FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gaudioso, J Gribble, LA Salerno, RM AF Gaudioso, Jennifer Gribble, Lisa Astuto Salerno, Reynolds M. TI Biosecurity: Progress and Challenges SO JALA LA English DT Review DE biosecurity; biosafety; biorisk; bioterrorism ID CHEMICAL-SYNTHESIS; GENOME AB Bioscience facilities are essential to the efforts to combat both naturally occurring infectious diseases and bioterrorism. But both the general public and policy makers are questioning how bioscience institutions address the safety and security risks of handling infectious disease causing organisms. As a result, new regulations at the national level in many countries and international initiatives from the United Nations, World Health Organization, and others are having direct consequences for the operation of bioscience. In particular, laboratory biosecurity is a relatively new and evolving paradigm for bioscience facilities, which have an obligation to ensure their facilities operate safely and securely. However, although progress has been made in these areas, numerous challenges remain throughout the world, and much work remains. It is the responsibility of both the scientific community and policy makers to work collaboratively to ensure responsible use of pathogens and toxins, equipment, and expertise. (JALA 2009;14:141-7) C1 [Gaudioso, Jennifer; Gribble, Lisa Astuto; Salerno, Reynolds M.] Sandia Natl Labs, Albuquerque, NM 87111 USA. RP Gaudioso, J (reprint author), Sandia Natl Labs, Albuquerque, NM 87111 USA. EM jmgaudi@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX SAND No. 2009-0421j. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 27 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER INC PI SAN DIEGO PA 525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1535-5535 J9 JALA-J ASSOC LAB AUT JI JALA PD JUN PY 2009 VL 14 IS 3 SI SI BP 141 EP 147 DI 10.1016/j.jala.2009.01.001 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 692OV UT WOS:000285163000007 ER PT J AU Marrone, BL AF Marrone, Babetta L. TI Flow Cytometry: A Multipurpose Technology for a Wide Spectrum of Global Biosecurity Applications SO JALA LA English DT Article DE flow cytometry; biosecurity; microbiology; infectious disease; pathogen; cell sorting ID BACILLUS-ANTHRACIS SPORES; HIGH-THROUGHPUT; MULTIPLEXED DETECTION; AUTONOMOUS DETECTION; RESPIRATORY VIRUSES; INFECTIOUS-DISEASES; DRINKING-WATER; UNFIXED CELLS; SYSTEM; MICROBIOLOGY AB Flow cytometry, and its offspring-flow sorting, are extremely useful technologies for biosecurity and public health studies related to infectious disease. Applications range from environmental surveillance of pathogens to diagnosis and the development of vaccines and therapeutics for prevention and control of infectious diseases. Flow cytometers have been developed for laboratory analysis and field deployment. The current state of the art could enjoy more widespread use if instruments and data analysis were made simpler and had more automated functions, and if technology was modified to reduce biosafety concerns related to analysis and sorting of infectious organisms. The full spectrum of possible applications of flow cytometry technology to global biosecurity challenges has not yet been realized. (JALA 2009;14:148-56) C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Marrone, BL (reprint author), Los Alamos Natl Lab, Biosci Div, M888, Los Alamos, NM 87545 USA. EM blm@lanl.gov FU National Flow Cytometry Resource (National Institutes of Health, National Center for Research Resources) [RR-01315] FX Figure 1 was generously provided by Drs. Alina Deshpande and P. Scott White, Los Alamos National Laboratory. The author gratefully acknowledges the support of the National Flow Cytometry Resource (National Institutes of Health, National Center for Research Resources RR-01315). This is Los Alamos Unclassified Report Number: LA-UR 08-07652. NR 71 TC 6 Z9 9 U1 2 U2 10 PU ELSEVIER INC PI SAN DIEGO PA 525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1535-5535 J9 JALA-J LAB AUTOM JI JALA PD JUN PY 2009 VL 14 IS 3 SI SI BP 148 EP 156 DI 10.1016/j.jala.2009.03.001 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 692OV UT WOS:000285163000008 ER PT J AU Muramatsu, Y Shimomura, K Katayama, T Gullikson, EM AF Muramatsu, Yasuji Shimomura, Kenta Katayama, Tetsuya Gullikson, Eric M. TI Total Electron Yield Soft X-ray Absorption Spectroscopy in the C K Region of the Mixtures of Graphitic Carbons and Diamond for Quantitative Analysis of the sp(2)/sp(3)-Hybridized Carbon Ratio SO JAPANESE JOURNAL OF APPLIED PHYSICS LA English DT Article ID SHELL EXCITATION; FINE-STRUCTURE; FILMS; SPECTRA; DEPOSITION; ENERGY AB To elucidate the possibility of quantitatively analyzing sp(2)-hybridized carbon (sp(2)-C) and sp(3)-C in carbon materials using total-electron-yield (TEY) X-ray absorption spectra (XAS) in the C K region, we measured the TEY-XAS of mixtures of multi-walled carbon nanotubes or carbon black as sp(2)-C sources and diamond as an sp(3)-C source. The measured relationship between the pi*/sigma* peak intensity ratio in the C KTEY-XAS and the weight (atomic)% of sp(2)-C can be successfully explained by the summed TEY of the sp(2)-C and sp(3)-C components and considering the TEY efficiency of sp(3)-C relative to sp(2)-C, k. However, the experimentally determined k values show that TEY of the sp(3)-C is much smaller than that of sp(2)-C by about one order of magnitude, even depending on the chemical form and/or electronic properties of individual carbon components. This suggests that further evaluation of the TEY efficiency is necessary prior to the quantitative sp(2)/sp(3) analysis of carbon materials using the TEY-XAS. (C) The Japan Society of Applied Physics C1 [Muramatsu, Yasuji; Shimomura, Kenta; Katayama, Tetsuya] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712201, Japan. [Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Muramatsu, Y (reprint author), Univ Hyogo, Grad Sch Engn, 2167 Shosha, Himeji, Hyogo 6712201, Japan. EM murama@eng.u-hyogo.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology of Japan [20560628] FX The authors would like to express their gratitude to Mr. K. Kamamoto, Mr. T. Amano, and Mr. Y. Kubota for preparing the mixed samples. This work was supported by a Grant-inAid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan under contract No. 20560628. NR 19 TC 6 Z9 6 U1 0 U2 0 PU JAPAN SOC APPLIED PHYSICS PI TOKYO PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 0021-4922 J9 JPN J APPL PHYS JI Jpn. J. Appl. Phys. PD JUN PY 2009 VL 48 IS 6 AR 066514 DI 10.1143/JJAP.48.066514 PN 1 PG 4 WC Physics, Applied SC Physics GA 466PK UT WOS:000267674300070 ER PT J AU Narayan, RJ Monteiro-Riviere, NA Brigmon, RL Pellin, MJ Elam, JW AF Narayan, Roger J. Monteiro-Riviere, Nancy A. Brigmon, Robin L. Pellin, Michael J. Elam, Jeffrey W. TI Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: Medical applications SO JOM LA English DT Article ID BACTERICIDAL ACTIVITY; MEMBRANES; TOXICITY; GROWTH; OXIDE AB Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO2-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for "smart" drug delivery devices, orthopedic implants, or self-sterilizing medical devices. C1 [Narayan, Roger J.; Monteiro-Riviere, Nancy A.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Narayan, Roger J.; Monteiro-Riviere, Nancy A.] N Carolina State Univ, Burlington Engn Labs 2147, Raleigh, NC 27695 USA. [Monteiro-Riviere, Nancy A.] N Carolina State Univ, Ctr Chem Toxicol Res & Pharmacokinet, Raleigh, NC 27695 USA. [Brigmon, Robin L.] Savannah River Natl Lab, Aiken, SC USA. [Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Narayan, RJ (reprint author), Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. EM roger_narayan@unc.edu RI Pellin, Michael/B-5897-2008; Narayan, Roger/J-2789-2013 OI Pellin, Michael/0000-0002-8149-9768; Narayan, Roger/0000-0002-4876-9869 FU U. S. Department of Energy [DE-AC09-08SR22470]; Argonne National Laboratory (ANL) is a U. S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX The authors would like to thank K. Evaul and A. O. Inman (Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University) for their assistance with the MTT assays. This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U. S. Department of Energy. Argonne National Laboratory (ANL) is a U. S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. SEM was performed at the Argonne Electron Microscopy Center. NR 24 TC 18 Z9 20 U1 5 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUN PY 2009 VL 61 IS 6 BP 12 EP 16 DI 10.1007/s11837-009-0081-z PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 457EL UT WOS:000266911200002 ER PT J AU Ramsteiner, IB Schops, A Reichert, H Dosch, H Honkimaki, V Zhong, Z Hastings, JB AF Ramsteiner, I. B. Schoeps, A. Reichert, H. Dosch, H. Honkimaeki, V. Zhong, Z. Hastings, J. B. TI High-energy X-ray diffuse scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE high-energy X-rays; diffuse X-ray scattering; multiple scattering ID MULTIPLE-SCATTERING; CRYSTALS; ORDER; AL AB Diffuse X-ray scattering has been an important tool for understanding the atomic structure of binary systems for more than 50 years. The majority of studies have used laboratory-based sources providing 8 keV photons or synchrotron radiation with similar energies. Diffuse scattering is weak, with the scattering volume determined by the X-ray absorption length. In the case of 8 keV photons, this is not significantly different from the typical extinction length for Bragg scattering. If, however, one goes to energies of the order of 100 keV the scattering volume for the diffuse scattering increases up to three orders of magnitude while the extinction length increases by only one order of magnitude. This leads to a gain of two orders of magnitude in the relative intensity of the diffuse scattering compared with the Bragg peaks. This gain, combined with the possibility of recording the intensity from an entire plane in reciprocal space using a two-dimensional X-ray detector, permits time-resolved diffuse scattering studies in many systems. On the other hand, diffraction features that are usually neglected, such as multiple scattering, come into play. Four types of multiple scattering phenomena are discussed, and the manner in which they appear in high-energy diffraction experiments is considered. C1 [Ramsteiner, I. B.; Schoeps, A.; Reichert, H.; Dosch, H.] Max Planck Inst Metallforsch, D-70569 Stuttgart, Germany. [Honkimaeki, V.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Zhong, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hastings, J. B.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ramsteiner, IB (reprint author), Max Planck Inst Metallforsch, D-70569 Stuttgart, Germany. EM ramsteiner@mf.mpg.de NR 26 TC 3 Z9 3 U1 0 U2 12 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD JUN PY 2009 VL 42 BP 392 EP 400 DI 10.1107/S0021889809011492 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 448NC UT WOS:000266268300004 ER PT J AU Wenk, HR Monteiro, PJM Kunz, M Chen, K Tamura, N Lutterotti, L Del Arroz, J AF Wenk, Hans-Rudolf Monteiro, Paulo J. M. Kunz, Martin Chen, Kai Tamura, Nobumichi Lutterotti, Luca Del Arroz, John TI Preferred orientation of ettringite in concrete fractures SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE preferred orientation; ettringite; concrete fractures; elastic anisotropy ID QUANTITATIVE TEXTURE ANALYSIS; X-RAY-DIFFRACTION; SYNCHROTRON-RADIATION; THIN-FILMS; ELASTIC-CONSTANTS AB Sulfate attack and the accompanying crystallization of fibrous ettringite [Ca(6)Al(2)(OH)(12)(SO(4))(3).26H(2)O] cause cracking and loss of strength in concrete structures. Hard synchrotron X-ray microdiffraction is used to quantify the orientation distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture surfaces. By averaging single-crystal elastic properties over the orientation distribution, it is possible to estimate the elastic anisotropy of ettringite aggregates. C1 [Wenk, Hans-Rudolf; Del Arroz, John] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Kunz, Martin; Chen, Kai; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lutterotti, Luca] Univ Trent, Dept Mat Engn, I-38050 Trento, Italy. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Kunz, Martin/K-4491-2012; Lutterotti, Luca/E-2426-2014; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Lutterotti, Luca/0000-0002-0949-8322; Chen, Kai/0000-0002-4917-4445 FU King Abdullah University of Science and Technology (KAUST) [KUS-I1-004-21]; NSF [EAR 0836402]; US Department of Energy [DE-AC02-05CH11231] FX We acknowledge access to beamline 12.3.2 at the ALS of the LBNL and discussions with Sergio Speziale (Potsdam). This publication was based on work supported in part by award No. KUS-I1-004-21 made by the King Abdullah University of Science and Technology (KAUST) (to PJMM and HRW) and by NSF grant No. EAR 0836402. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No. DE-AC02-05CH11231 at the LBNL. NR 24 TC 7 Z9 7 U1 3 U2 14 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD JUN PY 2009 VL 42 BP 429 EP 432 DI 10.1107/S0021889809015349 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 448NC UT WOS:000266268300008 ER PT J AU Warren, JE Pritchard, RG Abram, D Davies, HM Savarese, TL Cash, RJ Raithby, PR Morris, R Jones, RH Teat, SJ AF Warren, John E. Pritchard, Robin G. Abram, Don Davies, Hazel M. Savarese, Teresa L. Cash, Ryan J. Raithby, Paul R. Morris, Russell Jones, Richard H. Teat, Simon J. TI A prototype environmental gas cell for in situ small-molecule X-ray diffraction SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE prototypes; environmental gas cells; X-ray diffraction; small molecules ID STORAGE; CRYSTALLOGRAPHY; DEVICE; DESIGN AB This paper reports the development of a prototype environmental gas cell, capable of allowing a single crystal to be exposed to different gas mixtures and/or a vacuum whilst in situ on the single-crystal diffractometer. The design and application of the cell to the study of a single crystal in the presence of sulfur dioxide are described. C1 [Warren, John E.; Abram, Don; Cash, Ryan J.] Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Pritchard, Robin G.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Warren, John E.; Davies, Hazel M.; Savarese, Teresa L.; Raithby, Paul R.] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. [Morris, Russell] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland. [Jones, Richard H.] Univ Keele, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Warren, JE (reprint author), Daresbury Lab, Warrington WA4 4AD, Cheshire, England. EM j.e.warren@x-rayman.co.uk RI Morris, Russell/G-4285-2010; Warren, John/B-5219-2008; Raithby, Paul/N-7997-2014 OI Morris, Russell/0000-0001-7809-0315; Warren, John/0000-0002-8755-7981; Raithby, Paul/0000-0002-2944-0662 FU CCLRC Seed Corn [42338, 42275, 44176, 44263]; EPSRC; States of Jersey; CCLRC FX The authors acknowledge CCLRC Seed Corn funding and beamtime awards 42338, 42275, 44176 and 44263 (JEW), an EPSRC research fellowship (PRR), and States of Jersey (TLS) and CCLRC studentships (HMD). NR 15 TC 5 Z9 5 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD JUN PY 2009 VL 42 BP 457 EP 460 DI 10.1107/S0021889809010036 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 448NC UT WOS:000266268300012 ER PT J AU Ilavsky, J Jemian, PR Allen, AJ Zhang, F Levine, LE Long, GG AF Ilavsky, Jan Jemian, Pete R. Allen, Andrew J. Zhang, Fan Levine, Lyle E. Long, Gabrielle G. TI Ultra-small-angle X-ray scattering at the Advanced Photon Source SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE ultra-small-angle X-ray scattering (USAXS); Advanced Photon Source (APS) ID DOUBLE-CRYSTAL DIFFRACTOMETER; THERMAL BARRIER COATINGS; NEUTRON-SCATTERING; PARASITIC SCATTERING; INSTRUMENT; RESOLUTION; USANS; SYNCHROTRON; MECHANISM; REACTOR AB The design and operation of a versatile ultra-small-angle X-ray scattering (USAXS) instrument at the Advanced Photon Source (APS) at Argonne National Laboratory are presented. The instrument is optimized for the high brilliance and low emittance of an APS undulator source. It has angular and energy resolutions of the order of 10(-4), accurate and repeatable X-ray energy tunability over its operational energy range from 8 to 18 keV, and a dynamic intensity range of 10(8) to 10(9), depending on the configuration. It further offers quantitative primary calibration of X-ray scattering cross sections, a scattering vector range from 0.0001 to 1 angstrom(-1), and stability and reliability over extended running periods. Its operational configurations include one-dimensional collimated (slit-smeared) USAXS, two-dimensional collimated USAXS and USAXS imaging. A robust data reduction and data analysis package, which was developed in parallel with the instrument, is available and supported at the APS. C1 [Ilavsky, Jan; Jemian, Pete R.; Zhang, Fan; Long, Gabrielle G.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Allen, Andrew J.; Levine, Lyle E.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. RP Ilavsky, J (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM ilavsky@aps.anl.gov RI Zhang, Fan/A-6133-2010; USAXS, APS/D-4198-2013; OI Ilavsky, Jan/0000-0003-1982-8900 FU National Institute of Standards and Technology for the University-National Laboratory-Industry Collaborative Access Team (UNICAT); US Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The APS USAXS instrument was originally constructed by the National Institute of Standards and Technology for the University-National Laboratory-Industry Collaborative Access Team (UNICAT) for operation on Sector 33 of the APS. Research at the APS is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract No. DE-AC02-06CH11357. The authors thank John Barker (NIST) and Paul Zschack (APS) for helpful discussions. NR 51 TC 97 Z9 97 U1 3 U2 30 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD JUN PY 2009 VL 42 BP 469 EP 479 DI 10.1107/S0021889809008802 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 448NC UT WOS:000266268300014 ER PT J AU Todd, BD Luhring, TM Rothermel, BB Gibbons, JW AF Todd, Brian D. Luhring, Thomas M. Rothermel, Betsie B. Gibbons, J. Whitfield TI Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity SO JOURNAL OF APPLIED ECOLOGY LA English DT Article DE Ambystoma; Bufo; clearcutting; forestry; habitat loss; metapopulation; Rana; timber harvesting ID POND-BREEDING AMPHIBIANS; BUFFER ZONES; AMBYSTOMA-TALPOIDEUM; SPOTTED SALAMANDERS; RANA-TEMPORARIA; MOVEMENT; DECLINES; QUALITY; CONSERVATION; PERSISTENCE AB Habitat loss is a leading cause of global amphibian declines. Forest removal is a particularly significant threat because an estimated 82% of amphibians rely on forests for part of their lives. Biphasic amphibians rely on suitable terrestrial habitat to support their post-metamorphic growth and survival and also to maintain appropriate habitat and landscape connectivity. We created 4 replicate, 16-ha experimental arrays in the southeastern USA to examine the effects of forest removal on migratory movements of adult biphasic amphibians. Each array contained four forest-harvesting treatments that included an unharvested control, a partially harvested stand, a clearcut with coarse woody debris retained, and a clearcut with coarse woody debris removed. Some amphibian species emigrated from wetlands in significantly greater numbers through forest controls compared with harvested treatments. Also, salamanders were generally more sensitive to forest removal than were frogs, with a significantly greater proportion of salamanders migrating through forested habitat compared to frogs. For several species, individuals were significantly more likely to avoid clearcuts when emigrating compared to immigrating. Individuals that emigrated into clearcut treatments were more likely to reverse direction and return to wetlands in some species. Synthesis and applications. Our study identifies one mechanism by which forest removal shapes the abundance and distribution of amphibians in terrestrial habitat. To promote the persistence of amphibian populations, conservation efforts should focus on preserving forest habitat adjacent to reproduction sites. Such measures are especially important where forest habitat connects local populations or where it links reproduction sites to other habitat features necessary for amphibian growth, survival, or overwintering. C1 [Todd, Brian D.; Luhring, Thomas M.; Rothermel, Betsie B.; Gibbons, J. Whitfield] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Rothermel, Betsie B.] Archbold Biol Stn, Lake Placid, FL 33862 USA. RP Todd, BD (reprint author), Virginia Polytech Inst & State Univ, Dept Fisheries & Wildlife, 100 Cheatham Hall, Blacksburg, VA 24060 USA. EM btodd@vt.edu RI Luhring, Thomas/A-9489-2012; Rothermel, Betsie/L-6774-2013 OI Luhring, Thomas/0000-0001-7982-5862; FU National Science Foundation [DEB-0242874]; Environmental Remediation Sciences Division of the Office of Biological and Environmental Research; US Department of Energy [DE-FC09-96SR18546]; University of Georgia Research Foundation FX We thank G. Graeter, A. Green, J. Greene, C. Hickman, M. Langley, B. Metts, B. Morris, J. Nestor, J. Norman, L. Wilkinson, and C. Winne for their assistance in the study. Animals were collected under South Carolina Department of Natural Resources Scientific Collection permit (07-2004; G-05-03; G-06-04; G-07-03) and all procedures were conducted in accordance with The University of Georgia's animal care and use guidelines. We also thank US Forest Service-Savannah River for coordinating timber harvesting and assisting with implementation of the Land-use Effects on Amphibian Populations (LEAP) study, which was funded by the National Science Foundation (Award DEB-0242874). Additional support and manuscript preparation were aided by the Environmental Remediation Sciences Division of the Office of Biological and Environmental Research, US Department of Energy through Financial Assistance Award no. DE-FC09-96SR18546 to the University of Georgia Research Foundation. NR 38 TC 42 Z9 46 U1 4 U2 64 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8901 EI 1365-2664 J9 J APPL ECOL JI J. Appl. Ecol. PD JUN PY 2009 VL 46 IS 3 BP 554 EP 561 DI 10.1111/j.1365-2664.2009.01645.x PG 8 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 439GE UT WOS:000265614800009 ER PT J AU Fernandez-Perea, M Vidal-Dasilva, M Larruquert, JI Aznarez, JA Mendez, JA Gullikson, E Aquila, A Soufli, R AF Fernandez-Perea, Monica Vidal-Dasilva, Manuela Larruquert, Juan I. Aznarez, Jose A. Mendez, Jose A. Gullikson, Eric Aquila, Andy Soufli, Regina TI Optical constants of evaporation-deposited silicon monoxide films in the 7.1-800 eV photon energy range SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SIO THIN-FILMS; REFLECTANCE; REGION AB The transmittance of silicon monoxide films prepared by thermal evaporation was measured from 7.1 to 800 eV and used to determine the optical constants of the material. SiO films deposited onto C-coated microgrids in ultrahigh vacuum conditions were measured in situ from 7.1 to 23.1 eV. Grid-supported SiO films deposited in high vacuum conditions were characterized ex situ from 28.5 to 800 eV. At each photon energy, transmittance, and thickness data were used to calculate the extinction coefficient k. The obtained k values combined with data from the literature, and with interpolations and extrapolations in the rest of the electromagnetic spectrum provided a complete set of k values that was used in a Kramers-Kronig analysis to obtain the real part of the index of refraction, n. Two different sum-rule tests were performed that indicated good consistency of the data. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3123768] C1 [Fernandez-Perea, Monica; Vidal-Dasilva, Manuela; Larruquert, Juan I.; Aznarez, Jose A.; Mendez, Jose A.] CSIC, Inst Fis Aplicada, E-28006 Madrid, Spain. [Gullikson, Eric; Aquila, Andy] Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Soufli, Regina] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fernandez-Perea, M (reprint author), CSIC, Inst Fis Aplicada, C Serrano 144, E-28006 Madrid, Spain. EM monicafp@ifa.cetef.csic.es; larruquert@ifa.cetef.csic.es OI Larruquert, Juan/0000-0001-6356-9702 FU National Programme for Space Research; Subdireccion General de Proyectos de Investigacion; Ministerio de Ciencia y Tecnologia, Project [ESP2002-01391, ESP2005-02650]; U. S. Department of Energy by the University of California Lawrence Berkeley National Laboratory [DE-AC03-76F00098]; University of California Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Consejo Superior de Investigaciones Cientificas (Spain) [I3P-BPD2004]; European Social Fund; FPI Contract [BES-2006-14047] FX This work was supported by the National Programme for Space Research, Subdireccion General de Proyectos de Investigacion, Ministerio de Ciencia y Tecnologia, Project Nos. ESP2002-01391 and ESP2005-02650. This work was also performed under the auspices of the U. S. Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76F00098 and by the University of California Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. M.F.-P. is thankful to Consejo Superior de Investigaciones Cientificas (Spain) for funding under the Programa I3P (Contract No. I3P-BPD2004), partially supported by the European Social Fund. M.V.-D. acknowledges financial support from a FPI Contract No. BES-2006-14047 fellowship. We acknowledge the technical assistance of Jose M. Sanchez-Orejuela. NR 29 TC 8 Z9 8 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 1 PY 2009 VL 105 IS 11 AR 113505 DI 10.1063/1.3123768 PG 8 WC Physics, Applied SC Physics GA 458VG UT WOS:000267053200038 ER PT J AU Kerisit, S Rosso, KM Cannon, BD Gao, F Xie, YL AF Kerisit, Sebastien Rosso, Kevin M. Cannon, Bret D. Gao, Fei Xie, YuLong TI Computer simulation of the light yield nonlinearity of inorganic scintillators SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LIQUID-NITROGEN TEMPERATURES; AREA AVALANCHE PHOTODIODES; INTRINSIC ENERGY RESOLUTION; GAMMA-RAY SPECTROSCOPY; NON-PROPORTIONALITY; CROSS-SECTIONS; PURE NAI; CRYSTALS; LABR3; CSI AB To probe the nature of the physical processes responsible for the nonlinear scintillation light yield of inorganic scintillators, we have combined an ab initio based Monte Carlo code for calculating the microscopic spatial distributions of electron-hole pairs with an atomistic kinetic Monte Carlo (KMC) model of energy-transfer processes. In the present study, we focus on evaluating the contribution of an annihilation mechanism between self-trapped excitons (STE) to the scintillation response of pure CsI and Ce-doped LaBr3. A KMC model of scintillation mechanisms in pure CsI was developed previously and we introduce in this publication a similar model for Ce-doped LaBr3. We show that the KMC scintillation model is able to reproduce both the kinetics and efficiency of the scintillation process in Ce-doped LaBr3. Relative light output curves were generated at several temperatures for both scintillators from simulations carried out at incident gamma-ray energies of 2, 5, 10, 20, 100, and 400 keV. These simulations suggest that STE-STE annihilation can account for the initial rise in relative light yield with increasing incident energy for both types of materials. This is due to the fact that the proportion of high-density regions decreases as the incident energy increases, thus reducing the likelihood for STE-STE encounter. In addition, the simulations clearly show a lack of temperature dependence of the relative light output, in agreement with a majority of experimental work on the temperature dependence of nonlinearity in inorganic scintillators. The collective modeling tool is a fundamental advance over phenomenological modeling approaches because it has its foundation in first-principles physics of scintillation. While the KMC simulations here are parametrized largely by empirically derived rate constants, this study suggests that combining ab initio based electron-hole pair distributions with ab initio derived rate constants for a select set of energy transfer processes is in principle sufficient to detach this tool from experiment entirely, yielding a holistic predictive simulation framework useful for exploring a wide range of scintillator performance characteristics. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143786] C1 [Kerisit, Sebastien; Rosso, Kevin M.; Gao, Fei] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. [Cannon, Bret D.] Pacific NW Natl Lab, Natl Secur Directorate, Phys & Chem Sci Div, Richland, WA 99352 USA. [Xie, YuLong] Pacific NW Natl Lab, Energy & Environm Directorate, Environm Sustainabil Sci & Technol Div, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov RI Gao, Fei/H-3045-2012; Xie, Yulong/O-9322-2016 OI Xie, Yulong/0000-0001-5579-482X FU Radiation Detection Material Discovery Initiative [DE-AC05-76RL01830] FX This work was supported by the Radiation Detection Material Discovery Initiative under the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 64 TC 24 Z9 24 U1 3 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 1 PY 2009 VL 105 IS 11 AR 114915 DI 10.1063/1.3143786 PG 10 WC Physics, Applied SC Physics GA 458VG UT WOS:000267053200174 ER PT J AU Koch, JA Landen, OL Kozioziemski, BJ Izumi, N Dewald, EL Salmonson, JD Hammel, BA AF Koch, Jeffrey A. Landen, Otto L. Kozioziemski, Bernard J. Izumi, Nobuhiko Dewald, Eduard L. Salmonson, Jay D. Hammel, Bruce A. TI Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NATIONAL-IGNITION-FACILITY; PHASE-CONTRAST; TRANSPARENT OBJECTS; PHYSICS BASIS; RESOLUTION; SPECTROGRAPH; RADIATION; CAPSULES AB We explore various laser-produced plasma and inertial confinement fusion applications of phase-contrast x-ray radiography, and we show how the main features of these enhancements can be considered from a geometrical optics perspective as refraction enhancements. This perspective simplifies the analysis and often permits simple analytical formulas to be derived that predict the enhancements. We explore a raytrace approach to various material interface applications, and we explore a more general example of refractive bending of x rays by an implosion plasma. We find that refraction-enhanced x-ray radiography of implosions may provide a means to quantify density differences across shock fronts as well as density variations caused by local heating due to high-Z dopants. We also point out that refractive bending by implosions plasmas can blur fine radiograph features and can also provide misleading contrast information on area-backlit pinhole imaging experiments unless its effects are taken into consideration. c 2009 American Institute of Physics. [DOI: 10.1063/1.3133092] C1 [Koch, Jeffrey A.; Landen, Otto L.; Kozioziemski, Bernard J.; Izumi, Nobuhiko; Dewald, Eduard L.; Salmonson, Jay D.; Hammel, Bruce A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Koch, JA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM koch1@llnl.gov RI IZUMI, Nobuhiko/J-8487-2016 OI IZUMI, Nobuhiko/0000-0003-1114-597X FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 34 TC 17 Z9 20 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 1 PY 2009 VL 105 IS 11 AR 113112 DI 10.1063/1.3133092 PG 8 WC Physics, Applied SC Physics GA 458VG UT WOS:000267053200012 ER PT J AU Kraus, RG Chapman, DJ Proud, WG Swift, DC AF Kraus, Richard G. Chapman, David J. Proud, William G. Swift, Damian C. TI Hugoniot and spall strength measurements of porous aluminum SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SHOCK-WAVE; INTERFEROMETER; COMPRESSION; COMPACTION; BEHAVIOR; IMPACT AB Plate impact experiments were performed on 14% porous aluminum samples to measure the principal Hugoniot and the spall strength. The principal Hugoniot was measured by performing multiple experiments at a range of flyer velocities, from 0.25-0.89 km/s, leading to incident shock pressures in the target from 0.6-4.8 GPa. The shock compaction data were compared to a theoretical Hugoniot determined from a Mie-Gruneisen equation of state and was found to agree very well over the stress range investigated. Spall strength measurements were performed on the 14% porous aluminum samples at impactor velocities of 0.224, 0.230, and 0.306 km/s. Spall strengths of 78 +/- 8, 55 +/- 28, and 36 +/- 7 MPa, respectively, were measured for the porous Al samples. This is thought to be the first measurement of spall strength in a shock compacted porous ductile material. c 2009 American Institute of Physics. [DOI: 10.1063/1.3133237] C1 [Kraus, Richard G.; Chapman, David J.; Proud, William G.] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. [Swift, Damian C.] Lawrence Livermore Natl Lab, PLS CMMD, Livermore, CA 94550 USA. RP Kraus, RG (reprint author), Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England. EM rkraus@fas.harvard.edu FU Los Alamos National Laboratory; Qinetiq PLC; Ministry of Defense Science Innovation Technology; NNSA SSGF Fellowship [DE-FC52-08NA28752] FX This work was performed with the support of Los Alamos National Laboratory and Qinetiq PLC, U.K. Support of the Ministry of Defense Science Innovation Technology research program is also acknowledged. During the later stages of this project, R. G. Kraus was funded by a NNSA SSGF Fellowship under grant No. DE-FC52-08NA28752. We would also like to thank the Cavendish Laboratory machinists, Ray Flaxman and Dave Johnson, for their technical assistance. NR 22 TC 3 Z9 3 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 1 PY 2009 VL 105 IS 11 AR 114914 DI 10.1063/1.3133237 PG 7 WC Physics, Applied SC Physics GA 458VG UT WOS:000267053200173 ER PT J AU Rodriguez, EE Llobet, A Proffen, T Melot, BC Seshadri, R Littlewood, PB Cheetham, AK AF Rodriguez, Efrain E. Llobet, Anna Proffen, Thomas Melot, Brent C. Seshadri, Ram Littlewood, Peter B. Cheetham, Anthony K. TI The role of static disorder in negative thermal expansion in ReO3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHASE-TRANSITIONS; HEAT-CAPACITY; ZRW2O8; TEMPERATURE; PRESSURE; RHENIUM; OXIDES; AG2O; ABSORPTION; PARAMETER AB Time-of-flight neutron powder diffraction and specific heat measurements were used to study the nature of thermal expansion in rhenium trioxide, an electrically conducting oxide with cubic symmetry. The temperature evolution of the lattice parameters shows that ReO3 can exhibit negative thermal expansion below room temperature and that the transition from negative to positive thermal expansion depends on sample preparation; the single crystal sample demonstrated the highest transition temperature, 294(19) K, and largest negative value for the coefficient of thermal expansion, alpha=-10(1) X 10(-7) K-1. For the oxygen atoms, the atomic displacement parameters are strongly anisotropic even at 15 K, indicative of a large contribution of static disorder to the displacement parameters. Further inspection of the temperature evolution of the oxygen displacement parameters for different samples reveals that the static disorder contribution is greater for the samples with diminished negative thermal expansion (NTE) behavior. In addition, specific heat measurements show that ReO3 lacks the low energy Einstein-type modes seen in other NTE oxides such as ZrW2O8. The thermal expansion behavior in other NTE materials such as ZrW2O8, cuprite-type oxides, and the Prussian blue cyanides are discussed and compared with that of our ReO3 samples. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3120783] C1 [Rodriguez, Efrain E.; Llobet, Anna; Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Rodriguez, Efrain E.; Melot, Brent C.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Rodriguez, Efrain E.; Melot, Brent C.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Littlewood, Peter B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Rodriguez, EE (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, MS H805, Los Alamos, NM 87545 USA. EM akc30@cam.uc.uk RI Cavendish, TCM/C-9489-2009; Llobet, Anna/B-1672-2010; Littlewood, Peter/B-7746-2008; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Melot, Brent/B-6456-2008; Proffen, Thomas/B-3585-2009 OI Seshadri, Ram/0000-0001-5858-4027; Melot, Brent/0000-0002-7078-8206; Proffen, Thomas/0000-0002-1408-6031 FU DOE Office of Basic Energy Sciences; National Science Foundation [NSF-DMR-0449354]; MRSEC [NSF-DMR0520415] FX This work has benefited from the use of HIPD at the Lujan Center at LANSCE, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. We would also like to thank J. C. Lashley and A. Lawson from Los Alamos for stimulating discussions and L. L. Daeman, also from Los Alamos, for help with sample preparation. B. C. M. and R. S. acknowledge the National Science Foundation for support through a Career Award (NSF-DMR-0449354) and for the use of MRSEC facilities (Award No. NSF-DMR0520415). NR 49 TC 28 Z9 28 U1 2 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 1 PY 2009 VL 105 IS 11 AR 114901 DI 10.1063/1.3120783 PG 6 WC Physics, Applied SC Physics GA 458VG UT WOS:000267053200160 ER PT J AU Solovyov, VF Abraimov, D Miller, D Li, Q Wiesmann, H AF Solovyov, Vyacheslav F. Abraimov, Dmytro Miller, Dean Li, Qiang Wiesmann, Harold TI Correlation between YBa2Cu3O7 nuclei density and the grain orientation of the CeO2 buffered Ni-W template of the second-generation superconducting wire SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY MICRODIFFRACTION; THIN-FILMS; PRECURSOR FILMS; NUCLEATION; GROWTH; SURFACES; SRTIO3; STEPS AB The prime goal of the second-generation superconducting wire technology is to grow high-quality epitaxial layers of YBa2Cu3O7 (YBCO) superconductor using high-rate deposition on low-cost, kilometer-long substrates. We analyze the influence of Ni-W RABiTS (TM) substrate grain misalignment on nucleation of epitaxial YBCO during metal-organic ex situ processing. Electron backscatter diffraction orientation maps are correlated with YBCO nuclei density obtained from scanning-electron microscopy. A critical Ni-W grain tilt misorientation angle of 8.5 degrees was identified above which the YBCO nuclei density was observed to be extremely low, approaching zero. A proposed model explains the reduction in nuclei density as being due to the absence of (001) substrate terraces wide enough to accommodate the critical size for YBCO nuclei. This study emphasizes the strong effect of the out-of-plane tilt of substrate grains on superconducting properties of YBCO layers produced by metal-organic deposition. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143043] C1 [Solovyov, Vyacheslav F.; Li, Qiang; Wiesmann, Harold] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Abraimov, Dmytro] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32304 USA. [Miller, Dean] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Miller, Dean] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Solovyov, VF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM solov@bnl.gov RI Solovyov, Vyacheslav/A-7724-2009; OI Solovyov, Vyacheslav/0000-0003-1879-9802 FU Brookhaven Science Associates, LLC [DE-AC02-98CHI886]; U. S. Department of Energy, Office of Electricity Delivery and Energy Reliability; Office of Science, Division of Basic Energy Science; Office of Science, Division of Basic Energy Sciences [DE-AC02-06CH11357]; DOE [DE-FC07-08ID14916] FX The authors greatly appreciate the cooperation of Martin Rupich and Xiaoping Li of American Superconductor Corp. who provided the RABiTS T tape for this study. The authors appreciate the fruitful discussions with Dr. Mas Suenaga and Dr. Arnie Moodenbaugh. This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CHI886 with the U. S. Department of Energy, Office of Electricity Delivery and Energy Reliability. Atomic force microscopy was performed by Dr. Dmytro Nykypanchuk at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U. S. Department of Energy, Office of Basic Energy Sciences. Q. L. was supported by the Office of Science, Division of Basic Energy Science. Work at Argonne was carried out in the Electron Microscopy Center, which is supported by the Office of Science, Division of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Work at the National High Magnetic Field Laboratory was supported under DOE [Contract No. DE-FC07-08ID14916]. NR 26 TC 9 Z9 9 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 1 PY 2009 VL 105 IS 11 AR 113927 DI 10.1063/1.3143043 PG 7 WC Physics, Applied SC Physics GA 458VG UT WOS:000267053200107 ER PT J AU Whicker, JJ Pinder, JE Breshears, DD AF Whicker, J. J. Pinder, J. E., III Breshears, D. D. TI Thinning semiarid forests amplifies wind erosion comparably to wildfire: Implications for restoration and soil stability (vol 72, pg 494, 2008) SO JOURNAL OF ARID ENVIRONMENTS LA English DT Correction C1 [Whicker, J. J.] Los Alamos Natl Lab, Environm Programs, Los Alamos, NM 87545 USA. [Pinder, J. E., III] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. [Breshears, D. D.] Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Tucson, AZ 85721 USA. [Breshears, D. D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. RP Whicker, JJ (reprint author), Los Alamos Natl Lab, Environm Programs, Mail Stop M992, Los Alamos, NM 87545 USA. EM whicker_jeffrey_j@lanl.gov RI Breshears, David/B-9318-2009 OI Breshears, David/0000-0001-6601-0058 NR 1 TC 0 Z9 0 U1 1 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0140-1963 J9 J ARID ENVIRON JI J. Arid. Environ. PD JUN-JUL PY 2009 VL 73 IS 6-7 BP 691 EP 692 DI 10.1016/j.jaridenv.2008.11.004 PG 2 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 448YW UT WOS:000266298900016 ER PT J AU Wattam, AR Williams, KP Snyder, EE Almeida, NF Shukla, M Dickerman, AW Crasta, OR Kenyon, R Lu, J Shallom, JM Yoo, H Ficht, TA Tsolis, RM Munk, C Tapia, R Han, CS Detter, JC Bruce, D Brettin, TS Sobral, BW Boyle, SM Setubal, JC AF Wattam, Alice R. Williams, Kelly P. Snyder, Eric E. Almeida, Nalvo F., Jr. Shukla, Maulik Dickerman, A. W. Crasta, O. R. Kenyon, R. Lu, J. Shallom, J. M. Yoo, H. Ficht, T. A. Tsolis, R. M. Munk, C. Tapia, R. Han, C. S. Detter, J. C. Bruce, D. Brettin, T. S. Sobral, Bruno W. Boyle, Stephen M. Setubal, Joao C. TI Analysis of Ten Brucella Genomes Reveals Evidence for Horizontal Gene Transfer Despite a Preferred Intracellular Lifestyle SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ROUGH MUTANTS; ABORTUS; MELITENSIS; SEQUENCE; VIRULENCE; ISLANDS; LIPOPOLYSACCHARIDE; IDENTIFICATION; BACTERIA; STRAINS AB The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host. C1 [Wattam, Alice R.; Williams, Kelly P.; Snyder, Eric E.; Almeida, Nalvo F., Jr.; Shukla, Maulik; Dickerman, A. W.; Crasta, O. R.; Kenyon, R.; Lu, J.; Shallom, J. M.; Yoo, H.; Sobral, Bruno W.; Setubal, Joao C.] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. [Ficht, T. A.] Texas A&M Univ, Dept Vet Pathobiol, College Stn, TX 77843 USA. [Ficht, T. A.] Texas Agr Expt Stn, College Stn, TX 77843 USA. [Tsolis, R. M.] Univ Calif Davis, Sch Med, Dept Med Microbiol & Immunol, Davis, CA 95616 USA. [Munk, C.; Tapia, R.; Han, C. S.; Detter, J. C.; Bruce, D.; Brettin, T. S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. [Boyle, Stephen M.] Virginia Tech, Virginia Maryland Reg Coll Vet Med, Ctr Mol Med & Infect Dis, Blacksburg, VA 24061 USA. [Almeida, Nalvo F., Jr.] Univ Fed Mato Grosso do Sul, Dept Computacao & Estatist, Campo Grande, Brazil. [Setubal, Joao C.] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA. RP Wattam, AR (reprint author), Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. EM wattam@vbi.vt.edu RI Almeida, Nalvo/B-5856-2012; Setubal, Joao/C-7305-2012; Oncogenomica, Inct/H-9999-2013; OI Setubal, Joao/0000-0001-9174-2816; Tsolis, Renee/0000-0001-9131-6657; Almeida, Nalvo/0000-0001-5615-1746 FU NIAID [HHSN266200400035C] FX This work is funded through NIAID contract HHSN266200400035C to Bruno Sobral. Funding to pay the Open Access publication charges for this article was provided by NIAID contract HHSN266200400035C to Bruno Sobral. We also thank Dennis Dean (Fralin Life Science Institute, Virginia Tech) for providing financial support to aid in resolving the number of contigs in the B. ceti genome. NR 62 TC 57 Z9 61 U1 1 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUN PY 2009 VL 191 IS 11 BP 3569 EP 3579 DI 10.1128/JB.01767-08 PG 11 WC Microbiology SC Microbiology GA 445HG UT WOS:000266041300015 PM 19346311 ER PT J AU Kataeva, IA Yang, SJ Dam, P Poole, FL Yin, Y Zhou, FF Chou, WC Xu, Y Goodwin, L Sims, DR Detter, JC Hauser, LJ Westpheling, J Adams, MWW AF Kataeva, Irina A. Yang, Sung-Jae Dam, Phuongan Poole, Farris L., II Yin, Yanbin Zhou, Fengfeng Chou, Wen-chi Xu, Ying Goodwin, Lynne Sims, David R. Detter, John C. Hauser, Loren J. Westpheling, Janet Adams, Michael W. W. TI Genome Sequence of the Anaerobic, Thermophilic, and Cellulolytic Bacterium "Anaerocellum thermophilum" DSM 6725 SO JOURNAL OF BACTERIOLOGY LA English DT Article AB "Anaerocellum thermophilum" DSM 6725 is a strictly anaerobic bacterium that grows optimally at 75 degrees C. It uses a variety of polysaccharides, including crystalline cellulose and untreated plant biomass, and has potential utility in biomass conversion. Here we report its complete genome sequence of 2.97 Mb, which is contained within one chromosome and two plasmids (of 8.3 and 3.6 kb). The genome encodes a broad set of cellulolytic enzymes, transporters, and pathways for sugar utilization and compared to those of other saccharolytic, anaerobic thermophiles is most similar to that of Caldicellulosiruptor saccharolyticus DSM 8903. C1 [Kataeva, Irina A.; Yang, Sung-Jae; Dam, Phuongan; Poole, Farris L., II; Yin, Yanbin; Zhou, Fengfeng; Chou, Wen-chi; Xu, Ying; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Dam, Phuongan; Yin, Yanbin; Zhou, Fengfeng; Chou, Wen-chi; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Kataeva, Irina A.; Yang, Sung-Jae; Dam, Phuongan; Yin, Yanbin; Zhou, Fengfeng; Chou, Wen-chi; Xu, Ying; Westpheling, Janet; Adams, Michael W. W.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Goodwin, Lynne; Sims, David R.; Detter, John C.] Los Alamos Natl Lab, Joint Genome Inst, Biosci Div Genome Sci B6, Los Alamos, NM 87545 USA. RP Adams, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Davison Life Sci Complex, Athens, GA 30602 USA. EM adams@bmb.uga.edu RI Yin, Yanbin/C-9788-2010; Zhou, Fengfeng/A-8932-2008; Hauser, Loren/H-3881-2012 OI Yin, Yanbin/0000-0001-7667-881X; Zhou, Fengfeng/0000-0002-8108-6007; FU Bioenergy Science Center (BESC) [DE-PS02-06ER64304]; Oak Ridge National Laboratory; Office of Biological and Environmental Research in the DOE Office of Science; U. S. Department of Energy's Office of Science, Biological and Environmental Research Program; University of California Lawrence Berkeley National Laboratory [DE-AC020-5CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This research was supported by a grant (DE-PS02-06ER64304) from the Bioenergy Science Center (BESC), Oak Ridge National Laboratory, a U. S. Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Work at the Joint Genome Institute is performed under the auspices of the U. S. Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California Lawrence Berkeley National Laboratory under contract DE-AC020-5CH11231, by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC02-06NA25396. NR 12 TC 52 Z9 54 U1 1 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUN PY 2009 VL 191 IS 11 BP 3760 EP 3761 DI 10.1128/JB.00256-09 PG 2 WC Microbiology SC Microbiology GA 445HG UT WOS:000266041300039 PM 19346307 ER PT J AU Ateshian, GA Rajan, V Chahine, NO Canal, CE Hung, CT AF Ateshian, Gerard A. Rajan, Vikram Chahine, Nadeen O. Canal, Clare E. Hung, Clark T. TI Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE biodiffusion; biological tissues; biomechanics; compressive strength; osmosis; physiological models; Poisson ratio; porous materials; proteins; tensile strength; viscoelasticity ID INTERSTITIAL FLUID PRESSURIZATION; STRUCTURAL CONSTITUTIVE MODEL; UNCONFINED COMPRESSION; TENSILE PROPERTIES; MECHANICAL-PROPERTIES; CONFINED COMPRESSION; IONIC REPLACEMENTS; STRESS-RELAXATION; SWELLING BEHAVIOR; POROELASTIC MODEL AB Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue's equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson's ratio from very low values in compression (similar to 0.02) to very high values in tension (similar to 2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240-249). C1 [Ateshian, Gerard A.; Rajan, Vikram] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Rajan, Vikram; Canal, Clare E.; Hung, Clark T.] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA. [Chahine, Nadeen O.] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Livermore, CA 94550 USA. RP Ateshian, GA (reprint author), Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. EM ateshian@columbia.edu RI Chahine, Nadeen/O-5496-2015; OI Chahine, Nadeen/0000-0002-0478-6042 FU NIAMS NIH HHS [AR46532, R01 AR046532, R01 AR046532-09] NR 59 TC 78 Z9 79 U1 3 U2 25 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0148-0731 J9 J BIOMECH ENG-T ASME JI J. Biomech. Eng.-Trans. ASME PD JUN PY 2009 VL 131 IS 6 AR 061003 DI 10.1115/1.3118773 PG 10 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 445FO UT WOS:000266035700003 PM 19449957 ER PT J AU Taylor, PA Ford, CC AF Taylor, Paul A. Ford, Corey C. TI Simulation of Blast-Induced Early-Time Intracranial Wave Physics leading to Traumatic Brain Injury SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE biomechanics; brain models; detonation waves; finite volume methods; impact (mechanical); neurophysiology; stress analysis; wounds ID DIFFUSE AXONAL INJURY; FINITE-ELEMENT-ANALYSIS; HUMAN HEAD; IMPACT SIMULATIONS; DYNAMIC-RESPONSE; MODEL; DAMAGE; RECOVERY AB The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm(3) voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI. C1 [Taylor, Paul A.] Sandia Natl Labs, Dept Penetrat Syst, Albuquerque, NM 87185 USA. [Ford, Corey C.] Univ New Mexico, Hlth Sci Ctr, Dept Neurol, Albuquerque, NM 87131 USA. RP Taylor, PA (reprint author), Sandia Natl Labs, Dept Penetrat Syst, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors would like to express their gratitude to Michael Dwyer, Director of Technical Imaging Development, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs Neurological Institute, University at Buffalo, for segmenting the color cryosections for the head model used in this study. We would also like to thank Dr. M. E. Kipp for his insightful technical review of the manuscript. NR 44 TC 78 Z9 80 U1 2 U2 25 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0148-0731 J9 J BIOMECH ENG-T ASME JI J. Biomech. Eng.-Trans. ASME PD JUN PY 2009 VL 131 IS 6 AR 061007 DI 10.1115/1.3118765 PG 11 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 445FO UT WOS:000266035700007 PM 19449961 ER PT J AU Meuser, JE Ananyev, G Wittig, LE Kosourov, S Ghirardi, ML Seibert, M Dismukes, GC Posewitz, MC AF Meuser, Jonathan E. Ananyev, Gennady Wittig, Lauren E. Kosourov, Sergey Ghirardi, Maria L. Seibert, Michael Dismukes, G. Charles Posewitz, Matthew C. TI Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms SO JOURNAL OF BIOTECHNOLOGY LA English DT Article; Proceedings Paper CT International Workshop on Solar Bio-Fuels CY AUG, 2008 CL Bielefeld Univ, Bielefeld, GERMANY HO Bielefeld Univ DE Algae; Anoxia; Biofuel; Chlamydomonas; Hydrogenase; Photosynthesis ID CHLAMYDOMONAS-REINHARDTII CULTURES; BIOLOGICAL H-2 PRODUCTION; GREEN-ALGAE; FERMENTATIVE METABOLISM; SULFUR DEPRIVATION; EUKARYOTIC ALGAE; PHOTOPRODUCTION; EVOLUTION; GENE; PHOTOSYNTHESIS AB Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H(2) during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H(2) under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H(2) photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia. (C) 2009 Elsevier B.V. All rights reserved. C1 [Posewitz, Matthew C.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Meuser, Jonathan E.; Wittig, Lauren E.] Colorado Sch Mines, Div Environm Sci & Engn, Golden, CO 80401 USA. [Ananyev, Gennady; Dismukes, G. Charles] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Ananyev, Gennady; Dismukes, G. Charles] Princeton Univ, Inst Environm, Princeton, NJ 08544 USA. [Kosourov, Sergey; Ghirardi, Maria L.; Seibert, Michael] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Posewitz, MC (reprint author), Colorado Sch Mines, Dept Chem & Geochem, 1500 Illinois St, Golden, CO 80401 USA. EM mposewit@mines.edu RI Kosourov, Sergey/C-6682-2009; Dismukes, Gerard/I-4905-2012; Kosourov, Sergey/A-1659-2016 OI Kosourov, Sergey/0000-0003-4025-8041; Dismukes, Gerard/0000-0003-0155-0541; Kosourov, Sergey/0000-0003-4025-8041 NR 65 TC 39 Z9 40 U1 4 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD JUN 1 PY 2009 VL 142 IS 1 BP 21 EP 30 DI 10.1016/j.jbiotec.2009.01.015 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 463SQ UT WOS:000267452700004 PM 19480944 ER PT J AU Warnecke, F Hess, M AF Warnecke, Falk Hess, Matthias TI A perspective: Metatranscriptomics as a tool for the discovery of novel biocatalysts SO JOURNAL OF BIOTECHNOLOGY LA English DT Article; Proceedings Paper CT International Workshop on Solar Bio-Fuels CY AUG, 2008 CL Bielefeld Univ, Bielefeld, GERMANY HO Bielefeld Univ DE Metatranscriptomics; Metagenomics; Next generation sequencing technologies; Novel biocatalysts ID MICROBIAL COMMUNITIES; DNA MICROARRAY; GENE-EXPRESSION; RIBOSOMAL-RNA; DIVERSITY; TRANSCRIPTOME; METAGENOMICS; IDENTIFICATION; BIOSPHERE; DYNAMICS AB In this mini-review, advantages and current bottlenecks of metatranscriptomic-sequencing for the discovery of novel enzymes for biotechnological applications will be discussed. Comparison of this innovative approach to traditional metagenomic-sequencing will illustrate that expression profiling has a promising future as a direct and very efficient method for the discovery of novel biocatalysts, even from complex microbial communities. Published by Elsevier B.V. C1 [Warnecke, Falk] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA 94598 USA. [Hess, Matthias] DOE Joint Genome Inst, Genet Anal Program, Walnut Creek, CA 94598 USA. RP Warnecke, F (reprint author), DOE Joint Genome Inst, Microbial Ecol Program, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM FWarnecke@lbl.gov; MHess@lbl.gov RI Hess, Matthias/B-1783-2012 NR 33 TC 41 Z9 46 U1 4 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD JUN 1 PY 2009 VL 142 IS 1 BP 91 EP 95 DI 10.1016/j.jbiotec.2009.03.022 PG 5 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 463SQ UT WOS:000267452700013 PM 19480952 ER PT J AU Hareland, G Yan, W Nygaard, R Wise, JL AF Hareland, G. Yan, W. Nygaard, R. Wise, J. L. TI Cutting Efficiency of a Single PDC Cutter on Hard Rock SO JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY LA English DT Article CT Canadian International Petroleum Conference CY JUN 16-18, 2009 CL Calgary, CANADA SP Fekete, Sproule, Champion Technol, KADE Technol, June Warren-Nickles Energy Grp, DeGolyer MacNaughton, ajm Petroleum Consultants AB Polycrystalline diamond compact (PDC) bits have gained wide popularity in the petroleum industry for drilling soft and moderately firm formations. However, in hard formation applications, the PDC bit still has limitations, even though recent developments in PDC cutter designs and materials steadily improves PDC bit performance. The limitations of PDC bits for drilling hard formations is an important technical obstacle that must be overcome before using the PDC bit to develop competitively priced electricity from enhanced geothermal systems, as well as deep continental gas fields. Enhanced geothermal energy is a very promising source for generating electrical energy and, therefore, there is an urgent need to further enhance PDC bit performance in hard formations. In this paper, the cutting efficiency of the PDC bit has been analyzed based on the development of an analytical single PDC cutter force model. The cutting efficiency of a single PDC cutter is defined as the ratio of the volume removed by a cutter over the force required to remove that volume of rock. The cutting efficiency is found to be a function of the back rake angle, the depth of cut and the rock property, such as the angle of internal friction. The highest cutting efficiency is found to occur at specific back rake angles of the cutter based on the material properties of the rock. The cutting efficiency directly relates to the internal angle of friction of the rock being cut. The results of this analysis can be integrated to study PDC bit performance. It can also provide a guideline to the application and design of PDC bits for specific rocks. C1 [Hareland, G.] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada. [Hareland, G.] Univ Calgary, CAODC NSERC, Chair Drilling Engn, Calgary, AB T2N 1N4, Canada. [Wise, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hareland, G (reprint author), Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada. NR 9 TC 6 Z9 6 U1 2 U2 8 PU CANADIAN INST MINING METALLURGY PETROLEUM PI MONTREAL PA 3400 DE MAISONNEUVE BLVD W, STE 855, MONTREAL, PQ H3Z 3B8, CANADA SN 0021-9487 J9 J CAN PETROL TECHNOL JI J. Can. Pet. Technol. PD JUN PY 2009 VL 48 IS 6 BP 60 EP 65 PG 6 WC Energy & Fuels; Engineering, Chemical; Engineering, Petroleum SC Energy & Fuels; Engineering GA 450RG UT WOS:000266417900009 ER PT J AU Karagiosis, SA Chrisler, WB Bollinger, N Karin, NJ AF Karagiosis, Sue A. Chrisler, William B. Bollinger, Nikki Karin, Norman J. TI Lysophosphatidic Acid-Induced ERK Activation and Chemotaxis in MC3T3-E1 Preosteoblasts Are Independent of EGF Receptor Transactivation SO JOURNAL OF CELLULAR PHYSIOLOGY LA English DT Article ID GROWTH-FACTOR RECEPTOR; PROTEIN-COUPLED RECEPTORS; SIGNAL-REGULATED KINASE; OSTEOBLASTIC CELLS; LYSOPHOSPHOLIPID RECEPTORS; NUCLEAR TRANSLOCATION; G(I) PROTEINS; MITOGEN; EXPRESSION; PATHWAY AB Bone-forming osteoblasts and their progenitors are target cells for the lipid growth factor lysophosphatidic acid (LPA) which is produced by degranulating platelets at sites of tissue injury. LPA is a potent inducer of bone cell chemotaxis, proliferation and survival in vitro, and this lipid factor is an attractive candidate to facilitate preosteoblast migration during skeletal regeneration in vivo. In this study we sought to more clearly define the intracellular signaling pathways mediating the effects of LPA on bone cells. LPA-treated MC3T3-E1 preosteoblastic cells exhibited a bimodal activation of extracellular signal-related kinase (ERK1/2) with maximal phosphorylation at 5 and 60 min. MEK1/2 activation was detected within 2.5 min of LPA exposure and remained elevated for at least an hour. ERK1/2 phosphorylation was not coupled to Ras activation orto LPA-induced elevations in cytosolic Ca(2+). While LPA exposure transactivates the EGF receptor in many cell types, LPA-stimulated ERK1/2 activation in MC3T3-E1 cells was unaffected by the inhibition of EGF receptor function. ERK isoforms can function as transcription factors and ERK1/2 rapidly accumulated in the nuclei of LPA-treated cells, a process that was blocked if ERK1/2 phosphorylation was prevented. Blocking ERK1/2 phosphorylation also led to significant decreases in LPA-induced MC3T3-E1 cell chemotaxis, while the inhibition of EGF receptor function had no effect on the stimulation of preosteoblast motility by LPA. Our results identify ERK1/2 activation as a mediator of LPA-stimulated MC3T3-E1 cell migration that may be relevant to preosteoblast motility and gene expression during bone repair in vivo. C1 [Karagiosis, Sue A.; Chrisler, William B.; Bollinger, Nikki; Karin, Norman J.] