarized elecroreflectance and cross-sectional scanning Kelvin probe force microscopy measurements. The entire potentially accessible range of the "direct" bandgap is defined for this alloy system, and thus the optimal bandgap for any intended application can be achieved through the interplay of the effects of alloying, ordering, and domain structure engineering. C1 [Zhang, Yong; Jiang, C. -S.; Friedman, D. J.; Geisz, J. F.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, Y (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM yong_zhang@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU DOE-OS-BES [DE-AC36-08GO28308] FX We thank R. Reedy for SIMS and M. Young for C-V measurements and J. M. Olson, S.-H. Wei and W. Metzger for helpful discussions. This work was supported by the DOE-OS-BES under Contract No. DE-AC36-08GO28308 to NREL. NR 24 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2009 VL 94 IS 9 AR 091113 DI 10.1063/1.3094918 PG 3 WC Physics, Applied SC Physics GA 423VF UT WOS:000264523100013 ER PT J AU Doherty, MD Grills, DC Fujita, E AF Doherty, Mark D. Grills, David C. Fujita, Etsuko TI Synthesis of Fluorinated ReCl(4,4 '-R-2-2,2 '-bipyridine)(CO)(3) Complexes and Their Photophysical Characterization in CH3CN and Supercritical CO2 SO INORGANIC CHEMISTRY LA English DT Article ID CARBON-DIOXIDE; PHOTOCATALYTIC REDUCTION; PHOTOINDUCED REDUCTION; HOMOGENEOUS CATALYSTS; EXCITED-STATE; RE-RE; TRICARBONYLBROMO(2,2'-BIPYRIDINE)RHENIUM(I); LIGANDS AB Two new CO2-soluble rhenium(I) bipyridine complexes bearing the fluorinated alkyl ligands 4,4'-(C6F13CH2CH2CH2)(2)-2,2'-bipyridine (1a), and 4,4'-(C8F17CH2CH2CH2)(2)-2,2'-bipyridine (1b) have been prepared and their photophysical properties investigated in CH3CN and supercritical CO2. Electrochemical and spectroscopic characterization of these complexes in CH3CN suggests that the three methylene units effectively insulate the bipyridyl rings and the rhenium center from the electron-withdrawing effect of the fluorinated alkyl chains. Reductive quenching of the metal-to-ligand charge-transter excited states with triethylamine reveals quenching rate constants in supercritical CO2 that are only 6 times slower than those in CH3CN. C1 [Doherty, Mark D.; Grills, David C.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Grills, DC (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM dcgrills@bnl.gov RI Fujita, Etsuko/D-8814-2013; Grills, David/F-7196-2016 OI Grills, David/0000-0001-8349-9158 FU Brookhaven National Laboratory [DE-AC02-98CH10886] FX We thank Prof. Mike George and Dr. Alex Cowan (University of Nottingham, Nottingham, U.K.) for the provision of the high-pressure spectroscopic cell and for valuable discussions. This work was performed at Brookhaven National Laboratory and funded under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. NR 20 TC 23 Z9 23 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 2 PY 2009 VL 48 IS 5 BP 1796 EP + DI 10.1021/ic8019556 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 411RM UT WOS:000263667700005 PM 19235939 ER PT J AU Ma, SQ Yuan, DQ Wang, XS Zhou, HC AF Ma, Shengqian Yuan, Daqiang Wang, Xi-Sen Zhou, Hong-Cai TI Microporous Lanthanide Metal-Organic Frameworks Containing Coordinatively Linked Interpenetration: Syntheses, Gas Adsorption Studies, Thermal Stability Analysis, and Photoluminescence Investigation SO INORGANIC CHEMISTRY LA English DT Article ID FIXED-BED ADSORPTION; PERMANENT POROSITY; HYDROGEN STORAGE; BUILDING UNITS; SORPTION PROPERTIES; SELECTIVE SORPTION; POROUS MATERIAL; SEPARATION; SITES; POLYMERS AB Under solvothermal conditions, the reactions of trigonal-planar ligand, TATB (4,4',4 ''-s-triazine-2,4,6-triyl-tribenzoate) with Dy(NO(3))(3), Er(NO(3))(3), Y(NO(3))(3), Yb(NO(3))(3), gave rise to four microporous lanthanide metal-organic frameworks (MOFs), designated as PCN-17 (Dy), PCN-17 (Er), PCN-17 (Y), and PCN-17 (Yb), respectively. The four porous MOFs are isostructural, with their crystal unit parameters shrinking in the order of PCN-17 (Dy), PCN-17 (Y), PCN-17 (Er), and PCN-17 (Yb), which also reflects the lanthanides' contraction trend. All of them adopt the novel square-planar Ln(4)(mu(4)-H(2)O) cluster as the secondary building unit and contain coordinatively linked doubly interpenetrated (8,3)-connected nets. In addition to exhibiting interesting photoluminescence phenomena, the coordinatively linked interpenetration restricts the pore sizes and affords them selective adsorption of H(2) and O(2) over N(2) and CO, as well as renders them with high thermal stability of 500-550 degrees C as demonstrated from TGA profiles. C1 [Ma, Shengqian; Zhou, Hong-Cai] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ma, SQ (reprint author), Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA. EM sma@anl.gov; zhou@mail.chem.tamu.edu RI wang, Xi-Sen/B-1102-2011; Ma, Shengqian/B-4022-2012; Zhou, Hong-Cai/A-3009-2011; Yuan, Daqiang/F-5695-2010; OI Ma, Shengqian/0000-0002-1897-7069; Zhou, Hong-Cai/0000-0002-9029-3788; Yuan, Daqiang/0000-0003-4627-072X; Zhou, Hong-Cai/0000-0003-0115-408X FU U.S. Department of Energy [DE-FC36-07GO17033]; U.S. National Science Foundation [CHE-0449634]; Research Corporation for a Cottrell Scholar Award; Air Products for a Faculty Excellence Award FX This work was supported by the U.S. Department of Energy (DE-FC36-07GO17033) and the U.S. National Science Foundation (CHE-0449634). H.-C. Z. acknowledges the Research Corporation for a Cottrell Scholar Award and Air Products for a Faculty Excellence Award. S.M. acknowledges Dr. Yujuan Liu for the photoluminescent measurements and the Director's Postdoctoral Fellowship from Argonne National Laboratory. NR 77 TC 149 Z9 149 U1 9 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 2 PY 2009 VL 48 IS 5 BP 2072 EP 2077 DI 10.1021/ic801948z PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 411RM UT WOS:000263667700036 PM 19235968 ER PT J AU Cantat, T Scott, BL Morris, DE Kiplinger, JL AF Cantat, Thibault Scott, Brian L. Morris, David E. Kiplinger, Jaclueline L. TI What a Difference a 5f Element Makes: Trivalent and Tetravalent Uranium Halide Complexes Supported by One and Two Bis[2-(diisopropylphosphino)-4-methylphenyl]amido (PNP) Ligands SO INORGANIC CHEMISTRY LA English DT Review ID RAY CRYSTAL-STRUCTURES; FUNCTIONAL THEORY ANALYSIS; MIXED-VALENCE URANIUM; F-BLOCK METALS; X-RAY; PINCER LIGAND; MULTIPLE-BOND; ELECTRONIC-STRUCTURE; PHOSPHINE COMPLEXES; MOLECULAR-STRUCTURE AB The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyljamido ligand (PNP) toward Ul(3)(THF)(4) and UCl(4) has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of Ul(3)(THF)(4) afforded the trivalent halide complex (PNP)Ul(2)(4-(t)Bu-pyhdine)(2) (7) in the presence of 4-tert-butylpyridine. The same reaction carded out with UCl(4) and no donor ligand gave [(PNP)[(PNP)UCl(3)](2) (8), in which the uranium coordination sphere in the (PNP)UCl(3) unit is completed by a bridging chloride ligand. When UCl(4) is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl(3)(THF) (9), (PNP)UCl(3)(TMPO)(2) (10), and (PNP)UCl(3)(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)(2)Ul (12), and uranium(IV), (PNP)(2)UCl(2) (13), were easily isolated from the analogous reactions between 2 equiv of 6 and Ul(3)(THF)(4) or UCl(4), respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and (1)H and (31)P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa(3)-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual K(2)-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C(3)Me(5) analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The electronic influence of replacing the C(5)Me(5) ligands with PNP was investigated using electronic absorption spectroscopy and electrochemistry. For 12 and 13, a chemically reversible wave corresponding to the U(IV)/U(III) redox transformation comparable to that for 3 and 4 was observed. However, a similar to 350 mV shift of this couple to more negative potentials was observed on substitution of the bis(C(5)Me(5)) by the bis(PNP) framework, therefore pointing to a greater electronic density at the metal center in the PNP complexes. The UV-visible region of the electronic spectra for the mono(PNP) and bis(PNP) complexes appear to be dominated by PNP ligand-based transitions that are shifted to higher energy in the uranium complexes than in the simple ligand anion (6) spectrum, for both the U(VI) and U(III) oxidation states. The near IR region in complexes 1-4 and 7, 9, 11-13 is dominated by f-f transitions derived from the 5f(3) and 5f(2) valence electronic configuration of the metal center. Though complexes of both ligand sets exhibit similar intensities in their f-f bands, a somewhat larger ligand-field splitting was observed for the PNP system, consistent with its higher electon donating ability. C1 [Cantat, Thibault; Scott, Brian L.; Morris, David E.; Kiplinger, Jaclueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Morris, DE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Cantat, Thibault/A-8167-2010; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Cantat, Thibault/0000-0001-5265-8179; Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU LANL; Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396] FX For financial support of this work, we acknowledge LANL (Director's PD Fellowship to T.C.), and the Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program. We are also thankful to Prof. Oleg V. Ozerov (Brandeis University) for providing the initial samples of (PNP)H (5) used in this work. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract DE-AC5206NA25396. NR 111 TC 26 Z9 26 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 2 PY 2009 VL 48 IS 5 BP 2114 EP 2127 DI 10.1021/ic802061x PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 411RM UT WOS:000263667700040 PM 19166305 ER PT J AU Tang, JK Costa, JS Smulders, S Molnar, G Bousseksou, A Teat, SJ Li, YG van Albada, GA Gamez, P Reedijk, J AF Tang, Jinkui Costa, Jose Sanchez Smulders, Simon Molnar, Gabor Bousseksou, Azzedine Teat, Simon J. Li, Yangguang van Albada, Gerard A. Gamez, Patrick Reedijk, Jan TI Two-Step Spin-Transition Iron(III) Compound with a Wide [High Spin-Low Spin] Plateau SO INORGANIC CHEMISTRY LA English DT Article ID LARGE THERMAL HYSTERESIS; MAGNETIC-PROPERTIES; CROSSOVER COMPOUNDS; CRYSTAL-STRUCTURES; MOSSBAUER-SPECTRA; PHASE-TRANSITION; ROOM-TEMPERATURE; COMPLEXES; STATE; MONONUCLEAR AB A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO(4))(MeOH)(0.5)(H(2)O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and (51)Fe Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies. C1 [Tang, Jinkui; Costa, Jose Sanchez; Smulders, Simon; van Albada, Gerard A.; Gamez, Patrick; Reedijk, Jan] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [Tang, Jinkui] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China. [Molnar, Gabor; Bousseksou, Azzedine] CNRS, Chim Coordinat Lab, UPR 8241, F-31077 Toulouse, France. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. [Li, Yangguang] NE Normal Univ, Dept Chem, Inst Polyoxometalate Chem, Key Lab Polyoxometalate Sci,Ministry Educ, Changchun 130024, Peoples R China. RP Gamez, P (reprint author), Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands. EM reedijk@chem.leidenuniv.nl RI Reedijk, Jan/F-1992-2010; Gamez, Patrick/B-3610-2012; Tang, Jinkui/A-1830-2014; Sanchez Costa, Jose/N-9085-2014; Bousseksou, Azzedine/M-4559-2016; Molnar, Gabor/Q-6874-2016 OI Reedijk, Jan/0000-0002-6739-8514; Gamez, Patrick/0000-0003-2602-9525; Tang, Jinkui/0000-0002-8600-7718; Sanchez Costa, Jose/0000-0001-5426-7956; Molnar, Gabor/0000-0001-6032-6393 FU COST Action [D35/0011]; Network of Excellence "Magmanet" [515767]; U.S. Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [20841001, 20871113] FX COST Action D35/0011 and coordination by the FP6 Network of Excellence "Magmanet" (contract number 515767) are kindly acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.K. acknowledges the National Natural Science Foundation of China (Grants 20841001 and 20871113). NR 53 TC 39 Z9 39 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 2 PY 2009 VL 48 IS 5 BP 2128 EP 2135 DI 10.1021/ic801973x PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 411RM UT WOS:000263667700041 PM 19235971 ER PT J AU Yuan, ZJ Luo, ZC Ren, HG Du, CW Pan, YT AF Yuan, Zhijia Luo, Z. C. Ren, H. G. Du, C. W. Pan, Yingtian TI A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography SO OPTICS EXPRESS LA English DT Article ID RETINAL BLOOD-FLOW; MICRO-ANGIOGRAPHY; RESOLUTION; TRANSFORM; PERFUSION; SPEED; SKIN AB A digital frequency ramping method (DFRM) is proposed to improve the signal-to-noise ratio (SNR) of Doppler flow imaging in Fourier-domain optical coherence tomography (FDOCT). To examine the efficacy of DFRM for enhancing flow detection, computer simulation and tissue phantom study were conducted for phase noise reduction and flow quantification. In addition, the utility of this technique was validated in our in vivo clinical bladder imaging with endoscopic FDOCT. The Doppler flow images reconstructed by DFRM were compared with the counterparts by traditional Doppler FDOCT. The results demonstrate that DFRM enables real-time Doppler FDOCT imaging at significantly enhanced sensitivity without hardware modification, thus rendering it uniquely suitable for endoscopic subsurface blood flow imaging and diagnosis. (C) 2009 Optical Society of America C1 [Yuan, Zhijia; Luo, Z. C.; Ren, H. G.; Pan, Yingtian] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Du, C. W.] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Luo, Z. C.; Du, C. W.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Pan, YT (reprint author), SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. EM Yingtian.Pan@sunysb.edu RI yuan, zhijia/F-4314-2011; Ren, Hugang/G-7342-2011 FU NIH [2R01-DK059265, K25-DA021200]; Fusion Award FX This work was supported in part by NIH Grants 2R01-DK059265 (YP), K25-DA021200 (CD) and Fusion Award (YP). Correspondence can be addressed to yingtian.pan@sunysb.edu. NR 26 TC 11 Z9 11 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAR 2 PY 2009 VL 17 IS 5 BP 3951 EP 3963 DI 10.1364/OE.17.003951 PG 13 WC Optics SC Optics GA 417QJ UT WOS:000264090900099 PM 19259236 ER PT J AU Yin, J Li, L Shaw, N Li, Y Song, JK Zhang, WP Xia, CF Zhang, RG Joachimiak, A Zhang, HC Wang, LX Liu, ZJ Wang, P AF Yin, Jie Li, Lei Shaw, Neil Li, Yang Song, Jing Katherine Zhang, Wenpeng Xia, Chengfeng Zhang, Rongguang Joachimiak, Andrzej Zhang, Hou-Cheng Wang, Lai-Xi Liu, Zhi-Jie Wang, Peng TI Structural Basis and Catalytic Mechanism for the Dual Functional Endo-beta-N-Acetylglucosaminidase A SO PLOS ONE LA English DT Article ID TRANSGLYCOSYLATION ACTIVITY; ENHANCED TRANSGLYCOSYLATION; OLIGOSACCHARIDE SYNTHESIS; COMPLEX OLIGOSACCHARIDES; CHEMOENZYMATIC SYNTHESIS; GLYCOPROTEINS; GLYCOPEPTIDES; PURIFICATION; GLYCOSYNTHASES; REFINEMENT AB Endo-beta-N-acetylglucosaminidases (ENGases) are dual specificity enzymes with an ability to catalyze hydrolysis and transglycosylation reactions. Recently, these enzymes have become the focus of intense research because of their potential for synthesis of glycopeptides. We have determined the 3D structures of an ENGase from Arthrobacter protophormiae (Endo-A) in 3 forms, one in native form, one in complex with Man(3)GlcNAc-thiazoline and another in complex with GlcNAc-Asn. The carbohydrate moiety sits above the TIM-barrel in a cleft region surrounded by aromatic residues. The conserved essential catalytic residues - E173, N171 and Y205 are within hydrogen bonding distance of the substrate. W216 and W244 regulate access to the active site during transglycosylation by serving as "gate-keepers''. Interestingly, Y299F mutation resulted in a 3 fold increase in the transglycosylation activity. The structure provides insights into the catalytic mechanism of GH85 family of glycoside hydrolases at molecular level and could assist rational engineering of ENGases. C1 [Yin, Jie; Shaw, Neil; Li, Yang; Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100080, Peoples R China. [Yin, Jie; Li, Yang] Chinese Acad Sci, Grad Sch, Beijing 100864, Peoples R China. [Li, Lei; Zhang, Hou-Cheng; Wang, Peng] Shandong Univ, Natl Glycoengn Res Ctr, Shandong, Peoples R China. [Li, Lei; Zhang, Hou-Cheng; Wang, Peng] Shandong Univ, Sch Life Sci, State Key Lab Microb Technol, Shandong, Peoples R China. [Li, Lei; Song, Jing Katherine; Zhang, Wenpeng; Xia, Chengfeng; Wang, Peng] Ohio State Univ, Dept Biochem & Chem, Columbus, OH 43210 USA. [Zhang, Rongguang; Joachimiak, Andrzej] Structural Biol Ctr, Argonne Natl Lab, Argonne, IL USA. [Wang, Lai-Xi] Univ Maryland, Sch Med, Inst Human Virol, Baltimore, MD 21201 USA. [Wang, Lai-Xi] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA. [Wang, Peng] Nankai Univ, Coll Pharm, Tianjin, Peoples R China. [Wang, Peng] Nankai Univ, State Key Lab Elemento Organ Chem, Tianjin, Peoples R China. RP Yin, J (reprint author), Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100080, Peoples R China. EM zjliu@ibp.ac.cn; pwang@sdu.edu.cn RI Li, Yang/G-3685-2011; Liu, Zhi-Jie/A-3946-2012; Li, Yang/M-1246-2013; Ying, Chieh/E-4296-2016; Yin, Jie/J-8932-2016 OI Liu, Zhi-Jie/0000-0001-7279-2893; FU National Natural Science Foundation of China [20872068, 30721003, 30870483, 30700123]; Ministry of Health [2008ZX10404]; Ministry of Science and Technology of China [2006AA02A316, 2006CB910901, 2006CB910903, 2007CB914803, 2007CB914403]; CAS [KSCX2-YW-R-127] FX This work was funded by the National Natural Science Foundation of China (Grants: 20872068, 30721003, 30870483 and 30700123), the Ministry of Health (Grant 2008ZX10404), the Ministry of Science and Technology of China (Grants 2006AA02A316, 2006CB910901, 2006CB910903, 2007CB914803 and 2007CB914403), CAS Research Grant (KSCX2-YW-R-127). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 38 TC 28 Z9 28 U1 2 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 2 PY 2009 VL 4 IS 3 AR e4658 DI 10.1371/journal.pone.0004658 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437LV UT WOS:000265489900001 PM 19252736 ER PT J AU Yang, C Meza, JC Lee, B Wang, LW AF Yang, Chao Meza, Juan C. Lee, Byounghak Wang, Lin-Wang TI KSSOLV-A MATLAB Toolbox for Solving the Kohn-Sham Equations SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Design; Planewave discretization; pseudopotential; nonlinear eigenvalue problem; density functional theory (DFT); Kohn-Sham equations; self-consistent field iteration (SCF); direct constrained minimization (DCM); electronic structure calculation ID ELECTRONIC-STRUCTURE CALCULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; PSEUDOPOTENTIAL CALCULATIONS; CONVERGENCE ACCELERATION; MOLECULAR-DYNAMICS; ALGORITHM; ITERATION; CHEMISTRY; GAS AB We describe the design and implementation of KSSOLV, a MATLAB toolbox for solving a class of nonlinear eigenvalue problems known as the Kohn-Sham equations. These types of problems arise in electronic structure calculations, which are nowadays essential for studying the microscopic quantum mechanical properties of molecules, solids, and other nanoscale materials. KSSOLV is well suited for developing new algorithms for solving the Kohn-Sham equations and is designed to enable researchers in computational and applied mathematics to investigate the convergence properties of the existing algorithms. The toolbox makes use of the object-oriented programming features available in MATLAB so that the process of setting up a physical system is straightforward and the amount of coding effort required to prototype, test, and compare new algorithms is significantly reduced. All of these features should also make this package attractive to other computational scientists and students who wish to study small-to medium-size systems. C1 [Yang, Chao; Meza, Juan C.; Lee, Byounghak; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Yang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM CYang@lbl.gov; JCMeza@lbl.gov; byounghak@txstate.edu; LWWang@lbl.gov RI Meza, Juan/B-5601-2012; OI Meza, Juan/0000-0003-4543-0349 FU Director, Office of Science, Division of Mathematical, Information, and Computational Sciences; U. S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Director, Office of Science, Division of Mathematical, Information, and Computational Sciences of the U. S. Department of Energy under contract number DE-AC03-76SF00098. NR 54 TC 26 Z9 26 U1 4 U2 10 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 EI 1557-7295 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD MAR PY 2009 VL 36 IS 2 AR 10 DI 10.1145/1499096.1499099 PG 35 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 476VG UT WOS:000268473700003 ER PT J AU Babayan, Y McMahon, JM Li, SZ Gray, SK Schatz, GC Odom, TW AF Babayan, Yelizaveta McMahon, Jeffrey M. Li, Shuzhou Gray, Stephen K. Schatz, George C. Odom, Teri W. TI Confining Standing Waves in Optical Corrals SO ACS NANO LA English DT Article DE near-field scanning optical microscopy; metal microstructures; finite-difference time-domain calculations; dephasing; waveguide modes ID QUANTUM CORRALS; SURFACE; SPECTROSCOPY; MIRAGES; ARRAYS; FILMS AB Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can be attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner. C1 [Babayan, Yelizaveta; McMahon, Jeffrey M.; Li, Shuzhou; Schatz, George C.; Odom, Teri W.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Odom, Teri W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [McMahon, Jeffrey M.; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Odom, TW (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM todom@northwestern.edu RI Li, Shuzhou/E-3146-2010; Li, Shuzhou/A-2250-2011; OI Li, Shuzhou/0000-0002-2159-2602; Odom, Teri/0000-0002-8490-292X FU NSF MRSEC program at Northwestern University [DMR-0520513]; David and Lucile Packard Foundation; U.S. Department of Energy [DEFG02-03-ER15487]; NSF [DMR-0705741]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the NSF MRSEC program at Northwestern University (DMR-0520513), the David and Lucile Packard Foundation, the U.S. Department of Energy (DEFG02-03-ER15487), and the NSF (DMR-0705741). S.K.G. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy Contract DE-AC02-05CH11231. NR 18 TC 33 Z9 33 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2009 VL 3 IS 3 BP 615 EP 620 DI 10.1021/nn8008596 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 423ZL UT WOS:000264535200019 PM 19243190 ER PT J AU Yu, F Song, AX Xu, CY Sun, LH Li, J Tang, L Yu, MM Yeates, TO Hu, HY He, JH AF Yu, Feng Song, Aixin Xu, Chunyan Sun, Lihua Li, Jian Tang, Lin Yu, Minmin Yeates, Todd O. Hu, Hongyu He, Jianhua TI Determining the DUF55-domain structure of human thymocyte nuclear protein 1 from crystals partially twinned by tetartohedry SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID MULTIWAVELENGTH ANOMALOUS DIFFRACTION; INTENSITY STATISTICS; EXPRESSION; CRYSTALLOGRAPHY; IDENTIFICATION; SOFTWARE; CLONING; DOMAIN; TOOLS; CELLS AB Human thymocyte nuclear protein 1 contains a unique DUF55 domain consisting of 167 residues (55-221), but its cellular function remains unclear. Crystals of DUF55 belonged to the trigonal space group P3(1), but twinning caused the data to approach apparent 622 symmetry. Two data sets were collected to 2.3 angstrom resolution. Statistical analysis confirmed that both data sets were partially twinned by tetartohedry. Tetartohedral twin fractions were estimated. After the structure had been determined, only one twofold axis of rotational pseudosymmetry was found in the crystal structure. Using the DALI program, a YTH domain, which is a potential RNA-binding domain from human YTH-domain-containing protein 2, was identified as having the most similar three-dimensional fold to that of DUF55. It is thus implied that DUF55 might be a potential RNA-related domain. C1 [Yu, Feng; Xu, Chunyan; Sun, Lihua; Li, Jian; Tang, Lin; He, Jianhua] Chinese Acad Sci, Shanghai Inst Appl Phys, Beijing 100864, Peoples R China. [Song, Aixin; Hu, Hongyu] Chinese Acad Sci, Inst Biochem & Cell Biol, State Key Lab Mol Biol, Beijing 100864, Peoples R China. [Yu, Minmin] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA USA. [Yu, Feng; Sun, Lihua; Li, Jian] Chinese Acad Sci, Grad Sch, Beijing 100864, Peoples R China. RP He, JH (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Beijing 100864, Peoples R China. EM hejh@sinap.ac.cn OI Yeates, Todd/0000-0001-5709-9839 FU Shanghai Natural Science Foundation [07JC14062]; National Natural Science Foundation [10774155] FX We would like to thank Professor Zongxiang Xia, Professor Bauke W. Dijkstra and Karin van Straaten for help in the structure refinement. Some of the diffraction data used in this study were collected at the University of Science and Technology of China; we are grateful to Professor Maikun Teng and Xiao Zhang. This work was supported by the Shanghai Natural Science Foundation (Grant No. 07JC14062) and the National Natural Science Foundation (Grant No. 10774155). NR 41 TC 3 Z9 4 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2009 VL 65 BP 212 EP 219 DI 10.1107/S0907444908041474 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 410DV UT WOS:000263558000002 PM 19237743 ER PT J AU McNamara, LK Watterson, DM Brunzelle, JS AF McNamara, Laurie K. Watterson, D. Martin Brunzelle, Joseph S. TI Structural insight into nucleotide recognition by human death-associated protein kinase SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID CRYSTAL-STRUCTURE; CATALYTIC ACTIVITY; TUMOR SUPPRESSION; APOPTOSIS; SUBSTRATE; ISCHEMIA; COMPLEX; INJURY; DOMAIN; MODEL AB Death-associated protein kinase (DAPK) is a member of the Ca(2+)/calmodulin-regulated family of serine/threonine protein kinases. The role of the kinase activity of DAPK in eukaryotic cell apoptosis and the ability of bioavailable DAPK inhibitors to rescue neuronal death after brain injury have made it a drug-discovery target for neurodegenerative disorders. In order to understand the recognition of nucleotides by DAPK and to gain insight into DAPK catalysis, the crystal structure of human DAPK was solved in complex with ADP and Mg(2+) at 1.85 angstrom resolution. ADP is a product of the kinase reaction and product release is considered to be the rate-limiting step of protein kinase catalytic cycles. The structure of DAPK ADP-Mg(2+) was compared with a newly determined DAPK AMP-PNP-Mg(2+) structure and the previously determined apo DAPK structure (PDB code 1jks). The comparison shows that nucleotide-induced changes are localized to the glycine-rich loop region of DAPK. C1 [Watterson, D. Martin; Brunzelle, Joseph S.] Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Evanston, IL 60208 USA. [McNamara, Laurie K.; Watterson, D. Martin] Northwestern Univ, Ctr Drug Discovery & Chem Biol, Chicago, IL 60611 USA. [Brunzelle, Joseph S.] Argonne Natl Lab, Adv Photon Source, Life Sci Collaborat Access Team, Argonne, IL 60439 USA. RP Brunzelle, JS (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Evanston, IL 60208 USA. EM j-brunzelle@northwestern.edu OI Watterson, Daniel/0000-0001-7605-5866 FU National Institutes of Health [NS047586, NS056051]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109Eng-38] FX We thank Drs Ludmilla Shuvalova, George Minasov and Wayne Anderson for their assistance and advice. This research was supported by National Institutes of Health awards NS047586 and NS056051 (DMW). Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109Eng-38. NR 28 TC 10 Z9 10 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2009 VL 65 BP 241 EP 248 DI 10.1107/S0907444908043679 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 410DV UT WOS:000263558000005 PM 19237746 ER PT J AU Urzhumtseva, L Afonine, PV Adams, PD Urzhumtsev, A AF Urzhumtseva, Ludmila Afonine, Pavel V. Adams, Paul D. Urzhumtsev, Alexandre TI Crystallographic model quality at a glance SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID LEAST-SQUARES REFINEMENT; PROTEIN DATA-BANK; MACROMOLECULAR STRUCTURES; EXPECTED VALUES; VALIDATION; ACCURATE; TARGETS; DEVIATE; RATIO AB A crystallographic macromolecular model is typically characterized by a list of quality criteria, such as R factors, deviations from ideal stereochemistry and average B factors, which are usually provided as tables in publications or in structural databases. In order to facilitate a quick model-quality evaluation, a graphical representation is proposed. Each key parameter such as R factor or bond-length deviation from 'ideal values' is shown graphically as a point on a 'ruler'. These rulers are plotted as a set of lines with the same origin, forming a hub and spokes. Different parts of the rulers are coloured differently to reflect the frequency (red for a low frequency, blue for a high frequency) with which the corresponding values are observed in a reference set of structures determined previously. The points for a given model marked on these lines are connected to form a polygon. A polygon that is strongly compressed or dilated along some axes reveals unusually low or high values of the corresponding characteristics. Polygon vertices in 'red zones' indicate parameters which lie outside typical values. C1 [Urzhumtsev, Alexandre] ULP, CNRS, INSERM,Inst Genet & Biol Mol & Cellulaire, Dept Biol & Genom Struct, F-67404 Illkirch Graffenstaden, France. [Urzhumtseva, Ludmila] Univ Strasbourg, CNRS, Inst Biol Mol & Cellulaire, Architecture & React ARN, F-67084 Strasbourg, France. [Afonine, Pavel V.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Urzhumtsev, Alexandre] Univ Nancy 1, Dept Phys, F-54506 Vandoeuvre Les Nancy, France. RP Urzhumtsev, A (reprint author), ULP, CNRS, INSERM,Inst Genet & Biol Mol & Cellulaire, Dept Biol & Genom Struct, 1 Rue Laurent Fries, F-67404 Illkirch Graffenstaden, France. EM sacha@igbmc.fr RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIH-NIGMS [P01GM063210]; US Department of Energy [DE AC02-05CH11231] FX PVA and PDA acknowledge financial support from NIH-NIGMS under grant No. P01GM063210 and support from the US Department of Energy under Contract No. DE AC02-05CH11231. LU and AU thank E. Westhof and D. Moras for their support of the project. We would like to thank referee 1 for a thorough review and criticisms that resulted in significant improvement of the manuscript. NR 21 TC 51 Z9 52 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2009 VL 65 BP 297 EP 300 DI 10.1107/S0907444908044296 PN 3 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 410DV UT WOS:000263558000012 PM 19237753 ER PT J AU Wells, DM Skanthakumar, S Soderholm, L Ibers, JA AF Wells, Daniel M. Skanthakumar, S. Soderholm, L. Ibers, James A. TI Neptunium(III) copper(I) diselenide SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID SELENIDES AB The title compound, NpCuSe(2), is the first ternary neptunium transition-metal chalcogenide. It was synthesized from the elements at 873 K in an evacuated fused-silica tube. Single crystals were grown by vapor transport with I(2). NpCuSe(2) crystallizes in the LaCuS(2) structure type and can be viewed as a stacking of layers of CuSe(4) tetrahedra and of double layers of NpSe(7) monocapped trigonal prisms along [100]. Because there are no Se-Se bonds in the structure, the formal oxidation states of Np/Cu/Se may be assigned as +III/+I/-II, respectively. C1 [Wells, Daniel M.; Ibers, James A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Ibers, JA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM ibers@chem.northwestern.edu FU US Department of Energy [ER-15522, DEAC02-06CH11357] FX The research was supported at Northwestern University by the US Department of Energy, Basic Energy Sciences grant ER-15522, and at Argonne National Laboratory by the US Department of Energy, OBES, Chemical Sciences Division, under contract DEAC02-06CH11357. We are indebted to Dr Richard G. Haire of Oak Ridge National Laboratory for the gift of Np metal. NR 11 TC 2 Z9 2 U1 0 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD MAR PY 2009 VL 65 BP I14 EP U97 DI 10.1107/S160053680900395X PG 7 WC Crystallography SC Crystallography GA 427RJ UT WOS:000264796100002 PM 21582032 ER PT J AU Latimer, R Podzelinska, K Soares, A Bhattacharya, A Vining, LC Jia, ZC Zechel, DL AF Latimer, Ryan Podzelinska, Kateryna Soares, Alexei Bhattacharya, Anupam Vining, Leo C. Jia, Zongchao Zechel, David L. TI Expression, purification and preliminary diffraction studies of CmlS SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID TRYPTOPHAN 7-HALOGENASE PRNA; PSEUDOMONAS-FLUORESCENS; BIOSYNTHESIS; CHLORINATION; MECHANISM; HALOGENATION; GENES AB CmlS, a flavin-dependent halogenase (FDH) present in the chloramphenicol-biosynthetic pathway in Streptomyces venezuelae, directs the dichlorination of an acetyl group. The reaction mechanism of CmlS is of considerable interest as it will help to explain how the FDH family can halogenate a wide range of substrates through a common mechanism. The protein has been recombinantly expressed in Escherichia coli and purified to homogeneity. The hanging-drop vapour-diffusion method was used to produce crystals that were suitable for X-ray diffraction. Data were collected to 2.0 angstrom resolution. The crystal belonged to space group C2, with unit-cell parameters a = 208.1, b = 57.7, c = 59.9 angstrom, beta = 97.5 degrees. C1 [Latimer, Ryan; Bhattacharya, Anupam; Zechel, David L.] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada. [Podzelinska, Kateryna; Jia, Zongchao] Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada. [Soares, Alexei] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Vining, Leo C.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada. RP Zechel, DL (reprint author), Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada. EM dlzechel@chem.queensu.ca RI Soares, Alexei/F-4800-2014 OI Soares, Alexei/0000-0002-6565-8503 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institutes of Health Research (CIHR) FX This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR). ZJ is a Canada Research Chair in Structural Biology. DLZ is the recipient of an Early Researcher Award. NR 16 TC 1 Z9 1 U1 0 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD MAR PY 2009 VL 65 BP 260 EP 263 DI 10.1107/S1744309108043091 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 413DN UT WOS:000263773200016 PM 19255478 ER PT J AU Lebensohn, RA Montagnat, M Mansuy, P Duval, P Meysonnier, J Philip, A AF Lebensohn, R. A. Montagnat, M. Mansuy, P. Duval, P. Meysonnier, J. Philip, A. TI Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals SO ACTA MATERIALIA LA English DT Article DE Ice; Creep; Microstructure; Shear bands; Micromechanical modeling ID SINGLE-CRYSTAL PLASTICITY; SELF-CONSISTENT APPROACH; NUMERICAL SIMULATIONS; STRAIN LOCALIZATION; TEXTURE DEVELOPMENT; FIELD FLUCTUATIONS; POLAR ICE; CRACK-TIP; TI3SIC2; BOUNDARY AB A Full-field formulation based on fast Fourier transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in two-dimensional columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localized bands are associated with the large internal stresses that develop during, creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighboring crystals. The predictions of the model are also discussed in relation to the deformation of columnar sea and lake ice, its well as with the mechanical behavior of granular ice of glaciers and polar ice sheets. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Lebensohn, R. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Montagnat, M.; Duval, P.; Meysonnier, J.; Philip, A.] CNRS, Lab Glaciol & Geophys Environm, F-38402 St Martin Dheres, France. [Mansuy, P.] Ctr Technol Michelin Ladoux, F-63040 Clermont Ferrand, France. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87545 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008 OI Lebensohn, Ricardo/0000-0002-3152-9105 FU Office of Basic Energy Sciences (USA) [FWP 06SCPE401]; CNRS (ST21 Department); University Joseph Fourier, Grenoble (France) FX This work was partially supported by the Office of Basic Energy Sciences. Project FWP 06SCPE401 (USA), and by CNRS (ST21 Department) and University Joseph Fourier, Grenoble (France). NR 52 TC 36 Z9 37 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2009 VL 57 IS 5 BP 1405 EP 1415 DI 10.1016/j.actamat.2008.10.057 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 422VD UT WOS:000264454900011 ER PT J AU Garten, CT AF Garten, Charles T., Jr. TI A disconnect between O horizon and mineral soil carbon - implications for soil C sequestration SO ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY LA English DT Article DE Forest soil carbon; Carbon sequestration; Litter addition; Litter exclusion; Litter quality; Nitrogen availability; Soil carbon transfers ID DISSOLVED ORGANIC-CARBON; ELEVATED CO2; NITROGEN MINERALIZATION; ABOVEGROUND LITTER; DECIDUOUS FOREST; UNITED-STATES; LEAF-LITTER; GROWTH; ROOT; FERTILIZATION AB Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO(2) concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil. (C) 2008 Elsevier Masson SAS. All rights reserved. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6036, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov FU U.S. Department of Energy's office of Science, Biological and Environmental Research [DE-AC0S-00OR22725]; UT-Battelle, LLC FX Research was sponsored by the U.S. Department of Energy's office of Science, Biological and Environmental Research funding to the Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) under contract DE-AC0S-00OR22725 with Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC. I wish to thank Bonnie Lu (retired), Tom Ashwood (retired), and Deanne Brice (ORNL) for their valuable technical assistance in the laboratory and/or field studies. The author is indebted to Paul Hanson (ORNL) whose ideas contributed a framework for the interpretation of the data and who kindly provided a helpful review of the draft manuscript. NR 48 TC 11 Z9 11 U1 1 U2 25 PU GAUTHIER-VILLARS/EDITIONS ELSEVIER PI PARIS PA 23 RUE LINOIS, 75015 PARIS, FRANCE SN 1146-609X J9 ACTA OECOL JI Acta Oecol.-Int. J. Ecol. PD MAR-APR PY 2009 VL 35 IS 2 BP 218 EP 226 DI 10.1016/j.actao.2008.10.004 PG 9 WC Ecology SC Environmental Sciences & Ecology GA 419EI UT WOS:000264201500008 ER PT J AU Arndt, O Hennrich, S Hoteling, N Jost, CJ Tomlin, BE Shergur, J Kratz, KL Mantica, PF Brown, BA Janssens, RVF Walters, WB Pfeiffer, B Wohr, A Zhu, S Broda, R Carpenter, MP Fornall, B Hecht, AA Krolas, W Lauritsen, T Pawlat, T Pereira, J Seweryniak, D Stefanesc, I Stone, JR Wrzesinski, J AF Arndt, O. Hennrich, S. Hoteling, N. Jost, C. J. Tomlin, B. E. Shergur, J. Kratz, K. -L. Mantica, P. F. Brown, B. A. Janssens, R. V. F. Walters, W. B. Pfeiffer, B. Woehr, A. Zhu, S. Broda, R. Carpenter, M. P. Fornall, B. Hecht, A. A. Krolas, W. Lauritsen, T. Pawlat, T. Pereira, J. Seweryniak, D. Stefanesc, I. Stone, J. R. Wrzesinski, J. TI STRUCTURE OF NEUTRON-RICH ODD-MASS In-127,In-129,In-131 POPULATED IN THE DECAY OF Cd-127,Cd-129,Cd-131 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID HIGH-SPIN; ISOTOPES; CD; SPECTROSCOPY; TRANSITION; ISOMERS; CD-123; SHELL; AG; PD AB New level structures are proposed for neutron-rich In-127,In-129,In-131 populated in the decay of Cd-127,Cd-129,Cd-131. No evidence for the presence of 1-particle-2-hole intruder structures in the neutron-rich In isotopes is observed. C1 [Arndt, O.; Kratz, K. -L.; Pfeiffer, B.] Johannes Gutenberg Univ Mainz, Otto Hahn Inst, MPI Chem, D-55128 Mainz, Germany. [Arndt, O.; Hennrich, S.; Jost, C. J.; Kratz, K. -L.; Pfeiffer, B.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Hoteling, N.; Shergur, J.; Mantica, P. F.; Walters, W. B.; Woehr, A.; Hecht, A. A.; Seweryniak, D.; Stefanesc, I.; Stone, J. R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hoteling, N.; Shergur, J.; Janssens, R. V. F.; Zhu, S.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Stefanesc, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60432 USA. [Tomlin, B. E.; Brown, B. A.; Pereira, J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Woehr, A.] Univ Saarlands, D-66421 Homburg, Germany. [Broda, R.; Fornall, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Pereira, J.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Arndt, O (reprint author), Johannes Gutenberg Univ Mainz, Otto Hahn Inst, MPI Chem, D-55128 Mainz, Germany. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 26 TC 12 Z9 12 U1 0 U2 1 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 437 EP 446 PG 10 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200007 ER PT J AU Gross, CJ Winger, JA Ilyushkin, SV Rykaczewski, KP Liddick, SN Darby, IG Grzywacz, RK Bingham, CR Shapira, D Mazzocchi, C Padgett, S Rajabali, MM Cartegni, L Zganjare, EF Piechaczek, A Batchelder, JC Hamilton, JH Goodin, CT Korgul, A Krolas, W AF Gross, C. J. Winger, J. A. Ilyushkin, S. V. Rykaczewski, K. P. Liddick, S. N. Darby, I. G. Grzywacz, R. K. Bingham, C. R. Shapira, D. Mazzocchi, C. Padgett, S. Rajabali, M. M. Cartegni, L. Zganjare, E. F. Piechaczek, A. Batchelder, J. C. Hamilton, J. H. Goodin, C. T. Korgul, A. Krolas, W. TI DECAY SPECTROSCOPY OF Cu75-79, Zn79-81 AND Ga83-85 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID NI-78 AB The beta-decay properties of neutron-rich fission fragments of Cu, Zn, and Ga isotopes were studied at the Holifield Radioactive Ion Beam Facility. Beams of Cu75-79, Zn79-81, and Ga83-85 were formed and delivered to two new end-stations at the facility. The Low-energy Radioactive Ion Beam Spectroscopy Station is a traditional on-line low energy (200 keV) beam line with 4 clover Ge detectors, two half-cylindrical plastic beta-detectors, and a moving tape collector. In addition, many of the beams were accelerated to above 2 MeV/u and delivered to a micro-channel plate and transmission ion chamber located just in front of the same detector setup. In both cases, fine adjustment of an isobar separator was used to enhance the isotope of interest. Excited levels in the daughters and beta-delayed neutron branching ratios were measured and used to confirm isotope identification. The decays from Cu-79 and Ga-85 were observed for the first time as was the Ge-84 2(1)(+) level populated by beta and beta n decay channels. C1 [Gross, C. J.; Rykaczewski, K. P.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Winger, J. A.; Ilyushkin, S. V.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Liddick, S. N.; Darby, I. G.; Grzywacz, R. K.; Bingham, C. R.; Mazzocchi, C.; Padgett, S.; Rajabali, M. M.; Cartegni, L.; Korgul, A.] Univ Tennessee, Dept Phys, Knoxville, TN 37966 USA. [Liddick, S. N.; Batchelder, J. C.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Zganjare, E. F.; Piechaczek, A.] Louisiana State Univ, Dept Phys, Baton Rouge, LA 70803 USA. [Hamilton, J. H.; Goodin, C. T.; Korgul, A.; Krolas, W.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Korgul, A.; Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Korgul, A.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Krolas, W.] Inst Nucl Phys, PAN, PL-31342 Krakow, Poland. RP Gross, CJ (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM grosscj@ornl.gov RI Krolas, Wojciech/N-9391-2013 NR 14 TC 12 Z9 12 U1 0 U2 2 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 447 EP 455 PG 9 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200008 ER PT J AU Crawford, HL Janssens, RVF Mantica, PF Berryman, JS Broda, R Carpenter, MP Fornal, B Grinyer, GF Hoteling, N Kay, B Lauritsen, T Minamisono, K Stefanescu, I Stoker, JB Walters, WB Zhu, S AF Crawford, H. L. Janssens, R. V. F. Mantica, P. F. Berryman, J. S. Broda, R. Carpenter, M. P. Fornal, B. Grinyer, G. F. Hoteling, N. Kay, B. Lauritsen, T. Minamisono, K. Stefanescu, I. Stoker, J. B. Walters, W. B. Zhu, S. TI beta DECAY STUDIES OF NEUTRON-RICH NUCLEI NEAR Ca-52 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID BEAMS AB The beta-decay and isomeric properties of Sc-54, K-50 and Ca-53 are presented, and their implications with respect to the goodness of the N = 32 sub-shell closure discussed. C1 [Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Grinyer, G. F.; Minamisono, K.; Stoker, J. B.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Janssens, R. V. F.; Carpenter, M. P.; Hoteling, N.; Kay, B.; Lauritsen, T.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Broda, R.; Fornal, B.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Hoteling, N.; Stefanescu, I.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Crawford, HL (reprint author), Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. EM crawford@nscl.msu.edu RI Crawford, Heather/E-2208-2011; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 11 TC 7 Z9 7 U1 1 U2 1 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 481 EP 484 PG 4 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200012 ER PT J AU Riley, MA Aguilar, A Evans, AO Hartley, DJ Lagergren, K Ollier, J Paul, ES Pipidis, A Simpson, J Teal, C Twin, PJ Wang, X Appelbe, DE Campbell, DB Carpenter, MP Clark, RM Cromaz, M Darby, IG Fallon, P Garg, U Janssens, RVF Joss, DT Kondev, FG Lauritsen, T Lee, IY Lister, CJ Macchiavelli, AO Nolan, PJ Petri, M Rigby, SV Thompson, J Unsworth, C Ward, D Zhu, S Ragnarsson, I AF Riley, M. A. Aguilar, A. Evans, A. O. Hartley, D. J. Lagergren, K. Ollier, J. Paul, E. S. Pipidis, A. Simpson, J. Teal, C. Twin, P. J. Wang, X. Appelbe, D. E. Campbell, D. B. Carpenter, M. P. Clark, R. M. Cromaz, M. Darby, I. G. Fallon, P. Garg, U. Janssens, R. V. F. Joss, D. T. Kondev, F. G. Lauritsen, T. Lee, I. Y. Lister, C. J. Macchiavelli, A. O. Nolan, P. J. Petri, M. Rigby, S. V. Thompson, J. Unsworth, C. Ward, D. Zhu, S. Ragnarsson, I. TI STRONGLY DEFORMED NUCLEAR SHAPES AT ULTRA-HIGH SPIN AND SHAPE COEXISTENCE IN N similar to 90 NUCLEI SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID PARTICLE-HOLE EXCITATIONS; ROTATIONAL BANDS; YRAST LEVELS; ER-158; TERMINATION; DISCONTINUITY; YB-158 AB The N similar to 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N similar to 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50 (h) over bar, marking a return to collectivity that extends discrete gamma-ray spectroscopy to well over 60 (h) over bar. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space. C1 [Riley, M. A.; Aguilar, A.; Lagergren, K.; Pipidis, A.; Teal, C.; Wang, X.; Campbell, D. B.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Evans, A. O.; Paul, E. S.; Twin, P. J.; Nolan, P. J.; Petri, M.; Rigby, S. V.; Thompson, J.; Unsworth, C.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Ollier, J.; Simpson, J.; Appelbe, D. E.; Joss, D. T.; Lister, C. J.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Carpenter, M. P.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Clark, R. M.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.; Ward, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Garg, U.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. RP Riley, MA (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. EM mriley@physics.fsu.edu RI Carpenter, Michael/E-4287-2015; Petri, Marina/H-4630-2016 OI Carpenter, Michael/0000-0002-3237-5734; Petri, Marina/0000-0002-3740-6106 NR 32 TC 5 Z9 5 U1 0 U2 0 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 513 EP 522 PG 10 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200017 ER PT J AU Hamilton, JH Luo, YX Zhu, SJ Rasmussen, JO Ramayya, AV Goodin, C Li, K Hwang, JK Liu, S Almehed, D Frauendorf, S Dimitrov, V Zhang, JY Che, XL Jang, Z Stefanescu, I Gelberg, A Ter-Akopian, GM Daniel, AV Lee, IY Ding, HB Xu, RQ Wang, JG Xu, Q Stoyer, MA Donangelo, R Stone, NJ AF Hamilton, J. H. Luo, Y. X. Zhu, S. J. Rasmussen, J. O. Ramayya, A. V. Goodin, C. Li, K. Hwang, J. K. Liu, S. Almehed, D. Frauendorf, S. Dimitrov, V. Zhang, Jing-ye Che, X. L. Jang, Z. Stefanescu, I. Gelberg, A. Ter-Akopian, G. M. Daniel, A. V. Lee, I. Y. Ding, H. -B. Xu, R. Q. Wang, J. -G. Xu, Q. Stoyer, M. A. Donangelo, R. Stone, N. J. TI NEW BAND STRUCTURES IN NEUTRON-RICH Mo AND Ru ISOTOPES SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID CHIRAL VIBRATIONS; NUCLEI; SPECTROSCOPY; FISSION AB Rotational bands in (110,112)Ru and (108)Mo have been investigated by means of gamma-gamma-gamma and gamma-gamma(theta) coincidences of prompt gamma rays emitted in the spontaneous fission of (252)Cf. New Delta I = 1 negative parity doublet bands are found. These bands in (110,112)Ru and (108)Mo have all the properties expected for chiral vibrations. Microscopic calculations that combine the TAC mean-field with random phase approximation support this interpretation. C1 [Hamilton, J. H.; Luo, Y. X.; Zhu, S. J.; Ramayya, A. V.; Goodin, C.; Li, K.; Hwang, J. K.; Liu, S.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zhu, S. J.; Che, X. L.; Jang, Z.; Ding, H. -B.; Xu, R. Q.; Wang, J. -G.; Xu, Q.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Almehed, D.; Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Dimitrov, V.] Idaho State Univ, IAC, Pocatello, ID 83209 USA. [Zhang, Jing-ye; Stone, N. J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Stefanescu, I.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gelberg, A.] Univ Cologne, Dept Phys, D-50937 Cologne, Germany. [Ter-Akopian, G. M.; Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Donangelo, R.] Univ Fed Rio de Janeiro, BR-68518 Rio De Janeiro, RG, Brazil. RP Hamilton, JH (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. EM yxluo@lbl.gov RI Jiang, Zhuo/E-3110-2010; OI Hwang, Jae-Kwang/0000-0002-4100-3473 NR 30 TC 0 Z9 0 U1 0 U2 2 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 523 EP 533 PG 11 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200018 ER PT J AU Wieleczko, JP Bonnet, E del Campo, JG La Commara, M Vigilante, M Frankland, JD Chbihi, A Rosato, E Galindo-Uribarri, A Shapira, D Spadaccini, G Bougault, R Beck, C Borderie, B Dayras, R De Angelis, G Lautesse, P Le Neindre, N Nalpas, L Onofrio, AD Parlog, M Pierroutsakou, D Rejmund, F Rivet, MF Romoli, M Roy, R Tamain, B AF Wieleczko, J. P. Bonnet, E. del Campo, J. Gomez La Commara, M. Vigilante, M. Frankland, J. D. Chbihi, A. Rosato, E. Galindo-Uribarri, A. Shapira, D. Spadaccini, G. Bougault, R. Beck, C. Borderie, B. Dayras, R. De Angelis, G. Lautesse, Ph. Le Neindre, N. Nalpas, L. Onofrio, A. D. Parlog, M. Pierroutsakou, D. Rejmund, F. Rivet, M. F. Romoli, M. Roy, R. Tamain, B. TI N/Z INFLUENCE ON DISINTEGRATION MODES OF COMPOUND NUCLEI SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND AB Investigations on the influence of the neutron enrichment on the decay channels of excited nuclei are presented. Characteristics of fragments with charge 6 <= Z <= 28 emitted in (78,82)Kr+(40)Ca at 5.5 MeV/A reactions were measured at the GANIL facility. Data are compatible with an emission process from compound nucleus and are discussed in the framework of the transition state model. C1 [Wieleczko, J. P.; Bonnet, E.; Frankland, J. D.; Chbihi, A.; Rejmund, F.] GANIL, CEA, F-14076 Caen, France. [Wieleczko, J. P.; Bonnet, E.; Frankland, J. D.; Chbihi, A.; Rejmund, F.] CNRS, IN2P3, F-14076 Caen, France. [del Campo, J. Gomez; Galindo-Uribarri, A.