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Karin, NJ (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, POB 999,P7-56, Richland, WA 99352 USA. EM norman.karin@pnl.gov FU Laboratory-Directed Research and Development Program at the Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy [DE-AC06-76RLO1830] FX Contract grant number: DE-AC06-76RLO1830. NR 40 TC 10 Z9 10 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0021-9541 J9 J CELL PHYSIOL JI J. Cell. Physiol. PD JUN PY 2009 VL 219 IS 3 BP 716 EP 723 DI 10.1002/jcp.21720 PG 8 WC Cell Biology; Physiology SC Cell Biology; Physiology GA 438IA UT WOS:000265547900024 PM 19189345 ER PT J AU Huang, SH Wang, XP Richmond, MG AF Huang, Shih-Huang Wang, Xiaoping Richmond, Michael G. TI Transfer of Amide and 2-Methoxyethoxy Groups and Sodium Encapsulation in the Reaction of TaCl3[N(TMS)(2)](2) with Sodium Bis(2-methoxyethoxy)aluminum Hydride: X-ray Structure of [NaAl{N(TMS)(2)}(OCH2CH2OMe)(3)](2) SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY LA English DT Article DE Aluminate; Amide transfer; Crown ether; Sodium encapsulation; Crystal structure ID MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; COMPLEXES; ARYLOXIDES; ALUMINUM; TANTALUM; NIOBIUM; LIGANDS; LITHIUM; ANIONS AB The reaction between the tantalum compound TaCl3[N(TMS)(2)](2) and the hydridic reducing agent sodium bis(2-methoxyethoxy) aluminum hydride (Vitride) has been investigated in toluene solution at room temperature and found to afford the dimeric aluminate complex [NaAl{N(TMS)(2)}(OCH2CH2OMe)(3)](2) as the sole isolable product. The molecular structure of the product establishes the existence of a four-coordinate aluminum atom and the formal transfer of the 2-methoxyethoxy and bis(trimethylsilyl) amide groups to the aluminate product. The aggregation of two NaAl{N(TMS)(2)}(OCH2CH2OMe)(3) units serves to bind the two sodium cations in a crown-ether fashion through six ancillary oxygen atoms. C1 [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Huang, Shih-Huang; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangx@ornl.gov; cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012; G, Neela/H-3016-2014 OI Wang, Xiaoping/0000-0001-7143-8112; FU Robert A. Welch Foundation [B-1093]; LAM Research Foundation FX Financial support from the Robert A. Welch Foundation (grant B-1093) and the LAM Research Foundation is appreciated. NR 23 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1074-1542 J9 J CHEM CRYSTALLOGR JI J. Chem. Crystallogr. PD JUN PY 2009 VL 39 IS 6 BP 428 EP 432 DI 10.1007/s10870-008-9497-5 PG 5 WC Crystallography; Spectroscopy SC Crystallography; Spectroscopy GA 430WD UT WOS:000265020200007 ER PT J AU Sindhikara, DJ Kim, S Voter, AF Roitberg, AE AF Sindhikara, Daniel J. Kim, Seonah Voter, Arthur F. Roitberg, Adrian E. TI Bad Seeds Sprout Perilous Dynamics: Stochastic Thermostat Induced Trajectory Synchronization in Biomolecules SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SERIAL REPLICA EXCHANGE; MOLECULAR-DYNAMICS; MONTE-CARLO; SIMULATIONS; EQUILIBRIUM; TEMPERATURE; ALGORITHMS; EQUATIONS; LANGEVIN; ENSEMBLE AB Molecular dynamics simulations starting from different initial conditions are commonly used to mimic the behavior of an experimental ensemble. We show in this article that when a Langevin thermostat is used to maintain constant temperature during such simulations, extreme care must be taken when choosing the random number seeds to prevent statistical correlation among the MD trajectories. While recent studies have shown that stochastically thermostatted trajectories evolving within a single potential basin with identical random number seeds tend to synchronize, we show that there is a synchronization effect even for complex, biologically relevant systems. We demonstrate this effect in simulations of alanine trimer and pentamer and in a simulation of a temperature-jump experiment for peptide folding of a 14-residue peptide. Even in replica-exchange simulations, in which the trajectories are at different temperatures, we find partial synchronization occurring when the same random number seed is employed. We explain this by extending the recent derivation of the synchronization effect for two trajectories in a harmonic well to the case in which the trajectories are at two different temperatures. Our results suggest several ways in which mishandling selection of a pseudorandom number generator initial seed can lead to corruption of simulation data. Simulators can fall into this trap in simple situations such as neglecting to specifically indicate different random seeds in either parallel or sequential restart simulations, utilizing a simulation package with a weak pseudorandom number generator, or using an advanced simulation algorithm that has not been programmed to distribute initial seeds. C1 [Sindhikara, Daniel J.; Roitberg, Adrian E.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Roitberg, Adrian E.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Sindhikara, Daniel J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Kim, Seonah] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Voter, Arthur F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Roitberg, AE (reprint author), Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. EM roitberg@qtp.ufl.edu RI Roitberg, Adrian/A-2378-2009; OI Sindhikara, Daniel/0000-0002-8913-6996 FU National Science Foundation [CHE-0822-935]; U.S. DOE [DE-AC52-06NA25396] FX The authors acknowledge the University of Florida High-Performance Computing Center for providing computational resources. Computational resources were also provided by Teragrid Grant No. TGMCA05SO10. Work at the University of Florida was funded by the National Science Foundation grant number CHE-0822-935. Work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (U.S. DOE) Office of Basic Energy Sciences, Materials Sciences and Engineering Division. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396. The authors are grateful to Bias P. Uberuaga, Marian Anghel, Kevin Lin, and John Chodera for helpful discussions. NR 33 TC 41 Z9 41 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUN PY 2009 VL 5 IS 6 BP 1624 EP 1631 DI 10.1021/ct800573m PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 456RL UT WOS:000266865000017 PM 26609854 ER PT J AU Lu, BZ Cheng, XL Huang, JF McCammon, JA AF Lu, Benzhuo Cheng, Xiaolin Huang, Jingfang McCammon, J. Andrew TI An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID PARTICLE-MESH-EWALD; 3 DIMENSIONS; ALGORITHM; SYSTEMS; SIMULATIONS; EQUATION AB The numerical solution of the Poisson-Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer. C1 [Lu, Benzhuo] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China. [Cheng, Xiaolin] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Huang, Jingfang] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA. [McCammon, J. Andrew] Univ Calif San Diego, Dept Chem & Biochem, Ctr Theoret Biol Phys, Howard Hughes Med Inst,Dept Pharmacol, San Diego, CA 92093 USA. RP Lu, BZ (reprint author), Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China. EM bzlu@lsec.cc.ac.cn FU HHMI; NIH; NSF [NSF0811130, NSF0411920, MCB0506593]; NSF Center of Theoretical Biological Physics (CTBP); Chinese Academy of Sciences, China; Computer Science and Mathematics Division at Oak Ridge National Laboratory FX We thank many of our colleagues and collaborators for their contributions and suggestions. In particular, our code uses many existing open source codes, including the SPARSKIT by Saad and collaborators,20 MSMS,26 and Garner27 for mesh generation, VMD28 for visualization, and several important subroutines in the new version of FMM from Profs. Greengard and Rokhlin's group. This work was supported by HHMI, NIH, NSF (J.H.: NSF0811130 and NSF0411920, J.A.M.: MCB0506593), and the NSF Center of Theoretical Biological Physics (CTBP). B.Z. is partially funded by the "100 Talents Projects" of the Chinese Academy of Sciences, China. X.C. is partially funded by the Computer Science and Mathematics Division at Oak Ridge National Laboratory. Their support is thankfully acknowledged. NR 24 TC 27 Z9 27 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUN PY 2009 VL 5 IS 6 BP 1692 EP 1699 DI 10.1021/ct900083k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 456RL UT WOS:000266865000024 ER PT J AU Hannay, C Williamson, DL Hack, JJ Kiehl, JT Olson, JG Klein, SA Bretherton, CS Kohler, M AF Hannay, Cecile Williamson, David L. Hack, James J. Kiehl, Jeffrey T. Olson, Jerry G. Klein, Stephen A. Bretherton, Christopher S. Koehler, Martin TI Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL, and ECMWF Models SO JOURNAL OF CLIMATE LA English DT Article ID LARGE-SCALE MODELS; COMMUNITY ATMOSPHERE MODEL; GENERAL-CIRCULATION MODELS; SINGLE-COLUMN MODEL; SHALLOW CUMULUS CONVECTION; MARINE BOUNDARY-LAYER; LIQUID WATER PATH; DIURNAL CYCLE; TROPICAL PACIFIC; CLIMATE MODEL AB Forecasts of southeast Pacific stratocumulus at 20 degrees S and 85 degrees W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 are examined with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3-5 days to determine the differences with the EPIC field observations. Observations during the EPIC cruise show a well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the models is that the planetary boundary layer (PBL) depth is too shallow when compared to EPIC observations. However, it is suggested that improved PBL depths are achieved with more physically realistic PBL schemes: at one end, CAM uses a dry and surface-driven PBL scheme and produces a very shallow PBL, while the ECWMF model uses an eddy-diffusivity/mass-flux approach and produces a deeper and better-mixed PBL. All the models produce a strong diurnal cycle in the liquid water path (LWP), but there are large differences in the amplitude and phase when compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface and the surface energy budget. This is particularly relevant for coupled simulations as this can lead to a large SST bias. C1 [Hannay, Cecile; Williamson, David L.; Hack, James J.; Kiehl, Jeffrey T.; Olson, Jerry G.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Klein, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Koehler, Martin] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. RP Hannay, C (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM hannay@ucar.edu RI Klein, Stephen/H-4337-2016 OI Klein, Stephen/0000-0002-5476-858X FU NSF ATM [0336688, 0336703, 0433712]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC52-07NA27344]; Office of Science (BER), U.S. Department of Energy [DE-FC02-97ER62402] FX We acknowledge the support of NSF ATM Grant 0336688 for Cecile Hannay. Chris Bretherton was funded through NSF ATM Grants 0336703 and 0433712. Stephen Klein was funded through the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. The contribution of StephenKlein was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Jerry Olson and David Williamson were partially funded by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement DE-FC02-97ER62402. NR 83 TC 56 Z9 58 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN PY 2009 VL 22 IS 11 BP 2871 EP 2889 DI 10.1175/2008JCLI2479.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 467SR UT WOS:000267763200005 ER PT J AU Waliser, D Sperber, K Hendon, H Kim, D Wheeler, M Weickmann, K Zhang, C Donner, L Gottschalck, J Higgins, W Kang, IS Legler, D Moncrieff, M Vitart, F Wang, B Wang, W Woolnough, S Maloney, E Schubert, S Stern, W AF Waliser, D. Sperber, K. Hendon, H. Kim, D. Wheeler, M. Weickmann, K. Zhang, C. Donner, L. Gottschalck, J. Higgins, W. Kang, I. -S. Legler, D. Moncrieff, M. Vitart, F. Wang, B. Wang, W. Woolnough, S. Maloney, E. Schubert, S. Stern, W. CA Clivar Madden-Julian Oscillation TI MJO Simulation Diagnostics SO JOURNAL OF CLIMATE LA English DT Review ID MADDEN-JULIAN OSCILLATION; TROPICAL INTRASEASONAL OSCILLATION; SEA-SURFACE TEMPERATURE; GENERAL-CIRCULATION MODEL; ASIAN SUMMER MONSOON; EXTREME PRECIPITATION EVENTS; NINO SOUTHERN-OSCILLATION; COUPLED EQUATORIAL WAVES; EASTERN NORTH PACIFIC; 30-50 DAY VARIABILITY AB The Madden-Julian oscillation (MJO) interacts with and influences a wide range of weather and climate phenomena (e. g., monsoons, ENSO, tropical storms, midlatitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multimodel comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, because of the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the U. S. Climate Variability and Predictability (CLIVAR) MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO. C1 [Waliser, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sperber, K.] Lawrence Livermore Natl Lab, PCMDI, Livermore, CA USA. [Hendon, H.; Wheeler, M.] Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Kim, D.] Seoul Natl Univ, Seoul, South Korea. [Maloney, E.] Colorado State Univ, Ft Collins, CO 80523 USA. [Weickmann, K.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Zhang, C.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Donner, L.; Stern, W.] NOAA GFDL, Princeton, NJ USA. [Gottschalck, J.; Higgins, W.; Wang, W.] NOAA NCEP, Camp Springs, MD USA. [Kang, I. -S.] Seoul Natl Univ, Seoul, South Korea. [Legler, D.] US CLIVAR Off, Washington, DC USA. [Moncrieff, M.] NCAR, Boulder, CO USA. [Schubert, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vitart, F.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Wang, B.] Univ Hawaii Manoa, IPRC, Honolulu, HI 96822 USA. [Woolnough, S.] Univ Reading, Reading, Berks, England. RP Waliser, D (reprint author), CALTECH, Jet Prop Lab, MS 183-505,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM duane.waliser@jpl.nasa.gov RI Wheeler, Matthew/C-9038-2011; Maloney, Eric/A-9327-2008; Sperber, Kenneth/H-2333-2012; 안, 민섭/D-9972-2015 OI Wheeler, Matthew/0000-0002-9769-1973; Maloney, Eric/0000-0002-2660-2611; FU U.S. CLIVAR and International CLIVAR; U.S. Department of Energy Office of Science; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF Climate and Large-Scale Dynamics Program [ATM-063234]; NOAA CPPA Award [NA05OAR4310006]; NSF [ATM0739402]; NOAA Office of Global Programs through the Cooperative Institute for Marine and Atmospheric Studies (CIMAS); Korea Meteorological Administration Research and Development Program [CATER_ 2006-4206]; BK21 program FX The MJOWG wishes to acknowledge and thank U.S. CLIVAR and International CLIVAR for supporting this working group and its activities. We would like to specifically acknowledge the administrative support on behalf of the MJOWG by Cathy Stevens of the U.S. CLIVAR Office. KRS was supported under the auspices of the U.S. Department of Energy Office of Science, Climate Change Prediction Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. DEW's contributions to this study were carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). EDM was supported by the NSF Climate and Large-Scale Dynamics Program under Grant ATM-063234, and by NOAA CPPA Award NA05OAR4310006. CZ was support by NSF Grant ATM0739402 and by the NOAA Office of Global Programs through the Cooperative Institute for Marine and Atmospheric Studies (CIMAS). D. Kim and I. Kang were supported by the Korea Meteorological Administration Research and Development Program under Grant CATER_ 2006-4206 and BK21 program. NR 138 TC 110 Z9 111 U1 1 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN PY 2009 VL 22 IS 11 BP 3006 EP 3030 DI 10.1175/2008JCLI2731.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 467SR UT WOS:000267763200013 ER PT J AU Hunyadi, SE Murphy, CJ AF Hunyadi, Simona E. Murphy, Catherine J. TI Synthesis and Characterization of Silver-Platinum Bimetallic Nanowires and Platinum Nanotubes SO JOURNAL OF CLUSTER SCIENCE LA English DT Article DE Silver; Platinum; Nanowires; Bimetallic; Nanotubes ID ENHANCED RAMAN-SCATTERING; METHANOL FUEL-CELL; CATALYTIC-ACTIVITY; METAL NANOPARTICLES; REPLACEMENT REACTION; CHEMICAL-SYNTHESIS; COLLOIDAL SOLUTION; AQUEOUS-SOLUTION; GOLD NANORODS; SURFACE AB A galvanic replacement reaction was used to prepare silver-platinum bimetallic nanowires and platinum nanotubes. Silver nanowires, prepared by boiling aqueous silver nitrate with sodium citrate in the presence of small amount of sodium hydroxide, were used as the sacrificial template in the galvanic reaction to prepare silver-platinum bimetallic nanowires and ultimately hollow platinum nanotubes. The resulting nanomaterials are stable and can be isolated without core aggregation or decomposition. These new materials have been characterized by transmission electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma atomic emission spectroscopy. C1 [Hunyadi, Simona E.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Murphy, Catherine J.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. RP Murphy, CJ (reprint author), Univ S Carolina, Dept Chem & Biochem, 631 Sumter St, Columbia, SC 29208 USA. EM murphy@mail.chem.sc.edu OI Murphy, Catherine/0000-0001-7066-5575 NR 48 TC 14 Z9 14 U1 2 U2 27 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1040-7278 J9 J CLUST SCI JI J. Clust. Sci. PD JUN PY 2009 VL 20 IS 2 BP 319 EP 330 DI 10.1007/s10876-009-0242-9 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 483PX UT WOS:000268980900007 ER PT J AU Chelikowsky, JR Saad, Y Chan, TL Tiago, ML Zayak, AT Zhou, YK AF Chelikowsky, James R. Saad, Yousef Chan, Tzu-Liang Tiago, Murilo L. Zayak, A. T. Zhou, Yunkai TI Pseudopotentials on Grids: Application to the Electronic, Optical, and Vibrational Properties of Silicon Nanocrystals SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE Nanostructures; Algorithms; Silicon Nanocrystals; Pseudopotentials; Density Functional Theory; Optical Properties; Vibrational Properties ID DENSITY-FUNCTIONAL THEORY; DOPED SI NANOCRYSTALS; QUANTUM DOTS; POROUS SILICON; SEMICONDUCTOR NANOCRYSTALS; HYDROGENIC IMPURITY; BAND-GAPS; CLUSTERS; LUMINESCENCE; ENERGY AB Solving for the quantum properties of nano-scale systems is a "grand challenge" problem. The size of a nanocrystal or nanowire can exceed thousands of atoms; however, such systems can be very different than a macroscopic one and require an explicit "quantum mechanical" solution. Until recently there were virtually no methods for describing these systems with the same accuracy that one would expect for small molecules or clusters. Here we outline a method that can be applied to systems of this size and illustrate some representative applications. Our approach capitalizes on several algorithmic and conceptual advances. The key physical ingredients include pseudopotentials and density functional theory. The pseudopotential approximation allows us to set the length and energy scales to those of the valence electron states, considerably simplifying the representation of the wave functions, while density functional theory allows us to map the all electron problem onto an equivalent "one-electron" problem, i.e., the Kohn-Sham problem. This "pseudopotential-density functional theory" combination has become the "standard" for large scale electronic structure problems. However, this powerful combination cannot be applied to nanoscale systems containing thousands of atoms without improved algorithms. We will present several algorithmic advances that are centered on a real-space or grid solution of the Kohn-Sham equation. These advances, including subspace filtering methods, allow one to handle systems with thousands of atoms. We will illustrate this approach to silicon nanocrystals by predicting the role of quantum confinement on the electronic, optical and vibrational properties for this technologically important system. C1 [Chelikowsky, James R.; Chan, Tzu-Liang; Zayak, A. T.] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. [Chelikowsky, James R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Chelikowsky, James R.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Saad, Yousef] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. [Zhou, Yunkai] So Methodist Univ, Dept Math, Dallas, TX 75275 USA. [Tiago, Murilo L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Chelikowsky, JR (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. RI Chan, Tzu-Liang/C-3260-2015 OI Chan, Tzu-Liang/0000-0002-9655-0917 FU National Science Foundation [DMR-0551195]; U.S. Department of Energy [G02-06ER46286, DE-FG02-06ER15760]; Texas Advanced Computing Center (TACC); National Energy Research Scientific Computing Center (NERSC); U.S. Department of Energy FX This work was Supported in part by the National Science Foundation under DMR-0551195 and by the U.S. Department of Energy under DE-FG02-06ER46286 and DE-FG02-06ER15760. Computational, support is acknowledged from the Texas Advanced Computing Center (TACC) and the DOE National Energy Research Scientific Computing Center (NERSC). Research performed at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, BES, U.S. Department of Energy under contract with UT-Battelle, LLC. NR 95 TC 4 Z9 4 U1 1 U2 14 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1546-1955 EI 1546-1963 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD JUN PY 2009 VL 6 IS 6 SI SI BP 1247 EP 1261 DI 10.1166/jctn.2009.1173 PG 15 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 441BU UT WOS:000265745100004 ER PT J AU Franceschetti, A Troparevsky, MC AF Franceschetti, A. Troparevsky, M. C. TI Pseudopotential Theory of Electronic Excitations in Semiconductor Nanostructures SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE Nanocrystals; Configuration Interactions; Exciton; Biexciton ID QUANTUM DOTS; CDSE NANOCRYSTALS AB The calculation of the optical and electronic properties of semiconductor nanostructures is still based for the most part on highly approximated, continuum-like models such as the effective-mass approximation, which do not take into account the atomistic structure of the nanostructures. We present here an atomistic pseudopotential approach to the calculation of excited states in semiconductor nanostructures. The single-particle Schrodinger equation is solved using O(N) methods. The electronic excited states (such as excitons, charged excitons, multi-excitons, etc.) are then calculated by solving the many-particle Schrodinger equation in a basis set of Slater determinants obtained by promoting one or more electrons from the valence band to the conductions band (configuration interaction expansion). Applications of this method to predict the excitonic fine structure and the optical emission spectra of neutral and charged excitons, bi-excitons, and tri-excitons in CdSe colloidal nanocrystals are presented. C1 [Franceschetti, A.; Troparevsky, M. C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Troparevsky, M. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU U.S. Department of Energy, Office of Science [DE-AC36-99GO10337] FX This work was funded by the U.S. Department of Energy, Office of Science. Basic Energy Sciences, under Contract No. DE-AC36-99GO10337 to NREL. NR 21 TC 3 Z9 3 U1 1 U2 3 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-1955 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD JUN PY 2009 VL 6 IS 6 BP 1272 EP 1276 DI 10.1166/jctn.2009.1175 PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 441BU UT WOS:000265745100006 ER PT J AU Asadchev, A Bode, BM Gordon, MS AF Asadchev, Andrey Bode, Brett M. Gordon, Mark S. TI Performance of Electronic Structure Calculations on BG/L and XT4 Computers SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE GAMESS; Parallel; Blue Gene; Cray XT4; SCF; MP2 ID ALGORITHMS AB The performance of the General Atomic and Molecular Electronic Structure System (GAMESS) on Cray XT4 and IBM Blue Gene (BG) supercomputers is presented. Efficient utilization of massively parallel computers enables the results of large self consistent field (SCIF) and second order perturbation theory (MP2) calculations to be obtained in a short time. A number of performance limiting steps, including serial N-3 steps in the orbital guess, SCF iterations, and property evaluations have been parallelized and optimized. Poor SCIF cache performance has been addressed with moderate to significant improvements. Results of parallel N-3 implementation on BG/L and XT4 systems, as well as on x86 clusters, are discussed. MP2 performance on BG/L and XT4 is compared and special considerations when running on BG/L are discussed. The improvements and discussions should be of interest to those considering using GAMESS or other electronic structure codes to study large systems on large supercomputers. C1 [Asadchev, Andrey; Bode, Brett M.; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. RP Gordon, MS (reprint author), Iowa State Univ, Ames Lab, 201 Spedding Hall, Ames, IA 50010 USA. OI Bode, Brett/0000-0002-4202-1024 FU National Science Foundation; Department of Energy FX The POSS input stuctures that were used as the tests were provided by Dr. Baudilio Tejerina at Northwestern University. The tests were run on Blue Gene installations at IBM Research Watson Center and Iowa State University, the Cray XT4, Jaguar, at Oak Ridge National Laboratory, and a x86 cluster at Ames Laboratory. This work was supported by the National Science Foundation and the Ames Laboratory, administered by the Department of Energy. NR 16 TC 1 Z9 1 U1 0 U2 4 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1546-1955 EI 1546-1963 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD JUN PY 2009 VL 6 IS 6 SI SI BP 1290 EP 1296 DI 10.1166/jctn.2009.1177 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 441BU UT WOS:000265745100008 ER PT J AU Windus, TL Bylaska, EJ Tsemekhman, K Andzelm, J Govind, N AF Windus, Theresa L. Bylaska, Eric J. Tsemekhman, Kiril Andzelm, Jan Govind, Niranjan TI Computational Nanoscience with NWChem SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE NWChem; Density Functional Theory; Carbon Nanotubes; Properties ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; MGO(100) SURFACE; MAGNETIC-PROPERTIES; ORGANIC-MOLECULES; ELECTRON-TRANSFER; EXCITED-STATES; GUEST-HOST; CLUSTERS AB The NWChem software as been used to examine many nanoscale systems and their properties over the years. In this paper, an overiew of the general capabilities of NWChem is given as well as more specific details on the planewave and Gaussian based density functional codes usually used for nanoscale investigations. Examples are given of the scientific literature using NWChem, as well as two case studies: (1) Band gaps in oxides using exact-exchange based exchange-correlation functionals with the planewave DFT module, (2) Optical properties of chromophores using the Gaussian based DFT module. C1 [Windus, Theresa L.] Iowa State Univ, Dept Chem, Ames, IA 50014 USA. [Bylaska, Eric J.; Govind, Niranjan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Tsemekhman, Kiril] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Andzelm, Jan] Army Res Lab, Aberdeen Proving Ground, MD 21010 USA. RP Windus, TL (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50014 USA. RI Govind, Niranjan/D-1368-2011 FU NSF [OISE-0730114]; Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC06-76RLO 1830]; U.S. Army Research Laboratory (ARL; Air Force Research Laboratory (AFRL); Major Shared Resource Center (MSRC) FX Theresa L. Windus gratefully acknowledges NSF funding under grant OISE-0730114. The work at Pacific Northwest National Laboratory (PNNL) was supported by the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830 (Office of Biological and Environmental Research, Environmental Molecular Sciences Laboratory operations). The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute. The Environmental Molecular Sciences Laboratory operations are Supported by the DOE's Office of Biological and Environmental Research. Jan Andzelni gratefully acknowledges computational resources of U.S. Army Research Laboratory (ARL) and Air Force Research Laboratory (AFRL) Major Shared Resource Center (MSRC) and help of Dr. Gary Kedziora in installing NWCHEM at AFRL MSRC Supercomputers. Eric J. Bylaska would like to acknowledge Support from the BES Geosciences and BES Nanoscale Science, Engineering and Technology programs of the U.S. Department of Energy, Office of Science. Niranjan Govind also acknowledges support from the EMSL Intramural Program 2008. NR 79 TC 0 Z9 0 U1 0 U2 10 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-1955 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD JUN PY 2009 VL 6 IS 6 BP 1297 EP 1304 DI 10.1166/jctn.2009.1178 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 441BU UT WOS:000265745100009 ER PT J AU Dang, HL Gudipati, R Liu, Y Li, Y Liu, YD Peterson, HL Chisholm, MF Biggerstaff, T Duscher, G Wang, SW AF Dang, Hongli Gudipati, Ramkumar Liu, Yang Li, Ying Liu, Yingdi Peterson, Heather L. Chisholm, Matthew F. Biggerstaff, Trinity Duscher, Gerd Wang, Sanwu TI Carbon Clusters as Possible Defects in the SiC-SiO2 Interface SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE First-Principles Quantum-Mechanical Calculations; Density Functional Theory; Electronic Structure; Wide Gap Semiconductors; Silicon Carbide; Silicon Dioxide; Interface States; Defects; Carbon Clusters; Carbon Fullerence ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MOLECULAR-DYNAMICS; SILICON-CARBIDE; STATES; OXIDATION; METALS AB High state densities in the band gap of the SiC-SiO2 interface significantly reduce the channel mobilities in SiC-based high-temperature/high-power microelectronics. Investigations of the nature of the interface defects are thus of great importance. While several possible defects including very small carbon clusters with up to four carbon atoms have been identified by first-principles theory, larger carbon clusters as possible defects have attracted less attention. Here, we report first-principles quantum-mechanical calculations for two larger carbon clusters, the C-10 ring and the C-20 fullerence, in the SiC-SiO2 interface. We find that both carbon clusters introduce significant states in the band gap. The states extend over the entire band gap with higher densities in the upper half of the gap, thus accounting for some of the interface trap densities observed experimentally. C1 [Dang, Hongli; Gudipati, Ramkumar; Liu, Yang; Li, Ying; Liu, Yingdi; Peterson, Heather L.; Wang, Sanwu] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. [Chisholm, Matthew F.; Duscher, Gerd] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Biggerstaff, Trinity] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Duscher, Gerd] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, SW (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. RI Dang, Hongli/H-1269-2012; Duscher, Gerd/G-1730-2014 OI Duscher, Gerd/0000-0002-2039-548X FU Oak Ridge Associated Universities and the University of Tulsa; USDOE FX This work was supported in part by the Oak Ridge Associated Universities and the University of Tulsa. Access to the supercomputers at the National Center for Supercomputing Applications and at Oak Rid-e National Laboratory is also acknowledged. MFC was supported by the Division of Materials Sciences and Engineering, USDOE. NR 30 TC 4 Z9 5 U1 1 U2 14 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1546-1955 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD JUN PY 2009 VL 6 IS 6 SI SI BP 1305 EP 1310 DI 10.1166/jctn.2009.1179 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 441BU UT WOS:000265745100010 ER PT J AU Kang, KS Davenport, JW Glimm, J Keyes, DE Mcguigan, M AF Kang, K. S. Davenport, J. W. Glimm, J. Keyes, D. E. Mcguigan, M. TI Linear Augmented Slater-Type Orbital Method for Free Standing Clusters SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE density functional theory; clusters ID GENERALIZED GRADIENT APPROXIMATION; ELECTRONIC-STRUCTURE CALCULATIONS; PD2 AB We have developed a Scalable Linear Augmented Slater-Type Orbital (LASTO) method for electronic-structure calculations on free-standing atomic Clusters. As with other linear methods we solve the Schrodinger equation using a mixed basis set consisting of numerical functions inside atom-centered spheres and matched onto tail functions outside. The tail functions are Slater-type orbitals, which are localized, exponentially decaying functions. To solve the Poisson equation between spheres, we use a finite difference method replacing the rapidly varying charge density inside the spheres with a smoothed density with the same multipole moments. We use multigrid techniques oil the mesh, which yields the Coulomb potential on the spheres and in turn defines the potential inside via a Dirichlet problem. To solve the linear eigen-problem, we use ScaLAPACK, a well-developed package to solve large eigensystems with dense matrices. We have tested the method oil small clusters of palladium. (C) 2008 Wiley Periodicals, Inc. J Comput Chem 30: 1185-1193, 2009 C1 [Kang, K. S.; Davenport, J. W.; Glimm, J.; Mcguigan, M.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Davenport, J. W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Keyes, D. E.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Mcguigan, M (reprint author), Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. EM mcguigan@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX Contract/grant sponsor: U.S. Department of Energy: contract/grant number: DE-AC02-98CH10886 NR 29 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD JUN PY 2009 VL 30 IS 8 BP 1185 EP 1193 DI 10.1002/jcc.21138 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 434XK UT WOS:000265307300002 PM 18988248 ER PT J AU Henshaw, WD Chand, KK AF Henshaw, William D. Chand, Kyle K. TI A composite grid solver for conjugate heat transfer in fluid-structure systems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Conjugate heat transfer; Overlapping grids; Incompressible flow; Numerical methods; Multi-domain solvers ID NAVIER-STOKES EQUATIONS; ADAPTIVE MESH REFINEMENT; OVERLAPPING GRIDS; DIFFERENTIAL-EQUATIONS; NATURAL-CONVECTION; INTERFACE RELAXATION; FLOW; DIFFRACTION; COMPUTATION; SIMULATION AB We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids. This approach to conjugate heat transfer can be used to compute transient and steady state solutions to a wide range of fluid-solid systems in complex two-and three-dimensional geometry. Fluids are modeled with the tempera ture-dependent incompressible Navier-Stokes equations using the Boussinesq approximation. Solids with heat transfer are modeled with the heat equation. Appropriate interface equations are applied to couple the solutions across different domains. The computational region is divided into a number of sub-domains corresponding to fluid domains and solid domains. There may be multiple fluid domains and multiple solid domains. Each fluid or solid subdomain is discretized with an overlapping grid. The entire region is associated with a composite grid which is the union of the overlapping grids for the sub-domains. A different physics solver (fluid solver or solid solver) is associated with each sub-domain. A higher-level multi-domain solver manages the entire solution process. We propose and analyze some centered discrete approximations to the interface equations that have some desirable stability properties. The coupled interface equations may be solved directly when using explicit time-stepping methods in the sub-domains, resulting in a strongly coupled approach. The stability of the interface treatment in this case is independent of the relative sizes of the material properties in the two domains with the time-step only depending on the usual von Neumann conditions for each sub-domain. For implicit time-stepping methods we solve the interface equations in a weakly coupled fashion to avoid forming a coupled implicit system across all sub-domains. The convergence of this approach does depend on the relative sizes of the thermal conductivities and diffusivities. We analyze different iteration strategies for solving these implicit equations including the use of mixed (Robin) approximations at the interface. Numerical results are presented to illustrate the method. The accuracy of the technique is verified using the method of analytic solutions and by computing the solution to some heat exchanger problems where the exact solution is known. The technique is also applied to the modeling of an inertial-confinement-fusion hohlraum target and the flow of coolant past an hexagonal array of heated fuel rods. The multi-domain solver runs in parallel on distributed memory computers and some parallel results are provided. (C) 2009 Elsevier Inc. All rights reserved. C1 [Henshaw, William D.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Chand, Kyle K.] Lawrence Livermore Natl Lab, Sci & Technol Comp Div, Livermore, CA 94551 USA. RP Henshaw, WD (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM henshaw1@llnl.gov; chand1@llnl.gov NR 57 TC 34 Z9 36 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 1 PY 2009 VL 228 IS 10 BP 3708 EP 3741 DI 10.1016/j.jcp.2009.02.007 PG 34 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 437BK UT WOS:000265460600010 ER PT J AU Brunner, TA Brantley, PS AF Brunner, Thomas A. Brantley, Patrick S. TI An efficient, robust, domain-decomposition algorithm for particle Monte Carlo SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Monte Carlo methods; Parallel computation; Radiative transfer; Neutron transport AB A previously described algorithm [T.A. Brunner, T.J. Urbatsch, T.M. Evans, N.A. Gentile, Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo, journal of Computational Physics 212 (2) (2006) 527-539] for doing domain decomposed particle Monte Carlo calculations in the context of thermal radiation transport has been improved. It has been extended to support cases where the number of particles in a time step are unknown at the beginning of the time step. This situation arises when various physical processes, such as neutron transport, can generate additional particles during the time step, or when particle splitting is used for variance reduction. Additionally, several race conditions that existed in the previous algorithm and could cause code hangs have been fixed. This new algorithm is believed to be robust against all race conditions. The parallel scalability of the new algorithm remains excellent. (C) 2009 Elsevier Inc. All rights reserved. C1 [Brunner, Thomas A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Brantley, Patrick S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Brunner, TA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tabrunn@sandia.gov; brantley1@llnl.gov NR 8 TC 16 Z9 16 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 1 PY 2009 VL 228 IS 10 BP 3882 EP 3890 DI 10.1016/j.jcp.2009.02.013 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 437BK UT WOS:000265460600019 ER PT J AU Piette, MA Ghatikar, G Kiliccote, S Watson, D Koch, E Hennage, D AF Piette, Mary Ann Ghatikar, Girish Kiliccote, Sila Watson, David Koch, Ed Hennage, Dan TI Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings SO JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING LA English DT Article DE demand response; automation; commercial; industrial buildings; peak demand AB This paper describes the concept for and lessons from the development and field-testing of an open, interoperable communications infrastructure to support automated demand response (auto-DR). Automating DR allows greater levels of participation, improved reliability, and repeatability of the DR in participating facilities. This paper also presents the technical and architectural issues associated with auto-DR and description of the demand response automation server (DRAS), the client/server architecture-based middle-ware used to automate the interactions between the utilities or any DR serving entity and their customers for DR programs. Use case diagrams are presented to show the role of the DRAS between utility/ISO and the clients at the facilities. [DOI: 10.1115/1.3130788] C1 [Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Watson, David] Akuacom, LBNL & Advisory Board, San Rafael, CA 94901 USA. [Hennage, Dan] Akuacom, Prod Dev, San Rafael, CA 94901 USA. RP Piette, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Mail Stop 90-3111, Berkeley, CA 94720 USA. FU California Energy Commission (CEC); Public Interest Energy Research (PIER) [500-03-026]; U.S. Department of Energy [DE-AC02-05CH11231] FX The work described in this report was coordinated by the Demand Response Research Center and funded by the California Energy Commission (CEC), Public Interest Energy Research (PIER) Program, under Work for Others Contract No. 500-03-026 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Special thanks to our research sponsors including Kristy Chew, Mike Gravely, and Martha Brook (CEC). The authors are grateful for the extensive support from numerous individuals who assisted in this project. Special thanks also to Ron Hofmann and Roger Levy for technical support, and to the PG&E for multiyear support. NR 13 TC 3 Z9 3 U1 1 U2 7 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1530-9827 J9 J COMPUT INF SCI ENG JI J. Comput. Inf. Sci. Eng. PD JUN PY 2009 VL 9 IS 2 AR 021004 DI 10.1115/1.3130788 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing SC Computer Science; Engineering GA 454FF UT WOS:000266667100004 ER PT J AU Slosar, A White, M AF Slosar, Anze White, Martin TI Alignment of galaxy spins in the vicinity of voids SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE superclusters and voids; galaxy evolution; galaxy formation ID LARGE-SCALE STRUCTURE; TIDAL-TORQUE THEORY; DARK-MATTER HALOES; DIGITAL SKY SURVEY; ANGULAR-MOMENTUM; INTRINSIC ALIGNMENTS; REDSHIFT-SURVEY; DISK GALAXIES; GAS CLOUDS; PROTOGALAXIES AB We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee & Pen to describe the strength of such an alignment, we find that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries. C1 [Slosar, Anze] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Slosar, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM anze@berkeley.edu; mwhite@berkeley.edu RI White, Martin/I-3880-2015; OI White, Martin/0000-0001-9912-5070; Slosar, Anze/0000-0002-8713-3695 FU Berkeley Center for Cosmological Physics FX AS acknowledges funding from Berkeley Center for Cosmological Physics. NR 39 TC 15 Z9 15 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUN PY 2009 IS 6 AR 009 DI 10.1088/1475-7516/2009/06/009 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 467XJ UT WOS:000267776100029 ER PT J AU Xie, Z Swain, MV Hoffman, MJ AF Xie, Z. Swain, M. V. Hoffman, M. J. TI Structural Integrity of Enamel: Experimental and Modeling SO JOURNAL OF DENTAL RESEARCH LA English DT Article DE tooth enamel; contact damage resistance; stress-strain behaviour; crystal orientation angle; structural integrity ID MECHANICAL-PROPERTIES; PRISMATIC ENAMEL; TOOTH ENAMEL; INDENTATION; WEAR; DEFORMATION; FRACTURE; MODULUS; DENTIN; LENGTH AB Tooth enamel is the hardest tissue in the human body and is directly responsible for dental function. Due to its non-regenerative nature, enamel is unable to heal and repair itself biologically after damage. We hypothesized that with its unique microstructure, enamel possesses excellent resistance to contact-induced damage, regardless of loading direction. By combining instrumented indentation tests with microstructural analysis, we report that enamel can absorb indentation energy through shear deformation within its protein layers between apatite crystallites. Moreover, a near-isotropic inelastic response was observed when we analyzed indentation data in directions either perpendicular or parallel to the path of enamel prisms. An "effective" crystal orientation angle, 33-34, was derived for enamel microstructure, independent of the loading direction. These findings will help guide the design of the nanostructural architecture of dental restorative materials. C1 [Xie, Z.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Xie, Z.] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia. [Swain, M. V.] Univ Sydney, Fac Dent, Biomat Res Unit, Sydney, NSW 2052, Australia. [Hoffman, M. J.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2006, Australia. RP Xie, Z (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM z.xie@ecu.edu.au RI Hoffman, Mark/E-5021-2012; Xie, Zonghan/D-7873-2013 OI Hoffman, Mark/0000-0003-2927-1165; Xie, Zonghan/0000-0001-8647-7958 FU Australian Research Council (ARC) [DP0451423]; University of Sydney FX We thank Macquarie Fields College of TAFE NSW Australia for logistical support during the writing of this manuscript. This work was supported by an Australian Research Council (ARC) Discovery grant (DP0451423). Post-doctoral fellowships awarded to Zonghan Xie by the Australian Research Council and the University of Sydney are also acknowledged. NR 31 TC 20 Z9 21 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-0345 J9 J DENT RES JI J. Dent. Res. PD JUN PY 2009 VL 88 IS 6 BP 529 EP 533 DI 10.1177/0022034509337130 PG 5 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 468FD UT WOS:000267801300006 PM 19587157 ER PT J AU Luke, B Murvosh, H Taylor, W Wagoner, J AF Luke, Barbara Murvosh, Helena Taylor, Wanda Wagoner, Jeff TI Three-dimensional modeling of shallow shear-wave velocities for Las Vegas, Nevada, using sediment type SO JOURNAL OF EARTH SCIENCE LA English DT Article CT 3rd International Conference on Environmental and Engineering Geophysics CY JUN 15-20, 2008 CL Wuhun, PEOPLES R CHINA SP Chinese Geophys Soc, Natl Nat Sci Fdn China, China Univ Geosci DE shear-wave velocity; earthquake site response; site amplification; microzonation; sediment type ID SITE RESPONSE; BASIN; VALLEY AB A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile is developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin. C1 [Luke, Barbara; Murvosh, Helena; Taylor, Wanda] Univ Nevada, Las Vegas, NV 89154 USA. [Murvosh, Helena] Stanley Consultants Inc, Las Vegas, NV USA. [Wagoner, Jeff] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Luke, B (reprint author), Univ Nevada, Las Vegas, NV 89154 USA. EM barbara.luke@unlv.edu NR 16 TC 4 Z9 4 U1 0 U2 5 PU CHINA UNIV GEOSCIENCES PI WUHAN PA YUJIASHAN, WUHAN, PEOPLES R CHINA SN 1674-487X J9 J EARTH SCI JI J. Earth Sci. PD JUN PY 2009 VL 20 IS 3 BP 555 EP 562 DI 10.1007/s12583-009-0046-8 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 468TV UT WOS:000267845700006 ER PT J AU Ma, BH Kwon, DK Narayanan, M Balachandran, U AF Ma, Beihai Kwon, Do-Kyun Narayanan, Manoj Balachandran, U. (Balu) TI Chemical solution deposition of ferroelectric lead lanthanum zirconate titanate films on base-metal foils SO JOURNAL OF ELECTROCERAMICS LA English DT Article DE Ferroelectric film; PLZT; Ceramic capacitor; Dielectric property; Chemical solution deposition ID THIN-FILMS; DIELECTRIC-PROPERTIES; ELECTRODES; CAPACITORS AB Development of electronic devices with better performance and smaller size requires the passive components to be embedded within a printed wire board (PWB). The "film-on-foil" approach is the most viable method for embedding these components within a PWB. We have deposited high-permittivity ferroelectric lead lanthanum zirconate titanate (Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O (x) , PLZT 8/52/48) films on base metal foils by chemical solution deposition. These prefabricated capacitor sheets can be embedded into PWBs for power electronic applications. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was applied by chemical solution deposition on nickel foil before the deposition of PLZT. With a a parts per thousand 0.7-mu m-thick ferroelectric PLZT film grown on LNO-buffered nickel foil, we measured capacitance densities of 1.5 mu F/cm(2), breakdown field strength E (b) > 1.2 MV/cm, and leakage current density of 2 x 10(-8)A/cm(2). The dielectric relaxation current decay obeys the Curie-von Schweidler law, with exponent n = 0.85 and 0.94 for PLZT grown directly on Ni and that grown on LNO-buffered Ni foils, respectively. When compared with samples deposited directly on Ni substrate, PLZT grown on LNO buffered Ni substrates exhibit slimmer hysteresis loop and better energy storage capability. With these desirable characters, PLZT film-on-foil capacitors hold particular promise for use in high-voltage embedded passives. C1 [Ma, Beihai; Kwon, Do-Kyun; Narayanan, Manoj; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies [DE-AC02-06CH11357] FX Work funded by the U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies, under Contract DE-AC02-06CH11357. This work benefited from the use of the Electron Microscopy Center (EMC) at Argonne National Laboratory. The authors thank Dr. R. E. Koritala at EMC for her assistance with SEM. NR 19 TC 27 Z9 27 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1385-3449 J9 J ELECTROCERAM JI J. Electroceram. PD JUN PY 2009 VL 22 IS 4 BP 383 EP 389 DI 10.1007/s10832-007-9410-1 PG 7 WC Materials Science, Ceramics SC Materials Science GA 448CU UT WOS:000266241200005 ER PT J AU Zhu, YM Jarausch, K AF Zhu, Yimei Jarausch, Konrad TI Advanced electron microscopy in materials physics SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Editorial Material C1 [Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zhu, YM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD JUN PY 2009 VL 58 IS 3 BP 73 EP 75 DI 10.1093/jmicro/dfp014 PG 3 WC Microscopy SC Microscopy GA 449TA UT WOS:000266351700001 PM 19406985 ER PT J AU Pennycook, SJ Varela, M Lupini, AR Oxley, MP Chisholm, MF AF Pennycook, Stephen J. Varela, Maria Lupini, Andrew R. Oxley, Mark P. Chisholm, Matthew F. TI Atomic-resolution spectroscopic imaging: past, present and future SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Review DE annular dark field; column-by-column spectroscopy; electron energy loss; scanning transmission electron microscopy; spectroscopy ID TRANSMISSION ELECTRON-MICROSCOPE; ENERGY-LOSS SPECTROSCOPY; INELASTICALLY SCATTERED ELECTRONS; 3D TRANSITION-METALS; GRAIN-BOUNDARIES; ORIENTATION DEPENDENCE; TRANSPORT-PROPERTIES; CRITICAL CURRENTS; INTERFACE; YBA2CU3O7-DELTA AB This review examines the development of atomically resolved electron energy loss spectroscopy from the first demonstration of plane-by-plane compositional profiling, through column-by-column spectroscopy to full two-dimensional and potentially three-dimensional spectroscopic imaging. Examples will be presented to highlight the increasing analytical sensitivity and image contrast obtained through each generation of aberration correction, moving towards the ultimate goal of mapping electronic structure inside materials with atomic resolution. C1 [Pennycook, Stephen J.; Varela, Maria; Lupini, Andrew R.; Oxley, Mark P.; Chisholm, Matthew F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Pennycook, Stephen J.; Oxley, Mark P.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Pennycook, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM pennycooksj@ornl.gov RI Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Varela, Maria/0000-0002-6582-7004 FU Division of Materials Sciences and Engineering; USDOE; Laboratory Directed Research and Development Program of ORNL FX The authors would like to thank L. J. Allen for helpful discussions, and their collaborators in the work reviewed here, N. D. Browning, M. M. McGibbon, E. C. Dickey, V. P. Dravid, P. D. Nellist, D. J. Wallis, G. Duscher, S. D. Findlay, H. M. Christen, A. Y. Borisevich, N. Dellby, O. L. Krivanek, L. J. Allen, T. J. Pennycook, K. van Benthem, A. J. D'Alfonso, M. F. Murfitt, Z. S. Szilagyi, R. Jin, B. Sales, D. G. Mandrus, W. Luo, M. Watanabe, J. Tao, S. T. Pantelides, W. H. Sides and J. T. Luck, which was supported by the Division of Materials Sciences and Engineering, USDOE and in part by the Laboratory Directed Research and Development Program of ORNL. NR 77 TC 40 Z9 40 U1 4 U2 36 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD JUN PY 2009 VL 58 IS 3 BP 87 EP 97 DI 10.1093/jmicro/dfn030 PG 11 WC Microscopy SC Microscopy GA 449TA UT WOS:000266351700003 PM 19158206 ER PT J AU Inada, H Wu, LJ Wall, J Su, D Zhu, YM AF Inada, Hiromi Wu, Lijun Wall, Joe Su, Dong Zhu, Yimei TI Performance and image analysis of the aberration-corrected Hitachi HD-2700C STEM SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Article DE aberration correction; Hitachi STEM; Z-contrast and ADF-image analysis ID TRANSMISSION ELECTRON-MICROSCOPE; DISPLACEMENTS; DIFFRACTION; OXYGEN AB We report the performance of the first aberration-corrected scanning transmission electron microscope (STEM) manufactured by Hitachi. We describe its unique features and versatile capabilities in atomic-scale characterization and its applications in materials research. We also discuss contrast variation of the STEM images obtained from different annular dark-field (ADF) detectors of the instrument, and the increased complexity in contrast interpretation and quantification due to the increased convergent angles of the electron probe associated with the aberration corrector. We demonstrate that the intensity of atomic columns in an ADF image depends strongly on a variety of imaging parameters, sample thickness, as well as the nuclear charge and the deviation from their periodic position of the atoms we are probing. Image simulations are often required to correctly interpret the atomic structure of an ADF-STEM image. C1 [Inada, Hiromi; Wu, Lijun; Wall, Joe; Su, Dong; Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Inada, Hiromi] Hitachi High Technol Corp, Ibaraki, Japan. RP Zhu, YM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhu@bnl.gov RI Su, Dong/A-8233-2013 OI Su, Dong/0000-0002-1921-6683 FU U. S. Department of Energy [DE-AC02-98CH10886]; Office of Basic Energy Science; Division of Materials Science FX We wish to acknowledge help and advice of many colleagues: Shigeto Isakozawa, Kuniyasu Nakamura and Mitsuru Konno of Hitachi High Technologies Corporation, Naka, Japan; Ray Twesten of Gatan and V. V. Volkov of BNL. We would also like to thank Jia Wang and Qiang Li for providing samples for our test of the instrument. The work at BNL was supported by the Office of Basic Energy Science, Division of Materials Science, U. S. Department of Energy, under contract no. DE-AC02-98CH10886. NR 30 TC 36 Z9 36 U1 1 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD JUN PY 2009 VL 58 IS 3 BP 111 EP 122 DI 10.1093/jmicro/dfp011 PG 12 WC Microscopy SC Microscopy GA 449TA UT WOS:000266351700005 PM 19254916 ER PT J AU Kabius, B Hartel, P Haider, M Muller, H Uhlemann, S Loebau, U Zach, J Rose, H AF Kabius, Bernd Hartel, Peter Haider, Maximilian Mueller, Heiko Uhlemann, Stephan Loebau, Ulrich Zach, Joachim Rose, Harald TI First application of C-c-corrected imaging for high-resolution and energy-filtered TEM SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Article DE aberration correction; chromatic aberration; oxides; EFTEM; HRTEM ID ELECTRON-MICROSCOPE AB Contrast-transfer calculations indicate that C-c correction should be highly beneficial for high-resolution and energy-filtered transmission electron microscopy. A prototype of an electron optical system capable of correcting spherical and chromatic aberration has been used to verify these calculations. A strong improvement in resolution at an acceleration voltage of 80 kV has been measured. Our first C-c-corrected energy-filtered experiments examining a (LaAlO3)(0.3)(Sr2AlTaO6)(0.7)/LaCoO3 interface demonstrated a significant gain for the spatial resolution in elemental maps of La. C1 [Kabius, Bernd] Argonne Natl Lab, Argonne, IL 60439 USA. [Hartel, Peter; Haider, Maximilian; Mueller, Heiko; Uhlemann, Stephan; Loebau, Ulrich; Zach, Joachim] CEOS GmbH, D-69126 Heidelberg, Germany. [Rose, Harald] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. RP Kabius, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kabius@anl.gov NR 22 TC 59 Z9 59 U1 8 U2 40 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD JUN PY 2009 VL 58 IS 3 BP 147 EP 155 DI 10.1093/jmicro/dfp021 PG 9 WC Microscopy SC Microscopy GA 449TA UT WOS:000266351700009 PM 19398781 ER PT J AU Allard, LF Borisevich, A Deng, WL Si, R Flytzani-Stephanopoulos, M Overbury, SH AF Allard, Lawrence F. Borisevich, Albina Deng, Weiling Si, Rui Flytzani-Stephanopoulos, Maria Overbury, Steven H. TI Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Article DE aberration-corrected; high-resolution microscopy; gold; iron oxide; water-gas shift catalyst; in situ heating ID TEMPERATURE CO OXIDATION; GAS SHIFT REACTION; SUPPORTED GOLD; OXIDE; AU; AU/ALPHA-FE2O3; OXYGEN; TEM AB High-resolution aberration-corrected electron microscopy was performed on a series of catalysts derived from a parent material, 2 at.% Au/Fe2O3 (WGC ref. no. 60C), prepared by co-precipitation and calcined in air at 400 degrees C, and a catalyst prepared by leaching surface gold from the parent catalyst and exposed to various treatments, including use in the water-gas shift reaction at 250 degrees C. Aberration-corrected JEOL 2200FS (JEOL USA, Peabody, MA) and Vacuum Generators HB-603U STEM instruments were used to image fresh, reduced, leached, used and re-oxidized catalyst samples. A new in situ heating technology (Protochips Inc., Raleigh, NC, USA), which permits full sub-angstrom ngstrom imaging resolution in the JEOL 2200FS was used to study the effects of temperature on the behavior of gold species. A remarkable stability of gold to redox treatments up to 400 degrees C, with atomic gold decorating step surfaces of iron oxide was identified. On heating the samples in vacuum to 700 degrees C, it was found that monodispersed gold began to sinter to form nanoparticles above 500 degrees C. Gold species internal to the iron oxide support material was shown to diffuse to the surface at elevated temperature, coalescing into discrete nanocrystals. The results demonstrate the value of in situ heating for understanding morphological changes in the catalyst with elevated temperature treatments. C1 [Allard, Lawrence F.; Borisevich, Albina] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Deng, Weiling; Si, Rui; Flytzani-Stephanopoulos, Maria] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA. [Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Allard, LF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM allardLFjr@ornl.gov RI Borisevich, Albina/B-1624-2009; Overbury, Steven/C-5108-2016 OI Borisevich, Albina/0000-0002-3953-8460; Overbury, Steven/0000-0002-5137-3961 FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies; U. S. Department of Energy; Office of Basic Energy Sciences, Hydrogen Fuel Initiative Program [DE-FG02-05ER15730] FX Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The High Temperature Materials Laboratory microscopy facility at ORNL is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, U. S. Department of Energy. Research at Tufts University sponsored by the Office of Basic Energy Sciences, Hydrogen Fuel Initiative Program, grant no. DE-FG02-05ER15730, U. S. Department of Energy. NR 24 TC 37 Z9 37 U1 2 U2 43 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 EI 1477-9986 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD JUN PY 2009 VL 58 IS 3 BP 199 EP 212 DI 10.1093/jmicro/dfp016 PG 14 WC Microscopy SC Microscopy GA 449TA UT WOS:000266351700015 PM 19339311 ER PT J AU Morgan, DG Ramasse, QM Browning, ND AF Morgan, David G. Ramasse, Quentin M. Browning, Nigel D. TI Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Article DE Z-contrast images; image processing; atomic resolution; 2D crystallography; zone axis images ID TRANSMISSION ELECTRON-MICROSCOPY; PURPLE MEMBRANE; CRYSTALLINE SPECIMENS; MODEL; MICROGRAPHS; FIELD; STEM AB Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage. C1 [Morgan, David G.] Indiana Univ, Dept Chem, Nanofabricat Ctr, Bloomington, IN 47405 USA. [Ramasse, Quentin M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Morgan, DG (reprint author), Indiana Univ, Dept Chem, Nanofabricat Ctr, 800 E Kirkwood Ave, Bloomington, IN 47405 USA. EM dagmorga@indiana.edu OI Browning, Nigel/0000-0003-0491-251X FU U. S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy; Lawrence Berkeley National Laboratory, Berkeley FX This work was supported in part by a U. S. Department of Energy contract [number DE-AC02-05CH11231] awarded to the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, NR 32 TC 4 Z9 4 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD JUN PY 2009 VL 58 IS 3 BP 223 EP 244 DI 10.1093/jmicro/dfp007 PG 22 WC Microscopy SC Microscopy GA 449TA UT WOS:000266351700017 PM 19297343 ER PT J AU Covelli, D Hernandez-Cruz, D Haines, BM Munoz, V Omotoso, O Mikula, R Urquhart, S AF Covelli, Danielle Hernandez-Cruz, Daniel Haines, Brian M. Munoz, Vincente Omotoso, Oladipo Mikula, Randy Urquhart, Stephen TI NEXAFS microscopy studies of the association of hydrocarbon thin films with fine clay particles SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE NEXAFS; STXM; Clays; Adsorbates ID X-RAY-ABSORPTION; ADVANCED LIGHT-SOURCE; OIL SANDS; STRUCTURE SPECTRA; BITUMEN RECOVERY; POLYMER BLENDS; SPECTROSCOPY; SPECTROMICROSCOPY; IDENTIFICATION; QUANTITATION AB The nature of organic species associated with clay minerals plays a significant role in several processes, from hydrocarbon recovery in oil sands to contaminated soil remediation and water treatment. In this work, we address the use of scanning transmission X-ray microscopy (STXM) in conjunction with near edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the microstructure and chemistry of organic-clay associations in situ. A model system based on methylene blue and illite is used to explore the sensitivity of NEXAFS microscopy to these interactions, and to identify and resolve experimental challenges in these measurements. We find that sample contamination from X-ray induced photodeposition is a significant problem in STXM microscopy, but also that this problem can be substantially reduced with a liquid nitrogen cooled anticontaminator. With appropriate sample preparation and experimental procedures, we find that STXM microscopy is sensitive to thin carbon adsorbates on clay surfaces. (C) 2009 Elsevier B.V. All rights reserved. C1 [Covelli, Danielle; Haines, Brian M.; Urquhart, Stephen] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada. [Hernandez-Cruz, Daniel] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Hernandez-Cruz, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Munoz, Vincente; Omotoso, Oladipo; Mikula, Randy] CANMET Energy Technol Ctr Nat Resources Canada, Devon, AB T9G 1A8, Canada. RP Urquhart, S (reprint author), Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada. EM stephen.urquhart@usask.ca RI Urquhart, Stephen/A-6237-2014; OI Urquhart, Stephen/0000-0002-6415-6341; Hernandez Cruz, Daniel/0000-0003-4950-7155 FU Natural Sciences and Engineering Research Council; Canada Foundation; U.S. Department of Energy [DE-AC03-76SF00098, DE-FG02-98ER45737]; National Science Foundation [DMR-9975694]; NSERC FX We thank A.L.D. Kilcoyne and T. Tyliszczak for their work in developing and maintaining the 5.3.2 and 11.0.2. STXM microscopes at the ALS, and T. Tyliszazak and A.P. Hitchcock for helpful discussions. We acknowledge the University of Saskatchewan Physics Machine Shop for the fabrication of the temporary model of the anticontaminator that was used for these tests and A.L.D. Kilcoyne for the design of the permanent stainless steel anticontaminator at beamline 5.3.2. The research was supported by Natural Sciences and Engineering Research Council, the Canada Foundation for Innovation and Nexen Canada Ltd. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The use of the NCSU-McMaster-Dow-ALS Polymer STXM microscope (BL 5.3.2) at the ALS is supported by the National Science Foundation (DMR-9975694), the Department of Energy (DOE, DE-FG02-98ER45737), Dow Chemical, an NSERC Major Facilities Access grant, and CFI. NR 42 TC 3 Z9 3 U1 3 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUN PY 2009 VL 173 IS 1 BP 1 EP 6 DI 10.1016/j.elspec.2009.02.012 PG 6 WC Spectroscopy SC Spectroscopy GA 465ZF UT WOS:000267628800001 ER PT J AU Luxmi Nie, S Fisher, PJ Feenstra, RM Gu, G Sun, YG AF Luxmi Nie, Shu Fisher, P. J. Feenstra, R. M. Gu, Gong Sun, Yugang TI Temperature Dependence of Epitaxial Graphene Formation on SiC(0001) SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 50th Electronic Materials Conference CY JUN, 2008 CL Univ Calif Santa Barbara, Santa Barbara, CA HO Univ Calif Santa Barbara DE Graphene; silicon carbide; semiconductor; field-effect transistor ID ELECTRONIC-STRUCTURE; 6H-SIC(0001); SURFACES AB The formation of epitaxial graphene on SiC(0001) surfaces is studied using atomic force microscopy, Auger electron spectroscopy, electron diffraction, Raman spectroscopy, and electrical measurements. Starting from hydrogen-annealed surfaces, graphene formation by vacuum annealing is observed to begin at about 1150A degrees C, with the overall step-terrace arrangement of the surface being preserved but with significant roughness (pit formation) on the terraces. At higher temperatures near 1250A degrees C, the step morphology changes, with the terraces becoming more compact. At 1350A degrees C and above, the surface morphology changes into relatively large flat terraces separated by step bunches. Features believed to arise from grain boundaries in the graphene are resolved on the terraces, as are fainter features attributed to atoms at the buried graphene/SiC interface. C1 [Luxmi; Nie, Shu; Fisher, P. J.; Feenstra, R. M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Gu, Gong] Sarnoff Corp, Princeton, NJ 08543 USA. [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Luxmi (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. EM feenstra@cmu.edu RI Sun, Yugang /A-3683-2010; Feenstra, Randall/P-2530-2014; Gu, Gong/L-5919-2015 OI Sun, Yugang /0000-0001-6351-6977; Feenstra, Randall/0000-0001-7120-5685; Gu, Gong/0000-0002-3888-1427 NR 22 TC 13 Z9 13 U1 4 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2009 VL 38 IS 6 BP 718 EP 724 DI 10.1007/s11664-008-0584-3 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 458NU UT WOS:000267031600002 ER PT J AU Lo, WC Sposito, G Majer, E AF Lo, Wei-Cheng Sposito, Garrison Majer, Ernest TI Analytical decoupling of poroelasticity equations for acoustic-wave propagation and attenuation in a porous medium containing two immiscible fluids SO JOURNAL OF ENGINEERING MATHEMATICS LA English DT Article DE Decoupling; Dilatational wave motions; Poroelasticity ID QUASI-STATIC FLOW; ELASTIC WAVES; 2-PHASE FLUID; FREQUENCY; MODEL; SATURATION; SUBSIDENCE; DISPERSION; AQUIFER; ROCKS AB Poroelasticity theory has become an effective and accurate approach to analyzing the intricate mechanical behavior of a porous medium containing two immiscible fluids, a system encountered in many subsurface engineering applications. However, the resulting partial differential equations in the theory intrinsically take on a coupled form in the terms pertinent to inertial drag, viscous damping, and applied stress, making it difficult to obtain closed-form, steady-state analytical solutions to boundary-value problems except in special cases. In the present paper, we demonstrate that, for dilatational wave excitations, these partial differential equations can be decoupled analytically into three Helmholtz equations featuring complex-valued, frequency-dependent normal coordinates that correspond physically to three independent modes of dilatational wave motion. The normal coordinates in turn can be expressed in the frequency domain as three different linear combinations of the solid dilatation and the linearized increment of fluid content for each pore fluid, or equivalently, as three different linear combinations of total dilatational stress and two pore fluid pressures. These representations are applicable to strain-controlled and stress-prescribed boundary conditions, respectively. Numerical calculations confirm that the phase speed and attenuation coefficient of the three dilatational waves represented by the Helmholtz equations are exactly identical to those obtained previously by numerical solution of the dispersion relations for dilatational wave excitation of a porous medium containing two immiscible fluids. Thus, dilatational wave motions in unsaturated porous media subject to suitable boundary conditions can now be accurately modeled analytically. C1 [Lo, Wei-Cheng] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan. [Sposito, Garrison] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Sposito, Garrison; Majer, Ernest] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geophys, Berkeley, CA 94720 USA. RP Lo, WC (reprint author), Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan. EM lowc@mail.ncku.edu.tw NR 46 TC 7 Z9 8 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0022-0833 EI 1573-2703 J9 J ENG MATH JI J. Eng. Math. PD JUN PY 2009 VL 64 IS 2 BP 219 EP 235 DI 10.1007/s10665-008-9254-y PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 442DQ UT WOS:000265820600010 ER PT J AU Siriwardane, R Robinson, C AF Siriwardane, Ranjani Robinson, Clark TI Liquid-Impregnated Clay Solid Sorbents for CO2 Removal from Postcombustion Gas Streams SO JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE LA English DT Article ID CARBON-DIOXIDE; ADSORPTION; TEMPERATURES; ZEOLITES; RECOVERY; CAPTURE; N-2 AB A novel liquid-impregnated clay sorbent [R. V. Siriwardane, U.S. Patent No. 6,908,497 B1 (2003)] was developed for carbon dioxide (CO2) removal in the temperature range of ambient to 60 degrees C for both fixed-bed and fluidized-bed reactor applications. The sorbent is regenerable at 80-100 degrees C. A 20-cycle test conducted in an atmospheric reactor with simulated flue gas with moisture demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99% during the cyclic tests. The sorbents suitable for fluidized-bed reactor operations showed required delta CO2 capacity requirements for sorption of CO2 at 40 degrees C and regeneration at 100 degrees C. The parameters such as rate of sorption, heat of sorption, minimum fluidization velocities, and attrition resistance data that are necessary for the design of a reactor suitable for capture and regeneration were also determined for the sorbent. A 20-cycle test conducted in the presence of flue-gas pollutant sulfur dioxide-SO2 (20 parts per million)-indicated that the sorbent performance was not affected by the presence of SO2. C1 [Siriwardane, Ranjani] Natl Energy Technol Lab, US Dept Energy, Separat & Fuel Proc Div, Morgantown, WV 26507 USA. [Robinson, Clark] Parsons Inc, Res & Dev Solut, Morgantown, WV 26507 USA. RP Siriwardane, R (reprint author), Natl Energy Technol Lab, US Dept Energy, Separat & Fuel Proc Div, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM Ranjani.siriwardane@netl.doe.gov NR 12 TC 6 Z9 6 U1 1 U2 10 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9372 J9 J ENVIRON ENG-ASCE JI J. Environ. Eng.-ASCE PD JUN PY 2009 VL 135 IS 6 BP 378 EP 385 DI 10.1061/(ASCE)EE.1943-7870.0000003 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 447OV UT WOS:000266201700002 ER PT J AU Thiessen, KM Andersson, KG Batandjieva, B Cheng, JJ Hwang, WT Kaiser, JC Kamboj, S Steiner, M Tomas, J Trifunovic, D Yu, C AF Thiessen, K. M. Andersson, K. G. Batandjieva, B. Cheng, J. -J. Hwang, W. T. Kaiser, J. C. Kamboj, S. Steiner, M. Tomas, J. Trifunovic, D. Yu, C. TI Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Urban contamination; Radioactivity; Modelling; Countermeasures; Remediation; Radiological dispersal device ID CONTAMINATION AB The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a "no action" situation (with no remedial measures) and for selected countermeasures. The exercise provided an opportunity for comparison of three modelling approaches, as well as a comparison of the predicted effectiveness of various countermeasures in terms of their short-term and long-term effects on predicted doses to humans. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Thiessen, K. M.] SENES Oak Ridge Inc, Ctr Risk Anal, Oak Ridge, TN 37830 USA. [Andersson, K. G.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Cheng, J. -J.; Kamboj, S.; Yu, C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hwang, W. T.] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Kaiser, J. C.] Deutsch Forschungszentrum Gesundheit & Umwelt, Helmholtz Zentrum Munchen GmbH, Inst Radiat Protect, D-85764 Neuherberg, Germany. [Steiner, M.] BfS, D-85764 Neuherberg, Germany. [Tomas, J.] CPHR, Havana 11300, Cuba. [Trifunovic, D.] State Off Radiat Protect, Zagreb 10000, Croatia. RP Thiessen, KM (reprint author), SENES Oak Ridge Inc, Ctr Risk Anal, 102 Donner Dr, Oak Ridge, TN 37830 USA. EM kmt@senes.com RI Marra, Giulia/L-8303-2014; Kaiser, Jan Christian/M-9852-2014; OI Thiessen, Kathleen/0000-0002-5564-7499; Kaiser, Jan Christian/0000-0003-0359-2251 FU U.S. Centers for Disease Control and Prevention [200-2006-15969]; DOE [DE-AC-05-06OR23100]; International Atomic Energy Agency FX The authors would, like to acknowledge the contribution of all participants in the Urban Remediation Working Group. The activities of the Working Group and preparation of this manuscript have been supported in part by the U.S. Centers for Disease Control and Prevention (under CDC Contract #200-2006-15969, Task Order #2 and ORAU Requisition Nos. 5-17126 and 5-18266 under DOE Prime Contract DE-AC-05-06OR23100) and by the International Atomic Energy Agency. NR 13 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JUN PY 2009 VL 100 IS 6 BP 445 EP 455 DI 10.1016/j.jenvrad.2009.02.003 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 452AC UT WOS:000266511000002 PM 19362757 ER PT J AU Pinder, JE Hinton, TG Whicker, FW Smith, JT AF Pinder, J. E., III Hinton, T. G. Whicker, F. W. Smith, J. T. TI Cesium accumulation by fish following acute input to lakes: a comparison of experimental and Chernobyl-impacted systems SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE (137)Cs; (133)Cs; Fish; Uptake rates; Loss rates; Maximum concentrations; Pond 4; Chernobyl ID BLUEGILL LEPOMIS-MACROCHIRUS; FRESH-WATER FISH; BASS MICROPTERUS-SALMOIDES; SHORT-DURATION RELEASES; BROWN TROUT; RADIOACTIVE CESIUM; STABLE CESIUM; FOOD-CHAINS; BODY-SIZE; RADIOCESIUM AB An uptake parameter u (L kg(-1) d(-1)) and a loss rate parameter k (d(-1)) were estimated for the patterns of accumulation and loss of (133)Cs by three fish species following an experimental (133)Cs addition into a pond in South Carolina, USA. These u and k parameters were compared to similar estimates for fish from other experimental ponds and from lakes that received (137)Cs deposition from Chernobyl. Estimates of u from ponds and lakes declined with increasing potassium concentrations in the water column. Although loss rates were greater in the experimental ponds, the times required to reach maximum Cs concentrations in fish were similar between ponds and lakes, because ponds and lakes had similar retentions of Cs in the water column. The maximum Cs concentrations in fish were largely determined by initial Cs concentrations in the water column. These maximum concentrations in fish and the times required to reach these maxima are potentially useful indicators for assessments of risks to humans from fish consumption. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Pinder, J. E., III] Texas Christian Univ, Dept Biol, Ft Worth, TX 76129 USA. [Hinton, T. G.] Savannah River Ecol Lab, Aiken, SC 29801 USA. [Whicker, F. W.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. [Smith, J. T.] Univ Portsmouth, Sch Earth & Environm Sci, Portsmouth PO1 3QL, Hants, England. RP Pinder, JE (reprint author), Texas Christian Univ, Dept Biol, TCU Box 298930, Ft Worth, TX 76129 USA. EM j.pinder@tcu.edu; thinton@uga.edu; ward.whicker@colostate.edu; jim.smith@port.sc.uk RI Smith, Jim/G-7716-2011 OI Smith, Jim/0000-0002-0808-2739 FU U.S. Department of Energy [DE-FC09-96SR18546] FX This research would not have been possible without the field, laboratory and editorial assistance of D. Coughlin, J. Gariboldi, J. Joyner, J. Marsh, and Y. Yi. ICP-MS analyses were ably performed by B. Jackson and M. Jones. The fish research was supported by the Environmental Remediation Sciences Division of the Office of Biological and Environmental Research, U.S. Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation. NR 67 TC 15 Z9 16 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JUN PY 2009 VL 100 IS 6 BP 456 EP 467 DI 10.1016/j.jenvrad.2009.03.004 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA 452AC UT WOS:000266511000003 PM 19375835 ER PT J AU Intrator, TP Wurden, GA Sieck, PE Waganaar, WJ Dorf, L Kostora, M Cortez, RJ Degnan, JH Ruden, EL Domonkos, M Adamson, P Grabowski, C Gale, DG Kostora, M Sommars, W Frese, M Frese, S Camacho, JF Parks, P Siemon, RE Awe, T Lynn, AG Gribble, R AF Intrator, T. P. Wurden, G. A. Sieck, P. E. Waganaar, W. J. Dorf, L. Kostora, M. Cortez, R. J. Degnan, J. H. Ruden, E. L. Domonkos, M. Adamson, P. Grabowski, C. Gale, D. G. Kostora, M. Sommars, W. Frese, M. Frese, S. Camacho, J. F. Parks, P. Siemon, R. E. Awe, T. Lynn, A. G. Gribble, R. TI Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration SO JOURNAL OF FUSION ENERGY LA English DT Article CT Innovative Confinement Concepts Workshop CY 2008 CL Univ Reno, Reno, NV HO Univ Reno DE Magnetized target fusion; Field reversed configuration; Fusion energy; High energy density plasma ID INERTIAL CONFINEMENT FUSION; CYLINDRICAL GEOMETRY; COMPACT TOROIDS; LINER; FUEL AB After considerable design and construction, we describe the status of a physics exploration of magnetized target fusion (MTF) that will be carried out with the first flux conserving compression of a high pressure field-reversed configuration (FRC). The upgraded Los Alamos (LANL) high density FRC experiment FRXL has demonstrated that an appropriate FRC plasma target can be created and translated on a time scale fast enough to be useful for MTF. Compression to kilovolt temperature is expected to form a Mbar pressure, high energy density laboratory plasma (HEDLP). Integrated hardware on the new Field Reversed Compression and Heating Experiment (FRCHX) at the Air Force Research Laboratory Shiva Star facility, has formed initial FRC's and will radially compress them within a cylindrically symmetric aluminum "liner". FRXL has shown that time scales for FRC translation to the target region are significantly shorter than the typical FRC lifetime. The hardware, diagnostics, and design rationales are presented. Pre-compression plasma formation and trapping experimental data from FRXL and FRCHX are shown. C1 [Intrator, T. P.; Wurden, G. A.; Sieck, P. E.; Waganaar, W. J.; Dorf, L.; Kostora, M.; Cortez, R. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Degnan, J. H.; Ruden, E. L.; Domonkos, M.; Adamson, P.] AF Res Lab, Kirtland AFB, NM 87117 USA. [Grabowski, C.; Gale, D. G.; Kostora, M.; Sommars, W.] SAIC, Albuquerque, NM 87117 USA. [Frese, M.; Frese, S.; Camacho, J. F.] NumerEx, Kirtland AFB, NM 87117 USA. [Parks, P.] Gen Atom, San Diego, CA 92186 USA. [Siemon, R. E.; Awe, T.] Univ Nevada, Reno, NV 89557 USA. [Lynn, A. G.] Univ New Mexico, Albuquerque, NM 87131 USA. [Gribble, R.] Gribble Consulting, Los Alamos, NM 87544 USA. RP Intrator, TP (reprint author), Los Alamos Natl Lab, MS E526, Los Alamos, NM 87545 USA. EM intrator@lanl.gov RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 21 TC 7 Z9 8 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 J9 J FUSION ENERG JI J. Fusion Energy PD JUN PY 2009 VL 28 IS 2 BP 165 EP 169 DI 10.1007/s10894-008-9180-z PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 431DT UT WOS:000265042200007 ER PT J AU Raman, R Nelson, BA Mueller, D Jarboe, TR Bell, MG LeBlanc, B Maqueda, R Menard, J Ono, M Nagata, M Roquemore, L Soukhanovskii, V AF Raman, R. Nelson, B. A. Mueller, D. Jarboe, T. R. Bell, M. G. LeBlanc, B. Maqueda, R. Menard, J. Ono, M. Nagata, M. Roquemore, L. Soukhanovskii, V. TI Solenoid-free Plasma Start-up in NSTX using Transient CHI SO JOURNAL OF FUSION ENERGY LA English DT Article CT Innovative Confinement Concepts Workshop CY 2008 CL Univ Reno, Reno, NV HO Univ Reno DE CHI; ST; Non-inductive current drive ID COAXIAL HELICITY INJECTION; SPHERICAL TORUS EXPERIMENT; TOKAMAK AB Experiments in NSTX have now unambiguously demonstrated the coupling of toroidal plasmas produced by the technique of CHI to inductive sustainment and ramp-up of the toroidal plasma current. This is an important step because an alternate method for plasma startup is essential for developing a fusion reactor based on the spherical torus concept. Elimination of the central solenoid would also allow greater flexibility in the choice of the aspect ratio in tokamak designs now being considered. The transient CHI method for spherical torus startup was originally developed on the HIT-II experiment at the University of Washington. C1 [Raman, R.; Nelson, B. A.; Jarboe, T. R.] Univ Washington, Seattle, WA 98195 USA. [Mueller, D.; Bell, M. G.; LeBlanc, B.; Menard, J.; Ono, M.; Roquemore, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maqueda, R.] Nova Photon, Princeton, NJ USA. [Nagata, M.] Univ Hyogo, Himeji, Hyogo, Japan. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. EM raman@aa.washington.edu OI Menard, Jonathan/0000-0003-1292-3286 NR 5 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 J9 J FUSION ENERG JI J. Fusion Energy PD JUN PY 2009 VL 28 IS 2 BP 200 EP 202 DI 10.1007/s10894-008-9182-x PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 431DT UT WOS:000265042200015 ER PT J AU Lang, B Foster, I Siebenlist, F Ananthakrishnan, R Freeman, T AF Lang, Bo Foster, Ian Siebenlist, Frank Ananthakrishnan, Rachana Freeman, Tim TI A Flexible Attribute Based Access Control Method for Grid Computing SO JOURNAL OF GRID COMPUTING LA English DT Article DE Attribute-based access control (ABAC); Attribute-based multipolicy access control (ABMAC); Grid computing; GT4 authorization framework AB Grid systems have huge and changeable user groups, and different autonomous domains always have different security policies. The attribute based access control (ABAC) model, which is flexible and scalable, is more suitable for Grid systems. This paper describes a method of building a flexible access control mechanism that is based on ABAC and supports multiple policies for Grid computing. Firstly an attribute based multipolicy access control model ABMAC is submitted. Compared with ABAC, ABMAC can describe multiple heterogeneous policies, and each policy is encapsulated without changing its descriptions. Then by extending the authorization architecture of XACML, the paper puts forward an authorization framework that supports ABMAC and is implemented in the Globus Toolkit release 4 (GT4) (Few parts of the authorization framework described in this paper can only be found in Globus Toolkit CVS repository. A more completed authorization framework will be appeared in the Globus Toolkit release 4.2). Basing on the concept of policy encapsulation, the framework provides a flexible and scalable authorization mechanism that can support multiple existing policies in a Grid system. The design and implementation details of GT4 authorization framework are also well discussed. C1 [Lang, Bo; Foster, Ian; Siebenlist, Frank] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Lang, Bo] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China. [Foster, Ian; Siebenlist, Frank; Freeman, Tim] Univ Chicago, Chicago, IL 60637 USA. RP Lang, B (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM langbo@buaa.edu.cn; foster@mcs.anl.gov; franks@mcs.anl.gov; ranantha@mcs.anl.gov; tfreeman@mcs.anl.gov FU NSF; IBM; US Department of Energy [W-31-109-Eng-38] FX Work on GT4 GSI has been funded in part by NSF, by IBM, and by the US Department of Energy under Contract W-31-109-Eng-38. NR 27 TC 25 Z9 28 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 J9 J GRID COMPUT JI J. Comput. PD JUN PY 2009 VL 7 IS 2 BP 169 EP 180 DI 10.1007/s10723-008-9112-1 PG 12 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 525VI UT WOS:000272244400002 ER PT J AU Aoki, Y Borsanyi, S Durr, S Fodor, Z Katz, SD Krieg, S Szabo, K AF Aoki, Yasumichi Borsanyi, Szabolcs Duerr, Stephan Fodor, Zoltan Katz, Sandor D. Krieg, Stefan Szabo, Kalman TI The QCD transition temperature: results with physical masses in the continuum limit II SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lattice QCD; Lattice Gauge Field Theories ID PARTICLE PHYSICS; LATTICE QCD AB We extend our previous study [Phys. Lett. B 643 (2006) 46] of the cross-over temperatures (T-c) of QCD. We improve our zero temperature analysis by using physical quark masses and finer lattices. In addition to the kaon decay constant used for scale setting we determine four quantities (masses of the Omega baryon, K*(892) and phi(1020) mesons and the pion decay constant) which are found to agree with experiment. This implies that - independently of which of these quantities is used to set the overall scale - the same results are obtained within a few percent. At finite temperature we use finer lattices down to a less than or similar to 0.1 fm (N-t = 12 and N-t = 16 at one point). Our new results confirm completely our previous findings. We compare the results with those of the 'hotQCD' collaboration. C1 [Aoki, Yasumichi] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Borsanyi, Szabolcs; Fodor, Zoltan; Katz, Sandor D.; Krieg, Stefan; Szabo, Kalman] Berg Univ Wuppertal, D-42119 Wuppertal, Germany. [Duerr, Stephan; Fodor, Zoltan] Forschungszentrum Julich, D-52425 Julich, Germany. [Duerr, Stephan; Fodor, Zoltan] NIC DESY Zeuthen Forsch Grp, D-15738 Zeuthen, Germany. [Fodor, Zoltan; Katz, Sandor D.] Eotvos Lorand Univ, Inst Theoret Phys, H-1117 Budapest, Hungary. [Krieg, Stefan] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Aoki, Y (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM yaoki@quark.phy.bnl.gov; borsanyi@uni-wuppertal.de; fodor@bodri.elte.hu; katz@bodri.elte.hu; krieg@mit.edu; szaboka@general.elte.hu RI Katz, Sandor/A-4154-2011; OI Krieg, Stefan/0000-0002-8417-9823 NR 26 TC 194 Z9 196 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 088 DI 10.1088/1126-6708/2009/06/088 PG 18 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300088 ER PT J AU Becher, T Neubert, M AF Becher, Thomas Neubert, Matthias TI On the structure of infrared singularities of gauge-theory amplitudes SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Review DE Jets; NLO Computations; Hadronic Colliders; QCD ID 2-LOOP QCD CORRECTIONS; JET CROSS-SECTIONS; COLLINEAR EFFECTIVE THEORY; SUDAKOV FORM-FACTOR; WILSON LOOPS; GLUON SCATTERING; CASIMIR INVARIANTS; QUARK SCATTERING; FIELD-THEORIES; LEADING ORDER AB A closed formula is obtained for the infrared singularities of dimensionally regularized, massless gauge-theory scattering amplitudes with an arbitrary number of legs and loops. It follows from an all-order conjecture for the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory. We show that the form of this anomalous dimension is severely constrained by soft-collinear factorization, non-abelian exponentiation, and the behavior of amplitudes in collinear limits. Using a diagrammatic analysis, we demonstrate that these constraints imply that to three-loop order the anomalous dimension involves only two-parton correlations, with the possible exception of a single color structure multiplying a function of conformal cross ratios depending on the momenta of four external partons, which would have to vanish in all two-particle collinear limits. We suggest that such a function does not appear at three-loop order, and that the same is true in higher orders. Our formula predicts Casimir scaling of the cusp anomalous dimension to all orders in perturbation theory, and we explicitly check that the constraints exclude the appearance of higher Casimir invariants at four loops. Using known results for the quark and gluon form factors, we derive the three-loop coefficients of the 1/epsilon(n) pole terms (with n = 1,..., 6) for an arbitrary n-parton scattering amplitude in massless QCD. This generalizes Catani's two-loop formula proposed in 1998. C1 [Becher, Thomas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Neubert, Matthias] Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany. RP Becher, T (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM becher@fnal.gov; neubertm@uni-mainz.de NR 106 TC 93 Z9 93 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 081 DI 10.1088/1126-6708/2009/06/081 PG 47 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300081 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, GCRF Corradi, M Giusti, P Iacobucci, G Margotti, A Massam, T Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A Palmonari, F De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Ianotti, L Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behrens, U Blohm, C Bonato, A Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Ukleja, J Wolf, G Wrona, K Molina, AGY Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Rosin, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kozulia, A Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Uribe-Estrada, C Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Epperson, D Heusch, C Sadrozinski, H Seiden, A Wichmann, R Williams, DC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Cirio, R Costa, M Ferrero, MI Monaco, V Peroni, C Petrucci, MC Sacchi, R Sola, V Solano, A Cartiglia, N Maselli, S Staiano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Tymieniecka, T Zarnecki, AF Adamus, M Plucinski, P Ukleja, A Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, G. Cara Romeo F. Corradi, M. Giusti, P. Iacobucci, G. Margotti, A. Massam, T. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. Palmonari, F. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Ianotti, L. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behrens, U. Blohm, C. Bonato, A. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Ukleja, J. Wolf, G. Wrona, K. Molina, A. G. Yaguees Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Uribe-Estrada, C. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Epperson, D. Heusch, C. Sadrozinski, H. Seiden, A. Wichmann, R. Williams, D. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Cirio, R. Costa, M. Ferrero, M. I. Monaco, V. Peroni, C. Petrucci, M. C. Sacchi, R. Sola, V. Solano, A. Cartiglia, N. Maselli, S. Staiano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Tymieniecka, T. Zarnecki, A. F. Adamus, M. Plucinski, P. Ukleja, A. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Leading proton production in deep inelastic scattering at HERA SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lepton-Nucleon Scattering ID LEPTON-NUCLEON SCATTERING; CENTRAL TRACKING DETECTOR; PHYSICS EVENT GENERATION; ZEUS BARREL CALORIMETER; MONTE-CARLO GENERATOR; FRACTURE FUNCTIONS; HIGH-ENERGIES; DIFFRACTIVE SCATTERING; NEUTRON-CALORIMETER; CROSS-SECTIONS AB The semi-inclusive reaction e(+)p -> e(+) Xp was studied with the ZEUS detector at HERA with an integrated luminosity of 12.8 pb(-1). The final-state proton, which was detected with the ZEUS leading proton spectrometer, carried a large fraction of the incoming proton energy, x(L) > 0.32, and its transverse momentum squared satisfied p(T)(2) < 0.5GeV(2); the exchanged photon virtuality, Q(2), was greater than 3 GeV2 and the range of the masses of the photon-proton system was 45 < W < 225GeV. The leading proton production cross section and rates are presented as a function of x(L), p(T)(2), Q(2) and the Bjorken scaling variable, x. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, G. Cara Romeo F.; Corradi, M.; Giusti, P.; Iacobucci, G.; Margotti, A.; Massam, T.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Palmonari, F.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Palmonari, F.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Ianotti, L.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Ianotti, L.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Behnke, O.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Ukleja, J.; Wolf, G.; Wrona, K.; Molina, A. G. Yaguees; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] INFN Florence, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Uribe-Estrada, C.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] INFN Padova, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Epperson, D.; Heusch, C.; Sadrozinski, H.; Seiden, A.; Wichmann, R.; Williams, D. C.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Cirio, R.; Costa, M.; Ferrero, M. I.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Cirio, R.; Costa, M.; Ferrero, M. I.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Sola, V.; Solano, A.; Cartiglia, N.; Maselli, S.; Staiano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Tymieniecka, T.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Ukleja, A.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, M.; Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Tymieniecka, T.] Univ Podlasie, Siedlce, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Tassi, Enrico/K-3958-2015; Doyle, Anthony/C-5889-2009; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Wiggers, Leo/0000-0003-1060-0520 NR 70 TC 5 Z9 5 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 074 DI 10.1088/1126-6708/2009/06/074 PG 65 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300074 ER PT J AU Dobrescu, BA Kong, K Mahbubani, R AF Dobrescu, Bogdan A. Kong, Kyoungchul Mahbubani, Rakhi TI Prospects for top-prime quark discovery at the Tevatron SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Phenomenological Models; Hadronic Colliders ID ELECTROWEAK SYMMETRY-BREAKING; CONDENSATION; MODELS; LHC AB We show that a top-prime quark as heavy as 600 GeV can be discovered at the Tevatron, provided it is resonantly pair-produced via a vector color octet. If the top-prime originates from a vectorlike quark, then the production of a single top-prime in association with a top may also be observable, even through its decay into a Higgs boson and a top. A color octet with mass of about 1 TeV, which decays into a top-prime pair, may account for the CDF excess of semileptonic (W j)(W j) events. C1 [Dobrescu, Bogdan A.; Kong, Kyoungchul; Mahbubani, Rakhi] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bdob@fnal.gov; kckong@fnal.gov; rakhi@fnal.gov FU US Department of Energy [DE-AC02-07CH11359] FX We would like to thank Anupama Atre, Gustavo Burdman, DooKee Cho, John Conway, Robin Erbacher, Patrick Fox, Chris Hill, Andrew Ivanov, Christian Schwanenberger, Thomas Schwarz and Tim Tait for useful comments. Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the US Department of Energy. NR 41 TC 21 Z9 21 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 001 DI 10.1088/1126-6708/2009/06/001 PG 19 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300001 ER PT J AU Graesser, M Shelton, J AF Graesser, Michael Shelton, Jessie TI Probing supersymmetry with third-generation cascade decays SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID TAU-POLARIZATION; HIGGS BOSONS; PHYSICS; COLLIDERS; LEPTONS; SEARCH; SIGNAL; LEP AB The chiral structure of supersymmetric particle couplings involving third generation Standard Model fermions depends on left-right squark and slepton mixings as well as gaugino-higgsino mixings. The shapes and intercorrelations of invariant mass distributions of a first or second generation lepton with bottoms and taus arising from adjacent branches of SUSY cascade decays are shown to be a sensitive probe of this chiral structure. All possible cascade decays that can give rise to such correlations within the MSSM are considered. For bottom-lepton correlations the distinctive structure of the invariant mass distributions distinguishes between decays originating from stop or sbottom squarks through either an intermediate chargino or neutralino. For decay through a chargino the spins of the stop and chargino are established by the form of the distribution. When the bottom charge is signed through soft muon tagging, the structure of the same-sign and opposite-sign invariant mass distributions depends on a set function of left-right and gaugino-higgsino mixings, as well as establishes the spins of all the superpartners in the sequential two-body cascade decay. Tau-lepton and tau-tau invariant mass distributions arising from MSSM cascade decays are likewise systematically considered with particular attention to their dependence on tau polarization. All possible tau-lepton and tau-tau distributions are plotted using a semi-analytic model for hadronic one-prong taus. Algorithms for fitting tau-tau and tau-lepton distributions to data are suggested. C1 [Graesser, Michael] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. [Shelton, Jessie] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. RP Graesser, M (reprint author), Los Alamos Natl Lab, Div Theory, T-2, Los Alamos, NM 87545 USA. EM mgraesser@lanl.gov; jshelton@physics.rutgers.edu NR 36 TC 7 Z9 7 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 039 DI 10.1088/1126-6708/2009/06/039 PG 34 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300039 ER PT J AU Jackson, MG Siemens, X AF Jackson, Mark G. Siemens, Xavier TI Gravitational wave bursts from cosmic superstring reconnections SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE String theory and cosmic strings; Cosmology of Theories beyond the SM ID BRANE INFLATION; STRINGS; SCALE AB We compute the gravitational waveform produced by cosmic superstring reconnections. This is done by first constructing the superstring reconnection trajectory, which closely resembles that of classical, instantaneous reconnection but with the singularities smoothed out due to the string path integral. We then evaluate the graviton vertex operator in this background to obtain the burst amplitude. The result is compared to the detection threshold for current and future gravitational wave detectors, finding that neither bursts nor the stochastic background would be detectable by Advanced LIGO. This disappointing but anticipated conclusion holds even for the most optimistic values of the reconnection probability and loop sizes. C1 [Jackson, Mark G.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Jackson, Mark G.] Fermilab Natl Accelerator Lab, Theory Grp, Batavia, IL 60510 USA. [Jackson, Mark G.] Lorentz Inst Theoret Phys, NL-2333CA Leiden, Netherlands. [Siemens, Xavier] Univ Wisconsin, Dept Phys, Ctr Gravitat & Cosmol, Milwaukee, WI 53201 USA. RP Jackson, MG (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM markj@lorentz.leidenuniv.nl; siemens@gravity.phys.uwm.edu NR 65 TC 10 Z9 10 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 089 DI 10.1088/1126-6708/2009/06/089 PG 21 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300089 ER PT J AU Kharzeev, D Levin, E Tuchin, K AF Kharzeev, Dmitri Levin, Eugene Tuchin, Kirill TI Broken scale invariance, massless dilaton and confinement in QCD SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Confinement; QCD ID ABELIAN GAUGE-THEORIES; FIELD NONTOPOLOGICAL SOLITONS; LOW-ENERGY QCD; HADRONS; MODEL; GLUODYNAMICS; ANOMALIES; VACUUM AB Classical conformal invariance of QCD in the chiral limit is broken explicitly by scale anomaly. As a result, the lightest scalar particle (scalar glueball, or dilation) in QCD is not light, and cannot be described as a Goldstone boson. Nevertheless basing on an effective low-energy theory of broken scale invariance we argue that inside the hadrons the non-perturbative interactions of gluon fields result in the emergence of a massless dilaton excitation (which we call the "scalaron"). We demonstrate that our effective theory of broken scale invariance leads to confinement. This theory allows a dual formulation as a classical Yang-Mills theory on a curved conformal space-time background. Possible applications are discussed, including the description of strongly coupled quark-gluon plasma and the spin structure of hadrons. C1 [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Levin, Eugene] Tel Aviv Univ, Sch Phys & Astron, HEP Dept, IL-69978 Tel Aviv, Israel. [Tuchin, Kirill] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tuchin, Kirill] BNL Res Ctr, RIKEN, Upton, NY 11973 USA. RP Kharzeev, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kharzeev@bnl.gov; leving@post.tau.ac.il; tuchin@iastate.edu FU U.S. Department of Energy [DE-AC02-98CH10886, DE-FG02-87ER40371]; Israel Science Foundation; BSF [20004019] FX The work of D.K. was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. K.T. is supported in part by the U.S. Department of Energy Grant No. DE-FG02-87ER40371; he would also like to thank RIKEN, BNL and the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. This research of E.L. was supported in part by the Israel Science Foundation, founded by the Israeli Academy of Science and Humanities and by BSF grant #20004019. NR 43 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 055 DI 10.1088/1126-6708/2009/06/055 PG 16 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300055 ER PT J AU Krohn, D Thaler, J Wang, LT AF Krohn, David Thaler, Jesse Wang, Lian-Tao TI Jets with variable R SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jets; Hadronic Colliders; QCD ID HADRON-COLLISIONS; ALGORITHM AB We introduce a new class of jet algorithms designed to return conical jets with a variable radius R. A specific example, in which R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this scaling of R in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.(1) C1 [Krohn, David; Wang, Lian-Tao] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Thaler, Jesse] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Thaler, Jesse] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Krohn, D (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. EM dkrohn@princeton.edu; jthaler@jthaler.net; lianwang@princeton.edu OI Thaler, Jesse/0000-0002-2406-8160 FU Miller Institute for Basic Research in Science; National Science Foundation [PHY-0756966]; Department of Energy [DE-FG02-90ER40542] FX Inspiration for this paper came from a KITP conference talk by John Conway in 2006, which questioned the desirability of fixed R cones. We thank Gavin Salam for patient assistance with Fast Jet and for valuable comments on a draft of this paper. J. T. is supported by the Miller Institute for Basic Research in Science. L.-T. W. is supported by the National Science Foundation under grant PHY-0756966 and the Department of Energy under grant DE-FG02-90ER40542. NR 20 TC 32 Z9 32 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2009 IS 6 AR 059 DI 10.1088/1126-6708/2009/06/059 PG 20 WC Physics, Particles & Fields SC Physics GA 468BV UT WOS:000267789300059 ER PT J AU Lu, CM Kwan, J Baumgartner, A Weier, JF Wang, M Escudero, T Munne, S Zitzelsberger, HF Weier, HUG AF Lu, Chun-Mei Kwan, Johnson Baumgartner, Adolf Weier, Jingly F. Wang, Mei Escudero, Tomas Munne, Santiago Zitzelsberger, Horst F. Weier, Heinz-Ulrich G. TI DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints SO JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY LA English DT Article DE translocation; chromosome aberration; cytogenetics; thyroid cancer; IVF; PGD; fluorescence in situ hybridization; bacterial artificial chromosome; DNA probes ID PREIMPLANTATION GENETIC DIAGNOSIS; IN-SITU HYBRIDIZATION; CANCER CELL-LINE; INTERPHASE CELLS; CYTOGENETIC CHARACTERIZATION; TRANSLOCATIONS; FISH; ABNORMALITIES; CLONING; CLONES AB Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival, as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multiclone and multicolor mapping experiments do not generate additional information. Our pooling protocol, described here with examples from thyroid cancer research and PGD, accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as 3 to 4 days. (J Histochem Cytochem 57:587-597, 2009) C1 [Kwan, Johnson; Weier, Heinz-Ulrich G.] Univ Calif Berkeley, EO Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lu, Chun-Mei] Natl Chin Yi Univ Technol, Dept Chem & Mat Engn, Taiping City, Taichung, Taiwan. [Baumgartner, Adolf; Weier, Jingly F.] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA 94143 USA. [Escudero, Tomas; Munne, Santiago] Reprogenetics LLC, Livingston, NJ USA. [Wang, Mei] CALTECH, Pasadena, CA USA. [Zitzelsberger, Horst F.] Helmholtz Zentrum Muenchen, Neuherberg, Germany. RP Weier, HUG (reprint author), Univ Calif Berkeley, EO Lawrence Berkeley Natl Lab, Div Life Sci, MS 977-250,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ugweier@lbl.gov OI Munne, Santiago/0000-0002-1088-5565 FU National Institutes of Health [CA-80792, CA-88258, CA-123370, HD-44313, HD-45736]; U.S. Department of Energy [DE-AC02-05CH11231]; University of California Discovery Program FX We acknowledge editorial help provided by E. Lowe, and support from staff at Reprogenetics, who provided meta-phase spreads and initial mapping data. Ideograms were kindly provided by D. Adler, PhD, Department of Pathology, University of Washington. We would like to express our thanks to the scientists at the Human Genome Center, California Institute of Technology, Pasadena, whose generosity has made these studies possible. NR 56 TC 14 Z9 17 U1 0 U2 3 PU HISTOCHEMICAL SOC INC PI SEATTLE PA UNIV WASHINGTON, DEPT BIOSTRUCTURE, BOX 357420, SEATTLE, WA 98195 USA SN 0022-1554 J9 J HISTOCHEM CYTOCHEM JI J. Histochem. Cytochem. PD JUN PY 2009 VL 57 IS 6 BP 587 EP 597 DI 10.1369/jhc.2009.953638 PG 11 WC Cell Biology SC Cell Biology GA 448XG UT WOS:000266294700007 PM 19223294 ER PT J AU Adam, W Bergauer, T Dragicevic, M Friedl, M Fruhwirth, R Hansel, S Hrubec, J Krammer, M Oberegger, M Pernicka, M Schmid, S Stark, R Steininger, H Uhl, D Waltenberger, W Widl, E Van Mechelen, P Cardaci, M Beaumont, W de Langhe, E de Wolf, EA Delmeire, E Hashemi, M Bouhali, O Charaf, O Clerbaux, B Dewulf, JP Elgammal, S Hammad, G de Lentdecker, G Marage, P Velde, CV Vanlaer, P Wickens, J Adler, V Devroede, O De Weirdt, S D'Hondt, J Goorens, R Heyninck, J Maes, J Mozer, M Tavernier, S Van Lancker, L Van Mulders, P Villella, I Wastiels, C Bonnet, JL Bruno, G De Callatay, B Florins, B Giammanco, A Gregoire, G Keutgen, T Kcira, D Lemaitre, V Michotte, D Militaru, O Piotrzkowski, K Quertermont, L Roberfroid, V Rouby, X Teyssier, D Daubie, E Anttila, E Czellar, S Engstrom, P Harkonen, J Karimaki, V Kostesmaa, J Kuronen, A Lampen, T Linden, T Luukka, PR Maenpaa, T Michal, S Tuominen, E Tuominiemi, J Ageron, M Baulieu, G Bonnevaux, A Boudoul, G Chabanat, E Chabert, E Chierici, R Contardo, D Della Negra, R Dupasquier, T Gelin, G Giraud, N Guillot, G Estre, N Haroutunian, R Lumb, N Perries, S Schirra, F Trocme, B Vanzetto, S Agram, JL Blaes, R Drouhin, F Ernenwein, JP Fontaine, JC Berst, JD Brom, JM Didierjean, F Goerlach, U Graehling, P Gross, L Hosselet, J Juillot, P Lounis, A Maazouzi, C Olivetto, C Strub, R Van Hove, P Anagnostou, G Brauer, R Esser, H Feld, L Karpinski, W Klein, K Kukulies, C Olzem, J Ostapchuk, A Pandoulas, D Pierschel, G Raupach, F Schael, S Schwering, G Sprenger, D Thomas, M Weber, M Wittmer, B Wlochal, M Beissel, F Bock, E Flugge, G Gillissen, C Hermanns, T Heydhausen, D Jahn, D Kaussen, G Linn, A Perchalla, L Poettgens, M Pooth, O Stahl, A Zoeller, MH Buhmann, P Butz, E Flucke, G Hamdorf, R Hauk, J Klanner, R Pein, U Schleper, P Steinbruck, G Blum, P De Boer, W Dierlamm, A Dirkes, G Fahrer, M Frey, M Furgeri, A Hartmann, F Heier, S Hoffmann, KH Kaminski, J Ledermann, B Liamsuwan, T Muller, S Muller, T Schilling, FP Simonis, HJ Steck, P Zhukov, V Cariola, P De Robertis, G Ferorelli, R Fiore, L Preda, M Sala, G Silvestris, L Tempesta, P Zito, G Creanza, D De Filippis, N De Palma, M Giordano, D Maggi, G Manna, N My, S Selvaggi, G Albergo, S Chiorboli, M Costa, S Galanti, M Giudice, N Guardone, N Noto, F Potenza, R Saizu, MA Sparti, V Sutera, C Tricomi, A Tuve, C Brianzi, M Civinini, C Maletta, F Manolescu, F Meschini, M Paoletti, S Sguazzoni, G Broccolo, B Ciulli, V D'Alessandro, R Focardi, E Frosali, S Genta, C Landi, G Lenzi, P Macchiolo, A Magini, N Parrini, G Scarlini, E Cerati, G Azzi, P Bacchetta, N Candelori, A Dorigo, T Kaminsky, A Karaevski, S Khomenkov, V Reznikov, S Tessaro, M Bisello, D De Mattia, M Giubilato, P Loreti, M Mattiazzo, S Nigro, M Paccagnella, A Pantano, D Pozzobon, N Tosi, M Bilei, GM Checcucci, B Fano, L Servoli, L Ambroglini, F Babucci, E Benedetti, D Biasini, M Caponeri, B Covarelli, R Giorgi, M Lariccia, P Mantovani, G Marcantonini, M Postolache, V Santocchia, A Spiga, D Bagliesi, G Balestri, G Berretta, L Bianucci, S Boccali, T Bosi, F Bracci, F Castaldi, R Ceccanti, M Cecchi, R Cerri, C Cucoanes, AS Dell'Orso, R Dobur, D Dutta, S Giassi, A Giusti, S Kartashov, D Kraan, A Lomtadze, T Lungu, GA Magazzu, G Mammini, P Mariani, F Martinelli, G Moggi, A Palla, F Palmonari, F Petragnani, G Profeti, A Raffaelli, F Rizzi, D Sanguinetti, G Sarkar, S Sentenac, D Serban, AT Slav, A Soldani, A Spagnolo, P Tenchini, R Tolaini, S Venturi, A Verdini, PG Vos, M Zaccarelli, L Avanzini, C Basti, A Benucci, L Bocci, A Cazzola, U Fiori, F Linari, S Massa, M Messineo, A Segneri, G Tonelli, G Azzurri, P Bernardini, J Borrello, L Calzolari, F Foa, L Gennai, S Ligabue, F Petrucciani, G Rizzi, A Yang, Z Benotto, F Demaria, N Dumitrache, F Farano, R Borgia, MA Castello, R Costa, M Migliore, E Romero, A Abbaneo, D Abbas, M Ahmed, I Akhtar, I Albert, E Bloch, C Breuker, H Butt, S Buchmuller, O Cattai, A Delaere, C Delattre, M Edera, LM Engstrom, P Eppard, M Gateau, M Gill, K Giolo-Nicollerat, AS Grabit, R Honma, A Huhtinen, M Kloukinas, K Kortesmaa, J Kottelat, LJ Kuronen, A Leonardo, N Ljuslin, C Mannelli, M Masetti, L Marchioro, A Mersi, S Michal, S Mirabito, L Muffat-Joly, J Onnela, A Paillard, C Pal, I Pernot, JF Petagna, P Petit, P Piccut, C Pioppi, M Postema, H Ranieri, R Ricci, D Rolandi, G Ronga, F Sigaud, C Syed, A Siegrist, P Tropea, P Troska, J Tsirou, A Donckt, MV Vasey, F Alagoz, E Amsler, C Chiochia, V Regenfus, C Robmann, P Rochet, J Rommerskirchen, T Schmidt, A Steiner, S Wilke, L Church, I Cole, J Coughlan, J Gay, A Taghavi, S Tomalin, I Bainbridge, R Cripps, N Fulcher, J Hall, G Noy, M Pesaresi, M Radicci, V Raymond, DM Sharp, P Stoye, M Wingham, M Zorba, O Goitom, I Hobson, PR Reid, I Teodorescu, L Hanson, G Jeng, GY Liu, H Pasztor, G Satpathy, A Stringer, R Mangano, B Affolder, K Affolder, T Allen, A Barge, D Burke, S Callahan, D Campagnari, C Crook, A D'Alfonso, M Dietch, J Garberson, J Hale, D Incandela, H Incandela, J Jaditz, S Kalavase, P Kreyer, S Kyre, S Lamb, J Mc Guinness, C Mills, C Nguyen, H Nikolic, M Lowette, S Rebassoo, F Ribnik, J Richman, J Rubinstein, N Sanhueza, S Shah, Y Simms, L Staszak, D Stoner, J Stuart, D Swain, S Vlimant, JR White, D Ulmer, KA Wagner, SR Bagby, L Bhat, PC Burkett, K Cihangir, S Gutsche, O Jensen, H Johnson, M Luzhetskiy, N Mason, D Miao, T Moccia, S Noeding, C Ronzhin, A Skup, E Spalding, WJ Spiegel, L Tkaczyk, S Yumiceva, F Zatserklyaniy, A Zerev, E Anghel, I Bazterra, VE Gerber, CE Khalatian, S Shabalina, E Baringer, P Bean, A Chen, J Hinchey, C Martin, C Moulik, T Robinson, R Gritsan, AV Lae, CK Tran, NV Everaerts, P Hahn, KA Harris, P Nahn, S Rudolph, M Sung, K Betchart, B Demina, R Gotra, Y Korjenevski, S Miner, D Orbaker, D Christofek, L Hooper, R Landsberg, G Nguyen, D Narain, M Speer, T Tsang, KV AF Adam, W. Bergauer, T. Dragicevic, M. Friedl, M. Fruehwirth, R. Haensel, S. Hrubec, J. Krammer, M. Oberegger, M. Pernicka, M. Schmid, S. Stark, R. Steininger, H. Uhl, D. Waltenberger, W. Widl, E. Van Mechelen, P. Cardaci, M. Beaumont, W. de Langhe, E. de Wolf, E. A. Delmeire, E. Hashemi, M. Bouhali, O. Charaf, O. Clerbaux, B. Dewulf, J. -P. Elgammal, S. Hammad, G. de Lentdecker, G. Marage, P. Velde, C. Vander Vanlaer, P. Wickens, J. Adler, V. Devroede, O. De Weirdt, S. D'Hondt, J. Goorens, R. Heyninck, J. Maes, J. Mozer, M. Tavernier, S. Van Lancker, L. Van Mulders, P. Villella, I. Wastiels, C. Bonnet, J. -L. Bruno, G. De Callatay, B. Florins, B. Giammanco, A. Gregoire, G. Keutgen, Th. Kcira, D. Lemaitre, V. Michotte, D. Militaru, O. Piotrzkowski, K. Quertermont, L. Roberfroid, V. Rouby, X. Teyssier, D. Daubie, E. Anttila, E. Czellar, S. Engstrom, P. Harkonen, J. Karimaki, V. Kostesmaa, J. Kuronen, A. Lampen, T. Linden, T. Luukka, P. -R. Maenpaa, T. Michal, S. Tuominen, E. Tuominiemi, J. Ageron, M. Baulieu, G. Bonnevaux, A. Boudoul, G. Chabanat, E. Chabert, E. Chierici, R. Contardo, D. Della Negra, R. Dupasquier, T. Gelin, G. Giraud, N. Guillot, G. Estre, N. Haroutunian, R. Lumb, N. Perries, S. Schirra, F. Trocme, B. Vanzetto, S. Agram, J. -L. Blaes, R. Drouhin, F. Ernenwein, J. -P. Fontaine, J. -C. Berst, J. -D. Brom, J. -M. Didierjean, F. Goerlach, U. Graehling, P. Gross, L. Hosselet, J. Juillot, P. Lounis, A. Maazouzi, C. Olivetto, C. Strub, R. Van Hove, P. Anagnostou, G. Brauer, R. Esser, H. Feld, L. Karpinski, W. Klein, K. Kukulies, C. Olzem, J. Ostapchuk, A. Pandoulas, D. Pierschel, G. Raupach, F. Schael, S. Schwering, G. Sprenger, D. Thomas, M. Weber, M. Wittmer, B. Wlochal, M. Beissel, F. Bock, E. Flugge, G. Gillissen, C. Hermanns, T. Heydhausen, D. Jahn, D. Kaussen, G. Linn, A. Perchalla, L. Poettgens, M. Pooth, O. Stahl, A. Zoeller, M. H. Buhmann, P. Butz, E. Flucke, G. Hamdorf, R. Hauk, J. Klanner, R. Pein, U. Schleper, P. Steinbrueck, G. Bluem, P. De Boer, W. Dierlamm, A. Dirkes, G. Fahrer, M. Frey, M. Furgeri, A. Hartmann, F. Heier, S. Hoffmann, K. -H. Kaminski, J. Ledermann, B. Liamsuwan, T. Mueller, S. Mueller, Th. Schilling, F. -P. Simonis, H. -J. Steck, P. Zhukov, V. Cariola, P. De Robertis, G. Ferorelli, R. Fiore, L. Preda, M. Sala, G. Silvestris, L. Tempesta, P. Zito, G. Creanza, D. De Filippis, N. De Palma, M. Giordano, D. Maggi, G. Manna, N. My, S. Selvaggi, G. Albergo, S. Chiorboli, M. Costa, S. Galanti, M. Giudice, N. Guardone, N. Noto, F. Potenza, R. Saizu, M. A. Sparti, V. Sutera, C. Tricomi, A. Tuve, C. Brianzi, M. Civinini, C. Maletta, F. Manolescu, F. Meschini, M. Paoletti, S. Sguazzoni, G. Broccolo, B. Ciulli, V. D'Alessandro, R. Focardi, E. Frosali, S. Genta, C. Landi, G. Lenzi, P. Macchiolo, A. Magini, N. Parrini, G. Scarlini, E. Cerati, G. Azzi, P. Bacchetta, N. Candelori, A. Dorigo, T. Kaminsky, A. Karaevski, S. Khomenkov, V. Reznikov, S. Tessaro, M. Bisello, D. De Mattia, M. Giubilato, P. Loreti, M. Mattiazzo, S. Nigro, M. Paccagnella, A. Pantano, D. Pozzobon, N. Tosi, M. Bilei, G. M. Checcucci, B. Fano, L. Servoli, L. Ambroglini, F. Babucci, E. Benedetti, D. Biasini, M. Caponeri, B. Covarelli, R. Giorgi, M. Lariccia, P. Mantovani, G. Marcantonini, M. Postolache, V. Santocchia, A. Spiga, D. Bagliesi, G. Balestri, G. Berretta, L. Bianucci, S. Boccali, T. Bosi, F. Bracci, F. Castaldi, R. Ceccanti, M. Cecchi, R. Cerri, C. Cucoanes, A. S. Dell'Orso, R. Dobur, D. Dutta, S. Giassi, A. Giusti, S. Kartashov, D. Kraan, A. Lomtadze, T. Lungu, G. A. Magazzu, G. Mammini, P. Mariani, F. Martinelli, G. Moggi, A. Palla, F. Palmonari, F. Petragnani, G. Profeti, A. Raffaelli, F. Rizzi, D. Sanguinetti, G. Sarkar, S. Sentenac, D. Serban, A. T. Slav, A. Soldani, A. Spagnolo, P. Tenchini, R. Tolaini, S. Venturi, A. Verdini, P. G. Vos, M. Zaccarelli, L. Avanzini, C. Basti, A. Benucci, L. Bocci, A. Cazzola, U. Fiori, F. Linari, S. Massa, M. Messineo, A. Segneri, G. Tonelli, G. Azzurri, P. Bernardini, J. Borrello, L. Calzolari, F. Foa, L. Gennai, S. Ligabue, F. Petrucciani, G. Rizzi, A. Yang, Z. Benotto, F. Demaria, N. Dumitrache, F. Farano, R. Borgia, M. A. Castello, R. Costa, M. Migliore, E. Romero, A. Abbaneo, D. Abbas, M. Ahmed, I. Akhtar, I. Albert, E. Bloch, C. Breuker, H. Butt, S. Buchmuller, O. Cattai, A. Delaere, C. Delattre, M. Edera, L. M. Engstrom, P. Eppard, M. Gateau, M. Gill, K. Giolo-Nicollerat, A. -S. Grabit, R. Honma, A. Huhtinen, M. Kloukinas, K. Kortesmaa, J. Kottelat, L. J. Kuronen, A. Leonardo, N. Ljuslin, C. Mannelli, M. Masetti, L. Marchioro, A. Mersi, S. Michal, S. Mirabito, L. Muffat-Joly, J. Onnela, A. Paillard, C. Pal, I. Pernot, J. F. Petagna, P. Petit, P. Piccut, C. Pioppi, M. Postema, H. Ranieri, R. Ricci, D. Rolandi, G. Ronga, F. Sigaud, C. Syed, A. Siegrist, P. Tropea, P. Troska, J. Tsirou, A. Donckt, M. Vander Vasey, F. Alagoz, E. Amsler, C. Chiochia, V. Regenfus, C. Robmann, P. Rochet, J. Rommerskirchen, T. Schmidt, A. Steiner, S. Wilke, L. Church, I. Cole, J. Coughlan, J. Gay, A. Taghavi, S. Tomalin, I. Bainbridge, R. Cripps, N. Fulcher, J. Hall, G. Noy, M. Pesaresi, M. Radicci, V. Raymond, D. M. Sharp, P. Stoye, M. Wingham, M. Zorba, O. Goitom, I. Hobson, P. R. Reid, I. Teodorescu, L. Hanson, G. Jeng, G. -Y. Liu, H. Pasztor, G. Satpathy, A. Stringer, R. Mangano, B. Affolder, K. Affolder, T. Allen, A. Barge, D. Burke, S. Callahan, D. Campagnari, C. Crook, A. D'Alfonso, M. Dietch, J. Garberson, J. Hale, D. Incandela, H. Incandela, J. Jaditz, S. Kalavase, P. Kreyer, S. Kyre, S. Lamb, J. Mc Guinness, C. Mills, C. Nguyen, H. Nikolic, M. Lowette, S. Rebassoo, F. Ribnik, J. Richman, J. Rubinstein, N. Sanhueza, S. Shah, Y. Simms, L. Staszak, D. Stoner, J. Stuart, D. Swain, S. Vlimant, J. -R. White, D. Ulmer, K. A. Wagner, S. R. Bagby, L. Bhat, P. C. Burkett, K. Cihangir, S. Gutsche, O. Jensen, H. Johnson, M. Luzhetskiy, N. Mason, D. Miao, T. Moccia, S. Noeding, C. Ronzhin, A. Skup, E. Spalding, W. J. Spiegel, L. Tkaczyk, S. Yumiceva, F. Zatserklyaniy, A. Zerev, E. Anghel, I. Bazterra, V. E. Gerber, C. E. Khalatian, S. Shabalina, E. Baringer, P. Bean, A. Chen, J. Hinchey, C. Martin, C. Moulik, T. Robinson, R. Gritsan, A. V. Lae, C. K. Tran, N. V. Everaerts, P. Hahn, K. A. Harris, P. Nahn, S. Rudolph, M. Sung, K. Betchart, B. Demina, R. Gotra, Y. Korjenevski, S. Miner, D. Orbaker, D. Christofek, L. Hooper, R. Landsberg, G. Nguyen, D. Narain, M. Speer, T. Tsang, K. V. TI Performance studies of the CMS Strip Tracker before installation SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle tracking detectors; Large detector systems for particle and astroparticle physics ID READOUT AB In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies. C1 [Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.] INFN Padova, Padua, Italy. [Kuronen, A.; Michal, S.; Drouhin, F.; Hartmann, F.; Bacchetta, N.; Bilei, G. M.; Verdini, P. G.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L. M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A. -S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L. J.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J. F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Donckt, M. Vander; Vasey, F.; Sharp, P.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Yang, Z.] Peking Univ, Beijing, Peoples R China. [Adam, W.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Haensel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.] Osterreich Akad Wissensch HEPHY, Inst Hochenergiephys, Vienna, Austria. [Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E. A.; Delmeire, E.; Hashemi, M.] Univ Antwerp, Antwerp, Belgium. [Pasztor, G.] Res Inst Particle & Nucl Phys, Budapest, Hungary. [Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J. -P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, M.; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.] Vrije Univ Brussels, Brussels, Belgium. [Bonnet, J. -L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.] Univ Catholique Louvain, B-1348 Louvain, Belgium. [Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P. -R.; Maenpaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.] Helsinki Inst Phys, Helsinki, Finland. [Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Agram, J. -L.; Blaes, R.; Drouhin, F.; Ernenwein, J. -P.; Fontaine, J. -C.] Univ Haute Alsace, Grp Rech Phys Hautes Energies, Mulhouse, France. [Berst, J. -D.; Brom, J. -M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.] Univ Louis Pasteur Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS, IN2P3, Strasbourg, France. [Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M. H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbrueck, G.