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [La Commara, M.; Vigilante, M.; Rosato, E.; Spadaccini, G.; Pierroutsakou, D.; Romoli, M.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Bougault, R.; Le Neindre, N.; Parlog, M.; Tamain, B.] ENSICAEN, CNRS, LPC, IN2P3, F-14050 Caen, France. [Bougault, R.; Le Neindre, N.; Parlog, M.; Tamain, B.] Univ Caen, F-14050 Caen, France. [Beck, C.] CNRS, IPHC, IN2P3CNRS, F-91406 Orsay 2, France. [Borderie, B.; Rivet, M. F.] CNRS, IPNO, IN2P3, F-91406 Orsay, France. [Dayras, R.; Nalpas, L.] CEA Saclay, IRFU, SPhN, F-91191 Gif Sur Yvette, France. [De Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. [Lautesse, Ph.] CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Lautesse, Ph.] Univ Villeurbanne, F-69622 Villeurbanne, France. [Onofrio, A. D.] Univ Naples Federico 2, Dipartimento Sci Ambientali, I-81100 Caserta, Italy. [Roy, R.] Univ Laval, Nucl Phys Lab, Quebec City, PQ, Canada. RP Wieleczko, JP (reprint author), GANIL, CEA, BP 55027, F-14076 Caen, France. EM wieleczko@ganil.fr RI Rosato, 357/E-1555-2011; Frankland, John/I-4768-2013; spadaccini, giulio/K-7633-2015 OI Frankland, John/0000-0002-4907-5041; spadaccini, giulio/0000-0002-6327-432X NR 4 TC 8 Z9 8 U1 1 U2 2 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 577 EP 580 PG 4 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200023 ER PT J AU Wadsworth, R Singh, BSN Steer, AN Jenkins, DC Bentley, MA Brock, T Davies, P Glover, R Pattabiraman, NS Scholey, C Grahn, T Greenlees, PT Jones, P Jakobsson, U Julin, R Juutinen, S Ketelhut, S Leino, M Nyman, M Perua, P Pakarinen, J Rahkila, P Ruotslainen, P Sorri, J Uusitalo, J Lister, CJ Butler, PA Dimmock, M Joss, DT Thomson, J Rinta-Antila, S Cederwall, B Hadinia, B Sandzelius, M Atac, A Betterman, L Blazhev, A Braun, N Finke, F Geibel, K Ilie, G Iwasaki, H Jolie, J Reiter, P Scholl, C Warr, N Boutachkov, P Caceres, L Domingo, C Engert, T Farinon, F Gerl, J Goel, N Gorska, M Grawe, H Kurz, N Kojuharov, I Pietri, S Nociforo, C Prochazka, A Wollersheim, HJ Eppinger, K Faestermann, T Hinke, C Hoischen, R Kruecken, R Gottardo, A Liu, Z Woods, P Grebosz, J Merchant, E Nyberg, J Soderstrom, PA Podolyak, Z Regan, P Steer, S Pfutzner, M Rudolph, D AF Wadsworth, R. Singh, B. S. Nara Steer, A. N. Jenkins, D. C. Bentley, M. A. Brock, T. Davies, P. Glover, R. Pattabiraman, N. S. Scholey, C. Grahn, T. Greenlees, P. T. Jones, P. Jakobsson, U. Julin, R. Juutinen, S. Ketelhut, S. Leino, M. Nyman, M. Perua, P. Pakarinen, J. Rahkila, P. Ruotslainen, P. Sorri, J. Uusitalo, J. Lister, C. J. Butler, P. A. Dimmock, M. Joss, D. T. Thomson, J. Rinta-Antila, S. Cederwall, B. Hadinia, B. Sandzelius, M. Atac, A. Betterman, L. Blazhev, A. Braun, N. Finke, F. Geibel, K. Ilie, G. Iwasaki, H. Jolie, J. Reiter, P. Scholl, C. Warr, N. Boutachkov, P. Caceres, L. Domingo, C. Engert, T. Farinon, F. Gerl, J. Goel, N. Gorska, M. Grawe, H. Kurz, N. Kojuharov, I. Pietri, S. Nociforo, C. Prochazka, A. Wollersheim, H-J. Eppinger, K. Faestermann, T. Hinke, C. Hoischen, R. Kruecken, R. Gottardo, A. Liu, Z. Woods, P. Grebosz, J. Merchant, E. Nyberg, J. Soderstrom, P-A. Podolyak, Z. Regan, P. Steer, S. Pfutzner, M. Rudolph, D. TI THE NORTHWEST FRONTIER: SPECTROSCOPY OF N similar to Z NUCLEI BELOW MASS 100 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID COULOMB ENERGY DIFFERENCES; PROTON-DRIP-LINE; RP-PROCESS; STATES; AG-94 AB The spectroscopy and structure of excited states of N similar to Z nuclei in the mass 70-100 region has been investigated using two techniques. In the A similar to 70-80 region fusion evaporation reactions coupled with the recoil-beta-tagging method have been employed at Jyvaskyla to study low-lying states in odd-odd N = Z nuclei. Results from these and other data for known odd-odd nuclei above mass 60 will be discussed. In the heavier mass 90 region a fragmentation experiment has been performed using the RIS-ING/FRS setup at GSI. This experiment was primarily aimed at searching for spin gap isomers in nuclei around A similar to 96. The objectives of the latter experiment will be discussed. C1 [Wadsworth, R.; Singh, B. S. Nara; Steer, A. N.; Jenkins, D. C.; Bentley, M. A.; Brock, T.; Davies, P.; Glover, R.; Pattabiraman, N. S.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Scholey, C.; Grahn, T.; Greenlees, P. T.; Jones, P.; Jakobsson, U.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Perua, P.; Pakarinen, J.; Rahkila, P.; Ruotslainen, P.; Sorri, J.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, Jyvaskyla, Finland. [Lister, C. J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Grahn, T.; Pakarinen, J.; Butler, P. A.; Dimmock, M.; Joss, D. T.; Thomson, J.; Rinta-Antila, S.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Cederwall, B.; Hadinia, B.; Sandzelius, M.] KTH Stockholm, Dept Phys, Stockholm, Sweden. [Atac, A.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Betterman, L.; Blazhev, A.; Braun, N.; Finke, F.; Geibel, K.; Ilie, G.; Iwasaki, H.; Jolie, J.; Reiter, P.; Scholl, C.; Warr, N.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Boutachkov, P.; Caceres, L.; Domingo, C.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Gorska, M.; Grawe, H.; Kurz, N.; Kojuharov, I.; Pietri, S.; Nociforo, C.; Prochazka, A.; Wollersheim, H-J.] GSI Lab, D-64291 Darmstadt, Germany. [Caceres, L.] Univ Autonoma Madrid, Dept Phys, E-28049 Madrid, Spain. [Eppinger, K.; Faestermann, T.; Hinke, C.; Hoischen, R.; Kruecken, R.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Gottardo, A.; Liu, Z.; Woods, P.] Univ Edinburgh, Dept Phys, Edinburgh, Midlothian, Scotland. [Grebosz, J.] PAN, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Merchant, E.] Univ Nacl Colombia, Bogota, Colombia. [Nyberg, J.; Soderstrom, P-A.] Uppsala Univ, Div Phys, S-75121 Uppsala, Sweden. [Podolyak, Z.; Regan, P.; Steer, S.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. [Pfutzner, M.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Hoischen, R.; Rudolph, D.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. RP Wadsworth, R (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RI Gerl, Juergen/A-3255-2011; Scholey, Catherine/G-2720-2014; Cederwall, Bo/M-3337-2014; Kruecken, Reiner/A-1640-2013; Pakarinen, Janne/F-6695-2010 OI Scholey, Catherine/0000-0002-8743-6071; Cederwall, Bo/0000-0003-1771-2656; Kruecken, Reiner/0000-0002-2755-8042; Faestermann, Thomas/0000-0002-6603-8787; Pakarinen, Janne/0000-0001-8944-8757 NR 23 TC 4 Z9 4 U1 0 U2 4 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 611 EP 620 PG 10 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200031 ER PT J AU Seweryniak, D Carpenter, MP Gros, S Hecht, AA Hoteling, N Janssens, RVF Khoo, TL Lauritsen, T Lister, CJ Lotay, G Peterson, D Robinson, AP Walters, WB Wang, X Woods, PJ Zhu, S AF Seweryniak, D. Carpenter, M. P. Gros, S. Hecht, A. A. Hoteling, N. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Lister, C. J. Lotay, G. Peterson, D. Robinson, A. P. Walters, W. B. Wang, X. Woods, P. J. Zhu, S. TI NEW RESULTS NEAR Sn-100: OBSERVATION OF SINGLE-NEUTRON STATES IN Sn-101 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID DECAY AB A search for in-beam gamma-ray transitions in Sn-101, which contains only one neutron outside the Sn-100 core, using a novel approach was carried out at the Argonne Tandem-Linac System. Sn-101 nuclei were produced using the Ti-46(Ni-58, 3n)Sn-101 fusion-evaporation reaction. Beta-delayed protons with energies and decay times consistent with previous Sn-101 decay studies were observed at the focal plane of the Fragment Mass Analyzer. In-beam gamma rays were detected in the Gammasphere Ge-detector array and were correlated with the Sn-101 beta-delayed protons using the Recoil-Decay Tagging method. As a result, a gamma-ray transition between the single-neutron nu g(7/2) and nu d(5/2) states situated at the Fermi surface was identified. The measured nu g(7/2)-nu d(5/2) energy splitting was compared with predictions corresponding to various mean-field potentials and was used to calculate multi-neutron configurations in light Sri isotopes. Similar approach can be used to study core excitations in Sn-101 and other exotic nuclei near Sn-100. C1 [Seweryniak, D.; Carpenter, M. P.; Gros, S.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Peterson, D.; Robinson, A. P.; Wang, X.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hecht, A. A.; Hoteling, N.; Walters, W. B.] Univ Maryland, College Pk, MD 20742 USA. [Lotay, G.; Woods, P. J.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Wang, X.] Univ Notre Dame, Notre Dame, IN 46556 USA. RP Seweryniak, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 10 TC 2 Z9 2 U1 0 U2 0 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 621 EP 627 PG 7 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200032 ER PT J AU Pawlat, T Broda, R Fornal, B Krolas, W Wrzesinski, J Janssens, RVF Zhu, S Carpenter, MP Walters, WB Hoteling, N AF Pawlat, T. Broda, R. Fornal, B. Krolas, W. Wrzesinski, J. Janssens, R. V. F. Zhu, S. Carpenter, M. P. Walters, W. B. Hoteling, N. TI EXPERIMENTAL STUDY OF NEUTRON-RICH NUCLEI Rb-89 AND Rb-91 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND AB Neutron-rich Rb-89,Rb-91 nuclei populated as fission products in heavy-ion reactions have been studied with the Gammasphere array. The previously known level schemes have been extended to higher excitation energies and spins. Spin and parity assignments were based on angular correlation analyses. A value of T-1/2 = 8(2) ns was extracted for the isomeric g(9/2) state in Rb-89. C1 [Pawlat, T.; Broda, R.; Fornal, B.; Krolas, W.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Janssens, R. V. F.; Zhu, S.; Carpenter, M. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Walters, W. B.; Hoteling, N.] Univ Maryland, College Pk, MD 20742 USA. RP Pawlat, T (reprint author), H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 6 TC 6 Z9 6 U1 1 U2 1 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 629 EP 632 PG 4 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200033 ER PT J AU Matejska-Minda, M Fornal, B Broda, R Krolas, W Mazurek, K Pawlat, T Wrzesinski, J Carpenter, MP Janssens, RVF Zhu, S AF Matejska-Minda, M. Fornal, B. Broda, R. Krolas, W. Mazurek, K. Pawlat, T. Wrzesinski, J. Carpenter, M. P. Janssens, R. V. F. Zhu, S. TI YRAST STRUCTURE OF Zr-97 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND AB The yrast structure of the neutron-rich nucleus Zr-97 has been studied using fission of target-like products in the reaction of a Ca-48 beam on a thick U-238 target. The level scheme known from the previous studies up to an energy and spin of approx. 4619 keV and 23/2(-), respectively, has been extended by about 3 MeV and a few units of angular momentum. The located structure can be discussed in terms of shell model configurations. C1 [Matejska-Minda, M.; Fornal, B.; Broda, R.; Krolas, W.; Mazurek, K.; Pawlat, T.; Wrzesinski, J.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Matejska-Minda, M (reprint author), Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 8 TC 2 Z9 2 U1 0 U2 0 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 633 EP 637 PG 5 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200034 ER PT J AU Matos, M Estrade, A Amthor, AM Bazin, D Becerril, A Elliot, T Famiano, M Gade, A Galaviz, D Lorusso, G Pereira, J Portillo, M Rogers, A Schatz, H Shapira, D Smith, E Stolz, A Wallace, M AF Matos, M. Estrade, A. Amthor, A. M. Bazin, D. Becerril, A. Elliot, T. Famiano, M. Gade, A. Galaviz, D. Lorusso, G. Pereira, J. Portillo, M. Rogers, A. Schatz, H. Shapira, D. Smith, E. Stolz, A. Wallace, M. TI TIME-OF-FLIGHT MASS MEASUREMENTS AND THEIR IMPORTANCE FOR NUCLEAR ASTROPHYSICS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID RP-PROCESS AB Atomic masses play an important role in nuclear astrophysics. The lack of experimental values for nuclides of interest has triggered a rapid development of new mass measurement devices around the world, including Time-of-Flight (TOF) mass measurements offering an access to the most exotic nuclides. Recently, the TOF-B rho technique that includes a position measurement for magnetic rigidity correction has been implemented at the NSCL. An experiment with a similar TOF-B rho technique is approved and planned at the next generation radioactive beam facility (RIBF) at RIKEN. C1 [Matos, M.; Estrade, A.; Amthor, A. M.; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Lorusso, G.; Pereira, J.; Portillo, M.; Rogers, A.; Schatz, H.; Stolz, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Estrade, A.; Amthor, A. M.; Becerril, A.; Elliot, T.; Gade, A.; Lorusso, G.; Rogers, A.; Schatz, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Famiano, M.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Shapira, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Smith, E.] Ohio State Univ, Columbus, OH 43210 USA. [Wallace, M.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Matos, M (reprint author), Louisiana State Univ, ORNL, Oak Ridge, TN 37831 USA. RI Galaviz Redondo, Daniel/A-7325-2008; Matos, Milan/G-6947-2012 OI Galaviz Redondo, Daniel/0000-0003-2992-4496; Matos, Milan/0000-0003-1722-9509 NR 13 TC 2 Z9 2 U1 0 U2 2 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 695 EP 698 PG 4 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200045 ER PT J AU Moazen, BH Blackmon, JC Bardayan, DW Chae, KY Chipps, K Grzywacz, KL Kozub, RL Matei, C Nesaraja, CD Pain, SD Shriner, JF Smith, MS AF Moazen, B. H. Blackmon, J. C. Bardayan, D. W. Chae, K. Y. Chipps, K. Grzywacz, K. L. Kozub, R. L. Matei, C. Nesaraja, C. D. Pain, S. D. Shriner, J. F., Jr. Smith, M. S. TI MEASUREMENT OF THE 330 keV RESONANCE IN F-18(p, alpha)O-15 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND AB While recent measurements have substantially improved our understanding of the F-18(p, alpha)O-15 reaction that is important in novae, the production of F-18 is still uncertain by more than 2 orders of magnitude, due in large part to the contribution of a resonance located at E-cm = 330 keV. We developed a new technique to study resonant (p, alpha) reactions and employed it to measure properties of the E-cm = 183 keV resonance in O-17(p, alpha)N-14 which had been previously reported to decrease F-18 production in ONeMg novae by as much as a factor of 10. The previous results were confirmed using the new technique and we now propose to use this technique to study the F-18(p, alpha)O-15 reaction. C1 [Moazen, B. H.; Chae, K. Y.; Grzywacz, K. L.; Nesaraja, C. D.] Univ Tennessee, Knoxville, TN 37996 USA. [Blackmon, J. C.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chipps, K.] Colorado Sch Mines, Golden, CO 80401 USA. [Kozub, R. L.; Shriner, J. F., Jr.] Tennessee Technol Univ, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Moazen, BH (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Matei, Catalin/B-2586-2008; OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Matei, Catalin/0000-0002-2254-3853; Nesaraja, Caroline/0000-0001-5571-8341 NR 8 TC 0 Z9 0 U1 0 U2 0 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 699 EP 703 PG 5 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200046 ER PT J AU Doan, QT Curien, D Stezowski, O Dudek, J Mazurek, K Gozdz, A Piot, J Duchene, G Gall, B Molique, H Richet, M Medina, P Guinet, D Redon, N Schmitt, C Jones, P Peura, P Ketelhut, S Nyman, M Jakobsson, U Greenlees, PT Julin, R Juutinen, S Rahkila, P Maj, A Zuber, K Bednarczyk, P Schunck, N Dobaczewski, J Astier, A Deloncle, I Verney, D De Angelis, G Gerl, J AF Doan, Q. T. Curien, D. Stezowski, O. Dudek, J. Mazurek, K. Gozdz, A. Piot, J. Duchene, G. Gall, B. Molique, H. Richet, M. Medina, P. Guinet, D. Redon, N. Schmitt, Ch. Jones, P. Peura, P. Ketelhut, S. Nyman, M. Jakobsson, U. Greenlees, P. T. Julin, R. Juutinen, S. Rahkila, P. Maj, A. Zuber, K. Bednarczyk, P. Schunck, N. Dobaczewski, J. Astier, A. Deloncle, I. Verney, D. De Angelis, G. Gerl, J. TI SEARCH FOR FINGERPRINTS OF TETRAHEDRAL SYMMETRY IN Gd-156 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND AB Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2 transitions at the bottom of the odd-spin negative-parity band in Gd-156. The present study reports on experiment performed to address this phenomenon. It allowed to remove certain ambiguouities related to the intra-band E2 transitions in the negative-parity bands, to determine the new inter-band transitions and reduced probability ratios B(E2)/B(E1) and, for the first time, to determine the experimental uncertainties related to the latter observable. C1 [Doan, Q. T.; Stezowski, O.; Guinet, D.; Redon, N.; Schmitt, Ch.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Curien, D.; Dudek, J.; Piot, J.; Duchene, G.; Gall, B.; Molique, H.; Richet, M.; Medina, P.] CNRS, IN2P3, ULP, IPHC DRS, F-67037 Strasbourg, France. [Gozdz, A.] Marie Curie Sklodowska Univ, Fac Math Phys & Comp Sci, PL-20031 Lublin, Poland. [Jones, P.; Peura, P.; Ketelhut, S.; Nyman, M.; Jakobsson, U.; Greenlees, P. T.; Julin, R.; Juutinen, S.; Rahkila, P.; Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Mazurek, K.; Maj, A.; Zuber, K.] PAN, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Schunck, N.] ORNL, Div Phys, Oak Ridge, TN 37831 USA. [Dobaczewski, J.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Astier, A.; Deloncle, I.] CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Verney, D.] CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [De Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Gerl, J.] GSI Darmstadt, D-64291 Darmstadt, Germany. RP Doan, QT (reprint author), Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. RI Gerl, Juergen/A-3255-2011; DUDEK, Jerzy/A-3584-2013; CURIEN, Dominique/B-6718-2013; OI Jakobsson, Ulrika/0000-0001-9741-141X; Peura, Pauli/0000-0002-8541-0169; DUDEK, Jerzy/0000-0001-5864-6339; Schunck, Nicolas/0000-0002-9203-6849 NR 6 TC 12 Z9 12 U1 0 U2 4 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 725 EP 730 PG 6 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200049 ER PT J AU Staszczak, A Wong, CY AF Staszczak, A. Wong, C. Y. TI TOROIDAL SUPER-HEAVY NUCLEI IN SKYRME-HARTREE-FOCK APPROACH SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID HARMONIC-OSCILLATOR BASIS; BUBBLE NUCLEI; BOGOLYUBOV EQUATIONS; PROGRAM; HFODD; MULTIFRAGMENTATION; FRAGMENTATION; COLLISIONS; VERSION AB Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of super-heavy elements. For nuclei with a sufficient oblate deformation (Q20 <= -200 b), it becomes energetically favourable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus = 1) SHF+BCS solution relative to the compact (genus = 0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum. C1 [Staszczak, A.] Marie Curie Sklodowska Univ, Inst Phys, Lublin, Poland. [Staszczak, A.; Wong, C. Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Staszczak, A (reprint author), Marie Curie Sklodowska Univ, Inst Phys, Lublin, Poland. EM andrzej.staszczak@poczta.umcs.lublin.pl OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 25 TC 8 Z9 8 U1 0 U2 0 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 753 EP 757 PG 5 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200054 ER PT J AU Myalski, S Maj, A Podolyak, Z Becker, F Bednarczyk, P Benzoni, G Blank, B Brandau, C Bruce, AM Caceres, L Camera, F Catford, WN Cullen, IJ Dombradi, Z Doornenbal, P Estevez, E Garnsworthy, AB Geissel, H Gelletly, W Gerl, J Corska, M Grawe, H Grebosz, J Heinz, A Hoischen, R Ilie, G Jones, GA Jungclaus, A Kelic, A Kmiecik, M Kojouharov, I Kondev, FG Kurtukian-Nieto, T Kurz, N Lalkovski, S Liu, Z Montes, F Pfutzner, M Pietri, S Prokopowicz, W Regan, PH Rudolph, D Saito, T Schaffner, H Schwertel, S Shizuma, T Simon, AJ Steer, SJ Tashenov, S Walker, PM Werner-Malento, E Wieland, O Wollersheim, HJ AF Myalski, S. Maj, A. Podolyak, Zs. Becker, F. Bednarczyk, P. Benzoni, G. Blank, B. Brandau, C. Bruce, A. M. Caceres, L. Camera, F. Catford, W. N. Cullen, I. J. Dombradi, Zs. Doornenbal, P. Estevez, E. Garnsworthy, A. B. Geissel, H. Gelletly, W. Gerl, J. Corska, M. Grawe, H. Grebosz, J. Heinz, A. Hoischen, R. Ilie, G. Jones, G. A. Jungclaus, A. Kelic, A. Kmiecik, M. Kojouharov, I. Kondev, F. G. Kurtukian-Nieto, T. Kurz, N. Lalkovski, S. Liu, Z. Montes, F. Pfuetzner, M. Pietri, S. Prokopowicz, W. Regan, P. H. Rudolph, D. Saito, T. Schaffner, H. Schwertel, S. Shizuma, T. Simon, A. J. Steer, S. J. Tashenov, S. Walker, P. M. Werner-Malento, E. Wieland, O. Wollersheim, H. J. TI ISOMERIC RATIOS FOR NUCLEI WITH Z=62-67 AND A=142-152 PRODUCED IN THE RELATIVISTIC FRAGMENTATION OF Pb-208 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID HIGH-SPIN STATES; ANGULAR-MOMENTUM; SPECTROSCOPY; GD-144; N=82 AB Isomeric states in nuclei with Z = 62-67 and A = 142-152 produced in the fragmentation of the relativistic (1 GeV/nucleon) Pb-208 beam were investigated. Isomeric ratios were determined for 10 isomeric states. Significant differences between theoretical and experimental values were observed. C1 [Myalski, S.; Maj, A.; Bednarczyk, P.; Grebosz, J.; Kmiecik, M.] Inst Fiz Jadrowej PAN, Krakow, Poland. [Podolyak, Zs.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Garnsworthy, A. B.; Gelletly, W.; Jones, G. A.; Liu, Z.; Pietri, S.; Regan, P. H.; Simon, A. J.; Steer, S. J.; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 5XH, Surrey, England. [Becker, F.; Bednarczyk, P.; Caceres, L.; Doornenbal, P.; Geissel, H.; Gerl, J.; Corska, M.; Grawe, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Wollersheim, H. J.] GSI Darmstadt, D-6100 Darmstadt, Germany. [Benzoni, G.; Camera, F.; Wieland, O.] Univ Milan, Milan, Italy. [Benzoni, G.; Camera, F.; Wieland, O.] INFN Sez, Milan, Italy. [Blank, B.; Shizuma, T.] CENBG, Gradignan, France. [Bruce, A. M.] Univ Brighton, Sch Engn, Brighton, E Sussex, England. [Caceres, L.; Jungclaus, A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Dombradi, Zs.] Atommagkutato Intezete, Debrecen, Hungary. [Kurtukian-Nieto, T.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Garnsworthy, A. B.] Yale Univ, WNSL, New Haven, CT USA. [Heinz, A.; Ilie, G.] Univ Cologne, IKP, Cologne, Germany. [Hoischen, R.; Rudolph, D.] Lund Univ, Inst Fys, Lund, Sweden. [Ilie, G.] IFIN HH, Bucharest, Romania. [Kondev, F. G.] ANL, Nucl Engn Div, Argonne, IL USA. [Lalkovski, S.] Univ Sofia St Kliment Ohridsk, Fac Phys, Sofia, Bulgaria. [Pfuetzner, M.] Uniwersytet Warszawski, Inst Fiz Doswiadczalnej, Warsaw, Poland. [Prokopowicz, W.] Uniwersytet Jagiellonski, Inst Fiz, Krakow, Poland. [Schwertel, S.] Tech Univ Munich, Inst Expt Phys, D-8000 Munich, Germany. [Werner-Malento, E.] Inst Fiz PAN, Warsaw, Poland. [Shizuma, T.] Japan Atom Energy Res Inst, Kyoto, Japan. RP Myalski, S (reprint author), Inst Fiz Jadrowej PAN, Krakow, Poland. EM symon.myalski@ifj.edu.pl; Adam.Maj@ifj.edu.pl RI Wieland, Oliver/G-1784-2011; Dombradi, Zsolt/B-3743-2012; Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce, Alison/K-7663-2016 OI Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Bruce, Alison/0000-0003-2871-0517 NR 22 TC 2 Z9 2 U1 0 U2 2 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 879 EP 883 PG 5 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200072 ER PT J AU Farrelly, GF Podolyak, Z Steer, SJ Pietri, S Xu, FR Werner-Malento, E Shizuma, T Regan, PH Rudolph, D Garnsworthy, AB Hoischen, R Gorska, M Gerl, J Wollersheim, HJ Kurtukian-Nieto, T Benzoni, G Becker, F Bednarczyk, P Caceres, L Doornenbal, P Geisserl, H Grebosz, J Kelic, A Kojouharov, I Kurz, N Montes, F Prokopowicz, W Saito, T Schaffner, H Tashenov, S Heinz, A Pfuzner, M Jungclaus, A Balabanski, DL Brandau, C Bruce, AM Catford, WN Cullen, IJ Dombradi, Z Estevez, E Gelletly, W Ilie, G Jolie, J Jones, GA Kmiecik, M Kondev, FG Krucken, R Lalkovski, S Liu, HL Liu, Z Maj, A Myalski, S Schwerrel, S Walker, PM Wieland, O AF Farrelly, G. F. Podolyak, Zs. Steer, S. J. Pietri, S. Xu, F. R. Werner-Malento, E. Shizuma, T. Regan, P. H. Rudolph, D. Garnsworthy, A. B. Hoischen, R. Gorska, M. Gerl, J. Wollersheim, H. J. Kurtukian-Nieto, T. Benzoni, G. Becker, F. Bednarczyk, P. Caceres, L. Doornenbal, P. Geisserl, H. Grebosz, J. Kelic, A. Kojouharov, I. Kurz, N. Montes, F. Prokopowicz, W. Saito, T. Schaffner, H. Tashenov, S. Heinz, A. Pfuezner, M. Jungclaus, A. Balabanski, D. L. Brandau, C. Bruce, A. M. Catford, W. N. Cullen, I. J. Dombradi, Zs. Estevez, E. Gelletly, W. Ilie, G. Jolie, J. Jones, G. A. Kmiecik, M. Kondev, F. G. Kruecken, R. Lalkovski, S. Liu, H. L. Liu, Z. Maj, A. Myalski, S. Schwerrel, S. Walker, P. M. Wieland, O. TI REVISION OF THE K-ISOMER IN W-190(116) SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 43rd Zakopane Conference on Nuclear Physics CY SEP 01-07, 2008 CL Zakopane, POLAND ID FRAGMENTATION; SPECTROSCOPY AB Gamma rays from the decay of an isomer in W-190(116) have been observed following projectile fragmentation of a 1 GeV per nucleon Pb-208 beam. An earlier experiment indicated decay from a (10(-)) isomer to the ground state rotational band. Improved statistics have enabled gamma coincidence and time-difference measurements to be made which alter the previous interpretation. Blocked BCS calculations have also been used together with reduced hindrance factors to indicate possible values of spin-parity for the isomer. C1 [Farrelly, G. F.; Podolyak, Zs.; Steer, S. J.; Pietri, S.; Shizuma, T.; Regan, P. H.; Garnsworthy, A. B.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Gelletly, W.; Jones, G. A.; Liu, Z.; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Werner-Malento, E.; Wollersheim, H. J.; Kurtukian-Nieto, T.; Becker, F.; Bednarczyk, P.; Caceres, L.; Doornenbal, P.; Geisserl, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Heinz, A.] GSI Darmstadt, D-64291 Darmstadt, Germany. [Xu, F. R.; Liu, H. L.] Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. [Werner-Malento, E.; Pfuezner, M.] Warsaw Univ, IEP, PL-00681 Warsaw, Poland. [Shizuma, T.] Japan Atom Energy Agcy, Kizu, Kyoto 6190215, Japan. [Rudolph, D.; Hoischen, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Benzoni, G.; Wieland, O.] Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Heinz, A.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Jungclaus, A.; Balabanski, D. L.] UAM, Dept Fis Teor, Madrid 28049, Spain. [Balabanski, D. L.] Bulg Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Bruce, A. M.; Lalkovski, S.] Univ Brighton, Sch Environm & Technol, Brighton, E Sussex, England. [Dombradi, Zs.] ATOMKI, Inst Nucl Res, H-4001 Debrecen, Hungary. [Estevez, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Ilie, G.; Jolie, J.] Univ Cologne, IKP, D-50937 Cologne, Germany. [Kmiecik, M.; Maj, A.; Myalski, S.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Kruecken, R.; Schwerrel, S.] Tech Univ Munich, Phys Dept E12, D-8046 Garching, Germany. RP Farrelly, GF (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM G.Farrelly@surrey.ac.uk; J.Gerl@gsi.de; Adam.Maj@ifj.edu.pl RI Wieland, Oliver/G-1784-2011; Dombradi, Zsolt/B-3743-2012; Xu, Furong/K-4178-2013; Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce, Alison/K-7663-2016; Kruecken, Reiner/A-1640-2013 OI Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Bruce, Alison/0000-0003-2871-0517; Kruecken, Reiner/0000-0002-2755-8042 NR 8 TC 7 Z9 7 U1 0 U2 3 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2009 VL 40 IS 3 BP 885 EP 888 PG 4 WC Physics, Multidisciplinary SC Physics GA 422NY UT WOS:000264436200073 ER PT J AU Zalesny, MD AF Zalesny, Mary D. TI Strategy as Practice: Research Directions and Resources SO ADMINISTRATIVE SCIENCE QUARTERLY LA English DT Book Review C1 [Zalesny, Mary D.] Natl Secur Directorate, Pacific NW Natl Lab, Seattle, WA USA. RP Zalesny, MD (reprint author), Natl Secur Directorate, Pacific NW Natl Lab, Seattle, WA USA. NR 1 TC 0 Z9 0 U1 2 U2 12 PU ADMINISTRATIVE, SCI QUARTERLY PI ITHACA PA CORNELL UNIV, JOHNSON SCHOOL, 20 THORNWOOD DR, STE 100, ITHACA, NY 14850-1265 USA SN 0001-8392 J9 ADMIN SCI QUART JI Adm. Sci. Q. PD MAR PY 2009 VL 54 IS 1 BP 169 EP 170 PG 2 WC Business; Management SC Business & Economics GA 460XQ UT WOS:000267226300010 ER PT J AU Schlaf, M Ghosh, P Fagan, PJ Hauptman, E Bullock, RM AF Schlaf, Marcel Ghosh, Prasenjit Fagan, Paul J. Hauptman, Elisabeth Bullock, R. Morris TI Catalytic Deoxygenation of 1,2-Propanediol to Give n-Propanol SO ADVANCED SYNTHESIS & CATALYSIS LA English DT Article DE deoxygenation; dihydrogen complexes; heterolytic reaction; homogeneous catalysis; metal hydrides; ruthenium ID HYDRIDE TRANSFER-REACTIONS; TRANSITION-METAL HYDRIDES; ION-EXCHANGE-RESIN; DIHYDROGEN COMPLEXES; DONOR ABILITIES; GLYCEROL HYDROGENOLYSIS; SELECTIVE DEOXYGENATION; COORDINATED DIHYDROGEN; BIFUNCTIONAL CATALYST; DIHYDRIDE COMPLEXES AB Deoxygenation of 1,2-propanediol (1.0M in sulfolane) catalyzed by bis(dicarbonyl)(mu-hydrido) (pentamethylcyclopentadiene)ruthenium trifluoromethanesulfonate ({[Cp*Ru(CO)(2)](2)(mu-H)}(+)OTf(-)) (0.5 mol%) at 110 degrees C under hydrogen (750 psi) in the presence of trifluoromethanesulfonic acid (HOTf) (60 mM) gives n-propanol as the major product, indicating high selectivity for deoxygenation of the internal hydroxy group over the terminal hydroxy group of the diol. The deoxygenation of 1,2-propanediol is strongly influenced by the concentration of acid, giving faster rates and proceeding to higher conversions as the concentration of HOTf is increased. Propionaldehyde was observed as an intermediate, being formed through acid-catalyzed dehydration of 1,2-propanediol. This aldehyde is hydrogenated to n-propanol through an Ionic pathway involving protonation of the aldehyde, followed by hydride transfer from the neutral hydride, dicarbonyl(pentamethylcyclopentadiene)ruthenium hydride [Cp*Ru(CO)(2)H]. The proposed mechanism for the deoxygenation/hydrogenation reaction involves formation of a highly acidic dihydrogen complex [Cp*Ru(CO)(2)(eta(2)-H(2))](+)OTf(-). C1 [Schlaf, Marcel; Ghosh, Prasenjit; Bullock, R. Morris] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bullock, R. Morris] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Fagan, Paul J.; Hauptman, Elisabeth] EI DuPont Nemours & Co Inc, Expt Stn, Cent Res & Dev, Wilmington, DE 19880 USA. RP Bullock, RM (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM morris.bullock@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU US Department of Energy [DE-AC02-98CH10886]; Office of Basic Energy Sciences, Division of Chemical Sciences; NSERC (Canada) FX Research at Brookhaven National Laboratory was carried out under contract DE-AC02-98CH10886 with the US Department of Energy. Pacific Northwest National Laboratory is operated by Battelle for the US. Department of Energy. We thank the US. Department of Energy, Office of Science, Laboratory Technology Research Program, and the Office of Basic Energy Sciences, Division of Chemical Sciences, for support. We thank NSERC (Canada) for a postdoctoral fellowship to M.S. NR 58 TC 52 Z9 52 U1 3 U2 57 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-4150 J9 ADV SYNTH CATAL JI Adv. Synth. Catal. PD MAR PY 2009 VL 351 IS 5 BP 789 EP 800 DI 10.1002/adsc.200800685 PG 12 WC Chemistry, Applied; Chemistry, Organic SC Chemistry GA 428YD UT WOS:000264887100012 ER PT J AU Quinn, NWT AF Quinn, Nigel W. T. TI Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives SO AGRICULTURAL WATER MANAGEMENT LA English DT Article DE Selenium drainage; TMDL; Decision support; Water quality AB Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as beingless efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapo-concentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Quinn, NWT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Bldg 70A-3317H, Berkeley, CA 94720 USA. EM nwquinn@lbl.gov RI feng, yongzhong/F-5090-2012; Quinn, Nigel/G-2407-2015 OI feng, yongzhong/0000-0002-5202-4368; Quinn, Nigel/0000-0003-3333-4763 NR 17 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3774 J9 AGR WATER MANAGE JI Agric. Water Manage. PD MAR PY 2009 VL 96 IS 3 BP 484 EP 492 DI 10.1016/j.agwat.2008.09.008 PG 9 WC Agronomy; Water Resources SC Agriculture; Water Resources GA 410WC UT WOS:000263608000014 ER PT J AU Lynch, RM Shen, T Gnanakaran, S Derdeyn, CA AF Lynch, Rebecca M. Shen, Tongye Gnanakaran, S. Derdeyn, Cynthia A. TI Appreciating HIV Type 1 Diversity: Subtype Differences in Env SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Review ID HUMAN-IMMUNODEFICIENCY-VIRUS; NEUTRALIZING ANTIBODY-RESPONSES; PROXIMAL EXTERNAL REGION; MOLECULE CCR5 INHIBITOR; DISEASE PROGRESSION; MONOCLONAL-ANTIBODIES; PHENOTYPIC CHARACTERIZATION; GENETIC DIVERSITY; PRIMARY INFECTION; CORECEPTOR USAGE AB Human immunodeficiency virus type 1 (HIV-1) group M is responsible for the current AIDS pandemic and exhibits exceedingly high levels of viral genetic diversity around the world, necessitating categorization of viruses into distinct lineages, or subtypes. These subtypes can differ by around 35% in the envelope (Env) glycoproteins of the virus, which are displayed on the surface of the virion and are targets for both neutralizing antibody and cell-mediated immune responses. This diversity reflects the remarkable ability of the virus to adapt to selective pressures, the bulk of which is applied by the host immune response, and represents a serious obstacle for developing an effective vaccine with broad coverage. Thus, it is important to understand the underlying biological consequences of intersubtype diversity. Recent studies have revealed that some of the HIV-1 subtypes exhibit phenotypic differences stemming from subtle changes in Env structure, particularly within the highly immunogenic V3 domain, which participates directly in viral entry. This review will therefore explore current research that describes subtype differences in Env at the genetic and phenotypic level, focusing in particular on V3, and highlighting recent discoveries about the unique features of subtype C Env, which is the most globally prevalent subtype. C1 [Derdeyn, Cynthia A.] Emory Univ, Emory Vaccine Ctr, Atlanta, GA 30329 USA. [Derdeyn, Cynthia A.] Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30329 USA. [Derdeyn, Cynthia A.] Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30329 USA. [Shen, Tongye] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Lynch, Rebecca M.] Emory Univ, Immunol & Mol Pathogenesis Program, Atlanta, GA 30329 USA. RP Derdeyn, CA (reprint author), Emory Univ, Emory Vaccine Ctr, 954 Gatewood Rd,Suite 1024, Atlanta, GA 30329 USA. EM cynthia.derdeyn@emory.edu RI Shen, Tongye/A-9718-2008; OI Shen, Tongye/0000-0003-1495-3104; Gnanakaran, S/0000-0002-9368-3044 FU NIH [R01-AI-58706] FX We would like to acknowledge Dr. Abraham Pinter for critical comments; Drs. Susan Allen and Joseph Mulenga and Zambia Emory HIV Research Project for collaboration; and NIH Grant R01-AI-58706 for funding. NR 128 TC 29 Z9 30 U1 1 U2 9 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD MAR PY 2009 VL 25 IS 3 BP 237 EP 248 DI 10.1089/aid.2008.0219 PG 12 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 425KV UT WOS:000264636300001 PM 19327047 ER PT J AU Rousseau, CM Lockhart, DW Listgarten, J Maley, SN Kadie, C Learn, GH Nickle, DC Heckerman, DE Deng, W Brander, C Ndung'u, T Coovadia, H Goulder, PJR Korber, BT Walker, BD Mullins, JI AF Rousseau, Christine M. Lockhart, David W. Listgarten, Jennifer Maley, Stephen N. Kadie, Carl Learn, Gerald H. Nickle, David C. Heckerman, David E. Deng, Wenjie Brander, Christian Ndung'u, Thumbi Coovadia, Hoosen Goulder, Philip J. R. Korber, Bette T. Walker, Bruce D. Mullins, James I. TI Rare HLA Drive Additional HIV Evolution Compared to More Frequent Alleles SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; LYMPHOCYTE ESCAPE VARIANTS; CLASS-I SUPERTYPES; TYPE-1 INFECTION; CTL ESCAPE; VIRAL LOAD; DISEASE PROGRESSION; IMMUNE ESCAPE; TRANSMISSION; GAG AB HIV-1 can evolve HLA-specific escape variants in response to HLA-mediated cellular immunity. HLA alleles that are common in the host population may increase the frequency of such escape variants at the population level. When loss of viral fitness is caused by immune escape variation, these variants may revert upon infection of a new host who does not have the corresponding HLA allele. Furthermore, additional escape variants may appear in response to the nonconcordant HLA alleles. Because individuals with rare HLA alleles are less likely to be infected by a partner with concordant HLA alleles, viral populations infecting hosts with rare HLA alleles may undergo a greater amount of evolution than those infecting hosts with common alleles due to the loss of preexisting escape variants followed by new immune escape. This hypothesis was evaluated using maximum likelihood phylogenetic trees of each gene from 272 full-length HIV-1 sequences. Recent viral evolution, as measured by the external branch length, was found to be inversely associated with HLA frequency in nef (p < 0.02), env (p < 0.03), and pol (p <= 0.05), suggesting that rare HLA alleles provide a disproportionate force driving viral evolution compared to common alleles, likely due to the loss of preexisting escape variants during early stages postinfection. C1 [Rousseau, Christine M.] Univ Washington, Dept Microbiol, Sustainable Sci Inst, Seattle, WA 98103 USA. [Lockhart, David W.] Univ Washington, Dept Biostat, Seattle, WA 98103 USA. [Listgarten, Jennifer; Kadie, Carl; Heckerman, David E.] Microsoft Res, eSci Res Grp, Redmond, WA 98052 USA. [Brander, Christian; Ndung'u, Thumbi; Goulder, Philip J. R.; Walker, Bruce D.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Partners AIDS Res Ctr, Boston, MA 02114 USA. [Ndung'u, Thumbi; Coovadia, Hoosen; Goulder, Philip J. R.; Walker, Bruce D.] Univ KwaZulu Natal, Nelson R Mandela Sch Med, HIV Pathogenesis Program, Durban, South Africa. [Goulder, Philip J. R.] Nuffield Dept Med, Dept Pediat, Oxford, England. [Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Walker, Bruce D.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. [Mullins, James I.] Univ Washington, Dept Med, Washington, DC 98103 USA. RP Rousseau, CM (reprint author), Univ Washington, Dept Microbiol, Sustainable Sci Inst, 3515 Ashworth Ave N, Seattle, WA 98103 USA. EM crousseau@ssilink.org OI Brander, Christian/0000-0002-0548-5778; Ndung'u, Thumbi/0000-0003-2962-3992; Korber, Bette/0000-0002-2026-5757 FU University of Washington Center For AIDS Research [AI27757, AI047734] FX The authors would like to thank all of the participants who contributed time, information, and blood samples for the study. Funding for this research was provided by University of Washington Center For AIDS Research (AI27757), including a New Investigator Award (AI047734) to C. M. R., by Puget Sound Partners in Global Health (to C. M. R.), and by Microsoft Research (to J. L., C. K., and D. E. H.). This work was previously presented in part at the 14th Conference on Retroviruses and Opportunistic Infections, 2007. NR 38 TC 6 Z9 6 U1 0 U2 1 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD MAR PY 2009 VL 25 IS 3 BP 297 EP 303 DI 10.1089/aid.2008.0208 PG 7 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 425KV UT WOS:000264636300007 PM 19327049 ER PT J AU Moore, DS Scharff, RJ AF Moore, David S. Scharff, R. Jason TI Portable Raman explosives detection SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Review DE Raman spectroscopy; Field analysis; Fluorescence interference; Explosives detection ID DIFFERENCE SPECTROSCOPY; FLUORESCENCE REJECTION; 785 NM; EXCITATION; SPECTRA; SUBTRACTION; ALGORITHM; REMOVAL AB Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field. C1 [Moore, David S.; Scharff, R. Jason] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. RP Moore, DS (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM moored@lanl.gov RI Moore, David/C-8692-2013; OI Scharff, Robert/0000-0002-1708-8964 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was performed at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 29 TC 92 Z9 94 U1 3 U2 63 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD MAR PY 2009 VL 393 IS 6-7 BP 1571 EP 1578 DI 10.1007/s00216-008-2499-5 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 413XM UT WOS:000263826100004 PM 19023565 ER PT J AU Warwick, PE Croudace, IW Hillegonds, DJ AF Warwick, P. E. Croudace, I. W. Hillegonds, D. J. TI Effective Determination of the Long-lived Nuclide Ca-41 in Nuclear Reactor Bioshield Concretes: Comparison of Liquid Scintillation Counting and Accelerator Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID RADIOACTIVE CALCIUM-45; BIOLOGICAL SAMPLES; ISOTOPE AB The routine application of liquid scintillation counting to Ca-41 determination has been hindered by the absence of traceable calibration standards of known Ca-41 activity concentrations. The introduction of the new IRMM Ca-41 mass-spectrometric standards with sufficiently high Ca-41 activities for radiometric detection has partly overcome this although accurate measurement of stable Ca concentrations coupled with precise half-life data are still required to correct the certified Ca-41:Ca-40 ratios to Ca-41 activity concentrations. In this study, Ca-41 efficiency versus quench curves have been produced using the IRMM standard, and their accuracy validated by comparison with theoretical calculations of Ca-41 efficiencies. Further verification of the technique was achieved through the analysis of Ca-41 in a reactor bioshield core that had been previously investigated for other radionuclide variations. Calcium-41 activity concentrations of up to 25 Bq/g were detected. Accelerator mass spectrometry (AMS) measurements of the same suite of samples showed a very good agreement, providing validation of the procedure. Calcium-41 activity concentrations declined exponentially with distance from the core of the nuclear reactor and correlated well with the predicted neutron flux. C1 [Warwick, P. E.; Croudace, I. W.] Natl Oceanog Ctr, GAU Radioanalyt, Southampton SO14 3ZH, Hants, England. [Hillegonds, D. J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Div Chem Sci, Livermore, CA 94550 USA. RP Warwick, PE (reprint author), Natl Oceanog Ctr, GAU Radioanalyt, European Way, Southampton SO14 3ZH, Hants, England. EM pew@noc.soton.ac.uk OI Croudace, Ian/0000-0003-1547-5650; Warwick, Phillip/0000-0001-8774-5125 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Dr Fran Rowlands (GAU) for undertaking some of the analytical separations, Dr N. Holland (GAU) for the CN2003 predictions, Mr. D. Green (NOCS) for ICPAES measurements and UKAEA (Winfrith) for providing samples of the SGHWR bioshield core. AMS analysis was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 30 TC 6 Z9 6 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 1 PY 2009 VL 81 IS 5 BP 1901 EP 1906 DI 10.1021/ac802225a PG 6 WC Chemistry, Analytical SC Chemistry GA 413AK UT WOS:000263765100029 PM 19178149 ER PT J AU Van Neste, CW Senesac, LR Thundat, T AF Van Neste, C. W. Senesac, L. R. Thundat, T. TI Standoff Spectroscopy of Surface Adsorbed Chemicals SO ANALYTICAL CHEMISTRY LA English DT Article ID QUANTUM CASCADE LASERS AB Despite its immediate applications, selective detection of trace quantities of surface adsorbed chemicals, such as explosives, without physically collecting the sample molecules is a challenging task. Standoff spectroscopic techniques offer an ideal method of detecting chemicals without using a sample collection step. Though standoff spectroscopic techniques are capable of providing high selectivity, their demonstrated sensitivities are poor. Here we describe standoff detection of trace quantities of surface adsorbed chemicals using two quantum cascade lasers operated simultaneously, with tunable wavelength windows that match with absorption peaks of the analytes. This standoff method is a variation of photoacoustic spectroscopy, where scattered light from the sample surface is used for exciting acoustic resonance of the detector. We demonstrate a sensitivity of 100 ng/cm(2) and a standoff detection distance of 20 m for surface adsorbed analytes such as explosives and tributyl phosphate. C1 [Van Neste, C. W.; Senesac, L. R.; Thundat, T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Senesac, L. R.; Thundat, T.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM thundattg@ornl.gov FU U.S. Department of Energy's Office of Nonproliferation Research; Development in the National Nuclear Security Administration; Office of Naval Research (ONR); Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank R. J. Warmack for the loan of a QCM. This work was funded by the U.S. Department of Energy's Office of Nonproliferation Research and Development in the National Nuclear Security Administration, the Office of Naval Research (ONR), and NA-22. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 21 TC 57 Z9 57 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 1 PY 2009 VL 81 IS 5 BP 1952 EP 1956 DI 10.1021/ac802364e PG 5 WC Chemistry, Analytical SC Chemistry GA 413AK UT WOS:000263765100036 PM 19186935 ER PT J AU Krenkova, J Lacher, NA Svec, F AF Krenkova, Jana Lacher, Nathan A. Svec, Frantisek TI Highly Efficient Enzyme Reactors Containing Trypsin and Endoproteinase LysC Immobilized on Porous Polymer Monolith Coupled to MS Suitable for Analysis of Antibodies SO ANALYTICAL CHEMISTRY LA English DT Article ID PROTEIN DIGESTION; LIQUID-CHROMATOGRAPHY; MASS-SPECTROMETRY; CAPILLARY-ELECTROPHORESIS; AFFINITY-CHROMATOGRAPHY; MICROFLUIDIC DEVICES; ONLINE DIGESTION; MICROREACTOR; IDENTIFICATION; SEPARATION AB Capillary enzymatic microreactors containing trypsin and endoproteinase LysC immobilized on a porous polymer monolith have been prepared and used for the characterization and identification of proteins such as cytochrome c, bovine serum albumin, and high-molecular weight human immunoglobulin G. The hydrophilicity of diol functionalities originating from the hydrolyzed poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was not sufficient to avoid adsorption of hydrophobic albumin in a highly aqueous mobile phase. Therefore, this monolith was first hydrophilized via photografting of poly(ethylene glycol) methacrylate followed by photografting of a 4-vinyl-2,2-dimethylazlactone to provide the pore surface with reactive functionalities required for immobilization. This new approach reduced the undesired nonspecific adsorption of proteins and peptides and facilitated control of both the enzyme immobilization and protein digestion processes. The enzymatic reactors were coupled off-line with MALDI/TOF MS and/or on-line with ESI/TOF MS. Experimental conditions for digestion were optimized using cytochrome c and bovine serum albumin as model proteins. The optimized reactors were then integrated into a multidimensional system comprised of a monolithic capillary enzyme reactor, an in-line nanoLC separation of peptides using a poly(lauryl methacrylate-co-ethylene dimethacrylate) monolithic column, and ESI/ TOF MS. With the use of this system, immunoglobulin G was digested at room temperature in 6 min to an extent similar to that achieved with soluble enzyme at 37 degrees C after 24 h. C1 [Krenkova, Jana; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Lacher, Nathan A.] Pfizer Global Biol, Analyt Res & Dev, St Louis, MO 63017 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM fsvec@lbl.gov FU Director, Office of Science; Office of Basic Energy Sciences; Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support of J.K. by Pfizer Inc. is gratefully acknowledged. NR 43 TC 106 Z9 111 U1 8 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 1 PY 2009 VL 81 IS 5 BP 2004 EP 2012 DI 10.1021/ac8026564 PG 9 WC Chemistry, Analytical SC Chemistry GA 413AK UT WOS:000263765100044 PM 19186936 ER PT J AU Bridle, S Shawe-Taylor, J Amara, A Applegate, D Balan, ST Berge, J Bernstein, G Dahle, H Erben, T Gill, M Heavens, A Heymans, C High, FW Hoekstra, H Jarvis, M Kirk, D Kitching, T Kneib, JP Kuijken, K Lagatutta, D Mandelbaum, R Massey, R Mellier, Y Moghaddam, B Moudden, Y Nakajima, R Paulin-Henriksson, S Pires, S Rassat, A Refregier, A Rhodes, J Schrabback, T Semboloni, E Shmakova, M Van Waerbeke, L Witherick, D Voigt, L Wittman, D AF Bridle, Sarah Shawe-Taylor, John Amara, Adam Applegate, Douglas Balan, Sreekumar T. Berge, Joel Bernstein, Gary Dahle, Hakon Erben, Thomas Gill, Mandeep Heavens, Alan Heymans, Catherine High, F. William Hoekstra, Henk Jarvis, Mike Kirk, Donnacha Kitching, Thomas Kneib, Jean-Paul Kuijken, Konrad Lagatutta, David Mandelbaum, Rachel Massey, Richard Mellier, Yannick Moghaddam, Baback Moudden, Yassir Nakajima, Reiko Paulin-Henriksson, Stephane Pires, Sandrine Rassat, Anais Refregier, Alexandre Rhodes, Jason Schrabback, Tim Semboloni, Elisabetta Shmakova, Marina Van Waerbeke, Ludovic Witherick, Dugan Voigt, Lisa Wittman, David TI HANDBOOK FOR THE GREAT08 CHALLENGE: AN IMAGE ANALYSIS COMPETITION FOR COSMOLOGICAL LENSING SO ANNALS OF APPLIED STATISTICS LA English DT Article DE Inference; inverse problems; astronomy ID WEAK GRAVITATIONAL SHEAR; LARGE-SCALE STRUCTURE; NONLINEAR CLUSTER INVERSION; GALAXY SHAPE MEASUREMENT; DARK-MATTER; SYSTEMATIC-ERRORS; POLAR SHAPELETS; COSMIC SHEAR; DISTORTIONS; CALIBRATION AB The GRavitational lEnsing Accuracy Testing 2008 (GREAT08) Challenge focuses on a problem that is of crucial importance for future observations in cosmology. The shapes of distant galaxies can be used to determine the properties of dark energy and the nature of gravity, because light from those galaxies is bent by gravity from the intervening dark matter. The observed galaxy images appear distorted, although only slightly, and their shapes must be precisely disentangled from the effects of pixelisation, convolution and noise. The worldwide gravitational lensing community has made significant progress in techniques to measure these distortions via the Shear TEsting Program (STEP). Via STEP, we have run challenges within our own community, and come to recognise that this particular image analysis problem is ideally matched to experts in statistical inference, inverse problems and computational learning. Thus, in order to continue the progress seen in recent years, we are seeking an infusion of new ideas from these communities. This document details the GREAT08 Challenge for potential participants. Please visit www.great08challenge.info for the latest information. C1 [Bridle, Sarah; Shawe-Taylor, John; Balan, Sreekumar T.; Kirk, Donnacha; Witherick, Dugan; Voigt, Lisa] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Amara, Adam] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Applegate, Douglas; Shmakova, Marina] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Berge, Joel; Moghaddam, Baback; Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Berge, Joel; Massey, Richard; Moghaddam, Baback; Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Bernstein, Gary; Jarvis, Mike; Nakajima, Reiko] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Erben, Thomas; Semboloni, Elisabetta] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Heavens, Alan] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [High, F. William] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kitching, Thomas] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Berge, Joel; Moudden, Yassir; Paulin-Henriksson, Stephane; Pires, Sandrine; Rassat, Anais; Refregier, Alexandre] SAp CEA Saclay, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Dahle, Hakon; Kneib, Jean-Paul] Observ Astron Marseille Prov, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Gill, Mandeep] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Heymans, Catherine; Van Waerbeke, Ludovic] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. [Hoekstra, Henk] Univ Victoria, Victoria, BC V8W 2Y2, Canada. [Kuijken, Konrad; Schrabback, Tim] Leiden Univ, Leiden Observ, Huygens Lab, NL-2333 CA Leiden, Netherlands. [Lagatutta, David; Wittman, David] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Mandelbaum, Rachel] Inst Adv Study, Princeton, NJ 08540 USA. [Heymans, Catherine; Mellier, Yannick] Inst Astrophys Paris, F-75014 Paris, France. RP Bridle, S (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM sarah.bridle@ucl.ac.uk RI Witherick, Dugan/C-9403-2014; Mandelbaum, Rachel/N-8955-2014; Kneib, Jean-Paul/A-7919-2015 OI Wittman, David/0000-0002-0813-5888; Rassat, Anais/0000-0002-5476-6461; Hoekstra, Henk/0000-0002-0641-3231; Massey, Richard/0000-0002-6085-3780; Witherick, Dugan/0000-0002-9175-0151; Mandelbaum, Rachel/0000-0003-2271-1527; Kneib, Jean-Paul/0000-0002-4616-4989 FU Royal Society; European Commission; NASA FX Supported in part by the Jet Propulsion Laboratory, which is run by Caltech under a contract from NASA. NR 53 TC 61 Z9 61 U1 1 U2 3 PU INST MATHEMATICAL STATISTICS PI CLEVELAND PA 3163 SOMERSET DR, CLEVELAND, OH 44122 USA SN 1932-6157 J9 ANN APPL STAT JI Ann. Appl. Stat. PD MAR PY 2009 VL 3 IS 1 BP 6 EP 37 DI 10.1214/08-AOAS222 PG 32 WC Statistics & Probability SC Mathematics GA 522EA UT WOS:000271979400002 ER PT J AU Learman, DR Yi, H Brown, SD Martin, SL Geesey, GG Stevens, AM Hochella, MF AF Learman, Deric R. Yi, Haakrho Brown, Steven D. Martin, Stanton L. Geesey, Gill G. Stevens, Ann M. Hochella, Michael F., Jr. TI Involvement of Shewanella oneidensis MR-1 LuxS in Biofilm Development and Sulfur Metabolism SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID QUORUM-SENSING SIGNAL; GRAM-NEGATIVE BACTERIA; SALMONELLA-TYPHIMURIUM; AGROBACTERIUM-TUMEFACIENS; STREPTOCOCCUS-MUTANS; ESCHERICHIA-COLI; MARINE-BACTERIA; VIBRIO-HARVEYI; AUTOINDUCER-2; GENES AB The role of LuxS in Shewanella oneidensis MR-1 has been examined by transcriptomic profiling, biochemical, and physiological experiments. The results indicate that a mutation in luxS alters biofilm development, not by altering quorum-sensing abilities but by disrupting the activated methyl cycle (AMC). The S. oneidensis wild type can produce a luminescence response in the AI-2 reporter strain Vibrio harveyi MM32. This luminescence response is abolished upon the deletion of luxS. The deletion of luxS also alters biofilm formations in static and flowthrough conditions. Genetic complementation restores the mutant biofilm defect, but the addition of synthetic AI-2 has no effect. These results suggest that AI-2 is not used as a quorum-sensing signal to regulate biofilm development in S. oneidensis. Growth on various sulfur sources was examined because of the involvement of LuxS in the AMC. A mutation in luxS produced a reduced ability to grow with methionine as the sole sulfur source. Methionine is a key metabolite used in the AMC to produce a methyl source in the cell and to recycle homocysteine. These data suggest that LuxS is important to metabolizing methionine and the AMC in S. oneidensis. C1 [Learman, Deric R.; Hochella, Michael F., Jr.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. [Yi, Haakrho; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Martin, Stanton L.] N Carolina State Univ, Bioinformat Res Ctr, Raleigh, NC 27606 USA. [Geesey, Gill G.] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. [Stevens, Ann M.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. RP Learman, DR (reprint author), Harvard Univ, Sch Engn & Appl Sci, Engn Sci Lab, Room 228, Cambridge, MA 02138 USA. EM learman@seas.harvard.edu RI Brown, Steven/A-6792-2011; OI Brown, Steven/0000-0002-9281-3898; Stevens, Ann/0000-0002-4942-0124 FU GAAN fellowship (U.S. Department of Education); U. S. Department of Energy's OBES Geosciences [DE-FG02-06ER 15786]; U. S. Department of Energy's Office of Science, Biological and Environmental Research; U. S. Department of Energy [DE-AC05-00OR22725] FX This research was funded by a GAAN fellowship (U.S. Department of Education) and the U. S. Department of Energy's OBES Geosciences program (grant DE-FG02-06ER 15786). This research was funded in part by the U. S. Department of Energy's Office of Science, Biological and Environmental Research, Environmental Remediation Sciences program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. NR 53 TC 18 Z9 22 U1 1 U2 26 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR 1 PY 2009 VL 75 IS 5 BP 1301 EP 1307 DI 10.1128/AEM.01393-08 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 411KR UT WOS:000263649000011 PM 19124589 ER PT J AU Perez, G Pangilinan, J Pisabarro, AG Ramirez, L AF Perez, Gumer Pangilinan, Jasmyn Pisabarro, Antonio G. Ramirez, Lucia TI Telomere Organization in the Ligninolytic Basidiomycete Pleurotus ostreatus SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RICE BLAST FUNGUS; POLYMERASE-CHAIN-REACTION; GENETIC-LINKAGE MAP; MAGNAPORTHE-ORYZAE; USTILAGO-MAYDIS; RECQ HELICASES; RECOMBINATION FREQUENCIES; DYSFUNCTIONAL TELOMERES; (TTAGGG)(N) SEQUENCES; CHROMOSOME ENDS AB Telomeres are structural and functional chromosome regions that are essential for the cell cycle to proceed normally. They are, however, difficult to map genetically and to identify in genome-wide sequence programs because of their structure and repetitive nature. We studied the telomeric and subtelomeric organization in the basidiomycete Pleurotus ostreatus using a combination of molecular and bioinformatics tools that permitted us to determine 19 out of the 22 telomeres expected in this fungus. The telomeric repeating unit in P. ostreatus is TTAGGG, and the numbers of repetitions of this unit range between 25 and 150. The mapping of the telomere restriction fragments to linkage groups 6 and 7 revealed polymorphisms compatible with those observed by pulsed field gel electrophoresis separation of the corresponding chromosomes. The subtelomeric regions in Pleurotus contain genes similar to those described in other eukaryotic systems. The presence of a cluster of laccase genes in chromosome 6 and a bipartite structure containing a Het-related protein and an alcohol dehydrogenase are especially relevant; this bipartite structure is characteristic of the Pezizomycotina fungi Neurospora crassa and Aspergillus terreus. As far as we know, this is the first report describing the presence of such structures in basidiomycetes and the location of a laccase gene cluster in the subtelomeric region, where, among others, species-specific genes allowing the organism to adapt rapidly to the environment usually map. C1 [Perez, Gumer; Pisabarro, Antonio G.; Ramirez, Lucia] Pub Univ Navarre, Genet & Microbiol Res Grp, Dept Agrarian Prod, Pamplona 31006, Spain. [Pangilinan, Jasmyn] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Ramirez, L (reprint author), Pub Univ Navarre, Genet & Microbiol Res Grp, Dept Agrarian Prod, Pamplona 31006, Spain. EM lramirez@unavarra.es RI Pisabarro, Antonio/K-3622-2014; Ramirez, Lucia/K-3845-2014; Perez , Gumer/L-7970-2014 OI Pisabarro, Antonio/0000-0001-6987-5794; Ramirez, Lucia/0000-0002-0023-4240; FU Public University of Navarre; U. S. Department of Energy's Office of Science Biological and Environmental Research Program; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Los Alamos National Laboratory [DE-AC02-06NA25396]; [AGL2005-08005-C02-01]; [GEN2006-27843-E] FX This work has been supported by funds from the AGL2005-08005-C02- 01 and GEN2006-27843- E grants and by additional institutional support from the Public University of Navarre. Some of the sequence data were produced in the P. ostreatus genome sequence project developed at the JGI within the community Sequence Program under the auspices of the U. S. Department of Energy's Office of Science Biological and Environmental Research Program and by the University of California, Lawrence Livermore National Laboratory, under contract no. W-7405-Eng-48, Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231, and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. NR 76 TC 12 Z9 16 U1 1 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR 1 PY 2009 VL 75 IS 5 BP 1427 EP 1436 DI 10.1128/AEM.01889-08 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 411KR UT WOS:000263649000027 PM 19114509 ER PT J AU Sagaram, US DeAngelis, KM Trivedi, P Andersen, GL Lu, SE Wang, N AF Sagaram, Uma Shankar DeAngelis, Kristen M. Trivedi, Pankaj Andersen, Gary L. Lu, Shi-En Wang, Nian TI Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus, Using PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CANDIDATUS LIBERIBACTER ASIATICUS; POLYMERASE-CHAIN-REACTION; ENDOPHYTIC COLONIZATION; COMMUNITY STRUCTURE; BIOLOGICAL-CONTROL; GREENING DISEASE; POPULATIONS; SOILS; PCR; DNA AB The bacterial diversity associated with citrus leaf midribs was characterized for citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rRNA gene microarrays and 16S rRNA gene clone library sequencing to determine the microbial community composition for symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria in 15 phyla were present in the citrus leaf midribs, while 20 orders in 8 phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs than in asymptomatic midribs. "Candidatus Liberibacter asiaticus" was detected at a very low level in asymptomatic plants but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis results were further verified by sequencing 16S rRNA gene clone libraries, which indicated the dominance of "Candidatus Liberibacter asiaticus" in symptomatic leaves. These data implicate "Candidatus Liberibacter asiaticus" as the pathogen responsible for HLB disease. C1 [Sagaram, Uma Shankar; Trivedi, Pankaj; Wang, Nian] Univ Florida, Ctr Citrus Res & Educ, Dept Microbiol & Cell Sci, IFAS, Lake Alfred, FL 33850 USA. [DeAngelis, Kristen M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Lu, Shi-En] Mississippi State Univ, Dept Entomol & Plant Pathol, Mississippi State, MS 39762 USA. RP Wang, N (reprint author), Univ Florida, Ctr Citrus Res & Educ, Dept Microbiol & Cell Sci, IFAS, 700 Expt Stn Rd, Lake Alfred, FL 33850 USA. EM nianwang@crec.ifas.ufl.edu RI Andersen, Gary/G-2792-2015; OI Andersen, Gary/0000-0002-1618-9827; DeAngelis, Kristen/0000-0002-5585-4551 FU Florida Citrus Production Research Advisory Council FX This work was supported by the Florida Citrus Production Research Advisory Council. NR 54 TC 58 Z9 69 U1 3 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2009 VL 75 IS 6 BP 1566 EP 1574 DI 10.1128/AEM.02404-08 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 415FY UT WOS:000263920900012 PM 19151177 ER PT J AU Chau, J Sowlati, T Sokhansanj, S Preto, F Melin, S Bi, X AF Chau, J. Sowlati, T. Sokhansanj, S. Preto, F. Melin, S. Bi, X. TI Techno-economic analysis of wood biomass boilers for the greenhouse industry SO APPLIED ENERGY LA English DT Article DE Cost analysis; Economic evaluation; Greenhouses; Wood pellets; Wood residue; Wood biomass boiler ID OPTIMAL-CONTROL STRATEGIES; CARBON-DIOXIDE ENRICHMENT; TOMATO CROPS AB The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO(2)) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO(2) equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Chau, J.; Sowlati, T.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, S.; Bi, X.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Preto, F.] Nat Resources Canada, Ottawa, ON, Canada. [Melin, S.] Delta Res Corp, Delta, BC, Canada. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, 2931-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca NR 54 TC 57 Z9 58 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD MAR PY 2009 VL 86 IS 3 BP 364 EP 371 DI 10.1016/j.apenergy.2008.05.010 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 391FQ UT WOS:000262219600012 ER PT J AU Hwang, DJ Hiromatsu, K Hidai, H Grigoropoulos, CP AF Hwang, David J. Hiromatsu, Kuniaki Hidai, Hirofumi Grigoropoulos, Costas P. TI Self-guided glass drilling by femtosecond laser pulses SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID FUSED-SILICA; BREAKDOWN; ENERGY AB Straight through-holes of high aspect ratio have been fabricated in glass by femtosecond laser pulses, utilizing unique characteristics of ultrafast lasers such as volumetric multi-photon absorption and nonlinear self-focusing. In this study, interestingly, the drilling process was initiated and progressed in a self-regulated manner, while the laser focus was fixed through the specimen at the neighborhood of the rear surface that was in contact with liquid during the entire drilling process. The deposition of laser energy along the nonlinearly extended focal range and the guided drilling along the pre-defined region are explained based on time-resolved optical transmission and emission measurements. C1 [Hwang, David J.; Hiromatsu, Kuniaki; Hidai, Hirofumi; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Hiromatsu, Kuniaki] AGC ASAHI GLASS CO LTD, Res Ctr, Tsurumi Ku, Yokohama, Kanagawa, Japan. [Hiromatsu, Kuniaki; Hidai, Hirofumi] Tokyo Inst Technol, Dept Mech Sci & Engn, Tokyo 1528552, Japan. [Grigoropoulos, Costas P.] Lawrence Berkeley Natl Lab, EETD, Adv Energy Technol Dept, Berkeley, CA 94720 USA. RP Grigoropoulos, CP (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM cgrigoro@me.berkeley.edu RI Han, Kyuhee/B-6201-2009; OI Hidai, Hirofumi/0000-0001-6440-5697 FU National Science Foundation [DMI-0556363] FX Support by the National Science Foundation under grant DMI-0556363 is gratefully acknowledged. NR 10 TC 8 Z9 9 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAR PY 2009 VL 94 IS 3 BP 555 EP 558 DI 10.1007/s00339-008-4973-5 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 395DV UT WOS:000262504200021 ER PT J AU Tuncer, E Rondinone, AJ Woodward, J Sauers, I James, DR Ellis, AR AF Tuncer, Enis Rondinone, Adam J. Woodward, Jonathan Sauers, Isidor James, D. Randy Ellis, Alvin R. TI Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID DIELECTRIC-RELAXATION; ELECTRICAL-PROPERTIES; NANOCOMPOSITES; MIXTURES; TIMES; STATISTICS; INTERFACES; INVERSION; BREAKDOWN; SURFACE AB In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant. C1 [Tuncer, Enis; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.] Oak Ridge Natl Lab, Appl Superconduct Grp, Div Fus Energy, Oak Ridge, TN 37831 USA. [Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Oak Ridge, TN 37831 USA. [Woodward, Jonathan] Oak Ridge Natl Lab, Nanomat Chem Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Tuncer, E (reprint author), Oak Ridge Natl Lab, Appl Superconduct Grp, Div Fus Energy, Oak Ridge, TN 37831 USA. EM tuncere@ornl.gov RI Rondinone, Adam/F-6489-2013; OI Rondinone, Adam/0000-0003-0020-4612; Tuncer, Enis/0000-0002-9324-4324 NR 54 TC 24 Z9 24 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAR PY 2009 VL 94 IS 4 BP 843 EP 852 DI 10.1007/s00339-008-4881-8 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 403FY UT WOS:000263069700020 ER PT J AU Cutler, PJ Haaland, DM Gemperline, PJ AF Cutler, Patrick J. Haaland, David M. Gemperline, Paul J. TI Systematic Method for the Kinetic Modeling of Temporally Resolved Hyperspectral Microscope Images of Fluorescently Labeled Cells SO APPLIED SPECTROSCOPY LA English DT Article DE Hyperspectral confocal microscopy; Fluorescence imaging; Kinetic modeling; Human embryonic kidney cells; Human A549 pulmonary type II epithelial cells; Inhibitor kappa B kinase alpha; Mitochondrial antiviral signaling protein; Separable least squares ID SPECTROSCOPIC MEASUREMENTS; CURVE RESOLUTION; KEY SET; MOLECULE; STATISTICS; BIOLOGY; PROTEIN; DYES; TIME AB In this paper we report the application of a novel method for fitting kinetic models to temporally resolved hyperspectral images of fluorescently labeled cells to mathematically resolve pure-component spatial images, pure-component spectra, and pure-component reaction profiles. The method is demonstrated on one simulated image and two experimental cell images, including human embryonic kidney cells (HEK 293) and human A549 pulmonary type II epithelial cells. In both cell images, inhibitor kappa K kinase alpha (IKK alpha) and mitochondrial antiviral signaling protein (MAVS) were labeled with green and yellow fluorescent protein, respectively. Kinetic modeling was performed on the compressed images by using a separable least squares method. A combination of several first-order decays were needed to adequately model the photobleaching processes for each fluorophore observed in these images, consistent with the hypothesis that each fluorophore was found in several different environments within the cells. Numerous plausible mechanisms for kinetic modeling of the photobleaching processes in these images were tested and a method for selecting the most parsimonious and statistically sufficient model was used to prepare spatial maps of each fluorophore. C1 [Cutler, Patrick J.; Gemperline, Paul J.] E Carolina Univ, Dept Chem, Greenville, NC 27858 USA. [Haaland, David M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gemperline, PJ (reprint author), E Carolina Univ, Dept Chem, Greenville, NC 27858 USA. EM gemperlinep@ecu.edu FU United States Department of Energy [DEAC04-94AL85000]; Sandia National Laboratories' FX The authors would like to thank Howland Jones for software and data analysis support on this project and for preparing the simulated hyperspectral image data. Jens Poschet is acknowledged for preparing the fluorescently labeled A549 cells. Rachel Noek and Ryan Davis collected the hyperspectral data of the fixed cells. Allen Brasier from the University of Texas Medical Branch prepared the fluorescently labeled HEK 293 cells. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DEAC04-94AL85000. Support is acknowledged from Sandia National Laboratories' Laboratory Directed Research and Development project titled Microscale Immune Studies Laboratory (MISL). NR 31 TC 1 Z9 1 U1 0 U2 5 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 201B BROADWAY ST, FREDERICK, MD 21701 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD MAR PY 2009 VL 63 IS 3 BP 261 EP 270 PG 10 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 418IT UT WOS:000264142600001 PM 19281641 ER PT J AU Haaland, DM Jones, HDT Van Benthem, MH Sinclair, MB Melgaard, DK Stork, CL Pedroso, MC Liu, P Brasier, AR Andrews, NL Lidke, DS AF Haaland, David M. Jones, Howland D. T. Van Benthem, Mark H. Sinclair, Michael B. Melgaard, David K. Stork, Christopher L. Pedroso, Maria C. Liu, Ping Brasier, Allan R. Andrews, Nicholas L. Lidke, Diane S. TI Hyperspectral Confocal Fluorescence Imaging: Exploring Alternative Multivariate Curve Resolution Approaches SO APPLIED SPECTROSCOPY LA English DT Article DE Hyperspectral confocal microscope; Fluorescence imaging; Multivariate curve resolution; MCR; Partially constrained alternating least squares; ALS; Quantum dots; Autofluorescence; Corn endosperm ID SPECTRAL IMAGES; PROTEIN THIOLS; MERCUROCHROME; TITRATIONS; ALGORITHM; POWERFUL; SYSTEMS; CELLS AB Hyperspectral confocal fluorescence microscopy, when combined with multivariate curve resolution (MCR), provides a powerful new tool for improved quantitative imaging of multi-fluorophore samples. Generally, fully non-negatively constrained models are used in the constrained alternating least squares MCR analyses of hyperspectral images since real emission components are expected to have non-negative pure emission spectra and concentrations. However, in this paper, we demonstrate four separate cases in which partially constrained models are preferred over the fully constrained MCR models. These partially constrained MCR models can sometimes be preferred when system artifacts are present in the data or where small perturbations of the major emission components are present due to environmental effects or small geometric changes in the fluorescing species. Here we demonstrate that in the cases of hyperspectral images obtained from multicomponent spherical beads, autofluorescence from fixed lung epithelial cells, fluorescence of quantum dots in aqueous solutions, and images of mercurochrome-stained endosperm portions of a wild-type corn seed, these alternative, partially constrained MCR analyses provide improved interpretability of the MCR solutions. Often the system artifacts or environmental effects are more readily described as first and/or second derivatives of the main emission components in these alternative MCR solutions since they indicate spectral shifts and/or spectral broadening or narrowing of the emission hands, respectively. Thus, this paper serves to demonstrate the need to test alternative partially constrained models when analyzing hyperspectral images with MCR methods. C1 [Haaland, David M.; Jones, Howland D. T.; Van Benthem, Mark H.; Sinclair, Michael B.; Melgaard, David K.; Stork, Christopher L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pedroso, Maria C.] Monsanto Co, St Louis, MO 63167 USA. [Liu, Ping; Brasier, Allan R.] Univ Texas Med Branch, Galveston, TX 77555 USA. [Andrews, Nicholas L.; Lidke, Diane S.] Univ New Mexico, Dept Pathol, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. RP Haaland, DM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dmhaala@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000]; Sandia National Laboratories' FX We would like to acknowledge Michael R. Keenan for his part in generating the algorithms and software to perform the MCR analysis of the hyperspectral data. Rachel Noek is acknowledged for collecting the A459 cell image data. Sandia is at multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy Under Contract DE-AC04-94AL85000. Support is acknowledged from Sandia National Laboratories' Laboratory Directed Research and Development project titled Microscale Immune Studies Laboratory (MISL). NR 29 TC 33 Z9 33 U1 1 U2 16 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 201B BROADWAY ST, FREDERICK, MD 21701 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD MAR PY 2009 VL 63 IS 3 BP 271 EP 279 PG 9 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 418IT UT WOS:000264142600002 PM 19281642 ER PT J AU Kim, SS Menegazzo, N Young, C Chan, J Carter, C Mizaikoff, B AF Kim, Seong-Soo Menegazzo, Nicola Young, Christina Chan, James Carter, Chance Mizaikoff, Boris TI Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors SO APPLIED SPECTROSCOPY LA English DT Article DE Mid-infrared sensors; Fourier transform infrared spectroscopy; FT-IR spectroscopy; Hollow waveguides; Trace gas sensing; Methane; Carbon dioxide ID QUANTUM-CASCADE LASERS; BENDING LOSSES; TRANSMISSION; METHANE; BREATH; LIGHT; WAVEGUIDES; HYDROGEN; VAPORS; PATHS AB A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000-500 cm(-1), enabling continuous detection of small volume gas-phase analytes such as CH(4), CO(2), C(2)H(5)Cl, or their mixtures at trace levels. Ag/Ag-halide hollow core optical fibers simultaneously serve as an optical waveguide for broad-band mid-infrared radiation and as a miniaturized absorption gas cell. Specifically, carbon dioxide, methane, and ethyl chloride as well as binary mixtures in a carrier gas were analyzed during exponential dilution experiments. In the studies reported here, the integration of an optical gas sensor with FT-IR spectroscopy provides excellent detection limits for small gas volumes (similar to 1.5 mL,) of individual analytes at a few tens of parts per billion (ppb, vol/vol) for carbon dioxide and a few hundreds of ppb (vol/vol) for methane. Furthermore, the broad-band nature of the radiation source and of the hollow core optical waveguide provides the capability of multi-constituent analysis in mixtures. C1 [Mizaikoff, Boris] Univ Ulm, Inst Analyt & Bioanalyt Chem, D-89073 Ulm, Germany. [Chan, James; Carter, Chance] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kim, Seong-Soo; Menegazzo, Nicola; Young, Christina] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. RP Mizaikoff, B (reprint author), Univ Ulm, Inst Analyt & Bioanalyt Chem, D-89073 Ulm, Germany. EM boris.mizaikoff@uni-ulm.de RI Mizaikoff, Boris/G-9959-2013 OI Mizaikoff, Boris/0000-0002-5583-7962 FU U.S. Department of Energy by the University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; Laboratory Directed Research and Development Program at LLNL [B565491] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. This project was funded by the Laboratory Directed Research and Development Program at LLNL under sub-contract No. B565491. The authors appreciate fruitful technical discussion with Dr. Jean-Francois Masson at Georgia Tech, who is now with the University of Montreal. NR 32 TC 19 Z9 21 U1 2 U2 15 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 201B BROADWAY ST, FREDERICK, MD 21701 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD MAR PY 2009 VL 63 IS 3 BP 331 EP 337 PG 7 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 418IT UT WOS:000264142600009 PM 19281649 ER PT J AU Lewis, LJ Perez, D AF Lewis, Laurent J. Perez, Danny TI Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations SO APPLIED SURFACE SCIENCE LA English DT Article DE Laser ablation; Molecular-dynamics simulations; Phase explosion; Fragmentation; Spallation ID PHASE EXPLOSION; SOLIDS; NANOPARTICLES; SILICON; NICKEL AB Laser ablation is a technology widely used in many applications. Understanding in detail the mechanisms that lead to ablation remains a formidable challenge because of the complexity of the processes taking place, the variety of species involved, and the range of length and time scales covered. Atomic-level experimental information is difficult to obtain and must be augmented by theory. In this article, we briefly review the progresses that we have accomplished using a simple two-dimensional molecular-dynamics model, insisting on the importance of considering the thermodynamics of the evolution of the systems in order to understand ablation. Through the identification of the thermodynamic pathways followed by the material after irradiation, our model has provided significant insights on the physical mechanisms leading to ablation. It has been demonstrated in particular that these depend strongly on the influence, and are actually determined by the effective amount of energy received within different regions of the target. Further, internal or external factors, such as inertial confinement, play a key role in determining the route to ablation - and thus the types and sizes of particles ejected - by constraining the thermodynamical evolution of the system. We have established that, for ultrashort pulses in strongly absorbing materials, ablation proceeds by either spallation, phase explosion or fragmentation; the latter, we demonstrate, is the most important mechanism. For longer pulses, ablation may also proceed by trivial fragmentation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lewis, Laurent J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Lewis, Laurent J.] Univ Montreal, RQMP, Montreal, PQ H3C 3J7, Canada. [Perez, Danny] Los Alamos Natl Lab, Theoret Div T12, Los Alamos, NM 87545 USA. RP Lewis, LJ (reprint author), Univ Montreal, Dept Phys, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada. EM Laurent.Lewis@UMontreal.CA; danny_perez@lanl.gov RI Lewis, Laurent/E-5546-2013 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT); U.S. Department of Energy [DE-AC52-O6NA25396]; Director's Funding at Los Alamos National Laboratory FX We are grateful to the many people who have contributed to our research efforts in this area over the years, in particular Patrick Lorazo and Michel Meunier; thanks also go to Delphine Bouilly, Laurent Karim Be ' land, Delphine Deryng, Vincent Mijoule, Danahe ' Paquin- Ricard, and E ' lisabeth Renaud. It is a pleasure also to acknowledge numerous discussions and exchanges with several researchers in the. eld, including Salvatore Amoruso, Riccardo Bruzzese, Savas Georgiou, Klaus Sokolowski-Tinten, and Leonid V. Zhigilei. This work has been supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT). We are immensely grateful to the Reseau Quebecois de Calcul de Haute Performance (RQCHP) for generous allocations of computer resources. D.P. gratefully acknowledges Director's Funding at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-O6NA25396. NR 33 TC 31 Z9 31 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAR 1 PY 2009 VL 255 IS 10 BP 5101 EP 5106 DI 10.1016/j.apsusc.2008.07.116 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 414LK UT WOS:000263865000001 ER PT J AU Santagata, A Albano, G Spera, D Teghil, R Villani, P Parisi, GP De Bonis, A Sordelet, DJ AF Santagata, A. Albano, G. Spera, D. Teghil, R. Villani, P. Parisi, G. P. De Bonis, A. Sordelet, D. J. TI Emission spectra investigation of fs induced NPs probed by the ns laser pulse of a fs/ns DP-LIBS orthogonal configuration SO APPLIED SURFACE SCIENCE LA English DT Article DE Ns laser probe; Dual-pulse LIBS; Laser induced emission spectroscopy; Fs-pulsed laser ablation; Nanoparticles detection; Quasicrystal ID NANOPARTICLE GENERATION; ABLATION; DEPOSITION; VACUUM; METALS AB A dual-pulse fs/ns laser induced breakdown spectroscopy configuration, where an initial 250 fs ablating pulsed laser followed by a delayed ns laser beam placed at a fixed distance, orthogonally with the expanding plasma plume, has been used in air on a Al65Cu23Fe12 quasicrystal. The obtained emission data were acquired with a set-up arrangement providing space detections, with a resolution up to 15 mm, of the ns laser pulse generated signals. Assuming the fulfillment of local thermodynamic equilibrium conditions, the role played by the time lag between the two laser beams on the induced plasma excitation temperatures and electronic densities, as well as a space resolved process survey, has been followed. The spatial and time resolved spectra show, almost, steady values of the determined elementary plasma features with the development of nanoparticles occurring during the fs laser pulsed ablation process. The ns laser probe of the dual-pulse LIBS configuration here presented confirms that the nanoparticles induced can be largely widespread in both space and time whose compositions, overall, could retain the starting target stoichiometry. It is shown that these nanoparticles formation can actually take place at different times following the initial ultra-short laser beam incidence and that, especially at long interpulse delays (> 100 mu s), modest compositional changes can be observed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Santagata, A.; Albano, G.; Spera, D.; Villani, P.; Parisi, G. P.] CNR IMIP, Unita Operat Potenza, Zona Ind Tito Scalo, I-85050 Tito, PZ, Italy. [Teghil, R.; De Bonis, A.] Univ Basilicata, Dipartimento Chim, I-85100 Potenza, Italy. [Sordelet, D. J.] Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA USA. RP Santagata, A (reprint author), CNR IMIP, Unita Operat Potenza, Zona Ind Tito Scalo, Via S Loja,Zona Ind, I-85050 Tito, PZ, Italy. EM antonio.santagata@cnr.it OI TEGHIL, ROBERTO/0000-0002-8528-8669; De Bonis, Angela/0000-0002-1177-2896; Santagata, Antonio/0000-0002-1409-3135 FU Patto con i Giovani GEL FX The authors would like to express their meaningful gratefulness to the Regione Basilicata-Dipartimento Formazione Cultura e Sport for supporting part of this work by the "Patto con i Giovani GEL'' research grants. NR 22 TC 6 Z9 6 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAR 1 PY 2009 VL 255 IS 10 BP 5159 EP 5162 DI 10.1016/j.apsusc.2008.08.075 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 414LK UT WOS:000263865000012 ER PT J AU Hazen, TC Chakraborty, R Fleming, J Gregory, IR Bowman, JP Jimenez, L Zhang, D Pfiffner, SM Brockman, FJ Sayler, GS AF Hazen, Terry C. Chakraborty, Romy Fleming, James M. Gregory, Ingrid R. Bowman, John P. Jimenez, Luis Zhang, Dai Pfiffner, Susan M. Brockman, Fred J. Sayler, Gary S. TI Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE SO ARCHIVES OF MICROBIOLOGY LA English DT Article DE Trichloroethylene; Bioremediation; Methanotrophs ID SOLUBLE METHANE MONOOXYGENASE; METHYLOSINUS-TRICHOSPORIUM; TRICHLOROETHYLENE DEGRADATION; METHANOTROPHS; CLUSTER; SOILS; RNA AB Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study demonstrates that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies. C1 [Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Sayler, Gary S.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Sayler, Gary S.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37932 USA. [Pfiffner, Susan M.] Univ Tennessee, Inst Appl Microbiol, Knoxville, TN 37932 USA. [Brockman, Fred J.] Pacific NW Natl Lab, Environm Microbiol Grp, Richland, WA 99352 USA. [Hazen, Terry C.; Chakraborty, Romy] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Hazen, TC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, MS 70A-3317,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tchazen@1b1.gov RI Chakraborty, Romy/D-9230-2015; Bowman, John/C-2414-2014; Hazen, Terry/C-1076-2012 OI Chakraborty, Romy/0000-0001-9326-554X; Bowman, John/0000-0002-4528-9333; Hazen, Terry/0000-0002-2536-9993 FU U. S. Department of Energy [DE-AC02-05CH11231, DE-AC06-76RLO-1830]; Environics Directorate, Armstrong Laboratories; Tyndall AFB; Panama City; FL; U. S. Air Force Office of Scientific Grants FX This work was supported by the U. S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC06-76RLO-1830, and contracts from Westinghouse Savannah River Co. to the University of Tennessee. John P. Bowman was supported by the Environics Directorate, Armstrong Laboratories, Tyndall AFB, Panama City, FL, U. S. Air Force Office of Scientific Grants. We would like to thank Bruce Applegate for valuable technical assistance. NR 31 TC 17 Z9 20 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0302-8933 J9 ARCH MICROBIOL JI Arch. Microbiol. PD MAR PY 2009 VL 191 IS 3 BP 221 EP 232 DI 10.1007/s00203-008-0445-8 PG 12 WC Microbiology SC Microbiology GA 409NJ UT WOS:000263512100004 PM 19034430 ER PT J AU Roth, K Dieckmann, J Brodrick, J AF Roth, Kurt Dieckmann, John Brodrick, James TI Using Off-Peak Precooling SO ASHRAE JOURNAL LA English DT Editorial Material ID BUILDING THERMAL MASS; STORAGE C1 [Roth, Kurt] MIT, Fraunhofer Ctr Sustainable Energy Systms, Cambridge, MA 02139 USA. [Dieckmann, John] TIAX LLC, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Roth, K (reprint author), MIT, Fraunhofer Ctr Sustainable Energy Systms, Cambridge, MA 02139 USA. NR 17 TC 3 Z9 3 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD MAR PY 2009 VL 51 IS 3 BP 80 EP 83 PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 418BO UT WOS:000264122400017 ER PT J AU Rossetti, A Mantovani, F Junor, W Saikia, DJ Salter, C AF Rossetti, A. Mantovani, F. Junor, W. Saikia, D. J. Salter, C. TI An "incomplete sample" of CSSs observed with the VLA SO ASTRONOMISCHE NACHRICHTEN LA English DT Article; Proceedings Paper CT 4th Workshop on Compact Steep Spectrum and Gigahertz-Peaked Spectrum Radio Sources CY MAY 26-29, 2008 CL Riccione, ITALY SP Natl Inst Astrophys, Univ Bologna DE galaxies: general; ISM: magnetic fields; polarization; radio continuum: galaxies ID RADIO-SOURCES; DEPOLARIZATION AB A sample of 26 Compact Steep Spectrum sources selected from the original list drawn up by Dallacasa & Stanghellini (1990) have been observed with the VLA A-array at X, U, and K bands. Images have been produced in both total intensity and polarisation at four widely-spaced frequencies with the aim of deriving linear polarisation parameters. We present preliminary polarisation results on source fractional polarisation and electric vector angle at X and U bands. These new information will be completed with available archive data in order to perform a polarimetric analysis of a complete CSS sample. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Rossetti, A.; Mantovani, F.] Ist Nazl Astrofis, Ist Radioastron, I-40129 Bologna, Italy. [Junor, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Saikia, D. J.] Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India. [Salter, C.] Arecibo Observ, Arecibo, PR 00612 USA. RP Rossetti, A (reprint author), Ist Nazl Astrofis, Ist Radioastron, Via P Gobetti 101, I-40129 Bologna, Italy. EM rossetti@ira.inaf.it NR 6 TC 0 Z9 0 U1 0 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD MAR PY 2009 VL 330 IS 2-3 BP 221 EP 222 DI 10.1002/asna.200811161 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 420RJ UT WOS:000264306600026 ER PT J AU Schroedter, M Krennrich, F LeBohec, S Falcone, A Fegan, SJ Horan, D Kildea, J Smith, AW Toner, J Weekes, TC AF Schroedter, M. Krennrich, F. LeBohec, S. Falcone, A. Fegan, S. J. Horan, D. Kildea, J. Smith, A. W. Toner, J. Weekes, T. C. TI Search for primordial black holes with SGARFACE SO ASTROPARTICLE PHYSICS LA English DT Article DE Primordial black holes: general; Gamma-rays: bursts; Techniques: air-Cherenkov ID GAMMA-RAY BURSTS; GLUON-JET EMISSION; HIGH-ENERGY; EARLY UNIVERSE; IMAGING TECHNIQUE; GALACTIC HALO; COSMIC-RAYS; UPPER LIMIT; QUARK-JET; EXPLOSIONS AB The short gamma-ray front air-cherenkov experiment (SGARFACE) uses the Whipple 10 m telescope to search for bursts of gamma-rays. SGARFACE is sensitive to bursts with duration from a few ns to similar to 20 mu s and with gamma-ray energy above 100 MeV. SGARFACE began operating in March 2003 and has collected 2.2 million events during an exposure time of 2267 h. A search for bursts of gamma-rays from explosions of primordial black holes (PBH) was carried out. A Hagedorn-type PBH explosion is predicted to be visible within 60 pc of Earth. Background events were caused by cosmic rays and by atmospheric phenomena and their rejection was accomplished to a large extent using the time-resolved images. No unambiguous detection of bursts of gamma-rays could be made as the remaining background events mimic the expected shape and time-development of bursts. Upper limits on the PBH explosion rate were. derived from the SGARFACE data and are compared to previous and future experiments. We note that a future array of large wide-field air-Cherenkov telescopes equipped with a SGARFACE-like trigger would be able to operate background-free with a 20-30 times higher sensitivity for PBH explosions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Schroedter, M.; Krennrich, F.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Falcone, A.] Penn State Univ, Davey Lab 525, University Pk, PA 16802 USA. [Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Toner, J.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Kildea, J.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Whipple Observ, Amado, AZ 85645 USA. RP Schroedter, M (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM schroedt@iastate.edu FU Iowa State University FX We thank the VERITAS Collaboration and the staff at the Whipple Observatory for operating and maintaining the 10 m project. We thank Roy McKay, Harold Skank, and Gary Sleedge at ISU for their help in the electronics design and testing. We would also like to thank Jianwei Qiu at ISU for discussing with us the physics of PBH evaporation and the unknown referee for valuable comments and criticism. FK acknowledges support for the SGARFACE project by the Department of Energy, High-Energy Physics Division, through the Outstanding junior Investigator program and generous financial support by Iowa State University. NR 76 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2009 VL 31 IS 2 BP 102 EP 115 DI 10.1016/j.astropartphys.2008.12.002 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 414HO UT WOS:000263854700005 ER PT J AU Norman, EB Browne, E Shugart, HA Joshi, TH Firestone, RB AF Norman, Eric B. Browne, Edgardo Shugart, Howard A. Joshi, Tenzing H. Firestone, Richard B. TI Evidence against correlations between nuclear decay rates and Earth-Sun distance SO ASTROPARTICLE PHYSICS LA English DT Article DE Radioactivity; Alpha decay; Beta decay; Gamma-ray detectors ID HALF-LIFE AB We have reexamined Our previously Published data to search for evidence of correlations between the rates for the alpha, beta-minus, beta-plus, and electron capture decays of (22)Na, (44)Ti, (108)Ag(m), (121)Sn(m), (133)Ba, and (241)Am and the Earth-Sun distance. We find no evidence for such correlations and set limits on the possible amplitudes of such correlations substantially smaller than those observed in previous experiments. (C) 2008 Elsevier B.V. All rights reserved. C1 [Norman, Eric B.; Joshi, Tenzing H.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Norman, Eric B.] Lawrence Livermore Natl Lab, Div N, Livermore, CA 94551 USA. [Norman, Eric B.; Browne, Edgardo; Firestone, Richard B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Shugart, Howard A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Norman, EB (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM ebnorman@lbl.gov OI Firestone, Richard/0000-0003-3833-5546 FU US Department of Homeland Security; US Department of Energy [AC52-07NA27344, DE-AC02-05CH11231] FX This work was supported in part by the US Department of Homeland Security, and by the US Department of Energy under contract numbers DE-AC52-07NA27344 at LLNL and DE-AC02-05CH11231 at LBNL. NR 8 TC 36 Z9 36 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2009 VL 31 IS 2 BP 135 EP 137 DI 10.1016/j.astropartphys.2008.12.004 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 414HO UT WOS:000263854700008 ER PT J AU Hoard, DW Kafka, S Wachter, S Howell, SB Brinkworth, CS Ciardi, DR Szkody, P Belle, K Froning, C van Belle, G AF Hoard, D. W. Kafka, Stella Wachter, Stefanie Howell, Steve B. Brinkworth, Carolyn S. Ciardi, David R. Szkody, Paula Belle, Kunegunda Froning, Cynthia van Belle, Gerard TI OBSERVATIONS OF V592 CASSIOPEIAE WITH THE SPITZER SPACE TELESCOPE-DUST IN THE MID-INFRARED SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; novae, cataclysmic variables; stars: individual (V592 Cas) ID MAGNETIC CATACLYSMIC VARIABLES; X-RAY BINARIES; CIRCUMBINARY DISKS; ACCRETION DISKS; WHITE-DWARF; PERIOD GAP; INTERSTELLAR EXTINCTION; MU-M; STARS; MASS AB We present the ultraviolet, optical, infrared spectral energy distribution of the low inclination novalike cataclysmic variable (CV) V592 Cassiopeiae, including new mid-infrared observations from 3.5 to 24 mu m obtained with the Spitzer Space Telescope. At wavelengths shortward of 8 mu m, the spectral energy distribution of V592 Cas is dominated by the steady state accretion disk, but there is flux density in excess of the summed stellar components and accretion disk at longer wavelengths. Reproducing the observed spectral energy distribution from ultraviolet to mid-infrared wavelengths can be accomplished by including a circumbinary disk composed of cool dust, with a maximum inner edge temperature of approximate to 500 K. The total mass of circumbinary dust in V592 Cas (similar to 10(21) g) is similar to that found from recent studies of infrared excess in magnetic CVs, and is too small to have a significant effect on the long-term secular evolution of the cataclysmic variable. The existence of circumbinary dust in V592 Cas is possibly linked to the presence of a wind outflow in this system, which can provide the necessary raw materials to replenish the circumbinary disk on relatively short timescales, and/or could be a remnant from the common envelope phase early in the formation history of the system. C1 [Hoard, D. W.; Kafka, Stella; Wachter, Stefanie; Brinkworth, Carolyn S.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ciardi, David R.] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Szkody, Paula] Univ Washington, Dept Astron, Seattle, WA 98195 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Froning, Cynthia] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [van Belle, Gerard] European So Observ, D-85748 Garching, Germany. RP Hoard, DW (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. OI Hoard, Donald W./0000-0002-6800-6519; Ciardi, David/0000-0002-5741-3047 FU National Aeronautics and Space Administration (NASA); NSF FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA. This work makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and the NSF. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. NR 63 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2009 VL 693 IS 1 BP 236 EP 249 DI 10.1088/0004-637X/693/1/236 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 414ZE UT WOS:000263903300018 ER PT J AU Ruiter, AJ Belczynski, K Benacquista, M Holley-Bockelmann, K AF Ruiter, Ashley J. Belczynski, Krzysztof Benacquista, Matthew Holley-Bockelmann, Kelly TI THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE LASER INTERFEROMETER SPACE ANTENNA SIGNAL SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; Galaxy: halo; gravitational waves; white dwarfs ID GALACTIC HALO; MILKY-WAY; GRAVITATIONAL-RADIATION; MAGELLANIC CLOUDS; LISA SOURCES; STARS; DISK; EVOLUTION; GALAXY; POPULATION AB Galactic double white dwarfs were postulated as a source of confusion limited noise for the Laser Interferometer Space Antenna (LISA), the future space-based gravitational wave observatory. Until very recently, the Galactic population consisted of a relatively well-studied disk population, a somewhat studied smaller bulge population and a mostly unknown, but potentially large halo population. It has been argued that the halo population may produce a signal that is much stronger (factor of similar to 5 in spectral amplitude) than the disk population. However, this surprising result was not based on an actual calculation of a halo white dwarf population, but was derived on (1) the assumption that one can extrapolate the halo population properties from those of the disk population and (2) the postulated (unrealistically) high number of white dwarfs in the halo. We perform the first calculation of a halo white dwarf population using population synthesis models. Our comparison with the signal arising from double white dwarfs in the Galactic disk+bulge clearly shows that it is impossible for the double white dwarf halo signal to exceed that of the rest of the Galaxy. Using microlensing results to give an upper limit on the content of white dwarfs in the halo (similar to 30% baryonic mass in white dwarfs), our predicted halo signal is a factor of 10 lower than the disk+bulge signal. Even in the implausible case, where all of the baryonic halo mass is found in white dwarfs, the halo signal does not become comparable to that of the disk+bulge, and thus would still have a negligible effect on the detection of other LISA sources. C1 [Ruiter, Ashley J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Ruiter, Ashley J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Belczynski, Krzysztof] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Belczynski, Krzysztof] Univ Zielona Gora, J Kepler Inst Astron, Zielona Gora, Poland. [Benacquista, Matthew] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Holley-Bockelmann, Kelly] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Ruiter, AJ (reprint author), New Mexico State Univ, Dept Astron, 1320 Frenger Mall, Las Cruces, NM 88003 USA. EM aruiter@nmsu.edu; kbelczyn@nms.edu; benacquista@phys.utb.edu; k.holley@vanderbilt.edu FU NASA [NNG94GD52G]; Center for Gravitational Wave Astronomy [NAG5-13396] FX A.J.R. is thankful to S. Torres for informative discussion. M. J. B. acknowledges the support of NASA through grant NNG94GD52G and the Center for Gravitational Wave Astronomy (NAG5-13396). We also thank S. Larson for LISA sensitivity curve dNASAata, and G. Nelemans for the use of Nelemans et al. ( 2004) LISA amplitude data and helpful discussion. The StarTrack simulations were run at the Nicolaus Copernicus Astronomical Center and the Advanced Center for Computation, Research and Education. NR 46 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2009 VL 693 IS 1 BP 383 EP 387 DI 10.1088/0004-637X/693/1/383 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 414ZE UT WOS:000263903300032 ER PT J AU Mueller, M Schwartz, DA AF Mueller, M. Schwartz, D. A. TI CONSTRAINTS ON THE LOW-ENERGY CUTOFF IN THE ELECTRON DISTRIBUTION OF THE PKS 0637-752 JET SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: jets; quasars: individual (pks); X-rays: galaxies ID X-RAY JET; ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; EXTENDED RADIO JETS; SYNCHROTRON RADIATION; COMPTON-SCATTERING; CHANDRA DISCOVERY; INVERSE COMPTON; PKS-0637-752; SPECTRUM AB We reanalyze the Chandra ACIS spectrum of the kpc-scale jet in PKS 0637-752 to investigate the possible low-energy cutoff in the relativistic electron spectrum producing the nonthermal radiation in the scenario of inverse Compton (IC) emission off the cosmic microwave background. This was among the first objects targeted by the Chandra Observatory and gives a unique opportunity to study the low-energy X-ray emission free of detector contamination. As previously reported in the literature, the spectrum can be fit by a power law, with the slope predicted by the radio spectrum, modified by low energy absorption through the Galaxy as determined from the spectrum of the quasar core and by HI 21 cm observations. We obtain a marginally better fit with a model of IC emission produced by an electron population that exhibits a cutoff at gamma(min) delta(10) between about 50 and 80 ( assuming Gamma = delta). This range for gamma(min) is higher than has previously been assumed in broadband spectral fits to the jet emission. The observed optical flux can be used to place a lower limit on gamma(min); the constraint is not very strong, but does suggest that gamma(min) must be higher than 1 to avoid overproducing the optical emission. We investigate the effect of uncertainties in the column density for galactic absorption as well as the calibration of Chandra for these early observations. Finally, we discuss the implication of these limits on the jet luminosity in this source. C1 [Mueller, M.