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Bluem, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K. -H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Mueller, S.; Mueller, Th.; Schilling, F. -P.; Simonis, H. -J.; Steck, P.; Zhukov, V.] Karlsruhe IEKP, Karlsruhe, Germany. [Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.] INFN Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.] Dipartimento Interateneo Fis, Bari, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.] Univ Catania, I-95124 Catania, Italy. [Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.] INFN Firenze, Florence, Italy. [Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.] Univ Florence, I-50121 Florence, Italy. [Cerati, G.] Univ Milano Bicocca, Milan, Italy. [Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.] Univ Padua, I-35100 Padua, Italy. [Bilei, G. M.; Checcucci, B.; Fano, L.; Servoli, L.] INFN Perugia, Perugia, Italy. [Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.] Univ Perugia, I-06100 Perugia, Italy. [Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A. T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.] INFN Pisa, Pisa, Italy. [Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.] Univ Pisa, I-56100 Pisa, Italy. [Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.] Scuola Normale Super Pisa, Pisa, Italy. [Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.] INFN Torino, Turin, Italy. [Borgia, M. A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.] Univ Turin, I-10124 Turin, Italy. [Alagoz, E.; Amsler, C.; Chiochia, V.; Regenfus, C.; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.] Univ Zurich, CH-8006 Zurich, Switzerland. [Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.] Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D. M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.] Univ London Imperial Coll Sci Technol & Med, London, England. [Goitom, I.; Hobson, P. R.; Reid, I.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hanson, G.; Jeng, G. -Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Mangano, B.] Univ Calif San Diego, San Diego, CA 92103 USA. [Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, J.; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinness, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J. -R.; White, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Bagby, L.; Bhat, P. C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W. J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Anghel, I.; Bazterra, V. E.; Gerber, C. E.; Khalatian, S.; Shabalina, E.] Univ Illinois, Chicago, IL USA. [Baringer, P.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.] Univ Kansas, Lawrence, KS 66045 USA. [Gritsan, A. V.; Lae, C. K.; Tran, N. V.] Johns Hopkins Univ, Baltimore, MD USA. [Everaerts, P.; Hahn, K. A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.] MIT, Cambridge, MA 02139 USA. [Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.] Univ Rochester, New York, NY USA. [Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. RP Azzi, P (reprint author), INFN Padova, Padua, Italy. EM Patrizia.Azzi@cern.ch; Lino.Demaria@cern.ch RI Ligabue, Franco/F-3432-2014; Khomenkov, Volodymyr (Vladimir)/I-5957-2013; Ahmed, Ijaz/E-9144-2015; D'Alessandro, Raffaello/F-5897-2015; My, Salvatore/I-5160-2015; Sguazzoni, Giacomo/J-4620-2015; TUVE', Cristina/P-3933-2015; Leonardo, Nuno/M-6940-2016; Tuominen, Eija/A-5288-2017; Servoli, Leonello/E-6766-2012; Focardi, Ettore/E-7376-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Lungu, George/I-8729-2012; Venturi, Andrea/J-1877-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Krammer, Manfred/A-6508-2010; Slav, Adrian/C-8364-2011; Stahl, Achim/E-8846-2011; Chen, Jie/H-6210-2011 OI CALZOLARI, FEDERICO/0000-0002-5510-3061; Covarelli, Roberto/0000-0003-1216-5235; Vos, Marcel/0000-0001-8474-5357; Giubilato, Piero/0000-0003-4358-5355; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Luukka, Panja/0000-0003-2340-4641; Noto, Francesco/0000-0003-2926-7342; Petragnani, Giulio/0000-0002-0819-6509; Costa, Salvatore/0000-0001-9919-0569; Ligabue, Franco/0000-0002-1549-7107; Boccali, Tommaso/0000-0002-9930-9299; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Rizzi, Andrea/0000-0002-4543-2718; Demaria, Natale/0000-0003-0743-9465; Bean, Alice/0000-0001-5967-8674; Landsberg, Greg/0000-0002-4184-9380; Tricomi, Alessia Rita/0000-0002-5071-5501; D'Alessandro, Raffaello/0000-0001-7997-0306; My, Salvatore/0000-0002-9938-2680; Sguazzoni, Giacomo/0000-0002-0791-3350; TUVE', Cristina/0000-0003-0739-3153; Leonardo, Nuno/0000-0002-9746-4594; Tuominen, Eija/0000-0002-7073-7767; Servoli, Leonello/0000-0003-1725-9185; Focardi, Ettore/0000-0002-3763-5267; Azzi, Patrizia/0000-0002-3129-828X; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Krammer, Manfred/0000-0003-2257-7751; Stahl, Achim/0000-0002-8369-7506; FU Austrian Federal Ministry of Science and Research; Belgium Fonds de la Recherche Scientifique and Fonds voorWetenschappelijk Onderzoek; Academy of Finland and Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France; Bundesministerium fur Bildungund Forschung, Germany; Istituto Nazionale di Fisica Nucleare, Italy; Swiss Funding Agencies; Science and Technology Facilities Council, UK; US Department of Energy; National Science Foundation; European Union; A. P. Sloan Foundation FX We thank the administrative staff at CERN and other Tracker Institutes. This work was supported by: the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique and Fonds voorWetenschappelijk Onderzoek; the Academy of Finland and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France; the Bundesministerium fur Bildungund Forschung, Germany; the Istituto Nazionale di Fisica Nucleare, Italy; the Swiss Funding Agencies; the Science and Technology Facilities Council, UK; the US Department of Energy, and National Science Foundation. Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 28 TC 6 Z9 6 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUN PY 2009 VL 4 AR P06009 DI 10.1088/1748-0221/4/06/P06009 PG 48 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 470AA UT WOS:000267942500012 ER PT J AU Bilki, B Butler, J May, E Mavromanolakis, G Norbeck, E Repond, J Underwood, D Xia, L Zhang, Q AF Bilki, B. Butler, J. May, E. Mavromanolakis, G. Norbeck, E. Repond, J. Underwood, D. Xia, L. Zhang, Q. TI Measurement of the rate capability of Resistive Plate Chambers SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Resistive-plate chambers; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Calorimeters; Particle tracking detectors (Gaseous detectors) ID RPC; DETECTORS AB This paper reports on detailed measurements of the performance of Resistive Plate Chambers in a proton beam with variable intensity. Short term effects, such as dead time, are studied using consecutive events. On larger time scales, for various beam intensities the chamber's efficiency is studied as a function of time within a spill of particles. The correlation between the efficiency of chambers placed in the same beam provides an indication of the lateral size of the observed effects. The measurements are compared to the predictions of a simple model based on the assumption that the resistive plates behave as pure resistors. C1 [May, E.; Repond, J.; Underwood, D.; Xia, L.; Zhang, Q.] Argonne Natl Lab, Argonne, IL 60439 USA. [Butler, J.] Boston Univ, Boston, MA 02215 USA. [Mavromanolakis, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bilki, B.; Norbeck, E.] Univ Iowa, Iowa City, IA 52242 USA. [Mavromanolakis, G.] Univ Cambridge, Cavevdish Lab, Cambridge CB3 OHE, England. [Zhang, Q.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Zhang, Q.] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@hep.anl.gov OI Bilki, Burak/0000-0001-9515-3306 NR 12 TC 22 Z9 22 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUN PY 2009 VL 4 AR P06003 DI 10.1088/1748-0221/4/06/P06003 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 470AA UT WOS:000267942500018 ER PT J AU Britzke, ER Loeb, SC Hobson, KA Romanek, CS Vonhof, MJ AF Britzke, Eric R. Loeb, Susan C. Hobson, Keith A. Romanek, Christopher S. Vonhof, Maarten J. TI USING HYDROGEN ISOTOPES TO ASSIGN ORIGINS OF BATS IN THE EASTERN UNITED STATES SO JOURNAL OF MAMMALOGY LA English DT Article DE bats; interspecific variation; intraspecific variation; Lasiurus borealis; migration; Myotis lucifugus; Myotis septentrionalis; Myotis sodalis; stable hydrogen isotope analysis ID STABLE-HYDROGEN; NORTH-AMERICA; MIGRATORY CONNECTIVITY; MYOTIS-SODALIS; BROWN BAT; GEOGRAPHIC ASSIGNMENT; WINTERING GROUNDS; ANIMAL MOVEMENT; WIND TURBINES; FEATHERS AB Stable hydrogen isotopes (delta Ds) in metabolically inert tissues such as feathers and hair provide a set of endogenous markers that may be useful for establishing migratory connectivity in animals. We tested the assumption of a clear relationship between delta D values of growing-season-weighted average precipitation (delta D(p)) derived from 2 geographic information system (GIS) models or latitude (LAT) and delta D values in bat hair (delta D(h)), and examined intra- and interspecific variation in delta D(h) of 4 bat species in the eastern United States. We analyzed 251 hair samples from 1 long-distance migrant (eastern red bat [Lasiurus borealis]) and 3 regional migrants (Indiana bat [Myotis sodalis], northern long-eared bat [M. septentrionalis], and little brown bat [M. lucifugus]) captured during the reproductive period (pregnancy and lactation) when bats are resident. LAT explained more of the variation in delta D(h) than delta D(p) derived from either of the GIS-based models, although 1 model of delta D(p) performed better for some species. We found significant intraspecific differences in the relationships between delta D(h) and LAT and between delta D(h) and estimates of delta D(p) derived from Bowen et al. (delta D(pB)) for L. borealis, and significant variation in the regression equations of delta D(h) and LAT and delta D(h) and delta D(p) among species for adult females and adult males. Stable hydrogen isotope analysis may be a valuable tool for studying migratory connectivity in bats, but significant intra- and interspecific variation in delta D(h) values suggests that pooling across sex and age categories and use of surrogate species should be avoided. C1 [Britzke, Eric R.] USA Corps Engineers, Engineer Res & Dev Ctr, Vicksburg, MS 39056 USA. [Loeb, Susan C.] Clemson Univ, So Res Stn, US Forest Serv, Clemson, SC 29634 USA. [Hobson, Keith A.] Environm Canada, Saskatoon, SK S7N 3H5, Canada. [Romanek, Christopher S.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Vonhof, Maarten J.] Western Michigan Univ, Dept Biol Sci, Kalamazoo, MI 49008 USA. RP Britzke, ER (reprint author), USA Corps Engineers, Engineer Res & Dev Ctr, Vicksburg, MS 39056 USA. EM eric.r.britzke@usace.army.mil NR 55 TC 22 Z9 22 U1 1 U2 15 PU ALLIANCE COMMUNICATIONS GROUP DIVISION ALLEN PRESS PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0022-2372 J9 J MAMMAL JI J. Mammal. PD JUN PY 2009 VL 90 IS 3 BP 743 EP 751 DI 10.1644/08-MAMM-A-211R2.1 PG 9 WC Zoology SC Zoology GA 457SH UT WOS:000266952900023 ER PT J AU Blau, PJ Jolly, BC AF Blau, Peter J. Jolly, Brian C. TI Relationships Between Abrasive Wear, Hardness, and Grinding Characteristics of Titanium-Based Metal-Matrix Composites SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE machining; metal matrix composites; titanium AB The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB(2) particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b) a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent. C1 [Blau, Peter J.; Jolly, Brian C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Blau, PJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,M-S 6063, Oak Ridge, TN 37831 USA. EM blaupj@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank J. McLaughlin and L. Walker, both from Oak Ridge National Laboratory, for their help on portions of this project. The reviews of Andrew Wereszczak and William Peter of ORNL are greatly appreciated, as is the advocacy and support of P. S. Sklad of ORNL. This work was support by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Heavy Vehicle Technologies, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 9 TC 6 Z9 6 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD JUN PY 2009 VL 18 IS 4 BP 424 EP 432 DI 10.1007/s11665-008-9227-3 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 445GQ UT WOS:000266038900013 ER PT J AU Xiong, YH Smugeresky, JE Schoenung, JM AF Xiong, Yuhong Smugeresky, John E. Schoenung, Julie M. TI The influence of working distance on laser deposited WC-Co SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE WC-Co; Laser Engineered Net Shaping; Microstructure; Working distance ID DIRECT METAL-DEPOSITION; FABRICATION; COMPOSITES; COMPONENTS; POWDER; LENS AB Nanostructured WC-10wt.% Co powder was used to make thick wall samples by the Laser Engineered Net Shaping (LENS (R)) process. During this process, a Nd:YAG laser was applied to create a molten pool on a stainless steel substrate and to deposit WC-Co into bulk cermets, the shape of which was controlled by a pre-programmed computer-aided design (CAD) model. Microstructure characteristics were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that working distance and relative location of the focal plane of the laser beam play an important role in controlling sample microstructures, in addition to other common process parameters such as laser power, traverse speed and powder feed rate. Thermal behavior leading to the observed microstructures that result from the variations in working distance was also investigated in this work. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xiong, Yuhong; Schoenung, Julie M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Smugeresky, John E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Schoenung, JM (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM jmschoenung@ucdavis.edu FU National Science Foundation [DMI-0423695]; United States Department of Energy [DE-AC04-94AL85000] FX This paper is based upon work supported by the National Science Foundation under Grant No. DMI-0423695. Work by Sandia is supported by the United States Department of Energy under contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. NR 18 TC 11 Z9 13 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD JUN 1 PY 2009 VL 209 IS 10 BP 4935 EP 4941 DI 10.1016/j.jmatprotec.2009.01.016 PG 7 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 467WX UT WOS:000267774900043 ER PT J AU Hu, MZ Lai, P Bhuiyan, MS Tsouris, C Gu, BH Paranthaman, MP Gabitto, J Harrison, L AF Hu, Michael Z. Lai, Peng Bhuiyan, M. S. Tsouris, Costas Gu, Baohua Paranthaman, M. Parans Gabitto, Jorge Harrison, Latoya TI Synthesis and characterization of anodized titanium-oxide nanotube arrays SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID OXIDATION; HYDROGEN; WATER; ELECTROLYTES; GROWTH; SENSOR AB Anodized titanium-oxide containing highly ordered, vertically oriented TiO(2) nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO(2) film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO(2) nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO(2) nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water. C1 [Hu, Michael Z.; Lai, Peng; Bhuiyan, M. S.; Tsouris, Costas; Gu, Baohua; Paranthaman, M. Parans] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gabitto, Jorge; Harrison, Latoya] Prairie View A&M Univ, Dept Chem Engn, Prairie View, TX 77446 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov RI Gu, Baohua/B-9511-2012; Paranthaman, Mariappan/N-3866-2015; Tsouris, Costas/C-2544-2016; OI Gu, Baohua/0000-0002-7299-2956; Paranthaman, Mariappan/0000-0003-3009-8531; Tsouris, Costas/0000-0002-0522-1027; Hu, Michael/0000-0001-8461-9684 FU US Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, Department of Materials Science and Engineering Program and by the Laboratory Directed Research and Development (LDRD) program of ORNL. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy, under contract no. DE-AC05-00OR22725. NR 27 TC 20 Z9 20 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD JUN PY 2009 VL 44 IS 11 BP 2820 EP 2827 DI 10.1007/s10853-009-3372-4 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 434TZ UT WOS:000265298300013 ER PT J AU Rich, RM Stelmakh, S Patyk, J Wieligor, M Zerda, TW Guo, QZ AF Rich, Ryan M. Stelmakh, Svitlana Patyk, Jaromir Wieligor, Monika Zerda, T. W. Guo, Quanzhong TI Bulk modulus of silicon carbide nanowires and nanosize grains SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SIC NANOWIRES; HIGH-PRESSURE C1 [Rich, Ryan M.; Stelmakh, Svitlana; Patyk, Jaromir; Wieligor, Monika; Zerda, T. W.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Guo, Quanzhong] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zerda, TW (reprint author), Texas Christian Univ, Dept Phys & Astron, Box 298840, Ft Worth, TX 76129 USA. EM t.zerda@tcu.edu RI Patyk, Jaromir/M-4200-2013 OI Patyk, Jaromir/0000-0001-7806-7852 FU NSF [DMR 0502136]; Polish Ministry of Education and Science [3 T08Lambda 020 29]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This study was supported by a grant NSF DMR 0502136. Svitlana Stelmakh acknowledges the Polish Ministry of Education and Science, grant 3 T08 Lambda 020 29, for the partial support of this research. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 19 TC 3 Z9 3 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD JUN PY 2009 VL 44 IS 11 BP 3010 EP 3013 DI 10.1007/s10853-009-3431-x PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 434TZ UT WOS:000265298300038 ER PT J AU Olsson, RH Wojciechowski, KE Baker, MS Tuck, MR Fleming, JG AF Olsson, Roy H. Wojciechowski, Kenneth E. Baker, Michael S. Tuck, Melanie R. Fleming, James G. TI Post-CMOS-Compatible Aluminum Nitride Resonant MEMS Accelerometers SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Acceleration measurement; acoustic devices; acoustic oscillators; acoustic resonators; acoustic transducers; beams ID SENSOR; NOISE AB This paper describes the development of aluminum nitride (AlN) resonant accelerometers that can be integrated directly over foundry CMOS circuitry. Acceleration is measured by a change in resonant frequency of AlN double-ended tuning-fork (DETF) resonators. The DETF resonators and an attached proof mass are composed of a 1-mu m-thick piezoelectric AlN layer. Utilizing piezoelectric coupling for the resonator drive and sense, DETFs at 890 kHz have been realized with quality factors (Q) of 5090 and a maximum power handling of 1 mu W. The linear drive of the piezoelectric coupling reduces upconversion of 1/f amplifier noise into 1/f(3) phase noise close to the oscillator carrier. This results in lower oscillator phase noise, -96 dBc/Hz at 100-Hz offset from the carrier, and improved sensor resolution when the DETF resonators are oscillated by the readout electronics. Attached to a 110-ng proof mass, the accelerometer microsystem has a measured sensitivity of 3.4 Hz/G and a resolution of 0.9 mG/root Hz from 10 to 200 Hz, where the accelerometer bandwidth is limited by the measurement setup. Theoretical calculations predict an upper limit on the accelerometer bandwidth of 1.4 kHz. [2008-0190] C1 [Olsson, Roy H.; Wojciechowski, Kenneth E.; Baker, Michael S.; Tuck, Melanie R.; Fleming, James G.] Sandia Natl Labs, Adv MEMS Dept, Albuquerque, NM 87123 USA. RP Olsson, RH (reprint author), Sandia Natl Labs, Adv MEMS Dept, Albuquerque, NM 87123 USA. EM rholsso@sandia.gov NR 26 TC 33 Z9 33 U1 1 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD JUN PY 2009 VL 18 IS 3 BP 671 EP 678 DI 10.1109/JMEMS.2009.2020374 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 454ZK UT WOS:000266723700018 ER PT J AU Prasad, SV Scharf, TW Kotula, PG Michael, JR Christenson, TR AF Prasad, Somuri V. Scharf, Thomas W. Kotula, Paul G. Michael, Joseph R. Christenson, Todd R. TI Application of Diamond-Like Nanocomposite Tribological Coatings on LIGA Microsystem Parts SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Coatings; electron microscopy; friction ID MICROELECTROMECHANICAL DEVICES; BEHAVIOR; NICKEL; FRICTION AB The major focus of this study was to examine the feasibility of applying diamond-like nanocomposite (DLN) coatings on the sidewalls of Ni alloy parts fabricated using lithographie, galvanoformung and abformung (LIGA: a German acronym that means lithography, electroforming, and molding) for friction and wear control. Planar test coupons were employed to understand the friction mechanisms in regimes relevant to LIGA microsytems. Friction tests were conducted on planar test coupons as well as between LIGA-fabricated test structures in planar-sidewall and sidewall-sidewall configurations. Measurements were made in dry nitrogen and air with 50% relative humidity by enclosing the friction tester in an environmental chamber. In contrast to bare metal-metal contacts, minimal wear was exhibited for the DLN-coated LIGA NiMn alloy parts and test coupons. The low friction behavior of DLN was attributed to its ability to transfer to the rubbing counterface providing low interfacial shear at the sliding contact. The coating coverage and chemistry on the sidewalls and the substrate-coating interface integrity were examined by transmission electron microscopy, Automated eXpert Spectral Image Analysis, and electron backscatter diffraction on cross sections prepared by focused ion beam microscopy. The role of novel characterization techniques to evaluate the surface coatings for LIGA microsystems technology is highlighted. [2008-0007] C1 [Prasad, Somuri V.; Scharf, Thomas W.; Kotula, Paul G.; Michael, Joseph R.; Christenson, Todd R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Prasad, SV (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM svprasa@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU Bekaert Advanced Coating Technologies FX The authors would like to thank C. Venkatrarnan and C. Brodbeck of Bekaert Advanced Coating Technologies for supplying the DLN coatings and Dr. J. Jungk for performing the FEM simulations. NR 25 TC 7 Z9 7 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD JUN PY 2009 VL 18 IS 3 BP 695 EP 704 DI 10.1109/JMEMS.2009.2016284 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 454ZK UT WOS:000266723700020 ER PT J AU Gupta, A Narayan, J Kumar, D AF Gupta, A. Narayan, J. Kumar, Dhananjay TI Magnetic Properties of Self-Assembled Ni Nanoparticles in Two Dimensional Structures SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Self-Assembly; Nanomagnetism; Pulsed Laser Deposition; Single and Multi Domain Nanoparticles ID SUPERPARAMAGNETIC BEHAVIOR; EXCHANGE; MATRIX; TEMPERATURE; COERCIVITY; PHYSICS; SOLIDS; FE AB A pulsed laser deposition technique has been used to synthesize a uniform distribution of Ni nanoparticles of controllable size in Al(2)O(3) thin film matrix. The ability to control particle size in confined layers provides a very convenient means to tune the magnetic properties from superparamagnetic to ferromagnetic. The coercivity of these particles was measured at various temperatures as a function of particle size. The results indicate that the magnetic transition from single- to multi-domain region occurs at a larger particle size at higher temperature than at lower temperature. Stronger magnetic interaction among particles at lower temperatures is believed to lead to the formation of smaller sized domains for any given particle size in order to minimize the interaction energy. C1 [Gupta, A.; Kumar, Dhananjay] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [Narayan, J.] N Carolina State Univ, Dept Mech & Chem Engn, Raleigh, NC 27495 USA. [Kumar, Dhananjay] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kumar, D (reprint author), N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. RI Narayan, Jagdish/D-1874-2009 FU NSF-NIRT [DMR-0403480]; Center for Advanced Materials and Smart Structures FX This work was Supported by a NSF-NIRT grant DMR-0403480 and by the Center for Advanced Materials and Smart Structures. NR 22 TC 6 Z9 6 U1 2 U2 5 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUN PY 2009 VL 9 IS 6 BP 3993 EP 3996 DI 10.1166/jnn.2009.214 PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 441TX UT WOS:000265794500101 PM 19504953 ER PT J AU Hrma, P Arrigoni, BM Schweiger, MJ AF Hrma, Pavel Arrigoni, Benjamin M. Schweiger, Michael J. TI Viscosity of many-component glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Composition; Transport properties - liquids; Glass melting; Glasses; Mechanical properties; Modeling and simulation; Nuclear and chemical wastes; Oxide glasses; Viscosity ID LEVEL WASTE SAMPLE; MODEL; TEMPERATURE; VITRIFICATION AB The effect of composition on the viscosity (eta) of multicomponent glasses is expressed as B = Sigma(N)(i=1)B(i)x(i) where B = T ln(eta/eta(infinity)) is the activation energy (in K), B(i) is the i-th component coefficient, x(i) is the i-th component mass fraction, T is the absolute temperature, and eta(infinity) approximate to 10(-5) Pa . s. The B(i) coefficients for three composition regions (labeled as CVS-1&2, CVS-3, and CVS-4) containing various subsets of Al(2)O(3), B(2)O(3), Bi(2)O(3), CaO, Cr(2)O(3), F, Fe(2)O(3), K(2)O, Li(2)O, MgO, MnO, Na(2)O, NiO, P(2)O(5), SiO(2), UO(2), and ZrO(2) as major components are summarized and compared. This paper presents a detailed account of the recent experimental study that generated viscosity data for the CVS-4 region of glass composition. Whereas CVS-1&2 is a well publicized dataset, CVS-3 viscosity data, though produced in 1995, are published and evaluated here for the first time. Limits of applicability of the composition models are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hrma, Pavel; Arrigoni, Benjamin M.; Schweiger, Michael J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hrma, P (reprint author), Pacific NW Natl Lab, 350 Hill St, Richland, WA 99352 USA. EM pavel.hrma@pnl.gov FU US Department of Energy (DOE) Office of River Protection [DE-AC05-76RL01830] FX Dong-Sang Kim designed the test matrix based on Jessie Lang's evaluation of 5800 waste compositions projected for the Hanford Waste Treatment and Immobilization Plant as part of a project managed by John Vienna and sponsored by the US Department of Energy (DOE) Office of River Protection. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 27 TC 20 Z9 20 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 1 PY 2009 VL 355 IS 14-15 BP 891 EP 902 DI 10.1016/j.jnoncrysol.2009.03.005 PG 12 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 455FG UT WOS:000266742900013 ER PT J AU Barashev, AV Golubov, SI AF Barashev, A. V. Golubov, S. I. TI Steady-state size distribution of voids in metals under cascade irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DAMAGE CONDITIONS; DISPLACEMENT CASCADES; MOLECULAR-DYNAMICS; PURE COPPER; CLUSTERS; LOOPS; ACCUMULATION; EVOLUTION; KINETICS; GLIDE AB The theory of radiation damage in metallic materials predicts that under cascade-irradiation conditions the voids should approach a steady state, which is characterised by a maximum mean void size. It is shown in this paper that the steady-state concentrations of voids of different size are described by the Gaussian distribution with the maximum size mentioned above to be the most probable value. The evolution of voids towards the steady state is analysed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved. C1 [Barashev, A. V.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Golubov, S. I.] ORNL, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Golubov, S. I.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. RP Barashev, AV (reprint author), Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. EM a.barashev@liv.ac.uk FU UK Engineering and the Physical Sciences Research Council; Office of Fusion Energy Sciences US Department of Energy [DE-AC05-00OR22725] FX The research was sponsored by a research grant from the UK Engineering and the Physical Sciences Research Council (A.V.B.) and by the Office of Fusion Energy Sciences US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC (S.I.G.). NR 25 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 1 PY 2009 VL 389 IS 3 BP 407 EP 409 DI 10.1016/j.jnucmat.2009.02.017 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 452AB UT WOS:000266510900009 ER PT J AU Xu, P Tang, M Nino, JC AF Xu, P. Tang, M. Nino, J. C. TI In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg2SnO4) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BEAM IRRADIATION; ALUMINATE SPINEL; INDUCED DAMAGE; HEAVY-IONS; CERAMICS; MGAL2O4; AMORPHIZATION; PYROCHLORE; OXIDES; TRACKS AB Magnesium stannate spinel (Mg2SnO4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg2SnO4 Was achieved at an ion dose of 5 x 10(19) Kr ions/m(2) at 50 K and 10(20) Kr ions/m(2) at 150 K. which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr2+ ions in Mg2SnO4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg2SnO4 was finally compared with normal spinel MgAl2O4. Published by Elsevier B.V. C1 [Xu, P.; Nino, J. C.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Tang, M.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Xu, P (reprint author), Univ Florida, Dept Mat Sci & Engn, 100 Rhines Hall, Gainesville, FL 32611 USA. EM pengxu@ufl.edu RI Nino, Juan/A-6496-2008 OI Nino, Juan/0000-0001-8256-0535 FU US Department of Energy through the Nuclear Energy Research Initiative (NERI) Program [DE-FC07-05ID14647] FX The authors wish to thank E.A. Ryan, P. Baldo, A. Liu and M. A. Kirk, IVEM-Tandem Facility staff at ANL, for their assistance with ion irradiations. The authors would also like to thank the technical assistance from the Major Analytical Instrumentation Center (MAIC), Department of Materials Science and Engineering, University of Florida. This work is funded by the US Department of Energy through the Nuclear Energy Research Initiative (NERI) Program (DE-FC07-05ID14647). NR 45 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 1 PY 2009 VL 389 IS 3 BP 410 EP 415 DI 10.1016/j.jnucmat.2009.02.019 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 452AB UT WOS:000266510900010 ER PT J AU Kim, YS Hofman, GL Rest, J Robinson, AB AF Kim, Yeon Soo Hofman, G. L. Rest, J. Robinson, A. B. TI Temperature and dose dependence of fission-gas-bubble swelling in U3Si2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INDUCED PLASTIC-DEFORMATION; URANIUM SILICIDE COMPOUNDS; AMORPHOUS SOLIDS; NEUTRON-IRRADIATION; ION; MODEL; BEHAVIOR; AMORPHIZATION AB Large fission gas bubbles were observed during metallographic examination of an irradiated U3Si2 dispersion fuel plate (U0R040) in the Advanced Test Reactor (ATR). The fuel temperature of this plate was higher than for most of the previous silicide-fuel tests where much smaller bubble growth was observed. The apparent conditions for the large bubble growth are high fission density (6.1 x 10(21) f/cm(3)) and high fuel temperature (life-average 160 degrees C). After analysis of PIE results of U0R040 and previous ANL test plates, a modification to the existing athermal bubble growth model appears to be necessary for high temperature application (above 130 degrees C). A detailed analysis was performed using a model for the irradiation-induced viscosity of binary alloys to explain the effect of the increased fuel temperature. Threshold curves are proposed in terms of fuel temperature and fission density above which formation and interconnection of bubbles larger than 5 mu are possible. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Hofman, G. L.; Rest, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Robinson, A. B.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov NR 25 TC 6 Z9 7 U1 5 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 1 PY 2009 VL 389 IS 3 BP 443 EP 449 DI 10.1016/j.jnucmat.2009.02.037 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 452AB UT WOS:000266510900016 ER PT J AU Burkes, DE Fielding, RS Porter, DL Crawford, DC Meyer, MK AF Burkes, Douglas E. Fielding, Randall S. Porter, Douglas L. Crawford, Douglas C. Meyer, Mitchell K. TI A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ANISOTROPIC IRRADIATION GROWTH; FAST BREEDER-REACTORS; PU-ZR FUEL; DRIVER FUEL; EBR-II; PERFORMANCE; BEHAVIOR; URANIUM; TEMPERATURES; FLOW AB This paper is part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF). Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated in a considerable amount of research that resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.; Meyer, Mitchell K.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Crawford, Douglas C.] GE Nucl Global Nucl Fuel, Wilmington, NC 28402 USA. RP Burkes, DE (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Douglas.Burkes@inl.gov OI Crawford, Douglas/0000-0001-5639-7885; Meyer, Mitchell/0000-0002-1980-7862 FU US Department of Energy, Office of Nuclear Energy (NE); DOE Idaho Operations Office [DE-AC07-05ID14517] FX The authors wish to acknowledge the many scientists, engineers, technicians, and support staff involved with the EBR-II and FFTF over three decades. Their commitment, integrity, and knowledge has in no small part inspired a new generation of scientists, engineers, technicians, and support staff to continue the great and important work they established, especially in such a dire time of need. This work is supported by the US Department of Energy, Office of Nuclear Energy (NE), under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 65 TC 28 Z9 29 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 1 PY 2009 VL 389 IS 3 BP 458 EP 469 DI 10.1016/j.jnucmat.2009.02.035 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 452AB UT WOS:000266510900018 ER PT J AU Tang, M Holliday, KS Valdez, JA Uberuaga, BP Dickerson, PO Dickerson, RM Wang, Y Czerwinski, KR Sickafus, KE AF Tang, M. Holliday, K. S. Valdez, J. A. Uberuaga, B. P. Dickerson, P. O. Dickerson, R. M. Wang, Y. Czerwinski, K. R. Sickafus, K. E. TI Radiation damage effects in the uranium-bearing delta-phase oxide Y6U1O12 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; NUCLEAR-WASTE; BASIS-SET; IMMOBILIZATION; TOLERANCE; PLUTONIUM; METALS AB Ion irradiation damage effects in delta (delta)Y6U1O12 were characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Experimental results revealed no amorphization transformation occurs in Kr-ion irradiated Y6U1O12 to a maximum displacement damage dose of similar to 50 displacements per atom at cryogenic temperature. Density functional theory calculations indicate that delta-Y6U1O12 possesses a relatively low cation antisite formation energy, which may help to explain the observed resistance of delta-Y6U1O12 to irradiation-induced amorphization of delta-Y6U1O12. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tang, M.; Valdez, J. A.; Uberuaga, B. P.; Dickerson, P. O.; Dickerson, R. M.; Wang, Y.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Holliday, K. S.; Czerwinski, K. R.] Univ Nevada, Radiochem Grp, Las Vegas, NV 89154 USA. RP Tang, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G755,POB 1663, Los Alamos, NM 87545 USA. EM mtang@lanl.gov FU Seaborg Institute for Transactinium Science, Los Alamos National Laboratory; US Department of Energy; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering FX This work was sponsored by the Seaborg Institute for Transactinium Science, Los Alamos National Laboratory, and the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 22 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 1 PY 2009 VL 389 IS 3 BP 497 EP 499 DI 10.1016/j.jnucmat.2009.02.001 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 452AB UT WOS:000266510900023 ER PT J AU O'Brien, RC Ambrosi, RM Bannister, NP Howe, SD Atkinson, HV AF O'Brien, R. C. Ambrosi, R. M. Bannister, N. P. Howe, S. D. Atkinson, H. V. TI Safe radioisotope thermoelectric generators and heat sources for space applications (vol 377, pg 506, 2008) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Correction C1 [O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.] Univ Leicester, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Howe, S. D.] Ctr Space Nucl Res, Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. [Atkinson, H. V.] Univ Leicester, Dept Engn, Leicester LE1 7RH, Leics, England. RP O'Brien, RC (reprint author), Univ Leicester, Space Res Ctr, Univ Rd, Leicester LE1 7RH, Leics, England. EM rco3@star.le.ac.uk NR 1 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 1 PY 2009 VL 389 IS 3 BP 504 EP 506 DI 10.1016/j.jnucmat.2009.01.022 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 452AB UT WOS:000266510900025 ER PT J AU Seol, Y Kneafsey, TJ AF Seol, Yongkoo Kneafsey, Timothy J. TI X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE methane hydrate; anisotropy; X-ray computed tomography; capillary strength ID CARBON-DIOXIDE; GAS HYDRATE; BLAKE RIDGE; DISSOCIATION; SAMPLE; OCEAN AB We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system. Published by Elsevier B.V. C1 [Kneafsey, Timothy J.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM yongkoo.seol@netl.doe.gov RI Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU Assistant Secretary for Fossil Energy; Office of Natural Gas and Petroleum Technology; National Energy Technology Laboratory; U.S. DOE [DE-AC02-05CH11231]; Korean Institute of Geoscience and Mineral Resources FX The authors wish to acknowledge Michael Kowalsky, Matthew Reagan, and Dan Hawkes for their helpful comments in reviewing this manuscript. This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. DOE Contract No. DE-AC02-05CH11231, and also in part by the Korean Institute of Geoscience and Mineral Resources. NR 33 TC 20 Z9 22 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD JUN PY 2009 VL 66 IS 3-4 BP 121 EP 132 DI 10.1016/j.petrol.2009.01.008 PG 12 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 459TI UT WOS:000267132400006 ER PT J AU Toepel, J McDermott, JE Summerfield, TC Sherman, LA AF Toepel, Joerg McDermott, Jason E. Summerfield, Tina C. Sherman, Louis A. TI TRANSCRIPTIONAL ANALYSIS OF THE UNICELLULAR, DIAZOTROPHIC CYANOBACTERIUM CYANOTHECE SP ATCC 51142 GROWN UNDER SHORT DAY/NIGHT CYCLES SO JOURNAL OF PHYCOLOGY LA English DT Article DE circadian and diurnal behavior; cyanobacteria; glycogen metabolism; light-dark cycles; nitrogen fixation; photosystems ID SP STRAIN ATCC-51142; GENE-EXPRESSION; LIGHT-DARK; TRANSLATIONAL REGULATION; SYNECHOCOCCUS-ELONGATUS; SOFTWARE ENVIRONMENT; CIRCADIAN-RHYTHMS; METABOLISM; CULTURES; CLOCK AB Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration, and nitrogen fixation when grown under N-2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light:dark (L:D) cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian-regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with these data and those from 2 d L:D and L:D plus continuous light experiments to better differentiate between diurnal and circadian-regulated genes. Cyanothece sp. acclimated in several ways to growth under short L:D conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown, and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation, and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short L:D cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes, which displayed a diurnal, dark-dependent gene expression. C1 [McDermott, Jason E.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. [Toepel, Joerg; Summerfield, Tina C.; Sherman, Louis A.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. RP Sherman, LA (reprint author), Purdue Univ, Dept Biol Sci, 201 S Univ St, W Lafayette, IN 47907 USA. EM lsherman@purdue.edu OI McDermott, Jason/0000-0003-2961-2572; Summerfield, Tina/0000-0003-1878-7019 FU U.S. Department of Energy's Office of Biological and Environmental Research (BER) FX We would like to thank Dr. Rajeev Aurora for his efforts to develop the microarray platform and Bryan Penning of Purdue University for his help with the infrared spectroscopy. This work was supported by the Membrane Biology EMSL Scientific Grand Challenge project at the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory. PNNL is operated for the Department of Energy by Battelle. NR 38 TC 22 Z9 22 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-3646 EI 1529-8817 J9 J PHYCOL JI J. Phycol. PD JUN PY 2009 VL 45 IS 3 BP 610 EP 620 DI 10.1111/j.1529-8817.2009.00674.x PG 11 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 454WJ UT WOS:000266714200009 PM 27034037 ER PT J AU Jin, F AF Jin, F. CA STAR Collaboration TI Measurement of non-photonic electrons in p plus p collisions at root s(NN)=200 GeV with reduced detector material in STAR SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ AB In this paper, we present our analysis of mid-rapidity non-photonic electron (NPE) production at p(T) > 0.2 GeV/c in p+p collisions at root s(NN) = 200 GeV. The data set is similar to 78 M TOF-triggered events taken from RHIC year 2008 runs. Through the measurement of the e/pi ratio, we find that the photonic background electrons from gamma conversions are reduced by about a factor of 10 compared with those in STAR previous runs due to the absence of inner tracking detectors and the supporting materials. The dramatic increase of the signal-to-background ratio will allow us to improve the precision on extracting the charm cross section via its semi-leptonic decays to electrons. C1 [Jin, F.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Jin, F.; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Jin, F (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China. EM jfazj@rcf.rhic.bnl.gov NR 7 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064051 DI 10.1088/0954-3899/36/6/064051 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200052 ER PT J AU Liu, YP Qu, Z Xu, N Zhuang, PF AF Liu, Yunpeng Qu, Zhen Xu, Nu Zhuang, Pengfei TI Spacetime evolution of J/psi production in high energy nuclear collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ ID HEAVY-ION COLLISIONS; TRANSVERSE-MOMENTUM DEPENDENCE; SHORT-DISTANCE ANALYSIS; QUARK-GLUON PLASMA; J-PSI PRODUCTION; CHARMONIUM PRODUCTION; SUPPRESSION; SYSTEMS; MODEL; SPS AB The spacetime evolution of J/psi production in central Au+Au collisions at RHIC energy is investigated in a transport model. Both gluon dissociation and continuous regeneration of J/psi s inside the deconfined state are considered. C1 [Qu, Zhen; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Xu, Nu] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liu, YP (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM liuyp06@mails.tsinghua.edu.cn NR 32 TC 6 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064057 DI 10.1088/0954-3899/36/6/064057 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200058 ER PT J AU Masui, H AF Masui, H. CA STAR Collaboration TI System size, energy and centrality dependence of strange hadron elliptic flow at STAR SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ AB The elliptic flow(upsilon(2)) pattern in terms of hadron mass and transverse momentum p(T) is qualitatively described for p(T) < 2 GeV/ c by ideal hydrodynamics in Au + Au collisions at the Relativistic Heavy Ion Collider (RHIC). In addition, for p(T) = 2-6 GeV/c the measured upsilon(2) follow a universal scaling by the number of quarks explained by quark coalescence/ recombination models. These observations suggest that a partonic collectivity develops in the matter in early stage of heavy ion collisions. Centrality as well as system size and energy dependence of upsilon(2) is important to shed light on the underlying collision dynamics in heavy ion collisions. We present the measurements of centrality dependence of upsilon(2) at v root s(NN) = 200 and 62.4 GeV in Au + Au and Cu + Cu collisions for K(S)(0), phi, Lambda, Xi and Omega at STAR experiment. We focus on the recent Cu + Cu results and discuss the centrality dependence of upsilon(2) as well as the number of quark scaling as a function of transverse kinetic energy at different system size and energies. We also discuss the eccentricity scaled upsilon(2) for identified hadrons and implications that ideal hydrodynamical limit has not been reached at the RHIC. C1 [Masui, H.; STAR Collaboration] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Masui, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM HMasui@lbl.gov NR 16 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064047 DI 10.1088/0954-3899/36/6/064047 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200048 ER PT J AU Mohanty, B Xu, N AF Mohanty, B. Xu, N. TI Probe of the QCD phase diagram with phi-mesons in high-energy nuclear collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; STRANGENESS; MODEL AB High-energy nuclear collisions provide a unique tool to study a strongly interacting medium. Recent results from the Relativistic Heavy Ion Collider (RHIC) on phi-meson production have revealed the formation of a dense partonic medium. The medium constituents are found to exhibit collective behaviour initiated due to partonic interactions in the medium. We present a brief review of the recent results on phi production in heavy-ion collisions at the RHIC. One crucial question is where, in the phase diagram, does the transition happen for the matter changing from hadronic to partonic degrees of freedom. We discuss how the phi-meson elliptic flow in heavy-ion collisions can be used for the search of the QCD phase boundary. C1 [Mohanty, B.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mohanty, B (reprint author), Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, 1 AF Bidhan Nagar, Kolkata 700064, W Bengal, India. EM bmohanty@veccal.ernet.in OI Mohanty, Bedangadas/0000-0001-9610-2914 NR 27 TC 25 Z9 25 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064022 DI 10.1088/0954-3899/36/6/064022 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200023 ER PT J AU Sagert, I Hempel, M Pagliara, G Schaffner-Bielich, J Fischer, T Mezzacappa, A Thielemann, FK Liebendorfer, M AF Sagert, I. Hempel, M. Pagliara, G. Schaffner-Bielich, J. Fischer, T. Mezzacappa, A. Thielemann, F-K Liebendorfer, M. TI The strange prospects for astrophysics SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ ID EQUATION-OF-STATE; NEUTRON-STARS; COMPACT STARS; 3RD FAMILY; MATTER; QUARK; PHASES; DENSE AB The implications of the formation of strange quark matter in neutron stars and in core-collapse supernovae are discussed with special emphasis on the possibility of having a strong first-order QCD phase transition at high baryon densities. If strange quark matter is formed in core-collapse supernovae shortly after the bounce, it causes the launch of a second outgoing shock which is energetic enough to lead to an explosion. A signal for the formation of strange quark matter can be read off from the neutrino spectrum, as a second peak in antineutrinos is released when the second shock runs over the neutrinosphere. C1 [Sagert, I.; Hempel, M.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Pagliara, G.; Schaffner-Bielich, J.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Fischer, T.; Thielemann, F-K; Liebendorfer, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Mezzacappa, A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Sagert, I (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM schaffner@thphys.uni-heidelberg.de RI Pagliara, Giuseppe/F-7650-2012; Mezzacappa, Anthony/B-3163-2017; OI Mezzacappa, Anthony/0000-0001-9816-9741; Hempel, Matthias/0000-0003-4676-4121; PAGLIARA, Giuseppe/0000-0003-3250-1398 NR 26 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064009 DI 10.1088/0954-3899/36/6/064009 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200010 ER PT J AU Xu, ZB AF Xu, Zhangbu CA STAR Collaboration TI Recent heavy-flavor results at STAR SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ ID QUARK-GLUON PLASMA; INTERSECTING STORAGE-RINGS; LARGE TRANSVERSE-MOMENTUM; P-P COLLISIONS; J-PSI; J/PSI; COLLIDER; SPECTRA AB We present the recent results on non-photonic electron (NPE) yields from RHIC run8 p+p collisions. The e/pi ratio as a function of p(T) in run8 with a factor of 10 reduction of the inner detector material at STAR is found to be consistent with those results from run3 taking into account the NPE from charm leptonic decay and the difference of photonic electron yield from photon conversion in detector material. The J/psi spectra in p+p and Cu+Cu collisions at root(NN)-N-s = 200 GeV with high sampled luminosity are presented; we found that the J/psi spectrum at high p(T) follows x(T) scaling, but the scaling is violated at low p(T). J/psi-hadron correlations in p+p collisions are studied to understand the J/psi production mechanism at high p(T). We observed an absence of charged hadrons accompanying J/psi on the near side, in contrast to the strong correlation peak in the dihadron correlations. This constrains the B-meson contribution and jet fragmentation to inclusive J/psi to be less than or similar to 17%. Yields in minimum-bias Cu+Cu collisions are consistent with those in p+p collisions scaled by the underlying binary nucleon-nucleon collisions in the measured p(T) range. Other measurements and future projects related to heavy flavors are discussed. C1 [Xu, Zhangbu; STAR Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Xu, ZB (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM xzb@bnl.gov NR 43 TC 1 Z9 1 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064012 DI 10.1088/0954-3899/36/6/064012 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200013 ER PT J AU Zhu, XL Xu, N Zhuang, PF AF Zhu, Xianglei Xu, Nu Zhuang, Pengfei TI D(D)over-bar correlation as a signature of strongly coupled quark matter SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT 12th International Conference on Strangeness in Quark Matter CY OCT 05-10, 2008 CL Tsinghua Univ, Beijing, PEOPLES R CHINA SP Tsinghua Univ, Dept Phys, Cent China Normal Univ, Sch Phys HO Tsinghua Univ ID GLUON PLASMA; NUCLEAR COLLISIONS; ELLIPTIC FLOW; TRANSPORT AB Massive heavy quarks, which are pair produced back to back initially in high-energy nuclear collisions, are sensitive to early dynamical conditions. The strong collective partonic 'wind' from the fast expanding quark-gluon plasma created in high-energy nuclear collisions modifies the correlation pattern significantly. While the hot and dense medium in collisions at the RHIC (root s(NN) = 200 GeV) can only smear the initial back-to-back D (D) over bar correlation, a clear and strong near-side D (D) over bar correlation is expected at the LHC (root s(NN) = 5500 GeV). This is considered as a signature for early thermalization and the strongly coupled quark-gluon plasma. C1 [Zhu, Xianglei] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. RP Zhu, XL (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM zhux@tsinghua.edu.cn NR 40 TC 1 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUN PY 2009 VL 36 IS 6 AR 064025 DI 10.1088/0954-3899/36/6/064025 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 445JN UT WOS:000266047200026 ER PT J AU Prietzel, J Thieme, J Tyufekchieva, N Paterson, D McNulty, I Kogel-Knabner, I AF Prietzel, Joerg Thieme, Juergen Tyufekchieva, Nora Paterson, David McNulty, Ian Koegel-Knabner, Ingrid TI Sulfur speciation in well-aerated and wetland soils in a forested catchment assessed by sulfur K-edge X-ray absorption near-edge spectroscopy (XANES) SO JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE-ZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE LA English DT Article DE forest soils; NEXAFS; oxygen availability; redox gradient; S deposition; S retention ID ORGANIC SULFUR; SULFATE REDUCTION; ACIDIC DEPOSITION; PEAT; RETENTION; ALUMINUM; CARBON; TRANSFORMATION; ECOSYSTEMS; FRACTIONS AB In forested catchments, retention and remobilization of S in soils and wetlands regulate soil and water acidification. The prediction of long-term S budgets of forest ecosystems under changing environmental conditions requires a precise quantification of all relevant soil S pools, comprising S species with different remobilization potential. In this study, the S speciation in topsoil horizons of a soil toposequence with different groundwater influence and oxygen availability was assessed by synchrotron-based X-ray absorption near-edge spectroscopy (XANES). Our investigation was conducted on organic (0, H) and mineral topsoil (A, AE) horizons of a Cambisol-Stagnosol-Histosol catena. We studied the influence of topography (i.e., degree of groundwater influence) and oxygen availability on the S speciation. Soil sampling and pretreatment were conducted under anoxic conditions. With increasing groundwater influence and decreasing oxygen availability in the sequence Cambisol-Stagnosol-Histosol, the C : S ratio in the humic topsoil decreased, indicating an enrichment of soil organic matter in S. Moreover, the contribution of reduced S species (inorganic and organic sulfides, thiols) increased systematically at the expense of intermediate S species (sulfoxide, sulfite, sulfone, sulfonate) and oxidized S species (ester sulfate, SO(4)(2-)). These results support the concept of different S-retention processes for soils with different oxygen availability. Sulfur contents and speciation in two water-logged Histosols subject to permanently anoxic and temporarily oxic conditions, respectively, were very different. In the anoxic Histosol, reduced S accounted for 57% to 67% of total S; in the temporarily oxic Histosol, reduced S was only 43% to 54% of total S. Again, the extent of S accumulation and the contribution of reduced S forms to total S closely reflected the degree of O(2) availability. Our study shows that XANES is a powerful tool to elucidate key patterns of the biogeochemical S cycling in oxic and anoxic soil environments. In contrast to traditional wet-chemical methods, it particularly allows to distinguish organic S compounds in much more detail. It can be used to elucidate microbial S-metabolism pathways in soils with different oxygen availability by combining soil inventories and repeated analyses of a sample in different stages of field or laboratory incubation experiments under controlled boundary conditions and also to study (sub)microspatial patterns of S speciation in aggregated soils. C1 [Prietzel, Joerg; Tyufekchieva, Nora; Koegel-Knabner, Ingrid] Tech Univ Munich, Lehrstuhl Bodenkunde, D-85354 Freising Weihenstephan, Germany. [Thieme, Juergen] Univ Gottingen, Inst Rontgenphys, D-37077 Gottingen, Germany. [Paterson, David; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Prietzel, J (reprint author), Tech Univ Munich, Lehrstuhl Bodenkunde, Hochanger 2, D-85354 Freising Weihenstephan, Germany. EM prietzel@wzw.tum.de RI Thieme, Juergen/D-6814-2013; Kogel-Knabner, Ingrid/A-7905-2008 OI Kogel-Knabner, Ingrid/0000-0002-7216-8326 FU Deutsche Forschungsgemeinschaft (DFG) [Pr 53414]; U.S. Department of Energy [W-31-109-Eng-38] FX We want to thank Ms. B. Angres for her assistance during anoxic sample preparation. The study was funded by the Deutsche Forschungsgemeinschaft (DFG); grant Pr 53414. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No W-31-109-Eng-38. NR 50 TC 15 Z9 17 U1 3 U2 38 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1436-8730 J9 J PLANT NUTR SOIL SC JI J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. PD JUN PY 2009 VL 172 IS 3 BP 393 EP 403 DI 10.1002/jpln.200800054 PG 11 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 463UI UT WOS:000267457200010 ER PT J AU Qian, JP Wan, BN Lao, LL Shen, B Sabbagh, SA Menard, J Sun, YW Duan, YM Li, JH Xiao, BJ Gong, XZ AF Qian, J. P. Wan, B. N. Lao, L. L. Shen, B. Sabbagh, S. A. Menard, J. Sun, Y. W. Duan, Y. M. Li, J. H. Xiao, B. J. Gong, X. Z. CA E Res Team TI Equilibrium properties on the EAST superconducting tokamak SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID RECONSTRUCTION AB The Experimental Advanced Superconducting Tokamak (EAST) has a major radius of R-0 = 1.75 m and a midplane halfwidth of 0.5 m. It has been operated with a toroidal magnetic field B-0 = 2 T and I-P <= 500 kA. The evolution of the plasma equilibrium is analysed between discharges by Equilibrium Fitting Code (EFIT). Limiter, sii-Igle-mill alld dOtIbIC-IILIII CHV0I'tW-I mifiguratimis have beeti produced. A plasma elongation in the range 1.3 <= kappa <= 1.9 and a triangularity in the range 0.1 <= delta <= 0.55 have beeii Sustailled. The operatioll space of eloligated discharges is also presented based on the EAST database. C1 [Qian, J. P.; Wan, B. N.; Shen, B.; Sun, Y. W.; Duan, Y. M.; Li, J. H.; Xiao, B. J.; Gong, X. Z.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Anhui, Peoples R China. [Lao, L. L.] Gen Atom Co, San Diego, CA 92186 USA. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Menard, J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qian, JP (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei, Anhui, Peoples R China. EM jpqian@ipp.ac.cn RI Sabbagh, Steven/C-7142-2011; Sun, Youwen/B-3553-2012; Xiao, Bingjia/A-1681-2017; OI Sun, Youwen/0000-0002-9934-1328; Xiao, Bingjia/0000-0001-8692-2636; Menard, Jonathan/0000-0003-1292-3286 FU National Nature Science Foundation of China [10725523]; Ministry of Science and Technology of the People Republic of China [2007DFA11290] FX This work was supported by the National Nature Science Foundation of China (No. 10725523) and the Ministry of Science and Technology of the People Republic of China (No. 2007DFA11290). NR 8 TC 0 Z9 0 U1 0 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD JUN PY 2009 VL 75 BP 337 EP 344 DI 10.1017/S0022377808007617 PN 3 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 453WE UT WOS:000266642800004 ER PT J AU Shingledecker, JP Battiste, RL Carter, P AF Shingledecker, J. P. Battiste, R. L. Carter, P. TI Thermal Shock Testing and Analysis of IN617 and Super 304H Samples SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 22-26, 2007 CL San Antonio, TX SP Amer Soc Mech Engineers, Pressure Vessels & Piping Div DE boilers; cracks; elasticity; fracture; nickel; plasticity; remaining life assessment; thermal analysis; thermal shock AB The DOE/OCDO sponsored Ultrasupercritical Steam Boiler Consortium is conducting thermal shock tests on austenitic and nickel-based materials to assess their use in thick-section boiler components. This paper describes the tests on CCA617 (a controlled chemistry version of IN617) and Super 304H thick-walled tubes. Details are given of the metallurgical analyses of the observed cracking in the bore and on the outside diameter of the samples, and of the thermal-mechanical analyses to explain the results. Elastic-plastic and elastic-plastic-creep analyses are used to calculate damage based on rupture life and creep strain accumulation. The results of the metallurgical and mechanical analyses are compared, and conclusions are drawn as to the accuracy and effectiveness of available high temperature life prediction techniques. The test conditions bear no relation to expected operating conditions. They are chosen to generate failure data. C1 [Shingledecker, J. P.; Battiste, R. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Carter, P.] Alstom Power Inc, Windsor, CT 06095 USA. RP Shingledecker, JP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM shingledecjp@ornl.gov; battisterl@ornl.gov; peter.carter@power.alstom.com NR 13 TC 0 Z9 0 U1 1 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD JUN PY 2009 VL 131 IS 3 AR 031410 DI 10.1115/1.3120265 PG 8 WC Engineering, Mechanical SC Engineering GA 441RT UT WOS:000265788900029 ER PT J AU Smith, AC Blanton, PS Gelder, LF Lutz, RN AF Smith, Allen C. Blanton, Paul S. Gelder, Lawrence F. Lutz, Rex N. TI Performance of a Drum Type Packaging With Urethane Foam Overpack Subjected to Crush and Other Regulatory Tests SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 17-21, 2005 CL Denver, CO SP Amer Soc Mech Engineers DE compressive testing; foams; packaging AB General purpose fissile package prototypes of two configurations, 16 in. and 18.5 in. diameter drum overpacks, were subjected to the free-drop, crush, puncture, and thermal hypothetical accident condition sequential tests for 10 CFR 71, Type B packagings. The tests demonstrated that the prototypes are very robust, easily withstanding the structural tests. The tests also confirmed that the urethane foam-filled overpack was able to withstand the thermal test. C1 [Smith, Allen C.; Blanton, Paul S.; Gelder, Lawrence F.; Lutz, Rex N.] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Smith, AC (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. EM allen.smith@srnl.doe.gov; paul.blanton@srnl.doe.gov; lawrence.gelder@srnl.doe.gov; rnlutz@aol.com NR 9 TC 0 Z9 0 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD JUN PY 2009 VL 131 IS 3 AR 031408 DI 10.1115/1.3120264 PG 6 WC Engineering, Mechanical SC Engineering GA 441RT UT WOS:000265788900027 ER PT J AU Flaud, JM Lafferty, WJ Sams, RL AF Flaud, J. -M. Lafferty, W. J. Sams, R. L. TI Line intensities for the nu(1), nu(3) and nu(1)+nu(3) bands of (SO2)-S-34 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE (SO2)-S-34 infrared spectrum; Band intensities; nu(1), nu(3) and nu(1)+nu(3) bands ID EQUILIBRIUM ROTATIONAL-CONSTANTS; HIGH-RESOLUTION ANALYSIS; VIBRATIONAL-STATES; COMBINATION BAND; SULFUR-DIOXIDE; SO2; POSITIONS; SPECTROSCOPY; SPECTRA AB Using both high resolution (0.0018 cm(-1)) and medium resolution (0.112 cm(-1)) Fourier transform spectra of an enriched S-34 (95.3%) sample of sulfur dioxide, it has been possible to accurately measure a large number of individual line intensities for some of the strongest of the SO2 bands, i.e. nu(1), nu(3) and nu(1)+nu(3). These intensities were least-squares fitted using a theoretical model which takes into account the vibration-rotation interactions linking the upper energy levels where needed, and, in this way, expansions of the various transition moment operators were determined. The Hamiltonian parameters determined in previous analyses together with these moments were then used to generate synthetic spectra for the bands studied and their corresponding hot bands providing one with an extensive picture of the absorption spectrum of (SO2)-S-34 in the spectral domains, 8.7, 7.4, and 4 mu m. Published by Elsevier Ltd. C1 [Lafferty, W. J.] NIST, Opt Phys Div, Gaithersburg, MD 20899 USA. [Flaud, J. -M.] Univ Paris Est, CNRS, Lab Inter Univ Syst Atmospher, F-94010 Creteil, France. [Flaud, J. -M.] Univ Paris 07, CNRS, Lab Inter Univ Syst Atmospher, F-94010 Creteil, France. [Sams, R. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lafferty, WJ (reprint author), NIST, Opt Phys Div, Gaithersburg, MD 20899 USA. EM Walter.Lafferty@nist.gov FU NASA Upper Atmosphere Research Program; United States Department of Energy; Office of Basic Energy Sciences; Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle [DE-AC05-76RLO 1830] FX The portion of this work performed at NIST was supported in part by the NASA Upper Atmosphere Research Program. This research was also supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division, and the experimental part was performed at the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC05-76RLO 1830. JMF thanks the Optical Technology Division of NIST for its support during his visit. NR 23 TC 18 Z9 18 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN-JUL PY 2009 VL 110 IS 9-10 SI SI BP 669 EP 674 DI 10.1016/j.jqsrt.2008.12.003 PG 6 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 447HD UT WOS:000266181300010 ER PT J AU Xia, YX Friese, JI Bachelor, PP Moore, DA Rao, LF AF Xia, Yuanxian Friese, J. I. Bachelor, P. P. Moore, D. A. Rao, Linfeng TI Thermodynamics of neptunium(V) complexes with phosphate at elevated temperatures SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID DISSOCIATION-CONSTANTS; VARIABLE TEMPERATURES; STABILITY-CONSTANTS; SOLVENT-EXTRACTION; PHOSPHORIC-ACID; SULFATE; LIGANDS; NP(V) AB The complexation of Np(V) with phosphate at elevated temperatures was studied by a synergistic extraction method. A mixed buffer solution of TRIS and MES was used to maintain an appropriate pH value during the distribution experiments. The distribution ratio of Np(V) between the organic and aqueous phases was found to decrease as the concentrations of phosphate were increased. Stability constants of the 1:1 and 1:2 Np(V)-HPO4 (2-) complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of [HPO4 (2-)] on the distribution ratio. The thermodynamic parameters including enthalpy and entropy of complexation between Np(V) and HPO4 (2-) at 25 A degrees C-55 A degrees C were calculated by the temperature coefficient method. C1 [Xia, Yuanxian; Friese, J. I.; Bachelor, P. P.; Moore, D. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Xia, YX (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM yuanxian.xia@pnl.gov FU Office of Civilian Radioactive Waste Management (OCRWM); U.S. Department of Energy [DE-AC06-76RLO 1830] FX This work was supported by the Office of Civilian Radioactive Waste Management (OCRWM), U.S. Department of Energy. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U. S. Department of Energy under Contract DE-AC06-76RLO 1830. NR 23 TC 2 Z9 2 U1 4 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUN PY 2009 VL 280 IS 3 BP 599 EP 605 DI 10.1007/s10967-009-7476-8 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 458NY UT WOS:000267032000023 ER PT J AU Cetinkol, M Wilkinson, AP Lee, PL AF Cetinkol, Mehmet Wilkinson, Angus P. Lee, Peter L. TI Structural changes accompanying negative thermal expansion in Zr-2(MoO4)(PO4)(2) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Thermal expansion; Crystal structure ID POWDER DIFFRACTION; TRANSITION; SYSTEM; ZR-2(WO4)(PO4)(2); SC-2(WO4)(3); TUNGSTATES; MOLYBDATES; SC2(WO4)3; DETECTOR AB Zr-2(MoO4)(PO4)(2) is orthorhombic (Sc2W3O12 structure) from 9 to at least 400 K, and shows anisotropic volume negative thermal expansion (alpha(a) = -8.35(4) x 10(-6) K-1; alpha(c) = 3.25(3) x 10(-6) K-1; alpha(c) = -8.27(5) x 10(-6) K-1 in the range 122-400 K) similar in magnitude to A(2)M(3)O(12) (M-Mo or W) with large A(3+). The contraction on heating is associated with a pattern of Zr-O-Mo/P bond angle changes that is somewhat similar, but not the same as that for Sc2W3O12. On heating, the most pronounced reductions in the separation between the crystallographic positions of neighboring Zr and P are not associated with significant reductions in the corresponding Zr-O-P crystallographic bond angles, in contrast to what was seen for Sc2W3O12. (C) 2009 Elsevier Inc. All rights reserved. C1 [Cetinkol, Mehmet; Wilkinson, Angus P.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Lee, Peter L.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. RP Wilkinson, AP (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM angus.wilkinson@chemistry.gatech.edu RI Wilkinson, Angus/C-3408-2008 OI Wilkinson, Angus/0000-0003-2904-400X FU National Science Foundation [DMR-0203342, DMR-0605671]; National Institute of Standards and Technology, US Department of Commerce; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX APW is grateful for support under National Science Foundation Grants DMR-0203342 and DMR-0605671. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work. We are grateful for technical assistance, with the collection of the neutron powder diffraction data, from Sarah Poulton at NCNR, NIST. Use of the Advanced Photon Source was Supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. NR 30 TC 7 Z9 9 U1 3 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUN PY 2009 VL 182 IS 6 BP 1304 EP 1311 DI 10.1016/j.jssc.2009.02.029 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 454KI UT WOS:000266680400004 ER PT J AU Sharma, N Macquart, RB Christensen, M Avdeev, M Chen, YS Ling, CD AF Sharma, Neeraj Macquart, Rene B. Christensen, Mogens Avdeev, Maxim Chen, Yu-Sheng Ling, Chris D. TI Structure and crystal chemistry of fluorite-related Bi38Mo7O78 from single crystal X-ray diffraction and ab initio calculations SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Oxide ion conduction; Bismuth molybdenum oxide; Delta-Bi2O3; Single crystal X-ray diffraction; Synchrotron; Floating zone furnace ID NEUTRON POWDER DIFFRACTION; OXIDE-ION CONDUCTORS; 3-DIMENSIONAL INCOMMENSURATE MODULATION; BISMUTH MOLYBDATE CATALYSTS; PHASE-DIAGRAM; BI2O3-MOO3 SYSTEM; SOLID-SOLUTION; BINARY-SYSTEM; CONDUCTIVITY; COLUMNS AB The floating-zone furnace method was used to synthesize single crystals of the fluorite-related delta-Bi2O3-type phase Bi(3)gMo(7)O(78) for the first time. Single crystal synchrotron X-ray diffraction data, in conjunction with ab initio (density functional theory) calculations, were used to solve, optimize, and refine the 5 x 3 x 3 commensurate superstructure of fluorite-type delta-Bi2O3 in Pbcn (a = 28.7058(11) angstrom, b = 16.8493(7) angstrom and c = 16.9376(6) angstrom, Z = 4, R-F= 11.26%, wR(I) = 21.67%). The structure contains stepped channels of Mo6+ in tetrahedral environments along the b axis and chains of Mo6+ in octahedral environments along the ac plane. The role of the stepped channels in oxide ion conduction is discussed. The simultaneous presence of both tetrahedral and octahedral coordination environments for Mo6+, something not previously observed in Mo6+-doped delta-Bi2O3-type phases, is supported by charge balance considerations in addition to the results of crystallographic and ab initio analysis. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved. C1 [Sharma, Neeraj; Macquart, Rene B.; Ling, Chris D.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Macquart, Rene B.; Christensen, Mogens; Avdeev, Maxim; Ling, Chris D.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Chen, Yu-Sheng] Argonne Natl Labs, Adv Photon Source, ChemMatCars, Argonne, IL 60439 USA. RP Sharma, N (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM n.sharma@chem.usyd.edu.au RI Ling, Chris D/B-2228-2009; Sharma, Neeraj/G-4949-2011; Avdeev, Maxim/A-5625-2008 OI Ling, Chris D/0000-0003-2205-3106; Sharma, Neeraj/0000-0003-1197-6343; Avdeev, Maxim/0000-0003-2366-5809 FU Australian Research Council-Discovery [DP0666465]; Australian Institute of Nuclear Science and Engineering Postgraduate Research Awards; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Australian Research Council-Discovery Projects (DP0666465) and the Australian Institute of Nuclear Science and Engineering Postgraduate Research Awards scheme. Collection of synchrotron X-ray diffraction data at the Advanced Photon Source was supported by the Australian Synchrotron Research Program, which is funded by the Commnon-wealth of Australia under the Access to Major Research Facilities Program. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Under Contract no. DE-AC02-06CH11357. NR 51 TC 7 Z9 7 U1 2 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUN PY 2009 VL 182 IS 6 BP 1312 EP 1318 DI 10.1016/j.jssc.2009.02.030 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 454KI UT WOS:000266680400005 ER PT J AU Bobev, S Xia, SQ Bauer, ED Ronning, F Thompson, JD Sarrao, JL AF Bobev, Svilen Xia, Sheng-qing Bauer, Eric D. Ronning, Filip Thompson, Joe D. Sarrao, John L. TI Nickel deficiency in RENi2-xP2 (RE = La, Ce, Pr). Combined crystallographic and physical property studies SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE PrNi2P2; CeNi2P2; Crystal structure; Single-crystal X-ray diffraction; Structural disorder ID THCR2SI2 STRUCTURE; RARE-EARTH; TRANSITION-METAL; INTERMETALLIC COMPOUNDS; ELECTRONIC-PROPERTIES; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURES; SITE PREFERENCES; PHOSPHIDES; SUPERCONDUCTIVITY AB Large single crystals from RENi2-xP2 (RE = La, Ce, Pr) were synthesized from the pure elements using Sn as a metal flux, and their structures were established by X-ray crystallography. The title compounds were confirmed to crystallize in the body-centered tetragonal ThCr2Si2 structure type (space group 14/mmm (No. 139); Pearson's symbol t/10), but with a significant homogeneity range with respect to the transition metal. Systematic synthetic work, coupled with accurate structure refinements indicated strong correlation between the degree of Ni-deficiency and the reaction conditions. According to the temperature dependent do magnetization measurements, LaNi2-xP2 (x = 0.30(1)), as expected, is Pauli-like paramagnetic in the studied temperature regime, while the Ce-analog CeNi2-xP2 (x = 0.28(1)) shows the characteristics of a mixed valent Ce3+/Ce4+ system with a possible Kondo temperature scale on the order of 1000 K. For three different PrNi2-xP2 (x <= 0.5) samples, the temperature and field dependence of the magnetization indicated typical local moment 4f-magnetism and a stable Pr3+ ground state, with subtle variations of T-C as a function of the concentration of Ni defects. Field-dependent heat capacity data for CeNi2-xP2 (x = 0.28(1)) and PrNi2-xP2 (x = 0.53(1)) are discussed as well. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bobev, Svilen; Xia, Sheng-qing] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Sarrao, John L.] Los Alamos Natl Lab, Mat Phys & Applicat Div MPA 10, Los Alamos, NM 87545 USA. RP Bobev, S (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM bobev@udel.edu RI Bauer, Eric/D-7212-2011 FU University of Delaware FX Svilen Bobev gratefully acknowledges funding from the University of Delaware through start-up funds. Work at LANL was performed under the auspices of the US DOE, Office of Science. The authors also thank Mr. Benjamin Hmiel for synthesizing some of the samples and Mr. Bayrammurad Saparov for his assistance with the SQUID measurements. NR 49 TC 9 Z9 9 U1 3 U2 25 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUN PY 2009 VL 182 IS 6 BP 1473 EP 1480 DI 10.1016/j.jssc.2009.03.014 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 454KI UT WOS:000266680400028 ER PT J AU Johnson, BR Riley, BJ Sundaram, SK Crum, JV Henager, CH Zhang, YW Shutthanandan, V Seifert, CE Van Ginhoven, RM Chamberlin, CE Rockett, AA Hebert, DN Aquino, AR AF Johnson, Bradley R. Riley, Brian J. Sundaram, Shanmugavelayutham K. Crum, Jarrod V. Henager, Charles H., Jr. Zhang, Yanwen Shutthanandan, Vaithiyalingam Seifert, Carolyn E. Van Ginhoven, Renee M. Chamberlin, Clyde E. Rockett, Angus A. Hebert, Damon N. Aquino, Angel R. TI Synthesis and Characterization of Bulk, Vitreous Cadmium Germanium Arsenide SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID GLASS-FORMING TENDENCY; SEMICONDUCTING COMPOUNDS; CDGEAS2; DETECTORS; SYSTEM; CDAS2 AB Cadmium germanium diarsenide glasses were synthesized in bulk form (similar to 2.4 cm(3)) using procedures adapted from the literature. Several issues involved in the fabrication and quenching of amorphous CdGe(x)As(2) (x = 0.45, 0.65, 0.85, and 1.00, where x is the molar ratio of Ge to 1 mol of Cd) are described. An innovative processing route is presented to enable fabrication of high-purity, vitreous, crack-free ingots with sizes up to 10 mm diameter, and 30-40 mm long. Specimens from selected ingots were characterized using thermal analysis, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, particle-induced X-ray emission, Rutherford backscattering, secondary ion mass spectrometry, X-ray diffraction, density, and optical spectroscopy. Variations in properties as a function of processing conditions and composition are described. Results show that the density of defect states in the middle of the band gap and near the band edges can be decreased three ways: through suitable control of the processing conditions, by doping the material with hydrogen, and by increasing the concentration of Ge in the glass. C1 [Johnson, Bradley R.; Riley, Brian J.; Sundaram, Shanmugavelayutham K.; Crum, Jarrod V.; Henager, Charles H., Jr.; Zhang, Yanwen; Shutthanandan, Vaithiyalingam; Seifert, Carolyn E.; Van Ginhoven, Renee M.; Chamberlin, Clyde E.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Rockett, Angus A.; Hebert, Damon N.; Aquino, Angel R.] Univ Illinois, Urbana, IL 61801 USA. RP Johnson, BR (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM bradley.johnson@pnl.gov RI Rockett, Angus/B-5539-2013; OI Rockett, Angus/0000-0001-9759-8421; Riley, Brian/0000-0002-7745-6730; Henager, Chuck/0000-0002-8600-6803 FU U.S. Department of Energy, Office of Nonproliferation Research and Development [NA-22] FX This work was supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development (NA-22). Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the Department of Energy under contract DE-AC06-76RLO 1830. NR 36 TC 6 Z9 6 U1 1 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2009 VL 92 IS 6 BP 1236 EP 1243 DI 10.1111/j.1551-2916.2009.03001.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 456TX UT WOS:000266875400011 ER PT J AU Nie, X Chen, WNW Wereszczak, AA Templeton, DW AF Nie, Xu Chen, Weinong W. Wereszczak, Andrew A. Templeton, Douglas W. TI Effect of Loading Rate and Surface Conditions on the Flexural Strength of Borosilicate Glass SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SODA-LIME GLASS; DYNAMIC COMPRESSIVE FAILURE; CERAMICS; ROUGHNESS; FATIGUE; DEPTH AB This study evaluates the loading rate and surface condition dependence of the flexural strength of a borosilicate glass. The glass specimens are subjected to three different surface treatments before four-point bending tests to study the effect of surface flaws. Quasistatic (Material Test System 810) and dynamic (Kolsky bar) experiments are performed at loading rates ranging from 0.7 to 4 x 10(6) MPa/s. The results show that the flexural strength of the borosilicate glass has a strong dependence on the loading rate. A chemically etched surface produces an enhanced flexural strength by about an order of magnitude. Scanning electron microscopy images on fracture surfaces indicate that the failure is governed by different types of flaws under different surface treatment conditions. Edge failure is also identified for samples possessing high flexural strength. C1 [Nie, Xu; Chen, Weinong W.] Purdue Univ, AAE Sch, W Lafayette, IN 47907 USA. [Nie, Xu; Chen, Weinong W.] Purdue Univ, MSE Sch, W Lafayette, IN 47907 USA. [Wereszczak, Andrew A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Templeton, Douglas W.] USA, Tank & Automot Res & Dev, Warren, MI 48397 USA. RP Chen, WNW (reprint author), Purdue Univ, AAE Sch, W Lafayette, IN 47907 USA. EM wchen@purdue.edu RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU U.S. Army Research Office [W911-05-1-0218]; WFO [DE-AC05-00OR22725] FX This work was partially supported by the U.S. Army Research Office under Grant No. W911-05-1-0218 to Purdue University. Wereszczak was supported by WFO sponsor US Army Tank-Automotive Research, Development, and Engineering Center under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 33 TC 17 Z9 18 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2009 VL 92 IS 6 BP 1287 EP 1295 DI 10.1111/j.1551-2916.2009.03019.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 456TX UT WOS:000266875400020 ER PT J AU Hadjar, O Wang, P Futrell, JH Laskin, J AF Hadjar, Omar Wang, Peng Futrell, Jean H. Laskin, Julia TI Effect of the Surface on Charge Reduction and Desorption Kinetics of Soft Landed Peptide Ions SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID ASSEMBLED MONOLAYER SURFACES; RESONANCE MASS-SPECTROMETER; POLYATOMIC IONS; PREPARATIVE SOFT; RETENTION AB Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH(2)-SAM) surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface, and efficient retention of two protons on the FSAM surface. Slow desorption rates measured experimentally indicate fairly strong binding between peptide molecules and SAM surfaces with the binding energy of 20-25 kcal/mol. (J Am Soc Mass Spectrom 2009, 20, 901-906) Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry C1 [Laskin, Julia] Pacific NW Natl Lab, Fundamental Sci Div, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Fundamental Sci Div, Fundamental Sci Directorate, POB 999 K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy (DOE); Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL); U.S. DOE of Biological and Environmental Research and located at PNNL; U.S. DOE FX The authors acknowledge Support for this work by a grant from the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE), and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. NR 21 TC 20 Z9 20 U1 0 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUN PY 2009 VL 20 IS 6 BP 901 EP 906 DI 10.1016/j.jasms.2008.12.025 PG 6 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 451JN UT WOS:000266466600002 PM 19211264 ER PT J AU Song, T Lam, CNW Ng, DCM Orlova, G Laskin, J Fang, DC Chu, IK AF Song, Tao Lam, Corey N. W. Ng, Dominic C. M. Orlova, Galina Laskin, Julia Fang, De-Cai Chu, Ivan K. TI Experimental and Computational Studies of the Macrocyclic Effect of an Auxiliary Ligand on Electron and Proton Transfers Within Ternary Copper(II)-Histidine Complexes SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID MOLECULAR RADICAL CATIONS; GAS-PHASE; AMINO-ACIDS; ETHER COMPLEXES; DIIMINE LIGANDS; SIDE-CHAIN; DISSOCIATION; IONS; CU(II); TRIPEPTIDES AB The dissociation of [Cu-II(L)His](center dot 2+) complexes [L = diethylenetriamine (dien) or 1,4,7-triazacyclononane (9-aneN(3))] bears a strong resemblance to the previously reported behavior of [Cu-II(L)GGH] (center dot 2+) complexes. We have used low-energy collision-induced dissociation experiments and density functional theory (DFT) calculations at the B3LYP/6-31+G(d) level to study the macrocyclic effect of the auxiliary ligands on the formation of His(center dot+) from prototypical [Cu-II(L) His](center dot 2+) systems. DFT revealed that the relative energy barriers of the same electron-transfer (ET) dissociation pathways of [Cu(II()9-aneN(3))His](center dot 2+) and [Cu-II(dien)His](center dot 2+) are very similar, with the ET reactions of [Cu-II(9-aneN(3))His](center dot 2+) leading to the generation of two distinct His(center dot+) species; in contrast, the proton transfer (PT) dissociation pathways of [Cu(II()9-aneN(3))His](center dot 2+) and [CuII(dien)His](center dot 2+) differ considerably. The PT reactions of [Cu-II(9-aneN(3))His](center dot 2+) are associated with substantially higher barriers (>13 kcal/mol) than those of [CuII(dien)His](center dot 2+) . Thus, the sterically encumbered auxiliary 9-aneN, ligand facilitates ET reactions while moderating PT reactions, allowing the formation of hitherto nonobservable histidine radical cations. (J Am Soc Mass Spectrom 2009, 20, 972-984) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry C1 [Song, Tao; Lam, Corey N. W.; Ng, Dominic C. M.; Chu, Ivan K.] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China. [Orlova, Galina] St Francis Xavier Univ, Dept Chem, Antigonish, NS B2G 2W5, Canada. [Laskin, Julia] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Fang, De-Cai] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. RP Chu, IK (reprint author), Univ Hong Kong, Dept Chem, Chong Yuet Ming Chem Bldg,Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. EM dcfang@bnu.edu.cn; ivankchu@hkucc.hku.hk RI Chu, Ivan /D-3065-2009; Song, Tao/D-8800-2012; Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU University of Hong Kong (UGC); Hong Kong Research Grants Council; Special Administrative Region, China [HKU 7018/06P, HKU 7012/08P]; National Natural Science Foundation of China [20773016]; W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL); U.S. Department of Energy's Office of Biological and Environmental Research; Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy; PNNL Interfacial and Condensed Phase summer Research Institute; Natural Sciences and Engineering Research Council of Canada (NSERC); St. Francis Xavier University Council for Research. FX Most of the research described in this manuscript was supported by the University of Hong Kong (UGC) and the Hong Kong Research Grants Council, Special Administrative Region, China (Project Nos. HKU 7018/06P and HKU 7012/08P). TS, CL, and DCMN thank the Hong Kong RGC for supporting their studentships. DCF thanks the National Natural Science Foundation of China (No. 20773016) for financial support. This study was partially supported by a grant from the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. CL and IKC acknowledge participation in the PNNL Interfacial and Condensed Phase summer Research Institute. GO is grateful for financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the St. Francis Xavier University Council for Research. NR 49 TC 5 Z9 5 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUN PY 2009 VL 20 IS 6 BP 972 EP 984 DI 10.1016/j.jasms.2009.01.007 PG 13 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 451JN UT WOS:000266466600010 PM 19230704 ER PT J AU Siu, CK Zhao, JF Laskin, J Chu, IK Hopkinson, AC Siu, KWM AF Siu, Chi-Kit Zhao, Junfang Laskin, Julia Chu, Ivan K. Hopkinson, Alan C. Siu, K. W. Michael TI Kinetics for Tautomerizations and Dissociations of Triglycine Radical Cations SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID ELECTRON-CAPTURE DISSOCIATION; ANAEROBIC TOLUENE METABOLISM; TANDEM MASS-SPECTROMETRY; CHARGED PROTEIN CATIONS; PYRUVATE FORMATE-LYASE; C-ALPHA BOND; GAS-PHASE; PEPTIDE IONS; COLLISIONAL ACTIVATION; DIRECTED DISSOCIATION AB Fragmentations of tautomers of the alpha-centered radical triglycine radical cation, [GGG(center dot)](+), [GG(center dot)G](+), and [G(center dot)GG](+), are charge-driven, giving b-type ions; these are processes that are facilitated by a mobile proton, as in the fragmentation of protonated triglycine (Rodriquez, C. F. et al. J. Am. Chem. Soc. 2001,123, 3006-3012). By contrast, radical centers are less mobile. Two mechanisms have been examined theoretically utilizing density functional theory and Rice-Ramsperger-Kassel-Marcus modeling: (1) a direct hydrogen-atom migration between two a-carbons, and (2) a two-step proton migration involving canonical [GGG](center dot+) as an intermediate. Predictions employing the latter mechanism are in good agreement with results of recent CID experiments (Chu, I. K. et al. J. Am. Chem. Soc. 2008,130,7862-7872). (J Am Soc Mass Spectrom 2009, 20, 996-1005) (C) 2009 American Society for Mass Spectrometry C1 [Siu, Chi-Kit; Zhao, Junfang; Hopkinson, Alan C.; Siu, K. W. Michael] York Univ, Dept Chem, N York, ON M3J 1P3, Canada. [Siu, Chi-Kit; Zhao, Junfang; Hopkinson, Alan C.; Siu, K. W. Michael] York Univ, Ctr Res Mass Spectrometry, N York, ON M3J 1P3, Canada. [Laskin, Julia] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Chu, Ivan K.] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China. RP Siu, KWM (reprint author), York Univ, Dept Chem, 4700 Keele St, N York, ON M3J 1P3, Canada. EM kwmsiu@yorku.ca RI Siu, Chi-Kit/E-5316-2010; Chu, Ivan /D-3065-2009; Laskin, Julia/H-9974-2012 OI Siu, Chi-Kit/0000-0002-1162-6899; Laskin, Julia/0000-0002-4533-9644 FU Natural Sciences and Engineering Research Council (NSERC) of Canada; Chemical Sciences Division; Office of Basic Energy Sciences of the U.S. DOE FX This work was made possible by funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca). The authors thank the Department of Mathematics and Statistics, York University, for granting access to the MATHSTAT time sharing server. Part of this work was conducted in the Environmental Molecular Science Laboratory, located at the Pacific Northwest National Laboratory, and operated for the U.S. Department of Energy (DOE) by Battelle, during CKS's visit with JL. JL acknowledges the support from the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. DOE. NR 77 TC 20 Z9 20 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUN PY 2009 VL 20 IS 6 BP 996 EP 1005 DI 10.1016/j.jasms.2009.01.014 PG 10 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 451JN UT WOS:000266466600012 PM 19254850 ER PT J AU Jovanovic, I French, D Walter, JC Ratowsky, RP AF Jovanovic, I. French, D. Walter, J. C. Ratowsky, R. P. TI Numerical studies of multimodal phase-sensitive parametric amplification SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID OPTICAL AMPLIFICATION; IMAGE AMPLIFICATION; QUANTUM-NOISE; REDUCTION; FIBER; CONVERSION; AMPLIFIERS AB In the presence of a nonzero idler beam or, equivalently, in the collinear degenerate configuration, optical parametric amplification (OPA) can be phase sensitive. When the photon deamplification mode is selected in the OPA process, amplification of the optical phase occurs instead of the usual amplification of photon number. We demonstrate for the first time, to the best of our knowledge, that the operation of a spatially multimodal optical parametric amplifier in the phase-sensitive mode can result in a significant redistribution of spatial frequencies and near-ideal beam angle amplification. A numerical model is presented for phase-sensitive parametric amplification via three-wave mixing. The model is applied to monochromatic beams and finite beam apertures, The sensitivity of gain to the incident phase, noncollinear angle, and aperture size is studied in particular. Simple conditions are derived for the operation of the optical parametric amplifier in the phase-sensitive mode. Potential applications of the concept are discussed. (C) 2009 Optical Society of America C1 [Jovanovic, I.; French, D.; Walter, J. C.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Ratowsky, R. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Jovanovic, I (reprint author), Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. EM ijovanovic@purdue.edu FU U.S. Department of Energy (DOE); Lawrence Livermore National Laboratory [DE-AC5207NA27344]; Defense Advanced Research Project Agency (DARPA) FX A portion of this work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC5207NA27344. This work was partially supported by the Defense Advanced Research Project Agency (DARPA). NR 23 TC 8 Z9 8 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD JUN PY 2009 VL 26 IS 6 BP 1169 EP 1175 PG 7 WC Optics SC Optics GA 462YI UT WOS:000267394500004 ER PT J AU Singer, MA Henshaw, WD Wang, SL AF Singer, Michael A. Henshaw, William D. Wang, Stephen L. TI Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter SO JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY LA English DT Article ID PULMONARY-EMBOLISM; OVERLAPPING GRIDS; FOLLOW-UP; MULTICENTER; RETRIEVABILITY; HEMODYNAMICS; EXPERIENCE; EQUATIONS; PATTERNS AB PURPOSE: To evaluate the hemodynamics of the TrapEase vena cava filter (Cordis, Miami Lakes, Florida) by using three-dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify areas of stagnant and/or recirculating flow that may have an effect on intrafilter thrombosis. MATERIALS AND METHODS: Three-dimensional computer models of the TrapEase filter, various thrombi shapes and sizes, and a 23-mm-diameter cava were constructed. The hemodynamics of steady-state flow were examined for the unoccluded and partially occluded filter. RESULTS: Flow in the unoccluded TrapEase filter experienced minimal disruption. Spherical thrombi in the downstream trapping position induced stagnant and/or recirculating flow downstream of the thrombus. The volume of stagnant flow and the peak wall shear stress increased with thrombus volume. For spherical thrombi trapped upstream, disruption of flow was observed along the cava wall ipsilateral to the thrombus and within the filter. Peak wall shear stress was greatest with conical thrombi, less with spherical thrombi, and least with ellipsoidal thrombi. CONCLUSIONS: The authors have designed a computer model to study the hemodynamics of the TrapEase filter with various thrombi and trapping positions. The model offers advantages over in vitro techniques, specifically improved resolution and easy adaptation for new filter designs, thrombus morphologies and/or sizes, and flow parameters. The results agree with those of previous bench experiments that suggest the upstream trapping position of the TrapEase filter leads to a potentially thrombogenic region of stagnant and/or recirculating flow with low shear stress. These findings are supported by clinical studies showing an increased incidence of occlusive and/or nonocclusive thrombus within the TrapEase filter and the retrievable, nearly structurally identical, OptEase filter. C1 [Wang, Stephen L.] Kaiser Permanente Santa Clara Med Ctr, Div Vasc & Intervent Radiol, Santa Clara, CA 95051 USA. [Singer, Michael A.; Henshaw, William D.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Wang, SL (reprint author), Kaiser Permanente Santa Clara Med Ctr, Div Vasc & Intervent Radiol, 700 Lawrence Expressway, Santa Clara, CA 95051 USA. EM stephen.wang@alumni.duke.edu FU U.S. Department of Energy (DOE) [W-7405-Eng-48, DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program. Computer time on LLNL's Yana cluster was provided under Livermore Computing's Multiprogranunatic & histitutional Computing Initiative. LLNL is operated by Lawrence Livermore National Security, LLC, for the DOE, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 29 TC 15 Z9 15 U1 1 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1051-0443 J9 J VASC INTERV RADIOL JI J. Vasc. Interv. Radiol. PD JUN PY 2009 VL 20 IS 6 BP 799 EP 805 DI 10.1016/j.jvir.2009.02.015 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging; Peripheral Vascular Disease SC Radiology, Nuclear Medicine & Medical Imaging; Cardiovascular System & Cardiology GA 453YY UT WOS:000266650000013 PM 19406666 ER PT J AU Petersen, JM Carlson, J Yockey, B Pillai, S Kuske, C Garbalena, G Pottumarthy, S Chalcraft, L AF Petersen, J. M. Carlson, J. Yockey, B. Pillai, S. Kuske, C. Garbalena, G. Pottumarthy, S. Chalcraft, L. TI Direct isolation of Francisella spp. from environmental samples SO LETTERS IN APPLIED MICROBIOLOGY LA English DT Article DE environmental; Francisella; isolation; media; selective ID FORMERLY YERSINIA-PHILOMIRAGIA; TULARENSIS; TULAREMIA; BACTERIA; STRAINS; DIVERSE; DISEASE; GENUS AB To develop a selective medium for isolation of F. tularensis, F. novicida and F. philomiragia from environmental samples. A selective media, cysteine heart agar with 9% chocolatized sheep blood, containing polymyxin B, amphotericin B, cyclohexamide, cefepime and vancomycin (CHAB-PACCV) was developed and evaluated for growth of Francisella spp. No differences were observed in recovered colony forming units (CFUs) for F. tularensis, F. novicida and F. philomiragia on CHAB-PACCV vs nonselective CHAB. Growth of non-Francisella species was inhibited on CHAB-PACCV. When environmental samples were cultured on CHAB and CHAB-PACCV, only CHAB-PACCV allowed isolation of Francisella spp. Three new Francisella strains were isolated directly from seawater and seaweed samples by culture on CHAB-PACCV. CHAB-PACCV can be used for direct isolation of Francisella spp from environmental samples. Francisella spp. show a close association with environmental sources. Future utilization of CHAB-PACCV for isolation of Francisella spp. directly from environmental samples should prove valuable for investigating outbreaks and human infections attributed to environmental exposure. C1 [Petersen, J. M.; Carlson, J.; Yockey, B.; Chalcraft, L.] Ctr Dis Control & Prevent, Natl Ctr Zoonot Vector Borne & Enter Dis, Bacterial Dis Branch, Div Vector Borne Infect Dis, Ft Collins, CO 80522 USA. [Pillai, S.] US Dept Homeland Secur, Sci & Technol Directorate, Biosci Div, Chem & Biol Div, Washington, DC USA. [Kuske, C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Garbalena, G.] Publ Hlth Fdn Enterprise, Houston, TX USA. [Pottumarthy, S.] Bur Lab Serv, Houston Dept Hlth & Human Serv, Houston, TX USA. RP Petersen, JM (reprint author), Ctr Dis Control & Prevent, Natl Ctr Zoonot Vector Borne & Enter Dis, Bacterial Dis Branch, Div Vector Borne Infect Dis, Ft Collins, CO 80522 USA. EM nzp0@cdc.gov FU Department of Homeland Security; Science and Technology Directorate; Chemical and Biological Division; Centers for Disease Control and Prevention FX The authors would like to thank Ms Diana Stevens, Assistant Program Manager, Galveston County Health District and her team for their invaluable assistance in the collection of the sea water samples from Galveston Bay. This study was funded by the Department of Homeland Security, Science and Technology Directorate, Chemical and Biological Division and the Centers for Disease Control and Prevention. NR 16 TC 32 Z9 34 U1 1 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0266-8254 J9 LETT APPL MICROBIOL JI Lett. Appl. Microbiol. PD JUN PY 2009 VL 48 IS 6 BP 663 EP 667 DI 10.1111/j.1472-765X.2009.02589.x PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 445DN UT WOS:000266030000003 PM 19413814 ER PT J AU Levine, B Nozick, L Jones, D AF Levine, Brian Nozick, Linda Jones, Dean TI Estimating an origin-destination table for US exports of waterborne containerised freight SO MARITIME ECONOMICS & LOGISTICS LA English DT Article DE origin-destination table; containerised freight; optimisation; gravity model AB US containerised freight traffic through US seaports is growing rapidly. Given this growth rate, it is important to have an accurate understanding of the flow of these goods both within the United States and to and from foreign countries, so that investments in infrastructure can be made consistent with the needs generated by this traffic. This paper develops an optimisation model to estimate an origin-destination table for the number of containers shipped from aggregations of Bureau of Economic Analysis economic areas in the United States to foreign countries. To do this, we synthesise data from various sources with a gravity model for the demand of container traffic. A sensitivity analysis on the estimated origin-destination table shows it is robust to changes in the gravity model parameter. The model also pays explicit attention to empty containers resulting from the significant US trade imbalance, and therefore estimates flows for both full and empty containers. C1 [Levine, Brian; Nozick, Linda] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Jones, Dean] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nozick, L (reprint author), Cornell Univ, Sch Civil & Environm Engn, Hollister Hall, Ithaca, NY 14853 USA. EM lkn3@cornell.edu NR 14 TC 2 Z9 3 U1 0 U2 2 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1479-2931 J9 MARIT ECON LOGIST JI Marit. Econ. Logist. PD JUN PY 2009 VL 11 IS 2 BP 137 EP 155 DI 10.1057/mel.2009.1 PG 19 WC Transportation SC Transportation GA V19WR UT WOS:000208103000001 ER PT J AU Miller, MK Forbes, RG AF Miller, M. K. Forbes, R. G. TI Atom probe tomography SO MATERIALS CHARACTERIZATION LA English DT Review DE Atom probe tomography; Field evaporation; Field ion microcopy ID FIELD-EVAPORATION; INTERFACIAL EXCESS; RECONSTRUCTION; MICROSCOPY; DEPENDENCE; MECHANISMS; SOLUTE AB This introductory tutorial describes the technique of atom probe tomography for materials characterization at the atomic level. The evolution of the technique from the initial atom probe field ion microscope to today's state-of-the-art three dimensional atom probe is outlined. An introduction is presented on the basic physics behind the technique, the operation of the instrument, and the reconstruction of the three-dimensional data. The common methods for analyzing the three-dimensional atom probe data, including atom maps, isoconcentration surfaces, proximity histograms, maximum separation methods, and concentration frequency distributions, are described. (C) 2009 Elsevier Inc. All rights reserved. C1 [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37871 USA. [Forbes, R. G.] Univ Surrey, Fac Engn & Phys Sci, Adv Technol Inst, Surrey GU2 7XH, England. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37871 USA. EM millermk@ornl.gov; R.Forbes@surrey.ac.uk FU U.S. Department of Energy, Division of Materials Sciences and Engineering; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank K.F. Russell for her technical assistance, Dr. D.T. Hoelzer, Prof. I. Baker of Dartmouth College, and Dr. C. Capdevila-Montes of CENIM for some of the materials used in the examples. This research was sponsored by the U.S. Department of Energy, Division of Materials Sciences and Engineering; research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 34 TC 95 Z9 99 U1 3 U2 64 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD JUN PY 2009 VL 60 IS 6 BP 461 EP 469 DI 10.1016/j.matchar.2009.02.007 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 444QS UT WOS:000265996100001 ER PT J AU Song, B Chen, WN Luk, V AF Song, Bo Chen, Weinong Luk, Vincent TI Impact compressive response of dry sand SO MECHANICS OF MATERIALS LA English DT Article ID HOPKINSON PRESSURE BAR; TESTS AB A split Hopkinson pressure bar (SHPB) was properly modified to obtain dynamic compressive stress-strain curves of dry sand at various high strain rates. Quasi-static compressive properties of the sand were obtained with a MTS810 materials test system. In both dynamic and quasi-static experiments, the 1.50 x 10(3) kg/m(3) dry sand, confined with a polycarbonate tube, had the same dimensions, making the strain rate the only variable. The strain rate effects on the compressive response of the sand were determined. The sand was also prepared to specimens with a higher initial density of 1.62 x 10(3) kg/m(3) for dynamic experiments to investigate the initial density (gas porosity) effects. At a given dynamic strain rate, besides using the polycarbonate confining tube, polyolefin heat shrinking tubes and 4340 steel tubes were used to confine the sand specimens to study the lateral confinement effects. The results show that the compressive response of the dry sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the initial density and lateral confinement level. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Song, Bo] Sandia Natl Labs, Livermore, CA 94551 USA. [Chen, Weinong] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Chen, Weinong] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Luk, Vincent] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Song, B (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM bsong@sandia.gov RI Song, Bo/D-3945-2011 FU U.S. Department of Energy FX The authors would like to thank Bradley Martin at US Eglin Air Force Base for providing the material information of the sand. The U.S. Department of Energy and the Joint DoD/DOE Munitions Technology Development Program provided funding for this work. NR 20 TC 32 Z9 39 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 EI 1872-7743 J9 MECH MATER JI Mech. Mater. PD JUN PY 2009 VL 41 IS 6 SI SI BP 777 EP 785 DI 10.1016/j.mechmat.2009.01.003 PG 9 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 452DC UT WOS:000266519000013 ER PT J AU Martin, BE Chen, WN Song, B Akers, SA AF Martin, Bradley E. Chen, Weinong Song, Bo Akers, Stephen A. TI Moisture effects on the high strain-rate behavior of sand SO MECHANICS OF MATERIALS LA English DT Article ID SOFT SOILS AB The effects of moisture content on the high strain-rate mechanical properties of fine grain sand were characterized with a split-Hopkinson pressure bar. A controlled loading pulse allowed the sample to acquire stress equilibrium and a constant strain-rate of 400 s(-1). The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm(3) with moisture contents varied from 3% to 20% by weight. Experimental results indicate that partially saturated sand is more compressible than dry sand with the softest behavior observed at 7% moisture content. The softening of the partially saturated sand may occur due to the pore water acting as a lubricant between the sand particles. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. Published by Elsevier Ltd. C1 [Martin, Bradley E.] USAF, Res Lab, Eglin AFB, FL 32542 USA. [Chen, Weinong] Purdue Univ, Dept Aeronaut & Astronaut Engn, W Lafayette, IN 47907 USA. [Song, Bo] Sandia Natl Labs, Livermore, CA 94550 USA. [Akers, Stephen A.] USA, Engn Res & Dev Ctr, Vicksburg, MS 39180 USA. RP Martin, BE (reprint author), USAF, Res Lab, Eglin AFB, FL 32542 USA. EM bradley.martin@eglin.af.mil RI Song, Bo/D-3945-2011 FU DoE/DoD [DE-AC04-94AL8500]; Sandia Corporation FX This work was supported by the DoE/DoD TCG-XI through a Memorandum of Understanding with Sandia National Laboratories. Sandia supported this work through a grant with Purdue University. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500. This author appreciates the insightful conversations with Mr. Mark L. Green of the Air Force Research Laboratory. NR 19 TC 21 Z9 22 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 EI 1872-7743 J9 MECH MATER JI Mech. Mater. PD JUN PY 2009 VL 41 IS 6 SI SI BP 786 EP 798 DI 10.1016/j.mechmat.2009.01.014 PG 13 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 452DC UT WOS:000266519000014 ER PT J AU Farmer, JC Turchi, PEA Perepezko, JH AF Farmer, Joseph C. Turchi, Patrice E. A. Perepezko, John H. TI Iron-Based Amorphous Metals-An Important Family of High-Performance Corrosion-Resistant Materials SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Farmer, Joseph C.; Turchi, Patrice E. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Perepezko, John H.] Univ Wisconsin, Madison, WI USA. RP Farmer, JC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM turchi1@llnl.gov NR 0 TC 2 Z9 2 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUN PY 2009 VL 40A IS 6 BP 1288 EP 1288 DI 10.1007/s11661-008-9769-x PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 441LY UT WOS:000265771800004 ER PT J AU Farmer, J Choi, JS Saw, C Haslam, J Day, D Hailey, P Lian, TG Rebak, R Perepezko, J Payer, J Branagan, D Beardsley, B D'amato, A Aprigliano, L AF Farmer, Joseph Choi, Jor-Shan Saw, Cheng Haslam, Jeffrey Day, Dan Hailey, Phillip Lian, Tiangan Rebak, Raul Perepezko, John Payer, Joe Branagan, Daniel Beardsley, Brad D'Amato, Andy Aprigliano, Lou TI Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT MS&T 2007 Meeting CY SEP 16-20, 2007 CL Detroit, MI SP Amer Ceram Soc, Assoc Iron & Steel Technol, ASM Int, TMS ID COATINGS; BEHAVIOR; FE49.7CR17.7MN1.9MO7.4W1.6B15.2C3.8SI2.4; GLASSES; ALLOYS AB An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe(49.7)Cr(17.7)Mn(1.9)Mo(7.4)W(1.6)B(15.2)C(3.8)Si(2.4)) and SAM1651 (Fe(48)Mo(14)Cr(15)Y(2)C(15)B(6)) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling, and tunnel-boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately 1 cm. The observed corrosion resistance may enable applications of importance in industries such as oil and gas production, refining, nuclear power generation, shipping, etc. C1 [Farmer, Joseph; Saw, Cheng; Haslam, Jeffrey; Day, Dan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Day, Dan] V&A Engn, Oakland, CA 94612 USA. [Hailey, Phillip] Lawrence Livermore Natl Lab, Oakland, CA 90605 USA. [Choi, Jor-Shan] Univ Tokyo, Dept Nucl Engn & Management, Go Neri Program, Tokyo 1138654, Japan. [Lian, Tiangan] Elect Power Res Inst, Palo Alto, CA USA. [Rebak, Raul] Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA. [Perepezko, John] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Payer, Joe] Case Western Reserve Univ, Math Sci & Engn Dept, Cleveland, OH 44106 USA. [Branagan, Daniel] NanoSteel Co, Inst Nanomat Res & Dev, Idalho Falls, ID 83402 USA. [Beardsley, Brad] Caterpillar Inc, Peoria, IL 61552 USA. [D'Amato, Andy] Plasma Technol Inc, Torrance, CA 90501 USA. [Aprigliano, Lou] Strateg Anal, Arlington, VA 22201 USA. RP Farmer, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM farmer4@llnl.gov OI Rebak, Raul/0000-0002-8070-4475 NR 37 TC 45 Z9 46 U1 11 U2 77 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUN PY 2009 VL 40A IS 6 BP 1289 EP 1305 DI 10.1007/s11661-008-9779-8 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 441LY UT WOS:000265771800005 ER PT J AU Branagan, DJ Swank, WD Meacham, BE AF Branagan, D. J. Swank, W. D. Meacham, B. E. TI Maximizing the Glass Fraction in Iron-Based High Velocity Oxy-Fuel Coatings SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT MS&T 2007 Meeting CY SEP 16-20, 2007 CL Detroit, MI SP Amer Ceram Soc, Assoc Iron & Steel Technol, ASM Int, TMS ID CORROSION-RESISTANCE; METALLIC GLASSES; FE49.7CR17.7MN1.9MO7.4W1.6B15.2C3.8SI2.4 AB Developing iron-based coatings, from glass forming alloys such as SAM2X5, which exhibit outstanding corrosion performance superior to nickel-based alloys, results in particular challenges. This is because the resulting corrosion performance of the coating depends on a complex inter-relationship between the intrinsic properties including coating chemistry with its resulting protective oxide layer, the extrinsic properties related to the macrostructure with its defects resulting from the spray process, and the microstructure where one key factor is the total level of microstructural refinement achieved. As the microstructural scale is reduced, it becomes increasingly difficult for the electrochemical system to initiate electrochemical attack. Metallic glasses, which can be considered "angstrom" scaled materials, represent the ultimate in microstructural uniformity. In this article, the influence of the feedstock powder structure on the resulting glass content in the coating will be explored, because maximizing the glass percentage is one key factor in improving corrosion performance. C1 [Branagan, D. J.; Meacham, B. E.] NanoSteel Co, Idaho Falls, ID 83402 USA. [Swank, W. D.] US DOE, Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Branagan, DJ (reprint author), NanoSteel Co, Idaho Falls, ID 83402 USA. EM dbranagan@nanosteelco.com NR 13 TC 9 Z9 9 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUN PY 2009 VL 40A IS 6 BP 1306 EP 1313 DI 10.1007/s11661-008-9581-7 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 441LY UT WOS:000265771800006 ER PT J AU Blink, J Farmer, J Choi, J Saw, C AF Blink, J. Farmer, J. Choi, J. Saw, C. TI Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT MS&T 2007 Meeting CY SEP 16-20, 2007 CL Detroit, MI SP Amer Ceram Soc, Assoc Iron & Steel Technol, ASM Int, TMS ID CORROSION-RESISTANCE; FE49.7CR17.7MN1.9MO7.4W1.6B15.2C3.8SI2.4; BEHAVIOR; GLASSES; ALLOYS AB Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials. C1 [Blink, J.; Farmer, J.; Choi, J.; Saw, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Choi, J.] Univ Tokyo, Tokyo, Japan. RP Blink, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM blink1@llnl.gov NR 50 TC 23 Z9 23 U1 3 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUN PY 2009 VL 40A IS 6 BP 1344 EP 1354 DI 10.1007/s11661-009-9830-4 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 441LY UT WOS:000265771800010 ER PT J AU Cong, ZH Jia, N Sun, X Ren, Y Almer, J Wang, YD AF Cong, Z. H. Jia, N. Sun, X. Ren, Y. Almer, J. Wang, Y. D. TI Stress and Strain Partitioning of Ferrite and Martensite during Deformation SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DUAL-PHASE STEELS; NEUTRON-DIFFRACTION; RETAINED AUSTENITE; TRIP STEELS; BEHAVIOR; TENSILE; TRANSFORMATION; PARAMETERS; MORPHOLOGY AB The direct measurement of the stress or strain partitioning during deformation in the materials, consisting of two phases with the same crystallographic structure and different microstructures, is still difficult so far. This is due to the fact that no effective characterization tool is available with the ability to distinguish the local strain and stress at microscale level. In this article, we studied the micromechanical behavior of ferrite/martensite dual-phase (DP) alloys using the in-situ high-energy X-ray diffraction (HEXRD) technique. We established a new method to separate the stress and strain in the ferrite and martensite during loading. Although the ferrite and martensite exhibit the same crystal structure with similar lattice parameters, the dependence of (200) lattice strains on the applied stress is obviously different for each phase. A visco-plastic self-consistent (VPSC) model, which can simulate the micromechanical behavior of two-phase materials, was used to construct the respective constitutive laws for both phases from the experimental lattice strains and to fit the macro-stress-strain curve. The material parameters for each phase extracted from our experiments and simulations could be used for designing other DP alloys and optimizing some complex industrial processes. C1 [Cong, Z. H.; Jia, N.; Wang, Y. D.] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. [Sun, X.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Ren, Y.; Almer, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Cong, ZH (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. EM ydwang@mail.neu.edu.cn RI wang, yandong/G-9404-2013 NR 20 TC 30 Z9 30 U1 1 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUN PY 2009 VL 40A IS 6 BP 1383 EP 1387 DI 10.1007/s11661-009-9824-2 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 441LY UT WOS:000265771800014 ER PT J AU Suk, MJ Liu, S AF Suk, Myung-Jin Liu, Shan TI Oscillatory growth of nonfaceted dendrite and faceted plate during unidirectional solidification SO METALS AND MATERIALS INTERNATIONAL LA English DT Article DE growth oscillation; dendrite sidebranching; crystal growth; solidification ID NAPHTHALENE EUTECTIC SYSTEM; INTERFACE; BEHAVIOR; ORIGIN; NOISE; MODEL AB Nonfaceted dendrite and faceted plate in succinonitrile-0.7 wt.% salol and camphor-47.4 wt.% and -35 wt.% naphthalene mixtures were in situ observed during unidirectional solidification. Nonfaceted dendrite oscillates in the growth direction during unidirectional solidification, alternatively repeating fast and slow growth. The faceted phase, whose growth is operated by a two dimensional nucleation mode, also shows oscillation of growth velocity. The oscillation in the faceted phase is due to the intrinsic growth nature, while in the nonfaceted phase it is due to experimental artifacts, that is, thermal fluctuations in the cold and hot zones. The implications of the observed dendrite tip fluctuation in relation with the initiation of dendrite sidebranching have been discussed. C1 [Suk, Myung-Jin] Kangwon Natl Univ, Dept Mat & Met Engn, Samcheok Si 245711, Gangwon, South Korea. [Liu, Shan] Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Suk, MJ (reprint author), Kangwon Natl Univ, Dept Mat & Met Engn, 1 Joongang Ro, Samcheok Si 245711, Gangwon, South Korea. EM panpani@kangwon.ac.kr NR 15 TC 3 Z9 3 U1 0 U2 8 PU KOREAN INST METALS MATERIALS PI SEOUL PA POSCO CENTER, 4TH FL (EAST WING), 892 DAECHI-4-DONG, KANGNAM-KU, SEOUL 135-777, SOUTH KOREA SN 1598-9623 J9 MET MATER INT JI Met. Mater.-Int. PD JUN PY 2009 VL 15 IS 3 BP 379 EP 383 DI 10.1007/s12540-009-0379-y PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 468AW UT WOS:000267786600005 ER PT J AU Lee, B Ma, Z Zhang, ZT Park, C Dai, S AF Lee, Byunghwan Ma, Zhen Zhang, Zongtao Park, Chulhwan Dai, Sheng TI Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Gold nanoparticle; Mesoporous silica; SBA-15; Pore structure; Thermal stability ID AQUEOUS CHLOROAURATE IONS; TEMPERATURE CO OXIDATION; THERMAL-STABILITY; AU NANOPARTICLES; MOLECULAR-SIEVES; SURFACE MODIFICATION; CATALYTIC-ACTIVITY; AEROBIC OXIDATION; SBA-15; SIZE AB Loading gold on mesoporous materials via different methods has been actively attempted in the literature, but the knowledge about the influences of synthesis details and different mesoporous structures on the size and thermal stability of gold nanoparticles supported on mesoporous hosts is still limited. In this Study, Au/HMS, Au/MCM-41, Au/MCM-48, Au/SBA-15, and Au/SBA-16 samples were prepared by modifying a variety Of mesoporous silicas by amine ligands followed by loading HAuCl4 and calcination. The influences of different amine ligands ((3-aminopropyl)triethoxysilane versus N-[3-(trimethoxysilyl)propyl]ethylenediamine), solvents (water versus ethanol), calcination temperatures (200 or 550 degrees C), and mesoporous structures Oil the size Of Supported gold nanoparticles were systematically investigated employing nitrogen adsorption-desorption measurement, X-ray diffraction (XRD), diffuse reflectance UV-vis spectroscopy, and transmission electron microscopy (TEM). Interestingly, while big and irregular gold particles situate on MCM-48 with bicontinuous three-dimensional pore structure and relatively small pore size (2.4 nm) upon calcination at 550 degrees C, homogeneous and small gold nanoparticles maintain inside SBA-15 with one-dimensional pore structure and relatively big pore size (6.8 nm). Apparently, the pore structure and pore size of mesoporous silica hosts play a key role in determining the size and thermal stability of the supported gold nanoparticles. Our results may provide some useful clues for the rational design of supported metal catalysts by choosing suitable mesoporous hosts. (C) 2009 Elsevier Inc. All rights reserved. C1 [Lee, Byunghwan] Keimyung Univ, Dept Chem Syst Engn, Taegu 704701, South Korea. [Lee, Byunghwan; Ma, Zhen; Zhang, Zongtao; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Zhang, Zongtao] Jilin Univ, Coll Chem, Changchun 130023, Peoples R China. [Park, Chulhwan] Kwangwoon Univ, Dept Chem Engn, Seoul 139701, South Korea. RP Lee, B (reprint author), Keimyung Univ, Dept Chem Syst Engn, Taegu 704701, South Korea. EM leeb@kmu.ac.kr; dais@ornl.gov RI Ma, Zhen/F-1348-2010; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences, US Department of Energy [DE-AC0500OR22725] FX B.L. thanks the Bisa Research Grant of Keimyung University in 2006. S.D. thanks the financial support from the Office of Basic Energy Sciences, US Department of Energy (Contract DE-AC0500OR22725). NR 61 TC 79 Z9 79 U1 6 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 EI 1873-3093 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD JUN 1 PY 2009 VL 122 IS 1-3 BP 160 EP 167 DI 10.1016/j.micromeso.2009.02.029 PG 8 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 445OZ UT WOS:000266061500024 ER PT J AU Shin, J Hall, MW Chame, J AF Shin, Jaewook Hall, Mary W. Chame, Jacqueline TI Evaluating compiler technology for control-flow optimizations for multimedia extension architectures SO MICROPROCESSORS AND MICROSYSTEMS LA English DT Article DE SIMD compiler; Branch-on-superword-condition-code (BOSCC); Control flow; Multimedia extension; Automatic vectorization AB This paper addresses how to automatically generate code for multimedia extension architectures in the presence of conditionals. We evaluate the costs and benefits of exploiting branches on the aggregate condition codes associated with the fields of a superword (an aggregate object larger than a machine word) such as the branch-on-any instruction of the AltiVec. Branch-on-superword-condition-codes (BOSCC) instructions allow fast detection of aggregate conditions, an optimization opportunity often found in multimedia applications. This paper presents compiler analyses and techniques for generating efficient parallel code using BOSCC instructions. We evaluate our approach, which has been implemented in the SUIF compiler, through a set of experiments with multimedia benchmarks, and compare it with the default approach previously implemented in our compiler. Our experimental results show that using BOSCC instructions can result in better performance for applications where the aggregate condition codes of a superword often evaluate to the same value. Published by Elsevier B.V. C1 [Shin, Jaewook; Chame, Jacqueline] Univ So Calif, Inst Informat Sci, Marina Del Rey, CA 90292 USA. [Hall, Mary W.] Univ Utah, Sch Comp, Salt Lake City, UT USA. RP Shin, J (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jaewook@mcs.anl.gov NR 20 TC 1 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0141-9331 J9 MICROPROCESS MICROSY JI Microprocess. Microsyst. PD JUN PY 2009 VL 33 IS 4 BP 235 EP 243 DI 10.1016/j.micpro.2009.02.002 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 461VU UT WOS:000267301500002 ER PT J AU Borg, JP Vogler, TJ AF Borg, John P. Vogler, Tracy J. TI Aspects of simulating the dynamic compaction of a granular ceramic SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID DIRECT NUMERICAL-SIMULATION; COPPER-POWDER; SHOCK COMPRESSION; STRAIN RATES; CONSOLIDATION; MESOSCALE; ALUMINUM; SOLIDS AB Mesoscale hydrodynamic calculations have been conducted in order to gain further insight into the dynamic compaction characteristics of granular ceramics. With a mesoscale approach each individual grain, as well as the porosity, is modeled explicitly; the bulk behavior of the porous material can be resolved as a result. From these calculations bulk material characteristics such as shock speed, stress and density have been obtained and compared with experimental results. A parametric study has been conducted in order to explore the variation and sensitivity of the computationally derived dynamic response characteristics to micro-scale material properties such as Poisson's ratio, dynamic yield and tensile failure strength; macro-scale parameters such as volume fraction, particle morphology and size distribution were explored as well. The results indicate that the baseline bulk Hugoniot response under-predicts the experimentally measured response. These results are sensitive to the volume fraction, dynamic yield strength and particle arrangement, somewhat sensitive to failure strength and insensitive to the micro-scale Hugoniot and grain morphology. A discussion as to the shortcomings in the mesoscale modeling technique, as well as future considerations, is included. C1 [Borg, John P.] Marquette Univ, Dept Mech Engn, Milwaukee, WI 53233 USA. [Vogler, Tracy J.