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Mueller, M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Schwartz, D. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Mueller, M (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mmueller@slac.stanford.edu; das@head.cfa.harvard.edu FU NASA [NAS8-39073]; CXC [GO3-4120X]; Department of Energy [DE-AC02-76SF00515] FX This research was supported in part by NASA Contract NAS8-39073 to the Chandra X-ray Center and CXC grant GO3-4120X to SAO, as well as by the Department of Energy Contract DE-AC02-76SF00515 to the Stanford Linear Accelerator Center. The data reduction made use of the Chandra Interactive Analysis of Observations tools (http://cxc.harvard.edu/ciao), version 3.3, CALDB version 3.2.4. Spectral fits were obtained in xspec (Arnaud 1996). We wish to thank the anonymous referee for many helpful comments, and Mark Bautz and Catherine Grant for assistance in understanding the low-energy response of Chandra. Further thanks to Greg Madejski and Lukasz Stawarz for fruitful discussions at all stages of this work. NR 32 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2009 VL 693 IS 1 BP 648 EP 655 DI 10.1088/0004-637X/693/1/648 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 414ZE UT WOS:000263903300053 ER PT J AU Sakamoto, T Sato, G Barbier, L Barthelmy, SD Cummings, JR Fenimore, EE Gehrels, N Hullinger, D Krimm, HA Lamb, DQ Markwardt, CB Palmer, DM Parsons, AM Stamatikos, M Tueller, J Ukwatta, TN AF Sakamoto, T. Sato, G. Barbier, L. Barthelmy, S. D. Cummings, J. R. Fenimore, E. E. Gehrels, N. Hullinger, D. Krimm, H. A. Lamb, D. Q. Markwardt, C. B. Palmer, D. M. Parsons, A. M. Stamatikos, M. Tueller, J. Ukwatta, T. N. TI E-peak ESTIMATOR FOR GAMMA-RAY BURSTS OBSERVED BY THE Swift BURST ALERT TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: bursts ID INTRINSIC SPECTRA; FLASHES; ENERGY; CATALOG; MODEL; ENERGETICS; MISSION; HETE-2; BAT AB We report a correlation based on a spectral simulation study of the prompt emission spectra of gamma-ray bursts (GRBs) detected by the Swift Burst Alert Telescope (BAT). The correlation is between the E-peak energy, which is the peak energy in the nu F-nu spectrum, and the photon index (Gamma) derived from a simple power-law (PL) model. The E-peak-Gamma relation, assuming the typical smoothly broken PL spectrum of GRBs, is log E-peak = 3.258 - 0.829 Gamma (1.3 <= Gamma <= 2.3). We take into account not only a range of E-peak energies and fluences, but also distributions for both the low-energy photon index and the high-energy photon index in the smoothly broken PL model. The distribution of burst durations in the BAT GRB sample is also included in the simulation. Our correlation is consistent with the index observed by BAT and E-peak measured by the BAT, and by other GRB instruments. Since about 85% of GRBs observed by the BAT are acceptably fit with the simple PL model because of the relatively narrow energy range of the BAT, this relationship can be used to estimate E-peak when it is located within the BAT energy range. C1 [Sakamoto, T.; Cummings, J. R.; Krimm, H. A.; Markwardt, C. B.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.; Cummings, J. R.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Stamatikos, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Fenimore, E. E.; Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Markwardt, C. B.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Sato, G.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Lamb, D. Q.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hullinger, D.] Moxtek Inc, Orem, UT 84057 USA. [Ukwatta, T. N.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. RP Sakamoto, T (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Code 661, Greenbelt, MD 20771 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Parsons, Ann/I-6604-2012 NR 58 TC 54 Z9 54 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2009 VL 693 IS 1 BP 922 EP 935 DI 10.1088/0004-637X/693/1/922 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 414ZE UT WOS:000263903300077 ER PT J AU Li, ST Buoni, MJ Li, H AF Li, Shengtai Buoni, Matthew J. Li, Hui TI A FAST POTENTIAL AND SELF-GRAVITY SOLVER FOR NONAXISYMMETRIC DISKS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE accretion, accretion discs; methods: numerical; planetary systems: protoplanetary discs ID FORMING JOVIAN PLANETS; PROTOPLANETARY DISK; TIDAL INTERACTION; EARLY EVOLUTION; MIGRATION; COROTATION; ACCRETION; LINDBLAD; TORQUES; SYSTEMS AB Disk self-gravity could play an important role in the dynamic evolution of interaction between disks and embedded protoplanets. We have developed a fast and accurate solver to calculate the disk potential and disk self-gravity forces for disk systems on a uniform polar grid. Our method closely follows the method given by Chan et al., in which a fast Fourier transform in the azimuthal direction is performed and a direct integral approach in the frequency domain in the radial direction is implemented on a uniform polar grid. This method can be very effective for disks with vertical structures that depend only on the disk radius, achieving the same computational efficiency as for zero-thickness disks. We describe how to parallelize the solver efficiently on distributed parallel computers. We propose a mode-cutoff procedure to reduce the parallel communication cost and achieve nearly linear scalability for a large number of processors. For comparison, we have also developed a particle-based fast tree code to calculate the self-gravity of the disk system with a vertical structure. The numerical results show that our direct integral method is at least two orders of magnitude faster than our optimized tree-code approach. C1 [Buoni, Matthew J.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93107 USA. [Li, Shengtai; Li, Hui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, ST (reprint author), Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM sli@lanl.gov; buoni@engineering.ucsb.edu; hli@lanl.gov OI Li, Shengtai/0000-0002-4142-3080 FU Laboratory Directed Research and Development (LDRD); Los Alamos National Laboratory Report, Los Alamos [LA-UR-075882] FX We would like to thank Dr. C.-K. Chan for helpful discussion during his stay at Los Alamos. We also thank the referee for many useful comments. This research was performed under the auspices of the Department of Energy. It was supported by the Laboratory Directed Research and Development (LDRD) Program at Los Alamos. It is also available as Los Alamos National Laboratory Report, Los Alamos Report LA-UR-075882. NR 19 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2009 VL 181 IS 1 BP 244 EP 254 DI 10.1088/0067-0049/181/1/244 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 415CR UT WOS:000263912400012 ER PT J AU Kean, AJ Littlejohn, D Ban-Weiss, GA Harley, RA Kirchstetter, TW Lunden, MM AF Kean, A. J. Littlejohn, D. Ban-Weiss, G. A. Harley, R. A. Kirchstetter, T. W. Lunden, M. M. TI Trends in on-road vehicle emissions of ammonia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Ammonia; NH(3); Emissions; Trends; On-road; Vehicle; Light-duty; Heavy-duty; Nitrogen oxides; NO(x); Carbon monoxide; CO ID LIGHT-DUTY VEHICLES; NH3 EMISSIONS; NITRIC-ACID; EXHAUST; GASOLINE; SULFUR; TUNNEL; AMINES; RATES; AIR AB Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 +/- 6%, from 640 +/- 40 to 400 +/- 20 mg kg(-1). High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environmental Science Technology 2006, 40, 7018-22) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles. Published by Elsevier Ltd. C1 [Kean, A. J.] Calif Polytech State Univ San Luis Obispo, Dept Mech Engn, San Luis Obispo, CA 93407 USA. [Littlejohn, D.; Kirchstetter, T. W.; Lunden, M. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Ban-Weiss, G. A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Harley, R. A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Kean, AJ (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Mech Engn, 1 Grand Ave, San Luis Obispo, CA 93407 USA. EM akean@calpoly.edu RI Harley, Robert/C-9177-2016; OI Harley, Robert/0000-0002-0559-1917; Ban-Weiss, George/0000-0001-8211-2628 FU California Air Resources Board [05-301] FX This project was funded by the California Air Resources Board under Contract 05-301. The statements and conclusions in this paper are those of the authors and not necessarily those of the California Air Resources Board. We are grateful to Caltrans staff at the Caldecott tunnel, Technical Services Division staff of the Bay Area Air Quality Management District, and California Air Resources Board staff for their assistance. We also thank Daniel Burgard, Donald Stedman, and Gary Bishop of the University of Denver and John McLaughlin of UC Berkeley. NR 27 TC 59 Z9 59 U1 2 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAR PY 2009 VL 43 IS 8 BP 1565 EP 1570 DI 10.1016/j.atmosenv.2008.09.085 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 417IX UT WOS:000264070800011 ER PT J AU Huo, H Wu, Y Wang, M AF Huo, Hong Wu, Ye Wang, Michael TI Total versus urban: Well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Well-to-wheels; Criteria pollutants; Alternative fuels; Total emissions; Urban emissions ID PARTICULATE AIR-POLLUTION; HEALTH AB The potential impact on the environment of alternative vehicle/fuel systems needs to be evaluated, especially with respect to human health effects resulting from air pollution. We used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to examine the well-to-wheel (WTW) emissions of five criteria pollutants (VOCs, NO(x), PM(10), PM(2.5), and CO) for nine vehicle/fuel systems: (1) conventional gasoline vehicles: (2) conventional diesel vehicles; (3) ethanol (E85) flexible-fuel vehicles (FFVs) fueled with corn-based ethanol; (4) E85 FFVs fueled with switchgrass-based ethanol; (5) gasoline hybrid vehicles (HEVs); (6) diesel HEVs: (7) electric vehicles (EVs) charged using the average U.S. generation mix; (8) EVs charged using the California generation mix; and (9) hydrogen fuel cell vehicles (FCVs). Pollutant emissions were separated into total and urban emissions to differentiate the locations of emissions, and emissions were presented by sources. The results show that WTW emissions of the vehicle/fuel systems differ significantly, in terms of not only the amounts but also with respect to locations and sources, both of which are important in evaluating alternative vehicle/fuel systems. E85 FFVs increase total emissions but reduce urban emissions by up to 30% because the majority of emissions are released from farming equipment, fertilizer manufacture, and ethanol plants, all of which are located in rural areas. HEVs reduce both total and urban emissions because of the improved fuel economy and lower emissions. While EVs significantly reduce total emissions of VOCs and CO by more than 90%, they increase total emissions of PM(10) and PM(2.5) by 35-325%. However, EVs can reduce urban PM emissions by more than 40%. FCVs reduce VOCs, CO, and NO., emissions, but they increase both total and urban PM emissions because of the high process emissions that occur during hydrogen production. This study emphasizes the importance of specifying a thorough life-cycle emissions inventory that can account for both the locations and sources of the emissions to assist in achieving a fair comparison of alternative vehicle/fuel options in terms of their environmental impacts. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Huo, Hong; Wu, Ye; Wang, Michael] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Huo, H (reprint author), Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. EM hhuo@anl.gov; ywu@tsinghua.edu.cn; mqwang@anl.gov RI Wu, Ye/O-9779-2015 FU Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy; [DE-AC020-6CH11357] FX This work was sponsored by Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy. Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under contract No. DE-AC020-6CH11357. NR 25 TC 39 Z9 39 U1 6 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAR PY 2009 VL 43 IS 10 BP 1796 EP 1804 DI 10.1016/j.atmosenv.2008.12.025 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 421GX UT WOS:000264348500011 ER PT J AU Blanchette, CD Cappuccio, JA Kuhn, EA Segelke, BW Benner, WH Chromy, BA Coleman, MA Bench, G Hoeprich, PD Sulchek, TA AF Blanchette, Craig D. Cappuccio, Jenny A. Kuhn, Edward A. Segelke, Brent W. Benner, W. Henry Chromy, Brett A. Coleman, Matthew A. Bench, Graham Hoeprich, Paul D. Sulchek, Todd A. TI Atomic force microscopy differentiates discrete size distributions between membrane protein containing and empty nanolipoprotein particles SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE Apolipoprotein; Nanolipoprotein particle; Nanodisc; Atomic force microscopy; Membrane protein; Bacteriorhodopsin; NLP ID HIGH-DENSITY-LIPOPROTEINS; APOLIPOPROTEIN-A-I; PHOSPHOLIPID-BILAYER; MASS-SPECTROMETRY; LIPID-BILAYERS; BACTERIORHODOPSIN; NANODISCS; DIMYRISTOYLPHOSPHATIDYLCHOLINE; RECONSTITUTION; SPECTROSCOPY AB To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR(bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly. (C) 2008 Elsevier B.V. All rights reserved. C1 [Blanchette, Craig D.; Cappuccio, Jenny A.; Kuhn, Edward A.; Segelke, Brent W.; Benner, W. Henry; Chromy, Brett A.; Coleman, Matthew A.; Bench, Graham; Hoeprich, Paul D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Sulchek, Todd A.] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA. RP Hoeprich, PD (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-452, Livermore, CA 94550 USA. EM hoeprich2@llnl.gov; todd.sulchek@me.gatech.edu OI Coleman, Matthew/0000-0003-1389-4018 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [LDRD 06-SI-003]; [UCRL-JRNL-235806] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with support from Lawrence Livermore National Laboratory (LDRD 06-SI-003 awarded to PDH). UCRL-JRNL-235806. NR 37 TC 21 Z9 22 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD MAR PY 2009 VL 1788 IS 3 BP 724 EP 731 DI 10.1016/j.bbamem.2008.11.019 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 420EJ UT WOS:000264271400017 PM 19109924 ER PT J AU Fischer, NO Blanchette, CD Chromy, BA Kuhn, EA Segelke, BW Corzett, M Bench, G Mason, PW Hoeprich, PD AF Fischer, Nicholas O. Blanchette, Craig D. Chromy, Brett A. Kuhn, Edward A. Segelke, Brent W. Corzett, Michele Bench, Graham Mason, Peter W. Hoeprich, Paul D. TI Immobilization of His-Tagged Proteins on Nickel-Chelating Nanolipoprotein Particles SO BIOCONJUGATE CHEMISTRY LA English DT Article ID APOLIPOPROTEIN-A-I; PHOSPHOLIPID-BILAYER NANODISCS; NI-NTA-LIPOSOMES; DELIVERY-SYSTEMS; 2-DIMENSIONAL CRYSTALLIZATION; ELECTRON-MICROSCOPY; SUBUNIT VACCINES; LIPID-BILAYERS; BINDING; MEMBRANES AB Nanolipoprotein particles (NLPs) are nanometer-sized, discoidal particles that self-assemble from purified apolipoprotein and phospholipid. Their size and facile functionalization suggest potential application of NLPs as platforms for the presentation and delivery of recombinant proteins. To this end, we investigated incorporation of nickel-chelating lipids into NLPs (NiNLPs) and subsequent sequestration of polyhistidine (His)-tagged proteins. From initial lipid screens for NLP formation, the two phospholipids DMPC and DOPC were identified as suitable bulk lipids for incorporation of the nickel-chelating lipid DOGS-NTA-Ni into NLPs, and NiNLPs were successfully formed with varying amounts of DOGS-NTA-Ni. NiNLPs consisting of 10% DOGS-NTA-Ni with 90% bulk lipid (either DMPC or DOPC) were thoroughly characterized by size exclusion chromatography (SEC), nondenaturing gradient gel electrophoresis (NDGGE), and atomic force microscopy (AFM). Three different Histagged proteins were sequestered on NiNLPs in a nickel-dependent manner, and the amount of immobilized protein was contingent on the size and composition of the NiNLP. C1 [Fischer, Nicholas O.; Blanchette, Craig D.; Chromy, Brett A.; Kuhn, Edward A.; Segelke, Brent W.; Corzett, Michele; Bench, Graham; Hoeprich, Paul D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Mason, Peter W.] Univ Texas Galveston, Med Branch, Dept Pathol & Microbiol & Immunol, Galveston, TX 77555 USA. RP Fischer, NO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM hoeprich2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [LLNL-JRNL-405192]; Lawrence Livermore National Laboratory [LDRD, 06-SI-003]; [DE-AC52-07NA27344] FX The authors thank Dr. Karl Weisgraber for providing reagents and Dr. Roger Martinelli for ICP-AES nickel quantification. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL-JRNL-405192) under Contract DE-AC52-07NA27344 with support from Lawrence Livermore National Laboratory (LDRD, 06-SI-003). NR 34 TC 23 Z9 24 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD MAR PY 2009 VL 20 IS 3 BP 460 EP 465 DI 10.1021/bc8003155 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 421WU UT WOS:000264389800009 PM 19239247 ER PT J AU Lynd, LR Larson, E Greene, N Laser, M Sheehan, J Dale, BE McLaughlin, S Wang, M AF Lynd, Lee R. Larson, Eric Greene, Nathanael Laser, Mark Sheehan, John Dale, Bruce E. McLaughlin, Samuel Wang, Michael TI The role of biomass in America's energy future: framing the analysis SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biomass; biorefinery; biofuels; mature technology ID SOIL-EROSION; SWITCHGRASS; BIOENERGY; ETHANOL; FUELS; CROP; CHEMICALS; BIOFUELS AB The Role of Biomass in America's Energy Future (RBAEF) project, initiated during the first half of 2003, has sought to identify and evaluate paths by which biomass can make a large contribution to energy services and determine means to accelerate biomass energy use. In addressing these issues, the study has focused on future, mature, technologies rather than today's technology. This perspective - the first of eight papers that comprise this issue - introduces the project, providing an operative definition of and method for estimating mature technology, a rationale for choosing the model feedstock, a list of the conversion technologies considered, and as a point of reference, a brief overview of the energy flows through a typical petroleum refinery. The subsequent papers are introduced as well. (C) 2009 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Lynd, Lee R.; Laser, Mark] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Larson, Eric] Princeton Univ, Princeton Environm Inst, Energy Syst Anal Grp, Princeton, NJ 08544 USA. [Greene, Nathanael] Nat Resources Def Council, New York, NY USA. [Sheehan, John] SheehanBoyce LLC, Littleton, CO USA. [Dale, Bruce E.] Michigan State Univ, Dept Chem Engn, E Lansing, MI 48824 USA. [McLaughlin, Samuel] Univ Tennessee, Knoxville, TN USA. [Wang, Michael] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. EM lee.lynd@dartmouth.edu RI Lynd, Lee/N-1260-2013 OI Lynd, Lee/0000-0002-5642-668X NR 41 TC 61 Z9 62 U1 4 U2 19 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAR-APR PY 2009 VL 3 IS 2 BP 113 EP 123 DI 10.1002/bbb.134 PG 11 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 425GK UT WOS:000264624800009 ER PT J AU Sokhansanj, S Mani, S Turhollow, A Kumar, A Bransby, D Lynd, L Laser, M AF Sokhansanj, Shahab Mani, Sudhagar Turhollow, Anthony Kumar, Amit Bransby, David Lynd, Lee Laser, Mark TI Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.) - current technology and envisioning a mature technology SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE switchgrass; harvest and collection; logistics, IBSAL, handling and pre-processing; transport; supply chain and logistics; cost, energy and emissions ID BIOMASS PRODUCTION; UNITED-STATES; CORN STOVER; NITROGEN-FERTILIZATION; PIPELINE TRANSPORT; BIOENERGY; QUALITY; YIELD; AGRICULTURE; PERFORMANCE AB Switchgrass (Panicum virgatum L.) is a promising cellulosic biomass feedstock for biorefineries and biofuel production. This paper reviews current and future potential technologies for production, harvest, storage, and transportation of switchgrass. Our analysis indicates that for a yield of 10 Mg ha(-1), the current cost of producing switchgrass (after establishment) is about $41.50 Mg(-1). The costs may be reduced to about half this if the yield is increased to 30 Mg ha(-1) through genetic improvement, intensive crop management, and/or optimized inputs. At a yield of 10 Mg ha(-1), we estimate that harvesting costs range from $23.72 Mg(-1) for current baling technology to less than $16 Mg(-1) when using a loafing collection system. At yields of 20 and 30 Mg ha(-1) with an improved loafing system, harvesting costs are even lower at $12.75 Mg(-1) and $9.59 Mg(-1), respectively. Transport costs vary depending upon yield and fraction of land under switchgrass, bulk density of biomass, and total annual demand of a biorefinery. For a 2000 Mg d(-1) plant and an annual yield of 10 Mg ha(-1), the transport cost is an estimated $15.42 Mg(-1), assuming 25% of the land is under switchgrass production. Total delivered cost of switchgrass using current baling technology is $80.64 Mg(-1), requiring an energy input of 8.5% of the feedstock higher heating value (HHV). With mature technology, for example, a large, loaf-collection system, the total delivered cost is reduced to about $71.16 Mg(-1) with 7.8% of the feedstock HHV required as input. Further cost reduction can be achieved by combining mature technology with increased crop productivity. Delivered cost and energy input do not vary significantly as biorefinery capacity increases from 2000 Mg d(-1) to 5000 Mg d(-1) because the cost of increased distance to access a larger volume feedstock offsets the gains in increased biorefinery capacity. This paper outlines possible scenarios for the expansion of switchgrass handling to 30 Tg (million Mg) in 2015 and 100 Tg in 2030 based on predicted growth of the biorefinery industry in the USA. The value of switchgrass collection operations is estimated at more than $0.6 billion in 2015 and more than $2.1 billion in 2030. The estimated value of post-harvest operations is $0.6-$2.0 billion in 2015, and $2.0-$6.5 billion in 2030, depending on the degree of preprocessing. The need for power equipment (tractors) will increase from 100 MW in 2015 to 666 MW in 2030, with corresponding annual values of $150 and $520 million, respectively. (C) 2009 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Sokhansanj, Shahab; Turhollow, Anthony] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mani, Sudhagar] Univ Georgia, Dept Biol & Agr Engn, Athens, GA 30602 USA. [Kumar, Amit] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada. [Bransby, David] Auburn Univ, Auburn, AL 36849 USA. [Lynd, Lee; Laser, Mark] Dartmouth Coll, Hanover, NH 03755 USA. RP Sokhansanj, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM sokhansanjs@ornl.gov RI Mani, Sudhagar/A-4315-2010; Lynd, Lee/N-1260-2013 OI Lynd, Lee/0000-0002-5642-668X FU Office of Biomass Program of the US Department of Energy; Natural Sciences and Engineering Research Council of Canada (NSERC) FX We acknowledge financial support from the Office of Biomass Program of the US Department of Energy. Financial contribution for this work was also provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) in support of graduate research. NR 64 TC 118 Z9 120 U1 3 U2 35 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAR-APR PY 2009 VL 3 IS 2 BP 124 EP 141 DI 10.1002/bbb.129 PG 18 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 425GK UT WOS:000264624800010 ER PT J AU Laser, M Larson, E Dale, B Wang, M Greene, N Lynd, LR AF Laser, Mark Larson, Eric Dale, Bruce Wang, Michael Greene, Nathanael Lynd, Lee R. TI Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biomass; biorefinery; efficiency; economics; environment; energy; biofuels ID LIFE-CYCLE ASSESSMENT; WATER-USE EFFICIENCY; BIOFUELS; ENERGY AB Fourteen mature technology biomass refining scenarios - involving both biological and thermochemical processing with production of fuels, power, and/or animal feed protein - are compared with respect to process efficiency, environmental impact - including petroleum use, greenhouse gas (GHG) emissions, and water use - and economic profitability. The emissions analysis does not account for carbon sinks (e. g., soil carbon sequestration) or sources (e. g., forest conversion) resulting from land-use considerations. Sensitivity of the scenarios to fuel and electricity price, feedstock cost, and capital structure is also evaluated. The thermochemical scenario producing only power achieves a process efficiency of 49% (energy out as power as a percentage of feedstock energy in), 1359 kg CO(2) equivalent avoided GHG emissions per Mg feedstock (current power mix basis) and a cost of $0.0575/kWh ($16/GJ), at a scale of 4535 dry Mg feedstock/day, 12% internal rate of return, 35% debt fraction, and 7% loan rate. Thermochemical scenarios producing fuels and power realize efficiencies between 55 and 64%, avoided GHG emissions between 1000 and 1179 kg/dry Mg, and costs between $0.36 and $0.57 per liter gasoline equivalent ($1.37 - $2.16 per gallon) at the same scale and financial structure. Scenarios involving biological production of ethanol with thermochemical production of fuels and/or power result in efficiencies ranging from 61 to 80%, avoided GHG emissions from 965 to 1,258 kg/dry Mg, and costs from $0.25 to $0.33 per liter gasoline equivalent ($0.96 to $1.24/gallon). Most of the biofuel scenarios offer comparable, if not lower, costs and much reduced GHG emissions (>90%) compared to petroleum-derived fuels. Scenarios producing biofuels result in GHG displacements that are comparable to those dedicated to power production (e. g., >825 kg CO(2) equivalent/dry Mg biomass), especially when a future power mix less dependent upon fossil fuel is assumed. Scenarios integrating biological and thermochemical processing enable waste heat from the thermochemical process to power the biological process, resulting in higher overall process efficiencies than would otherwise be realized - efficiencies on par with petroleum-based fuels in several cases. c 2009 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Laser, Mark; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Larson, Eric] Princeton Univ, Princeton Environm Inst, Energy Syst Anal Grp, Princeton, NJ 08544 USA. [Dale, Bruce] Michigan State Univ, Dept Chem Engn, E Lansing, MI 48824 USA. [Wang, Michael] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Greene, Nathanael] Natl Res Def Council, New York, NY USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. EM lee.lynd@dartmouth.edu RI Lynd, Lee/N-1260-2013 OI Lynd, Lee/0000-0002-5642-668X FU National Renewable Energy Laboratory [XCO-3-33033-01]; National Institute of Standards and Technology [60NANB1D0064]; National Science Foundation [CMS - 0424700] FX We thank all of our colleagues in the RBAEF project for stimulating and informative discussions throughout the course of the project, which contributed directly and indirectly to the contents of this paper: David Bransby, Fuat Celik, Kemantha Jayawardhana, Haiming Jin, Jim Kiniry, Amit Kumar Sudhagar Mani, John McBride, Samuel McLaughlin, Steve Peterson, Daniel Saccardi, John Sheehan, Shahab Sokhansanj, Charles Taliaferro, Anthony Turhollow, Daniel Ugarte, May Wu, Charles Wyman. We also acknowledge other colleagues who also offered their judgment, information, and assistance: Andy Aden, Michael Casler, Gordon Cheng, Joel Cherry, Billie Christen, Patrick Costello, John DeCicco, Reid Detchon, Tim Eggeman, Alison Findon, David Friedman, John German, Tillman Gerngross, Robin Graham, Chad Hellwinckel, Bob Hickey, Martin Hocking, Kelly Ibsen, John Jechura, Hans Jung, Tom Kenney, Drew Kodjak, Jason Mark, Roger McDaniel, William Mitchell, Joan Ogden, Michael Pacheco, Charlotte Pera, Srini Raj, Lloyd Ritter, Larry Russo, Mark Ruth, Daniel Santini, Pamela Spath, Richard Tolman, Ken Vogel, and Luca Zullo. For financial support, we thank the National Renewable Energy Laboratory (award #: XCO-3-33033-01), the National Institute of Standards and Technology (award #: 60NANB1D0064), and the National Science Foundation (award #: CMS - 0424700). NR 39 TC 69 Z9 72 U1 2 U2 39 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAR-APR PY 2009 VL 3 IS 2 BP 247 EP 270 DI 10.1002/bbb.136 PG 24 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 425GK UT WOS:000264624800016 ER PT J AU Alexander, RB Bohlke, JK Boyer, EW David, MB Harvey, JW Mulholland, PJ Seitzinger, SP Tobias, CR Tonitto, C Wollheim, WM AF Alexander, Richard B. Bohlke, John Karl Boyer, Elizabeth W. David, Mark B. Harvey, Judson W. Mulholland, Patrick J. Seitzinger, Sybil P. Tobias, Craig R. Tonitto, Christina Wollheim, Wilfred M. TI Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes SO BIOGEOCHEMISTRY LA English DT Article; Proceedings Paper CT Workshop on Denitrification Modeling Across Terrestrial, Freshwater and Marine Systems CY NOV 28-30, 2006 CL Inst Ecosyst Studies, Millbrook, NY SP Natl Sci Fdn, Dentirificat Res Coordinat Network HO Inst Ecosyst Studies DE Denitrification; Seasonal; Nitrate model; LINX; NHD river network; Nitrate loss; Nitrate removal efficiency; Anthropogenic nitrogen ID GULF-OF-MEXICO; MISSISSIPPI RIVER; SEDIMENT DENITRIFICATION; STREAM DENITRIFICATION; AGRICULTURAL STREAMS; HEADWATER STREAMS; NITRATE; TRANSPORT; RATES; WATERSHEDS AB The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed. C1 [Alexander, Richard B.; Bohlke, John Karl; Harvey, Judson W.] US Geol Survey, Reston, VA 20192 USA. [Boyer, Elizabeth W.] Penn State Univ, University Pk, PA 16802 USA. [David, Mark B.] Univ Illinois, Urbana, IL 61801 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Seitzinger, Sybil P.] Rutgers State Univ, New Brunswick, NJ 08901 USA. [Tobias, Craig R.] Univ N Carolina, Wilmington, NC 28403 USA. [Tonitto, Christina] Cornell Univ, Ithaca, NY 14853 USA. [Wollheim, Wilfred M.] Univ New Hampshire, Durham, NH 03824 USA. RP Alexander, RB (reprint author), US Geol Survey, 12201 Sunrise Valley Dr, Reston, VA 20192 USA. EM ralex@usgs.gov RI Mulholland, Patrick/C-3142-2012; Boyer, Elizabeth/D-6617-2013; Harvey, Judson/L-2047-2013 OI Harvey, Judson/0000-0002-2654-9873 NR 37 TC 95 Z9 98 U1 7 U2 94 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 J9 BIOGEOCHEMISTRY JI Biogeochemistry PD MAR PY 2009 VL 93 IS 1-2 BP 91 EP 116 DI 10.1007/s10533-008-9274-8 PG 26 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 416CD UT WOS:000263981900006 ER PT J AU Bearinger, JP Dugan, LC Wu, LG Hill, H Christian, AT Hubbell, JA AF Bearinger, Jane P. Dugan, Lawrence C. Wu, Ligang Hill, Haley Christian, Allen T. Hubbell, Jeffrey A. TI Chemical tethering of motile bacteria to silicon surfaces SO BIOTECHNIQUES LA English DT Article DE E. coli; tethering; patterning; microarrays; imaging; host-pathogen response; drug discovery; biofuel cells ID MICROBIAL FUEL-CELLS; ELECTRICITY-GENERATION; CRYOELECTRON MICROSCOPY; PROTEIN ADSORPTION; BACILLUS-SUBTILIS; QUANTUM DOTS; BIOSENSORS; GROWTH; MICROORGANISMS; METABOLITES AB We chemically immobilized live, motile Escherichia coli on micrometer-scale, photocatalytically patterned silicon surfaces via amine- and carboxylic acid-based chemistries. Immobilization facilitated (i) controlled positioning; (ii) high resolution cell wall imaging via atomic force microscopy (AFM); and (iii) chemical analysis with time-of-flight-secondary ion mass spectrometry (ToF-SIMS). Spinning motion of tethered bacteria, captured with fast-acquisition video, proved microbe viability. We expect our protocols to open new experimental doors for basic and applied studies of microorganisms, from host-pathogen relationships, to microbial forensics and drug discovery, to biosensors and biofuel cell optimization. C1 [Bearinger, Jane P.; Dugan, Lawrence C.; Wu, Ligang] Lawrence Livermore Natl Lab, CMELS, Livermore, CA 94550 USA. [Hill, Haley] Northwestern Univ, Dept Chem, Evanston, IL USA. [Christian, Allen T.] Monsanto Co, St Louis, MO USA. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lausanne, Switzerland. RP Bearinger, JP (reprint author), Lawrence Livermore Natl Lab, CMELS, 7000 E Ave L-211, Livermore, CA 94550 USA. EM bearinger1@llnl.gov RI yu, yu/C-7781-2009; Wu, Ligang/C-7770-2009; Hubbell, Jeffrey/A-9266-2008 OI Hubbell, Jeffrey/0000-0003-0276-5456 FU National Institutes of Health [R21 EB003991]; Laboratory Science and Technology Office [03-ERD-068]; National Science Foundation's Center for Biophotonic Science and Technology at the University of California, Davis; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; [DE-AC52-07NA27344] FX Authors J.B. and J.H. are listed as co-inventors for a patent (USPTO application no. 20060127595) related to the patterning technique used in this publication. All other authors declare no competing interests. NR 52 TC 13 Z9 13 U1 1 U2 16 PU INFORMA HEALTHCARE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0736-6205 J9 BIOTECHNIQUES JI Biotechniques PD MAR PY 2009 VL 46 IS 3 BP 209 EP + DI 10.2144/000113073 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 446BS UT WOS:000266095800012 PM 19317664 ER PT J AU Tan, YJ Martin, HG Dehal, PS Deutschbauer, A Llora, X Meadows, A Arkin, A Keasling, JD AF Tan, Yinjie J. Martin, Hector Garcia Dehal, Paramvir S. Deutschbauer, Adam Llora, Xavier Meadows, Adam Arkin, Adam Keasling, Jay D. TI Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE lactate; exponential growth; metabotypes; phylotypes; flux profiles ID ESCHERICHIA-COLI; ONEIDENSIS MR-1; NETWORKS; SYSTEMS AB Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and freshwater environments. In this Study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal medium with [3-(13)C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h(-1)) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts LIS to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate. C1 [Tan, Yinjie J.; Dehal, Paramvir S.; Deutschbauer, Adam; Arkin, Adam; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Tan, Yinjie J.] Washington Univ, Dept Environm Chem & Engn, St Louis, MO USA. [Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Arkin, Adam; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Martin, Hector Garcia; Arkin, Adam; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Llora, Xavier] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Meadows, Adam] Amyris Biotechnol Inc, Emeryville, CA USA. [Arkin, Adam; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Garcia Martin, Hector/B-5357-2009; Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008 OI Garcia Martin, Hector/0000-0002-4556-9685; Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL Program [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; US Department of Energy; Joint BioEnergy Institute FX We thank J. Chu for help with experiments and isotopomer analysis, N. Zamboni from ETH Zurich for useful discussion on 13C based flux analysis, and P. Hugenholtz for comments and financial support of HGM. This work is part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.Ibl.gov), supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL Program through contract DE-AC02-05CH11231 between the Lawrence Berkeley National Laboratory and the US Department of Energy, and part of the Joint BioEnergy Institute, supported by the U.S. Department of Energy. NR 26 TC 0 Z9 0 U1 0 U2 9 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR 1 PY 2009 VL 102 IS 4 BP 1161 EP 1169 DI 10.1002/bit.22129 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 404EZ UT WOS:000263135000020 ER PT J AU Wyman, CE Dale, BE Elander, RT Holtzapple, M Ladisch, MR Lee, YY Mitchinson, C Saddler, JN AF Wyman, Charles E. Dale, Bruce E. Elander, Richard T. Holtzapple, Mark Ladisch, Michael R. Lee, Y. Y. Mitchinson, Colin Saddler, John N. TI Comparative Sugar Recovery and Fermentation Data Following Pretreatment of Poplar Wood by Leading Technologies SO BIOTECHNOLOGY PROGRESS LA English DT Article DE ammonia fiber expansion; ammonia recycle pretreatment; controlled pH pretreatment; dilute sulfuric acid pretreatment; lime pretreatment; poplar wood; pretreatment; sulfur dioxide pretreatment; enzymatic hydrolysis; fermentation of hydrolyzates ID CORN STOVER; ENZYMATIC-HYDROLYSIS; HOT-WATER; BIOMASS; ETHANOL; OPTIMIZATION AB Through a Biomass Refining Consortium for Applied Fundamentals and Innovation among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, leading pretreatment technologies based on ammonia fiber expansion, aqueous ammonia recycle, dilute sulfuric acid, lime, neutral pH, and sulfur dioxide were applied to a single source of poplar wood, and the remaining solids from each technology were hydrolyzed to sugars using the same enzymes. Identical analytical methods and a consistent material balance methodology were employed to develop comparative performance data for each combination of pretreatment and enzymes. Overall, compared to data with corn stover employed previously, the results showed that poplar was more recalcitrant to conversion to sugars and that sugar yields from the combined operations of pretreatment and enzymatic hydrolysis varied more among pretreatments. However, application of more severe Pretreatment conditions gave good yields from sulfur dioxide and lime, and a recombinant yeast strain fermented the mixed stream of glucose and xylose sugars released by enzymatic hydrolysis of water washed solids from all pretreatments to ethanol with similarly high yields. An Agricultural and Industrial Advisory Board followed progress and helped steer the research to meet scientific and commercial needs. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 25: 333-339, 2009 C1 [Wyman, Charles E.] Univ Calif Riverside, Chem & Environm Engn Dept, Riverside, CA 92507 USA. [Wyman, Charles E.] Univ Calif Riverside, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Wyman, Charles E.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Elander, Richard T.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Holtzapple, Mark] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Ladisch, Michael R.] Purdue Univ, Lab Renewable Resources, W Lafayette, IN 47907 USA. [Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Mitchinson, Colin] Genencor Int, Palo Alto, CA USA. [Saddler, John N.] Univ British Columbia, Fac Forestry, Vancouver, BC, Canada. RP Wyman, CE (reprint author), Univ Calif Riverside, Chem & Environm Engn Dept, Riverside, CA 92507 USA. EM charles.wyman@ucr.edu RI Saddler, Jack (John)/A-9103-2013 FU United States Department of Energy [DE-FG36-04GO14017] FX Funding by the Office of the Biomass Program of the United States Department of Energy through contract number DE-FG36-04GO14017 was vital to performing this research. In addition, Natural Resources Canada supported participation by the University of British Columbia. We thank Dartmouth College for managing the subcontracts to the CAFI partners after the PI moved to the University of California at Riverside. The true collaborative spirit of the CAM team made this project possible and pleasurable, and we thank the many undergraduate and graduate students, post doctoral candidates, technicians, and others of the CAM team for their vital role in developing this information. NR 20 TC 166 Z9 169 U1 4 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 8756-7938 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD MAR-APR PY 2009 VL 25 IS 2 BP 333 EP 339 DI 10.1021/bp.142 PG 7 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 438RI UT WOS:000265572700005 PM 19294662 ER PT J AU Marner, WD Shaikh, AS Muller, SJ Keasling, JD AF Marner, Wesley D., II Shaikh, Afshan S. Muller, Susan J. Keasling, Jay D. TI Enzyme Immobilization via Silaffin-Mediated Autoencapsulation in a Biosilica Support SO BIOTECHNOLOGY PROGRESS LA English DT Article DE silaffin; enzyme immobilization; R5 peptide; biosilica ID SILICA; MINERALIZATION; PEPTIDES AB Enzymes and other biomolecules are often immobilized in a matrix to improve their stability or to improve their ability to be reused. Performing a polycondensation reaction in the presence of a biomolecule of interest relies on random entrapment events during polymerization and may not ensure efficient, homogeneous, or complete biomolecule encapsulation. To overcome these limitations, we have developed a method of incorporating autosilification activity into proteins without affecting enzymatic functionality. The unmodified R5 silaffin peptide from Cylindrotheca fusiformis is capable of initiating silica polycondensation in vitro at ambient temperatures and pressures in aqueous solution. In this study, translational fusion proteins between R5 and various functional proteins (phosphodiesterase, organophosphate hydrolase, and green fluorescent protein) were produced in Escherichia coli. Each of the fusion proteins initiated silica polycondensation, and enzymatic activity (or fluorescence) was retained in the resulting silica spheres. Under certain circumstances, the enzymatically-active biosilica displayed improved stability relative to free enzyme at elevated temperatures. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 25: 417-423, 2009 C1 [Marner, Wesley D., II; Shaikh, Afshan S.; Muller, Susan J.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Synthet Biol Dept, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU NIH [T32 GM008352]; NSF [EEC-0425914] FX W.M. thanks the NIH (T32 GM008352) for support of this research and A.S.S. acknowledges funding through the NSF COINS program at UC Berkeley (EEC-0425914). The authors also thank the UC Berkeley Electron Microscope facility for assistance with SEM imagery. NR 16 TC 34 Z9 35 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 8756-7938 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD MAR-APR PY 2009 VL 25 IS 2 BP 417 EP 423 DI 10.1002/bp.136 PG 7 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 438RI UT WOS:000265572700015 PM 19334285 ER PT J AU Collier, SA Rasmussen, SA Feldkamp, ML Honein, MA AF Collier, Sarah A. Rasmussen, Sonia A. Feldkamp, Marcia L. Honein, Margaret A. CA Natl Birth Defects Prevention TI Prevalence of Self-reported Infection during Pregnancy among Control Mothers in the National Birth Defects Prevention Study SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE infection; fever; infection prevalence; pregnancy; preterm birth ID URINARY-TRACT-INFECTIONS; NEURAL-TUBE DEFECTS; ADULT SCHIZOPHRENIA; BACTERIAL VAGINOSIS; PRENATAL EXPOSURE; RISK-FACTORS; CYTOMEGALOVIRUS-INFECTION; CONGENITAL-ABNORMALITIES; ASYMPTOMATIC BACTERIURIA; MULTIVITAMIN USE AB BACKGROUND: Although specific maternal infections during pregnancy have been associated with birth defects and other adverse pregnancy outcomes, the prevalence of infections during pregnancy has not been well described. METHODS: We estimated the prevalence of self-reported infection among 4967 women with live-born infants without major birth defects. We assessed the prevalence of reported infections and fever by type of infection, specific illness, and maternal characteristics including race and age. RESULTS: Overall, 63.6% of women reported at least one infection during pregnancy. Reports of infections were more common during pregnancy than in the 3 months before pregnancy. Nearly half (49.6%) of women reported a respiratory infection, 20.5% reported a fever, 17.1% reported a urinary tract infection, 4.2% reported a yeast infection, and 3.4% reported a sexually transmitted disease. A subanalysis of self-reported infection and preterm delivery was performed among primiparous mothers with singleton pregnancies, but no statistically significant differences in infection prevalence were found. Women younger than 35 years reported nonrespiratory infections more frequently than women aged 35 years or older (prevalence ratio [PR] 1.41; 95% confidence interval [CI]: 1.21-1.64). Prevalence of nonrespiratory infections was also higher among those who smoked than among those who did not (PR 1,33; 95% CI: 1.20-1.47). CONCLUSIONS: Reported infections during pregnancy are common, implying that a small increase in risk for birth defects or other adverse pregnancy outcomes could have a significant public health effect and underscoring the importance Of understanding the effects of prenatal infections. Birth Defects Research (Part A) 85:193-201, 2009. (C) 2008 Wiley-Liss, Inc. C1 [Collier, Sarah A.; Rasmussen, Sonia A.; Honein, Margaret A.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Collier, Sarah A.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. [Feldkamp, Marcia L.] Univ Utah, Hlth Sci Ctr, Dept Pediat, Div Med Genet, Salt Lake City, UT USA. RP Collier, SA (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd,MS E-86, Atlanta, GA 30333 USA. EM scollier@cdc.gov RI Publications, NBDPS/B-7692-2013 FU Research Participation Program for the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an agreement between the U.S. Department of Energy and CDC FX We thank Dr. William Callaghan for helpful conversations regarding this manuscript, Ms. Emily Petersen for her assistance in classifying infections, and the participating centers and families of the National Birth Defects Prevention Study. This project was supported in part by an appointment to the Research Participation Program for the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an agreement between the U.S. Department of Energy and CDC. NR 61 TC 20 Z9 20 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD MAR PY 2009 VL 85 IS 3 BP 193 EP 201 DI 10.1002/bdra.20540 PG 9 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 426FU UT WOS:000264694200003 PM 19086018 ER PT J AU Shin, M Lu, CX Siffel, C Kucik, JE Correa, A AF Shin, Mikyong Lu, Chengxing Siffel, Csaba Kucik, James E. Correa, Adolfo TI Does the Survival of Children with Mosaic Down Syndrome Differ from that of Children with Non-Mosaic Down Syndrome? SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Meeting Abstract C1 [Shin, Mikyong; Lu, Chengxing; Siffel, Csaba; Kucik, James E.; Correa, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Lu, Chengxing] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Siffel, Csaba] Comp Sci Corp, Atlanta, GA USA. Metropolitan Atlanta Congenital Defects Program, Atlanta, GA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD MAR PY 2009 VL 85 IS 3 BP 244 EP 244 PG 1 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 426FU UT WOS:000264694200035 ER PT J AU Su, FX Huang, J Xu, TF Zhang, CJ AF Su, Fenxian Huang, Joe Xu, Tengfang Zhang, Congjun TI An evaluation of the effects of various parameter weights on typical meteorological years used for building energy simulation SO BUILDING SIMULATION LA English DT Article DE typical meteorological year (TMY); typical meteorological month (TMM); energy use density; parameter weight; building simulation; weather data AB In this paper, we evaluate the influence of different parameter weights in creating "typical year" weather data following the typical meteorological year (TMY) methodology, by studying two sets of 3600 alternate weather files created using different parameter weights for Beijing (China) and New York City (USA). A "typical year" weather file consists of twelve distinctive months, each considered typical for that month of the year. Such a typical month, named "typical meteorological month (TMM)," is commonly identified by using a certain combination of parameter weights, such as 4 : 4: 4: 12, for dry bulb temperature, dew point temperature, wind speed, and solar radiation as in the TMY weather files developed by US National Climate Data Center (NCDC), or 4: 4: 2: 10 in the newer TMY2 and TMY3 weather files developed by National Renewable Energy Laboratory (NREL). In this study, we investigate the influence of varying the parameter weights on the TMMs and the resultant new TMY weather files (nTMY). We found that the distribution of new 3600 TMMs tend to cluster within one or a few years for each month, and that the probabilities are very high for significant overlap between the new TMMs and the original TMMs chosen using the TMY/TMY2 weighting. Compared to the TMM data in TMY, the deviations of air temperatures and solar radiation values of the new TMMs and nTMYs derived from the 20-year weather data are less than 10% for both Beijing and New York. This confirms that the creation of " typical year" weather data is not very sensitive to the weighting of the different weather parameters, and that most nTMYs created and evaluated in this study are empirically close to the TMY data intended for use of simulating building energy consumption. C1 [Su, Fenxian] Fac Urban Construct & Environm Engn, Chongqing 400045, Peoples R China. [Huang, Joe] White Box Technol, Moraga, CA 94556 USA. [Xu, Tengfang] Univ Calif Berkeley, Lawrence Berkeley Lab, Int Energy Studies Grp, Berkeley, CA 94720 USA. [Zhang, Congjun] Chongqing Univ, Fac Construct Management & Real Estate, Chongqing 400045, Peoples R China. RP Su, FX (reprint author), Fac Urban Construct & Environm Engn, Chongqing Univ Campus B, Chongqing 400045, Peoples R China. EM sufenxian@yahoo.com.cn FU American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); China Chongqing Natural Science Foundation [1477-RP, CSTC 008BB9044] FX The authors wish to acknowledge the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and China Chongqing Natural Science Foundation for their support of this work in ASHRAE Research Project 1477-RP and CSTC 008BB9044. NR 14 TC 4 Z9 4 U1 0 U2 4 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1996-3599 J9 BUILD SIMUL-CHINA JI Build. Simul. PD MAR PY 2009 VL 2 IS 1 BP 19 EP 28 DI 10.1007/S12273-009-9106-3 PG 10 WC Thermodynamics; Construction & Building Technology SC Thermodynamics; Construction & Building Technology GA V16RE UT WOS:000207885900003 ER PT J AU Liberman, J Roland, M Thierry, S Marjorie, F Annick, MM Aurelie, C Jean-Marc, J Nicole, G AF Liberman, Julie Roland, Meier Thierry, Sengstag Marjorie, Flahaut Annick, Muehlethaler-Mottet Aurelie, Coulon Jean-Marc, Joseph Nicole, Gross TI The CXCL12/CXCR4/CXCR7 axis in human neuroblastoma: involvement in malignant progression SO BULLETIN DU CANCER LA English DT Meeting Abstract C1 Univ Lausanne Hosp, Pediat Oncol Res Unit, Lausanne, Switzerland. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. ISREC, Epalinges, Switzerland. Swiss Inst Bioinformat, Epalinges, Switzerland. Univ Lausanne Hosp, Pediat Surg Unit, Lausanne, Switzerland. EM Julie.Liberman@chuv.ch NR 0 TC 0 Z9 0 U1 0 U2 0 PU JOHN LIBBEY EUROTEXT LTD PI MONTROUGE PA 127 AVE DE LA REPUBLIQUE, 92120 MONTROUGE, FRANCE SN 0007-4551 EI 1769-6917 J9 B CANCER JI Bull. Cancer PD MAR PY 2009 VL 96 SI SI MA 49 BP S41 EP S41 PG 1 WC Oncology SC Oncology GA V30JN UT WOS:000208812400051 ER PT J AU Seidel, DJ Berger, FH Diamond, HJ Dykema, J Goodrich, D Immler, F Murray, W Peterson, T Sisterson, D Sommer, M Thorne, P Vomel, H Wang, J AF Seidel, Dian J. Berger, Franz H. Diamond, Howard J. Dykema, John Goodrich, David Immler, Franz Murray, William Peterson, Thomas Sisterson, Douglas Sommer, Michael Thorne, Peter Voemel, Holger Wang, Junhong TI REFERENCE UPPER-AIR OBSERVATIONS FOR CLIMATE Rationale, Progress, and Plans SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID RADIOSONDE TEMPERATURE RECORDS; TRENDS; POINT AB While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on key climate issues, such as the nature of temperature trends in the troposphere and stratosphere; the climatology, radiative effects, and hydrological role of water vapor in the upper troposphere and stratosphere; and the vertical profile of changes in atmospheric ozone, aerosols, and other trace constituents. Radiosonde data provide adequate vertical resolution to address these issues, but they have questionable accuracy and time-varying biases due to changing instrumentation and techniques. Although satellite systems provide global coverage, their vertical resolution is sometimes inadequate and they require independent reference observations for sensor and data product validation, and for merging observations from different platforms into homogeneous climate records. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program is initiating a GCOS Reference Upper-Air Network (GRUAN) to provide high-quality observations using specialized radiosondes and complementary remote sensing profiling instrumentation that can be used for validation. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status, and future plans. It also illustrates the value of prototype reference upper-air observations in constructing climate records and their potential contribution to the Global Space-Based Inter-Calibration System. We invite constructive feedback on the GRUAN concept and the engagement of the scientific community. C1 [Seidel, Dian J.] NOAA, Air Resources Lab, Silver Spring, MD 20910 USA. [Berger, Franz H.; Immler, Franz; Sommer, Michael; Voemel, Holger] Meteorol Observatorium Lindenberg, Lindenberg, Germany. [Diamond, Howard J.] NOAA, Natl Climat Data Center, World Data Ctr Meteorol, Silver Spring, MD USA. [Dykema, John] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Goodrich, David] WMO, Global Climate Observing Programme, Geneva, Switzerland. [Murray, William] STG Inc, NOAA, Climate Program Off, Silver Spring, MD USA. [Peterson, Thomas] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Sisterson, Douglas] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Thorne, Peter] Hadley Ctr, Met Off, Exeter, Devon, England. [Wang, Junhong] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA. RP Seidel, DJ (reprint author), NOAA, Air Resources Lab, 1315 E W Highway R ARL, Silver Spring, MD 20910 USA. EM dian.seidel@noaa.gov RI Thorne, Peter/F-2225-2014 OI Thorne, Peter/0000-0003-0485-9798 FU Joint Defra and MoD Programme, (Defra) [GA01101 (MoD), CBC/2B/0417_Annex C5] FX . We thank Jim Angell and Kirk Clawson (NOAA), David Parker (Met Office), and an anonymous referee for constructive reviews of this manuscript. NOAA, GCOS, and Deutscher Wetterdienst provided support for GRUAN workshops. Stephanie Lorenz (GCOS Secretariat) assisted in preparing the references, and Deborah Riddle (NOAA) helped in drafting figures. PWT was supported by the Joint Defra and MoD Programme, (Defra) GA01101 (MoD) CBC/2B/0417_Annex C5. NR 40 TC 64 Z9 64 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAR PY 2009 VL 90 IS 3 BP 361 EP 369 DI 10.1175/2008BAMS2540.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 430ZT UT WOS:000265031800006 ER PT J AU Gschneidner, KA Mudryk, Y Becker, AT Larson, JL AF Gschneidner, K. A., Jr. Mudryk, Ya. Becker, A. T. Larson, J. L. TI The crystal structures of some RM and RM2 compounds (where R = rare earth metal and M = non-rare earth metal) SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article; Proceedings Paper CT Seminar held in Memory of Riccardo Ferro CY FEB, 2008 CL Genoa, ITALY DE Crystal structures; YIn; YPd; YAu; (TbxDy1-x)Al-2 ID INTERMETALLIC COMPOUNDS; IN SYSTEM; YCU; YAG AB The non-cubic crystal structures of YIn, YPd and YAu are reported for the first time. YIn has the disordered tetragonal L1(0) CuAu-type structure, and both YPd and YAu are isostructural with the orthorhombic B33 CrB - type structure. The lattice parameters for some C15 MgCu2-type phases (TbxDy1-x)Al-2 alloys (x = 0.25. 0.50. 0.75 and 1.0) have been measured and are found to vary linearly with composition between x = 0.25 and 1.0. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Gschneidner, K. A., Jr.; Mudryk, Ya.; Becker, A. T.; Larson, J. L.] Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Becker, A. T.; Larson, J. L.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. EM cagey@ameslab.gov NR 16 TC 3 Z9 3 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD MAR PY 2009 VL 33 IS 1 BP 8 EP 10 DI 10.1016/j.calphad.2008.07.008 PG 3 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 430RT UT WOS:000265006900003 ER PT J AU Kaufman, L Perepezko, JH Hildal, K Farmer, J Day, D Yang, N Branagan, D AF Kaufman, Larry Perepezko, J. H. Hildal, K. Farmer, J. Day, D. Yang, N. Branagan, D. TI Transformation, stability and Pourbaix diagrams of high performance corrosion resistant (HPCRM) alloys SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article; Proceedings Paper CT Seminar held in Memory of Riccardo Ferro CY FEB, 2008 CL Genoa, ITALY DE Transformation; Stability; Pourbaix diagrams ID BULK METALLIC GLASSES; MO BASED ALLOYS; SYSTEM AB Explicit descriptions of phase stability, transformation kinetics and corrosion behavior to predict behavior to predict and guide synthesis and application of amorphous iron alloys have been developed by coupling computational thermodynamics and databases derived from experimental studies. These studies provided measurements and observations made during extensive studies of synthesis, fabrication and analysis of iron alloy glasses. The salient results of this development for the most attractive alloys of this group of materials are presented below. (C) 2009 Published by Elsevier Ltd C1 [Kaufman, Larry] CALPHAD Inc, Brookline, MA 02445 USA. [Perepezko, J. H.; Hildal, K.] Univ Wisconsin, Madison, WI 53706 USA. [Farmer, J.; Day, D.] Lawrence Livermore Labs, Livermore, CA USA. [Yang, N.] Sandia Natl Labs, Livermore, CA USA. RP Kaufman, L (reprint author), CALPHAD Inc, 140 Clark Rd, Brookline, MA 02445 USA. EM larrykaufman@rcn.com NR 24 TC 13 Z9 13 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD MAR PY 2009 VL 33 IS 1 BP 89 EP 99 DI 10.1016/j.calphad.2008.09.019 PG 11 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 430RT UT WOS:000265006900016 ER PT J AU Tsetseris, L Pantelides, ST AF Tsetseris, L. Pantelides, S. T. TI Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes SO CARBON LA English DT Article ID TRANSPORT-PROPERTIES; GRAPHITE SURFACES; AB-INITIO; DEFECTS; ADSORPTION; BUNDLES; ENERGY AB Point defects play a role in the functionalization, chemical activation, carrier transport, and nano-engineering of graphitic systems. Here, we use first-principles calculations to describe several processes that alter the properties of graphene and single-wall carbon nanotubes (SWCNTs) in the presence of self-interstitials (SI's). We find that, while two or four SI's are stabilized in hillock-like structures that stay idle unless the system is heated to very high temperatures, clustering of three C adatoms leads to the formation of mobile protrusions on graphene and large enough SWCNTs. For different SI concentrations and SWCNT size, the interplay between mobile and immobile species may favor one of the two competing processes, self-healing or formation of adatom. superstructures. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Tsetseris, L.] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece. [Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece. EM tsetser@auth.gr FU Vanderbilt University; DOE [DEFG0203ER46096] FX This work was supported by the William A. and Nancy F. McMinn Endowment at Vanderbilt University, and by DOE Grant No. DEFG0203ER46096. The calculations were performed at ORNL's Center for Computational Sciences. NR 36 TC 49 Z9 49 U1 5 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD MAR PY 2009 VL 47 IS 3 BP 901 EP 908 DI 10.1016/j.carbon.2008.12.002 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 411BS UT WOS:000263623400045 ER PT J AU Grass, M Rioux, R Somorjai, G AF Grass, Michael E. Rioux, Robert M. Somorjai, Gabor A. TI Dependence of Gas-Phase Crotonaldehyde Hydrogenation Selectivity and Activity on the Size of Pt Nanoparticles (1.7-7.1 nm) Supported on SBA-15 SO CATALYSIS LETTERS LA English DT Article DE Crotonaldehyde; Hydrogenation; Platinum; Nanoparticles; Selectivity; Decarbonylation ID PLATINUM NANOPARTICLES; THERMAL-DECOMPOSITION; PARTICLE-SIZE; SHAPE CONTROL; CATALYSTS; SILICA; ADSORPTION; CARBON; NANOCLUSTERS; MONODISPERSE AB The selectivity and activity for the hydrogenation of crotonaldehyde to crotyl alcohol and butyraldehyde was studied over a series of Pt nanoparticles (diameter of 1.7, 2.9, 3.6, and 7.1 nm). The nanoparticles were synthesized by alcohol reduction of a Pt salt in the presence of poly(vinylpyrrolidone) (PVP), followed by incorporation into mesoporous SBA-15 silica. The rate of crotonaldehyde hydrogenation and selectivity towards crotyl alcohol both increase with increasing particle size. With an increase in particle size from 1.7 nm to 7.1 nm, the selectivity towards crotyl alcohol increases from 13.7% to 33.9% (8 Torr crotonaldehyde, 160 Torr H(2) and 353 K). The turnover frequency increases from 2.1 x 10(-2) s(-1) to 4.8 x 10(-2) s(-1) with increasing particle size. Additionally, the decarbonylation pathway to form propene and CO is enhanced over smaller nanoparticles. The apparent activation energy remains constant (similar to 16 kcal mol(-1) for the formation of butyraldehyde and similar to 8 kcal mol(-1) for the formation of crotyl alcohol) as a function of particle size as does the reaction order in H(2), which is unity. In the presence of 130-260 mTorr CO, the reaction rate decreases for all products with a CO reaction order of -1 to -1.4 for crotyl alcohol and butyraldehyde. Hydrogen reduction at 673-723 K results in increased activity and selectivity relative to reduction at either higher or lower temperature; this is discussed with respect to the organic capping agent, PVP. C1 [Grass, Michael E.; Rioux, Robert M.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Grass, Michael E.; Rioux, Robert M.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Somorjai, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences [DE-AC03-76SF00098]; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U. S. Department of Energy under Contract No. DE-AC0205CH11231. NR 30 TC 56 Z9 57 U1 11 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD MAR PY 2009 VL 128 IS 1-2 BP 1 EP 8 DI 10.1007/s10562-008-9754-4 PG 8 WC Chemistry, Physical SC Chemistry GA 403GI UT WOS:000263070700001 ER PT J AU Khan, MI Deb, S Marshall, CL AF Khan, M. Ishaque Deb, Sangita Marshall, Christopher L. TI Vanadium Oxide Based Nanostructured Materials: Novel Oxidative Dehydrogenation Catalysts SO CATALYSIS LETTERS LA English DT Article DE Oxidative; Dehydrogenation; Catalysis; Propylene; Framework solid; Polyoxometalates; DRIFTS ID MG-O CATALYSTS; FRAMEWORK MATERIALS; ACRYLIC-ACID; MIXED OXIDES; GAS-PHASE; PROPANE; ALKANES; CLUSTERS; ETHANE; BUTANE AB Novel vanadium oxide based catalyst derived from he open-framework solid, [Co(3)V(18)O(42)(H(2)O)(12)(XO(4))] center dot 24 H(2)O (X = V, S) (1) catalyses oxidative dehydrogenation of propane to propylene. Catalyst activity was evaluated in the temperature range 250-400 degrees C with varying gas hourly space velocity (GHSV). At 350 degrees C and GHSV of 9786 h(-1) and at 1.3% propane conversion the selectivity to propylene was 36.8%. The major products obtained were propylene and CO(x)(CO(2) and CO). The ratio of the propylene to CO(x) depended directly on the catalytic sites present. Thus, as the amount of the catalyst was decreased, the conversion decreased with an increase in the propylene selectivity and a decrease in the selectivity to carbon oxides-CO(x). The catalyst has been characterized by temperature programmed reduction and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). C1 [Khan, M. Ishaque; Deb, Sangita] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Khan, MI (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. EM khan@iit.edu RI Marshall, Christopher/D-1493-2015 OI Marshall, Christopher/0000-0002-1285-7648 NR 44 TC 12 Z9 12 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD MAR PY 2009 VL 128 IS 3-4 BP 256 EP 262 DI 10.1007/s10562-008-9701-4 PG 7 WC Chemistry, Physical SC Chemistry GA 409ML UT WOS:000263509700002 ER PT J AU Park, G Choi, CK English, AE Sparer, TE AF Park, Giljun Choi, Chang K. English, Anthony E. Sparer, Tim E. TI Electrical impedance measurements predict cellular transformation SO CELL BIOLOGY INTERNATIONAL LA English DT Article DE Impedance; Transformation; CXCR2; Cancer; ECIS; GPCR ID TISSUE-CULTURE; CELLS; ASSAY; RESISTANCE; MUTATION; BEHAVIOR; MONITOR AB Cellular transformation is the first step in cancer development. Two features of cellular transformation are proliferation in reduced serum and loss of contact inhibition. Electronic Cell-Substrate Impedance Sensing (ECIS) measurements have been used to measure cellular proliferation, cytotoxicity, apoptosis, and attachment. We have used impedance measurements to distinguish normal cells from cells transformed with a constitutively active chemokine receptor, CXCR2. CXCR2, a member of the G-protein coupled receptor (GPCR) family, is normally involved in cellular activation and migration, but a single amino acid substitution leads to constitutive activity. NIH3T3 cells were transformed with a constitutively active CXCR2 (D143V_CXCR2) and growth in reduced serum and foci formation were measured using established biological assays and compared to data from ECIS. The results of this study show that impedance measurements provide a quick and reliable way of measuring cellular transformation and provide real time assessment of transformed cellular parameters. Use of the ECIS system could allow a rapid screening of anti-cancer drugs that alter cellular transformation. (C) 2009 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved. C1 [Park, Giljun; Sparer, Tim E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Choi, Chang K.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [English, Anthony E.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Sparer, TE (reprint author), Univ Tennessee, Dept Microbiol, 1414 Cumberland Ave,Walters Life Sci Bldg, Knoxville, TN 37996 USA. EM tsparer@utk.edu OI Sparer, Tim/0000-0002-5543-6691 FU Elsa Pardee Foundation; National Science Foundation [BES-0238905] FX This work was supported by the Elsa Pardee Foundation (GP, TES) and in part by a National Science Foundation CAREER Award BES-0238905 (AEE). NR 30 TC 13 Z9 14 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1065-6995 J9 CELL BIOL INT JI Cell Biol. Int. PD MAR PY 2009 VL 33 IS 3 BP 429 EP 433 DI 10.1016/j.cellbi.2009.01.013 PG 5 WC Cell Biology SC Cell Biology GA 414UH UT WOS:000263890200023 PM 19356706 ER PT J AU Pennisi, CP Jensen, PE Zachar, V Greenbaum, E Yoshida, K AF Pennisi, Cristian Pablo Jensen, Poul Erik Zachar, Vladimir Greenbaum, Elias Yoshida, Ken TI Incorporation of Photosynthetic Reaction Centers in the Membrane of Human Cells: Toward a New Tool for Optical Control of Cell Activity SO CELLULAR AND MOLECULAR BIOENGINEERING LA English DT Article DE Photosystem I; Proteoliposomes; Immunofluorescence microscopy; Heterologous incorporation; Adipose stem cells ID MESENCHYMAL STEM-CELLS; PHOTOSYSTEM-I; MAMMALIAN-CELLS; LIPID VESICLES; REMOTE-CONTROL; ION CHANNELS; LIPOSOMES; FUSION; FLUORESCENCE; COMPLEX AB The Photosystem I (PSI) reaction center is a photosynthetic membrane complex in which light-induced charge separation is accompanied by the generation of an electric potential. It has been recently proposed as a means to confer light sensitivity to cells possessing voltage-activated ion channels, but the feasibility of heterologous incorporation has not been demonstrated. In this work, methods of delivery and detection of PSI in the membrane of human cells are presented. Purified fractions of PSI were reconstituted in proteoliposomes that were used as vehicles for the membrane incorporation. A fluorescent impermeable dye was entrapped in the vesicles to qualitatively analyze the nature of the vesicle-cell interaction. After incorporation, the localization and orientation of the complexes in the membrane was studied using immuno-fluorescence microscopy. The results showed complexes oriented as in native membranes, which were randomly distributed in clusters over the entire surface of the cell. Additionally, analysis of cell viability showed that the incorporation process does not damage the cell membrane. Taken together, the results of this work suggest that the mammalian cellular membrane is a reasonable environment for the incorporation of PSI complexes, which opens the possibility of using these molecular photovoltaic structures for optical control of cell activity. C1 [Pennisi, Cristian Pablo; Yoshida, Ken] Univ Aalborg, Dept Hlth Sci & Technol, Ctr Sensory Motor Interact SMI, DK-9220 Aalborg, Denmark. [Jensen, Poul Erik] Univ Copenhagen, VKR Res Ctr Pro Act Plants, Plant Mol Biol Lab, Dept Plant Biol & Biotechnol, Frederiksberg C, Denmark. [Zachar, Vladimir] Univ Aalborg, Dept Hlth Sci & Technol, Lab Stem Cell Res, DK-9220 Aalborg, Denmark. [Greenbaum, Elias] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Yoshida, Ken] Indiana Univ Purdue Univ, Dept Biomed Engn, Indianapolis, IN 46202 USA. RP Pennisi, CP (reprint author), Univ Aalborg, Dept Hlth Sci & Technol, Ctr Sensory Motor Interact SMI, Fredrik Bajers Vej 7 D3, DK-9220 Aalborg, Denmark. EM cpennisi@hst.aau.dk RI Pennisi, Cristian/B-6878-2008; Jensen, Poul Erik/A-4862-2014 OI Pennisi, Cristian/0000-0002-7716-1182; Jensen, Poul Erik/0000-0001-6524-7723 FU Danish Research Agency; Danish Natural Science Research Council [272-05-0360]; Sygekassernes Helsefond (Denmark); Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC05-00OR22725] FX We wish to thank Helle Skjodt for her assistance in the cell culture procedures and also Cristian Sevcencu for his valuable comments and suggestions. This work was supported in part by the Danish Research Agency, the Danish Natural Science Research Council (272-05-0360), the Sygekassernes Helsefond (Denmark), and the Office of Biological and Environmental Research, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 40 TC 4 Z9 4 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1865-5025 J9 CELL MOL BIOENG JI Cell. Mol. Bioeng. PD MAR PY 2009 VL 2 IS 1 BP 156 EP 165 DI 10.1007/s12195-008-0040-8 PG 10 WC Cell & Tissue Engineering; Biophysics; Cell Biology SC Cell Biology; Biophysics GA 494OF UT WOS:000269822400015 ER PT J AU Chen, T Neville, A Sorbie, K Zhong, Z AF Chen, Tao Neville, Anne Sorbie, Ken Zhong, Zhong TI In-situ monitoring the inhibiting effect of polyphosphinocarboxylic acid on CaCO3 scale formation by synchrotron X-ray diffraction SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Calcium carbonate; Deposition; X-ray diffraction; Polyphosphinocarboxylic acid ID PRECIPITATION; DEPOSITION; KINETICS; GROWTH; MG2+ AB The formation of calcium carbonate mineral scale is a persistent and expensive problem in oil and gas production. The aim of this paper is to further the understanding of scale formation and inhibition by in-situ probing of crystal growth by synchrotron radiation wide angle X-ray scattering (WAXS) in the absence and presence of polyphosphinocarboxylic acid (PPCA) scale inhibitor. This technique offers an exciting prospect for the study of scaling. It has been shown that the nucleation and growth of various calcareous polymorphs and their individual crystal planes can be followed in real-time and from this the following conclusions are reached: The process of scale depositing on the surface can be divided into an unstable phase and a stable phase. PPCA lengthens the induction time of the surface deposition process. PPCA suppresses calcite formation and results in vaterite-dominated scale. PPCA causes a change of lattice parameter for both calcite and vaterite crystals. The c-axis of unit cell increases and the a-axis and b-axis of unit cell decrease. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Chen, Tao; Neville, Anne] Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, W Yorkshire, England. [Sorbie, Ken] Heriot Watt Univ, Dept Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland. [Zhong, Zhong] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Neville, A (reprint author), Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, W Yorkshire, England. EM a.neville@leeds.ac.uk OI SORBIE, KENNETH/0000-0002-6481-1529 FU Brookhaven National Laboratory; FAST II joint Industry Project FX We thank Brookhaven National Laboratory for the support and the beam time provision for these experiments and the sponsors of the FAST II joint Industry Project for their financial support for T. Chen. NR 19 TC 14 Z9 16 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD MAR 1 PY 2009 VL 64 IS 5 BP 912 EP 918 DI 10.1016/j.ces.2008.09.036 PG 7 WC Engineering, Chemical SC Engineering GA 413DV UT WOS:000263774000011 ER PT J AU Smallwood, HS Lopez-Ferrer, D Eberlein, PE Watson, DJ Squier, TC AF Smallwood, Heather S. Lopez-Ferrer, Daniel Eberlein, P. Elis Watson, David J. Squier, Thomas C. TI Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID STRAND-BREAK REPAIR; PROTEIN-KINASE-C; NITRIC-OXIDE SYNTHASE; CELL-CYCLE ARREST; FACTOR-KAPPA-B; IONIZING-RADIATION; DAMAGE-RESPONSE; RADIOADAPTIVE RESPONSE; RAW-264.7 MACROPHAGES; MAMMALIAN-CELLS AB Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance tumor metastasis. In this respect, we have identified a dose-dependent increase in the abundance (i.e., expression level) of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. At low doses of irradiation there are minimal changes in the abundance of other cellular proteins detected using mass spectrometry, indicating that increases in CaM levels are part of a specific radiation-dependent cellular response. Cam overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose radiation exposures. Following macrophage irradiation, increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX foci, associated with DNA repair, with no change in the extent of double-stranded DNA damage. In comparison, when nuclear factor kappa B (NF kappa B)-dependent pathways are inhibited, through the expression of a dominant-negative I kappa B construct, there is no significant increase in phosphorylated histone H2AX foci upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX-mediated DNA repair pathways is not the result of nonspecific NF kappa B-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation by enhancing macrophage radioresistance through processes that include the up-regulation of DNA repair pathways involving histone H2AX phosphorylation. C1 Washington State Univ Tri Cities, Richland, WA 99352 USA. Pacific NW Natl Lab, Div Biol Sci, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Smallwood, HS (reprint author), St Jude Childrens Hosp, 332 N Lauderdale St, Memphis, TN 38105 USA. EM Heather.Smallwood@StJude.org NR 71 TC 5 Z9 5 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD MAR PY 2009 VL 22 IS 3 BP 460 EP 470 DI 10.1021/tx800236r PG 11 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA 420SY UT WOS:000264310700009 PM 19193191 ER PT J AU Rogers, MR Stringfellow, WT AF Rogers, Mathew R. Stringfellow, William T. TI Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches SO CHEMOSPHERE LA English DT Article DE Pesticide; BMP; Non-point; Adsorption; Wetland; Vegetated-ditch ID ORGANIC-MATTER; PESTICIDES; SORPTION; WATER; ADSORPTION AB Constructed wetlands and vegetated agricultural drainage ditches (VADD) have been proposed as structural best management practices for the mitigation of chlorpyrifos contamination in agriculturally dominated watersheds. Sorption to soil and submergent aquatic plants has been measured as an important sink for chlorpyrifos; however, sorption to emergent plants has not been well characterized. Sorption isotherms for two soils and five emergent plants were determined by batch equilibrium technique. Sorption to whole plant stems (K(d) = 570-1300 L kg(-1)) was more than 10 times higher than to soil (K(d) = 40-71 L kg(-1)). Chopped plant material had K(d) values 7.6-96.2% greater than whole stems. Wetland plants with high internal surface area due to porous tissues had greater linear partitioning coefficients than terrestrial plants with a hollow structure. Chlorpyrifos sorption reached pseudo-equilibrium rapidly, indicating that partitioning will be an important mechanism in vegetated natural treatment systems for mitigating peak concentrations in surface waters and allowing time for attenuation by slower degradation reactions. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Rogers, Mathew R.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Rogers, Mathew R.; Stringfellow, William T.] Univ Pacific, Environm Engn Res Program, Stockton, CA 95211 USA. [Rogers, Mathew R.; Stringfellow, William T.] Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA USA. RP Rogers, MR (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM mrrogers@berkeley.edu RI Stringfellow, William/O-4389-2015 OI Stringfellow, William/0000-0003-3189-5604 FU State Water Resources Control Board; California Department of Pesticide Regulation; Surface Water Protection Program; Ecological Engineering Research Program at the University of the Pacific FX This work was supported by the State Water Resources Control Board. Manuscript preparation was supported by the California Department of Pesticide Regulation, Surface Water Protection Program. We thank Dr. Steven Ruzin and Dr. Denise Schichnes of the UC Berkeley Biological Image Facility for their assistance in plan image acquisition and analysis, Jeremy Hanlon and Justin Graham of the gEcological Engineering Research Program at the University of the Pacific for their assistance with sample collection, and Ekrem Karpuzcu for assistance with laboratory analysis. NR 23 TC 34 Z9 36 U1 2 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2009 VL 75 IS 1 BP 109 EP 114 DI 10.1016/j.chemosphere.2008.11.036 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 430RN UT WOS:000265006300015 PM 19103452 ER PT J AU Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Rasmussen, JO Luo, YX Li, K Wang, JG Che, XL Ding, HB Frauendorf, S Dimitrov, V Qiang, X Long, O Yang, YY AF Zhu Sheng-Jiang Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Rasmussen, J. O. Luo, Y. X. Li, K. Wang Jian-Guo Che Xing-Lai Ding Huai-Bo Frauendorf, S. Dimitrov, V. Qiang, Xu Long, Gu Yang Yun-Yi TI Search for chiral bands in A similar to 110 neutron-rich nuclei SO CHINESE PHYSICS C LA English DT Article DE nuclear structure; high spin states; triaxiality; chiral doublet bands ID SPONTANEOUS FISSION; ARRAYS; MO-106 AB High spin states in A similar to 110 neutron-rich (106)Mo, (110)Ru and (112)Ru nuclei have been reinvestigated by measuring the prompt gamma-rays from the spontaneous fission of (252)Cf. Two similar sets of bands are observed to high spins in each of three nuclei. Through analyzing of characters of the band structures, the chiral doublet bands are suggested in (106)Mo, (110)Ru and (112)Ru. C1 [Zhu Sheng-Jiang; Wang Jian-Guo; Che Xing-Lai; Ding Huai-Bo; Qiang, Xu; Long, Gu; Yang Yun-Yi] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Rasmussen, J. O.; Luo, Y. X.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Frauendorf, S.; Dimitrov, V.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Zhu, SJ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn FU National Natural Science Foundation of China [10575057, 10775078]; Major State Basic Research Development program [2007CB3815005]; Special program of Higher Education Science Foundation [20070003149]; U.S. Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098] FX Supported by National Natural Science Foundation of China (10575057, 10775078), Major State Basic Research Development program (2007CB3815005), Special program of Higher Education Science Foundation (20070003149), and U.S. Department of Energy (DE-FG05-88ER40407, DE-AC03-76SF00098) NR 12 TC 1 Z9 1 U1 0 U2 4 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 BP 145 EP 147 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 430JU UT WOS:000264986200046 ER PT J AU Ding, HB Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Li, K Liu, SH Luo, YX Rasmussen, JO Goodin, CT Lee, IY Wang, JG Che, XL Gu, L AF Ding Huai-Bo Zhu Sheng-Jiang Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Li, K. Liu, S. H. Luo, Y. X. Rasmussen, J. O. Goodin, C. T. Lee, I. Y. Wang Jian-Guo Che Xing-Lai Gu Long TI Extended collective bands in neutron-rich Ru-109 SO CHINESE PHYSICS C LA English DT Article DE collective levels; gamma-transitions and level energies; neutron-rich nucleus; spontaneous fission ID HIGH-SPIN; ROTATIONAL BANDS; NUCLEUS; FISSION; MO-106; STATES AB Levels in the neutron-rich Ru-109 have been studied by observing the prompt gamma-rays following the spontaneous fission fragments of Cf-252. The ground state band and the negative parity bands have been confirmed and extended. A positive parity band with the band head level at 332.5 keV is newly identified and suggested as a single-neutron excitation band built on the 7/2(+)[404] Nilsson orbital.Some structural characteristics of these bands are discussed. C1 [Ding Huai-Bo; Zhu Sheng-Jiang; Wang Jian-Guo; Che Xing-Lai; Gu Long] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu Sheng-Jiang; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Li, K.; Liu, S. H.; Luo, Y. X.; Goodin, C. T.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ding, HB (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn NR 25 TC 1 Z9 1 U1 0 U2 3 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 SU 1 BP 154 EP 157 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 430JU UT WOS:000264986200049 ER PT J AU Wang, JG Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Rasmussen, JO Luo, YX Li, K Lee, IY Ding, HB Xu, Q Gu, L Yang, YY AF Wang Jian-Guo Zhu Sheng-Jiang Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Rasmussen, J. O. Luo, Y. X. Li, K. Lee, I. Y. Ding Huai-bo Xu Qiang Gu Long Yang Yun-Yi TI Observation of a new rotational band in Nb-104 nucleus SO CHINESE PHYSICS C LA English DT Article DE high spin states; spontaneous fission; neutron-rich nucleus; semi-decoupled band ID NEUTRON-RICH; OCTUPOLE CORRELATIONS; ODD AB The high spin states in neutron-rich Nb-104 have been investigated from study of prompt gamma-rays in spontaneous fission of Cf-252 with the Gammasphere detector array. A new rotational band has been identified for the first time. This band is proposed as a semi-decoupled band based on the configuration pi 5/2(-)[303]circle times nu 1/2(-)[541]. C1 [Wang Jian-Guo; Zhu Sheng-Jiang; Ding Huai-bo; Xu Qiang; Gu Long; Yang Yun-Yi] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu Sheng-Jiang; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Rasmussen, J. O.; Luo, Y. X.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Lee, I. Y.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wang, JG (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn NR 19 TC 1 Z9 1 U1 0 U2 4 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 SU 1 BP 158 EP 160 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 430JU UT WOS:000264986200050 ER PT J AU Jirimutu Wang, HJ Zhang, WN Wong, CY AF Jirimutu Wang Hai-Jun Zhang Wei-Ning Wong, Cheuk-Yin TI Meson spectra governed by the Fermi-Breit potential SO CHINESE PHYSICS C LA English DT Article DE meson spectra; Breit potential; quark model ID RELATIVIZED QUARK-MODEL; CHROMODYNAMICS; SCATTERING AB We calculate the meson mass spectra in a quark potential model by using the complete Fermi-Breit potential including the terms of orbit-orbit interaction, spin-orbit coupling, and tensor force interaction. We find that these terms give nontrivial contributions to the calculated meson spectra. The orbit-orbit coupling term may lead to an instability of the solution of the Schrodinger equation and should be regularized. C1 [Jirimutu; Zhang Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Peoples R China. [Wang Hai-Jun] Jilin Univ, Ctr Theoret Phys, Changchun 130023, Peoples R China. [Wang Hai-Jun] Jilin Univ, Sch Phys, Changchun 130023, Peoples R China. [Zhang Wei-Ning; Wong, Cheuk-Yin] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Jirimutu (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150006, Peoples R China. EM weiningzh@hotmail.com OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU National Natural Science Foundation of China [10575024, 10775024] FX Supported by National Natural Science Foundation of China (10575024, 10775024) NR 25 TC 1 Z9 1 U1 0 U2 1 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 IS 3 BP 170 EP 176 DI 10.1088/1674-1137/33/3/002 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 422CD UT WOS:000264403700002 ER PT J AU Gu, L Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Luo, YX Rasmussen, JO Li, K Lee, IY Xu, Q Che, XL Wang, JG Ding, HB Yang, YY AF Gu Long Zhu Sheng-Jiang Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Luo, Y. X. Rasmussen, J. O. Li, K. Lee, I. Y. Xu Qiang Che Xing-Lai Wang Jian-Guo Ding Huai-Bo Yang Yun-Yi TI High spin states in neutron-rich Tc-106 nucleus SO CHINESE PHYSICS C LA English DT Article DE spontaneous fission; collective band; gamma-transition and level energy ID BANDS; IDENTIFICATION; ISOTOPES; FISSION AB The high spin states of the neutron-rich odd-odd Tc-106 nucleus have been reinvestigated by observing prompt gamma'-rays from the spontaneous fission of Cf-252. A previously known collective band is confirmed and expanded, and a new collective band is newly identified. Several levels in previous report in Tc-106 are reexamined and they belong to the members of a band in Tc-107. The total Routhian surface (TRS) calculations show that the Tc-106 has triaxial shape. The spins and parties as well as the configurations for these bands have been tentatively assigned according to the analysis of the angular momentum alignments. C1 [Gu Long; Zhu Sheng-Jiang; Xu Qiang; Che Xing-Lai; Wang Jian-Guo; Ding Huai-Bo; Yang Yun-Yi] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu Sheng-Jiang; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gu, L (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn FU National Natural Science Foundation of China [10575057, 10775078]; Major State Basic Research Development Program [2007CB815005]; Special Program of Higher Education Science Foundation [20070003149]; U.S. Department of Energy Energy [DE-FG05-88ER40407, DE-AC03-76SF00098] FX Supported by National Natural Science Foundation of China (10575057, 10775078), Major State Basic Research Development Program (2007CB815005), Special Program of Higher Education Science Foundation (20070003149) and U.S. Department of Energy Energy (DE-FG05-88ER40407, DE-AC03-76SF00098) NR 17 TC 0 Z9 0 U1 0 U2 4 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 SU 1 BP 182 EP 184 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 430JU UT WOS:000264986200058 ER PT J AU Yang, YY Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Rasmussen, JO Luo, YX Li, K Ding, HB Wang, JG Xu, Q Gu, L AF Yang Yun-Yi Zhu Sheng-Jiang Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Rasmussen, J. O. Luo, Y. X. Li, K. Ding Huai-Bo Wang Jian-Guo Xu Qiang Gu Long TI High-spin states in neutron-rich Mo-102 nucleus SO CHINESE PHYSICS C LA English DT Article DE spontaneous fission; neutron-rich nucleus; gamma-band; quasi-particle band ID FISSION; BANDS AB High-spin states in neutron-rich Mo-102 nucleus have been studied by measuring the prompt gamma-rays in the spontaneous fission of Cf-252. The previous level scheme has been updated and some new levels and transitions are identified. The one-phonon gamma-band is expanded and a band head level of the two-phonon gamma-band is proposed, The systematic characteristics of yrast bands, one-phonon gamma-bands, two-phonon gamma-bands and quasi-particle bands in Mo-102, Mo-104 and Mo-106 are discussed. C1 [Yang Yun-Yi; Zhu Sheng-Jiang; Ding Huai-Bo; Wang Jian-Guo; Xu Qiang; Gu Long] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu Sheng-Jiang; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Rasmussen, J. O.; Luo, Y. X.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yang, YY (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn FU National Natural Science Foundation of China [10575057, 10775078]; Major State Basic Research Development Program [2007CB815005]; Special Program of Higher Education Science Foundation [20070003149]; U.S. Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098] FX Supported by National Natural Science Foundation of China (10575057, 10775078), Major State Basic Research Development Program (2007CB815005), Special Program of Higher Education Science Foundation (20070003149) and U.S. Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, DE-AC03-76SF00098 NR 12 TC 0 Z9 0 U1 0 U2 3 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 SU 1 BP 199 EP 201 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 430JU UT WOS:000264986200064 ER PT J AU Zheng, YN Zhou, DM Matsuta, K Mihara, M Fukuda, M Nishimura, D Komurasaki, J Ishikawa, D Matsumiya, R Nagatomo, T Izumikawa, T Takahashi, S Hirano, H Ohtsubo, T Momota, S Nojiri, Y Kitagawa, A Kanazawa, M Torikoshi, M Sato, S Minamisono, T Alonso, JR Krebs, GF Symons, TJM Yuan, DQ Zuo, Y Fan, P Suzuki, T Zhang, XZ Zhu, SY AF Zheng Yong-Nan Zhou Dong-Mei Matsuta, K. Mihara, M. Fukuda, M. Nishimura, D. Komurasaki, J. Ishikawa, D. Matsumiya, R. Nagatomo, T. Izumikawa, T. Takahashi, S. Hirano, H. Ohtsubo, T. Momota, S. Nojiri, Y. Kitagawa, A. Kanazawa, M. Torikoshi, M. Sato, S. Minamisono, T. Alonso, J. R. Krebs, G. F. Symons, T. J. M. Yuan Da-Qing Zuo Yi Fan Ping Suzuki, T. Zhang Xi-Zhen Zhu Sheng-Yun TI Nuclear structure of proton-rich unstable nucleus P-28 studied by g-factor measurement SO CHINESE PHYSICS C LA English DT Article DE P-28; beta-NMR; nuclear magnetic moment; exotic nuclei AB Nuclear structure of proton-rich unstable nucleus P-28 has been studied by measuring its g-factor for the first time. The g-factor of P-28 (I-pi = 3(+,) T-1/2 = 270.3 ms) was measured by means of beta-NMR technique combined with the new polarization technique for charge exchange reaction product in the intermediate energy heavy ion collisions. The obtained g-factor of g=0.1028(27) is very much quenched from the Schmidt value. but is well reproduced by the shell model (+0.102). In connection with the magnetic. moment. of the mirror partner and the beta-ray transition probability, the orbital angular momenta and intrinsic spins of protons and neutrons have been determined as < l(p)> = 0.43(29), < l(n)> = 1.85(29), < S-p > = 0.28(4), and < S-n > = 0.44(4). C1 [Zheng Yong-Nan; Zhou Dong-Mei; Yuan Da-Qing; Zuo Yi; Fan Ping; Zhang Xi-Zhen; Zhu Sheng-Yun] China Inst Atom Energy, Beijing 102413, Peoples R China. [Matsuta, K.; Mihara, M.; Fukuda, M.; Nishimura, D.; Komurasaki, J.; Ishikawa, D.; Matsumiya, R.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Nagatomo, T.] RIKEN, Wako, Saitama 3510198, Japan. [Izumikawa, T.] Niigata Univ, RI Ctr, Niigata 9518510, Japan. [Takahashi, S.; Hirano, H.; Ohtsubo, T.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Momota, S.] Kochi Univ Technol, Kochi 7828502, Japan. [Nojiri, Y.; Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S.] Natl Inst Radiol Sci, Inage Ku, Chiba 2638555, Japan. [Minamisono, T.] Fukui Univ Technol, Fukui 9108505, Japan. [Alonso, J. R.; Krebs, G. F.; Symons, T. J. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Suzuki, T.] Nihon Univ, Dept Phys, Tokyo 156, Japan. RP Zheng, YN (reprint author), China Inst Atom Energy, POB 27550, Beijing 102413, Peoples R China. EM zhusy@ciae.ac.cn FU National Natural Science Foundation of China [10435010, 10505032] FX Supported by National Natural Science Foundation of China (10435010, 10505032) NR 8 TC 1 Z9 1 U1 1 U2 1 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2009 VL 33 SU 1 BP 215 EP 217 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 430JU UT WOS:000264986200069 ER PT J AU Shahzad, F Siddiqi, SA Zhou, J AF Shahzad, F. Siddiqi, S. A. Zhou, J. TI Magnetic Behaviour of Sm2Co7/Fe/Sm2Co7, Nanocomposite Trilayers with Cr and Ti Additions SO CHINESE PHYSICS LETTERS LA English DT Article ID EXCHANGE-SPRING MAGNETS; MULTILAYER FILMS; ALLOYS; FE; CO; ND AB Trilayered Sm2Co7/Fe/Sm2Co7 spring exchange magnets are fabricated by dc magnetron sputtering on MgO substrates. Very thin layers (0.3-0.7 nm) of Cr and Ti are added at the interfaces of the two magnetic phases. The thickness of Sm2Co7 is kept at 20 nm and Fe at 6 nm while the thickness of Cr and Ti are varied as 0.3, 0.5, and 0.7 nm. The base pressure of sputtering chamber is kept below 10(-7) Torr and Ar pressure at 3-8mTorr. The samples are characterized by x-ray diffraction (XRD) and SQUID magnetometer. We report improvement in exchange coupling of nonacomposite magnets by addition of thin layers of Cr at interfaces. C1 [Shahzad, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Shahzad, F.; Siddiqi, S. A.] Univ Punjab, Ctr Solid State Phys, Lahore 54590, Pakistan. [Zhou, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Shahzad, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM furrukh11@yahoo.com OI Siddiqi, Saadat Anwar/0000-0002-9488-2627 FU Higher Education Commission of Pakistan; International Research Support Initiative Program FX Supported by the Higher Education Commission of Pakistan under International Research Support Initiative Program. NR 17 TC 6 Z9 7 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD MAR PY 2009 VL 26 IS 3 AR 037701 PG 3 WC Physics, Multidisciplinary SC Physics GA 410TN UT WOS:000263601300070 ER PT J AU Molina, A Murphy, JJ Winter, F Haynes, BS Blevins, LG Shaddix, CR AF Molina, A. Murphy, J. J. Winter, F. Haynes, B. S. Blevins, L. G. Shaddix, C. R. TI Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion SO COMBUSTION AND FLAME LA English DT Article DE Coal; Char; Nitric oxide; Halogen ID FLUIDIZED-BED COMBUSTION; FORMATION MECHANISM; NO; KINETICS; OXIDATION; GASIFICATION; REACTIVITY; O-2; N2O; EMISSIONS AB The conversion of nitrogen in char (char-N) to NO was studied both experimentally and computationally. In the experiments, pulverized coal char was produced from a U.S. high-volatile bituminous coal and burned in a dilute suspension at 1170 K, 1370 K and 1570 K, at an excess oxygen concentration of 8% (dry), with different levels of background NO. In some experiments, hydrogen bromide (HBr) was added to the vitiated air as a tool to alter the concentration of gas-phase radicals. During char combustion, low NO concentration and high temperature promoted the conversion of char-N to NO. HBr addition altered NO production in a way that depended on temperature. At 1170 K the presence of HBr increased NO production by 80%, whereas the addition of HBr decreased NO production at higher temperatures by 20%. To explain these results, three mechanistic descriptions of char-N evolution during combustion were evaluated with computational models that simulated (a) homogeneous chemistry in a plug-flow reactor with entrained particle combustion, and (b) homogeneous chemistry in the boundary layer surrounding a reacting particle. The observed effect of HBr on NO production could only be captured by a chemical mechanism that considered significant release of HCN from the char particle. Release of HCN also explained changes in NO production with temperature and NO concentration. Thus, the combination of experiments and simulations suggests that HCN evolution from the char during pulverized coal combustion plays an essential role in net NO production. (C) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Molina, A.; Murphy, J. J.; Blevins, L. G.; Shaddix, C. R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Winter, F.] Vienna Univ Technol, Inst Chem Engn, A-1060 Vienna, Austria. [Haynes, B. S.] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia. RP Molina, A (reprint author), Univ Nacl Colombia, Fac Mines, Dept Energy & Proc, Car 80 65-223, Medellin, Colombia. EM amolinao@unal.edu.co RI Haynes, Brian/I-2562-2013; OI Haynes, Brian/0000-0002-2024-039X; Winter, Franz/0000-0001-9854-3836 FU U.S. Department of Energy through the National Energy Technology Laboratory's Power Systems Advanced Research Program [DE-AC04-94AL85000] FX The technical assistance of Sandians Dennis J. Morrison, Douglas D. Scott and Leslee P. Gardizi during the experimental setup and Nancy Y.C. Yang and Jeffrey M. Chames for the SEM analyses is acknowledged. This research was sponsored by the U.S. Department of Energy through the National Energy Technology Laboratory's Power Systems Advanced Research Program, managed by Dr. Robert Romanosky. Susan Maley serves as the NETL technical monitor for this project. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 49 TC 30 Z9 38 U1 1 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAR PY 2009 VL 156 IS 3 BP 574 EP 587 DI 10.1016/j.combustflame.2008.11.012 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 409JD UT WOS:000263501100004 ER PT J AU Leemans, WP Esarey, E Geddes, CGR Toth, C Schroeder, CB Nakamura, K Gonsalves, AJ Panasenko, D Cormier-Michel, E Plateau, GR Lin, C Bruhwiler, DL Cary, JR AF Leemans, Wim P. Esarey, E. Geddes, C. G. R. Toth, Cs. Schroeder, C. B. Nakamura, K. Gonsalves, A. J. Panasenko, D. Cormier-Michel, E. Plateau, G. R. Lin, C. Bruhwiler, D. L. Cary, J. R. TI Progress on laser plasma accelerator development using transversely and longitudinally shaped plasmas SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Laser-driven electron acceleration ID ELECTRON-BEAMS; INJECTION; PULSES AB A summary of progress at Lawrence Berkeley National Laboratory is given on: (1) experiments on down-ramp injection; (2) experiments on acceleration in capillary discharge plasma channels; and (3) simulations of a staged laser wakefield accelerator (LWFA). Control of trapping in a LWFA using plasma density down-ramps produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76 +/- 0.02 MeV/c, stable over a week of operation. Experiments were also carried out using a 40 TW laser interacting with a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic bunches up to 300 MeV were observed. By detuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy bunches, up to 1 GeV, was found. In this regime, peak electron energy was correlated with the amount of trapped charge. Simulations show that bunches produced on a down-ramp and injected into a channel-guided LWFA can produce stable beams with 0.2 MeV/c-class momentum spread at high energies. To cite this article: W.P. Leemans et al., C R. Physique 10 (2009). (C) 2009 Acadamie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Leemans, Wim P.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Schroeder, C. B.; Nakamura, K.; Gonsalves, A. J.; Panasenko, D.; Cormier-Michel, E.; Plateau, G. R.; Lin, C.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Leemans, Wim P.; Esarey, E.; Nakamura, K.] Univ Nevada, Reno, NV 89557 USA. [Plateau, G. R.] Ecole Polytech, F-91128 Palaiseau, France. [Lin, C.] Peking Univ, Beijing 100871, Peoples R China. [Bruhwiler, D. L.; Cary, J. R.] Tech X Corp, Boulder, CO 80303 USA. [Cary, J. R.] Univ Colorado, Boulder, CO 80309 USA. RP Leemans, WP (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov OI Schroeder, Carl/0000-0002-9610-0166 FU Office of Science; High Energy Physics; U.S. Department of Energy [DE-AC02-05CH11231, DE-FC02-07ER41499, DE-FG02-06ER84484, DE-FG03-95ER40926, DE-FG02-01ER41178, DE-FG02-03ER83857]; DOE SciDAC; NERSC; ATLAS programs; National Science Foundation [0113907, 0614001] FX This work was supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under contracts DE-AC02-05CH11231, DE-FC02-07ER41499, DE-FG02-06ER84484, DE-FG03-95ER40926, DE-FG02-01ER41178, DE-FG02-03ER83857, DOE SciDAC, NERSC, and ATLAS programs, National Science Foundation contracts 0113907 and 0614001, and DARPA. We appreciate the contributions of J. van Tilborg, D. Syversrud, J. Wallig, and N. Ybarrolaza. NR 27 TC 3 Z9 3 U1 1 U2 9 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 J9 CR PHYS JI C. R. Phys. PD MAR-APR PY 2009 VL 10 IS 2-3 BP 130 EP 139 DI 10.1016/j.crhy.2009.05.001 PG 10 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 463FB UT WOS:000267414000004 ER PT J AU Almgren, AS Bell, JB Nonaka, A Zingale, M AF Almgren, Ann S. Bell, John B. Nonaka, Andy Zingale, Michael TI A New Low Mach Number Approach in Astrophysics SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID IA SUPERNOVA EXPLOSION; HYDROSTATIC ADJUSTMENT; MODEL; HYDRODYNAMICS; DETONATION AB Astrophysical flows typically span a broad range of length and time scales. Specialized numerical algorithms can exploit the relationships between these scales and significantly improve the efficiency of numerical simulations without loss of accuracy. The authors describe the process by which an understanding of the important processes in Type Ia supernovae is guiding the development of new algorithms to model these phenomena. C1 [Almgren, Ann S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Comp Res Dept, Berkeley, CA 94720 USA. [Bell, John B.; Nonaka, Andy] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Zingale, Michael] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA. RP Almgren, AS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Comp Res Dept, Berkeley, CA 94720 USA. EM asalmgren@lbl.gov; jbbell@lbl.gov; ajnonaka@lbl.gov; mzingale@mail.astro.sunysb.edu OI Zingale, Michael/0000-0001-8401-030X FU US Department of Energy's (DOE's) Office of Mathematics, Information, and Computational Sciences [DE- AC02- 05CH11231]; DOE Office of Nuclear Physics Outstanding Junior Investigator award [DEFG0206ER41448]; DOE's Office of Science [DE-AC05-00OR22725] FX This work was supported by the SciDAC Program of the US Department of Energy's (DOE's) Office of Mathematics, Information, and Computational Sciences under contract number DE- AC02- 05CH11231 and by a DOE Office of Nuclear Physics Outstanding Junior Investigator award, grant number DEFG0206ER41448, to Stony Brook. The Flash Code, developed in part by the DOE- supported Advanced Simulation and Computing (ASC) Flash Center at the University of Chicago, was used for Figure 2. We implemented a new compressible solver in Flash for that comparison. We thank Stan Woosley for providing us with the 1D initial white dwarf model. Computer time for this project was provided through a DOE INCITE award at the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the DOE's Office of Science under contract number DE-AC05-00OR22725. NR 23 TC 0 Z9 0 U1 0 U2 11 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAR-APR PY 2009 VL 11 IS 2 BP 24 EP 33 PG 10 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 409SR UT WOS:000263526600006 ER PT J AU Lillard, RS Kolman, DG Hill, MA Prime, MB Veirs, DK Worl, LA Zapp, P AF Lillard, R. S. Kolman, D. G. Hill, M. A. Prime, M. B. Veirs, D. K. Worl, L. A. Zapp, P. TI Assessment of Corrosion-Based Failure in Stainless Steel Containers Used for the Long-Term Storage of Plutonium-Based Salts (Reprinted from Proceedings of the CORROSION/2008 Research Topical Symposium) SO CORROSION LA English DT Reprint DE pitting corrosion; plutonium-based salts; stainless steel ID MECHANICAL-PROPERTIES; IRRADIATION AB This paper summarizes our efforts to assess corrosion-related failure in stainless steel long-term storage containers bearing plutonium oxides and electrorefining salts, Pitting corrosion of the internal can wall is believed to occur when these salt particles deliquesce forming the electrolyte necessary for corrosion-electrochemistry. Extrapolation of pit depths from coupon studies using generalized extreme value (GEV) statistics found that the probability of a through-wall corrosion pit Is finite: the maximum pit depth after 50 years would be on the order of 1.7 mm where the container wall is only 1.6 mm thick. To assess susceptibility to environmental cracking fracture toughness (J(1C)), experiments were used in conjunction with a J-integral diagram constructed using the GE/EPRI method for linear elastic-plastic materials. As a part of this analysts, the residual stress associated with the weld was measured using the laser contour method. The hoop stress In the weld region was found to be on the order of 135 MPa to 180 MPa. Assuming that the axial stress that results from the weld is equal to one half of the hoop stress (sigma(ax) = sigma(h)/2) and our laboratory measurement of J(1C) is accurate, one would conclude there is sufficient energy associated with the weld to propagate a crack in the container. C1 [Lillard, R. S.; Kolman, D. G.; Hill, M. A.; Prime, M. B.; Veirs, D. K.; Worl, L. A.] Los Alamos Natl Lab, Mat Corros & Environm Effects Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Zapp, P.] Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Lillard, RS (reprint author), Los Alamos Natl Lab, Mat Corros & Environm Effects Lab, Div Mat Sci & Technol, MST 6, Los Alamos, NM 87545 USA. EM lillard@lanl.gov NR 25 TC 3 Z9 3 U1 1 U2 9 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD MAR PY 2009 VL 65 IS 3 BP 175 EP 186 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 420CV UT WOS:000264266900002 ER PT J AU Bras, W Clark, SM Greaves, GN Kunz, M van Beek, W Radmilovic, V AF Bras, Wim Clark, Simon M. Greaves, G. Neville Kunz, Martin van Beek, Wouter Radmilovic, Velimir TI Nanocrystal Growth in Cordierite Glass Ceramics Studied with X-ray Scattering SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ANGLE SCATTERING; IN-SITU; SURFACE NUCLEATION; HIGH-TEMPERATURE; SILICATE GLASS; NANOPARTICLES; CRYSTALLIZATION; SPECTROSCOPY; KINETICS; CLUSTERS AB The development of monodisperse crystalline particles in cordierite glass doped with Cr(3+) after a two-step heat treatment is elucidated by a combination of time-resolved small and wide angle x-ray scattering (SAXS/WAXS) experiments with electron microscopy. The effects of bulk and surface crystallization can clearly be distinguished, and the crystallization kinetics of the bulk phase is characterized. The internal pressure due to structural differences between the crystalline and amorphous phase is measured but the physical cause of this pressure can not unambiguously be attributed. The combined measurements comprise a nearly full characterization of the crystallization processes and the resulting sample morphology. C1 [Bras, Wim] DUBBLE ESRF, Netherlands Org Sci Res NWO, F-38043 Grenoble, France. [Clark, Simon M.; Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Greaves, G. Neville] Univ Wales, Dept Phys, Aberystwyth SY23 3BZ, Dyfed, Wales. [van Beek, Wouter] Swiss Norwegian Beamlines ESRF, F-38043 Grenoble, France. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Bras, W (reprint author), DUBBLE ESRF, Netherlands Org Sci Res NWO, BP220, F-38043 Grenoble, France. EM Wim.Bras@esrf.fr RI Bras, Wim/A-1026-2011; Kunz, Martin/K-4491-2012; Clark, Simon/B-2041-2013 OI Kunz, Martin/0000-0001-9769-9900; Clark, Simon/0000-0002-7488-3438 FU US Department of Energy [DE-AC02-05CH11231] FX Alex Korsunsky and Menno Oversluizen are acknowledged for discussions; Ray Jones, Igor Dolbnya, Ruud van Tol, and Dirk Detollenaere for technical assistance; Stuart Clarke for obtaining the SANS data; Irina Snigireva for making the SEM pictures of the samples; Claudio Ferrero for calculations; and Florian Meneau for assistance in the data reduction. The Netherlands Organization for Scientific Research (NWO) is thanked for making access to BM26B at the ESRF possible. All transmission electron microscopy characterization has been performed at the National Center for Electron Microscopy at Berkeley and was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The referees are thanked for useful suggestions on the restructuring of the manuscript. Ulrich Dahmen is thanked for fruitful discussions and Howard Padmore for creating the possibility to spend time at the ALS. NR 38 TC 13 Z9 13 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2009 VL 9 IS 3 BP 1297 EP 1305 DI 10.1021/cg070562v PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 415GC UT WOS:000263921300015 ER PT J AU Kuchibhatla, SVNT Karakoti, AS Sayle, DC Heinrich, H Seal, S AF Kuchibhatla, Satyanarayana V. N. T. Karakoti, A. S. Sayle, D. C. Heinrich, H. Seal, S. TI Symmetry-Driven Spontaneous Self-Assembly of Nanoscale Ceria Building Blocks to Fractal Superoctahedra SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ORIENTED AGGREGATION; CEO2; NANOPARTICLES; NANORODS; NANOSTRUCTURES; MESOCRYSTALS; CRYSTALLIZATION; NANOMATERIALS; NANOCRYSTALS; PARTICLES AB A combination of long-term aging studies and molecular dynamics (MD) simulations has been successfully used to explain the time-dependent hierarchical assembly of ceria nanoparticles (CNPs). When the CNPs were aged in as-synthesized condition at room temperature in water, it was observed that the individual 3-5 nm CNPs result in octahedral superstructures through a fractal assembly. This hierarchical fractal self-assembly was observed despite the absence of any surfactant, at room temperature, and under atmospheric pressure. High resolution transmission electron microscopy (HRTEM) and fast Fourier transform (FFT) analysis have been used to explore the assembly of the individual nanoparticles into fractal superoctahedra. Both experimental work and theoretical analysis showed that the initial octahedral and truncated octahedral seeds symmetrically assemble and result in the superoctahedra with intermediate transformation steps. C1 [Kuchibhatla, Satyanarayana V. N. T.] Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA. [Kuchibhatla, Satyanarayana V. N. T.; Karakoti, A. S.; Heinrich, H.; Seal, S.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Sayle, D. C.] Def Acad United Kingdon, Dept Appl Sci Secur & Resilience, Swindon SN6 8LA, Wilts, England. Univ Cent Florida, Nanosci & Technol Ctr, Orlando, FL 32816 USA. RP Kuchibhatla, SVNT (reprint author), Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA. EM satya@pnl.gov; sseal@mail.ucf.edu RI Sayle, Dean/D-8555-2013 OI Sayle, Dean/0000-0001-7227-9010 FU NSF NIRT [CBET-0708172]; NSF CMMI [0629080]; Cambridge-Cranfield HPC facility; U.S. DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Department of Energy's Office of Biological and Environmental Research; Pacific Northwest National Laboratory (PNNL) FX Authors would like to acknowledge the partial funding support from NSF under the Grants NSF NIRT CBET-0708172 and NSF CMMI: -0629080 and Cambridge-Cranfield HPC facility. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 37 TC 15 Z9 15 U1 4 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2009 VL 9 IS 3 BP 1614 EP 1620 DI 10.1021/cg801358z PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 415GC UT WOS:000263921300060 ER PT J AU Garnett, AT Han, TM Gilchrist, MJ Smith, JC Eisen, MB Wardle, FC Amacher, SL AF Garnett, Aaron T. Han, Tina M. Gilchrist, Michael J. Smith, James C. Eisen, Michael B. Wardle, Fiona C. Amacher, Sharon L. TI Identification of direct T-box target genes in the developing zebrafish mesoderm SO DEVELOPMENT LA English DT Review DE Enhancer prediction; Gene regulation; No tail/brachyury; Spadetail/tbx16 ID EMBRYONIC STEM-CELLS; TRANSCRIPTION FACTOR; PRESOMITIC MESODERM; PARAXIAL MESODERM; NO-TAIL; SEGMENTATION CLOCK; CIONA-INTESTINALIS; BRACHYURY GENE; BINDING-SITE; CONVERGENT EXTENSION AB The zebrafish genes spadetail (spt) and no tail (ntl) encode T-box transcription factors that are important for early mesoderm development. Although much has been done to characterize these genes, the identity and location of target regulatory elements remain largely unknown. Here, we survey the genome for downstream target genes of the Spt and Ntl T-box transcription factors. We find evidence for extensive additive interactions towards gene activation and limited evidence for combinatorial and antagonistic interactions between the two factors. Using in vitro binding selection assays to define Spt- and Ntl-binding motifs, we searched for target regulatory sequence via a combination of binding motif searches and comparative genomics. We identified regulatory elements for tbx6 and deltaD, and, using chromatin immunoprecipitation, in vitro DNA binding assays and transgenic methods, we provide evidence that both are directly regulated by T-box transcription factors. We also find that deltaD is directly activated by T-box factors in the tail bud, where it has been implicated in starting the segmentation clock, suggesting that spt and ntl act upstream of this process. C1 [Garnett, Aaron T.; Han, Tina M.; Eisen, Michael B.; Amacher, Sharon L.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Garnett, Aaron T.; Han, Tina M.; Eisen, Michael B.; Amacher, Sharon L.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Gilchrist, Michael J.; Smith, James C.] Wellcome Trust Canc Res UK Gurdon Inst, Cambridge CB2 1QN, England. [Smith, James C.] Dept Zool, Cambridge CB2 1QN, England. [Eisen, Michael B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Eisen, Michael B.] Calif Inst Quantitat Biosci, Berkeley, CA 94158 USA. [Wardle, Fiona C.] Dept Physiol Dev & Neurosci, Cambridge CB2 3DY, England. RP Amacher, SL (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM amacher@berkeley.edu RI Wardle, Fiona/G-4013-2012; OI Wardle, Fiona/0000-0001-5444-1889; Eisen, Michael/0000-0002-7528-738X; Smith, Jim/0000-0003-2413-9392 FU March of Dimes Birth Defects Foundation [1-FY05-118]; Wellcome Trust Program Grant; MRC Career Development Award; Lister Institute Research Prize; U.C. Berkeley Center for Integrative Genomics FX We thank D. Kimelman, U. Str hle, C. B. Chien, N. Lawson, D. J. Grunwald, J. S. Joly and R. Y. Tsien for plasmids, and S. Schulte-Merker and B. Draper for antibodies. We thank K. Senger, W. Rowell and M. Levine for help with SELEX assays. We thank Emily Janus for technical assistance, Xiao Xu for performing some of the in situ hybridizations in Fig. S1, Jennifer St Hilaire and Kimberly Blum for fish care, and all members of the Amacher laboratory for useful discussion. This work was supported by the March of Dimes Birth Defects Foundation (1-FY05-118) to S. L. A., by the Wellcome Trust Program Grant to J. C. S., and by an MRC Career Development Award and Lister Institute Research Prize to F. C. W. A. T. G. was supported by the U.C. Berkeley Center for Integrative Genomics. Deposited in PMC for release after 6 months. NR 102 TC 31 Z9 31 U1 1 U2 4 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0950-1991 J9 DEVELOPMENT JI Development PD MAR 1 PY 2009 VL 136 IS 5 BP 749 EP 760 DI 10.1242/dev.024703 PG 12 WC Developmental Biology SC Developmental Biology GA 404DO UT WOS:000263131100006 PM 19158186 ER PT J AU Sommer, GJ Hatch, AV AF Sommer, Greg J. Hatch, Anson V. TI IEF in microfluidic devices SO ELECTROPHORESIS LA English DT Review DE IEF; Microfluidics; Multidimensional ID IMMOBILIZED PH GRADIENTS; 2-DIMENSIONAL CAPILLARY-ELECTROPHORESIS; FLUORESCENCE IMAGING DETECTION; SULFATE GEL-ELECTROPHORESIS; ISOELECTRIC-FOCUSING CHIP; LIGHT-EMITTING DIODE; PROTEIN SEPARATIONS; ELECTROKINETIC METHODOLOGIES; CARRIER AMPHOLYTES; MASS-SPECTROMETRY AB IEF is one of the most powerful and prevalent techniques used in separation sciences. The power of IEF comes from the fact that it not only separates analytes based on their pI but also focuses them into highly resolved bands. In line with the miniaturization trend spurring the analytical community, the past decade has yielded a wealth of research focused on implementing IEF in microfluidic chip-based formats (mu IEF). Scaling down the separation technique provides several advantages such as reduced sample sizes, assay automation, and significant improvements in assay speed without sacrificing separation performance. Besides presenting microscale adaptations of standard schemes, researchers have also developed improved detection techniques, demonstrated novel mu IEF assays, and incorporated mu IEF with other analytical methods for achieving on-chip multidimensional separations. This review provides a brief historical outline of IEF's beginnings, theoretical incentives driving miniaturization of the methodology, a thorough synopsis of mu IEF publications to date, and an outlook to the future. C1 [Sommer, Greg J.; Hatch, Anson V.] Sandia Natl Labs, Biosyst Res Dept, Livermore, CA 94550 USA. RP Sommer, GJ (reprint author), Sandia Natl Labs, Biosyst Res Dept, POB 969,MS 9292, Livermore, CA 94550 USA. EM gsommer@sandia.gov FU National Institute of Allergy and Infectious Disease [U01AI075441-0]; Lockheed Martin Co., for the United States Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank Y. C. Wang and A. K. Singh for insightful discussions. This work was completed while under the support of National Institute of Allergy and Infectious Disease award number U01AI075441-0. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 88 TC 33 Z9 33 U1 0 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0173-0835 J9 ELECTROPHORESIS JI Electrophoresis PD MAR PY 2009 VL 30 IS 5 BP 742 EP 757 DI 10.1002/elps.200800598 PG 16 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 423BR UT WOS:000264471900005 PM 19260009 ER PT J AU Sioshansi, R Denholm, P Jenkin, T Weiss, J AF Sioshansi, Ramteen Denholm, Paul Jenkin, Thomas Weiss, Jurgen TI Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects SO ENERGY ECONOMICS LA English DT Article DE Energy storage; Arbitrage; Social welfare ID ENERGY-STORAGE AB Significant increases in prices and price volatility of natural gas and electricity have raised interest in the potential economic opportunities for electricity storage. In this paper. we analyze the arbitrage value of a price-taking storage device in PJM during the six-year period from 2002 to 2007, to understand the impact of fuel prices. transmission constraints, efficiency, storage capacity, and fuel mix. The impact of load-shifting for larger amounts of storage, where reductions in arbitrage are offset by shifts in consumer and producer surplus as well as increases in social welfare from a variety of sources. is also considered. Published by Elsevier B.V. C1 [Sioshansi, Ramteen] Ohio State Univ, Ind Welding & Syst Engn Dept, Columbus, OH 43210 USA. [Denholm, Paul; Jenkin, Thomas] Natl Renewable Energy Lab, Golden, CO USA. RP Sioshansi, R (reprint author), Ohio State Univ, Ind Welding & Syst Engn Dept, Columbus, OH 43210 USA. EM sioshansi.1@osu.edu NR 11 TC 131 Z9 134 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD MAR PY 2009 VL 31 IS 2 BP 269 EP 277 DI 10.1016/j.eneco.2008.10.005 PG 9 WC Economics SC Business & Economics GA 412EX UT WOS:000263707900010 ER PT J AU Bashkova, S Armstrong, TR Schwartz, V AF Bashkova, Svetlana Armstrong, Timothy R. Schwartz, Viviane TI Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide SO ENERGY & FUELS LA English DT Article ID SLUDGE-DERIVED MATERIALS; SEWAGE-TREATMENT PLANTS; MICROPOROUS CARBONS; COS HYDROLYSIS; SULFUR-DIOXIDE; PORE STRUCTURE; SURFACE-AREA; ADSORPTION; SO2; H2S AB Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds. C1 [Armstrong, Timothy R.; Schwartz, Viviane] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bashkova, Svetlana] CUNY City Coll, Dept Chem, New York, NY 10031 USA. RP Schwartz, V (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM schwartzv@ornl.gov FU U.S. Department of Energy, Office of Fossil Energy [DE-AC05-00OR22725] FX This research was sponsored by the U.S. Department of Energy, Office of Fossil Energy [under Contract DE-AC05-00OR22725 with UT-Battelle, LLC, at Oak Ridge National Laboratory (ORNL)]. A portion of this research used Oak Ridge National Laboratory's Center for Nanophase Materials Sciences and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research was supported in part by an appointment to the ORNL Postdoctoral Research Associates Program administered jointly by the Oak Ridge Institute for Science and Education (ORISE) and ORNL. Authors also thank F. S. Baker for providing carbon samples, M. Kidder for the access to the TGA instrument, and S. H. Overbury for reviewing the manuscript. NR 53 TC 10 Z9 13 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR-APR PY 2009 VL 23 SI SI BP 1674 EP 1682 DI 10.1021/ef800711c PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 436TM UT WOS:000265439000070 ER PT J AU Lang, YD Malacina, A Biegler, LT Munteanu, S Madsen, JI Zitney, SE AF Lang, Yi-dong Malacina, Adam Biegler, Lorenz T. Munteanu, Sorin Madsen, Jens I. Zitney, Stephen E. TI Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization SO ENERGY & FUELS LA English DT Article ID COAL-GASIFICATION AB It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models, this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization. C1 [Lang, Yi-dong; Malacina, Adam; Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Lang, Yi-dong; Malacina, Adam; Biegler, Lorenz T.; Zitney, Stephen E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Munteanu, Sorin] Ansys Inc, Lebanon, NH 03766 USA. [Madsen, Jens I.] Ansys Inc, Morgantown, WV 26505 USA. RP Biegler, LT (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM lb01@andrew.cmu.edu FU U.S. Department of Energy's National Energy Technology Laboratory [DE-PS26-04NT42249] FX This work was performed with the support of the U.S. Department of Energy's National Energy Technology Laboratory, under Award DE-PS26-04NT42249. NR 33 TC 36 Z9 37 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAR-APR PY 2009 VL 23 BP 1695 EP 1706 DI 10.1021/ef800984v PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 436TM UT WOS:000265439000072 ER PT J AU Yung, MM Jablonski, WS Magrini-Bair, KA AF Yung, Matthew M. Jablonski, Whitney S. Magrini-Bair, Kimberly A. TI Review of Catalytic Conditioning of Biomass-Derived Syngas SO ENERGY & FUELS LA English DT Review ID STEAM-REFORMING CATALYSTS; SUPPORTED NI CATALYSTS; FLUIDIZED-BED REACTOR; PROMOTED NI/AL2O3 CATALYSTS; SULFUR-TOLERANT CATALYSTS; COBALT-BASED CATALYSTS; HOT GAS; PARTIAL OXIDATION; LOW-TEMPERATURE; HYDROGEN-PRODUCTION AB Thermochemical conversion of biomass to create fuels and chemical products may be achieved through the gasification route via syngas. The resulting biomass-derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as undesired impurities, such as tars, hydrocarbons, hydrogen sulfide, ammonia, hydrogen chloride, and other trace contaminants. These impurities require removal, usually through catalytic conditioning, to produce a quality syngas for end-use synthesis of liquid fuels, such as mixed alcohols and Fischer-Tropsch liquids. In the past decade, significant research attention has been focused on these catalytic processes. This contribution builds on previous reviews and focuses on capturing the work on catalytic conditioning of biomass-derived syngas that have been performed since the Dayton review in 2002, with an emphasis on tar destruction and steam reforming catalysts. This review organizes and discusses the investigations of catalytic conditioning of biomass-derived syngas with various catalyst formulations and also discusses the roles of catalyst additives. Key technical challenges and research areas for the advancement of liquid fuel synthesis via thermochemical conversion of biomass are also discussed. C1 [Yung, Matthew M.; Jablonski, Whitney S.; Magrini-Bair, Kimberly A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Yung, MM (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew_yung@nrel.gov FU U.S. Department of Energy's Biomass Program [DE-AC36-99GO-10337] FX Funding for this work, provided by the U.S. Department of Energy's Biomass Program Contract DE-AC36-99GO-10337, is gratefully acknowledged. NR 151 TC 180 Z9 184 U1 6 U2 150 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR-APR PY 2009 VL 23 SI SI BP 1874 EP 1887 DI 10.1021/ef800830n PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 436TM UT WOS:000265439000097 ER PT J AU Middleton, RS Bielicki, JM AF Middleton, Richard S. Bielicki, Jeffrey M. TI A scalable infrastructure model for carbon capture and storage: SimCCS SO ENERGY POLICY LA English DT Article DE Carbon capture and storage; Optimization; Pipeline network ID CO2; TECHNOLOGIES AB In the carbon capture and storage (CCS) process, CO(2) sources and geologic reservoirs may be widely spatially dispersed and need to be connected through a dedicated CO(2) pipeline network. We introduce a scalable infrastructure model for CCS (simCCS) that generates a fully integrated, cost-minimizing CCS system. SimCCS determines where and how much CO(2) to capture and store, and where to build and connect pipelines of different sizes, in order to minimize the combined annualized costs of sequestering a given amount of CO(2). SimCCS is able to aggregate CO(2) flows between sources and reservoirs into trunk pipelines that take advantage of economies of scale. Pipeline construction costs take into account factors including topography and social impacts. SimCCS can be used to calculate the scale of CCS deployment (local, regional, national). SimCCS' deployment of a realistic. capacitated pipeline network is a major advancement for planning CCS infrastructure. We demonstrate simCCS using a set of 37 CO(2) sources and 14 reservoirs for California. The results highlight the importance of systematic planning for CCS infrastructure by examining the sensitivity of CCS infrastructure, as optimized by simCCS, to varying CO(2) targets. We finish by identifying critical future research areas for CCS infrastructure. Published by Elsevier Ltd. C1 [Middleton, Richard S.] Oak Ridge Natl Lab, Ctr Transportat Anal, Oak Ridge, TN 37831 USA. [Bielicki, Jeffrey M.] Harvard Kennedy Sch, Belfer Ctr Sci & Int Affairs, Cambridge, MA 02138 USA. RP Middleton, RS (reprint author), Oak Ridge Natl Lab, Ctr Transportat Anal, MS 6054,POB 2008, Oak Ridge, TN 37831 USA. EM middletonrs@ornl.gov RI Middleton, Richard/A-5470-2011; Bielicki, Jeffrey/D-4239-2016 OI Bielicki, Jeffrey/0000-0001-8449-9328 FU Zero Emissions Research Technology FX Support for part of this work was provided by Zero Emissions Research Technology while the authors were at Los Alamos National Laboratory (2006-2007). We are particularly grateful to Michael Kuby for his detailed comments on earlier versions of this paper. NR 27 TC 107 Z9 112 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAR PY 2009 VL 37 IS 3 BP 1052 EP 1060 DI 10.1016/j.enpol.2008.09.049 PG 9 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 415OF UT WOS:000263942700029 ER PT J AU Bolinger, M Wiser, R AF Bolinger, Mark Wiser, Ryan TI Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth SO ENERGY POLICY LA English DT Article DE Wind power; Cost trends; Price trends ID EXPERIENCE CURVES; ENERGY TECHNOLOGIES; POLICY AB The amount of wind power capacity being installed globally is surging, with the United States the world leader in terms of annual market share for three years running (2005-2007). The rapidly growing market for wind has been a double-edged sword, however, as the resulting supply-demand imbalance in wind turbines, along with the rising cost of materials and weakness in the US dollar, has put upward pressure on wind turbine costs, and ultimately, wind power prices. Two mitigating factors-reductions in the cost of equity provided to wind projects and improvements in project-level capacity factors-have helped to relieve some of the upward pressure on wind power prices over the last few years. Because neither of these two factors can be relied upon to further cushion the blow going forward, policymakers should recognize that continued financial support may be necessary to sustain the wind sector at its current pace of development, at least in the near term. Though this article emphasizes developments in the US market for wind power, those trends are similar to, and hold implications for, the worldwide wind power market. Published by Elsevier Ltd. C1 [Bolinger, Mark; Wiser, Ryan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bolinger, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mabolinger@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX Berkeley Lab's work on this article was funded by the Wind and Hydropower Technologies Program, Office of Energy Efficiency and Renewable Energy of the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 28 TC 38 Z9 38 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAR PY 2009 VL 37 IS 3 BP 1061 EP 1071 DI 10.1016/j.enpol.2008.10.053 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 415OF UT WOS:000263942700030 ER PT J AU Crump, KS Teeguarden, JG AF Crump, Kenny S. Teeguarden, Justin G. TI Benchmark calculations from summarized data: an example SO ENVIRONMENTAL AND ECOLOGICAL STATISTICS LA English DT Article DE Benchmark analysis; Hybrid benchmark; Monte Carlo integration; Styrene ID RISK ASSESSMENT; STYRENE AB Benchmark calculations often are made from data extracted from publications. Such data may not be in a form most appropriate for benchmark analysis, and, as a result, suboptimal and/or non-standard benchmark analyses are often applied. This problem can be mitigated in some cases using Monte Carlo computational methods that allow the likelihood of the published data to be calculated while still using an appropriate benchmark dose (BMD) definition. Such an approach is illustrated herein using data from a study of workers exposed to styrene, in which a hybrid BMD calculation is implemented from dose response data reported only as means and standard deviations of ratios of scores on neuropsychological tests from exposed subjects to corresponding scores from matched controls. The likelihood of the data is computed using a combination of analytic and Monte Carlo integration methods. C1 [Crump, Kenny S.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Teeguarden, Justin G.] Pacific NW Natl Lab, Richland, WA USA. RP Crump, KS (reprint author), Louisiana Tech Univ, POB 10348, Ruston, LA 71270 USA. EM KennyCrump@email.com NR 14 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1352-8505 J9 ENVIRON ECOL STAT JI Environ. Ecol. Stat. PD MAR PY 2009 VL 16 IS 1 BP 13 EP 24 DI 10.1007/s10651-007-0077-1 PG 12 WC Environmental Sciences; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Environmental Sciences & Ecology; Mathematics GA 401VN UT WOS:000262970600003 ER PT J AU Hugenholtz, P Kyrpides, NC AF Hugenholtz, Philip Kyrpides, Nikos C. TI A changing of the guard SO ENVIRONMENTAL MICROBIOLOGY LA English DT Editorial Material ID SOIL BACTERIA; GENOMES; CULTIVATION; DIVISION; DATABASE; CELL C1 [Hugenholtz, Philip; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Hugenholtz, P (reprint author), DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. EM phugenholtz@lbl.gov RI Hugenholtz, Philip/G-9608-2011; Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; hugenholtz, philip/0000-0001-5386-7925 NR 13 TC 17 Z9 17 U1 1 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD MAR PY 2009 VL 11 IS 3 BP 551 EP 553 DI 10.1111/j.1462-2920.2009.01888.x PG 3 WC Microbiology SC Microbiology GA 412WU UT WOS:000263755700001 PM 19278443 ER PT J AU Mihailovic, DT Alapaty, K Podrascanin, Z AF Mihailovic, Dragutin T. Alapaty, Kiran Podrascanin, Zorica TI Chemical transport models SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Asymmetrical mixing; Atmospheric chemistry; Convective boundary layer; Dry deposition; Environmental modeling; Non-local convective mixing scheme; Turbulent kinetic energy diffusivity scheme; Vertical mixing ID BOUNDARY-LAYER; DRY DEPOSITION; OZONE; PARAMETERIZATION; RESISTANCES; POLLUTANTS; SCHEMES AB Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO(2) by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated. C1 [Mihailovic, Dragutin T.] Univ Novi Sad, Fac Agr, Novi Sad 21000, Serbia. [Alapaty, Kiran] US DOE, Washington, DC 20585 USA. [Podrascanin, Zorica] Univ Novi Sad, Univ Ctr Meteorol & Environm Modelling, ACIMSI, Novi Sad 21000, Serbia. RP Mihailovic, DT (reprint author), Univ Novi Sad, Fac Agr, Trg Dositeja Obradov 8, Novi Sad 21000, Serbia. EM guto@polj.ns.ac.yu FU Ministry of Science Republic of Serbia; 'Modelling and numerical simulations of complex physical systems' [ON141035] FX The research work described in this paper has been funded by the Ministry of Science Republic of Serbia under the project 'Modelling and numerical simulations of complex physical systems', No. ON141035 for 2006-2010. The work on this paper was partly realized by the first author during his visit to the Norwegian Meteorological Institute in Oslo. NR 33 TC 3 Z9 3 U1 0 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD MAR PY 2009 VL 16 IS 2 BP 144 EP 151 DI 10.1007/s11356-008-0086-0 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 411VZ UT WOS:000263682700004 PM 19145454 ER PT J AU Utsunomiya, S Kersting, AB Ewing, RC AF Utsunomiya, Satoshi Kersting, Annie B. Ewing, Rodney C. TI Groundwater Nanoparticles in the Far-Field at the Nevada Test Site: Mechanism for Radionuclide Transport SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NUCLEAR WASTE-DISPOSAL; YUCCA MOUNTAIN TUFF; COLLOID TRANSPORT; POROUS-MEDIA; SUBSURFACE ENVIRONMENT; TETRAVALENT ACTINIDES; POTENTIAL REPOSITORY; FISSION-PRODUCTS; OXIDATION-STATES; SORBED PU AB Colloid-like nanoparticles in groundwater have been shown to facilitate migration of several radionuclides: (239,240)Pu, (137)Cs, (152,154,155)Eu, and (60)Co (1). However, the exact type of nanoparticle and the speciation of the associated radionuclides has remained unknown, We have investigated nanoparticles sampled from the far-field at the Nevada Test Site, Nevada, utilizing advanced electron microscopy techniques, including high-angle annular dark-field scanning TEM (HAADF-STEM). Fissiogenic elements: Cs, rare earth elements (REE), activation elements: Co; and actinides: U and Th, were detected. Cesium is associated with U-forming cesium uranate with a Cs/U atomic ratio of similar to 0.12. Light REEs and Th are associated with phosphates, silicates, or apatite. Cobalt occurs as a metallic aggregate, associated with Cr, Fe, Ni, and +/- Mo. Uranyl minerals; Na-boltwoodite and oxide hydrates are also present as colloids. Because of these chemical associations with nanoscale particles, in the size range <100 nm, these particles may facilitate transport, and a variety of trace nanoscale phases may be responsible for the migration of fissiogenic and actinide elements in groundwater, To accurately model the transport of these contaminants, predictive transport models should include consideration of nanoparticle-facilitated transport. C1 [Utsunomiya, Satoshi] Kyushu Univ, Dept Chem, Fukuoka 8108560, Japan. [Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Kersting, Annie B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Utsunomiya, S (reprint author), Kyushu Univ, Dept Chem, Fukuoka 8108560, Japan. EM utu@chem.rc.kyushu-u.ac.jp FU US-DOE; Office of Basic Energy Sciences [DE-G02-06ERI5783] FX S.U. acknowledges use of the Electron Microbearn Analysis Laboratory (EMAL) at the University of Michigan and thanks the staff, Drs. John Mansfield and Kai Still, for their help. This work was supported by the US-DOE, Office of Basic Energy Sciences (DE-G02-06ERI5783). NR 64 TC 38 Z9 40 U1 8 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2009 VL 43 IS 5 BP 1293 EP 1298 DI 10.1021/es802181t PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 412XX UT WOS:000263758600013 PM 19350893 ER PT J AU Buesseler, KO Kaplan, DI Dai, M Pike, S AF Buesseler, Ken O. Kaplan, Daniel I. Dai, Minhan Pike, Steven TI Source-Dependent and Source-independent Controls on Plutonium Oxidation State and Colloid Associations in Groundwater SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FALLOUT PLUTONIUM; NORTH-ATLANTIC; TRANSPORT; SEDIMENTS; MOBILITY; WATERS; SITE; GEOCHEMISTRY; ENVIRONMENT; ADSORPTION AB Plutonium (Pu) was characterized for its isotopic composition, oxidation states, and association with colloids in groundwater samples near disposal basins in F-Area of the Savannah River Site and compared to similar samples collected six years earlier. Two sources of Pu were identified, the disposal basins, which contained a (240)Pu/(239)Pu isotopic signature consistent with weapons grade Pu, and (244)Cm, a cocontaminant that is a progenitor radionuclide of (240)Pu. (240)Pu that originated primarily from (240)Cm tended to be appreciably more oxidized (Pu(V/VI)), less associated with colloids (similar to 1 kDa - 0.2 mu m), and more mobile than (239)Pu, as suggested by our prior studies at this site. This is not evidence of isotope fractionation but rather "source-dependent" controls on (240)Pu speciation which are processes that are not at equilibrium, i.e., processes that appear kinetically hindered. There were also "source-independent" controls on IN speciation, which are those processes that follow thermodynamic equilibrium with their surroundings. For example, a groundwater pH increase in one well from 4.1 in 1998 to 6.1 in 2004 resulted in an order of magnitude decrease in groundwater (239)Pu concentrations. Similarly, the fraction of (239)Pu in the reduced Pu(III/IV) and colloidal forms increased systematically with decreases in redox condition in 2004 vs 1998. This research demonstrates the importance of source-dependent and source-independent controls on Pu speciation which would impact Pu mobility during changes in hydrological, chemical, or biological conditions on both seasonal and decadal time scales, and over short spatial scales. This implies more dynamic shifts in Pu speciation, colloids association, and transport in groundwater than commonly believed. C1 [Buesseler, Ken O.; Pike, Steven] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Dai, Minhan] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. RP Buesseler, KO (reprint author), Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. EM kbuesseler@whoi.edu RI Dai, Minhan/G-3343-2010 OI Dai, Minhan/0000-0003-0550-0701 FU Environmental Remediation Science Program (ERSP); Office of Science; US Department of Energy; Woods Hole Oceanographic Institution [DE-FG02-03ER63659]; Savannah River National Laboratory (SRS) [DE-AC09-96SR18500]; Pacific Northwest National Laboratory [DEAC06-76RL01830] FX This research was supported by the Environmental Remediation Science Program (ERSP) within the Office of Science, US Department of Energy. Work at the Woods Hole Oceanographic Institution was per-formed under the auspices of DOE contract DE-FG02-03ER63659; for Savannah River National Laboratory (SRS), DOE contract DE-AC09-96SR18500, for Pacific Northwest National Laboratory, DOE contract DEAC06-76RL01830. Work in the field at SRS and laboratory involved many who contributed significantly to the success of this project, including Henrieta Dulaiova, John Andrews, and Carl Lamborg at WHOI; Jay Noonkester and Carl Black at SRNL; and Steve Peterson, Tapas Maiti, Douglas Mathew, Ken Wagnon, and Sara Hager at PNNL. NR 48 TC 12 Z9 13 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2009 VL 43 IS 5 BP 1322 EP 1328 DI 10.1021/es8028318 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 412XX UT WOS:000263758600018 PM 19350898 ER PT J AU Ban-Weiss, GA Lunden, MM Kirchstetter, TW Harley, RA AF Ban-Weiss, George A. Lunden, Melissa M. Kirchstetter, Thomas W. Harley, Robert A. TI Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ON-ROAD; PARTICULATE MATTER; LABORATORY EVALUATION; COMBUSTION AEROSOLS; DIESEL; VEHICLES; GASOLINE; NEVADA; FLEET AB Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel trucks driving through a 1-km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO2 concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet The highest-emitting 10% of trucks were responsible for similar to 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg(-1) and maximum values of similar to 10 g kg(-1). Corresponding values for PN emission factors were 4.7 x 10(15) and 4 x 10(16) # kg(-1). There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this Study revealed that uncertainties (1 sigma) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from +/- 43% for n = 10 to +/- 8% for n = 300, illustrating the importance of vehicle sample sizes in emissions studies. When n = 10, sample means are more likely to be biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in the future, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet will become more of a challenge. C1 [Harley, Robert A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Ban-Weiss, George A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Lunden, Melissa M.; Kirchstetter, Thomas W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. RP Harley, RA (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM harley@ce.berkeley.edu RI Harley, Robert/C-9177-2016; OI Harley, Robert/0000-0002-0559-1917; Ban-Weiss, George/0000-0001-8211-2628 FU California Air Resources Board [05-309] FX This research was supported by the California Air Resources Board under contract 05-309. The statements and conclusions herein are those of the authors and do not necessarily reflect the views of the project sponsor. We thank David Fairley, Tony Strawa, Tony I Tansen, Susanne Hering, John McLaughlin, Andrew Kean, and Jamie Schauer for helpful discussions and technical assistance. Also thanks to Caltrans staff at the Caldecott tunnel. NR 24 TC 43 Z9 43 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2009 VL 43 IS 5 BP 1419 EP 1424 DI 10.1021/es8021039 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 412XX UT WOS:000263758600033 PM 19350913 ER PT J AU Kibanova, D Cervini-Silva, J Destaillats, H AF Kibanova, Daria Cervini-Silva, Javiera Destaillats, Hugo TI Efficiency of Clay-TiO2 Nanocomposites on the Photocatalytic Elimination of a Model Hydrophobic Air Pollutant SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GAS-PHASE; INDOOR AIR; CLAY-MINERALS; TIO2 PHOTOCATALYSIS; SURFACE-REACTIONS; BY-PRODUCTS; TOLUENE; OXIDATION; DEGRADATION; WATER AB Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a benchtop photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (lambda(max) = 365 nm) or UVC (lambda(max) = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 rim, leading to the formation of ozone and other short-lived reactive species. Performance of clay-TiO2 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of similar to 170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33, and 66% relative humidity (RH). Toluene concentrations were, determined by collecting Tenax-TA sorbent tubes downstream of the reactor, with subsequent thermal desorption-GC/MS analysis. The fraction of toluene removed, %R, and the reaction rate, T-r, were calculated for each experimental condition from the concentrations measured with and without UV irradiation. Use of UVC light (UV/TiO2/O-3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, T-rho/l(lambda), the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but not for Kao-TiO2. In all cases, reaction rates peaked at 10% RH, with T-r values between 10 and 50% higher than those measured under dry air. However,a net inhibition was observed as RH increased to 33% and 66%, indicating that water molecules competed effectively with toluene for reactive surface sites and limited the overall photocatalytic conversion. Compared to P25, inhibition by coadsorbed water was less significant for Kao-TiO2 samples, but was more dramatic for Hecto-TiO2 due to the high water uptake capacity of hectorite. C1 [Destaillats, Hugo] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Kibanova, Daria] Univ Nacl Autonoma Mexico, Fac Quim, Mexico City 04150, DF, Mexico. [Kibanova, Daria; Cervini-Silva, Javiera] Univ Nacl Autonoma Mexico, Inst Geografia, Berkeley, CA USA. [Cervini-Silva, Javiera] Univ Nacl Autonoma Mexico, NASA Astrobiol Inst, Berkeley, CA USA. [Destaillats, Hugo] Arizona State Univ, Dept Civil Environm & Sustainable Engn, Tempe, AZ USA. RP Cervini-Silva, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA 94720 USA. EM jcervini@igg.unam.mx RI Destaillats, Hugo/B-7936-2013 FU U.S. DOE [DE-AC02-05CH111231]; LBNL [LDRD LB07014]; DGAPA-UNAM; ECA-CORE 2020 (Semarn at-Conacyt); PUNTA-UNAM; Mexican Academy of Sciences; United States-Mexico Foundation for Science; AMC-FUMEC FX We express gratitude to R. Maddalena (LBNL) for GC/MS support, to L.A. Gundel and R. Dod (LBNL) for helpful discussions, and to M. Trejo (UNAM) for his participation in the synthesis of composite materials. Experimental work was carried out at LBNL. under U.S. DOE Contract DE-AC02-05CH111231. This project was supported in part by LBNL (LDRD LB07014, Project 366088), by DGAPA-UNAM, ECA-CORE 2020 (Semarn at-Conacyt) and PUNTA-UNAM. D.K. thanks the support of a DGAPA-UNAM scholarship. J.C.S. thanks the support of the Mexican Academy of Sciences (Academia Mexicana de Ciencias) and The United States-Mexico Foundation for Science (Fundacion Mexico-Estados Unidos para la Ciencia) through the 2006-Young Researcher Summer Program Fellowship (AMC-FUMEC). NR 55 TC 65 Z9 70 U1 13 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2009 VL 43 IS 5 BP 1500 EP 1506 DI 10.1021/es803032t PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 412XX UT WOS:000263758600046 PM 19350926 ER PT J AU Brezzi, F Buffa, A Lipnikov, K AF Brezzi, Franco Buffa, Annalisa Lipnikov, Konstantin TI MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE LA English DT Article DE Finite differences; polyhedral meshes; diffusion equation; error estimates ID POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; CONVERGENCE; FAMILY AB We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent II(1) norm are derived. C1 [Brezzi, Franco] Ist Univ Studi Super, Pavia, Italy. Inst Matemat Applicata & Tecnol Informat, Pavia, Italy. [Lipnikov, Konstantin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Brezzi, F (reprint author), Ist Univ Studi Super, Pavia, Italy. EM brezzi@imati.cnr.it; annalisa@imati.cnr.it; lipnikov@lanl.gov RI Brezzi, Franco/D-4362-2009; Buffa, Annalisa/C-4275-2011 OI Brezzi, Franco/0000-0003-4715-5475; Buffa, Annalisa/0000-0003-0384-0876 FU US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR); Italian PRIN [2006013187] FX The authors thanks Dr. Gao Garimella (LANL) for his help in generating polyhedral meshes. NR 14 TC 68 Z9 68 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0764-583X J9 ESAIM-MATH MODEL NUM JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. PD MAR-APR PY 2009 VL 43 IS 2 BP 277 EP 295 DI 10.1051/m2an:2008046 PG 19 WC Mathematics, Applied SC Mathematics GA 427XF UT WOS:000264811700003 ER PT J AU Byrne, S Guiney, E Barth, S Donnison, I Mur, LAJ Milbourne, D AF Byrne, Stephen Guiney, Emma Barth, Susanne Donnison, Iain Mur, Luis A. J. Milbourne, Dan TI Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. SO EUPHYTICA LA English DT Article DE Lolium perenne; QTL; Days to heading; Spike length; Spikelets per spike ID CONTROLLING VERNALIZATION REQUIREMENT; FESTUCA-PRATENSIS HUDS.; FLOWERING TIME; LINKAGE MAP; SSR MARKERS; ALPHA-SUBUNIT; RYEGRASS; WHEAT; RICE; GENES AB Flowering time is a trait which has a major influence on the quality of forage. In addition, flowering and subsequent seed yields are important traits for seed production by grass breeders. In this study, we have identified quantitative trait loci (QTL) for flowering time and morphological traits of the flowering head in an F(1) mapping population in Lolium perenne L (perennial ryegrass), a number of which have not previously been identified in L. perenne mapping studies. QTL for days to heading (DTH) were mapped in both outdoor and glasshouse experiments, revealing three and five QTL for DTH which explained 53% and 42% of the total phenotypic variation observed, respectively. Two QTL for DTH were detected in both environments, although they had contrasting relative magnitudes in each environment. One QTL for spike length and three QTL for spikelets per spike were also identified explaining, a total of 32 and 33% of the phenotypic variance, respectively. Furthermore, the QTL for spike length and spikelets per spike generally coincided with QTL for days to heading, implying co-ordinate regulation by underlying genes. Of particular interest was a region harbouring overlapping QTL for days to heading, spike length and spikelets per spike on the top of linkage group 4, containing the major QTL for spike length identified in this population. C1 [Byrne, Stephen; Guiney, Emma; Barth, Susanne; Milbourne, Dan] TEAGASC, Crops Res Ctr, Carlow, Ireland. [Donnison, Iain; Mur, Luis A. J.