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Borg, JP (reprint author), Marquette Univ, Dept Mech Engn, 1515 W Wisconsin Ave, Milwaukee, WI 53233 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 60 TC 13 Z9 14 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD JUN PY 2009 VL 17 IS 4 AR 045003 DI 10.1088/0965-0393/17/4/045003 PG 22 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 450AN UT WOS:000266373500004 ER PT J AU Gu, YC Patterson, AV Atwell, GJ Chernikova, SB Brown, JM Thompson, LH Wilson, WR AF Gu, Yongchuan Patterson, Adam V. Atwell, Graham J. Chernikova, Sophia B. Brown, J. Martin Thompson, Larry H. Wilson, William R. TI Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A SO MOLECULAR CANCER THERAPEUTICS LA English DT Article ID HAMSTER OVARY CELLS; SELECTIVE ANTITUMOR AGENTS; NUCLEOTIDE EXCISION-REPAIR; HOMOLOGOUS RECOMBINATION; BIOREDUCTIVE DRUGS; TUMOR OXYGENATION; PRODRUG PR-104A; CYTO-TOXICITY; CROSS-LINKS; NECK-CANCER AB PR-104 is a dinitrobenzamide mustard currently in clinical trial as a hypoxia-activated prodrug. Its major metabolite, PR-104A, is metabolized to the corresponding hydroxylamine (PR-104H) and amine (PR-104M), resulting in activation of the nitrogen mustard moiety. We characterize DNA damage responsible for cytotoxicity of PR-104A by comparing sensitivity of repair-defective hamster Chinese hamster ovary cell lines with their repair-competent counterparts. PR-104H showed a repair profile similar to the reference DNA cross-linking agents chlorambucil and mitomycin C, with marked hypersensitivity of XPF(-/-) ERCC1(-/-), and Rad51D(-/-) cells but not of XPD(-/-) or DNA-PK(CS)(-/-) cells. This pattern confirmed the expected dependence on the ERCC1-XPF endonuclease, implicated in unhooking DNA interstrand cross-links at blocked replication forks, and homologous recombination repair (HRR) in restarting collapsed forks. However, even under anoxia, the hypersensitivity of XPF(-/-), ERCC1(-/-) and Rad51D(-/-) cells to PR-104A itself was lower than for chlorambucil. To test whether this reflects inefficient PR-104A reduction, a soluble form of human NADPH:cytochrome P450 oxidoreductase was stably expressed in Rad51D(-/-) cells and their HRR-restored counterpart. This expression increased hypoxic metabolism of PR-104A to PR-104H and PR-104M as well as hypoxia-selective cytotoxicity of PR-104A and its dependence on HRR. We conclude that PR-104A cytotoxicity is primarily due to DNA interstrand cross-linking by its reduced metabolites, although under conditions of inefficient PR-104A reduction (low reductase expression or aerobic cells), a second mechanism contributes to cell killing. This study shows that hypoxia, reductase activity, and DNA interstrand cross-link repair proficiency are key variables that interact to determine PR-104A sensitivity. [Mol Cancer Ther 2009;8 (6):1714-23] C1 [Gu, Yongchuan; Patterson, Adam V.; Atwell, Graham J.; Wilson, William R.] Univ Auckland, Auckland Canc Soc, Res Ctr, Fac Med & Hlth Sci, Auckland 1, New Zealand. [Chernikova, Sophia B.; Brown, J. Martin] Stanford Univ, Dept Radiat Oncol, Div Radiat & Canc Biol, Stanford, CA 94305 USA. [Thompson, Larry H.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. RP Wilson, WR (reprint author), Univ Auckland, Auckland Canc Soc, Res Ctr, Fac Med & Hlth Sci, Private Bag 92019, Auckland 1, New Zealand. EM wr.wilson@auckland.ac.nz OI Patterson, Adam/0000-0001-5138-1227 FU Health Research Council of New Zealand [01/276]; Foundation for Research Science and Technology, New Zealand; NIH [P01 CA67166] FX Health Research Council of New Zealand (01/276); Technology in Industry Fellowship from the Foundation for Research Science and Technology, New Zealand (Y. Gu); and NIH grant P01 CA67166 (S.B. Chernikova and J.M. Brown). NR 51 TC 34 Z9 36 U1 0 U2 8 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1535-7163 J9 MOL CANCER THER JI Mol. Cancer Ther. PD JUN PY 2009 VL 8 IS 6 BP 1714 EP 1723 DI 10.1158/1535-7163.MCT-08-1209 PG 10 WC Oncology SC Oncology GA 458SF UT WOS:000267043100032 PM 19509245 ER PT J AU Umar, A Kang, H Timmermans, AM Look, MP Meijer-van Gelder, ME den Bakker, MA Jaitly, N Martens, JWM Luider, TM Foekens, JA Pasa-Tolic, L AF Umar, Arzu Kang, Hyuk Timmermans, Annemieke M. Look, Maxime P. Meijer-van Gelder, Marion E. den Bakker, Michael A. Jaitly, Navdeep Martens, John W. M. Luider, Theo M. Foekens, John A. Pasa-Tolic, Ljiljana TI Identification of a Putative Protein Profile Associated with Tamoxifen Therapy Resistance in Breast Cancer SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID LASER CAPTURE MICRODISSECTION; MATRIX METALLOPROTEINASE INDUCER; IONIZATION MASS-SPECTROMETRY; TIME TAG STRATEGY; PROTEOMIC ANALYSIS; CARCINOMA CELLS; ACCURATE MASS; DUCTAL CARCINOMA; HUMAN TUMORS; LC-MS AB Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on similar to 5,500 pooled tumor cells ( corresponding to similar to 550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with >= 2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-micro-dissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were higher in therapy-resistant tumors and significantly associated with an earlier tumor progression following first line tamoxifen treatment (hazard ratio, 1.87; 95% confidence interval, 1.25-2.80; p = 0.002). In summary, comparative proteomics performed on laser capture microdissection-derived breast tumor cells using nano-LC-FTICR MS technology revealed a set of putative biomarkers associated with tamoxifen therapy resistance in recurrent breast cancer. Molecular & Cellular Proteomics 8: 1278-1294, 2009. C1 [Umar, Arzu] Erasmus MC, Josephine Nefkens Inst, Dept Med Oncol, Lab Genom & Prote of Breast Canc, NL-3000 CA Rotterdam, Netherlands. [Umar, Arzu; Timmermans, Annemieke M.; Look, Maxime P.; Meijer-van Gelder, Marion E.; Martens, John W. M.; Foekens, John A.] Erasmus MC, Josephine Nefkens Inst, Canc Genom Ctr, NL-3000 CA Rotterdam, Netherlands. [den Bakker, Michael A.] Erasmus MC, Josephine Nefkens Inst, Dept Pathol, NL-3000 CA Rotterdam, Netherlands. [Luider, Theo M.] Erasmus MC, Josephine Nefkens Inst, Dept Neurol, NL-3000 CA Rotterdam, Netherlands. [Kang, Hyuk; Jaitly, Navdeep; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Umar, A (reprint author), Erasmus MC, Josephine Nefkens Inst, Dept Med Oncol, Lab Genom & Prote of Breast Canc, Dr Molewaterpl 50,Be 430C,POB 2040, NL-3000 CA Rotterdam, Netherlands. EM a.umar@erasmusmc.nl RI Kang, Hyuk/A-4972-2010 FU National Institutes of Health [RR18522]; National Center for Research Resources; National Genomics Initiative/Netherlands Organization for Scientific Research (NWO) FX This work was supported, in whole or in part, by National Institutes of Health Grant RR18522 from the National Center for Research Resources. This work was also supported by the National Genomics Initiative/Netherlands Organization for Scientific Research (NWO). NR 64 TC 59 Z9 62 U1 1 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD JUN PY 2009 VL 8 IS 6 BP 1278 EP 1294 DI 10.1074/mcp.M800493-MCP200 PG 17 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 457DB UT WOS:000266904900009 PM 19329653 ER PT J AU Ham, JH Majerczak, DR Nomura, K Mecey, C Uribe, F He, SY Mackey, D Coplin, DL AF Ham, Jong Hyun Majerczak, Doris R. Nomura, Kinya Mecey, Christy Uribe, Francisco He, Sheng-Yang Mackey, David Coplin, David L. TI Multiple Activities of the Plant Pathogen Type III Effector Proteins WtsE and AvrE Require WxxxE Motifs SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article ID STEWARTII SUBSP STEWARTII; SYRINGAE PV.-PHASEOLICOLA; PSEUDOMONAS-SYRINGAE; SECRETION SYSTEM; ERWINIA-AMYLOVORA; CELL-DEATH; SEQUENCE-ANALYSIS; ESCHERICHIA-COLI; AVIRULENCE LOCUS; LESION FORMATION AB The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well. C1 [Ham, Jong Hyun; Mackey, David] Ohio State Univ, Dept Hort & Crop Sci, Columbus, OH 43210 USA. [Ham, Jong Hyun; Majerczak, Doris R.; Coplin, David L.] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA. [Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Coplin, DL (reprint author), Ohio State Univ, Dept Hort & Crop Sci, Columbus, OH 43210 USA. EM mackey.86@osu.edu; coplin.3@osu.edu FU National Research Initiative of the United States Department of Agriculture Cooperative State Research, Education, and Extension Service [2005-35319-15328]; Ohio Agricultural Research and Development Center; National Science Foundation [MCB-0718882]; National Institute of Health and Department of Energy FX We thank S. V. Beer for the anti-DspEEa antibodies. This project was supported by grants from the National Research Initiative of the United States Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-35319-15328) and the Ohio Agricultural Research and Development Center to D. L. Coplin and D. Mackey, from the National Science Foundation (MCB-0718882) to D. Mackey, and from National Institute of Health and Department of Energy to S.-Y. He. NR 45 TC 29 Z9 29 U1 1 U2 6 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD JUN PY 2009 VL 22 IS 6 BP 703 EP 712 DI 10.1094/MPMI-22-6-0703 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA 447TC UT WOS:000266213700009 PM 19445595 ER PT J AU White, M Padmanabhan, N AF White, Martin Padmanabhan, Nikhil TI Breaking halo occupation degeneracies with marked statistics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE large-scale structure of Universe ID DIGITAL SKY SURVEY; GALAXY BIAS; DEPENDENCE; COSMOLOGY; MODELS AB We show that a suitably defined marked correlation function can be used to break degeneracies in halo-occupation distribution modelling. The statistic can be computed on both three-dimensional and two-dimensional data sets and should be applicable to all upcoming galaxy surveys. A proof of principle, using mock catalogues created from N-body simulations, is given. C1 [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [White, Martin; Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP White, M (reprint author), Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. EM mwhite@berkeley.edu RI Padmanabhan, Nikhil/A-2094-2012; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 NR 16 TC 10 Z9 11 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 1 PY 2009 VL 395 IS 4 BP 2381 EP 2384 DI 10.1111/j.1365-2966.2009.14732.x PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 446HL UT WOS:000266112600054 ER PT J AU Reisner, JM Jeffery, CA AF Reisner, J. M. Jeffery, C. A. TI A Smooth Cloud Model SO MONTHLY WEATHER REVIEW LA English DT Article ID ADVECTION-CONDENSATION PROBLEM; SUPERSATURATION; MICROPHYSICS; SIMULATIONS; SCHEMES AB In this paper a large-eddy "smooth'' cloud (SC) model will be presented with smooth implying that the entire model converges under a Newton-based solution procedure or that time scales within the SC model are being resolved. Besides ensuring that time scales within microphysical parameterizations are resolved, convergence of Newton's method requires that advection schemes near cloud boundaries should not induce fast time scales. For example, flux-corrected transport (FCT) schemes that force cloud variables to stay oscillation free near boundaries are typically not differentiable in time and hence may prevent convergence of Newton's method. To circumvent the use of a FCT scheme, an alternative approach, a cloud-edge (CE) diffusion-based approach, will be presented in this paper. Since the diffusion produced by the CE approach could conceivably lead to the fictitious evaporation of a real cloud, the first major point of this paper will be to document that the SC model when employing an evaporative limiter is able, like most traditional large-eddy cloud models, to reasonably reproduce nondrizzling stratus clouds observed during flight 1 of the Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II). However, the SC model obtains the accuracy offered by higher-order time-stepping approaches, unlike most traditional cloud models. In fact, temporal errors from the SC model are shown to be at least two orders of magnitude smaller than those of a traditional large-eddy cloud model. Hence, the second major point of this paper will be to demonstrate the consequence of these large temporal errors found in traditional large-eddy cloud models, that is, the inability to accurately track an identifiable cloud feature in time. C1 [Reisner, J. M.; Jeffery, C. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Reisner, JM (reprint author), Los Alamos Natl Lab, MS D401, Los Alamos, NM 87545 USA. EM reisner@lanl.gov NR 21 TC 12 Z9 12 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2009 VL 137 IS 6 BP 1825 EP 1843 DI 10.1175/2008MWR2576.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 468VA UT WOS:000267850700007 ER PT J AU Demkowicz, MJ With, MA AF Demkowicz, M. J. With, M. A. TI National Laboratories Ready to Train a Generation of Materials Researchers in Energy SO MRS BULLETIN LA English DT Editorial Material C1 [Demkowicz, M. J.] MIT, Cambridge, MA 02139 USA. [With, M. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Demkowicz, MJ (reprint author), MIT, Cambridge, MA 02139 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JUN PY 2009 VL 34 IS 6 BP 395 EP 395 DI 10.1557/mrs2009.106 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 458EG UT WOS:000266997000001 ER PT J AU Hinz, JM Urbin, SS Thompson, LH AF Hinz, John M. Urbin, Salustra S. Thompson, Larry H. TI RAD51D-and FANCG-dependent base substitution mutagenesis at the ATP1A1 locus in mammalian cells SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE Fanconi anemia; Homologous recombination; Translesion synthesis; CHO cells; Ouabain resistance ID STRAND-BREAK-REPAIR; HAMSTER OVARY CELLS; FANCONIS ANEMIA CELLS; CROSS-LINKING AGENTS; DNA-POLYMERASE-ZETA; HOMOLOGOUS RECOMBINATION; SACCHAROMYCES-CEREVISIAE; TRANSLESION SYNTHESIS; REPLICATION FORKS; VERTEBRATE CELLS AB Elaborate processes act at the DNA replication fork to minimize the generation of chromatid discontinuity when lesions are encountered. To prevent collapse of stalled replication forks, mutagenic translesion synthesis (TLS) polymerases are recruited temporarily to bypass DNA lesions. When a replication-associated (one-ended) double-strand break occurs, homologous recombination repair (HRR) can restore chromatid continuity in what has traditionally been regarded as an "error-free" process. Our previous mutagenesis studies show an important role for HRR in preventing deletions and rearrangements that would otherwise result from error-prone nonhomologous end joining (NHEJ) after fork breakage. An analogous, but distinct, role in minimizing mutations is attributed to the proteins defective in the cancer predisposition disease Fanconi anemia (FA). Cells from FA patients and model systems show an increased proportion of gene-disrupting deletions at the hprt locus as well as decreased mutation rates in the hprt assay, suggesting a role for the FANC proteins in promoting TLS, HRR, and possibly also NHEJ. It remains unclear whether HRR, like the FANC pathway, impacts the rate of base substitution mutagenesis. Therefore, we measured, in isogenic rad51d and fancg CHO mutants, mutation rates at the Na(+)/K(+)-ATPase alpha-subunit (ATP1A1) locus using ouabain resistance. which specifically detects base substitution mutations. Surprisingly, we found that the spontaneous mutation rate was reduced similar to 2.5-fold in rad51d knockout cells, an even greater extent than observed in fancg cells, when compared with parental and isogenic gene-complemented control lines. A similar to 2-fold reduction in induced mutations in rad51d cells was seen after treatment with the DNA alkylating agent ethylnitrosurea while a lesser reduction occurred in fancg cells. Should the model ATP1A1 locus be representative of the genome, we conclude that at least 50% of base substitution mutations in this mammalian system arise through error-prone polymerase(s) acting during HRR-mediated restart of broken replication forks. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hinz, John M.; Urbin, Salustra S.; Thompson, Larry H.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. RP Thompson, LH (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, L452,POB 808, Livermore, CA 94551 USA. EM thompson14@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; The DOE Low Dose Radiation Research Program; NCI/NIH [CA112566] FX We thank Nigel Jones and Irene Jones for their comments on the manuscript and Holly M. Marley for performing many of the experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The DOE Low Dose Radiation Research Program and NCI/NIH grant CA112566 funded this work. NR 76 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD JUN 1 PY 2009 VL 665 IS 1-2 BP 61 EP 66 DI 10.1016/j.mrfmmm.2009.03.001 PG 6 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 454NW UT WOS:000266690200009 PM 19427512 ER PT J AU Maciel, IO Campos-Delgado, J Cruz-Silva, E Pimenta, MA Sumpter, BG Meunier, V Lopez-Urias, F Munoz-Sandoval, E Terrones, H Terrones, M Jorio, A AF Maciel, I. O. Campos-Delgado, J. Cruz-Silva, E. Pimenta, M. A. Sumpter, B. G. Meunier, V. Lopez-Urias, F. Munoz-Sandoval, E. Terrones, H. Terrones, M. Jorio, A. TI Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon Nanotubes SO NANO LETTERS LA English DT Article ID SEQUENTIAL CATALYTIC GROWTH; PHONON RENORMALIZATION AB Substitutional phosphorus doping in single-wall carbon nanotubes (SWNTs) is investigated by density functional theory and resonance Raman spectroscopy. Electronic structure calculations predict charge localization on the phosphorus atom, generating nondispersive valence and conduction bands close to the Fermi level. Besides confirming sustitutional doping, accurate analysis of electron and phonon renormalization effects in the double-resonance Raman process elucidates the different nature of the phosphorus donor doping (localized) when compared to nitrogen substitutional doping (nonlocalized) in SWNTs. C1 [Maciel, I. O.; Pimenta, M. A.; Jorio, A.] Univ Fed Minas Gerais, Dept Fis, BR-31270901 Belo Horizonte, MG, Brazil. [Campos-Delgado, J.; Lopez-Urias, F.; Munoz-Sandoval, E.; Terrones, H.; Terrones, M.] IPICYT, Lab Nanosci & Nanotechnol Res LINAN, San Luis Potosi, Mexico. [Campos-Delgado, J.; Lopez-Urias, F.; Munoz-Sandoval, E.; Terrones, H.; Terrones, M.] IPICYT, Adv Mat Dept, San Luis Potosi, Mexico. [Cruz-Silva, E.; Sumpter, B. G.; Meunier, V.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Jorio, A.] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Div Mat Metrol, BR-25250020 Duque De Caxias, RJ, Brazil. RP Jorio, A (reprint author), Univ Fed Minas Gerais, Dept Fis, BR-31270901 Belo Horizonte, MG, Brazil. EM adojorio@fisica.ufmg.br RI Pimenta, Marcos/F-2122-2010; Dias, Sandra/F-8134-2010; Maciel, Indhira/C-2580-2011; Cruz-Silva, Eduardo/B-7003-2009; Terrones, Mauricio/B-3829-2014; Maciel, Indhira/C-1832-2014; Munoz-Sandoval, Emilio/N-1059-2014; Jorio, Ado/F-2141-2010; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013; Medicina Molecular, Inct/J-8737-2013 OI Cruz-Silva, Eduardo/0000-0003-2877-1598; Munoz-Sandoval, Emilio/0000-0002-6095-4119; Jorio, Ado/0000-0002-5978-2735; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355; FU FAPEMIG; Rede Nacional de Pesquisa em Nanotubos de Carbono; Rede National de SPM; Instituto de Nanotecnologia (MCT-CNPq); CAPES/DAAD-Probral; CONACYT-Mexico [56787]; Laboratory for Nanoscience and Nanotechnology ResearchLINAN [45762, 45772]; Fondo Mixto de San Luis Potosi [63001 S-3908, 2004-01-013/SALUDCONACYT, 63072 S-3909]; Division of Materials Science and Engineering, U.S. Department of Energy; Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities FX The authors thank M. S. Dresselhaus for helpful discussions. I.O.M., M.A.P., and A.J. acknowledge financial support from FAPEMIG, Rede Nacional de Pesquisa em Nanotubos de Carbono, Rede National de SPM, Instituto de Nanotecnologia (MCT-CNPq), and CAPES/DAAD-Probral. M.T, H.T., and J.C.-D. acknowledge financial support from CONACYT-Mexico Grants No. 56787 (Laboratory for Nanoscience and Nanotechnology ResearchLINAN), 45762 (H.T.), 45772 (M.T.), Fondo Mixto de San Luis Potosi 63001 S-3908 (M.T.), 2004-01-013/SALUDCONACYT (M.T.), Fondo Mixto de San Luis Potosi 63072 S-3909 (H.T.), 58899-Inter American Collaboration, and PhD scholarship Q.C.D.). E.C.-S., B.G.S., and V.M. acknowledge support by the Division of Materials Science and Engineering, U.S. Department of Energy and by the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy. Computations were performed using the resources of the ORNL institutional cluster and also from the National Energy Research Scientific Computing Center at LBNL. NR 32 TC 80 Z9 80 U1 12 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2009 VL 9 IS 6 BP 2267 EP 2272 DI 10.1021/nl9004207 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 457XL UT WOS:000266969400013 PM 19449833 ER PT J AU Moore, NW Luo, JH Huang, JY Mao, SX Houston, JE AF Moore, Nathan W. Luo, Junhang Huang, J. Y. Mao, Scott X. Houston, J. E. TI Superplastic Nanowires Pulled from the Surface of Common Salt SO NANO LETTERS LA English DT Article ID LARGE-STRAIN PLASTICITY; LOW-TEMPERATURE; SODIUM-CHLORIDE; METALLIC NANOWIRES; SIC NANOWIRES; DEFORMATION; NACL; CRYSTAL; WATER; MICROSCOPE AB Superplastic nanowires were formed by touching the NaCl(100) surface with a Au tip in a transmission electron microscope. The nanowires were stretched <= 2.2 mu m, or 280%, and bent >90 degrees upon compression, when showered with the electron beam. More surprisingly, no dislocations were observable during the elongation due to fast diffusion. Mechanical measurements in humid atmospheres suggest that salt nanowires also form in ambient environments. C1 [Moore, Nathan W.; Houston, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Luo, Junhang; Mao, Scott X.] Univ Pittsburgh, Pittsburgh, PA 15261 USA. [Huang, J. Y.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Moore, NW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nwmoore@sandia.gov RI luo, Junhang/F-4352-2011; Huang, Jianyu/C-5183-2008 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMS 0625733]; University of Pittsburgh FX This work is partially supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. S. X. Mao acknowledges support of NSF CMS 0625733 at the University of Pittsburgh. We thank Norman Bartelt and Brian Swartzentruber for useful discussions. NR 38 TC 19 Z9 19 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2009 VL 9 IS 6 BP 2295 EP 2299 DI 10.1021/nl9004805 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 457XL UT WOS:000266969400018 PM 19459614 ER PT J AU Wu, ZG Neaton, JB Grossman, JC AF Wu, Zhigang Neaton, J. B. Grossman, Jeffrey C. TI Charge Separation via Strain in Silicon Nanowires SO NANO LETTERS LA English DT Article ID SOLAR-CELLS; COST AB Axial charge separation in small diameter, partially strained silicon nanowires is predicted from ab initio calculations with electrons and holes located in different ends of the wires. We show that this effect can be understood from the topologies of near-gap wave functions, and that it is enhanced by quantum confinement. The possibility of utilizing partial strain for charge separation at the nanoscale opens up a new avenue for designing solar cells by morphology control, where effectively a type-II homojunction is formed and charge separation is facilitated by thermalization. C1 [Wu, Zhigang; Neaton, J. B.; Grossman, Jeffrey C.] Univ Calif Berkeley, Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. [Neaton, J. B.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Grossman, JC (reprint author), Univ Calif Berkeley, Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. EM jgrossman@berkeley.edu RI Wu, Zhigang/K-2554-2014; Neaton, Jeffrey/F-8578-2015 OI Wu, Zhigang/0000-0001-8959-2345; Neaton, Jeffrey/0000-0001-7585-6135 FU National Science Foundation (NSF) by University of California at Berkeley [0425914, EEC-0634750]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation (NSF) by University of California at Berkeley under Grant 0425914 and Department of Energy, Basic Energy Sciences, through the Helios Program at Lawrence Berkeley National Laboratory. Part of this work was supported by NSF through the Network for Computational Nanotechnology, Grant EEC-0634750. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful for helpful discussions with A. Boukai and E. Garnett. NR 24 TC 72 Z9 72 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2009 VL 9 IS 6 BP 2418 EP 2422 DI 10.1021/nl9010854 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 457XL UT WOS:000266969400040 PM 19462970 ER PT J AU Zheng, HM Claridge, SA Minor, AM Alivisatos, AP Dahmen, U AF Zheng, Haimei Claridge, Shelley A. Minor, Andrew M. Alivisatos, A. Paul Dahmen, Ulrich TI Nanocrystal Diffusion in a Liquid Thin Film Observed by in Situ Transmission Electron Microscopy SO NANO LETTERS LA English DT Article ID ALLOY PARTICLES; IRRADIATION; MOTION AB We have directly observed motion of inorganic nanoparticles during fluid evaporation using a transmission electron microscope. Tracking real-time diffusion of both spherical (5-15 nm) and rod-shaped (5 x 10 nm) gold nanocrystals in a thin film of water-15% glycerol reveals complex movements, such as rolling motions coupled to large-step movements and macroscopic violations of the Stokes-Einstein relation for diffusion. As drying patches form during the final stages of evaporation, particle motion is dominated by the nearby retracting liquid front. C1 [Zheng, Haimei; Minor, Andrew M.; Alivisatos, A. Paul; Dahmen, Ulrich] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zheng, Haimei; Minor, Andrew M.; Dahmen, Ulrich] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Zheng, Haimei; Claridge, Shelley A.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@berkeley.edu; udahmen@lbl.gov RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU NSF-IGERT predoctoral fellowship; U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge J. Ku, Professor P. L. Geissler, and Professor H. Yang for useful discussions and Dr. H. Liu and J. Turner for their help at the beginning of image processing and data analysis. S. Claridge is supported by an NSF-IGERT predoctoral fellowship. This work was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 105 Z9 105 U1 10 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2009 VL 9 IS 6 BP 2460 EP 2465 DI 10.1021/nl9012369 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 457XL UT WOS:000266969400048 PM 19408927 ER PT J AU Niu, ZW Kabisatpathy, S He, JB Lee, LA Rong, JH Yang, L Sikha, G Popov, BN Emrick, TS Russell, TP Wang, Q AF Niu, Zhongwei Kabisatpathy, Saswat He, Jinbo Lee, L. Andrew Rong, Jianhua Yang, Lin Sikha, Godfrey Popov, Branko N. Emrick, Todd S. Russell, Thomas P. Wang, Qian TI Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores SO NANO RESEARCH LA English DT Article DE Mesoporous silica; bionanoparticles; virus; ferritin; sol-gel ID TOBACCO-MOSAIC-VIRUS; SUPRAMOLECULAR BUILDING-BLOCKS; NUCLEIC-ACID HYBRIDIZATION; ANILINE POLYMERIZATION; PROTEIN CAGES; THIN-FILMS; ENCAPSULATION; HYBRID; NANOPARTICLES; TEMPLATES AB A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N(2) adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores. C1 [Niu, Zhongwei; Kabisatpathy, Saswat; Lee, L. Andrew; Rong, Jianhua; Wang, Qian] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Niu, Zhongwei; Kabisatpathy, Saswat; Lee, L. Andrew; Rong, Jianhua; Wang, Qian] Univ S Carolina, Nanoctr, Columbia, SC 29208 USA. [He, Jinbo; Emrick, Todd S.; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Yang, Lin] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sikha, Godfrey; Popov, Branko N.] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA. RP Wang, Q (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM wang@mail.chem.sc.edu RI He, Jinbo/B-1445-2010; niu, zhongwei/C-7671-2011; Sikha, Godfrey/E-3420-2012; Yang, Lin/D-5872-2013 OI Yang, Lin/0000-0003-1057-9194 FU NSF [NSF-DMR-0706431]; Camille Dreyfus Teacher-Scholarship; Alfred P. Sloan Foundation; US ARO MURI; W. M. Keck Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We are grateful for financial support from NSF-DMR-0706431, NSF Career Award, the Camille Dreyfus Teacher-Scholarship, the Alfred P. Sloan Foundation, US ARO MURI program, and the W. M. Keck Foundation. The SAXS data were obtained at beamline X21 of the National Synchrotron Light Source, Brookhaven National Laboratory. The use of NSLS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 64 TC 13 Z9 13 U1 3 U2 29 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 J9 NANO RES JI Nano Res. PD JUN PY 2009 VL 2 IS 6 BP 474 EP 483 DI 10.1007/s12274-009-9043-6 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 548DI UT WOS:000273939400004 ER PT J AU Pan, H Feng, YP Lin, JY AF Pan, Hui Feng, Yuan Ping Lin, Jianyi TI Symmetry Properties of Single-Walled BC2N Nanotubes SO NANOSCALE RESEARCH LETTERS LA English DT Article DE BC2N nanotubes; Symmetry; Group theory ID CARBON NANOTUBES; BORON-NITRIDE; RAMAN AB The symmetry properties of the single-walled BC2N nanotubes were investigated. All the BC2N nanotubes possess nonsymmorphic line groups. In contrast with the carbon and boron nitride nanotubes, armchair and zigzag BC2N nanotubes belong to different line groups, depending on the index n (even or odd) and the vector chosen. The number of Raman- active phonon modes is almost twice that of the infrared-active phonon modes for all kinds of BC2N nanotubes. C1 [Pan, Hui] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Pan, Hui; Feng, Yuan Ping] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Lin, Jianyi] Inst Chem & Engn Sci, Singapore 627833, Singapore. RP Pan, H (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM panh1@ornl.gov RI Pan, Hui/A-2702-2009; Feng, Yuan Ping /A-4507-2012; OI Pan, Hui/0000-0002-6515-4970; Feng, Yuan Ping /0000-0003-2190-2284; Yang, Shuman/0000-0002-9638-0890 NR 22 TC 3 Z9 3 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1931-7573 J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD JUN PY 2009 VL 4 IS 6 BP 498 EP 502 DI 10.1007/s11671-009-9272-3 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 448KV UT WOS:000266262400002 ER PT J AU Al-Haik, M Dai, JG Garcia, D Chavez, J Taha, MR Luhrs, C Phillips, J AF Al-Haik, Marwan Dai, Jiguang Garcia, Daniel Chavez, Jeremy Taha, Mahmoud Reda Luhrs, Claudia Phillips, Jonathan TI Novel Growth of Multiscale Carbon Nanofilaments on Carbon and Glass Fibers SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Carbon Fibers; Fiber Glass; Carbon Nanofibers; Graphitic Structures; Nanoropes AB Carbon nanofilaments (CNFs) were grown on the surface of microscale carbon-fibers and glass fibers at low temperature using palladium as a catalyst to create multiscale fiber reinforcing structures with potential applications in structural composites. Employing a relatively new method, in which carbon structures are grown from fuel rich combustion mixtures on certain catalytic metals, multiscale filament structures were grown from ethylene/oxygen mixtures at 550 degrees C on commercial pitch carbon fibers and fiberglass. The filaments grew in different size distributions and distinct morphologies (whiskers and spirals) depending on the base fiber. Submicron fibers (ca. 200 nm) and spirals (ca. 50 nm) were dominating the grown species over the fiberglass substrate. Relatively short, densely spaced nanofilaments (ca. 10 nm), and a slightly less dense layer of larger (ca. 300 nm diameter) faster growing fibers were found to exist together to create a unique multiscale carbon structures over the pitch carbon fiber substrate. Transmission electron microscopy indicated poor crystallinity for the nanoscale carbon filaments grown on both pitch carbon fibers and fiberglass. C1 [Al-Haik, Marwan; Dai, Jiguang; Garcia, Daniel; Luhrs, Claudia] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Chavez, Jeremy; Taha, Mahmoud Reda] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. [Phillips, Jonathan] Los Alamos Natl Labs, Los Alamos, NM 87544 USA. RP Al-Haik, M (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RI Al-Haik, Marwan/L-7732-2014 OI Al-Haik, Marwan/0000-0001-7465-0274 FU National Science Foundation (NSF) [CMMI-0800249, 0846589, EEC 0741525]; Defense Threat Reduction Agency (DTRA) [HDTRA1-08-1-0017P00001] FX This work has been supported by several funding agencies including the National Science Foundation (NSF) Awards # CMMI-0800249, 0846589, EEC 0741525 and Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-08-1-0017P00001. The authors gratefully acknowledge this support. NR 25 TC 4 Z9 4 U1 1 U2 9 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2009 VL 1 IS 2 BP 122 EP 127 DI 10.1166/nnl.2009.1027 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA V18OI UT WOS:000208013700010 ER PT J AU Broadbent, CD Brookshire, DS Coursey, D Tidwell, V AF Broadbent, Craig D. Brookshire, David S. Coursey, Don Tidwell, Vince TI Water Leasing: Evaluating Temporary Water Rights Transfers in New Mexico Through Experimental Methods SO NATURAL RESOURCES JOURNAL LA English DT Article ID WESTERN UNITED-STATES; PROPERTY-RIGHTS; SPOT MARKET; EFFICIENCY; RIVER; REALLOCATION; ALLOCATION; DROUGHT; SNAKE; ERA AB Rapid population growth coupled with stable or decreasing water supplies has further stressed already over-allocated water resources in the western United States. In this article, we consider the issues that lead to the further consideration of a water market. Specifically, we consider water markets that allow for the temporary transfer (lease) of a water right as one possible mechanism that could provide flexibility for water managers to fulfill water demands in fully or over-allocated watersheds. Using the Middle Rio Grande Basin located in central New Mexico as a backdrop, we develop a prototype coupled model that incorporates natural, physical, and engineering dynamics with an economic trading model where a variety of water users in the basin are represented. We explore the robustness of this prototype water leasing market and its ability to provide flexibility in water management. The empirical testing of the coupled model satisfies three necessary conditions: (1) efficient prices; (2) multiple transactions between user groups; and (3) minimal impact upon the natural, physical, and engineering system, as measured by water movement resulting from trading. Finally, we discuss how this trading structure might relate to a larger-scale application in the Middle Rio Grande Basin. C1 [Broadbent, Craig D.] Illinois Wesleyan Univ, Dept Econ, Bloomington, IL 61701 USA. Univ New Mexico, Dept Econ, Sci Impact Lab Policy & Econ, Albuquerque, NM 87131 USA. Univ Chicago, Chicago, IL 60637 USA. Sandia Natl Labs, Geohydrol Dept, Albuquerque, NM 87185 USA. RP Broadbent, CD (reprint author), Illinois Wesleyan Univ, Dept Econ, Bloomington, IL 61701 USA. NR 73 TC 1 Z9 1 U1 2 U2 9 PU UNIV NEW MEXICO, SCH LAW PI ALBUQUERQUE PA MSC11-6070, 1 UNIVERSITY NEW MEXICO, ALBUQUERQUE, NM 87131 USA SN 0028-0739 J9 NAT RESOUR J JI Nat. Resour. J. PD SUM PY 2009 VL 49 IS 3-4 BP 707 EP 741 PG 35 WC Environmental Studies; Law SC Environmental Sciences & Ecology; Government & Law GA 623OY UT WOS:000279752900004 ER PT J AU Kimber, SAJ Kreyssig, A Zhang, YZ Jeschke, HO Valenti, R Yokaichiya, F Colombier, E Yan, J Hansen, TC Chatterji, T McQueeney, RJ Canfield, PC Goldman, AI Argyriou, DN AF Kimber, Simon A. J. Kreyssig, Andreas Zhang, Yu-Zhong Jeschke, Harald O. Valenti, Roser Yokaichiya, Fabiano Colombier, Estelle Yan, Jiaqiang Hansen, Thomas C. Chatterji, Tapan McQueeney, Robert J. Canfield, Paul C. Goldman, Alan I. Argyriou, Dimitri N. TI Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2 SO NATURE MATERIALS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY AB The discovery of a new family of high-T-C materials(1), the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets(2-5), and that superconductivity can be induced by either chemical substitution(6) or application of pressure(7), in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked(8,9); however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2, namely suppression of the tetragonal-to-orthorhombic phase transition and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe2As2. C1 [Kimber, Simon A. J.; Yokaichiya, Fabiano; Argyriou, Dimitri N.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Kreyssig, Andreas; Colombier, Estelle; Yan, Jiaqiang; McQueeney, Robert J.; Canfield, Paul C.; Goldman, Alan I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Kreyssig, Andreas; McQueeney, Robert J.; Canfield, Paul C.; Goldman, Alan I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhang, Yu-Zhong; Jeschke, Harald O.; Valenti, Roser] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Chatterji, Tapan] Forschungszentrum Julich Outstn, JCNS, Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. RP Kimber, SAJ (reprint author), Helmholtz Zentrum Berlin Mat & Energie, Glienicker Str 100, D-14109 Berlin, Germany. EM simon.kimber@helmholtz-berlin.de; argyriou@helmholtz-berlin.de RI Zhang, Yu-Zhong/E-7139-2010; Jeschke, Harald/C-3507-2009; D20, Diffractometer/O-3123-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Hansen, Thomas/A-2729-2012; OI Zhang, Yu-Zhong/0000-0002-1766-6664; Jeschke, Harald/0000-0002-8091-7024; D20, Diffractometer/0000-0002-1572-1367; McQueeney, Robert/0000-0003-0718-5602; Hansen, Thomas/0000-0003-4611-2393; Chatterji, Tapan/0000-0002-2303-8904; Kimber, Simon/0000-0003-0489-1851 NR 31 TC 176 Z9 176 U1 9 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUN PY 2009 VL 8 IS 6 BP 471 EP 475 DI 10.1038/NMAT2443 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 447RE UT WOS:000266208700017 PM 19404240 ER PT J AU Yang, CH Seidel, J Kim, SY Rossen, PB Yu, P Gajek, M Chu, YH Martin, LW Holcomb, MB He, Q Maksymovych, P Balke, N Kalinin, SV Baddorf, AP Basu, SR Scullin, ML Ramesh, R AF Yang, C. -H. Seidel, J. Kim, S. Y. Rossen, P. B. Yu, P. Gajek, M. Chu, Y. H. Martin, L. W. Holcomb, M. B. He, Q. Maksymovych, P. Balke, N. Kalinin, S. V. Baddorf, A. P. Basu, S. R. Scullin, M. L. Ramesh, R. TI Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films SO NATURE MATERIALS LA English DT Article ID FERROELECTRIC THIN-FILMS; MAGNETIC-PROPERTIES; OXYGEN VACANCIES; TRANSITION; FERRITES; SRTIO3; PHASE; CRYSTALS; SYSTEMS; SOLIDS AB Many interesting materials phenomena such as the emergence of high-T-c superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of similar to 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3. C1 [Yang, C. -H.; Seidel, J.; Yu, P.; Gajek, M.; Holcomb, M. B.; He, Q.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seidel, J.; Martin, L. W.; Holcomb, M. B.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, S. Y.; Rossen, P. B.; Martin, L. W.; Balke, N.; Basu, S. R.; Scullin, M. L.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chu, Y. H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Yang, CH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM chyang@berkeley.edu RI Balke, Nina/Q-2505-2015; Maksymovych, Petro/C-3922-2016; Baddorf, Arthur/I-1308-2016; Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; YANG, CHAN-HO/C-2079-2011; Martin, Lane/H-2409-2011; Kalinin, Sergei/I-9096-2012; Yu, Pu/F-1594-2014 OI Holcomb, Mikel/0000-0003-2111-3410; Balke, Nina/0000-0001-5865-5892; Maksymovych, Petro/0000-0003-0822-8459; Baddorf, Arthur/0000-0001-7023-2382; Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Kalinin, Sergei/0000-0001-5354-6152; FU US Department of Energy [DE-AC02-05CH11231]; Korean Government (MOEHRD) [KRF-2006-214-C00020]; Alexander von Humboldt Foundation; National Science Council [97-3114-M-009-001] FX The work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No. DE-AC02-05CH11231. C.-H. Y. would like to acknowledge the Korea Research Foundation Grant funded by the Korean Government (MOEHRD). (KRF-2006-214-C00020) J. S. acknowledges support from the Alexander von Humboldt Foundation. Y. H. C. would like to acknowledge the support of the National Science Council, R. O. C., under Contract No NSC 97-3114-M-009-001. A portion of this research was carried out as a user project at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, BES, US DOE. NR 45 TC 298 Z9 310 U1 24 U2 249 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUN PY 2009 VL 8 IS 6 BP 485 EP 493 DI 10.1038/NMAT2432 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 447RE UT WOS:000266208700020 PM 19396162 ER PT J AU Venken, KJT Carlson, JW Schulze, KL Pan, HL He, YC Spokony, R Wan, KH Koriabine, M de Jong, PJ White, KP Bellen, HJ Hoskins, RA AF Venken, Koen J. T. Carlson, Joseph W. Schulze, Karen L. Pan, Hongling He, Yuchun Spokony, Rebecca Wan, Kenneth H. Koriabine, Maxim de Jong, Pieter J. White, Kevin P. Bellen, Hugo J. Hoskins, Roger A. TI Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster SO NATURE METHODS LA English DT Article ID ESCHERICHIA-COLI; PROTEIN; CONSTRUCTION; SYSTEM; GENE; EXPRESSION; SELECTION; SEQUENCE; VECTORS; PHI-C31 AB We constructed Drosophila melanogaster bacterial artificial chromosome libraries with 21-kilobase and 83-kilobase inserts in the P[acman] system. We mapped clones representing 12-fold coverage and encompassing more than 95% of annotated genes onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example, to incorporate protein tags and assess expression patterns. C1 [Venken, Koen J. T.; Bellen, Hugo J.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Carlson, Joseph W.; Wan, Kenneth H.; Hoskins, Roger A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Schulze, Karen L.; Pan, Hongling; He, Yuchun; Bellen, Hugo J.] Baylor Coll Med, Howard Hughes Med Inst, Houston, TX 77030 USA. [Spokony, Rebecca; White, Kevin P.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Spokony, Rebecca; White, Kevin P.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Koriabine, Maxim; de Jong, Pieter J.] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. [Bellen, Hugo J.] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA. [Bellen, Hugo J.] Baylor Coll Med, Program Dev Biol, Houston, TX 77030 USA. RP Bellen, HJ (reprint author), Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. EM hbellen@bcm.tmc.edu RI Venken, Koen/B-9909-2013; OI Venken, Koen/0000-0003-0741-4698; Bellen, Hugo/0000-0001-5992-5989 FU Howard Hughes Medical Institute; US National Institutes of Health FX We thank members of the Washington University Genome Sequencing Center for their excellent BAC end-sequencing services. We thank members of the Bloomington Drosophila Stock Center for providing flies, members of US National Cancer Institute (NCI) Frederick for recombineering reagents, A. Hyman (Max Planck Institute, Dresden) for the LAP-tag plasmid, R. Karess (Centre National de la Recherche Scientifique) for flies, R. Ordway (Penn State University) for flies, J. Reinitz (Stony Brook University) for antibodies, D. Schmucker (Harvard Medical School) for flies, T. Schwarz (Children's Hospital, Boston) for flies, B. Wakimoto (University of Washington) for flies, L. Zipursky (University of California Los Angeles) for flies, and J. Bischof, K. Basler (University of Zurich) and F. Karch (University of Geneva) for providing germline FC31 sources and information about their use. We thank J. Cohen for help with recombineering, N. Giagtzoglou and A. Rajan for help with microscopy, C. Amemiya and D. Frisch for helpful communications and discussions, and B. Wakimoto for critical reading of the manuscript. Confocal microscopy was supported by the Baylor College of Medicine Intellectual and Developmental Disabilities Research Center. This work was supported by a grant from the Howard Hughes Medical Institute to H. J. B. and the US National Institutes of Health modENCODE project in collaboration with K. P. W. NR 30 TC 164 Z9 165 U1 1 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD JUN PY 2009 VL 6 IS 6 BP 431 EP U46 DI 10.1038/NMETH.1331 PG 6 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 451TO UT WOS:000266493300013 PM 19465919 ER PT J AU Bakajin, O Noy, A AF Bakajin, Olgica Noy, Aleksandr TI Proteins make for finer filters SO NATURE NANOTECHNOLOGY LA English DT News Item ID POLYMER MEMBRANES C1 [Bakajin, Olgica; Noy, Aleksandr] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bakajin, O (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM bakajin1@llnl.gov; noy1@llnl.gov NR 5 TC 4 Z9 5 U1 2 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUN PY 2009 VL 4 IS 6 BP 345 EP 346 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 459TA UT WOS:000267131500007 PM 19498391 ER PT J AU Moore, J AF Moore, Joel TI TOPOLOGICAL INSULATORS The next generation SO NATURE PHYSICS LA English DT News Item C1 [Moore, Joel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, Joel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moore, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jemoore@berkeley.edu RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 10 TC 217 Z9 221 U1 9 U2 76 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD JUN PY 2009 VL 5 IS 6 BP 378 EP 380 DI 10.1038/nphys1294 PG 4 WC Physics, Multidisciplinary SC Physics GA 452MR UT WOS:000266544800006 ER PT J AU Hinks, DG AF Hinks, D. G. TI IRON ARSENIDE SUPERCONDUCTORS What is the glue? SO NATURE PHYSICS LA English DT News Item C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hinks, DG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hinks@anl.gov NR 4 TC 4 Z9 4 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD JUN PY 2009 VL 5 IS 6 BP 386 EP 387 DI 10.1038/nphys1297 PG 2 WC Physics, Multidisciplinary SC Physics GA 452MR UT WOS:000266544800013 ER PT J AU Yin, Q Lin, SC Lamothe, B Lu, M Lo, YC Hura, G Zheng, LX Rich, RL Campos, AD Myszka, DG Lenardo, MJ Darnay, BG Wu, H AF Yin, Qian Lin, Su-Chang Lamothe, Betty Lu, Miao Lo, Yu-Chih Hura, Gregory Zheng, Lixin Rich, Rebecca L. Campos, Alejandro D. Myszka, David G. Lenardo, Michael J. Darnay, Bryant G. Wu, Hao TI E2 interaction and dimerization in the crystal structure of TRAF6 SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID NECROSIS-FACTOR RECEPTOR; NF-KAPPA-B; CONJUGATING ENZYME COMPLEX; RAY SOLUTION SCATTERING; POLYUBIQUITIN CHAIN; BIOLOGICAL MACROMOLECULES; MOLECULAR-MECHANISM; UBIQUITIN LIGASES; RING DOMAIN; U-BOX AB Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-6 mediates Lys63-linked polyubiquitination for NF-kappa B activation via its N-terminal RING and zinc finger domains. Here we report the crystal structures of TRAF6 and its complex with the ubiquitin-conjugating enzyme (E2) Ubc13. The RING and zinc fingers of TRAF6 assume a rigid, elongated structure. Interaction of TRAF6 with Ubc13 involves direct contacts of the RING and the preceding residues, and the first zinc finger has a structural role. Unexpectedly, this region of TRAF6 is dimeric both in the crystal and in solution, different from the trimeric C-terminal TRAF domain. Structure-based mutagenesis reveals that TRAF6 dimerization is crucial for polyubiquitin synthesis and autoubiquitination. Fluorescence resonance energy transfer analysis shows that TRAF6 dimerization induces higher-order oligomerization of full-length TRAF6. The mismatch of dimeric and trimeric symmetry may provide a mode of infinite oligomerization that facilitates ligand-dependent signal transduction of many immune receptors. C1 [Yin, Qian; Lin, Su-Chang; Lu, Miao; Lo, Yu-Chih; Wu, Hao] Cornell Univ, Weill Med Coll, New York, NY 10021 USA. [Yin, Qian; Wu, Hao] Triinst Training Program Chem Biol, New York, NY USA. [Lamothe, Betty; Campos, Alejandro D.; Darnay, Bryant G.] Univ Texas MD Anderson Canc Ctr, Dept Expt Therapeut, Houston, TX 77030 USA. [Hura, Gregory] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zheng, Lixin; Lenardo, Michael J.] NIAID, Immunol Lab, NIH, Bethesda, MD 20892 USA. [Rich, Rebecca L.; Myszka, David G.] Univ Utah, Sch Med, Ctr Biomol Interact Anal, Salt Lake City, UT USA. RP Wu, H (reprint author), Cornell Univ, Weill Med Coll, New York, NY 10021 USA. EM haowu@med.cornell.edu OI Lin, Su-Chang/0000-0003-0687-3139 FU US National Institutes of Health [RO1 AI045937, RO1 AR053540]; US Department of Defense [DE-AC02-05CH11231]; Intramural Research Program; US National Institute of Allergy and Infectious Diseases; Cancer Research Institute; American Heart Association FX We thank T. Min and J. Y. Chung for their earlier work on the project, X. Jiang and X. Wang of the Sloan-Kettering Institute for purified E1, Z. Chen of the University of Texas Southwestern Medical School for the expression constructs of Ubc13 and Uev1A, R. Abramowitz and J. Schwanof of X4A of the National Synchrotron Light Source for data collection and J. Wu for maintaining our X-ray and computer equipment. This work was supported by the US National Institutes of Health (RO1 AI045937 to H. W. and RO1 AR053540 to B. G. D.), the US Department of Defense (DOE Contract DE-AC02-05CH11231 for G. H.), the Intramural Research Program of the US National Institute of Allergy and Infectious Diseases (to L. Z. and M. J. L.) and institutional start-up funds to B. G. D., S.-C. L. and Y.-C. L. from the Cancer Research Institute and to M. L. from the American Heart Association. NR 59 TC 138 Z9 141 U1 2 U2 14 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD JUN PY 2009 VL 16 IS 6 BP 658 EP U97 DI 10.1038/nsmb.1605 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 452YH UT WOS:000266576600015 PM 19465916 ER PT J AU Jain, AK Raut, R Tuli, JK AF Jain, A. K. Raut, R. Tuli, J. K. TI Nuclear Data Sheets for A=225 SO NUCLEAR DATA SHEETS LA English DT Review ID INTRINSIC REFLECTION ASYMMETRY; STABLE OCTUPOLE DEFORMATION; ATOMIC MASS EVALUATION; ALPHA-DECAY; EXOTIC DECAY; HALF-LIVES; CLUSTER RADIOACTIVITY; RADIUM ISOTOPES; CONVERSION COEFFICIENTS; HYPERFINE STRUCTURES AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A=225. C1 [Jain, A. K.] Indian Inst Technol, Dept Phys, Roorkee 247667, Uttar Pradesh, India. [Jain, A. K.; Raut, R.; Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Jain, AK (reprint author), Indian Inst Technol, Dept Phys, Roorkee 247667, Uttar Pradesh, India. FU Office of Nuclear Physics, Office of Science, US Department or Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department or Energy, under contract DE-AC02-98CH10946. NR 111 TC 1 Z9 1 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUN PY 2009 VL 110 IS 6 BP 1409 EP + DI 10.1016/j.nds.2009.04.003 PG 63 WC Physics, Nuclear SC Physics GA 449BG UT WOS:000266305200002 ER PT J AU Zhao, HH Zhang, HB Mousseau, VA Peterson, PF AF Zhao, Haihua Zhang, Hongbin Mousseau, Vincent A. Peterson, Per F. TI Improving SFR economics through innovations from thermal design and analysis aspects SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID COOLED FAST-REACTORS; COMPUTATIONAL FLUID-DYNAMICS; ADJOINT SENSITIVITY-ANALYSIS; HYDRAULIC CODE SYSTEM; BRAYTON CYCLES; POWER CONVERSION; VERIFICATION; CHALLENGES; SAFETY; MODEL AB Achieving economic competitiveness as compared to LWRs and other Generation IV (Gen-IV) reactors is one of the major requirements to attract large-scale investment in commercial sodium cooled fast reactor (SFR) power plants. Advances in R&D for advanced SFR fuel and structural materials provide key long-term opportunities to improve SFR economics. In addition, other new opportunities are emerging to further improve SFR economics. This paper provides an overview on potential ideas from the perspective of thermal hydraulics to improve SFR economics. These include: (1) a new hybrid loop-pool reactor design to further optimize economics, safety, and reliability of SFRs with more flexibility, (2) a multiple-reheat and intercooling helium Brayton cycle to improve plant thermal efficiency and to reduce safety related overnight and operation costs, and (3) modern multi-physics thermal analysis methods to reduce analysis uncertainties and associated requirements for over-conservatism in reactor design. This paper reviews advances in all three areas and their potential beneficial impacts on SFR economics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhao, Haihua; Zhang, Hongbin; Mousseau, Vincent A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Peterson, Per F.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Zhao, HH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Haihua.Zhao@inl.gov FU DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported through INL Laboratory Directed Research and Development program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. The authors would like to thank J. Sackett, P. Planchon, R. Wigeland, R Finck, R. Szilard, and J. Rempe for their thorough review and useful input to improve the quality of this paper. NR 64 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUN PY 2009 VL 239 IS 6 BP 1042 EP 1055 DI 10.1016/j.nucengdes.2009.02.012 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 452EW UT WOS:000266523900007 ER PT J AU Farmer, MT Kilsdonk, DJ Aeschlimann, RW AF Farmer, Mitchell T. Kilsdonk, Dennis J. Aeschlimann, Robert W. TI CORIUM COOLABILITY UNDER EX-VESSEL ACCIDENT CONDITIONS FOR LWRs SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Corium Coolability; Light Water Reactor; Severe Accident ID PENETRATION; WATER; ROCK AB In the wake of the Three Mile Island accident, vigorous research efforts were initiated to acquire a basic knowledge of the progression and consequences of accidents that involve a substantial degree of core degradation and melting. The primary emphasis of this research was placed on containment integrity, with: i) hydrogen combustion-detonation, ii) steam explosion, iii) direct containment heating (DCH), and iv) melt attack on the BWR Mark-I containment shell identified as energetic processes that could lead to early containment failure (i.e., within the first 24 hours of the accident). Should the core melt fail the reactor vessel, then non-condensable gas production from Molten Core-Concrete Interaction (MCCI) was identified as a mechanism that could fail the containment by pressurization over the long term. One signification question that arose as part of this investigation was the effectiveness of water in terminating an MCCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. Successful quenching of the core melt would prevent basemat melt through, as well as continued containment pressurization by non-condensable gas production, and so the accident progression would be successfully terminated without release of radioactivity to the environment. Based on these potential merits, ex-vessel corium coolability has been the focus of extensive research over the last 20 years as a potential accident management strategy for current plants. In addition, outcomes from this research have impacted the accident management strategies for the Gen III+ LWR plant designs that are currently being deployed around the world. This paper provides: i) an historical overview of corium coolability research, ii) summarizes the current status of research in this area, and iii) highlights trends in severe accident management strategies that have evolved based on the findings from this work. C1 [Farmer, Mitchell T.; Kilsdonk, Dennis J.; Aeschlimann, Robert W.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Farmer, MT (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM farmer@anl.gov FU Electric Power Research Institute (EPPI); U.S. NRC, DOE, EPRI; international consortium; Organization for Economic Cooperation and Development (OECD) FX The Argonne work described in this review has been carried out as part of two major experiment programs. The initial MACE program was managed by the Electric Power Research Institute (EPPI) and was supported by the U.S. NRC, DOE, EPRI, and an international consortium. The follow-on OECD/MCCI program is managed by the NRC and is sponsored by a consortium of countries within the yOrganization for Economic Cooperation and Development (OECD). This support is gratefully acknowledged. NR 37 TC 7 Z9 7 U1 1 U2 7 PU KOREAN NUCLEAR SOC PI DAEJEON PA FLOOR 4, NUTOPIA BUILDING, 342-1 JANGDAE-DONG, YUSEONG-GU, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD JUN PY 2009 VL 41 IS 5 BP 575 EP 602 PG 28 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 468LU UT WOS:000267820800002 ER PT J AU Fernandez, JC Honrubia, JJ Albright, BJ Flippo, KA Gautier, DC Hegelich, BM Schmitt, MJ Temporal, M Yin, L AF Fernandez, Juan C. Honrubia, J. J. Albright, Brian J. Flippo, Kirk A. Gautier, D. Cort Hegelich, Bjoern M. Schmitt, Mark J. Temporal, M. Yin, Lin TI Progress and prospects of ion-driven fast ignition SO NUCLEAR FUSION LA English DT Article ID PROTON-BEAMS; LASER-PULSES; TARGETS; PLASMA; ACCELERATION; ELECTRON; DENSITY; FUEL AB Fusion fast ignition (FI) initiated by laser-driven ion beams is a promising concept examined in this paper. FI based on a beam of quasi-monoenergetic ions (protons or heavier ions) has the advantage of a more localized energy deposition, which minimizes the required total beam energy, bringing it close to the approximate to 10 kJ minimum required for fuel densities similar to 500 g cm(-3). High-current, laser-driven ion beams are most promising for this purpose. Because they are born neutralized in picosecond timescales, these beams may deliver the power density required to ignite the compressed DT fuel, similar to 10 kJ/10 ps into a spot 20 mu m in diameter. Our modelling of ion-based FI include high fusion gain targets and a proof of principle experiment. That modelling indicates the concept is feasible, and provides confirmation of our understanding of the operative physics, a firmer foundation for the requirements, and a better understanding of the optimization trade space. An important benefit of the scheme is that such a high-energy, quasi-monoenergetic ignitor beam could be generated far from the capsule (>= 1 cm away), eliminating the need for a reentrant cone in the capsule to protect the ion-generation laser target, a tremendous practical benefit. This paper summarizes the ion-based FI concept, the integrated ion-driven FI modelling, the requirements on the ignitor beam derived from that modelling, and the progress in developing a suitable laser-driven ignitor ion beam. C1 [Fernandez, Juan C.; Albright, Brian J.; Flippo, Kirk A.; Gautier, D. Cort; Hegelich, Bjoern M.; Schmitt, Mark J.; Yin, Lin] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Honrubia, J. J.; Temporal, M.] Univ Politecn Madrid, Madrid, Spain. RP Fernandez, JC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM juanc@lanl.gov RI Temporal, Mauro/A-7569-2012; Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; Honrubia, Javier/L-6337-2014; Flippo, Kirk/C-6872-2009; OI Temporal, Mauro/0000-0002-7290-4602; Fernandez, Juan/0000-0002-1438-1815; Honrubia, Javier/0000-0002-3024-4431; Flippo, Kirk/0000-0002-4752-5141; Albright, Brian/0000-0002-7789-6525; Schmitt, Mark/0000-0002-0197-9180; Yin, Lin/0000-0002-8978-5320 NR 49 TC 74 Z9 74 U1 4 U2 12 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065004 DI 10.1088/0029-5515/49/6/065004 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500008 ER PT J AU Hawryluk, RJ Campbell, DJ Janeschitz, G Thomas, PR Albanese, R Ambrosino, R Bachmann, C Baylor, L Becoulet, M Benfatto, I Bialek, J Boozer, A Brooks, A Budny, R Casper, T Cavinato, M Cordier, JJ Chuyanov, V Doyle, E Evans, T Federici, G Fenstermacher, M Fujieda, H G'al, K Garofalo, A Garzotti, L Gates, D Gribov, Y Heitzenroeder, P Hender, TC Holtkamp, N Humphreys, D Hutchinson, I Ioki, K Johner, J Johnson, G Kamada, Y Kavin, A Kessel, C Khayrutdinov, R Kramer, G Kukushkin, A Lackner, K Landman, I Lang, P Liang, Y Linke, J Lipschultz, B Loarte, A Loesser, GD Lowry, C Luce, T Lukash, V Maruyama, S Mattei, M Menard, J Merola, M Mineev, A Mitchell, N Nardon, E Nazikian, R Nelson, B Neumeyer, C Park, JK Pearce, R Pitts, RA Polevoi, A Portone, A Okabayashi, M Rebut, PH Riccardo, V Roth, J Sabbagh, S Saibene, G Sannazzaro, G Schaffer, M Shimada, M Sen, A Sips, A Skinner, CH Snyder, P Stambaugh, R Strait, E Sugihara, M Tsitrone, E Urano, J Valovic, M Wade, M Wesley, J White, R Whyte, DG Wu, S Wykes, M Zakharov, L AF Hawryluk, R. J. Campbell, D. J. Janeschitz, G. Thomas, P. R. Albanese, R. Ambrosino, R. Bachmann, C. Baylor, L. Becoulet, M. Benfatto, I. Bialek, J. Boozer, A. Brooks, A. Budny, R. Casper, T. Cavinato, M. Cordier, J. -J. Chuyanov, V. Doyle, E. Evans, T. Federici, G. Fenstermacher, M. Fujieda, H. G'al, K. Garofalo, A. Garzotti, L. Gates, D. Gribov, Y. Heitzenroeder, P. Hender, T. C. Holtkamp, N. Humphreys, D. Hutchinson, I. Ioki, K. Johner, J. Johnson, G. Kamada, Y. Kavin, A. Kessel, C. Khayrutdinov, R. Kramer, G. Kukushkin, A. Lackner, K. Landman, I. Lang, P. Liang, Y. Linke, J. Lipschultz, B. Loarte, A. Loesser, G. D. Lowry, C. Luce, T. Lukash, V. Maruyama, S. Mattei, M. Menard, J. Merola, M. Mineev, A. Mitchell, N. Nardon, E. Nazikian, R. Nelson, B. Neumeyer, C. Park, J. -K. Pearce, R. Pitts, R. A. Polevoi, A. Portone, A. Okabayashi, M. Rebut, P. H. Riccardo, V. Roth, J. Sabbagh, S. Saibene, G. Sannazzaro, G. Schaffer, M. Shimada, M. Sen, A. Sips, A. Skinner, C. H. Snyder, P. Stambaugh, R. Strait, E. Sugihara, M. Tsitrone, E. Urano, J. Valovic, M. Wade, M. Wesley, J. White, R. Whyte, D. G. Wu, S. Wykes, M. Zakharov, L. TI Principal physics developments evaluated in the ITER design review SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 22nd IAEA Fusion Energy Conference CY OCT 13-18, 2008 CL Govt Switzerland, Geneva, SWITZERLAND SP Int Atom Energy Agcy HO Govt Switzerland ID SCRAPE-OFF LAYER; ALCATOR C-MOD; PLASMA; TRANSPORT; JET; CONFINEMENT; OPERATION; TOKAMAK; LOSSES; TCV AB As part of the ITER Design Review and in response to the issues identified by the Science and Technology Advisory Committee, the ITER physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, material choice and heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation. C1 [Hawryluk, R. J.; Brooks, A.; Budny, R.; Heitzenroeder, P.; Kessel, C.; Kramer, G.; Loesser, G. D.; Menard, J.; Nazikian, R.; Neumeyer, C.; Park, J. -K.; Okabayashi, M.; Skinner, C. H.; White, R.; Zakharov, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Campbell, D. J.; Janeschitz, G.; Bachmann, C.; Benfatto, I.; Cavinato, M.; Cordier, J. -J.; Chuyanov, V.; Gribov, Y.; Holtkamp, N.; Ioki, K.; Johnson, G.; Kukushkin, A.; Loarte, A.; Lowry, C.; Maruyama, S.; Merola, M.; Mitchell, N.; Pearce, R.; Pitts, R. A.; Polevoi, A.; Rebut, P. H.; Sannazzaro, G.; Shimada, M.; Sugihara, M.; Wu, S.; Wykes, M.] ITER Org, CS 90 046, F-13067 St Paul Les Durance, France. [Albanese, R.; Ambrosino, R.] Univ Naples Federico 2, EURATOM Assoc, ENEA, CREATE, I-80125 Naples, Italy. [Baylor, L.; Nelson, B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Becoulet, M.; Johner, J.; Tsitrone, E.] CEA Cadarache, EURATOM Assoc, F-13108 St Paul Les Durance, France. [Bialek, J.; Boozer, A.; Sabbagh, S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Casper, T.; Fenstermacher, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Doyle, E.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. [Doyle, E.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90024 USA. [Evans, T.; Garofalo, A.; Humphreys, D.; Luce, T.; Schaffer, M.; Snyder, P.; Stambaugh, R.; Strait, E.; Wade, M.; Wesley, J.] Gen Atom Co, San Diego, CA 92186 USA. [Federici, G.] European Fus Dev Agreement Close Support Unit Gar, D-85748 Garching, Germany. [Fujieda, H.; Kamada, Y.; Urano, J.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [G'al, K.] EURATOM, KFKI RMKI, H-1525 Budapest, Hungary. [Garzotti, L.; Hender, T. C.; Lang, P.; Nardon, E.; Riccardo, V.; Valovic, M.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Hutchinson, I.; Whyte, D. G.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Kavin, A.; Mineev, A.] DV Efremov Sci Res Inst Electrophys Apparat, St Petersburg 196641, Russia. [Khayrutdinov, R.] Troitsk Inst Innovat & Fus Res, Troitsk, Russia. [Lackner, K.; Roth, J.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Landman, I.] Forschungszentrum Karlsruhe, Inst Pulsed Power & Microwave Technol, D-76021 Karlsruhe, Germany. [Liang, Y.; Linke, J.] Forschungszentrum Julich, EURATOM Assoc, FZ Julich,Inst Plasmaphys, D-52425 Julich, Germany. [Mattei, M.] Univ Mediterranea, EURATOM Assoc, ENEA, CREATE, I-89060 Loc Feo Di Vito, RC, Italy. [Sen, A.] Inst Plasma Res, Gandhinagar, India. RP Hawryluk, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hutchinson, Ian/D-1136-2009; Sabbagh, Steven/C-7142-2011; Lipschultz, Bruce/J-7726-2012; White, Roscoe/D-1773-2013; Lang, Peter/H-2507-2013; Mineev, Anatoly/G-7255-2015; Albanese, Raffaele/B-5394-2016; OI Hutchinson, Ian/0000-0003-4276-6576; Menard, Jonathan/0000-0003-1292-3286; Lipschultz, Bruce/0000-0001-5968-3684; White, Roscoe/0000-0002-4239-2685; Lang, Peter/0000-0003-1586-8518; Mineev, Anatoly/0000-0002-3162-7901; Albanese, Raffaele/0000-0003-4586-8068; ambrosino, roberto/0000-0001-8799-5837; Baylor, Larry/0000-0002-0325-7771; riccardo, valeria/0000-0003-2535-5257; Mattei, Massimiliano/0000-0001-7951-6584 NR 99 TC 109 Z9 109 U1 6 U2 39 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065012 DI 10.1088/0029-5515/49/6/065012 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500016 ER PT J AU Hole, MJ Mills, R Hudson, SR Dewar, RL AF Hole, M. J. Mills, R. Hudson, S. R. Dewar, R. L. TI Relaxed MHD states of a multiple region plasma SO NUCLEAR FUSION LA English DT Article ID SELF-ORGANIZATION; MAGNETIC-FIELDS; TEARING MODE; EQUILIBRIA; RELAXATION; PRINCIPLES; STABILITY; PINCH AB We calculate the stability of a multiple relaxation region MHD (MRXMHD) plasma, or stepped-Beltrami plasma, using both variational and tearing mode treatments. The configuration studied is a periodic cylinder. In the variational treatment, the problem reduces to an eigenvalue problem for the interface displacements. For the tearing mode treatment, analytic expressions for the tearing mode stability parameter Delta', being the jump in the logarithmic derivative in the helical flux across the resonant surface, are found. The stability of these treatments is compared for m = 1 displacements of an illustrative reverse field pinch-like configuration, comprising two distinct plasma regions. For pressureless configurations, we find the marginal stability conclusions of each treatment to be identical, confirming the analytical results in the literature. The tearing mode treatment also resolves ideal MHD unstable solutions for which Delta' -> infinity: these correspond to displacement of a resonant interface. Wall stabilization scans resolve the internal and external ideal kink. Scans with increasing pressure are also performed: these indicate that both variational and tearing mode treatments have the same stability trends with beta, and show destabilization in configurations with increasing core pressure. Combined, our results suggest that variational stability of MRXMHD configurations is sufficient for both ideal and tearing (Delta' < 0) stability. Such configurations, and their stability properties, are of emerging importance in the quest to find mathematically rigorous solutions of ideal MHD force balance in 3D geometry. C1 [Hole, M. J.; Mills, R.; Dewar, R. L.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Hudson, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hole, MJ (reprint author), Australian Natl Univ, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM matthew.hole@anu.edu.au RI Hudson, Stuart/H-7186-2013; Dewar, Robert/B-1300-2008 OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 FU Australian Research Council [DP0452728] FX The authors would like to acknowledge the support of the Australian Research Council, through grant DP0452728. NR 19 TC 8 Z9 8 U1 0 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065019 DI 10.1088/0029-5515/49/6/065019 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500023 ER PT J AU Kashiwagi, M Taniguchi, M Dairaku, M de Esch, HPL Grisham, LR Svensson, L Tobari, H Umeda, N Watanabe, K Sakamoto, K Inoue, T AF Kashiwagi, M. Taniguchi, M. Dairaku, M. de Esch, H. P. L. Grisham, L. R. Svensson, L. Tobari, H. Umeda, N. Watanabe, K. Sakamoto, K. Inoue, T. TI R&D progress of the high power negative ion accelerator for the ITER NB system at JAEA SO NUCLEAR FUSION LA English DT Article ID APERTURE DISPLACEMENT; DESIGN; JT-60U AB At JAEA, as the Japan Domestic Agency (JADA) for ITER, a MAMuG (multi-aperture multi-grid) accelerator has been developed to perform the required R&D for the ITER neutral beam (NB) system. As a result of countermeasures to handle excess heat load to the ion source by backstreaming positive ions, H-ion beam current was increased to 0.32A (the ion current density of 140 A m(-2)) at a beam energy of 796 keV. This high power beam acceleration simulated the ITER operation condition maintaining the perveance (H(-) ion current density/beam energy(3/2)) of the ITER accelerator. After the high power beam operation, the pulse length was successfully extended from 0.2 to 5 s at 550 keV, which yielded a 131 mA H(-) ion beam as an initial test of the long pulse operation. A test of a single-aperture single-gap (SINGAP) accelerator was performed at JAEA under an ITER R&D task agreement. The objective of this test was to compare two different accelerator concepts (SINGAP and MAMuG) at the same test facility. As a result, the MAMuG accelerator was defined as the baseline design for ITER, due to advantages in its better voltage holding and less electron acceleration. In three-dimensional beam trajectory analyses, the aperture offset at the bottom of the extractor was found to be effective for compensation of beamlet deflection due to their own space charge. It has been analytically demonstrated that these compensated beamlets can be focused at a focal point by adopting the aperture offset at the final grid of the accelerator. C1 [Kashiwagi, M.; Taniguchi, M.; Dairaku, M.; Tobari, H.; Umeda, N.; Watanabe, K.; Sakamoto, K.; Inoue, T.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [de Esch, H. P. L.; Svensson, L.] CEA Cadarache, F-13108 St Paul Les Durance, France. [Grisham, L. R.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kashiwagi, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan. EM kashiwagi.mieko@jaea.go.jp NR 29 TC 17 Z9 17 U1 0 U2 0 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065008 DI 10.1088/0029-5515/49/6/065008 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500012 ER PT J AU Murakami, M Park, JM Petty, CC Luce, TC Heidbrink, WW Osborne, TH Prater, R Wade, MR Anderson, PM Austin, ME Brooks, NH Budny, RV Challis, CD DeBoo, JC deGrassie, JS Ferron, JR Gohil, P Hobirk, J Holcomb, CT Hollmann, EM Hong, RM Hyatt, AW Lohr, J Lanctot, MJ Makowski, MA McCune, DC Politzer, PA Scoville, JT St John, HE Suzuki, T Taylor, TS West, WP Unterberg, EA Van Zeeland, MA Yu, JH AF Murakami, M. Park, J. M. Petty, C. C. Luce, T. C. Heidbrink, W. W. Osborne, T. H. Prater, R. Wade, M. R. Anderson, P. M. Austin, M. E. Brooks, N. H. Budny, R. V. Challis, C. D. DeBoo, J. C. deGrassie, J. S. Ferron, J. R. Gohil, P. Hobirk, J. Holcomb, C. T. Hollmann, E. M. Hong, R. M. Hyatt, A. W. Lohr, J. Lanctot, M. J. Makowski, M. A. McCune, D. C. Politzer, P. A. Scoville, J. T. St John, H. E. Suzuki, T. Taylor, T. S. West, W. P. Unterberg, E. A. Van Zeeland, M. A. Yu, J. H. TI Off-axis neutral beam current drive for advanced scenario development in DIII-D SO NUCLEAR FUSION LA English DT Article ID D TOKAMAK; OPERATION; PLASMA AB Modification of the two existing DIII-D neutral beamlines is planned to allow vertical steering to provide off-axis neutral beam current drive (NBCD) peaked as far off-axis as half the plasma minor radius. New calculations for a downward-steered beam indicate strong current drive with good localization off-axis so long as the toroidal magnetic field, B(T), and the plasma current, I(p), point in the same direction. This is due to good alignment of neutral beam injection (NBI) with the local pitch of the magnetic field lines. This model has been tested experimentally on DIII-D by injecting equatorially mounted NBs into reduced size plasmas that are vertically displaced with respect to the vessel midplane. The existence of off-axis NBCD is evident in the changes seen in sawtooth behaviour in the internal inductance. By shifting the plasma upwards or downwards, or by changing the sign of the toroidal field, off-axis NBCD profiles measured with motional Stark effect data and internal loop voltage show a difference in amplitude (40-45%) consistent with differences predicted by the changed NBI alignment with respect to the helicity of the magnetic field lines. The effects of NBI direction relative to field line helicity can be large even in ITER: off-axis NBCD can be increased by more than 30% if the B(T) direction is reversed. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as provide flexible scientific tools for understanding transport, energetic particles and heating and current drive. C1 [Murakami, M.; Park, J. M.; Anderson, P. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Petty, C. C.; Luce, T. C.; Osborne, T. H.; Prater, R.; Wade, M. R.; Brooks, N. H.; DeBoo, J. C.; deGrassie, J. S.; Ferron, J. R.; Gohil, P.; Hong, R. M.; Hyatt, A. W.; Lohr, J.; Politzer, P. A.; Scoville, J. T.; St John, H. E.; Taylor, T. S.; West, W. P.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Austin, M. E.] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA. [Budny, R. V.; McCune, D. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Challis, C. D.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Hobirk, J.] IPP EURATOM Assoc, Max Planck Inst Plasmaphys, Garching, Germany. [Holcomb, C. T.; Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hollmann, E. M.; Yu, J. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Lanctot, M. J.] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. [Suzuki, T.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Unterberg, E. A.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. RP Murakami, M (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM murakami@fusion.gat.com RI Unterberg, Ezekial/F-5240-2016; Lanctot, Matthew J/O-4979-2016 OI Unterberg, Ezekial/0000-0003-1353-8865; Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy [DE-AC05-00OR22727, DE-FC02-04ER54698, SC-G903402, DE-FG03-97ER54415, DE-AC02-76CH03073, DE-AC52-07NA27344, DE-FG02-07ER54917, DE-FG02-89ER53297, DE-AC05-06OR23100] FX This work was supported by the US Department of Energy under DE-AC05-00OR22727, DE-FC02-04ER54698, SC-G903402, DE-FG03-97ER54415, DE-AC02-76CH03073, DE-AC52-07NA27344, DE-FG02-07ER54917, DE-FG02-89ER53297 and DE-AC05-06OR23100. The authors acknowledge useful discussions with Drs D. N. Hill, A. G. Kellman and T. Oikawa. Some of the modelling was carried out using Grid-enabled TRANSP on the National Fusion Grid, and they would like to thank the National Fusion Collaboratory Project (www.fusiongrid.org) sponsored by the US DOE SciDAC Program. NR 27 TC 26 Z9 26 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065031 DI 10.1088/0029-5515/49/6/065031 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500035 ER PT J AU Petrie, TW Porter, GD Brooks, NH Fenstermacher, ME Ferron, JR Groth, M Hyatt, AW La Haye, RJ Lasnier, CJ Leonard, AW Luce, TC Politzer, PA Rensink, ME Schaffer, MJ Wade, MR Watkins, JG West, WP AF Petrie, T. W. Porter, G. D. Brooks, N. H. Fenstermacher, M. E. Ferron, J. R. Groth, M. Hyatt, A. W. La Haye, R. J. Lasnier, C. J. Leonard, A. W. Luce, T. C. Politzer, P. A. Rensink, M. E. Schaffer, M. J. Wade, M. R. Watkins, J. G. West, W. P. TI Impurity behaviour under puff-and-pump radiating divertor conditions SO NUCLEAR FUSION LA English DT Article ID SCRAPE-OFF LAYER; DIII-D; MAGNETIC BALANCE; PLASMAS; EDGE; PERFORMANCE; ENRICHMENT AB The effectiveness of the puff-and-pump technique to enrich a seeded impurity in the divertor relative to the core and, thereby, to maximize radiation in the divertor depends sensitively on both the magnetic geometry and the ion B x del B drift direction. In the puff-and-pump scenario used here, argon impurities injected into the private flux region are inhibited from accumulation in the core plasma by enhanced plasma flows to the divertor created by a combination of deuterium gas puffing upstream of the divertor targets and particle pumping near the divertor targets. Modelling of single-null, H-mode plasmas with the UEDGE fluid transport code indicates that particle drifts in the scrape-off layer and divertor strongly affect the locations where the argon seed impurity accumulates. It is also found in double-null cases that argon always shows a larger accumulation in the divertor out of which the ion B x del B drift is directed, regardless of the divertor into which the argon is injected. Experiments have shown that the degree to which the deuterium gas-puffing rate inhibits the escape of the seed impurity from the divertor(s) depends critically on the direction of the ion B x del B drift and on whether the plasma is single-null or double-null. The transition in behaviour from double-null to single-null character during puff-and-pump occurs for vertical bar dR(sep)vertical bar = 0.4 cm when the ion B x del B drift was pointing away from the dominant divertor. The lowest argon density buildup in the main plasma of any of the configurations studied during puff-and-pump was achieved in single-null plasmas with the ion B x del B drift direction away from the divertor. C1 [Petrie, T. W.; Brooks, N. H.; Ferron, J. R.; Hyatt, A. W.; La Haye, R. J.; Leonard, A. W.; Luce, T. C.; Politzer, P. A.; Schaffer, M. J.; Wade, M. R.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Porter, G. D.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Rensink, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petrie, TW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM petrie@fusion.gat.com RI Groth, Mathias/G-2227-2013 FU US Department of Energy [DE-FC02-04ER54698] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698. NR 19 TC 16 Z9 16 U1 2 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065013 DI 10.1088/0029-5515/49/6/065013 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500017 ER PT J AU Raman, R Jarboe, TR Mueller, D Nelson, BA Bell, MG Bell, R Gates, D Gerhardt, S Hosea, J Kaita, R Kugel, H LeBlanc, B Maingi, R Maqueda, R Menard, J Nagata, M Ono, M Paul, S Roquemore, L Sabbagh, S Soukhanovskii, V Taylor, G AF Raman, R. Jarboe, T. R. Mueller, D. Nelson, B. A. Bell, M. G. Bell, R. Gates, D. Gerhardt, S. Hosea, J. Kaita, R. Kugel, H. LeBlanc, B. Maingi, R. Maqueda, R. Menard, J. Nagata, M. Ono, M. Paul, S. Roquemore, L. Sabbagh, S. Soukhanovskii, V. Taylor, G. TI Solenoid-free plasma startup in NSTX using transient CHI SO NUCLEAR FUSION LA English DT Article ID SPHERICAL TORUS EXPERIMENT; TOKAMAK AB Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to > 700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. C1 [Raman, R.; Jarboe, T. R.; Nelson, B. A.] Univ Washington, Seattle, WA 98195 USA. [Mueller, D.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Maqueda, R.] Nova Photon, Princeton, NJ USA. [Nagata, M.] Univ Hyogo, Himeji, Hyogo, Japan. [Sabbagh, S.] Columbia Univ, New York, NY USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, NJ USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. EM raman@aa.washington.edu RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 FU US DOE [FG03-96ER5436, DE-FG03-99ER54519, DE-AC02-76CH03073] FX We acknowledge the support of the NSTX team for operation of the machine systems and diagnostics. Special thanks are due to E. Fredd, R. Hatcher, S. Ramakrishnan, C. Neumeyer for support with CHI related systems, and to Dr N. Nishino of Hiroshima University for providing a fast camera that was used in some of the experiments. The fast camera images in this paper are from a fast camera provided by Nova Photonics, Inc. This work is supported by US DOE contract numbers FG03-96ER5436, DE-FG03-99ER54519 and DE-AC02-76CH03073. NR 8 TC 15 Z9 15 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065006 DI 10.1088/0029-5515/49/6/065006 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500010 ER PT J AU Van Zeeland, MA Heidbrink, WW Nazikian, R Austin, ME Cheng, CZ Chu, MS Gorelenkov, NN Holcomb, CT Hyatt, AW Kramer, GJ Lohr, J Mckee, GR Petty, CC Prater, R Solomon, WM Spong, DA AF Van Zeeland, M. A. Heidbrink, W. W. Nazikian, R. Austin, M. E. Cheng, C. Z. Chu, M. S. Gorelenkov, N. N. Holcomb, C. T. Hyatt, A. W. Kramer, G. J. Lohr, J. McKee, G. R. Petty, C. C. Prater, R. Solomon, W. M. Spong, D. A. TI Measurements, modelling and electron cyclotron heating modification of Alfven eigenmode activity in DIII-D SO NUCLEAR FUSION LA English DT Article ID NONLINEAR EVOLUTION; GYROFLUID MODEL; PLASMAS; TOKAMAK; SIMULATION; PARAMETERS; EXCITATION; JET AB Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity and ellipticity induced Alfven eigenmodes (TAE/EAE, respectively) and reversed shear Alfven eigenmodes (RSAE) as well as their spatial coupling. These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. It is found that ideal MHD modelling of eigenmode spectral evolution, coupling and structure are in excellent agreement with experimental measurements. It is also found that higher radial envelope harmonic RSAEs are clearly observed and agree with modelling. Some discrepancies with modelling such as that due to up/down eigenmode asymmetries are also pointed out. Concomitant with the Alfvenic activity, fast ion (FIDA) spectroscopy shows large reductions in the central fast ion profile, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. The sensitivity of this effect to deposition power and current drive phasing as well as ECH modulation are presented. C1 [Van Zeeland, M. A.; Chu, M. S.; Hyatt, A. W.; Lohr, J.; Petty, C. C.; Prater, R.] Gen Atom Co, San Diego, CA 92186 USA. [Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Nazikian, R.; Gorelenkov, N. N.; Kramer, G. J.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Austin, M. E.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Cheng, C. Z.] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA USA. [McKee, G. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM vanzeeland@fusion.gat.com RI Spong, Donald/C-6887-2012; Cheng, Chio/K-1005-2014; OI Spong, Donald/0000-0003-2370-1873; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FC02-04ER54698, SC-G903402, DE-ACC0276CH03073, DE-FG03-07ER54415, DE-AC52-07NA27344, DE-FG02-89ER53296, DE-AC05-00OR22725] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698, SC-G903402, DE-ACC0276CH03073, DE-FG03-07ER54415, DE-AC52-07NA27344, DE-FG02-89ER53296 and DE-AC05-00OR22725. NR 38 TC 29 Z9 29 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065003 DI 10.1088/0029-5515/49/6/065003 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500007 ER PT J AU Weller, A Watanabe, KY Sakakibara, S Dinklage, A Funaba, H Geiger, J Harris, JH Ohdachi, S Preuss, R Suzuki, Y Werner, A Yamada, H Zarnstorff, MC AF Weller, A. Watanabe, K. Y. Sakakibara, S. Dinklage, A. Funaba, H. Geiger, J. Harris, J. H. Ohdachi, S. Preuss, R. Suzuki, Y. Werner, A. Yamada, H. Zarnstorff, M. C. CA W7-X Team LHD Expt Grp TI International Stellarator/Heliotron Database progress on high-beta confinement and operational boundaries SO NUCLEAR FUSION LA English DT Article ID LARGE HELICAL DEVICE; ENERGY CONFINEMENT; PLASMA-CONFINEMENT; W7-AS STELLARATOR; DENSITY LIMIT; MHD; LHD; EQUILIBRIA; TRANSPORT; DIVERTOR AB The International Stellarator/Heliotron Confinement Database was extended by high-beta data compiled from the Large Helical System (LHD) and the W7-AS Stellarator. The main purpose is to enhance the basis for extrapolation of the global confinement properties to the reactor regime. The high-beta configurations and experimental achievements in both devices are briefly described. The impact of beta on the configuration parameters and the global confinement is discussed. In particular, the confinement data in the high-beta regime are compared with the ISS95 and ISS04 scaling laws which were derived from a database including relatively few high-beta cases. In addition, a Bayesian model comparison approach is used to test scaling predictions derived from basic confinement models. Unlike in tokamaks, the operational boundaries in stellarators and helical systems are determined by the available heating power and confinement properties rather than by disruptive stability or density limits. The role of a pressure induced equilibrium limit is discussed in particular. An attempt is made to compare the high-beta data with tokamak confinement and with operational boundaries observed in tokamaks. Further extensions of the database by parameters characterizing stability and local transport properties are proposed. C1 [Weller, A.; Dinklage, A.; Geiger, J.; Preuss, R.; Werner, A.; W7-X Team] IPP EURATOM Assoc, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany. [Watanabe, K. Y.; Sakakibara, S.; Funaba, H.; Ohdachi, S.; Suzuki, Y.; Yamada, H.; LHD Expt Grp] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Harris, J. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zarnstorff, M. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Weller, A (reprint author), IPP EURATOM Assoc, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany. EM arthur.weller@ipp.mpg.de RI Sakakibara, Satoru/E-7542-2013 OI Sakakibara, Satoru/0000-0002-3306-0531 NR 52 TC 12 Z9 12 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065016 DI 10.1088/0029-5515/49/6/065016 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500020 ER PT J AU Xu, XQ Belli, E Bodi, K Candy, J Chang, CS Cohen, RH Colella, P Dimits, AM Dorr, MR Gao, Z Hittinger, JA Ko, S Krasheninnikov, S McKee, GR Nevins, WM Rognlien, TD Snyder, PB Suh, J Umansky, MV AF Xu, X. Q. Belli, E. Bodi, K. Candy, J. Chang, C. S. Cohen, R. H. Colella, P. Dimits, A. M. Dorr, M. R. Gao, Z. Hittinger, J. A. Ko, S. Krasheninnikov, S. McKee, G. R. Nevins, W. M. Rognlien, T. D. Snyder, P. B. Suh, J. Umansky, M. V. TI Dynamics of kinetic geodesic-acoustic modes and the radial electric field in tokamak neoclassical plasmas SO NUCLEAR FUSION LA English DT Article ID POLOIDAL ROTATION; TRANSPORT; RELAXATION; SYSTEMS; REGIME; FLOWS AB We present edge gyrokinetic simulations of tokamak plasmas using the fully non-linear (full-f) continuum code TEMPEST. A non-linear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson equation. We demonstrate the following. (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high q (tokamak safety factor), and are necessary to explain the damping observed in our TEMPEST q-scans and consistent with the experimental measurements of the scaling of the GAM amplitude with edge q95 in the absence of obvious evidence that there is a strong q-dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and parallel flow characteristics qualitatively like those observed in experiments. C1 [Xu, X. Q.; Cohen, R. H.; Dimits, A. M.; Dorr, M. R.; Hittinger, J. A.; Nevins, W. M.; Rognlien, T. D.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Belli, E.; Candy, J.; Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Bodi, K.; Krasheninnikov, S.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Chang, C. S.] NYU, Courant Inst Math Sci, New York, NY 10012 USA. [Colella, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Gao, Z.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Chang, C. S.; Ko, S.; Suh, J.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM xxu@llnl.gov FU US. Department of Energy [DE-AC52-07NA27344, DE-FG02-04ER54739, DE-FG0395ER54309] FX We thank Drs A. J. Brizard, L. Chen, B. I. Cohen, T. S. Hahm, R. D. Hazeltine, F. L. Hinton, G. Hammet, H. Qin, E. J. Synakowski, R. E. Waltz, W. X. Wang, Z. Xiong, C. X. Yu and F. Zonca for fruitful physics discussions. This work was done for the US. Department of Energy by LLNL under Contract DE-AC52-07NA27344, Grant No DE-FG02-04ER54739 at UCSD, and Grant DE-FG0395ER54309 at General Atomics. NR 37 TC 12 Z9 12 U1 0 U2 13 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2009 VL 49 IS 6 AR 065023 DI 10.1088/0029-5515/49/6/065023 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451ZD UT WOS:000266508500027 ER PT J AU Aune, S Brauninger, H Dafni, T Fanourakis, G Ribas, EF Lacarra, JG Geralis, T Giomataris, I Iguaz, F Irastorza, IG Kousouris, K Morales, J Mols, JP Papaevangelou, T Pivovaroff, M Ruz, J Soufli, R Tomas, A Zachariadou, K AF Aune, S. Braeuninger, H. Dafni, T. Fanourakis, G. Ribas, E. Ferrer Lacarra, J. Galan Geralis, T. Giomataris, I. Iguaz, F. Irastorza, I. G. Kousouris, K. Morales, J. Mols, J. P. Papaevangelou, T. Pivovaroff, M. Ruz, J. Soufli, R. Tomas, A. Zachariadou, K. TI New Micromegas detectors in the CAST experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 8th International Conference on Position Sensitive Detectors CY SEP 01-05, 2008 CL Univ Glasgow, Glasgow, SCOTLAND HO Univ Glasgow DE CAST; Micromegas; Gaseous detector; X-ray; Photon; Detector AB A low background Micromegas detector was operating at the sunrise side of the CERN Axion Solar Telescope (CAST) experiment during the previous data taking periods (2002-2006). This detector, constructed of low radioactivity materials, operated efficiently and achieved a background level, 5 x 10(-5) keV(-1) cm(-2) s(-1), in the 2-7 keV region. This performance was accomplished by exploiting the spatial and energy resolution of the detector as well as the time information contained in the pulse shape of the events. During the second phase of the experiment, the detector at the sunrise was replaced and upgraded by including a shielding. Moreover, the old time projection chamber TPC covering the sunset side of the experiment was replaced by two new Micromegas detectors. These detectors belong to the newest generation of Micromegas detectors: 'bulk' and 'microbulk'. Performances and advantages will be presented. (C) 2009 Elsevier B.V. All rights reserved. C1 [Aune, S.; Ribas, E. Ferrer; Giomataris, I.; Papaevangelou, T.] Ctr Etud Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. [Pivovaroff, M.; Soufli, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Fanourakis, G.; Geralis, T.; Kousouris, K.; Mols, J. P.; Zachariadou, K.] NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. [Braeuninger, H.] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. EM javier.galan.lacarra@cern.ch RI Irastorza, Igor/B-2085-2012; Dafni, Theopisti /J-9646-2012; Pivovaroff, Michael/M-7998-2014; Papaevangelou, Thomas/G-2482-2016 OI Irastorza, Igor/0000-0003-1163-1687; Iguaz Gutierrez, Francisco Jose/0000-0001-6327-9369; Dafni, Theopisti /0000-0002-8921-910X; Pivovaroff, Michael/0000-0001-6780-6816; Papaevangelou, Thomas/0000-0003-2829-9158 NR 6 TC 13 Z9 14 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 1 PY 2009 VL 604 IS 1-2 BP 15 EP 19 DI 10.1016/j.nima.2009.01.210 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 463CI UT WOS:000267405700006 ER PT J AU Luukka, P Harkonen, J Maenpaa, T Betchart, B Czellar, S Demina, R Furgeri, A Gotra, Y Frey, M Hartmann, F Korjenevski, S Kortelainen, MJ Lampen, T Ledermann, B Lemaitre, V Liamsuwan, T Militaru, O Moilanen, H Simonis, HJ Spiegel, L Tuominen, E Tuominiemi, J Tuovinen, E AF Luukka, P. Harkonen, J. Maenpaa, T. Betchart, B. Czellar, S. Demina, R. Furgeri, A. Gotra, Y. Frey, M. Hartmann, F. Korjenevski, S. Kortelainen, M. J. Lampen, T. Ledermann, B. Lemaitre, V. Liamsuwan, T. Militaru, O. Moilanen, H. Simonis, H. J. Spiegel, L. Tuominen, E. Tuominiemi, J. Tuovinen, E. TI TCT and test beam results of irradiated magnetic Czochralski silicon (MCz-Si) detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 8th International Conference on Position Sensitive Detectors CY SEP 01-05, 2008 CL Univ Glasgow, Glasgow, SCOTLAND HO Univ Glasgow DE Magnetic Czochralski silicon; Double junction; Beam test; Transient current technique ID TRANSIENT CURRENT TECHNIQUE AB Pad and strip detectors processed on high resistivity n-type magnetic Czochralski silicon (MCz-Si) were irradiated to several different fluences with protons. The pad detectors were characterized with the transient current technique (TCT) and the full-size strip detectors with a reference beam telescope and a 225 GeV muon beam. The TCT measurements indicate a double junction structure and space charge sign inversion in MCz-Si detectors after 6 x 10(14) 1 MeV n(eq)/cm(2) fluence. In the beam test a signal-to-noise (S/N) ratio of 50 was measured for a non-irradiated MCz-Si sensor, and a SIN ratio of 20 for the sensors irradiated to the fluences of 1 x 10(14) 1 and 5 x 10(14) 1 MeV n(eq)/cm(2). (C) 2009 Elsevier B.V. All rights reserved. C1 [Luukka, P.; Harkonen, J.; Maenpaa, T.; Czellar, S.; Kortelainen, M. J.; Lampen, T.; Moilanen, H.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.] Helsinki Inst Phys, Helsinki, Finland. [Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Furgeri, A.; Frey, M.; Hartmann, F.; Ledermann, B.; Liamsuwan, T.; Simonis, H. J.] Univ Karlsruhe TH, Inst Expt Kernphys, Karlsruhe, Germany. [Lemaitre, V.; Militaru, O.] Univ Catholique Louvain, B-1348 Louvain, Belgium. [Spiegel, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Luukka, P (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM panja.luukka@cern.ch RI Tuominen, Eija/A-5288-2017; OI Tuominen, Eija/0000-0002-7073-7767; Luukka, Panja/0000-0003-2340-4641 NR 17 TC 7 Z9 7 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 1 PY 2009 VL 604 IS 1-2 BP 254 EP 257 DI 10.1016/j.nima.2009.01.071 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 463CI UT WOS:000267405700069 ER PT J AU Golling, T AF Golling, Tobias CA ATLAS Pixel Collaboration TI Commissioning of the ATLAS pixel detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 8th International Conference on Position Sensitive Detectors CY SEP 01-05, 2008 CL Univ Glasgow, Glasgow, SCOTLAND HO Univ Glasgow DE Tracking and position-sensitive detectors; LHC; ATLAS; Pixel AB The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented. Published by Elsevier B.V. C1 [Golling, Tobias; ATLAS Pixel Collaboration] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Golling, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Tobias.Golling@cern.ch NR 5 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 1 PY 2009 VL 604 IS 1-2 BP 293 EP 296 DI 10.1016/j.nima.2009.01.108 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 463CI UT WOS:000267405700079 ER PT J AU Chin, MPW Seweryniak, D Alkhorayef, M Spyrou, NM AF Chin, M. P. W. Seweryniak, D. Alkhorayef, M. Spyrou, N. M. TI Variation of 3 gamma-to-2 gamma ratio from F-18 in haematological components measured using the GAMMASPHERE SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 8th International Conference on Position Sensitive Detectors CY SEP 01-05, 2008 CL Univ Glasgow, Glasgow, SCOTLAND HO Univ Glasgow DE Three-quanta annihilation; Positronium quenching; GAMMASPHERE; Positron emission tomography (PET) ID POSITRON-ANNIHILATION; DECAY; GASES AB The potential of incorporating three-quanta annihilation into positron emission tomography (PET) to detect local tissue chemistry was investigated using the GAMMASPHERE facility, which features a spherical array of 110 Compton-suppressed high-purity germanium (HPGe) detectors. Fluoro-2-deoxyglucose (FDG) containing F-18 was introduced into 11 samples of haemolysed blood, serum, cell concentrate and whole blood, some of which had been either oxygenated or deoxygenated. The relative three-quanta yield was estimated from the reduced Counts in the full-energy photopeak at 511 keV. Compton-suppression produced larger effects in the calculations than time-gating, suggesting its importance for this method of estimation. The relative three-quanta yields were found to vary as much as 11% between the samples. This level of sensitivity to different biological samples commends three-quanta annihilation for molecular imaging. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chin, M. P. W.; Alkhorayef, M.; Spyrou, N. M.] Univ Surrey, Dept Phys, Ctr Nucl & Radiat Phys, Guildford GU2 7XH, Surrey, England. [Seweryniak, D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Spyrou, NM (reprint author), Univ Surrey, Dept Phys, Ctr Nucl & Radiat Phys, Guildford GU2 7XH, Surrey, England. EM n.spyrou@surrey.ac.uk RI Chin, Mary Pik Wai/B-6644-2012 OI Chin, Mary Pik Wai/0000-0001-5176-9723 NR 21 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 1 PY 2009 VL 604 IS 1-2 BP 331 EP 334 DI 10.1016/j.nima.2009.01.172 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 463CI UT WOS:000267405700089 ER PT J AU Battaglia, M Bisello, D Contarato, D Denes, P Giubilato, P Glesener, L Mattiazzo, S Vu, C AF Battaglia, Marco Bisello, Dario Contarato, Devis Denes, Peter Giubilato, Piero Glesener, Lindsay Mattiazzo, Serena Vu, Chinh TI Monolithic pixel sensors in deep-submicron SOI technology with analog and digital pixels SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 8th International Conference on Position Sensitive Detectors CY SEP 01-05, 2008 CL Univ Glasgow, Glasgow, SCOTLAND HO Univ Glasgow DE Monolithic pixel sensor; SOI; CMOS technology; Particle detection ID DETECTORS; TRACKING; BEAM AB This paper presents the design and test results of a prototype monolithic pixel sensor manufactured in deep-submicron fully depleted Silicon-On-Insulator (SOI) CMOS technology. In the Sol technology, a thin layer of integrated electronics is insulated from a (high-resistivity) silicon substrate by a buried oxide. Vias etched through the oxide allow to contact the substrate from the electronics layer, so that pixel implants can be created and a reverse bias can be applied. The prototype chip, manufactured in OKI 0.15 mu m SOI process, features both analog and digital pixels on a 10 mu m pitch. Results of tests performed with an infrared laser and 1.35 GeV electrons and a first assessment of the effect of ionising and non-ionising doses are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Giubilato, Piero; Vu, Chinh] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, Marco; Glesener, Lindsay] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bisello, Dario; Giubilato, Piero; Mattiazzo, Serena] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Bisello, Dario; Giubilato, Piero; Mattiazzo, Serena] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. RP Contarato, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM DContarato@lbl.gov OI Giubilato, Piero/0000-0003-4358-5355 NR 12 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 1 PY 2009 VL 604 IS 1-2 BP 380 EP 384 DI 10.1016/j.nima.2009.01.178 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 463CI UT WOS:000267405700100 ER PT J AU Barbero, M Arutinov, D Beccherle, R Darbo, G Ely, R Fougeron, D Garcia-Sciveres, M Gnani, D Hemperek, T Karagounis, M Kluit, R Kostioukhine, V Mekkaoui, A Menouni, M Schipper, JD AF Barbero, M. Arutinov, D. Beccherle, R. Darbo, G. Ely, R. Fougeron, D. Garcia-Sciveres, M. Gnani, D. Hemperek, T. Karagounis, M. Kluit, R. Kostioukhine, V. Mekkaoui, A. Menouni, M. Schipper, J. -D. TI A new ATLAS pixel front-end IC for upgraded LHC luminosity SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 8th International Conference on Position Sensitive Detectors CY SEP 01-05, 2008 CL Univ Glasgow, Glasgow, SCOTLAND HO Univ Glasgow DE Pixel; Super-LHC; FE-14; Digital architecture AB A new pixel Front-End (FE) IC is being developed in a 130 nm technology for use in the upgraded ATLAS pixel detector. The new pixel FE will be made of smaller pixels (50 x 250 mu m vs. 50 x 400 mu m for the present FE, FE-13), a much improved active area over inactive area ratio, and a new analog pixel chain tuned for low power and new detector input capacitance. The higher luminosity for which this IC is tuned implies a complete redefinition of the digital architecture logic, which will not be based on End-of-Column data buffering but on local pixel logic and local pixel data storage. An overview of the new FE is given with particular emphasis on the new digital logic architecture and possible architecture variations. (c) 2009 Elsevier B.V. All rights reserved. C1 [Barbero, M.; Arutinov, D.; Hemperek, T.; Karagounis, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Beccherle, R.; Darbo, G.; Kostioukhine, V.] INFN Genova, IT-16146 Genoa, Italy. [Ely, R.; Garcia-Sciveres, M.; Gnani, D.; Mekkaoui, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fougeron, D.; Menouni, M.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Kluit, R.; Schipper, J. -D.] Natl Inst Subatom Phys, NIKHEF, NL-1098 SJ Amsterdam, Netherlands. RP Barbero, M (reprint author), Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. EM barbero@physik.uni-bonn.de RI Gnani, Dario/J-6426-2012 OI Gnani, Dario/0000-0003-0464-9176 NR 9 TC 11 Z9 11 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 1 PY 2009 VL 604 IS 1-2 BP 397 EP 399 DI 10.1016/j.nima.2009.01.160 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 463CI UT WOS:000267405700104 ER PT J AU Basunia, MS Clark, RM Goldblum, BL Bernstein, LA Phair, L Burke, JT Beausang, CW Bleuel, DL Darakchieva, B Dietrich, FS Evtimova, M Fallon, P Gibelin, J Hatarik, R Jewett, CC Lesher, SR McMahan, MA Rodriguez-Vieitez, E Wiedeking, M AF Basunia, M. S. Clark, R. M. Goldblum, B. L. Bernstein, L. A. Phair, L. Burke, J. T. Beausang, C. W. Bleuel, D. L. Darakchieva, B. Dietrich, F. S. Evtimova, M. Fallon, P. Gibelin, J. Hatarik, R. Jewett, C. C. Lesher, S. R. McMahan, M. A. Rodriguez-Vieitez, E. Wiedeking, M. TI The ((3)He, tf) as a surrogate reaction to determine (n, f) cross sections in the 10-20 MeV energy range SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Indirect method; Cross section; Surrogate Method; Charge-exchange reaction ID NUCLEAR-REACTIONS; U-235 AB The surrogate reaction (238)U((3)He, tf) is used to determine the (237)Np(n, f) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting similar to 761 mu g/cm(2) metallic (238)U foil was bombarded with a 42 MeV (3)He(2+) beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS) consisted of two 140 mu m and one 1000 mu m Micron S2 type silicon detectors. The (237)Np(n,f) cross sections, determined indirectly, were compared with the (237)Np(n,f) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the ((3)He, tf) reaction as a surrogate to extract (n,f) cross sections in the 10-20 MeV equivalent neutron energy range is found to be suitable. Published by Elsevier B.V. C1 [Basunia, M. S.; Clark, R. M.; Phair, L.; Bleuel, D. L.; Fallon, P.; Gibelin, J.; McMahan, M. A.; Rodriguez-Vieitez, E.; Wiedeking, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Goldblum, B. L.; Bernstein, L. A.; Burke, J. T.; Dietrich, F. S.; Jewett, C. C.; Lesher, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Beausang, C. W.; Darakchieva, B.; Evtimova, M.; Lesher, S. R.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Hatarik, R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM SBasunia@lbl.gov RI Burke, Jason/I-4580-2012 FU US Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC0205CH11231]; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC5207NA27344]; University of Richmond [DE-FG-05NA25929, DE-FG02-05ER41379] FX We wish to thank the 88-Inch Cyclotron operation team at LBNL for their help in performing the irradiations for this experiment. We are grateful to R. Foreman for making the 238U target for this experiment. This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC0205CH11231 and an LDRD project, Lawrence Livermore National Laboratory under Contract Nos. W-7405-Eng-48 and DE-AC5207NA27344, and the University of Richmond contract Nos. DE-FG-05NA25929 and DE-FG02-05ER41379. NR 24 TC 18 Z9 19 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 1 PY 2009 VL 267 IS 11 BP 1899 EP 1903 DI 10.1016/j.nimb.2009.04.006 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 464SZ UT WOS:000267528400004 ER PT J AU Usov, IO Valdez, JA Won, J Hawley, M Devlin, DJ Dickerson, RM Uberuaga, BP Wang, YQ Reichhardt, CJO Jarvinen, GD Sickafus, KE AF Usov, I. O. Valdez, J. A. Won, J. Hawley, M. Devlin, D. J. Dickerson, R. M. Uberuaga, B. P. Wang, Y. Q. Reichhardt, C. J. Olson Jarvinen, G. D. Sickafus, K. E. TI Irradiation effects in an HfO(2)/MgO/HfO(2) tri-layer structure induced by 10 MeV Au ions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Hafnia; Magnesia; Ion irradiation ID CERAMICS; TRACKS; OXIDES AB In this report, we present radiation damage effects in a thin film, tri-layer structure, HfO(2)/MgO/HfO(2). Irradiations were performed with 10 MeV Au ions in a recently developed medium energy ion irradiation facility at Los Alamos National Laboratory, which is described in this paper. Energy deposition by 10 MeV Au ions corresponds to a mixed regime, wherein electronic and nuclear stopping contribute to radiation damage. In this study, we investigated modifications of both surface and bulk properties in order to assess the structural stability of our oxide tri-layers under the severe irradiation conditions employed here. The most dramatic structural changes were observed to occur on the surfaces of the tri-layer samples. Surface features consisted of large craters and spires. The dimensions of these craters and spires exceed those of the individual ion tracks by almost three orders of magnitude. As for the bulk tri-layer structure, our conclusions are that this structure is stable in terms of: (i) resistance to amorphization: (ii) resistance to compositional mixing and (iii) resistance to pronounced nucleation and growth of extended defects. The main effect observed in the tri-layer structure was the transformation of the first HfO(2) layer from a monoclinic to either a tetragonal or cubic form of HfO(2). (C) 2009 Elsevier B.V. All rights reserved. C1 [Usov, I. O.; Valdez, J. A.; Won, J.; Hawley, M.; Devlin, D. J.; Dickerson, R. M.; Uberuaga, B. P.; Wang, Y. Q.; Reichhardt, C. J. Olson; Jarvinen, G. D.; Sickafus, K. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Usov, IO (reprint author), Los Alamos Natl Lab, Mailstop K763, Los Alamos, NM 87545 USA. EM iusov@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD) FX This work was supported by a Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD) Grant. NR 16 TC 16 Z9 16 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 1 PY 2009 VL 267 IS 11 BP 1918 EP 1923 DI 10.1016/j.nimb.2009.03.101 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 464SZ UT WOS:000267528400007 ER PT J AU Sheikh, JA Bhat, GH Palit, R Naik, Z Sun, Y AF Sheikh, J. A. Bhat, G. H. Palit, R. Naik, Z. Sun, Y. TI Multi-quasiparticle gamma-band structure in neutron-deficient Ce and Nd isotopes SO NUCLEAR PHYSICS A LA English DT Article DE Triaxial deformation; gamma-vibration; Two-quasiparticle states; Triaxial projected shell model ID PROJECTED SHELL-MODEL; NUCLEAR-DATA SHEETS; HIGH-SPIN; CE-134; STATES; SPECTROSCOPY; ND-136; REGION AB The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in (134)Ce and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Sheikh, J. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Sheikh, J. A.; Sun, Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sheikh, J. A.; Bhat, G. H.] Univ Kashmir, Dept Phys, Srinagar 190006, Jammu & Kashmir, India. [Palit, R.; Naik, Z.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Sun, Y.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. RP Sun, Y (reprint author), Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. EM sunyang@sjtu.edu.cn RI Palit, Rudrajyoti/F-5185-2012; Sun, Yang/P-2417-2015 FU Division of Nuclear Physics, US Department of Energy [DE-AC05-00OR22725]; National Natural Science Foundation of China [10875077]; Chinese Major State Basic Research Development Program [2007CB815005] FX Research at ORNL was supported by the Division of Nuclear Physics, US Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research at SJTU was supported by the National Natural Science Foundation of China under contract No. 10875077 and by the Chinese Major State Basic Research Development Program through grant 2007CB815005. NR 29 TC 22 Z9 22 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 1 PY 2009 VL 824 IS 1-4 BP 58 EP 69 DI 10.1016/j.nuclphysa.2009.04.002 PG 12 WC Physics, Nuclear SC Physics GA 510LK UT WOS:000271089800004 ER PT J AU McLerran, L Redlich, K Sasaki, C AF McLerran, Larry Redlich, Krzysztof Sasaki, Chihiro TI Quarkyonic matter and chiral symmetry breaking SO NUCLEAR PHYSICS A LA English DT Article DE Dense quark matter; Chiral symmetry breaking; Large N-c expansion ID GAUGE VECTOR-MESONS; GROUND-STATE ENERGY; QCD PHASE-DIAGRAM; FINITE TEMPERATURE; MONTE-CARLO; DYNAMICAL MODEL; POLYAKOV LOOP; DENSITY; TRANSITION; SUPERCONDUCTIVITY AB The appearance of a new phase of QCD, Quarkyonic Matter in the limit of large number of colors is studied within Nambu-Jona-Lasinio effective chiral model coupled to the Polyakov loop. The interplay of this novel QCD phase with chiral symmetry restoration and color deconfinement is discussed. We find that at vanishing temperature and at large N-c, the quarkyonic transition occurs at densities only slightly lower than that expected for the chiral transition. This property is also shown to be valid at finite temperature if the temperature is less than that of deconfinement. The position and N-c-dependence of chiral critical end point is also discussed. (C) 2009 Elsevier B. V. All rights reserved. C1 [Sasaki, Chihiro] Tech Univ, D-85748 Garching, Germany. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, Riken Brookhaven Res Ctr, Upton, NY 11973 USA. [Redlich, Krzysztof] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. RP Sasaki, C (reprint author), Tech Univ, D-85748 Garching, Germany. EM csasaki@ph.tum.de FU Polish Ministry of Science and Higher Education (MENiSW); DOE [DE-AC02-98CH10886] FX C. S. acknowledges stimulating discussions with N. Kaiser and W. Weise. The work of C. Sasaki has been supported in part by the DFG cluster of excellence "Origin and Structure of the Universe". K. Redlich acknowledges partial support of the Polish Ministry of Science and Higher Education (MENiSW). The research of L. McLerran is supported under DOE Contract No. DE-AC02-98CH10886. NR 65 TC 85 Z9 89 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 1 PY 2009 VL 824 IS 1-4 BP 86 EP 100 DI 10.1016/j.nuclphysa.2009.04.001 PG 15 WC Physics, Nuclear SC Physics GA 510LK UT WOS:000271089800006 ER PT J AU Schienbein, I Yu, JY Keppel, C Morfin, JG Olness, F Owens, JF AF Schienbein, Ingo Yu, J. Y. Keppel, C. Morfin, J. G. Olness, F. Owens, J. F. TI Nuclear parton distribution functions SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Ringberg Workshop on New Trends in Hera Physics CY OCT 05-10, 2008 CL Tergernsee, GERMANY ID INELASTIC MUON SCATTERING; CHARGE-SYMMETRY VIOLATION; ELECTRON-SCATTERING; HEAVY QUARKS; IRON TARGETS; NEUTRINO; DEUTERIUM; LEPTOPRODUCTION; DEPENDENCE; HYDROGEN AB We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a chi(2) analysis of parton distribution functions (PDFs). A set of iron PDFs are extracted and used to compute x(Bj)-dependent and Q(2)-dependent nuclear correction factors which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l(+/-)-iron scattering. Except for very high x(Bj), our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. C1 [Schienbein, Ingo] Univ Grenoble 1, CRNS IN2P3, Inst Natl Polytech Grenoble, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Yu, J. Y.] So Methodist Univ, Dallas, TX 75206 USA. [Keppel, C.; Olness, F.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23602 USA. [Keppel, C.] Hampton Univ, Hampton, VA 23668 USA. [Morfin, J. G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA. RP Schienbein, I (reprint author), Univ Grenoble 1, CRNS IN2P3, Inst Natl Polytech Grenoble, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. NR 39 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD JUN PY 2009 VL 191 BP 25 EP 34 DI 10.1016/j.nuclphysbps.2009.03.110 PG 10 WC Physics, Particles & Fields SC Physics GA 463LJ UT WOS:000267433400004 ER PT J AU Soyez, G AF Soyez, Gregory TI Recent progress in defining jets SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Ringberg Workshop on New Trends in Hera Physics CY OCT 05-10, 2008 CL Tergernsee, GERMANY ID CLUSTERING-ALGORITHM; HADRON-COLLISIONS AB From dedicated QCD studies to new physics background estimation, jets will be everywhere at the LHC. In these proceedings, we discuss two important recent series of improvements. In the first one, we introduce new algorithms and new implementations of previously existing algorithms, in order to cure limitations of their predecessors and to satisfy fundamental requirements. In the second part, we show that it is of prime importance to carefully choose the jet definition - algorithm and parameters - to optimise kinematic reconstructions at the LHC. Noticeably, we show that while at scales around 100 GeV, R similar or equal to 0.5 is an appropriate choice, clustering at the TeV scale requires R similar or equal to 1 for optimal efficiency. We finally show that our results are valid in the presence of pileup, provided that a subtraction procedure is applied. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Soyez, G (reprint author), Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. NR 20 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD JUN PY 2009 VL 191 BP 131 EP 140 DI 10.1016/j.nuclphysbps.2009.03.120 PG 10 WC Physics, Particles & Fields SC Physics GA 463LJ UT WOS:000267433400014 ER PT J AU Poston, DI Marcille, TF Dixon, DD Amiri, BW AF Poston, David I. Marcille, Thomas F. Dixon, David D. Amiri, Benjamin W. TI DYNAMIC CHARACTERISTICS OF COMPACT FAST-SPECTRUM REACTORS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT Space Nuclear Conference (SNC 07) held at the Annual Meeting of the American-Nuclear-Society CY JUN 24-28, 2007 CL Boston, MA SP Amer Nucl Soc DE fast reactor; reactor dynamics; space nuclear power ID COOLED SURFACE REACTOR; SYSTEMS; POWER AB This paper focuses on some of the unique dynamic characteristics of compact fast-spectrum reactors. The study is limited to the characteristics that are relatively independent of how the reactor is integrated into a complete power system. Some of the well-established characteristics of compact fast-spectrum reactors are that point kinetics is generally very accurate for these systems and that temperature and burnup reactivity feedback mechanisms are relatively small and simple. Beyond this, there are two unique aspects of highly reflected fast reactors (e.g., space reactors) that do not occur in more traditional reactors. First, the neutron reflector has a very important impact on dynamic performance, and in some cases the temperature coefficient of the radial reflector is higher than that of the fuel. The thermal time constant of the reflector is much longer than that of any component in the core, which requires all reflector temperature and expansion effects to be modeled individually. Second, reflected neutrons have a much longer fission life span than in-core neutrons. In effect, this creates additional delayed neutron groups, referred to as geometric delayed neutron groups. These groups can have life spans orders of magnitude longer than neutrons that do not leave the core, and have much higher worth due to moderation. For compact beryllium reflected reactors there is also a measurable delayed group of photo-induced neutrons that result from delayed gammas. Another characteristic of compact fast-spectrum reactors is simplified control and the ability to passively handle a wide range of transients without control. Various transient analyses are presented that were performed by the Fission Reactor Integrated Nuclear Kinetics (FRINK) code, which facilitates near-term compact reactor design and development by providing a transient analysis tool. In its current state FRINK is a very simple system model, and the "system" only extends to the primary loop power removal boundary condition; however, this allows the simulation of simplified transients (e.g., loss of primary heat sink, loss of flow, etc.). C1 [Poston, David I.; Marcille, Thomas F.; Dixon, David D.; Amiri, Benjamin W.] Los Alamos Natl Lab, Nucl Syst Design Grp, Los Alamos, NM 87545 USA. RP Poston, DI (reprint author), Los Alamos Natl Lab, Nucl Syst Design Grp, POB 1663, Los Alamos, NM 87545 USA. EM poston@lanl.gov NR 8 TC 1 Z9 1 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2009 VL 166 IS 3 BP 204 EP 214 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 447WC UT WOS:000266221700002 ER PT J AU Bess, JD AF Bess, John Darrell TI CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT Space Nuclear Conference (SNC 07) held at the Annual Meeting of the American-Nuclear-Society CY JUN 24-28, 2007 CL Boston, MA SP Amer Nucl Soc DE sodium-cooled fast-fission reactor; modular reactor system; lunar surface power ID FAST BREEDER-REACTORS; PROSPECTOR; MOON; PERFORMANCE AB It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into sub-critical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith, utilizing the regolith not just for shielding but also as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar-base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity, although its effects are less than the more dominant factors of subunit emplacement. C1 Idaho Natl Lab, Ctr Space Nucl Res, Idaho Falls, ID 83415 USA. RP Bess, JD (reprint author), Idaho Natl Lab, Ctr Space Nucl Res, POB 1625,MS 3855, Idaho Falls, ID 83415 USA. EM John.Bess@INL.gov OI Bess, John/0000-0002-4936-9103 NR 71 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2009 VL 166 IS 3 BP 215 EP 229 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 447WC UT WOS:000266221700003 ER PT J AU Kim, SH Flanagan, GF AF Kim, Seokho H. Flanagan, George F. TI IMPACT ANALYSIS FOR CANDIDATE SPACE REACTOR CORE CONCEPT DESIGNS FOR POTENTIAL CRITICALITY STUDY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT Space Nuclear Conference (SNC 07) held at the Annual Meeting of the American-Nuclear-Society CY JUN 24-28, 2007 CL Boston, MA SP Amer Nucl Soc DE space reactor safety; impact dynamics; space reactor ID ELEVATED-TEMPERATURES; STRENGTH AB A hydrodynamics model has been developed to study extreme deformation of the space reactor system impacting on the ground with a high velocity. Two-dimensional geometry models for a monolithic core and a pinned core reactor have been developed with dynamic material models, including the material constitutive models and the equation-of-state models. Calculations have been performed for the reactor impacting onto dry sand at 230 and 150 m/s. A pinned core has a much larger fraction of gas volume in the reactor core and thus collapses faster than a monolithic core. The 150 m/s impact velocity case reveals that the gas coolant channels survive in a monolithic core even though the reactor is massively deformed. In a pinned core, however, most of the gas coolant region collapses with intact or partially collapsed fission product gas cores that are protected by solid UO(2) fuel. The sand density varies as it is being compressed. Generally, sand beneath the impacting reactor has a higher density as it is compressed. In addition to consideration of global criticality, it is necessary to investigate local criticality. Because of nonuniform distribution of the gas coolant channels in a deformed monolithic core for the 230 m/s impact velocity case, it may be possible to induce criticality locally in those regions where collapse is more severe. It is not straightforward to make an engineering judgment based solely on impact analysis regarding which core concept is more susceptible to criticality events. The current impact study reveals that a pinned core reactor collapses faster than a monolithic core reactor. A reactor that collapses faster is thought to be more susceptible to producing a criticality. However, a monolithic core reactor with much higher mass and kinetic energy develops much higher compaction in the dry sand beneath the reactor. This means that it is expected to better reflect fast neutrons from the bottom boundary where the sand density for a monolithic core impact becomes much higher than for a pinned core impact. It is strongly recommended that neutronics calculations be performed to determine the susceptibility of criticality for the massively deformed nuclear reactors including appropriate reflecting boundary conditions. C1 [Kim, Seokho H.; Flanagan, George F.