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Dyfed, Wales. RP Byrne, S (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM stephen.byrne@teagasc.ie RI Donnison, Iain/K-6138-2014; Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Mur, Luis/0000-0002-0961-9817; Milbourne, Dan/0000-0002-8323-6195; Donnison, Iain/0000-0001-6276-555X; Byrne, Stephen/0000-0002-1179-2272 FU Teagasc Walsh Fellowship/Ireland FX S. Byrne was awarded a Teagasc Walsh Fellowship/Ireland to undertake this study. NR 30 TC 15 Z9 16 U1 4 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0014-2336 J9 EUPHYTICA JI Euphytica PD MAR PY 2009 VL 166 IS 1 BP 61 EP 70 DI 10.1007/s10681-008-9831-1 PG 10 WC Agronomy; Plant Sciences; Horticulture SC Agriculture; Plant Sciences GA 404NN UT WOS:000263160000006 ER PT J AU Boyle, TJ Pratt, HD Alam, TM Headley, T Rodriguez, MA AF Boyle, Timothy J. Pratt, Harry D., III Alam, Todd M. Headley, Thomas Rodriguez, Mark A. TI Synthesis and Characterization of Thiolate-Oxo Ligated Zinc Alkyl Derivatives for Production of Zn-Based Nanoparticles SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE O,S ligands; Zinc; Zincite; Wurtzite; Ceramics; Nanomaterials ID THIN-FILM TRANSISTORS; X-RAY STRUCTURES; OXIDE NANOPARTICLES; CRYSTAL-STRUCTURES; METAL NANOWIRES; STRUCTURAL-CHARACTERIZATION; MOLECULAR-STRUCTURES; ALKOXIDE PRECURSORS; QUANTUM DOTS; COMPLEXES AB A series of mercapto-oxo containing reagents [3-mercaptopropionic acid (H(2)-3MPA), 4-mercaptophenol (H(2)-4MP), 2-mercaptopyridine N-oxide (H-2MPO)] was treated with diethylzinc (ZnEt(2)) in hexanes/pyridine (py) to yield {(mu(4)-3MPA)[Zn(Et)(py)]4}(infinity) (1), [(py)(2)(Et)Zn(mu(3)-4MP)Zn(Et)(py)](2) (2), and (2MPO)Zn(Et)py (3). For polymeric 1, each of the functional sites of the 3MPA was bound to four tetrahedral (Td) coordinated Zn(Et)(py) subunits. The sulfur of the 3MPA bridges two of the Zn(Et)(py) subunits, which are also bridged by the two carboxylate oxygens of another 3MPA to propagate the chain. In contrast, 2 forms a discrete tetranuclear species consisting of two Zn(Et)(py) moieties bridged by the oxygens of two 4MP ligands with the thiolate sites of each terminated by Zn(Et)(py)(2) moieties. Compound 3 adopts a monomeric species using a chelating 2MPO, a terminal Et, and a bound py to fill the Td coordination of the Zn metal center. Compounds 1-3 were then used to generate nanoparticles via solution precipitation and solvothermal routes to determine the effect these precursors have on the morphology and composition of the final materials produced. Compounds 1-3 were found to form zincite, zinc metal, or mixed zincite/wurtzite phases from solution precipitation or solvothermal routes; however, no routes yielded the mixed anion (i.e., ZnO(x)S(y)) materials. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) C1 [Boyle, Timothy J.; Pratt, Harry D., III; Alam, Todd M.; Headley, Thomas; Rodriguez, Mark A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU National Institutes of Health (NIH) [1 R21 EB005365-01]; United States Department of Energy [DE-AC04-94AL85000] FX This work was partially funded by the Office of Basic Energy Sciences of the Department of Energy as well as the National Institutes of Health (NIH) through the NIH Roadmap for Medical Research, Grant #1 R21 EB005365-01. information on this RFA (innovation in Molecular Imaging Probes) can be found at http://grants.nih.gov/grants/guide/rfa-files/RFA-RM-04-021.html. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 81 TC 10 Z9 10 U1 7 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAR PY 2009 IS 7 BP 855 EP 865 DI 10.1002/ejic.200800886 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 421KE UT WOS:000264357000002 PM 24068879 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Kamaluddin, B Abdullah, WAT Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behrens, U Blohm, C Bonato, A Borras, K Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Santamarta, R Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Wolf, G Wrona, K Molina, AG Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Rosin, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kozulia, A Libov, V Lisovyi, M Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Korcsak-Gorzo, K Oliver, K Robertson, A Uribe-Estrada, C Walczak, R Bertolin, A Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Ukleja, J Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Gwenlan, C Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, A Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Hochman, D Karshon, U Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Jungst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Kamaluddin, B. Wan Abdullah, W. A. T. Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behrens, U. Blohm, C. Bonato, A. Borras, K. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Gottlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huttmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Kotz, U. Kowalski, H. Lobodzinska, E. Lohr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Santamarta, R. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Wolf, G. Wrona, K. Yagues Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lisovyi, M. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Brummer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Korcsak-Gorzo, K. Oliver, K. Robertson, A. Uribe-Estrada, C. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Ukleja, J. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Gwenlan, C. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, A. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. TI Production of excited charm and charm-strange mesons at HERA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DEEP-INELASTIC SCATTERING; CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; HEAVY-QUARK SYMMETRY; LUND MONTE-CARLO; JET FRAGMENTATION; PARTON DISTRIBUTIONS; RADIAL EXCITATION; HADRON-PRODUCTION; EP COLLISIONS AB The production of excited charm, D-1(2420)(0) and D-2*(2460)(0), and charm-strange, D-s1(2536)(+/-), mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb(-1). Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D-2*(2460)(0) and D-s1(2536)(+/-), branching fractions. A search for the radially excited charm meson, D*'(2640)(+/-), was also performed. The results are compared with those measured previously and with theoretical expectations. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Jungst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Kamaluddin, B.; Wan Abdullah, W. A. T.] Univ Malaya, Jabatan Fizik, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Gottlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huttmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Lobodzinska, E.; Lohr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Yagues Molina, A. G.; Youngman, C.; Zeuner, W.] DESY, D-2000 Hamburg, Germany. [Lohr, B.; Drugakov, V.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Freiburg, Fak Phys, Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Mitilini, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Brummer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Long, K. R.; Bell, M. A.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Bell, M. A.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Sch Phys, Raymond & Beverly Sackler Fac Exact Sci, Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Yamazaki, Y.] Max Planck Inst, Munich, Germany. [Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tobias.haas@desy.de RI De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Wiggers, Leo/0000-0003-1060-0520; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636 FU Marie Curie Actions Transfer of Knowledge [MTKD-CT-2004-517186]; Russian Foundation for Basic Research [05-02-39028-NSFC-a]; Natural Sciences and Engineering Research Council of Canada (NSERC); German Federal Ministry for Education and Research (BMBF) [05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA, 05 HZ4KHA]; MINERVA Gesellschaft fur Forschung GmbH; Israel Science Foundation [293/02-11.2]; U. S.-Israel Binational Science Foundation; Israel Science Foundation; Italian National Institute for Nuclear Physics (INFN); Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education and Korea Science and Engineering Foundation; Netherlands Foundation for Research on Matter (FOM); Polish State Committee for Scientific Research [DESY/256/2006-154/DES/2006/03]; German Federal Ministry for Education and Research (BMBF); RF [N 8122.2006.2]; Russian Ministry of Education and Science; Spanish Ministry of Education and Science; Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; Polish Ministry of Science and Higher Education; FNRS; Malaysian Ministry of Science, Technology and Innovation/Akademi Sains Malaysia [SAGA 66-02-03-0048] FX This work was supported in part by the Marie Curie Actions Transfer of Knowledge project COCOS (contract MTKD-CT-2004-517186). Partly supported by Russian Foundation for Basic Research grant no. 05-02-39028-NSFC-a. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Supported by the German Federal Ministry for Education and Research (BMBF), under contract numbers 05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA and 05 HZ4KHA. Supported in part by the MINERVA Gesellschaft fur Forschung GmbH, the Israel Science Foundation (grant no. 293/02-11.2) and the U. S.-Israel Binational Science Foundation. Supported by the Israel Science Foundation. Supported by the Italian National Institute for Nuclear Physics (INFN). Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research. Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation. Supported by the Netherlands Foundation for Research on Matter (FOM). Supported by the Polish State Committee for Scientific Research, project no. DESY/256/2006-154/DES/2006/03. Partially supported by the German Federal Ministry for Education and Research (BMBF). Supported by RF Presidential grant N 8122.2006.2 for the leading scientific schools and by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics. Supported by the Spanish Ministry of Education and Science through funds provided by CICYT. Supported by the Science and Technology Facilities Council, UK. Supported by the US Department of Energy. Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Supported by the Polish Ministry of Science and Higher Education as a scientific project (2006-2008). Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office. Supported by the Malaysian Ministry of Science, Technology and Innovation/Akademi Sains Malaysia grant SAGA 66-02-03-0048. NR 61 TC 20 Z9 20 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2009 VL 60 IS 1 BP 25 EP 45 DI 10.1140/epjc/s10052-009-0881-x PG 21 WC Physics, Particles & Fields SC Physics GA 413HK UT WOS:000263783500003 ER PT J AU Berrah, N Rolles, D Pesic, ZD Hoener, M Zhang, H Aguilar, A Bilodeau, RC Red, E Bozek, JD Kukk, E Muino, RD de Abajo, FJG AF Berrah, N. Rolles, D. Pesic, Z. D. Hoener, M. Zhang, H. Aguilar, A. Bilodeau, R. C. Red, E. Bozek, J. D. Kukk, E. Muino, R. Diez Garcia de Abajo, F. J. TI Probing free xenon clusters from within SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID PHOTOELECTRON ANGULAR-DISTRIBUTIONS; SYNCHROTRON-RADIATION; HIGH-RESOLUTION; ARGON CLUSTERS; ENERGY SHIFTS; XE CLUSTERS; SPECTRA; KRYPTON; IONS; PHOTOIONIZATION AB Inner-shell and valence-shell photoionization of van-der-Waals Xe clusters have been measured using both angle-resolved photoelectron spectroscopy and velocity map ion imaging technique. Both techniques have been used to probe the electronic properties and the fragmentation dynamics of clusters as a function of photon energy and cluster size. In particular, the evolution of the photoelectron angular distributions and partial cross sections as a function of photon energy and cluster size has revealed cluster size effects similar to the ones found in solids. Our cluster angular distribution parameters have been compared to the free atoms. In addition, the measurement of the fragmentation dynamic of the clusters seems to be photon energy dependent. C1 [Berrah, N.; Rolles, D.; Pesic, Z. D.; Hoener, M.; Zhang, H.; Bilodeau, R. C.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Rolles, D.; Pesic, Z. D.; Hoener, M.; Aguilar, A.; Bilodeau, R. C.; Red, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bozek, J. D.] Stanford Linear Accelerator Ctr, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Kukk, E.] Univ Turku, Dept Phys, Turku 20014, Finland. [Muino, R. Diez] EHU & DIPC, CSIC UPV, Ctr Mixto, Ctr Fis Mat, San Sebastian 20018, Spain. [Garcia de Abajo, F. J.] CSIC, Inst Opt, E-28006 Madrid, Spain. RP Berrah, N (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM nora.berrah@wmich.edu RI Bozek, John/E-4689-2010; Diez Muino, Ricardo/C-9203-2009; Garcia de Abajo, Javier/A-6095-2009; CSIC-UPV/EHU, CFM/F-4867-2012; Bozek, John/E-9260-2010; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 OI Bilodeau, Rene/0000-0001-8607-2328; Diez Muino, Ricardo/0000-0001-8593-0327; Garcia de Abajo, Javier/0000-0002-4970-4565; Bozek, John/0000-0001-7486-7238; FU Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division; Alexander von Humboldt foundation FX The work was supported by the Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division. DR is grateful to the Alexander von Humboldt foundation for support through the Feodor Lynen program. We would also like to thank the staff at the ALS for their assistance. NR 43 TC 1 Z9 1 U1 0 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2009 VL 169 BP 59 EP 65 DI 10.1140/epjst/e2009-00973-0 PG 7 WC Physics, Multidisciplinary SC Physics GA 424IR UT WOS:000264560900010 ER PT J AU Kreidi, K Akoury, D Jahnke, T Weber, T Staudte, A Schoffler, M Neumann, N Titze, J Schmidt, LPH Czasch, A Jagutzki, O Fraga, RAC Grisenti, RE Muino, RD Cherepkov, NA Semenov, SK Ranitovic, P Cocke, CL Osipov, T Adaniya, H Thompson, JC Prior, MH Belkacem, A Landers, A Schmidt-Bocking, H Dorner, R AF Kreidi, K. Akoury, D. Jahnke, T. Weber, Th. Staudte, A. Schoeffler, M. Neumann, N. Titze, J. Schmidt, L. Ph. H. Czasch, A. Jagutzki, O. Fraga, R. A. Costa Grisenti, R. E. Muino, R. Diez Cherepkov, N. A. Semenov, S. K. Ranitovic, P. Cocke, C. L. Osipov, T. Adaniya, H. Thompson, J. C. Prior, M. H. Belkacem, A. Landers, A. Schmidt-Boecking, H. Doerner, R. TI Single photon double ionization of H-2 by circularly polarized photons at a photon energy of 160 eV SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID DOUBLE PHOTOIONIZATION; RECOIL-ION; ANGULAR-DISTRIBUTIONS; MOMENTUM SPECTROSCOPY; ATOM INTERFEROMETER; INTERFERENCE; DICHROISM; MOLECULE; N-2; FRAGMENTATION AB We report on fully differential cross sections for double ionization of H-2 by a single circularly polarized photon of 160 eV energy. For an unequal sharing of the energy between the two electrons and a particular geometry where the influence of electron/electron interaction is constant, we find a four-lobe structure in the molecular frame angular distribution of the faster electron. This structure is interpreted to be due to a coherent emission of the electron from the two atomic centers of the molecule. This Young-type interference pattern is lost for other geometries, where electron-electron interaction plays a major role. Furthermore, we show that the interference structure depends strongly on the internuclear distance. C1 [Kreidi, K.; Akoury, D.; Jahnke, T.; Staudte, A.; Neumann, N.; Titze, J.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Fraga, R. A. Costa; Grisenti, R. E.; Schmidt-Boecking, H.; Doerner, R.] Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Kreidi, K.] DESY, D-22607 Hamburg, Germany. [Weber, Th.; Schoeffler, M.; Osipov, T.; Adaniya, H.; Prior, M. H.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Muino, R. Diez] Ctr Fis Mat, San Sebastian 20018, Spain. [Muino, R. Diez] Donostia Int Phys Ctr, San Sebastian 20018, Spain. [Cherepkov, N. A.; Semenov, S. K.] State Univ Aerosp Instrumentat, St Petersburg 190000, Russia. [Ranitovic, P.; Cocke, C. L.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Thompson, J. C.; Landers, A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Kreidi, K (reprint author), Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM doerner@atom.uni-frankfurt.de RI Landers, Allen/C-1213-2013; Weber, Thorsten/K-2586-2013; ranitovic, predrag/A-2282-2014; Schoeffler, Markus/B-6261-2008; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Diez Muino, Ricardo/C-9203-2009; Doerner, Reinhard/A-5340-2008; CSIC-UPV/EHU, CFM/F-4867-2012 OI Staudte, Andre/0000-0002-8284-3831; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848; Diez Muino, Ricardo/0000-0001-8593-0327; Doerner, Reinhard/0000-0002-3728-4268; FU Deutsche Forschungsgemeinschaft; US DOE [DE-AC03-76SF00098] FX We are indebted to Bill McCurdy, Tom Rescigno, Michael Walter, John Briggs, Anatoli Kheifets, Uwe Becker, Daniel Rolles, Erich Joos, Kiyoshi Ueda, Markus Arndt, Markus Aspelmeyer for enlightening discussions. We acknowledge outstanding support by the sta. of the Advanced Lights Source in particular by Elke Arenholz, Tony Young, Hendrik Bluhm and Tolek Tyliszczak. The work was supported by the Deutsche Forschungsgemeinschaft and by the Office of Basic Energy Sciences, Division of Chemical Sciences of the US DOE under contract DE-AC03-76SF00098. NR 59 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2009 VL 169 BP 109 EP 116 DI 10.1140/epjst/e2009-00979-6 PG 8 WC Physics, Multidisciplinary SC Physics GA 424IR UT WOS:000264560900016 ER PT J AU Bozek, JD AF Bozek, J. D. TI AMO instrumentation for the LCLS X-ray FEL SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID RESOLUTION AB Instrumentation is being developed to conduct atomic, molecular and optical science experiments at the Linac Coherent Light Source x-ray free electron laser at the Stanford Linear Accelerator Center. This suite of instruments will be used to study the interaction of the very intense x-ray beam with the simplest forms of matter, namely atoms, molecules and clusters. The instrumentation will be ready for the start of operations of the facility in August 2009. C1 Stanford Linear Accelerator Ctr, LCLS, Menlo Pk, CA 94025 USA. RP Bozek, JD (reprint author), Stanford Linear Accelerator Ctr, LCLS, Menlo Pk, CA 94025 USA. EM jdbozek@slac.stanford.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010 OI Bozek, John/0000-0001-7486-7238 FU U.S. Department of Energy [DE-AC02-76SF00515] FX Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. The assitance of the LCLS AMO Instrument Team Leaders Louis DiMauro and Nora Berrah is acknowledged as is the effort of the LCLS AMO design team. NR 8 TC 91 Z9 91 U1 0 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2009 VL 169 BP 129 EP 132 DI 10.1140/epjst/e2009-00982-y PG 4 WC Physics, Multidisciplinary SC Physics GA 424IR UT WOS:000264560900019 ER PT J AU Richter, MC Mariot, JM Heckmann, O Kjeldgaard, L Mun, BS Fadley, CS Luders, U Bobo, JF De Padova, P Taleb-Ibrahimi, A Hricovini, K AF Richter, M. C. Mariot, J. -M. Heckmann, O. Kjeldgaard, L. Mun, B. S. Fadley, C. S. Lueders, U. Bobo, J. -F. De Padova, P. Taleb-Ibrahimi, A. Hricovini, K. TI NiFe2O4 and Fe3O4 studied by XMCD and resonant photoemission SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM AB X-ray magnetic circular dichroism and resonant photoemission at the Fe and Ni L-2,L-3 edges have been used to investigate the electronic structure of NiFe2O4 (NFO) thin films. The results, when compared to those obtained on Fe3O4, indicate that in a 12 nm NFO film the Ni atoms occupy mainly B sites, as in bulk NFO, and that a decrease in the thickness of the film results in a modi. cation of the nickel hybridization. C1 [Richter, M. C.; Heckmann, O.; Hricovini, K.] Univ Cergy Pontoise, Lab Phys Met & Surfaces, F-95031 Cergy Pontoise, France. [Mariot, J. -M.] Univ Paris 06, Lab Chim Phys Mat & Rayonnement, UMR 7614, F-75231 Paris 05, France. [Kjeldgaard, L.] Lund Univ, Max Lab, S-22100 Lund, Sweden. [Mun, B. S.] Hanyang Univ, Dept Appl Phys, Ansan 426791, South Korea. [Fadley, C. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lueders, U.] Univ Caen, Lab CRISMAT, UMR 6508, ENSICAEN,CNRS, F-14050 Caen 4, France. [Lueders, U.; Bobo, J. -F.] CNRS ONERA, Phys Mat Condensee Lab, FRE 2686, F-31400 Toulouse, France. [De Padova, P.] Ist Struttura Mat, I-00133 Rome, Italy. [Taleb-Ibrahimi, A.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. RP Richter, MC (reprint author), Univ Cergy Pontoise, Lab Phys Met & Surfaces, 5 Mail Gay Lussac, F-95031 Cergy Pontoise, France. RI MSD, Nanomag/F-6438-2012; Mun, Bongjin /G-1701-2013 FU ALS; Elettra; MAX-lab; European Community-Research Infrastructure Action [R II 3-CT-2004-506008] FX The authors would like to acknowledge the ALS (beamline 9.3.2), Elettra (Circular Polarized beamline) and MAX-lab (beamline I511) staff for support and hospitality. This work was supported by the European Community-Research Infrastructure Action under the FP6 "Structuring the European Research Area" Programme (through the Integrated Infrastructure Initiative "Integrating Activity on Synchrotron and Free Electron Laser Science-Contract R II 3-CT-2004-506008"). NR 9 TC 6 Z9 6 U1 2 U2 27 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2009 VL 169 BP 175 EP 180 DI 10.1140/epjst/e2009-00989-4 PG 6 WC Physics, Multidisciplinary SC Physics GA 424IR UT WOS:000264560900026 ER PT J AU van der Laan, G Arenholz, E AF van der Laan, G. Arenholz, E. TI Anisotropic X-ray magnetic linear dichroism Its importance for the analysis of soft x-ray spectra of magnetic oxides SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID ABSORPTION-SPECTRA; FILMS; DEPENDENCE; MOMENTS; SURFACE AB Using spectroscopic information for x ray magnetometry and magnetic microscopy requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. We have shown unambiguously that-contrary to common belief-spectral shape and magnitude of x ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and x ray polarization, but also their orientations relative to the crystallographic axes must be taken into account for accurate interpretation of XMLD data. C1 [van der Laan, G.] Harwell Sci & Innovat Ctr, Didcot OX11 0DE, Oxon, England. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP van der Laan, G (reprint author), Harwell Sci & Innovat Ctr, Didcot OX11 0DE, Oxon, England. EM g.vanderlaan@dl.ac.uk OI van der Laan, Gerrit/0000-0001-6852-2495 FU U. S. Department of Energy [DE-AC02-05CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 4 Z9 4 U1 3 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2009 VL 169 BP 187 EP 190 DI 10.1140/epjst/e2009-00991-x PG 4 WC Physics, Multidisciplinary SC Physics GA 424IR UT WOS:000264560900028 ER PT J AU Piro, L den Herder, J Ohashi, T Amati, L Atteia, JL Barthelmy, S Barbera, M Barret, D Basso, S Boer, M Borgani, S Boyarskiy, O Branchini, E Branduardi-Raymont, G Briggs, M Brunetti, G Budtz-Jorgensen, C Burrows, D Campana, S Caroli, E Chincarini, G Christensen, F Cocchi, M Comastri, A Corsi, A Cotroneo, V Conconi, P Colasanti, L Cusumano, G de Rosa, A Del Santo, M Ettori, S Ezoe, Y Ferrari, L Feroci, M Finger, M Fishman, G Fujimoto, R Galeazzi, M Galli, A Gatti, F Gehrels, N Gendre, B Ghirlanda, G Ghisellini, G Giommi, P Girardi, M Guzzo, L Haardt, F Hepburn, I Hermsen, W Hoevers, H Holland, A in't Zand, J Ishisaki, Y Kawahara, H Kawai, N Kaastra, J Kippen, M de Korte, PAJ Kouveliotou, C Kusenko, A Labanti, C Lieu, R Macculi, C Makishima, K Matt, G Mazzotta, P McCammon, D Mendez, M Mineo, T Mitchell, S Mitsuda, K Molendi, S Moscardini, L Mushotzky, R Natalucci, L Nicastro, F O'Brien, P Osborne, J Paerels, F Page, M Paltani, S Pareschi, G Perinati, E Perola, C Ponman, T Rasmussen, A Roncarelli, M Rosati, P Ruchayskiy, O Quadrini, E Sakurai, I Salvaterra, R Sasaki, S Sato, G Schaye, J Schmitt, J Sciortino, S Shaposhnikov, M Shinozaki, K Spiga, D Suto, Y Tagliaferri, G Takahashi, T Takei, Y Tawara, Y Tozzi, P Tsunemi, H Tsuru, T Ubertini, P Ursino, E Viel, M Vink, J White, N Willingale, R Wijers, R Yoshikawa, K Yamasaki, N AF Piro, L. den Herder, J. W. Ohashi, T. Amati, L. Atteia, J. L. Barthelmy, S. Barbera, M. Barret, D. Basso, S. Boer, M. Borgani, S. Boyarskiy, O. Branchini, E. Branduardi-Raymont, G. Briggs, M. Brunetti, G. Budtz-Jorgensen, C. Burrows, D. Campana, S. Caroli, E. Chincarini, G. Christensen, F. Cocchi, M. Comastri, A. Corsi, A. Cotroneo, V. Conconi, P. Colasanti, L. Cusumano, G. de Rosa, A. Del Santo, M. Ettori, S. Ezoe, Y. Ferrari, L. Feroci, M. Finger, M. Fishman, G. Fujimoto, R. Galeazzi, M. Galli, A. Gatti, F. Gehrels, N. Gendre, B. Ghirlanda, G. Ghisellini, G. Giommi, P. Girardi, M. Guzzo, L. Haardt, F. Hepburn, I. Hermsen, W. Hoevers, H. Holland, A. in't Zand, J. Ishisaki, Y. Kawahara, H. Kawai, N. Kaastra, J. Kippen, M. de Korte, P. A. J. Kouveliotou, C. Kusenko, A. Labanti, C. Lieu, R. Macculi, C. Makishima, K. Matt, G. Mazzotta, P. McCammon, D. Mendez, M. Mineo, T. Mitchell, S. Mitsuda, K. Molendi, S. Moscardini, L. Mushotzky, R. Natalucci, L. Nicastro, F. O'Brien, P. Osborne, J. Paerels, F. Page, M. Paltani, S. Pareschi, G. Perinati, E. Perola, C. Ponman, T. Rasmussen, A. Roncarelli, M. Rosati, P. Ruchayskiy, O. Quadrini, E. Sakurai, I. Salvaterra, R. Sasaki, S. Sato, G. Schaye, J. Schmitt, J. Sciortino, S. Shaposhnikov, M. Shinozaki, K. Spiga, D. Suto, Y. Tagliaferri, G. Takahashi, T. Takei, Y. Tawara, Y. Tozzi, P. Tsunemi, H. Tsuru, T. Ubertini, P. Ursino, E. Viel, M. Vink, J. White, N. Willingale, R. Wijers, R. Yoshikawa, K. Yamasaki, N. TI EDGE: Explorer of diffuse emission and gamma-ray burst explosions SO EXPERIMENTAL ASTRONOMY LA English DT Article DE X-rays; Cosmology; Clusters; Gamma-ray bursts; Warm-hot intergalactic medium; Missions ID GALAXY CLUSTERS; ABSORPTION; TEMPERATURE AB How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1-2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3-6 keV) with high angular resolution (HPD = 15") constant over the full 1.4 degree field of view, and a Wide Field Monitor (8-200 keV) with a FOV of A1/4 of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission. C1 [Piro, L.; Cocchi, M.; Corsi, A.; Colasanti, L.; de Rosa, A.; Del Santo, M.; Feroci, M.; Galli, A.; Gendre, B.; Macculi, C.; Natalucci, L.; Ubertini, P.] Ist Astrofis Spaziale Fis Cosm, INAF, Rome, Italy. [den Herder, J. W.; Hermsen, W.; Hoevers, H.; in't Zand, J.; Kaastra, J.; de Korte, P. A. J.; Mendez, M.; Takei, Y.] SRON Netherlands Inst Space Res, SRON, NL-3854 CA Utrecht, Netherlands. [Ohashi, T.; Sasaki, S.; Shinozaki, K.] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Amati, L.; Caroli, E.; Labanti, C.] Ist Astrofis Spaziale Fis Cosm, INAF, Bologna, Italy. [Barthelmy, S.; Gehrels, N.; Mushotzky, R.; Sato, G.; White, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cusumano, G.; Mineo, T.; Perinati, E.] Ist Astrofis Spaziale Fis Cosm, INAF, Palermo, Italy. [Atteia, J. L.] Observ Midi Pyrenees, LAT, F-31400 Toulouse, France. [Barret, D.] Ctr Etud Spatiale Rayonnements, Toulouse, France. [Basso, S.; Campana, S.; Chincarini, G.; Cotroneo, V.; Conconi, P.; Ghirlanda, G.; Ghisellini, G.; Guzzo, L.; Pareschi, G.; Spiga, D.; Tagliaferri, G.] Osserv Astron Brera, INAF, Milan, Italy. [Borgani, S.; Girardi, M.; Tozzi, P.; Viel, M.] Osserv Astron Trieste, INAF, Trieste, Italy. [Branchini, E.; Matt, G.; Perola, C.] Univ Roma III, Rome, Italy. [Briggs, M.; Lieu, R.] Univ Alabama Huntsville, Huntsville, AL USA. [Budtz-Jorgensen, C.; Christensen, F.] Tech Univ Denmark, DNSC, Copenhagen, Denmark. [Burrows, D.] Penn State Univ, Philadelphia, PA USA. [Comastri, A.; Ettori, S.; Roncarelli, M.] Osservatorio Astron Bologna, INAF, Bologna, Italy. [Ferrari, L.; Gatti, F.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Finger, M.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. [Fishman, G.; Kouveliotou, C.; Mitchell, S.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Galeazzi, M.; Ursino, E.] Univ Miami, Miami, FL USA. [Ishisaki, Y.; Sakurai, I.; Tawara, Y.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Kawai, N.] Tokyo Inst Technol, Tokyo 152, Japan. [Kippen, M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ezoe, Y.; Fujimoto, R.; Mitsuda, K.; Takahashi, T.; Yamasaki, N.] JAXA, Inst Space & Aeronaut Sci, Tokyo, Japan. [Molendi, S.; Quadrini, E.] Ist Astrofis Spaziale Fis Cosm, INAF, Milan, Italy. [Rasmussen, A.] KIPAC Stand, Palo Alto, CA USA. [Kawahara, H.; Suto, Y.; Yoshikawa, K.] Univ Tokyo, Tokyo, Japan. [Paerels, F.] Columbia Univ, New York, NY USA. [Schaye, J.] Leiden Univ, Leiden, Netherlands. [Mazzotta, P.] Univ Roma Tor Vergata, Rome, Italy. [Rosati, P.] ESO, Garching, Germany. [Boer, M.] Observ Haute Provence, St Michel, Haute Provence, France. [O'Brien, P.; Osborne, J.; Willingale, R.] Univ Leicester, Leicester, Leics, England. [Wijers, R.] Univ Amsterdam, Amsterdam, Netherlands. [Boyarskiy, O.] CERN, Geneva, Switzerland. [Haardt, F.; Salvaterra, R.] Univ Insubria Como, Como, Italy. [Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Paltani, S.] Integral Sci Data Ctr, Versoix, Switzerland. [Ruchayskiy, O.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [Shaposhnikov, M.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Schmitt, J.] Univ Hamburg, Hamburg, Germany. [Tsuru, T.] Kyoto Univ, Kyoto, Japan. [Vink, J.] Univ Utrecht, Utrecht, Netherlands. [Giommi, P.] ASI Data Ctr, Rome, Italy. [Makishima, K.] Tokyo Univ Sci, Tokyo 162, Japan. [McCammon, D.] Univ Wisconsin, Madison, WI USA. [Tsunemi, H.] Osaka Univ, Osaka, Japan. [Brunetti, G.] IRA Bologna, INAF, Bologna, Italy. [Moscardini, L.] Univ Bologna, Bologna, Italy. [Barbera, M.] Univ Palermo, Dipartimento Sci Fis & Astron, Palermo, Italy. [Nicastro, F.] Osserv Astron Roma, INAF, I-00136 Rome, Italy. [Sciortino, S.] Osserv Astron Palermo, INAF, Palermo, Italy. [Ponman, T.] Univ Birmingham, Birmingham, W Midlands, England. [Branduardi-Raymont, G.; Hepburn, I.; Page, M.] UCL, Mullard Space Sci Lab, London, England. [Holland, A.] Brunel Univ, London, England. RP Piro, L (reprint author), Ist Astrofis Spaziale Fis Cosm, INAF, Rome, Italy. EM luigi.piro@iasf-roma.inaf.it RI Mazzotta, Pasquale/B-1225-2016; Caroli, Ezio/G-1427-2012; Yamasaki, Noriko/C-2252-2008; White, Nicholas/B-6428-2012; Barthelmy, Scott/D-2943-2012; Amati, Lorenzo/N-5586-2015; Comastri, Andrea/O-9543-2015; Gehrels, Neil/D-2971-2012; Mendez, Mariano/C-8011-2012; Gatti, Flavio/K-4568-2013; gendre, bruce/O-2923-2013; PIRO, LUIGI/E-4954-2013; Mitsuda, Kazuhisa/C-2649-2008; Ruchayskiy, Oleg/E-3698-2015; Ettori, Stefano/N-5004-2015 OI Borgani, Stefano/0000-0001-6151-6439; Molendi, Silvano/0000-0002-2483-278X; Tagliaferri, Gianpiero/0000-0003-0121-0723; Schaye, Joop/0000-0002-0668-5560; Ghirlanda, Giancarlo/0000-0001-5876-9259; Ghisellini, Gabriele/0000-0002-0037-1974; giommi, paolo/0000-0002-2265-5003; Barbera, Marco/0000-0002-3188-7420; Wijers, Ralph/0000-0002-3101-1808; Nicastro, Fabrizio/0000-0002-6896-1364; Salvaterra, Ruben/0000-0002-9393-8078; Pareschi, Giovanni/0000-0003-3967-403X; Macculi, Claudio/0000-0002-7887-1485; Branchini, Enzo/0000-0002-0808-6908; Mazzotta, Pasquale/0000-0002-5411-1748; Spiga, Daniele/0000-0003-1163-7843; Caroli, Ezio/0000-0001-8468-7433; Del Santo, Melania/0000-0002-1793-1050; Viel, Matteo/0000-0002-2642-5707; Mineo, Teresa/0000-0002-4931-8445; Labanti, Claudio/0000-0002-5086-3619; Feroci, Marco/0000-0002-7617-3421; Cusumano, Giancarlo/0000-0002-8151-1990; Brunetti, Gianfranco/0000-0003-4195-8613; White, Nicholas/0000-0003-3853-3462; Amati, Lorenzo/0000-0001-5355-7388; Comastri, Andrea/0000-0003-3451-9970; Mendez, Mariano/0000-0003-2187-2708; gendre, bruce/0000-0002-9077-2025; PIRO, LUIGI/0000-0003-4159-3984; Ruchayskiy, Oleg/0000-0001-8073-3068; Ettori, Stefano/0000-0003-4117-8617 FU Italian space agency (ASI) FX The EDGE mission has been proposed to ESA as a medium class mission in the Cosmic Vision program. A large group of scientist from Europe, Japan and the USA has contributed to this proposal (see http://projects.iasf-roma.inaf.it/edge for the proposal proper). In addition the authors like to acknowledge the support of the Italian space agency (ASI) and the assistance of Thales Alenia Space for detailed technical assessment. NR 20 TC 16 Z9 16 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD MAR PY 2009 VL 23 IS 1 BP 67 EP 89 DI 10.1007/s10686-008-9092-y PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 409KZ UT WOS:000263505900005 ER PT J AU Arnaud, M Barcons, X Barret, D Bautz, M Bellazzini, R Bleeker, J Bohringer, H Boller, T Brandt, WN Cappi, M Carrera, F Comastri, A Costa, E Courvoisier, T de Korte, P Dwelly, T Fabian, A Flanagan, K Gilli, R Griffiths, R Hasinger, G Kaastra, J Kahn, S Kelley, R Kunieda, H Makishima, K Matt, G Mendez, M Mitsuda, K Nandra, K Ohashi, T Page, M Palumbo, G Pavlinsky, M Sciortino, S Smith, A Struder, L Takahashi, T Turler, M Turler, M Ueda, Y Vignali, C Vink, J Warwick, R Watson, M Willingale, R Zhang, SN AF Arnaud, Monique Barcons, Xavier Barret, Didier Bautz, Marshall Bellazzini, Ronaldo Bleeker, Johan Boehringer, Hans Boller, Thomas Brandt, William Nielsen Cappi, Massimo Carrera, Francisco Comastri, Andrea Costa, Enrico Courvoisier, Thierry de Korte, Piet Dwelly, Tom Fabian, Andrew Flanagan, Kathryn Gilli, Roberto Griffiths, Richard Hasinger, Gunther Kaastra, Jelle Kahn, Steve Kelley, Richard Kunieda, Hideyo Makishima, Kazuo Matt, Giorgio Mendez, Mariano Mitsuda, Kazuhisa Nandra, Kirpal Ohashi, Takaya Page, Mathew Palumbo, Giorgio Pavlinsky, Mikhail Sciortino, Salvatore Smith, Alan Strueder, Lothar Takahashi, Tadayuki Tuerler, Marc Tuerner, Martin Ueda, Yoshihiro Vignali, Cristian Vink, Jacco Warwick, Robert Watson, Mike Willingale, Richard Zhang, Shuang Nan TI XEUS: the physics of the hot evolving universe SO EXPERIMENTAL ASTRONOMY LA English DT Article DE XEUS; Cosmic vision; X-ray astronomy ID BLACK-HOLES; RAY; SPECTRUM; DETECTOR; OPTICS AB This paper describes the next generation X-ray observatory XEUS which has been submitted to the European Space Agency in the framework of the Cosmic Vision 2015-2025 competition and has been selected for an assessment study. The paper summarizes the scientific goals and instrumental concepts of the proposed X-ray telescope with 5 m(2) effective area and angular resolution better than 5 arc sec. C1 [Arnaud, Monique] CEA Saclay, CEA, DSM, DAPNIA,SAP, F-91191 Gif Sur Yvette, France. [Barcons, Xavier; Carrera, Francisco] CSIC UC, IFCA, Santander, Spain. [Barret, Didier] UPS, CNRS, CESR, Toulouse, France. [Bautz, Marshall] MIT, Cambridge, MA 02139 USA. [Bellazzini, Ronaldo] Ist Nazl Fis Nucl, Pisa, Italy. [Bleeker, Johan; de Korte, Piet; Kaastra, Jelle] U Utrecht, SRON, Utrecht, Netherlands. [Boehringer, Hans; Boller, Thomas; Hasinger, Gunther; Strueder, Lothar] MPE, Garching, Germany. [Brandt, William Nielsen] Penn State Univ, University Pk, PA 16802 USA. [Cappi, Massimo] IASF, INAF, Bologna, Italy. [Comastri, Andrea; Gilli, Roberto] Oss Astron Bologna, INAF, Bologna, Italy. [Costa, Enrico] IASF, INAF, Rome, Italy. [Courvoisier, Thierry; Tuerler, Marc] ISDC, Geneva, Switzerland. [Flanagan, Kathryn] STScI, Baltimore, MD USA. [Griffiths, Richard] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Kahn, Steve] Stanford Univ, SLAC, KIPAC, Stanford, CA 94305 USA. [Kelley, Richard] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kunieda, Hideyo] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Makishima, Kazuo] Univ Tokyo, Tokyo, Japan. [Matt, Giorgio] U Roma Tre, Rome, Italy. [Mendez, Mariano] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. [Mitsuda, Kazuhisa; Takahashi, Tadayuki] JAXA, ISAS, Sagamihara, Kanagawa, Japan. [Ohashi, Takaya] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Page, Mathew; Smith, Alan] UCL, MSSL, Dorking, Surrey, England. [Palumbo, Giorgio; Vignali, Cristian] Univ Bologna, Bologna, Italy. [Pavlinsky, Mikhail] IKI, Moscow, Russia. [Sciortino, Salvatore] Oss Astron, INAF, Palermo, Italy. [Tuerner, Martin; Warwick, Robert; Watson, Mike; Willingale, Richard] Univ Leicester, Leicester, Leics, England. [Ueda, Yoshihiro] Kyoto Univ, Kyoto, Japan. [Vink, Jacco] Univ Utrecht, Utrecht, Netherlands. [Zhang, Shuang Nan] Tsinghua Univ, IHEP, Beijing 100084, Peoples R China. [Nandra, Kirpal] Univ London Imperial Coll Sci Technol & Med, London, England. [Dwelly, Tom] Univ Southampton, Southampton SO9 5NH, Hants, England. [Fabian, Andrew] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP Gilli, R (reprint author), Oss Astron Bologna, INAF, Bologna, Italy. EM roberto.gilli@oabo.inaf.it RI Vignali, Cristian/J-4974-2012; Mendez, Mariano/C-8011-2012; Mitsuda, Kazuhisa/C-2649-2008; Barcons, Xavier/L-3335-2014; Cappi, Massimo/F-4813-2015; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Vignali, Cristian/0000-0002-8853-9611; Cappi, Massimo/0000-0001-6966-8920; Mendez, Mariano/0000-0003-2187-2708; Barcons, Xavier/0000-0003-1081-8861; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; Costa, Enrico/0000-0003-4925-8523 FU XEUS Science Advisory Group; ESA International Space Station FX The authors wish to express their appreciation to all those scientists who supported XEUS throughout the years and contributed with suggestions and constructive criticism to the writing of this final proposal. Each author acknowledges partial financial support from their national institutions and agencies from the birth of the original idea to the completion of the proposal, and A. Parmar for acting as a very helpful secretary of the XEUS Science Advisory Group. G. G. C. P. gratefully acknowledges the enthusiastic support from ESA International Space Station department during the early phases of the XEUS concept growth. Without their help XEUS probably would have never made it to successfully respond to the Cosmic Vision call. NR 23 TC 4 Z9 4 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD MAR PY 2009 VL 23 IS 1 BP 139 EP 168 DI 10.1007/s10686-008-9104-y PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 409KZ UT WOS:000263505900008 ER PT J AU Falvor, R Campisi, J AF Falvor, Richard Campisi, Judith TI Dr. Paola Timiras Obituary SO EXPERIMENTAL GERONTOLOGY LA English DT Biographical-Item C1 [Falvor, Richard] Univ N Carolina, Dept Cell & Mol Physiol, Sch Med, Chapel Hill, NC 27599 USA. [Campisi, Judith] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Falvor, R (reprint author), Univ N Carolina, Dept Cell & Mol Physiol, Sch Med, 51 Med Sci Res Bldg,CB 7545, Chapel Hill, NC 27599 USA. EM falvo@med.unc.edu; jcampisi@lbl.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 J9 EXP GERONTOL JI Exp. Gerontol. PD MAR PY 2009 VL 44 IS 3 BP 135 EP 135 DI 10.1016/j.exger.2008.12.002 PG 1 WC Geriatrics & Gerontology SC Geriatrics & Gerontology GA 416ZX UT WOS:000264045300001 ER PT J AU Shudo, E Ribeiro, RM Perelson, AS AF Shudo, Emi Ribeiro, Ruy M. Perelson, Alan S. TI Modeling HCV kinetics under therapy using PK and PD information SO EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY LA English DT Review DE direct antivirals; hepatitis C virus; IFN; mathematical modeling; NS3/4A protease inhibitor; NS5B polymerase inhibitor; PEG-IFN ID HEPATITIS-C VIRUS; ALPHA-2B PLUS RIBAVIRIN; DYNAMICS IN-VIVO; PEGYLATED INTERFERON-ALPHA-2B; VIRAL KINETICS; PEGINTERFERON ALPHA-2A; VIROLOGICAL RESPONSE; ANTIVIRAL ACTIVITY; HIV-1 INFECTION; GENOTYPE-1 AB Background: Mathematical models have proven helpful in analyzing the virological response to antiviral therapy in hepatitis C virus (HCV) infected subjects. Objective: To summarize the uses and limitations of different models for analyzing HCV kinetic data under pegylated IFN therapy. Methods: We formulate mathematical models and fit them by nonlinear least square regression to patient data to estimate model parameters. We compare the goodness of fit and parameter values estimated by different models statistically. Results/conclusion: The best model for parameter estimation depends on the availability and the quality of data as well as the therapy used. We also discuss the mathematical models that will be needed to analyze HCV kinetic data from clinical trials with new antiviral drugs. C1 [Shudo, Emi; Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, MS-K710, Los Alamos, NM 87545 USA. EM asp@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU US Department of Energy [DE-AC52-06 NA25396]; NIH [R37 Al28433-18, R01 RR06555-17, AI065256 (ASP), P20-RR18754 (RMR)] FX Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06 NA25396 and Supported by NIH grants R37 Al28433-18, and R01 RR06555-17 and AI065256 (ASP) and P20-RR18754 (RMR). NR 74 TC 22 Z9 22 U1 0 U2 3 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 1742-5255 J9 EXPERT OPIN DRUG MET JI Expert Opin. Drug Metab. Toxicol. PD MAR PY 2009 VL 5 IS 3 BP 321 EP 332 DI 10.1517/17425250902787616 PG 12 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA 440BP UT WOS:000265673400006 PM 19331594 ER PT J AU Zhai, H AF Zhai, Hui TI Strongly interacting ultracold quantum gases SO FRONTIERS OF PHYSICS IN CHINA LA English DT Review DE ultracold quantum gases; Feshbach resonance; optical lattice; rotating quantum gases ID BOSE-EINSTEIN CONDENSATION; MEAN-FIELD THEORY; MANY-BODY PROBLEM; INFINITE DIMENSIONS; PHASE-SEPARATION; MOTT INSULATOR; FERMI GASES; SUPERFLUID; TRANSITION; MODEL AB This article reviews recent progresses in ultracold quantum gases, and it includes three subjects which are the Fermi gases across a Feshbach resonance, quantum gases in the optical lattices and the fast rotating quantum gases. In this article, we discuss many basic physics pictures and concepts in quantum gases, for examples, the resonant interaction, universality and condensation in the lowest Landau level; we introduce fundamental theoretical tools for studying these systems, such as mean-field theory for BEC-BCS crossover and for the boson Hubbard model; also, we emphasize the important unsolved problems in the forefront of this field, for instance, the temperature effect in optical lattices. C1 [Zhai, Hui] Tsinghua Univ, Ctr Adv Study, Beijing 100084, Peoples R China. [Zhai, Hui] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Zhai, Hui] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhai, Hui] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Zhai, H (reprint author), Tsinghua Univ, Ctr Adv Study, Beijing 100084, Peoples R China. EM huizhai.physics@gmail.com RI Zhai, Hui/H-9496-2012 OI Zhai, Hui/0000-0001-8118-6027 NR 73 TC 4 Z9 4 U1 2 U2 7 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 1673-3487 EI 1673-3606 J9 FRONT PHYS CHINA JI Front. Phys. China PD MAR PY 2009 VL 4 IS 1 BP 1 EP 20 DI 10.1007/s11467-009-0001-2 PG 20 WC Physics, Multidisciplinary SC Physics GA 630UP UT WOS:000280300500001 ER PT J AU Tsang, A Butler, G Powlowski, J Panisko, EA Baker, SE AF Tsang, Adrian Butler, Gregory Powlowski, Justin Panisko, Ellen A. Baker, Scott E. TI Analytical and computational approaches to define the Aspergillus niger secretome SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Aspergillus niger; Secretome; Computational analysis; Mass spectrometry; Glycoside hydrolase; Genomics ID NONCLASSICAL PROTEIN SECRETION; PLANT-CELL WALL; SACCHAROMYCES-CEREVISIAE; FUSARIUM-GRAMINEARUM; SIGNAL PEPTIDES; EXPRESSION; GENE; IDENTIFICATION; CLONING; ACID AB We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome. The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis, Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We Cultured A. niger ill six different media and analyzed the extracellular proteins produced using mass spectrometry. A total of 222 proteins were identified, with 39 proteins expressed under all six conditions and 74 proteins expressed under only one condition. The secreted proteins identified by mass spectrometry were used to guide the correction of about 20 gene models. Additional analysis focused on extracellular enzymes of interest for biomass processing. Of the 63 glycoside hydrolases predicted to be capable of hydrolyzing cellulose, hemicellulose or pectin, 94% of the exo-acting enzymes and only 18% of the endo-acting enzymes were experimentally detected. (C) 2008 Elsevier Inc. All rights reserved. C1 [Tsang, Adrian; Butler, Gregory; Powlowski, Justin] Concordia Univ, Ctr Struct & Funct Genom, Montreal, PQ H4B 1R6, Canada. [Tsang, Adrian] Concordia Univ, Dept Biol, Montreal, PQ H3G 1M8, Canada. [Butler, Gregory] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada. [Powlowski, Justin] Concordia Univ, Dept Chem & Biochem, Montreal, PQ H3G 1M8, Canada. [Panisko, Ellen A.; Baker, Scott E.] Pacific NW Natl Lab, Energy & Environm Directorate, Chem & Biol Process Dev Grp, Richland, WA 99352 USA. RP Tsang, A (reprint author), Concordia Univ, Ctr Struct & Funct Genom, 7141 Sherbrooke W, Montreal, PQ H4B 1R6, Canada. EM tsang@gene.concordia.ca NR 72 TC 47 Z9 48 U1 1 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAR PY 2009 VL 46 BP S153 EP S160 DI 10.1016/j.fgb.2008.07.014 PG 8 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA 419NU UT WOS:000264227100014 PM 19618504 ER PT J AU Wortman, JR Gilsenan, JM Joardar, V Deegan, J Clutterbuck, J Andersen, MR Archer, D Bencina, M Braus, G Coutinho, P von Dohren, H Doonan, J Driessen, AJM Durek, P Espeso, E Fekete, E Flipphi, M Estrada, CG Geysens, S Goldman, G de Groot, PWJ Hansen, K Harris, SD Heinekamp, T Helmstaedt, K Henrissat, B Hofmann, G Homan, T Horio, T Horiuchi, H James, S Jones, M Karaffa, L Karanyi, Z Kato, M Keller, N Kelly, DE Kiel, JAKW Kim, JM van der Klei, IJ Klis, FM Kovalchuk, A Krasevec, N Kubicek, CP Liu, B MacCabe, A Meyer, V Mirabito, P Miskei, M Mos, M Mullins, J Nelson, DR Nielsen, J Oakley, BR Osmani, SA Pakula, T Paszewski, A Paulsen, I Pilsyk, S Pocsi, I Punt, PJ Ram, AFJ Ren, QH Robellet, X Robson, G Seiboth, B van Solingen, P Specht, T Sun, JB Taheri-Talesh, N Takeshita, N Ussery, D Vankuyk, PA Visser, H de Vondervoort, PJIV de Vries, RP Walton, J Xiang, X Xiong, Y Zeng, AP Brandt, BW Cornell, MJ van den Hondel, CAMJJ Visser, J Oliver, SG Turner, G AF Wortman, Jennifer Russo Gilsenan, Jane Mabey Joardar, Vinita Deegan, Jennifer Clutterbuck, John Andersen, Mikael R. Archer, David Bencina, Mojca Braus, Gerhard Coutinho, Pedro von Doehren, Hans Doonan, John Driessen, Arnold J. M. Durek, Pawel Espeso, Eduardo Fekete, Erzsebet Flipphi, Michel Garcia Estrada, Carlos Geysens, Steven Goldman, Gustavo de Groot, Piet W. J. Hansen, Kim Harris, Steven D. Heinekamp, Thorsten Helmstaedt, Kerstin Henrissat, Bernard Hofmann, Gerald Homan, Tim Horio, Tetsuya Horiuchi, Hiroyuki James, Steve Jones, Meriel Karaffa, Levente Karanyi, Zsolt Kato, Masashi Keller, Nancy Kelly, Diane E. Kiel, Jan A. K. W. Kim, Jung-Mi van der Klei, Ida J. Klis, Frans M. Kovalchuk, Andriy Krasevec, Nada Kubicek, Christian P. Liu, Bo MacCabe, Andrew Meyer, Vera Mirabito, Pete Miskei, Marton Mos, Magdalena Mullins, Jonathan Nelson, David R. Nielsen, Jens Oakley, Berl R. Osmani, Stephen A. Pakula, Tiina Paszewski, Andrzej Paulsen, Ian Pilsyk, Sebastian Pocsi, Istvan Punt, Peter J. Ram, Arthur F. J. Ren, Qinghu Robellet, Xavier Robson, Geoff Seiboth, Bernhard van Solingen, Piet Specht, Thomas Sun, Jibin Taheri-Talesh, Naimeh Takeshita, Norio Ussery, Dave Vankuyk, Patricia A. Visser, Hans de Vondervoort, Peter J. I. van de Vries, Ronald P. Walton, Jonathan Xiang, Xin Xiong, Yi Zeng, An Ping Brandt, Bernd W. Cornell, Michael J. van den Hondel, Cees A. M. J. J. Visser, Jacob Oliver, Stephen G. Turner, Geoffrey TI The 2008 update of the Aspergillus nidulans genome annotation: A community effort SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Aspergillus nidulans; Aspergilli; Genome; Annotation; Fungal community; Assembly; Transcription factors; CADRE ID GENE-CLUSTER; TRANSCRIPTIONAL ACTIVATOR; CELL-WALL; A-FUMIGATUS; PREDICTION; SEQUENCE; NIGER; DNA; IDENTIFICATION; BIOSYNTHESIS AB The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved. C1 [Turner, Geoffrey] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England. [Wortman, Jennifer Russo] Univ Maryland, Sch Med, Dept Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Joardar, Vinita; Ren, Qinghu] J Craig Venter Inst, Rockville, MD USA. [Deegan, Jennifer] European Bioinformat Inst, Cambridge, England. [Clutterbuck, John] Univ Glasgow, Fac Biomed & Life Sci, Glasgow, Lanark, Scotland. [Andersen, Mikael R.; Hofmann, Gerald; Nielsen, Jens] Tech Univ Denmark, Ctr Microbial Biotechnol, Dept Syst Biol, DK-2800 Lyngby, Denmark. [Archer, David] Univ Nottingham, Sch Biol, Nottingham NG7 2RD, England. [Bencina, Mojca; Krasevec, Nada] Natl Inst Chem, Lab Biotechnol & Ind Mycol, Ljubljana, Slovenia. [Braus, Gerhard; Helmstaedt, Kerstin; Taheri-Talesh, Naimeh] Univ Gottingen, Inst Mikrobiol & Genet, Gottingen, Germany. [Coutinho, Pedro; Henrissat, Bernard] Univ Aix Marseille 1, Marseille, France. [von Doehren, Hans; Durek, Pawel] Tech Univ Berlin, Berlin, Germany. [Doonan, John] John Innes Inst, Dept Cellular & Dev Biol, Norwich NR4 7UH, Norfolk, England. [Driessen, Arnold J. M.; Kovalchuk, Andriy] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Dept Mol Microbiol, Haren, Netherlands. [Espeso, Eduardo] CSIC, CIB, Madrid, Spain. [Fekete, Erzsebet; Karaffa, Levente] Univ Debrecen, Dept Genet & Appl Microbiol, Fac Sci, H-4012 Debrecen, Hungary. [Flipphi, Michel; MacCabe, Andrew] CSIC, Inst Agroquim & Tecnol Alimentos, E-46010 Valencia, Spain. [Garcia Estrada, Carlos] Inst Biotecnol Leon, Leon, Spain. [Geysens, Steven] VIB, Dept Mol Biomed Res, Ghent, Belgium. [Goldman, Gustavo] Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, BR-05508 Sao Paulo, Brazil. [de Groot, Piet W. J.; Klis, Frans M.] Univ Amsterdam, Swammerdam Inst Life Sci, Amsterdam, Netherlands. [Hansen, Kim; Hofmann, Gerald] Novozymes AS, Bagsvaerd, Denmark. [Harris, Steven D.] Univ Nebraska, Plant Sci Initiat, Lincoln, NE USA. [Heinekamp, Thorsten] Leibniz Inst Nat Prod Res & Infect Biol HKI, Dept Mol & Appl Microbiol, Jena, Germany. [Homan, Tim; Meyer, Vera; Ram, Arthur F. J.; Vankuyk, Patricia A.; van den Hondel, Cees A. M. J. J.; Visser, Jacob] Leiden Univ, Sect Mol Microbiol, Inst Biol, Leiden, Netherlands. [Horio, Tetsuya; Oakley, Berl R.] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA. [Horiuchi, Hiroyuki] Univ Tokyo, Dept Biotechnol, Tokyo 1138654, Japan. [James, Steve] Gettysburg Coll, Dept Biol, Gettysburg, PA 17325 USA. [Jones, Meriel; Mos, Magdalena] Univ Liverpool, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England. [Karanyi, Zsolt] Univ Debrecen, Fac Med, Dept Med 1, H-4012 Debrecen, Hungary. [Kato, Masashi] Nagoya Univ, Grad Sch Bioagr Sci, Dept Biol Mech & Funct, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Keller, Nancy] Univ Wisconsin, Dept Plant Pathol, Madison, WI 53706 USA. [Kelly, Diane E.; Mullins, Jonathan] Swansea Univ, Inst Life Sci, Sch Med, Swansea, W Glam, Wales. [Kiel, Jan A. K. W.; van der Klei, Ida J.] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Haren, Netherlands. [Kim, Jung-Mi; Liu, Bo; Seiboth, Bernhard] Univ Calif Davis, Plant Biol Sect, Davis, CA 95616 USA. [Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, Div Gene Technol & Appl Biochem, A-1040 Vienna, Austria. [Mirabito, Pete] Univ Kentucky, Sch Biol Sci, Lexington, KY 40506 USA. [Miskei, Marton; Pocsi, Istvan] Univ Debrecen, Dept Microbial Biotechnol & Cell Biol, Fac Sci & Technol, H-4012 Debrecen, Hungary. [Nelson, David R.] Univ Tennessee, Dept Mol Sci, Memphis, TN USA. [Nielsen, Jens] Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden. [Osmani, Stephen A.; Xiong, Yi] Ohio State Univ, Dept Mol Genet, Columbus, OH 43210 USA. [Pakula, Tiina] VIT Tech Res Ctr Finland, Espoo, Finland. [Paszewski, Andrzej; Pilsyk, Sebastian] Polish Acad Sci, Inst Biochem & Biophys, Dept Genet, Warsaw, Poland. [Paulsen, Ian] Macquarie Univ, Dept Chem & Biomol Sci, N Ryde, NSW, Australia. [Punt, Peter J.] TNO Qual Life, Zeist, Netherlands. [Robellet, Xavier; Cornell, Michael J.] Univ Paris 11, CNRS, Inst Genet & Microbiol, Orsay, France. [Robson, Geoff] Univ Manchester, Fac Life Sci, Manchester, Lancs, England. [van Solingen, Piet] Danisco Genencor, Leiden, Netherlands. [Specht, Thomas] Sandoz GmbH, Kundl, Tirol, Austria. [Sun, Jibin] Helmholtz Ctr Infect Res, Braunschweig, Germany. [Takeshita, Norio] Univ Karlsruhe, Dept Appl Biosci Appl Microbiol, Karlsruhe, Germany. [Ussery, Dave] Tech Univ Denmark, Ctr Biol Sequence Anal, Bioctr DTU, DK-2800 Lyngby, Denmark. [Visser, Hans] Dyad Nederland BV, Wageningen, Netherlands. [de Vondervoort, Peter J. I. van] DSM Anti Infect, Delft, Netherlands. [de Vries, Ronald P.] Univ Utrecht, Utrecht, Netherlands. [Walton, Jonathan] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Xiang, Xin] USUHS, Dept Biochem, Bethesda, MI USA. [Zeng, An Ping] Helmholtz Ctr Infect Res, Braunschweig, Germany. [Zeng, An Ping] Hamburg Univ Technol, Inst Bioprocess & Biosyst Engn, Hamburg, Germany. [Brandt, Bernd W.] Vrije Univ Amsterdam, Ctr Integrat Bioinformat IBIVU, Amsterdam, Netherlands. [Cornell, Michael J.] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England. [Visser, Jacob] Fungal Genet & Technol Consultancy, Wageningen, Netherlands. [Oliver, Stephen G.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Gilsenan, Jane Mabey] Univ Manchester, Sch Med, Manchester, Lancs, England. RP Turner, G (reprint author), Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England. EM g.turner@sheffield.ac.uk RI De Groot, Piet/L-7737-2014; Espeso, Eduardo /C-5259-2011; Garcia-Estrada, Carlos/F-7932-2014; Xiong, Yi/E-3083-2010; Klis, Frans/B-9085-2008; Driessen, Arnold/D-1876-2012; Braus, Gerhard/G-3999-2012; MacCabe, Andrew/H-4522-2012; Henrissat, Bernard/J-2475-2012; Paulsen, Ian/K-3832-2012; Bioetanol, Inct/I-1068-2013; de Vries, Ronald/F-8125-2011; van der Klei, Ida/D-1919-2012; Andersen, Mikael/F-9377-2013; 2, INCT/G-6506-2013 OI Meyer, Vera/0000-0002-2298-2258; Driessen, Arnold J.M./0000-0001-9258-9104; doonan, john/0000-0001-6027-1919; De Groot, Piet/0000-0002-3112-6947; Espeso, Eduardo /0000-0002-5873-6059; Garcia-Estrada, Carlos/0000-0001-5617-9669; Wortman, Jennifer/0000-0002-8713-1227; Nelson, David/0000-0003-0583-5421; Heinekamp, Thorsten/0000-0001-9503-9634; Van der Klei, Ida J./0000-0001-7165-9679; Oakley, Berl/0000-0002-3046-8240; Klis, Frans/0000-0003-0079-9492; Braus, Gerhard/0000-0002-3117-5626; MacCabe, Andrew/0000-0003-4918-7761; Paulsen, Ian/0000-0001-9015-9418; de Vries, Ronald/0000-0002-4363-1123; Andersen, Mikael/0000-0003-4794-6808; FU Biotechnology and Biological Sciences Research Council [BB/F004389/1, ]; NIAID NIH HHS [N01 AI030071]; NIGMS NIH HHS [R01 GM031837] NR 75 TC 47 Z9 863 U1 5 U2 56 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 EI 1096-0937 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAR PY 2009 VL 46 SU 1 BP S2 EP S13 DI 10.1016/j.fgb.2008.12.003 PG 12 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA 419NU UT WOS:000264227100002 PM 19146970 ER PT J AU Kimball, BE Mathur, R Dohnalkova, AC Wall, AJ Runkel, RL Brantley, SL AF Kimball, B. E. Mathur, R. Dohnalkova, A. C. Wall, A. J. Runkel, R. L. Brantley, S. L. TI Copper isotope fractionation in acid mine drainage SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SOURCE-MASS-SPECTROMETRY; RAY PHOTOELECTRON-SPECTROSCOPY; ACIDITHIOBACILLUS-FERROOXIDANS; THIOBACILLUS-FERROOXIDANS; BACILLUS-SUBTILIS; ZN ISOTOPES; CELL-WALLS; CU; CHALCOPYRITE; IRON AB We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The delta(65)Cu values (based on (65)Cu/(63)Cu) of enargite (delta(65)Cu = -0.01 +/- 0.10 parts per thousand; 2 sigma) and chalcopyrite (delta(65)Cu = 0.16 +/- 0.10 parts per thousand) are within the range of reported values for terrestrial primary Cu sulfides (-1 parts per thousand < delta(65)Cu < 1 parts per thousand). These mineral samples show lower delta(65)Cu values than stream waters (1.38 parts per thousand <= delta(65)Cu <= 1.69 parts per thousand). The average isotopic fractionation (Delta(aq-min) = delta(65)Cu(aq) - delta(65)Cu(min), where the latter is measured on mineral samples from the field system), equals 1.43 +/- 0.14 parts per thousand and 1.60 +/- 0.14 parts per thousand for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in (65)Cu relative to chalcopyrite (1.37 +/- 0.14 parts per thousand) and enargite (0.98 +/- 0.14 parts per thousand) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (Delta(aq-min degrees) = -0.57 +/- 0.14 parts per thousand, where min degrees refers to the starting mineral) and no apparent fractionation for enargite (Delta(aq-min degrees) = 0.14 +/- 0.14 parts per thousand). Abiotic fractionation is attributed to preferential oxidation of (65)Cu(+) at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of (65)Cu(aq) with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of delta(65)Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kimball, B. E.; Wall, A. J.; Brantley, S. L.] Penn State Univ, Dept Geosci, University Pk, PA 16801 USA. [Mathur, R.] Juniata Coll, Dept Geol, Huntingdon, PA 16652 USA. [Dohnalkova, A. C.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Runkel, R. L.] US Geol Survey, Denver Fed Ctr, Lakewood, CO 80225 USA. RP Kimball, BE (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16801 USA. EM bkimball@geosc.psu.edu RI mathur, ryan/A-5278-2010 FU Penn State Biogeochemical Research Initiative for Education (BRIE) [DGE-9972759]; EPA Science to Achieve Results (STAR); Penn State Center for Environmental Kinetics Analysis (CEKA) [CHE-0431328]; National Aeronautics and Space Administration (NASA) [NNG05GN72G]; US DOE [DE-AC05-76RLO1830] FX Funding was provided by the Penn State Biogeochemical Research Initiative for Education (BRIE) (NSF grant DGE-9972759), the EPA Science to Achieve Results (STAR) fellowship program, the Penn State Center for Environmental Kinetics Analysis (CEKA) (NSF grant CHE-0431328), and National Aeronautics and Space Administration (NASA) grant NNG05GN72G. We thank J. Kittleson, H. Gong, and Y. Luo (Penn State) for assistance with elemental analyses, G. Hart and J. Vervoort (Washington State University) for facilitation of isotope analyses, and J. Steiger for measuring ferrous and total dissolved Fe concentrations in stream samples. TEM imaging and analyses were performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility operated by Battelle for the US DOE under Contract DE-AC05-76RLO1830. D. Borrok, two anonymous reviewers, and D. Cole made comments that improved this work. NR 92 TC 70 Z9 77 U1 1 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 1 PY 2009 VL 73 IS 5 BP 1247 EP 1263 DI 10.1016/j.gca.2008.11.035 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 412GX UT WOS:000263714300003 ER PT J AU Kwon, KD Refson, K Sposito, G AF Kwon, Kideok D. Refson, Keith Sposito, Garrison TI Zinc surface complexes on birnessite: A density functional theory study SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID TOTAL-ENERGY CALCULATIONS; METAL SORBED BIRNESSITE; X-RAY-FLUORESCENCE; MANGANESE OXIDE; PLANE-WAVE; STRUCTURAL STABILITY; ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; AB-INITIO; 1ST-PRINCIPLES AB Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn-IV) and octahedral (Zn-VI) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn3O7 center dot 3H(2)O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized density functional theory (DFT) to examine the Zn-IV-TCS and Zn-VI-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron overlap populations obtained by DFT for isolated Zn-IV-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn-VI-TCS. Comparison between geometry-optimized ZnMn3O7 center dot 3H(2)O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn3O7 center dot H2O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO2, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 angstrom, while surface O bordering the vacancy move away from it by 0.16-0.21 angstrom, in agreement with recent X-ray absorption spectroscopic analyses. Published by Elsevier Ltd. C1 [Kwon, Kideok D.; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. [Refson, Keith] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Kwon, KD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. EM kkwon@nature.berkeley.edu RI Refson, Keith/G-1407-2013; OI Refson, Keith/0000-0002-8715-5835 FU US Department of Energy [DE-AC03-76SF00098, DE-AC02-05CH11231] FX This research reported in this paper was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC03-76SF00098. Our computations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract No. DE-AC02-05CH11231. We also acknowledge the use of the SCARF computing facilities at STFC Rutherford Appleton Laboratory. NR 47 TC 25 Z9 27 U1 7 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 1 PY 2009 VL 73 IS 5 BP 1273 EP 1284 DI 10.1016/j.gca.2008.11.033 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 412GX UT WOS:000263714300005 ER PT J AU Ona-Nguema, G Morin, G Wang, YH Menguy, N Juillot, F Olivi, L Aquilanti, G Abdelmoula, M Ruby, C Bargar, JR Guyot, F Calas, G Brown, GE AF Ona-Nguema, Georges Morin, Guillaume Wang, Yuheng Menguy, Nicolas Juillot, Farid Olivi, Luca Aquilanti, Giuliana Abdelmoula, Mustapha Ruby, Christian Bargar, John R. Guyot, Francois Calas, Georges Brown, Gordon E., Jr. TI Arsenite sequestration at the surface of nano-Fe(OH)(2), ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID DISSIMILATORY FE(III)-REDUCING BACTERIUM; CONTAINING AQUEOUS-MEDIA; METAL-REDUCING BACTERIA; HYDROUS FERRIC-OXIDE; ACID-MINE DRAINAGE; CRYSTAL-STRUCTURE; BANGLADESH GROUNDWATER; MICROBIAL REDUCTION; GAMMA-FEOOH; MOSSBAUER-SPECTROSCOPY AB X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), Xray powder diffraction, and Mossbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [(Fe4Fe2III)-Fe-II(OH)(12)CO3: GR1(CO3)], which completely converted into ferrous-carbonate hydroxide (Fe-2(II)(OH)(2)CO3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occurrence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH)(2) phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH)(2) nanoparticles as oligomers binding to the edges of Fe(OH)(6) octahedra at the edges of the octahedral layers of Fe(OH)(2). These multinuclear As(III) surface complexes are characterized by As-As pairs at a distance of 3.32 +/- 0.02 angstrom and by As-Fe pairs at a distance of 3.50 +/- 0.02 angstrom and represent a new type of As(III) surface complex. Chemical analyses show that the majority of As(III) produced in the experiments with As present is associated with iron-bearing hydroxycarbonate or hydroxide solids, reinforcing the idea that, at least under some circumstances, bacterial reduction can promote As(III) sequestration instead of mobilizing it into solution. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Ona-Nguema, Georges; Morin, Guillaume; Wang, Yuheng; Menguy, Nicolas; Juillot, Farid; Guyot, Francois; Calas, Georges] Univ Paris 07, Univ Paris 06, CNRS, IMPMC,IPGP, F-75015 Paris, France. [Ona-Nguema, Georges; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Olivi, Luca] ELETTRA, XAFS Beamline, I-34012 Trieste, Italy. [Aquilanti, Giuliana] BM29 European Synchrotron Radiat Facil ESRF, F-38043 Grenoble, France. [Abdelmoula, Mustapha; Ruby, Christian] Univ Nancy 1, CNRS, UMR 7564, LCPME, F-54600 Villers Les Nancy, France. [Bargar, John R.; Brown, Gordon E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Morin, G (reprint author), Univ Paris 07, Univ Paris 06, CNRS, IMPMC,IPGP, 140 Rue Lourmel, F-75015 Paris, France. EM guillaume.morin@impmc.jussieu.fr RI Calas, Georges/B-2445-2012; MENGUY, Nicolas/F-5607-2012; Wang, Yuheng/K-3988-2012; GUYOT, Francois/C-3824-2016; JUILLOT, Farid/G-7943-2016; IMPMC, Geobio/F-8819-2016 OI Calas, Georges/0000-0003-0525-5734; MENGUY, Nicolas/0000-0003-4613-2490; Wang, Yuheng/0000-0002-1786-5970; GUYOT, Francois/0000-0003-4622-2218; FU ECCO-ECODYN; ACI/FNS [3033]; SESAME IdF [1775]; NSF-EMSI [CHE-0431425]; France-Stanford Center for Interdisciplinary Studies FX The authors are indebted to the SSRL staff, especially Joe Rogers, Samuel Webb, and William Butler, the ESRF-BM29 staff, especially Olivier Mathon, as well as the ELETTRA-XAFS & SOLEIL-SAMBA staff, especially Francoise Villain, for their technical assistance during the XAFS experiments. We acknowledge SSRL, ESRF, and ELETTRA for provision of beamtime through proposals 2781 & 3168, EC127, and 2006431, respectively. We thank AE Peggy O'Day and three anonymous reviewers for their constructive comments, which improved the quality of the manuscript. This work was supported by the ECCO-ECODYN and the EC2CO-CYTRIX CNRS/INSU Programs, by ACI/FNS Grant #3033, by SESAME IdF Grant #1775, by NSF-EMSI Grant CHE-0431425 (Stanford Environmental Molecular Science Institute), and by the France-Stanford Center for Interdisciplinary Studies. This is IPGP contribution # 2087. NR 93 TC 42 Z9 46 U1 4 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 1 PY 2009 VL 73 IS 5 BP 1359 EP 1381 DI 10.1016/j.gca.2008.12.005 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 412GX UT WOS:000263714300011 ER PT J AU Seong, YB Owen, LA Yi, CL Finkel, RC AF Seong, Yeong Bae Owen, Lewis A. Yi, Chaolu Finkel, Robert C. TI Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article DE glacial geology; Tibet; Muztag Ata; Kongur Shan; geochronology; terrestrial cosmogenic nuclide surface-exposure dating; midlatitude westerlies; Late Glacial; Holocene; rapid climate changes ID EQUILIBRIUM-LINE ALTITUDES; ICE CORE RECORDS; NORTHERN PAKISTAN; COSMOGENIC BE-10; CENTRAL-ASIA; ASYNCHRONOUS GLACIATION; KARAKORAM MOUNTAINS; NUCLIDE PRODUCTION; GLOBAL CLIMATE; EASTERN PAMIR AB The glacial geology of two massifs, Muztag Ata and Kongur Shan, in western Tibet was examined to help define the timing and style of glaciation in the semiarid regions of western Tibet. Remote sensing, geomorphic mapping, and "Be terrestrial cosmogenic nuclide (TCN) surface-exposure dating of boulders on the moraines and sediment in depth profiles show that glaciers advanced at least 12 times during at least the last two glacial cycles. Over this time, the style of glaciation changed progressively from one that produced ice caps to one that produced less extensive and more deeply entrenched valley glaciers. The timing of the two earliest glaciations is poorly defined, but they likely occurred prior to the penultimate glacial cycle (the Karasu glacial stage) and the early part of the last glacial cycle or during the penultimate glacial cycle (the Subaxh glacial stage). In contrast, the timing of later glacial advances (the Olimde glacial stage) is relatively well defined showing quasiperiodical oscillations on millennial time scales (17.1 +/- 0.3 ka, 13.7 +/- 0.5 ka, 11.2 +/- 0.1 ka, 10.2 +/- 0.3 ka, 8.4 +/- 0.4 ka, 6.7 +/- 0.2 ka, 4.2 +/- 0.3 ka, 3.3 +/- 0.6 ka, 1.4 +/- 0.1 ka, and a few hundred years before the present). These data suggest that since the global Last Glacial Maximum (LGM), the glaciers in western Tibet likely responded to Northern Hemisphere climate oscillations (rapid climate changes), with minor influences from the south Asian monsoon. This study provides the first well-defined glacial geologic evidence to suggest that glaciers in western Tibet respond to rapid climate changes on millennial time scales throughout the Late Glacial and Holocene. C1 [Seong, Yeong Bae; Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Yi, Chaolu] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China. [Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Seong, YB (reprint author), Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. EM ybseong@hotmail.com FU National Science Foundation of China [40730101, 40671023]; Lawrence Livermore National Laboratory (LLNL); U.S. Department of Energy [W-7405-ENG-48]; Institute of Geophysics and Planetary Physics/Lawrence Livermore National Laboratory (IGPP/LLNL) FX Sincere thanks are due to Chinese colleagues (Yabing Li, Gongbi Chen, Ming Chen, and Jianyi Dong) for their help in the field. Special thanks to Associate Editors and reviewers, Eric Kirby, John Gosse, David Evans, Jane Staiger, and Fred Phillips, I I or their extremely useful. and constructive reviews. This research forms part of Yeong Bae Seong's doctoral research, which was partially supported by a Meyers Fellowship at the University of Cincinnati. We would also like to thank National Science Foundation of China for their Support for the fieldwork component of this project (NSFC grants 40730101 and 40671023). This work was undertaken at the Lawrence Livermore National Laboratory (LLNL) (under U.S. Department of Energy contract W-7405-ENG-48) as part of an Institute of Geophysics and Planetary Physics/Lawrence Livermore National Laboratory (IGPP/LLNL) research grant. Special thanks to Thomas Lowell for his useful and constructive comments oil an early version of this paper. NR 92 TC 66 Z9 76 U1 1 U2 20 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD MAR-APR PY 2009 VL 121 IS 3-4 BP 348 EP 365 DI 10.1130/B26339.1 PG 18 WC Geosciences, Multidisciplinary SC Geology GA 401TG UT WOS:000262964700003 ER PT J AU Greer, L Jackson, JE Curran, HA Guilderson, T Teneva, L AF Greer, Lisa Jackson, Julia E. Curran, H. Allen Guilderson, Tom Teneva, Lida TI How vulnerable is Acropora cervicornis to environmental change? Lessons from the early to middle Holocene SO GEOLOGY LA English DT Article ID CLIMATE-CHANGE; CORAL-REEFS; ENRIQUILLO VALLEY; RANGE SHIFTS; TEMPERATURE; ATLANTIC; DEPOSITS; ECOLOGY; SCALE; OCEAN AB The coral Acropora cervicornis is considered a modern environmental indicator species, vulnerable to anthropogenic stress and rapidly disappearing throughout the Caribbean. Causes for its decline have been attributed to both natural and anthropogenic factors. Physical and geochemical data are used to explore conditions under which this species thrived in early to middle Holocene reef deposits (ca. 9.4-5.4 ka) of the Enriquillo Valley, southwestern Dominican Republic. This study shows that A. cervicornis flourished during a 4000 yr period spanning the Holocene Thermal Maximum, and high-resolution radiocarbon dating reveals continuous growth for at least 2000 yr. Holocene A. cervicornis survived large-scale climate and environmental changes that included high temperatures, variable salinity, hurricanes, and rapid sea-level rise with remarkable resilience. Our data suggest that the recent decline in A. cervicornis is anomalous and likely tied to ecosystem change beyond natural causes. C1 [Greer, Lisa; Jackson, Julia E.] Washington & Lee Univ, Dept Geol, Lexington, VA 24450 USA. [Curran, H. Allen] Smith Coll, Dept Geol, Northampton, MA 01063 USA. [Guilderson, Tom] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Teneva, Lida] Stanford Univ, Sch Earth Sci, Stanford, CA 94305 USA. RP Greer, L (reprint author), Washington & Lee Univ, Dept Geol, Lexington, VA 24450 USA. RI Teneva, Lida/G-5772-2013 NR 35 TC 17 Z9 18 U1 2 U2 19 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD MAR PY 2009 VL 37 IS 3 BP 263 EP 266 DI 10.1130/G25479A.1 PG 4 WC Geology SC Geology GA 414CT UT WOS:000263842200018 ER PT J AU Malama, B Revil, A Kuhlman, KL AF Malama, B. Revil, A. Kuhlman, K. L. TI A semi-analytical solution for transient streaming potentials associated with confined aquifer pumping tests SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Electrical properties; Hydrogeophysics; Hydrology ID INVERSE METHOD; FLOW; SIGNALS; TRANSMISSIVITY AB We consider the transient streaming potential response due to pumping from a confined aquifer through a fully penetrating line sink. Confined aquifer flow is assumed to occur without fluid leakage from the confining units. However, since confining units are typically clayey, and hence more electrically conductive than the aquifer, they are treated as non-insulating in our three-layer conceptual model. We develop a semi-analytical solution for the transient streaming potentials response of the aquifer and the confining units to pumping of the aquifer. The solution is fitted to field measurements of streaming potentials associated with an aquifer test performed at a site located near Montalto Uffugo, in the region of Calabria in Southern Italy. This yields an average hydraulic conductivity that compares well to the estimate obtained using only hydraulic head data. Specific storage is estimated with greater estimation uncertainty than hydraulic conductivity and is significantly smaller than that estimated from hydraulic head data. This indicates that specific storage may be a more difficult parameter to estimate from streaming potential data. The mismatch may also be due to the fact that only recovery streaming potential data were used here whereas head data for both production and recovery were used. The estimate from head data may also constitute an upper bound since head data were not corrected for pumping and observation wellbore storage. Estimated values of the electrical conductivities of the confining units compare well to those estimated using electrical resistivity tomography. Our work indicates that, where observation wells are unavailable to provide more direct estimates, streaming potential data collected at land surface may, in principle, be used to provide preliminary estimates of aquifer hydraulic conductivity and specific storage, where the latter is estimated with greater uncertainty than the former. C1 [Malama, B.] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA. [Malama, B.] Boise State Univ, Dept Geosci, Boise, ID 83725 USA. [Revil, A.] Colorado Sch Mines, Green Ctr, Dept Geophys, Golden, CO 80401 USA. [Revil, A.] Univ Savoie, CNRS, LGIT, F-73376 Le Bourget Du Lac, France. [Kuhlman, K. L.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Kuhlman, K. L.] Sandia Natl Lab Carlsbad ORG 6712, Carlsbad, NM 88220 USA. RP Malama, B (reprint author), Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA. EM bmalama@cgiss.boisestate.edu RI Kuhlman, Kristopher/I-7283-2012 OI Kuhlman, Kristopher/0000-0003-3397-3653 FU EPA [X-960041-01-0] FX The work presented here was supported in part by EPA grant X-960041-01-0. We thank the two anonymous reviewers whose insightful comments helped improve the paper. We also thank Salvatore Straface and Enzo Rizzo for providing us with the data analysed in this work. NR 18 TC 21 Z9 21 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD MAR PY 2009 VL 176 IS 3 BP 1007 EP 1016 DI 10.1111/j.1365-246X.2008.04014.x PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 408RN UT WOS:000263452600024 ER PT J AU Schoenberg, MA AF Schoenberg, Michael A. TI Vertically fractured transversely isotropic media: dimensionality and deconstruction SO GEOPHYSICAL PROSPECTING LA English DT Article ID ANISOTROPY; ROCK AB A vertically fractured transversely isotropic (VFTI) elastic medium is one in which any number of sets of vertical aligned fractures (each set has its normal lying in the horizontal x(1), x(2)-plane) pervade the medium and the sets of aligned fractures are the only features of the medium disturbing the axi-symmetry about the x(3)-axis implying that in the absence of fractures, the background medium is transversely isotropic (TI). Under the assumptions of long wavelength equivalent medium theory, the compliance matrix of a fractured medium is the sum of the background medium's compliance matrix and a fracture compliance matrix. For sets of parallel rotationally symmetric fractures (on average), the fracture compliance matrix is dependent on 3 parameters - its normal and tangential compliance and its strike direction. When one fracture set is present, the medium is orthorhombic and the analysis is straightforward. When two (non-orthogonal) or more sets are present, the overall medium is in general elastically monoclinic; its compliance tensor components are subject to two equalities yielding an 11 parameter monoclinic medium. Constructing a monoclinic VFTI medium with n embedded vertical fracture sets, requires 5 TI parameters plus 3xn fracture set parameters. A deconstruction of such an 11 parameter monoclinic medium involves using its compliance tensor to find a background transversely isotropic medium and several sets of vertical fractures which, in the long wavelength limit, will behave exactly as the original 11 parameter monoclinic medium. A minimal deconstruction, would be to determine, from the 11 independent components, the transversely isotropic background (5 parameters) and two fracture sets (specified by 2 x 3 = 6 parameters). Two of the background TI medium's compliance matrix components are known immediately by inspection, leaving nine monoclinic components to be used in the minimal deconstruction of the VFTI medium. The use of the properties of a TI medium, which are linear relations on its compliance components, allows the deconstruction to be reduced to solving a pair of non-linear equations on the orientations of two fracture sets. A single root yielding a physically meaningful minimum deconstruction yields a unique minimal representation of the monoclinic medium as a VFTI medium. When no such root exists, deconstruction requires an additional fracture set and uniqueness is lost. The boundary between those monoclinic media that have a unique minimal representation and those that do not is yet to be determined. C1 Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Schoenberg, MA (reprint author), Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 11 TC 6 Z9 6 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0016-8025 J9 GEOPHYS PROSPECT JI Geophys. Prospect. PD MAR PY 2009 VL 57 IS 2 BP 169 EP 185 DI 10.1111/j.1365-2478.2008.00775.x PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 409QI UT WOS:000263520500002 ER PT J AU Berryman, JG AF Berryman, James G. TI Aligned vertical fractures, HTI reservoir symmetry and Thomsen seismic anisotropy parameters for polar media SO GEOPHYSICAL PROSPECTING LA English DT Article ID TRANSVERSELY ISOTROPIC MEDIA; WAVE ELASTIC-ANISOTROPY; APPROXIMATIONS; CONSTANTS; VELOCITY; SOLIDS AB Certain crack-influence parameters of Sayers and Kachanov are shown to be directly related to Thomsen's weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar reservoirs, i.e., those anisotropic reservoirs having two axes that are equivalent but distinct from the third axis), especially for horizontal transversely isotropic seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the Earth's surface. The approach presented suggests one method of inverting for fracture density from wave speed data. A significant fraction of the technical effort in the paper is devoted to showing how to predict the angular location of the true peak (or trough) of the quasi-SV-wave for polar media and especially how this peak is related to another angle that is very easy to compute. The axis of symmetry is always treated here as the x(3)-axis for either vertical transversely isotropic symmetry (due, for example, to horizontal cracks), or horizontal transversely isotropic symmetry (due to aligned vertical cracks). Then, the meaning of the stiffnesses is derived from the fracture analysis in the same way for vertical transversely isotropic and horizontal transversely isotropic media, but for horizontal transverse isotropy the wave speeds relative to the Earth's surface are shifted by 90 degrees in the plane perpendicular to the aligned vertical fractures. Skempton's poroelastic coefficient B is used as a general means of quantifying the effects of fluids inside the fractures. Explicit Biot-Gassmann-consistent formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either vertical transversely isotropic or horizontal transversely isotropic symmetry of the reservoir. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Berryman, JG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90R1116, Berkeley, CA 94720 USA. EM jgberryman@lbl.gov FU U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC03-76SF00098]; DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX The author thanks V. Grechka, M. Kachanov, S. Nakagawa, S. R. Pride, M. Schoenberg and I. Tsvankin for helpful collaborations and conversations. Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76SF00098 and supported specifically by the Geosciences Research Program of the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. NR 38 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0016-8025 EI 1365-2478 J9 GEOPHYS PROSPECT JI Geophys. Prospect. PD MAR PY 2009 VL 57 IS 2 BP 193 EP 208 DI 10.1111/j.1365-2478.2008.00767.x PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 409QI UT WOS:000263520500004 ER PT J AU Korneev, V AF Korneev, Valeri TI Resonant seismic emission of subsurface objects SO GEOPHYSICS LA English DT Article ID WAVE; SCATTERING; CRACK AB Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Korneev, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM vakorneev@lbl.gov FU U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Energy Technology Laboratory, Office of Fossil Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Field data were provided by Eugeny Landa (OPERA); GeoKinetik, LLC, provided KinetiK Professional processing software. NR 18 TC 3 Z9 3 U1 1 U2 4 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2009 VL 74 IS 2 BP T47 EP T53 DI 10.1190/1.3068448 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 421QX UT WOS:000264374500024 ER PT J AU Jardani, A Revil, A Barrash, W Crespy, A Rizzo, E Straface, S Cardiff, M Malama, B Miller, C Johnson, T AF Jardani, A. Revil, A. Barrash, W. Crespy, A. Rizzo, E. Straface, S. Cardiff, M. Malama, B. Miller, C. Johnson, T. TI Reconstruction of the Water Table from Self-Potential Data: A Bayesian Approach SO GROUND WATER LA English DT Article ID HYDROGEOPHYSICAL RESEARCH SITE; GRANULAR POROUS-MEDIA; ELECTRICAL-CONDUCTIVITY; REYNOLDS-NUMBERS; PUMPING TEST; SHALY SANDS; RADAR; SIGNALS; SYSTEMS; MODEL AB Ground water flow associated with pumping and injection tests generates self-potential signals that can be measured at the ground surface and used to estimate the pattern of ground water flow at depth. We propose an inversion of the self-potential signals that accounts for the heterogeneous nature of the aquifer and a relationship between the electrical resistivity and the streaming current coupling coefficient. We recast the inversion of the self-potential data into a Bayesian framework. Synthetic tests are performed showing the advantage in using self-potential signals in addition to in situ measurements of the potentiometric levels to reconstruct the shape of the water table. This methodology is applied to a new data set from a series of coordinated hydraulic tomography, self-potential, and electrical resistivity tomography experiments performed at the Boise Hydrogeophysical Research Site, Idaho. In particular, we examine one of the dipole hydraulic tests and its reciprocal to show the sensitivity of the self-potential signals to variations of the potentiometric levels under steady-state conditions. However, because of the high pumping rate, the response was also influenced by the Reynolds number, especially near the pumping well for a given test. Ground water flow in the inertial laminar flow regime is responsible for nonlinearity that is not yet accounted for in self-potential tomography. Numerical modeling addresses the sensitivity of the self-potential response to this problem. C1 [Jardani, A.; Revil, A.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Jardani, A.] Bur Etud ALISE, F-76160 St Jacques Sur Darnetal, France. [Revil, A.] Univ Savoie, CNRS, UMR 5559, Equipe Volcans,INSU,LGIT, F-73376 Le Bourget Du Lac, France. [Crespy, A.] Univ Aix Marseille 3, CNRS, F-13545 Aix En Provence, France. [Barrash, W.; Malama, B.; Miller, C.] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA. [Rizzo, E.] CNR, IMAA, Hydrogeophys Lab, I-85052 Marsico Nuovo, PZ, Italy. [Straface, S.] Univ Calabria, Dipartimento Difesa Suolo, I-87036 Arcavacata Di Rende, CS, Italy. [Cardiff, M.] Stanford Univ, Stanford, CA 94305 USA. [Miller, C.] MSE Technol Applicat Inc, Butte, MT 59701 USA. [Johnson, T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Revil, A (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA. EM arevil@mines.edu RI Rizzo, Enzo/C-9490-2015; Cardiff, Michael/B-1711-2013; OI Cardiff, Michael/0000-0002-6720-6084; Rizzo, Enzo/0000-0003-0716-4318 FU EPA [X-96004601-0, X-96004601-1] FX We thank FrEdEric Perrier for the use of his electrodes and fruitful discussions. Terry Young is thanked for his support at Mines. EPA grants X-96004601-0 and X-96004601-1 provided support for experimentation at the BHRS and for Boise State University researchers. We thank one anonymous referee and Fred Day-Lewis for their very constructive and useful reviews. NR 64 TC 40 Z9 41 U1 1 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUND WATER JI Ground Water PD MAR-APR PY 2009 VL 47 IS 2 BP 213 EP 227 DI 10.1111/j.1745-6584.2008.00513.x PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 410TI UT WOS:000263600800009 PM 19016893 ER PT J AU Truex, MJ Oostrom, M Brusseau, ML AF Truex, M. J. Oostrom, M. Brusseau, M. L. TI Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Ground Water SO GROUND WATER MONITORING AND REMEDIATION LA English DT Article ID HANFORD SITE; TRANSPORT; CLOSURE AB Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation. C1 [Truex, M. J.; Oostrom, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Brusseau, M. L.] Univ Arizona, Tucson, AZ 85721 USA. RP Truex, MJ (reprint author), Pacific NW Natl Lab, POB 999,MS K6-96, Richland, WA 99352 USA. EM mj.truex@pnl.gov FU Department of Energy's Office of Environmental Management FX This work was funded through the Department of Energy's Office of Environmental Management as a part of a project under Engineering and Technology, Ground Water and Soil Remediation. NR 12 TC 8 Z9 8 U1 1 U2 9 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1069-3629 J9 GROUND WATER MONIT R JI Ground Water Monit. Remediat. PD SPR PY 2009 VL 29 IS 2 BP 63 EP 72 DI 10.1111/j.1745-6592.2009.01236.x PG 10 WC Water Resources SC Water Resources GA 447EP UT WOS:000266174700005 ER PT J AU McDonald, JP Smith, RM AF McDonald, John P. Smith, Ronald M. TI Concentration Profiles in Screened Wells under Static and Pumped Conditions SO GROUND WATER MONITORING AND REMEDIATION LA English DT Article ID MASS BALANCE EVALUATION; WATER-QUALITY SAMPLES; FLOW; BIAS; SHALLOW; PLUME; TESTS AB Purge and pump samples from screened wells reflect concentration averaging and contaminant redistribution by wellbore flow. These issues were assessed in a screened well at the Hanford Site by investigating the vertical profile of a technetium-99 plume in a conventional well under static and pumped conditions. Specific conductance and technetium-99 concentrations were well correlated, and this enabled measurement of specific conductance to be used as a surrogate for technetium-99 concentration. Time-series measurements were collected during purging from three specific conductance probes installed in the well at 1.2, 3.1, and 4.9 m below the static water level in a 7.7-m-deep screened well. The vertical contaminant profile adjacent to the well in the aquifer was calculated using the concentration profile in the well during pumping, the pumping flow rate, and a wellbore flow and mixing model. The plume was found to be stratified in the aquifer-the highest concentrations occurred adjacent to the upper part of the screened interval. The purge and pump sample concentrations were 41% to 58% of the calculated peak concentration in the aquifer. Plume stratification in the aquifer adjacent to the well screen became more pronounced as pumping continued. Extended pumping may have partially reversed the effect of contaminant redistribution in the aquifer by wellbore flow and allowed the stratification of the plume to be more observable. It was also found that the vertical profile of contamination in the well under static (i.e., nonpumping conditions) was not representative of the profile in the aquifer. Thus, passive or micropurge sampling techniques, which sample the wellbore water at different depths, would not yield results representative of the aquifer in this well. C1 [Smith, Ronald M.] Pacific NW Natl Lab, Environm Sustainabil Div, Richland, WA 99352 USA. RP McDonald, JP (reprint author), CH2M Hill Plateau Remediat Co, Soil & Groundwater Remediat Project, POB 1600,MSIN R3-50, Richland, WA 99352 USA. EM John_P_McDonald@rl.gov; rmsmith@pnl.gov FU U. S. Department of Energy FX Funding for this work was provided by the U. S. Department of Energy. Thanks are extended to Dennis Dauble, Evan Dresel, Launa Morasch, Georganne O'Connor, and Tyler Gilmore for their assistance and support in preparing this article. NR 21 TC 3 Z9 3 U1 2 U2 12 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1069-3629 J9 GROUND WATER MONIT R JI Ground Water Monit. Remediat. PD SPR PY 2009 VL 29 IS 2 BP 78 EP 86 DI 10.1111/j.1745-6592.2009.01232.x PG 9 WC Water Resources SC Water Resources GA 447EP UT WOS:000266174700007 ER PT J AU Enqvist, S Mellqvist, UH Molne, J Sletten, K Murphy, C Solomon, A Stevens, FJ Westermark, P AF Enqvist, Stina Mellqvist, Ulf-Henrik Moelne, Johan Sletten, Knut Murphy, Charles Solomon, Alan Stevens, Fred J. Westermark, Per TI A father and his son with systemic AL amyloidosis SO HAEMATOLOGICA-THE HEMATOLOGY JOURNAL LA English DT Letter ID LIGHT-CHAIN; CONSTANT-REGION; TISSUE C1 [Enqvist, Stina; Westermark, Per] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Mellqvist, Ulf-Henrik] Sahlgrens Univ Hosp, Dept Hematol, Gothenburg, Sweden. [Moelne, Johan] Sahlgrens Univ Hosp, Dept Pathol, Gothenburg, Sweden. [Sletten, Knut] Univ Oslo, Biotechnol Ctr Oslo, Oslo, Norway. [Murphy, Charles; Solomon, Alan] Univ Tennessee, Human Immunol & Canc Program, Dept Med, Grad Sch Med, Knoxville, TN USA. [Stevens, Fred J.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Westermark, P (reprint author), Rudbeck Lab, C5, SE-75185 Uppsala, Sweden. EM per.westermark@gen-pat.uu.se OI Molne, Johan/0000-0001-6241-7117 NR 12 TC 3 Z9 3 U1 0 U2 0 PU FERRATA STORTI FOUNDATION PI PAVIA PA VIA GIUSEPPE BELLI 4, 27100 PAVIA, ITALY SN 0390-6078 J9 HAEMATOL-HEMATOL J JI Haematol-Hematol. J. PD MAR PY 2009 VL 94 IS 3 BP 437 EP 439 DI 10.3324/haematol.13640 PG 3 WC Hematology SC Hematology GA 415GP UT WOS:000263922600025 PM 19176364 ER PT J AU Parkhurst, MA Guilmette, RA AF Parkhurst, Mary Ann Guilmette, Raymond A. TI OVERVIEW OF THE CAPSTONE DEPLETED URANIUM STUDY OF AEROSOLS FROM IMPACT WITH ARMORED VEHICLES: TEST SETUP AND AEROSOL GENERATION, CHARACTERIZATION, AND APPLICATION IN ASSESSING DOSE AND RISK SO HEALTH PHYSICS LA English DT Article DE aerosols; uranium, depleted; modeling, dose assessment; radiation risk ID VETERANS; SURVEILLANCE AB The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling, and characterizing DU aerosols fly firing at and perforating combat vehicles, and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation or doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments, from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted. C1 [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. RP Parkhurst, MA (reprint author), Pacific NW Natl Lab, POB 999,K3-55, Richland, WA 99352 USA. EM maryann.parkhurst@pnl.gov FU U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI); U.S. Army FX Many were involved in planning, implementing, and evaluating the Capstone study. The authors would like to first acknowledge the rest of the Capstone team for their many contributions to the planning and implementation of the field portion of this study and the writing and review of the reports. We thank the staff at the U.S. Army Aberdeen Test Center, particularly Jesse Meerdink, Bruce Taylor, Dana Blankenbiller, and the ATC Superbox gunners and support staff for vehicle setup and test firing. We also thank the scientific peer review panel for their suggestions and recommendations regarding the conduct of these tests. Oversight for this study was provided by Michael Los and Wade Bunting, formerly of the U.S. Army Heavy Metals Office, and the Depleted Uranium Integrated Process Research (DR-IRP) steering committee. Funding was provided by the U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI, currently referred to as Force Health Protection & Readiness Policy & Programs), and the U.S. Army. Jefferson Prather and Dr. David Case provided significant insights in planning and implementing this Study. The Human Health Risk Assessment was conducted under the auspices of the U.S. Center for Health Promotion and Preventive Medicine. Of this organization COL Mark A. Melanson, PhD, CHP, served as Program Manager, Mr. David P. Alberth was Master Consultant, and Ms. Fran Szrom, CHP, Dr. Gerald Falo, PhD, CHP, and LTC Gordon M. Lodde (USA-Ret.) provided extensive support. Dr. Joseph McDonald (Emeritus Laboratory Fellow), Don Bihl, Cary Counts, and Dave Payson, Pacific Northwest National Laboratory, provided additional reviews of it number of papers in this special issue. NR 27 TC 14 Z9 15 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 207 EP 220 PG 14 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900001 PM 19204481 ER PT J AU Holmes, TD Guilmette, RA Cheng, YS Parkhurst, MA Hoover, MD AF Holmes, Thomas D. Guilmette, Raymond A. Cheng, Yung Sung Parkhurst, Mary Ann Hoover, Mark D. TI AEROSOL SAMPLING SYSTEM FOR COLLECTION OF CAPSTONE DEPLETED URANIUM PARTICLES IN A HIGH-ENERGY ENVIRONMENT SO HEALTH PHYSICS LA English DT Article DE uranium, depleted; aerosols; air sampling; monitoring, air AB The Capstone Depleted Uranium (DU) Aerosol Study was undertaken to obtain aerosol samples resulting from a large-caliber DU penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post perforation, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the crew locations in the test vehicles. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for measurement of chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for DU concentration determination. Control for the air samplers was provided by live remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol. C1 [Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung Sung] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hoover, Mark D.] NIOSH, Morgantown, WV 26505 USA. RP Cheng, YS (reprint author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM ycheng@lrri.org RI Hoover, Mark/I-4201-2012 OI Hoover, Mark/0000-0002-8726-8127 FU U.S. Office of file Special Assistant for Gulf War Illness, Medical Readiness and Military Deployment (OSAGWI); U.S. Army FX The authors wish to acknowledge the staff at the U.S. Army Aberdeen Test Center (ATC) fill their support with installation of sampling equipment, shield design, and sample removal, particularly Ellory Sanderson, Bob Brown, Jesse Meerdink, Bruce Taylor, James Baldwin, Dana Blankenbiller, and John Beckman for vehicle preparation and shield and sampler removal, and Julie Long and Kathy Burns for sampler handling, The authors would also like to thank Ted Orwat for building the sampling control System and file machine shop at ATC that Fabricated the sampling array and the shielding cover. We wish to thank the other Capstone learn members for their input in designing the sampling scheme and overall assistance in its implementation and the Capstone peer reviewers and participants of the April 2000 aerosol workshop for their insights and guidance. Funding was provided by the U.S. Office of file Special Assistant for Gulf War Illness, Medical Readiness and Military Deployment (OSAGWI, currently referred to as the Deployment Health Support Directorate), and the U.S. Army. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of their respective organizations. NR 16 TC 14 Z9 15 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 221 EP 237 PG 17 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900002 PM 19204482 ER PT J AU Szrom, F Falo, GA Parkhurst, MA Whicker, JJ Alberth, DP AF Szrom, Frances Falo, Gerald A. Parkhurst, Mary Ann Whicker, Jeffrey J. Alberth, David P. TI CALCULATING CAPSTONE DEPLETED URANIUM AEROSOL CONCENTRATIONS FROM BETA ACTIVITY MEASUREMENTS SO HEALTH PHYSICS LA English DT Article DE beta particles; counting efficiency; radioactivity, airborne; uranium, depleted AB Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements. C1 [Szrom, Frances; Falo, Gerald A.; Alberth, David P.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Whicker, Jeffrey J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Szrom, F (reprint author), USA, Ctr Hlth Promot & Prevent Med, 5158 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM fran.szrom@us.army.mil FU U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI); U.S. Army FX The authors would like to thank the ATC Health Physics Laboratory, in particular Julie Long, and the USACHPPM Laboratory staff, in particular David Morrow, Ronald Swatski, Thomas Beegle, and Angel Christman. We also want to thank John Collins for his invaluable assistance with the sample loss evaluation. Technical reviews were conducted by Mr. Don Bihl and Dr. Joseph McDonald (ret.) of Pacific Northwest National Laboratory. Funding was provided by the U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI, currently referred to as Force Health Protection & Readiness Policy & Programs) and the U.S. Army. NR 9 TC 5 Z9 5 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 238 EP 250 PG 13 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900003 PM 19204483 ER PT J AU Parkhurst, MA Cheng, YS Kenoyer, JL Traub, RJ AF Parkhurst, Mary Ann Cheng, Yung Sung Kenoyer, Judson L. Traub, Richard J. TI PHYSICOCHEMICAL CHARACTERIZATION OF CAPSTONE DEPLETED URANIUM AEROSOLS I: URANIUM CONCENTRATION IN AEROSOLS AS A FUNCTION OF TIME AND PARTICLE SIZE SO HEALTH PHYSICS LA English DT Article DE aerosols; inhalation; radioactivity, airborne; uranium, depleted AB During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65 and 24%, respectively. C1 [Parkhurst, Mary Ann; Traub, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cheng, Yung Sung] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. [Kenoyer, Judson L.] Dade Moeller & Associates Inc, Fairfax, VA 22031 USA. RP Parkhurst, MA (reprint author), Pacific NW Natl Lab, POB 999,K3-55, Richland, WA 99352 USA. EM maryann.parkhurst@pnl.gov FU U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI); U.S. Army FX Acknowledgments-The authors thank Toni Farmer, Chuck Soderquist, Lori Darriell, all from PNNL, and Thomas Beegle, USACHPPM, for uranium separation and chemical analysis. Frances Szrom, USACHPPM. directed the USACHPPM analytical team. Norma Van Houten, PNNL, applied SigmaPlot 2000 to the analysis of time-sequenced IOM-sampled uranium concentrations. Frances Szrom and Gerald Falo, USACHPPM, performed the ANOVA evaluation. Funding was provided by the U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI, currently referred to as Force Health Protection & Readiness Policy & Programs), and the U.S. Army. NR 14 TC 7 Z9 7 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 251 EP 265 PG 15 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900004 PM 19204484 ER PT J AU Cheng, YS Kenoyer, JL Guilmette, RA Parkhurst, MA AF Cheng, Yung Sung Kenoyer, Judson L. Guilmette, Raymond A. Parkhurst, Mary Ann TI PHYSICOCHEMICAL CHARACTERIZATION OF CAPSTONE DEPLETED URANIUM AEROSOLS II: PARTICLE SIZE DISTRIBUTIONS AS A FUNCTION OF TIME SO HEALTH PHYSICS LA English DT Article DE uranium, depleted; aerosols; dosimetry; inhalation AB The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 mu m and a large size mode between 2 and 15 mu m. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 mu m shortly after perforation to around 1 mu m at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles. C1 [Cheng, Yung Sung; Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. [Kenoyer, Judson L.] Dade Moeller & Associates, Fairfax, VA 22031 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cheng, YS (reprint author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr,SE, Albuquerque, NM 87108 USA. EM ycheng@lrri.org FU U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI); U.S. Army FX The authors would like to thank Norma Van Houten for her application of the SigniaPlot 2000 software program to calculate the AMADs, GSDs, and related values for the uranium mass concentrations collected on the CI substrates. and John Glissmeyer, who performed the quality assurance checks of the data. A confirmatory evaluation of particle sizes and shapes was conducted by Bruce Arey using scanning electron microscopy. Funding was provided by the U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI, currently referred to as Force Health Protection & Readiness Policy & Programs). and the U.S. Army. NR 19 TC 11 Z9 11 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 266 EP 275 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900005 PM 19204485 ER EF