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Kim, SH (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6167, Oak Ridge, TN USA. EM kims@ornl.gov NR 13 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2009 VL 166 IS 3 BP 230 EP 239 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 447WC UT WOS:000266221700004 ER PT J AU Peretz, FJ AF Peretz, Fred J. TI DISMANTLEMENT OF THE TSF-SNAP REACTOR ASSEMBLY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT Space Nuclear Conference (SNC 07) held at the Annual Meeting of the American-Nuclear-Society CY JUN 24-28, 2007 CL Boston, MA SP Amer Nucl Soc DE liquid-metal coolant; decommissioning; space reactor AB This paper describes the dismantlement of the Tower Shielding Facility (TSF)-Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL)from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassium (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006 The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal-cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Peretz, FJ (reprint author), Oak Ridge Natl Lab, POB 2008,Mail Stop 6166, Oak Ridge, TN 37831 USA. EM peretzfj@ornl.gov NR 6 TC 0 Z9 0 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2009 VL 166 IS 3 BP 252 EP 262 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 447WC UT WOS:000266221700006 ER PT J AU Mansur, LK Charara, YM Guetersloh, SB Remec, I Townsend, LW AF Mansur, L. K. Charara, Y. M. Guetersloh, S. B. Remec, I. Townsend, L. W. TI FRAGMENTATION CALCULATIONS FOR ENERGETIC IONS IN CANDIDATE SPACE RADIATION SHIELDING MATERIALS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT Space Nuclear Conference (SNC 07) held at the Annual Meeting of the American-Nuclear-Society CY JUN 24-28, 2007 CL Boston, MA SP Amer Nucl Soc DE galactic cosmic rays; shielding; polymers ID PARTICLE; CODE AB Calculations have been carried out to evaluate the effectiveness of a range of carbon- and hydrogen-rich materials for shielding against energetic heavy ions relevant to the galactic cosmic ray spectrum. Experimental work integrated with the calculations included both preparation and characterization of physical properties of candidate materials and measurements of fragmentation (breakup) of ion beams of (16)O and (40)Ar in the tens of GeV energy range in these materials. We have simulated the fragmentation experiments using both the HETC-HEDS and PHITS high-energy particle transport codes. The purposes of these computational simulations were to investigate the effectiveness as spacecraft personnel shielding of various novel as well as commercially available materials for future lunar and interplanetary missions and to validate the codes against experimental data. In the present contribution we report results of the fragmentation simulations and compare them with examples of the experimental measurements. C1 [Mansur, L. K.; Remec, I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Charara, Y. M.; Townsend, L. W.] Univ Tennessee, Knoxville, TN 37996 USA. [Guetersloh, S. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mansur, LK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mansurlk@ornl.gov NR 19 TC 2 Z9 2 U1 2 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2009 VL 166 IS 3 BP 263 EP 272 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 447WC UT WOS:000266221700007 ER PT J AU Gangelhoff, TA Mungalachetty, PS Nix, JC Churchill, MEA AF Gangelhoff, Todd A. Mungalachetty, Purnima S. Nix, Jay C. Churchill, Mair E. A. TI Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A SO NUCLEIC ACIDS RESEARCH LA English DT Article ID RNA METHYLTRANSFERASE ACTIVITY; FACTOR-A; TERMINAL TAIL; HUMAN-DISEASE; ACTIVATOR PROTEIN; RIBOSOMAL-RNA; BOX; MAINTENANCE; RECOGNITION; B1 AB The mitochondrial transcription factor A (mtTFA) is central to assembly and initiation of the mitochondrial transcription complex. Human mtTFA (h-mtTFA) is a dual high mobility group box (HMGB) protein that binds site-specifically to the mitochondrial genome and demarcates the promoters for recruitment of h-mtTFB1, h-mtTFB2 and the mitochondrial RNA polymerase. The stoichiometry of h-mtTFA was found to be a monomer in the absence of DNA, whereas it formed a dimer in the complex with the light strand promoter (LSP) DNA. Each of the HMG boxes and the C-terminal tail were evaluated for their ability to bind to the LSP DNA. Removal of the C-terminal tail only slightly decreased nonsequence specific DNA binding, and box A, but not box B, was capable of binding to the LSP DNA. The X-ray crystal structure of h-mtTFA box B, at 1.35 resolution, revealed the features of a noncanonical HMG box. Interactions of box B with other regions of h-mtTFA were observed. Together, these results provide an explanation for the unusual DNA-binding properties of box B and suggest possible roles for this domain in transcription complex assembly. C1 [Gangelhoff, Todd A.; Mungalachetty, Purnima S.; Churchill, Mair E. A.] Univ Colorado Denver, Dept Pharmacol, Sch Med, Aurora, CO 80045 USA. [Gangelhoff, Todd A.; Churchill, Mair E. A.] Univ Colorado Denver, Program Mol Biol, Sch Med, Aurora, CO 80045 USA. [Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Biol Consortium, Berkeley, CA 94720 USA. RP Churchill, MEA (reprint author), Univ Colorado Denver, Dept Pharmacol, Sch Med, 12801 E 17th Ave, Aurora, CO 80045 USA. EM mair.churchill@ucdenver.edu RI Churchill, Mair/C-5549-2014 OI Churchill, Mair/0000-0003-0862-235X FU UCD Biomolecular X-ray Crystallography Center by HHMI; University of Colorado Cancer Center; National Institutes of Health; UMDF [05-101, 68859] FX The UCD Biomolecular X-ray Crystallography Center by HHMI ( in part); the University of Colorado Cancer Center; National Institutes of Health; UMDF ( 05-101, #68859 to M. E. A. C). Funding for open access charge: MDA (#68859) and institutional funds. NR 56 TC 48 Z9 52 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUN PY 2009 VL 37 IS 10 BP 3153 EP 3164 DI 10.1093/nar/gkp157 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 457WU UT WOS:000266966700004 PM 19304746 ER PT J AU Bishop, JKB AF Bishop, James K. B. TI Autonomous Observations of the Ocean Biological Carbon Pump SO OCEANOGRAPHY LA English DT Article ID ROBOTIC OBSERVATIONS; ANTHROPOGENIC CO2; NEUTRALLY BUOYANT; SEDIMENT TRAPS; ORGANIC-CARBON; SOUTHERN-OCEAN; TWILIGHT ZONE; FLUXES; BIOMASS; EXPORT AB Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate spatial and temporal scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost, fully autonomous ocean profiling Carbon Explorers, which demonstrated that year-round, real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a particulate inorganic carbon (PIC) sensor suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore-based laboratory analysis is now possible to full ocean depth in real time using a 0.2-W sensor operating at 24 Hz. NOPP developments further spawned US Department of Energy support to develop the Carbon Flux Explorer, a free vehicle capable of following hourly variations of PIC and POC sedimentation from the near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real-time, low-cost carbon observations that are of fundamental value to carbon prediction and that, when further developed, will lead to a fully enhanced global carbon observatory capable of real-time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale. C1 [Bishop, James K. B.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bishop, James K. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bishop, JKB (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jkbishop@berkeley.edu NR 46 TC 27 Z9 28 U1 0 U2 18 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD JUN PY 2009 VL 22 IS 2 BP 182 EP 193 PG 12 WC Oceanography SC Oceanography GA 457WC UT WOS:000266964200022 ER PT J AU Hur, TB Phuoc, TX Chyu, MK AF Hur, Tae-Bong Phuoc, Tran X. Chyu, Minking K. TI Synthesis of Mg-Al and Zn-Al-layered double hydroxide nanocrystals using laser ablation in water SO OPTICS AND LASERS IN ENGINEERING LA English DT Article DE Laser ablation in liquid; Mg-Al LDH; Zn-Al LDH ID GLASS SUBSTRATE; OPTICAL-PROPERTIES; NANOPARTICLES; LIQUIDS; MAGNESIUM; FILMS AB In this paper, we report our results on the synthesis of Mg-Al and Zn-Al-layered double hydroxides using the laser ablation in the liquid technique. To prepare these layered double hydroxides (LDH) we first began with the laser generation of a Mg (or zinc) target submerged in deionized water and then ablated an aluminum target submerged in the previously prepared Mg-deionized water suspensions (Mg-dw) to produce Mg-Al LDH and in Zn-dw to prepare Zn-Al LDH. In these ablation tests, the Mg ablation duration was selected to vary from 5 to 60 min, while the Al ablation duration was kept constant at 30 min for all samples. The generated Mg-Al LDH was a gel-like and well crystallized nanoparticles of a rod-like shape and were arranged in a well-organized pattern. When the Mg ablation duration between 25 and 35 min, the synthesized nanocrystals were stoichiometric with a formula of Mg(6)Al(2)(OH)(18)4.5 (H(2)O), the interlayer distance (d((0 0 3))-spacing) was 7.8 angstrom and the average grain size was 8.0 nm. The synthesized Zn-Al LDH revealed various lamellar thin plate-like nanostructures of hexagonal morphologies. The average diameters of these structures was about 500 nm and the thickness of a single layer was approximately about 6.0 nm. The XRD diffraction peaks were indexed in hexagonal lattice with a(o) = 3.07 angstrom and c(o) = 15.12 angstrom. These indexes were (002), (004), and (008) and the corresponding interlayer distances, d-spacing (angstrom), were 7.56 (002), 3.782 (004), and 1.891 (008), respectively. Published by Elsevier Ltd. C1 [Phuoc, Tran X.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hur, Tae-Bong; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Phuoc, TX (reprint author), Natl Energy Technol Lab, POB 10940,MS 84-340, Pittsburgh, PA 15236 USA. EM tran@netl.doe.gov FU DOE-NETL FX This work was supported by DOE-NETL under the EPact program. NR 28 TC 12 Z9 12 U1 6 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-8166 J9 OPT LASER ENG JI Opt. Lasers Eng. PD JUN PY 2009 VL 47 IS 6 BP 695 EP 700 DI 10.1016/j.optlaseng.2008.11.006 PG 6 WC Optics SC Optics GA 437GR UT WOS:000265475400013 ER PT J AU Sandberg, RL Raymondson, DA La-o-Vorakiat, C Paul, A Raines, KS Miao, J Murnane, MM Kapteyn, HC Schlotter, WF AF Sandberg, R. L. Raymondson, D. A. La-o-Vorakiat, C. Paul, A. Raines, K. S. Miao, J. Murnane, M. M. Kapteyn, H. C. Schlotter, W. F. TI Tabletop soft-x-ray Fourier transform holography with 50 nm resolution SO OPTICS LETTERS LA English DT Article ID DIFFRACTION MICROSCOPY; COHERENT; WAVELENGTHS; LIGHT AB We present what we believe to be the first implementation of Fourier transform (FT) holography using a tabletop coherent x-ray source. By applying curvature correction to compensate for the large angles inherent in high-NA coherent imaging, we achieve image resolution of 89 nm using high-harmonic beams at a wavelength of 29 nm. Moreover, by combining holography with iterative phase retrieval, we improve the image resolution to <53 nm. We also demonstrate that FT holography can be used effectively with short exposure times of 30 s. This technique will enable biological and materials microscopy with simultaneously high spatial and temporal resolution on a tabletop soft-x-ray source. (C) 2009 Optical Society of America C1 [Sandberg, R. L.; Raymondson, D. A.; La-o-Vorakiat, C.; Paul, A.; Murnane, M. M.; Kapteyn, H. C.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Sandberg, R. L.; Raymondson, D. A.; La-o-Vorakiat, C.; Paul, A.; Murnane, M. M.; Kapteyn, H. C.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Sandberg, R. L.; Raymondson, D. A.; La-o-Vorakiat, C.; Paul, A.; Murnane, M. M.; Kapteyn, H. C.] Natl Inst Stand & Technol, Boulder, CO 80309 USA. [Raines, K. S.; Miao, J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Raines, K. S.; Miao, J.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Schlotter, W. F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [Schlotter, W. F.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. RP Sandberg, RL (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM richard.sondberg@colorado.edu RI Sandberg, Richard/F-8790-2011; Kapteyn, Henry/H-6559-2011 OI Kapteyn, Henry/0000-0001-8386-6317 FU National Science Foundation (NSF); U.S. Department of Energy Office of Basic Energy Sciences (DOE-BES) FX The authors gratefully acknowledge funding from the National Science Foundation (NSF) and the U.S. Department of Energy Office of Basic Energy Sciences (DOE-BES). We thank Y. Liu and F. Salmassi for the multilayer mirrors, and we thank the JILA Instrument Shop. NR 21 TC 53 Z9 54 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2009 VL 34 IS 11 BP 1618 EP 1620 PG 3 WC Optics SC Optics GA 463AR UT WOS:000267401200002 PM 19488126 ER PT J AU Lu, PP Sun, KX Byer, RL Britten, JA Nguyen, HT Nissen, JD Larson, CC Aasen, MD Carlson, TC Hoaglan, CR AF Lu, Patrick P. Sun, Ke-Xun Byer, Robert L. Britten, Jerald A. Nguyen, Hoang T. Nissen, James D. Larson, Cindy C. Aasen, Michael D. Carlson, Thomas C. Hoaglan, Curly R. TI Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle SO OPTICS LETTERS LA English DT Article ID BEAM SPLITTER; INTERFEROMETER; SAGNAC AB We have developed improved cavity-finesse methods for characterizing the diffraction efficiencies of large gratings at the Littrow angle. These methods include measuring cavity length with optical techniques, using a Michelson interferometer to calibrate piezoelectric transducer nonlinearities and angle-tuning procedures to confirm optimal alignment. We used these methods to characterize two 20 cm scale dielectric gratings. The values taken from across their surfaces collectively had means and standard deviations of mu =99.293% and sigma=0.164% and mu=99.084% and sigma=0.079%. The greatest efficiency observed at a single point on a grating was (99.577 +/- 0.002)%, which is also the most accurate measurement of the diffraction efficiency in the literature of which we are aware. These results prove that a high diffraction efficiency with low variation is achievable across large apertures for gratings. (C) 2009 Optical Society of America (C) 2009 Optical Society of America C1 [Lu, Patrick P.; Sun, Ke-Xun; Byer, Robert L.] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA. [Britten, Jerald A.; Nguyen, Hoang T.; Nissen, James D.; Larson, Cindy C.; Aasen, Michael D.; Carlson, Thomas C.; Hoaglan, Curly R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sun, KX (reprint author), Stanford Univ, Ginzton Lab, 450 Via Polou, Stanford, CA 94305 USA. EM kxsun@stanford.edu FU NASA; National Science Foundation (NSF) FX This research was supported by the NASA grant for the "Modular Gravitational Reference Sensor for Space Gravitational Wave Detection" and by the National Science Foundation (NSF) Stanford LIGO program. NR 11 TC 19 Z9 20 U1 3 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2009 VL 34 IS 11 BP 1708 EP 1710 PG 3 WC Optics SC Optics GA 463AR UT WOS:000267401200032 PM 19488156 ER PT J AU Hou, PY Cannon, RM AF Hou, P. Y. Cannon, R. M. TI Spallation Behavior of Thermally Grown Nickel Oxide on Nickel SO OXIDATION OF METALS LA English DT Article DE Nickel; Oxidation; Buckling; Fracture; Residual stress; Porosity; Impurity ID HIGH-TEMPERATURE OXIDATION; METAL LATTICE VACANCIES; NIO SCALES; INTERFACES; FRACTURE; CRACKING; FILMS; SEGREGATION; TRANSPORT; STRESSES AB Thermally grown oxide scales are often under compressive residual stresses, especially upon cooling, which can lead to spontaneous spallation and a loss of their protectiveness. This study uses nickel oxide formed on different purity of nickel as an example to investigate the spallation process. Samples oxidized after different times between 800 and 1100 A degrees C were observed during cooling. The oxide scale buckled and spalled after reaching a critical thickness that depended on oxidation temperatures, substrate thickness, and metal purity. The observed buckling was only a secondary process that followed scale delamination under local tensile stresses at sample edges or corners. When the delamination eventually extended over a large enough area on the face of the specimen, the scale above it buckled, driven by the residual compressive stress in the oxide. Growth of the buckles took place by crack extension along regions of high pore densities in the oxide scale. The development of pores in the oxide layer, which depended strongly on substrate impurity levels, was found to be the most important factor controlling failures of the NiO scales. Sulfur segregated on pore surfaces, whereas TEM studies showed no S at NiO/Ni interfaces. C1 [Hou, P. Y.; Cannon, R. M.] Lawrence Berkeley Natl Lab, Mat & Chem Sci Div, Berkeley, CA 94720 USA. RP Hou, PY (reprint author), Lawrence Berkeley Natl Lab, Mat & Chem Sci Div, Berkeley, CA 94720 USA. EM pyhou@lbl.gov FU Electric Power Institute [WO 8041-05]; U.S. Department of Energy [DE-AC03-76SF00098] FX The authors would like to thank Mr. H. Zhang and Mr. S. Kekare for their technical assistance, and for Dr. Xiaofeng Zheng for the TEM analysis. This work was supported by the Electric Power Institute under contract No. WO 8041-05, and by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 35 TC 3 Z9 3 U1 1 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD JUN PY 2009 VL 71 IS 5-6 BP 237 EP 256 DI 10.1007/s11085-009-9139-0 PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 430WK UT WOS:000265021300001 ER PT J AU Borrill, J Oliker, L Shalf, J Shan, HZ Uselton, A AF Borrill, Julian Oliker, Leonid Shalf, John Shan, Hongzhang Uselton, Andrew TI HPC global file system performance analysis using a scientific-application derived benchmark SO PARALLEL COMPUTING LA English DT Article DE I/O benchmarking; Global parallel file system; Cosmic microwave background; GPFS; Lustre; CXFS; PVFS2 AB With the exponential growth of high-fidelity sensor and simulated data, the scientific community is increasingly reliant on ultrascale HPC resources to handle its data analysis requirements. However, to use such extreme computing power effectively, the I/O components must be designed in a balanced fashion, as any architectural bottleneck will quickly render the platform intolerably inefficient. To understand I/O performance of data-intensive applications in realistic computational settings, we develop a lightweight, portable benchmark called MADbench2, which is derived directly from a large-scale cosmic microwave background (CMB) data analysis package. Our study represents one of the most comprehensive I/O analyses of modern parallel file systems, examining a broad range of system architectures and configurations, including Lustre on the Cray XT3, XT4, and Intel Itanium2 clusters; GPFS on IBM Power5 and AMD Opteron platforms; a BlueGene/P installation using GPFS and PVFS2 file systems; and CXFS on the SGI Altix3700. We present extensive synchronous I/O performance data comparing a number of key parameters including concurrency, POSIX- versus MPI-IO, and unique- versus shared-file accesses, using both the default environment as well as highly tuned I/O parameters. Finally, we explore the potential of asynchronous I/O and show that only the two of the nine evaluated systems benefited from MPI-2's asynchronous MPI-IO. On those systems, experimental results indicate that the computational intensity required to hide I/O effectively is already close to the practical limit of BLAS3 calculations. Overall, our study quantifies vast differences in performance and functionality of parallel file systems across state-of-the-art platforms - showing I/O rates that vary up to 75x on the examined architectures - while providing system designers and computational scientists a lightweight tool for conducting further analysis. (C) 2009 Elsevier B.V. All rights reserved. C1 [Borrill, Julian; Oliker, Leonid; Shalf, John; Shan, Hongzhang; Uselton, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, CRC, NERSC, Berkeley, CA 94720 USA. RP Oliker, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, CRC, NERSC, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA. EM loliker@lbl.gov FU Office of Advanced Scientific Computing Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX The authors would like to thank the following individuals for their kind assistance in helping us understand and optimize evaluated file system performance: Tina Butler and Jay Srinivasan of LBNL: Richard Hedges of LLNL; Nick Wright of SDSC: Susan Coughlan, Robert Latham, Rob Ross, Andrew Cherry, and Vitali Morozov of ANL; Robert Hood and Ken Taylor of NASA-Ames. All authors from LBNL were supported by the Office of Advanced Scientific Computing Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231. NR 27 TC 7 Z9 7 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD JUN PY 2009 VL 35 IS 6 BP 358 EP 373 DI 10.1016/j.parco.2009.02.002 PG 16 WC Computer Science, Theory & Methods SC Computer Science GA 458YR UT WOS:000267066500004 ER PT J AU Wu, KS Otoo, E Suzuki, K AF Wu, Kesheng Otoo, Ekow Suzuki, Kenji TI Optimizing two-pass connected-component labeling algorithms SO PATTERN ANALYSIS AND APPLICATIONS LA English DT Article DE Connected-component labeling; Optimization; Union-find algorithm; Decision tree; Equivalence relation ID DISJOINT SET UNION; IMAGE SEGMENTATION; RECOGNITION; OPERATIONS AB We present two optimization strategies to improve connected-component labeling algorithms. Taking together, they form an efficient two-pass labeling algorithm that is fast and theoretically optimal. The first optimization strategy reduces the number of neighboring pixels accessed through the use of a decision tree, and the second one streamlines the union-find algorithms used to track equivalent labels. We show that the first strategy reduces the average number of neighbors accessed by a factor of about 2. We prove our streamlined union-find algorithms have the same theoretical optimality as the more sophisticated ones in literature. This result generalizes an earlier one on using union-find in labeling algorithms by Fiorio and Gustedt (Theor Comput Sci 154(2):165-181, 1996). In tests, the new union-find algorithms improve a labeling algorithm by a factor of 4 or more. Through analyses and experiments, we demonstrate that our new two-pass labeling algorithm scales linearly with the number of pixels in the image, which is optimal in computational complexity theory. Furthermore, the new labeling algorithm outperforms the published labeling algorithms irrespective of test platforms. In comparing with the fastest known labeling algorithm for two-dimensional (2D) binary images called contour tracing algorithm, our new labeling algorithm is up to ten times faster than the contour tracing program distributed by the original authors. C1 [Wu, Kesheng; Otoo, Ekow] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Suzuki, Kenji] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. RP Wu, KS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM KWu@lbl.gov; EJOtoo@lbl.gov; suzuki@uchicago.edu RI Suzuki, Kenji/A-1284-2007 OI Suzuki, Kenji/0000-0002-3993-8309 FU U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported in part by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 47 TC 60 Z9 69 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1433-7541 EI 1433-755X J9 PATTERN ANAL APPL JI Pattern Anal. Appl. PD JUN PY 2009 VL 12 IS 2 BP 117 EP 135 DI 10.1007/s10044-008-0109-y PG 19 WC Computer Science, Artificial Intelligence SC Computer Science GA 411TS UT WOS:000263674200002 ER PT J AU Mamoon, AM Gamal-Eldeen, AM Ruppel, ME Smith, RJ Tsang, T Miller, LM AF Mamoon, Abdel-Megid Gamal-Eldeen, Amira M. Ruppel, Meghan E. Smith, Randy J. Tsang, Thomas Miller, Lisa M. TI In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma SO PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY LA English DT Article DE Photodynamic therapy; Human melanoma; Indocyanine green; Apoptosis; Infrared microspectroscopy; Hierarchical cluster analysis; Synchrotron ID TRANSFORM INFRARED-SPECTROSCOPY; RADIATION-INDUCED APOPTOSIS; BASAL-CELL CARCINOMA; TRANSPUPILLARY THERMOTHERAPY; CANCER-CELLS; HISTONE ACETYLATION; CHOROIDAL MELANOMA; MEDIATED APOPTOSIS; MALIGNANT-TUMORS; UP-REGULATION AB Background: Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Methods: Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage and changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell. viability and apoptosis and necrosis markers. Results: In the cell death pathway, (1)O(2) generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15 min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-kappa B P65, and the enhancement of DNA fragmentation, and histone acetylation. Conclusion: ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma. (C) 2009 Elsevier B.V. All rights reserved. C1 [Smith, Randy J.; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Mamoon, Abdel-Megid] Egyptian Atom Energy Author, Nasr City, Cairo, Egypt. [Gamal-Eldeen, Amira M.] Natl Res Ctr, Canc Biol Lab, Ctr Excellence Adv Sci, Cairo 12622, Egypt. [Ruppel, Meghan E.; Miller, Lisa M.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Tsang, Thomas] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Miller, LM (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Bldg 725 D,75 Brookhaven Ave, Upton, NY 11973 USA. EM aeldeen7@yahoo.com; lmiller@bnl.gov OI Gamal-Eldeen, Amira/0000-0002-4423-5616 FU Egyptian Academy for Science and Technology; the National Research Center (Cairo, Egypt); DOE Cooperative Research Program for SESAME; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the Egyptian Academy for Science and Technology, the National Research Center (Cairo, Egypt), and the DOE Cooperative Research Program for SESAME. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 63 TC 30 Z9 30 U1 4 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1572-1000 J9 PHOTODIAGN PHOTODYN JI Photodiagnosis Photodyn. Ther. PD JUN PY 2009 VL 6 IS 2 BP 105 EP 116 DI 10.1016/j.pdpdt.2009.05.002 PG 12 WC Oncology SC Oncology GA 493UC UT WOS:000269762600008 PM 19683211 ER PT J AU Santana, JA Ishikawa, Y Trabert, E AF Santana, Juan A. Ishikawa, Yasuyuki Traebert, Elmar TI Multireference Moller-Plesset perturbation theory results on levels and transition rates in Al-like ions of iron group elements SO PHYSICA SCRIPTA LA English DT Article ID STRUCTURE ENERGY-LEVELS; MANY-ELECTRON SYSTEMS; BEAM-FOIL SPECTRA; CU-LIKE IONS; OSCILLATOR-STRENGTHS; GROTRIAN DIAGRAMS; FE-XIV; ISOELECTRONIC SEQUENCE; NI-XVI; INTERCOMBINATION LINES AB Ground configuration and low-lying levels of Al-like ions contribute to a variety of laboratory and solar spectra, but the available information in databases are neither complete nor necessarily correct. We have performed multireference Moller-Plesset perturbation theory calculations that approach spectroscopic accuracy in order to check the information that databases hold on the 40 lowest levels of Al-like ions of iron group elements (K through Ge), and to provide input for the interpretation of concurrent experiments. Our results indicate problems of the database holdings on the levels of the lowest quartet levels in the lighter elements of the range studied. The results of our calculations of the decay rates of five long-lived levels (3s(2)3p (2)P degrees(3/2) 3s3p(2) (4)P degrees(J) and 3s3p3d (4)F degrees(9/2)) are compared with lifetime data from beam-foil, electron beam ion trap and heavy-ion storage ring experiments. C1 [Santana, Juan A.; Ishikawa, Yasuyuki] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Santana, Juan A.; Ishikawa, Yasuyuki] Univ Puerto Rico, Chem Phys Program, San Juan, PR 00931 USA. [Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Traebert, Elmar] LLNL, Div Phys, Livermore, CA 94551 USA. RP Santana, JA (reprint author), Univ Puerto Rico, Dept Chem, POB 23346, San Juan, PR 00931 USA. EM yishikawa@uprrp.edu; traebert@astro.rub.de RI Santana, Juan A./G-4329-2011 OI Santana, Juan A./0000-0003-2349-6312 FU German Research Association; USDoE [DE-AC52-07NA27344]; LLNL [B568401, B579693]; Fondo Institucional para la Investigacion (FIPI) FX ET acknowledges travel support from the German Research Association (DFG). Part of this work has been performed at LLNL under the auspices of the USDoE under contract No. DE-AC52-07NA27344. YI acknowledges partial support from LLNL subcontracts No. B568401 and B579693. Work at the UPR was supported by the Fondo Institucional para la Investigacion (FIPI). NR 86 TC 11 Z9 11 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JUN PY 2009 VL 79 IS 6 AR 065301 DI 10.1088/0031-8949/79/06/065301 PG 13 WC Physics, Multidisciplinary SC Physics GA 453UX UT WOS:000266639500018 ER PT J AU Trabert, E AF Traebert, E. TI Problems with accurate atomic lifetime measurements of multiply charged ions SO PHYSICA SCRIPTA LA English DT Article ID GAS-LASER SPECTROSCOPY; CU-LIKE IONS; STORAGE-RING; PRECISION-MEASUREMENT; TRANSITION RATES; MEANLIFE MEASUREMENT; RADIATIVE LIFETIME; 3P P-2(3/2); NA-LIKE; LI-LIKE AB A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest that one should remain cautious about the systematic errors of experimental techniques. C1 [Traebert, E.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Traebert, E.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Trabert, E (reprint author), Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. EM traebert@astro.rub.de FU German Research Council (DFG); US Department of Energy [DE-AC52-07NA27344] FX I gratefully acknowledge support by the German Research Council (DFG). Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. NR 61 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD JUN PY 2009 VL 79 IS 6 AR 068101 DI 10.1088/0031-8949/79/06/068101 PG 7 WC Physics, Multidisciplinary SC Physics GA 453UX UT WOS:000266639500033 ER PT J AU Yu, KM AF Yu, K. M. TI N-type doping of InGaN by high energy particle irradiation SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT International Workshop on Nitride Semiconductors CY OCT 06-10, 2008 CL Montreux, SWITZERLAND ID SURFACE RECOMBINATION; NATIVE DEFECTS; INN; SEMICONDUCTORS; ALLOYS AB This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphotcric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E(F) approaches the Fermi stabilization energy E(FS). At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E(F) and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In(x)Ga(1-x)N via native point defects. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yu, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 NR 25 TC 4 Z9 4 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD JUN PY 2009 VL 206 IS 6 BP 1168 EP 1175 DI 10.1002/pssa.200880972 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 464SU UT WOS:000267527800011 ER PT J AU Berman, GP Chumak, AA AF Berman, G. P. Chumak, A. A. TI Influence of phase-diffuser dynamics on scintillations of laser radiation in Earth's atmosphere: Long-distance propagation SO PHYSICAL REVIEW A LA English DT Article DE atmospheric light propagation; fluctuations; laser beams; light scattering; random processes ID ELECTROMAGNETIC BEAM PROPAGATION; PARTIALLY COHERENT BEAMS; INTENSITY FLUCTUATIONS; TURBULENT MEDIA AB The effect of a random-phase diffuser on fluctuations of laser light (scintillations) is studied. Not only spatial but also temporal phase variations introduced by the phase diffuser are analyzed. The explicit dependence of the scintillation index on finite-time phase variations is obtained for long propagation paths. It is shown that for large amplitudes of phase fluctuations, a finite-time effect decreases the ability of phase diffuser to suppress the scintillations. C1 [Berman, G. P.; Chumak, A. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chumak, A. A.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Msp, Ukraine. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM gpb@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; ONR FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We thank ONR for supporting this research. NR 17 TC 6 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN PY 2009 VL 79 IS 6 AR 063848 DI 10.1103/PhysRevA.79.063848 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 466XZ UT WOS:000267700100198 ER PT J AU Diamant, R Huotari, S Hamalainen, K Sharon, R Kao, CC Deutsch, M AF Diamant, R. Huotari, S. Hamalainen, K. Sharon, R. Kao, C. C. Deutsch, M. TI K-h alpha(1,2) hypersatellites of 3d transition metals and their photoexcitation energy dependence SO PHYSICAL REVIEW A LA English DT Review DE chromium; cobalt; copper; inner-shell ionisation; iron; manganese; nickel; photoexcitation; photoionisation; quantum electrodynamics; radiative corrections; vanadium; X-ray spectra; zinc ID X-RAY-EMISSION; INNER-SHELL IONIZATION; K-ALPHA-HYPERSATELLITE; ONE-PHOTON TRANSITIONS; HIGHER-ORDER PROCESSES; HOLLOW ATOMS; SYNCHROTRON-RADIATION; SATELLITE SPECTRA; CROSS-SECTION; RELATIVISTIC CALCULATION AB Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K-h alpha(1,2) hypersatellites (HSs), were measured for the 3d transition metals, Z=23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K alpha(1,2), the K-h alpha(1)-K-h alpha(2) splitting, and the K-h alpha(1)/K-h alpha(2) intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction. C1 [Diamant, R.; Sharon, R.; Deutsch, M.] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Huotari, S.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Hamalainen, K.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Kao, C. C.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Diamant, R (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM keijo.hamalainen@helsinki.fi RI Hamalainen, Keijo/A-3986-2010 OI Hamalainen, Keijo/0000-0002-9234-9810 FU The Israel Science Foundation, Jerusalem; Academy of Finland [201291, 205967]; U.S. DOE [DE-AC0276CH00016] FX We gratefully acknowledge support by The Israel Science Foundation, Jerusalem (M.D.) and the Academy of Finland (K.H.) (Contracts No. 201291 and No. 205967), beam time at X25 (NSLS) and at ID16 (ESRF), and expert experimental support and advice by Z. Yin and L. E. Berman (NSLS). BNL is supported by the U.S. DOE under Contract No. DE-AC0276CH00016. NR 119 TC 9 Z9 9 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUN PY 2009 VL 79 IS 6 AR 062511 DI 10.1103/PhysRevA.79.062511 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 466XZ UT WOS:000267700100074 ER PT J AU Diamant, R Huotari, S Hamalainen, K Sharon, R Kao, CC Honkimaki, V Buslaps, T Deutsch, M AF Diamant, R. Huotari, S. Hamalainen, K. Sharon, R. Kao, C. C. Honkimaki, V. Buslaps, T. Deutsch, M. TI K-shell diagram and hypersatellite spectra of 4d transition elements SO PHYSICAL REVIEW A LA English DT Article DE ab initio calculations; atom-photon collisions; molybdenum; palladium; photoexcitation; spectral line breadth; spectral line intensity; spectral line shift; X-ray spectra; yttrium; zirconium ID X-RAY PHOTOIONIZATION; INELASTIC-SCATTERING EXPERIMENTS; FLUORESCENCE CROSS-SECTIONS; HIGHER-ORDER PROCESSES; IONIZED HEAVY-ATOMS; MEDIUM-MASS ATOMS; ALPHA-HYPERSATELLITE; VACANCY PRODUCTION; BREIT INTERACTION; INTENSITY RATIOS AB The K-shell diagram (K alpha(1,2) and K beta(1,3)) and hypersatellite (HS) (K(h)alpha(1,2)) spectra of Y, Zr, Mo, and Pd have been measured with high energy-resolution using photoexcitation by 90 keV synchrotron radiation. Comparison of the measured and ab initio calculated HS spectra demonstrates the importance of quantum electrodynamical (QED) effects for the HS spectra. Phenomenological fits of the measured spectra by Voigt functions yield accurate values for the shift of the HS from the diagram lines, the splitting of the HS lines, and their intensity ratio. Good agreement with theory was found for all quantities except for the intensity ratio, which is dominated by the intermediacy of the coupling of the angular momenta. The observed deviations imply that our current understanding of the variation of the coupling scheme from LS to jj across the periodic table may require some revision. C1 [Diamant, R.; Sharon, R.; Deutsch, M.] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Huotari, S.; Honkimaki, V.; Buslaps, T.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Hamalainen, K.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Kao, C. C.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Diamant, R (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM keijo.hamalainen@helsinki.fi RI Hamalainen, Keijo/A-3986-2010; OI Hamalainen, Keijo/0000-0002-9234-9810; Huotari, Simo/0000-0003-4506-8722 FU The Israel Science Foundation, Jerusalem; Academy of Finland [201291, 127462, 205967] FX Support by The Israel Science Foundation, Jerusalem (M.D.) and the Academy of Finland (Contracts No. 201291, 127462, and 205967 to K. H.), and beamtime at ID15B, ESRF, are gratefully acknowledged. NR 57 TC 2 Z9 2 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN PY 2009 VL 79 IS 6 AR 062512 DI 10.1103/PhysRevA.79.062512 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 466XZ UT WOS:000267700100075 ER PT J AU Schauer, MM Danielson, JR Nguyen, AT Wang, LB Zhao, X Torgerson, JR AF Schauer, M. M. Danielson, J. R. Nguyen, A. -T. Wang, L. -B. Zhao, X. Torgerson, J. R. TI Collisional population transfer in trapped Yb+ ions SO PHYSICAL REVIEW A LA English DT Article DE atom-ion collisions; atom-photon collisions; helium neutral atoms; metastable states; particle traps; positive ions; radiation pressure; ytterbium ID OPTICAL FREQUENCY STANDARD; METASTABLE STATES; YTTERBIUM IONS; YB-171(+); LIFETIME; TRANSITION AB Long-lived metastable states of Yb+ ions are used for atomic frequency standards, precision measurements, and quantum information research. The effect of population trapping and transfer in these states must be well understood. We report here the transfer of Yb+ ions into the long-lived F-2(7/2) state by means of collisions between He buffer gas and Yb+ ions held in a linear Paul trap. Transfer rates were measured as functions of buffer-gas pressure and repump-laser power, and the collisional population transfer rates were extracted. The measured transfer rate coefficients are 8.32(75)x10(-11) and 8.65(33)x10(-11) cm(3)/s for the collisional processes P-2(1/2)-> D-2(5/2) and D-2(3/2)-> F-2(7/2), respectively. C1 [Schauer, M. M.; Danielson, J. R.; Nguyen, A. -T.; Wang, L. -B.; Zhao, X.; Torgerson, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schauer, MM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Zhao, Xinxin/0000-0001-8128-2561 FU Los Alamos National Laboratory; Los Alamos National Security, LLC for the NNSA; U.S. Department of Energy [DE-AC52-06NA25396] FX We thank Steve Lamoreaux for early involvement and many helpful discussions. This work was supported by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the NNSA, U.S. Department of Energy, under Contract No. DE-AC52-06NA25396. NR 14 TC 9 Z9 9 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN PY 2009 VL 79 IS 6 AR 062705 DI 10.1103/PhysRevA.79.062705 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 466XZ UT WOS:000267700100085 ER PT J AU Schoffler, MS Titze, J Schmidt, LPH Jahnke, T Neumann, N Jagutzki, O Schmidt-Bocking, H Dorner, R Mancev, I AF Schoeffler, M. S. Titze, J. Schmidt, L. Ph. H. Jahnke, T. Neumann, N. Jagutzki, O. Schmidt-Boecking, H. Doerner, R. Mancev, I. TI State-selective differential cross sections for single and double electron capture in He-+,He-2+-He and p-He collisions SO PHYSICAL REVIEW A LA English DT Article DE atom-ion collisions; electron capture; helium ions; helium neutral atoms; hydrogen ions; positive ions ID ION MOMENTUM SPECTROSCOPY; DOUBLE-CHARGE-EXCHANGE; PROTON-HELIUM COLLISIONS; HIGH-IMPACT ENERGIES; RECOIL-ION; 2-ELECTRON CAPTURE; ALPHA-PARTICLES; ATOMIC SYSTEMS; WAVE-FUNCTIONS; SCATTERING AB Using the cold target recoil ion momentum spectroscopy technique, we have measured state-selective projectile scattering angles for single and double electron captures in collisions of protons and He-1,He-2+ projectiles with a helium target for incident energies of 60-630 keV/u. We also report theoretical results obtained by means of four-body one-channel distorted-wave models (continuum distorted-wave Born final state, continuum distorted-wave Born initial state, and Born distorted wave) and find mixed agreement with the measured data. C1 [Schoeffler, M. S.; Titze, J.; Schmidt, L. Ph. H.; Jahnke, T.; Neumann, N.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Schoeffler, M. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mancev, I.] Univ Nis, Dept Phys, Fac Sci & Math, Nish 18000, Serbia. RP Schoffler, MS (reprint author), Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. EM schoeffler@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Schoeffler, Markus/0000-0001-9214-6848 FU Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Ministry of Science of the Republic of Serbia [141029A] FX We are grateful for help from M. Prior. This work was supported in part by Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), and Roentdek Handels GmbH. I. M. acknowledges the support from Ministry of Science of the Republic of Serbia through Project No. 141029A. NR 34 TC 39 Z9 39 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN PY 2009 VL 79 IS 6 AR 064701 DI 10.1103/PhysRevA.79.064701 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 466XZ UT WOS:000267700100209 ER PT J AU Adiga, VP Sumant, AV Suresh, S Gudeman, C Auciello, O Carlisle, JA Carpick, RW AF Adiga, V. P. Sumant, A. V. Suresh, S. Gudeman, C. Auciello, O. Carlisle, J. A. Carpick, R. W. TI Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators SO PHYSICAL REVIEW B LA English DT Article DE atomic force microscopy; cantilevers; chemical vapour deposition; compressive strength; defect states; diamond; EXAFS; internal stresses; lithography; micromechanical resonators; nanoelectromechanical devices; nanostructured materials; Poisson ratio; Q-factor; stress relaxation; thin films; XANES; Young's modulus ID NANOCRYSTALLINE-DIAMOND; THIN-FILMS; CARBON-FILMS; MODULUS; DEVICES; MEMS; POLYCRYSTALLINE; OSCILLATORS; RESONATORS; INTERFACE AB We have characterized mechanical properties of ultrananocrystalline diamond (UNCD) thin films grown using the hot filament chemical vapor deposition (HFCVD) technique at 680 degrees C, significantly lower than the conventional growth temperature of similar to 800 degrees C. The films have similar to 4.3% sp(2) content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, similar to 1 mu m thick, exhibit a net residual compressive stress of 370 +/- 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838 +/- 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum (UHV) conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790 +/- 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057 +/- 0.038. The quality factors (Q) of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators. C1 [Adiga, V. P.; Carpick, R. W.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Sumant, A. V.; Auciello, O.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Suresh, S.; Gudeman, C.] Innovat Micro Technol, Santa Barbara, CA 93117 USA. [Auciello, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Carlisle, J. A.] Adv Diamond Technol, Romeoville, IL 60446 USA. [Carpick, R. W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. RP Adiga, VP (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. RI adiga, vivekananda /A-2093-2010 OI adiga, vivekananda /0000-0001-5979-6830 FU DARPA [06-W238]; U. S. Department of Energy [DE-AC02-06CH05117]; Office of Science; Office of Basic Energy Sicences [DE-AC02-06CH11357] FX This project was supported by DARPA under Grant No. 06-W238 and the U. S. Department of Energy under Contract No. DE-AC02-06CH05117. The work at ANL was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sicences under Contract No. DE-AC02-06CH11357. We thank A. R. Konicek for assistance with analyzing the NEXAFS spectra. We thank K. Ekinci for useful discusions of this work. NR 45 TC 50 Z9 51 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245403 DI 10.1103/PhysRevB.79.245403 PG 8 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700110 ER PT J AU Ahilan, K Ning, FL Imai, T Sefat, AS McGuire, MA Sales, BC Mandrus, D AF Ahilan, K. Ning, F. L. Imai, T. Sefat, A. S. McGuire, M. A. Sales, B. C. Mandrus, D. TI Electronic phase diagram of the iron-based high-T-c superconductor Ba(Fe1-xCox)(2)As-2 under hydrostatic pressure (0 < x < 0.099) SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; cobalt compounds; electrical resistivity; electronic structure; high-pressure effects; high-temperature superconductors; iron compounds; phase diagrams; spin density waves; superconducting transitions ID TEMPERATURE; LA2-XSRXCUO4 AB We report comprehensive resistivity measurements of single-crystalline samples of the Ba(Fe1-xCox)(2)As-2 high-T-c superconductor under hydrostatic pressure up to 2.75 GPa and over a broad concentration range, 0 < x < 0.099. We show that application of pressure progressively suppresses the spin-density wave (SDW) transition temperature, T-SDW, in the underdoped regime (x less than or similar to 0.051). There is no sign of pressure-induced superconductivity in the undoped BaFe2As2 down to 1.8 K but applied pressure dramatically enhances T-c in the underdoped regime 0.02 less than or similar to x less than or similar to 0.051. The effect of pressure on T-c is very small in the optimally and overdoped regimes 0.082 less than or similar to x less than or similar to 0.099. As a consequence, the dome of the superconducting phase extends to x less than or similar to 0.02 under pressure. We discuss the implications of our findings in the context of a possible quantum phase transition between the SDW and superconducting phases. C1 [Ahilan, K.; Ning, F. L.; Imai, T.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Imai, T.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ahilan, K (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 NR 44 TC 32 Z9 32 U1 4 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214520 DI 10.1103/PhysRevB.79.214520 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200121 ER PT J AU Balatsky, AV Chantis, A Dahal, HP Parker, D Zhu, JX AF Balatsky, A. V. Chantis, A. Dahal, Hari P. Parker, David Zhu, J. X. TI Incommensurate spin resonance in URu2Si2 SO PHYSICAL REVIEW B LA English DT Article DE doping; Fermi surface; heavy fermion superconductors; magnetic susceptibility; neutron diffraction; rhodium; ruthenium alloys; silicon alloys; specific heat; spin dynamics; uranium alloys ID ELECTRON SUPERCONDUCTOR URU2SI2; NEUTRON-SCATTERING; MAGNETIC-FIELD; FERMI-SURFACE; HIDDEN-ORDER; HEAVY; EXCITATIONS; DENSITY; MODEL AB The nature of the hidden order (HO) in URu2Si2 below T-HO=17.5 K has been a puzzle for a long time. Neutron-scattering studies of this material reveal a rich spin dynamics. We focus on the inelastic neutron scattering in URu2Si2 and argue that the observed gap in the fermion spectrum naturally leads to the spin feature observed at energies omega(res)=4-6 meV at momenta at Q(*)=(1 +/- 0.4,0,0). We discuss how spin features seen in URu2Si2 can indeed be thought of in terms of the spin resonance that develops in HO state and is not related to the superconducting transition at 1.5 K. In our analysis, we assume that the HO gap is due to a particle-hole condensate that connects nested parts of the Fermi surface with nesting vector Q(*). Within this approach, we can predict the behavior of the spin susceptibility at Q(*) and find it to be strikingly similar to the phenomenology of resonance peaks in high T-c and heavy fermion superconductors. The energy of the resonance peak scales with T-HO omega(res)similar or equal to 4k(B)T(HO). We discuss observable consequences that spin resonance will have on neutron scattering and local density of states. Moreover, we argue how the establishment of spin resonance in URu2Si2 and better characterization of susceptibility, temperature, pressure, and Rh-doping dependence would elucidate the nature of the HO. C1 [Balatsky, A. V.; Chantis, A.; Dahal, Hari P.; Zhu, J. X.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Parker, David] USN, Res Lab, Washington, DC 20375 USA. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Chantis, Athanasios/0000-0001-7933-0579; Zhu, Jianxin/0000-0001-7991-3918 NR 32 TC 35 Z9 35 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214413 DI 10.1103/PhysRevB.79.214413 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200074 ER PT J AU Belonoshko, AB Rosengren, A Burakovsky, L Preston, DL Johansson, B AF Belonoshko, Anatoly B. Rosengren, Anders Burakovsky, Leonid Preston, Dean L. Johansson, Borje TI Melting of Fe and Fe0.9375Si0.0625 at Earth's core pressures studied using ab initio molecular dynamics SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; Earth core; high-pressure effects; iron; iron alloys; melting; molecular dynamics method; silicon alloys ID CENTERED-CUBIC PHASE; INNER-CORE; IN-SITU; IRON; ANISOTROPY; TEMPERATURE; TRANSITIONS; EQUATION; PHYSICS; STATE AB The issue of melting of pure iron and iron alloyed with lighter elements at high pressure is critical to the physics of the Earth. The iron melting curve in the relevant pressure range between 3 and 4 Mbar is reasonably well established from the theoretical point of view. However, so far no one attempted a direct atomistic simulation of iron alloyed with light elements. We investigate here the impact of alloying the body-centered cubic (bcc) Fe with Si. We simulate melting of the bcc Fe and Fe0.9375Si0.0625 alloy by ab initio molecular dynamics. The addition of light elements to the hexagonal-close-packed (hcp) iron is known to depress its melting temperature (T-m). We obtain, in marked contrast, that alloying of bcc Fe with Si does not lead to T-m depression; on the contrary, the T-m slightly increases. This suggests that if Si is a typical impurity in the Earth's inner core, then the stable phase in the core is bcc rather than hcp. C1 [Belonoshko, Anatoly B.; Johansson, Borje] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. [Belonoshko, Anatoly B.; Rosengren, Anders] Royal Inst Technol, AlbaNova Univ Ctr, Dept Theoret Phys, SE-10691 Stockholm, Sweden. [Burakovsky, Leonid] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Preston, Dean L.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Johansson, Borje] Uppsala Univ, Condensed Matter Theory Grp, Dept Phys, SE-75121 Uppsala, Sweden. RP Belonoshko, AB (reprint author), Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. OI Belonoshko, Anatoly/0000-0001-7531-3210 FU National Infrastructure for Computing (SNIC); Swedish Council (VR); Swedish Foundation for Research (SSF) FX Computations were performed using the facilities at the National Infrastructure for Computing (SNIC) and LANL Coyote cluster. We also wish to thank the Swedish Council (VR) and the Swedish Foundation for Research (SSF) for financial support. NR 32 TC 21 Z9 22 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220102 DI 10.1103/PhysRevB.79.220102 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300002 ER PT J AU Biegalski, MD Vlahos, E Sheng, G Li, YL Bernhagen, M Reiche, P Uecker, R Streiffer, SK Chen, LQ Gopalan, V Schlom, DG Trolier-McKinstry, S AF Biegalski, M. D. Vlahos, E. Sheng, G. Li, Y. L. Bernhagen, M. Reiche, P. Uecker, R. Streiffer, S. K. Chen, L. Q. Gopalan, V. Schlom, D. G. Trolier-McKinstry, S. TI Influence of anisotropic strain on the dielectric and ferroelectric properties of SrTiO3 thin films on DyScO3 substrates SO PHYSICAL REVIEW B LA English DT Article DE dielectric polarisation; dysprosium compounds; electric domains; ferroelectric thin films; ferroelectric transitions; optical harmonic generation; permittivity; strontium compounds; tensile strength ID DIFFUSE PHASE-TRANSITIONS; SOFT PHONON MODES; RELAXOR FERROELECTRICS; PRESSURE; PEROVSKITES; CAPACITOR; BATIO3; PBTIO3; GDSCO3 AB The in-plane dielectric and ferroelectric properties of coherent anisotropically strained SrTiO3 thin films grown on orthorhombic (101) DyScO3 substrates were examined as a function of the angle between the applied electric field and the principal directions of the substrate. The dielectric permittivity revealed two distinct maxima as a function of temperature along the [100](p) and [010](p) SrTiO3 pseudocubic directions. These data, in conjunction with optical second-harmonic generation, show that the switchable ferroelectric polarization develops first predominantly along the in-plane axis with the larger tensile strain before developing a polarization component along the perpendicular direction with smaller strain as well, leading to domain twinning at the lower temperature. Finally, weak signatures in the dielectric and second-harmonic generation response were detected at the SrTiO3 tilt transition close to 165 K. These studies indicate that anisotropic biaxial strain can lead to new ferroelectric domain reorientation transitions that are not observed in isotropically strained films. C1 [Biegalski, M. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Biegalski, M. D.; Vlahos, E.; Sheng, G.; Li, Y. L.; Chen, L. Q.; Gopalan, V.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Bernhagen, M.; Reiche, P.; Uecker, R.] Inst Crystal Growth, D-12489 Berlin, Germany. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Biegalski, MD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RI Sheng, Guang/C-2043-2012; Schlom, Darrell/J-2412-2013; Chen, LongQing/I-7536-2012; OI Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781; Trolier-McKinstry, Susan/0000-0002-7267-9281 NR 50 TC 25 Z9 25 U1 4 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224117 DI 10.1103/PhysRevB.79.224117 PG 11 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300042 ER PT J AU Bud'ko, SL Ni, N Canfield, PC AF Bud'ko, Sergey L. Ni, Ni Canfield, Paul C. TI Jump in specific heat at the superconducting transition temperature in Ba(Fe1-xCox)(2)As-2 and Ba(Fe1-xNix)(2)As-2 single crystals SO PHYSICAL REVIEW B LA English DT Article AB We present detailed heat capacity measurements for Ba(Fe1-xCox)(2)As-2 and Ba(Fe1-xNix)(2)As-2 single crystals in the vicinity of the superconducting transitions. The specific-heat jump at the superconducting transition temperature (T-c), Delta C-p/T-c, changes by a factor of similar to 10 across these series. The Delta C-p/T-c vs Tc data of this work [together with the literature data for Ba(Fe0.939Co0.061)(2)As-2, (Ba0.55K0.45(Fe2As2, and (Ba0.6K0.4)Fe2As2] scale well to a single log-log plot over two orders of magnitude in Delta C-p/T-c and over about an order of magnitude in T-c, giving Delta C-p/T-c proportional to T-c(2). C1 [Bud'ko, Sergey L.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the U.S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We thank Vladimir Kogan and Jorg Schmalian for useful discussions and Jiaqiang Yan for help in synthesis. NR 29 TC 117 Z9 118 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220516 DI 10.1103/PhysRevB.79.220516 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300024 ER PT J AU Chen, H Zhu, WG Kaxiras, E Zhang, ZY AF Chen, Hua Zhu, Wenguang Kaxiras, Efthimios Zhang, Zhenyu TI Optimization of Mn doping in group-IV-based dilute magnetic semiconductors by electronic codopants SO PHYSICAL REVIEW B LA English DT Article ID DOPED SI-MN; AUGMENTED-WAVE METHOD; CURIE-TEMPERATURE; FERROMAGNETIC SEMICONDUCTORS; TRANSPORT-PROPERTIES; SPIN-GLASSES; (GA,MN)AS; SPINTRONICS; MNXGE1-X; SILICON AB The percentage of substitutional doping of magnetic atoms (Mn) in group-IV-based dilute magnetic semiconductors can be increased by codoping with another conventional electronic dopant, as demonstrated from first-principles calculations recently [W. G. Zhu, Z. Y. Zhang, and E. Kaxiras, Phys. Rev. Lett. 100, 027205 (2008)]. Here, we report extensive theoretical investigations of the kinetic and thermodynamic characteristics of several codoped systems including bulk Si and Ge as hosts and various group-III and group-V dopants. The main findings are as follows. The n-p pairing of n-type codopants with p-type substitutional Mn is energetically stable in bulk Ge and Si. Mn atoms move from interstitial sites to substitutional sites easier (with lower kinetic barriers) in the presence of a neighboring n-type codopant. Magnetic coupling between two Mn atoms in bulk Ge oscillates between positive (ferromagnetic) and negative (antiferromagnetic) values with increasing Mn-Mn distance, but in Mn/As codoped Ge the coupling parameter remains positive at all distances beyond nearest neighbors and this qualitative difference does not change with the doping level. For Mn-doped Si, all coupling values except for the nearest-neighbor one are positive and do not change much upon codoping. We find an unconventional magnetic anisotropy in the codoped system, that is, the dependence of magnetic coupling on the relative positions of the magnetic ions and their neighboring donors. We map the calculated magnetic coupling to a classical Heisenberg model and employ Monte Carlo simulations to estimate the Curie temperature (T-c). We find that in Mn-doped Ge no ferromagnetic order exists for Mn concentrations ranging from 3.13% to 6%. Instead, a spin-glass phase transition occurs at similar to 5 K at 5% Mn doping. For Mn/As codoped Ge, T-c increases nearly linearly with the Mn concentration and reaches 264 K at 5% Mn doping. C1 [Chen, Hua; Zhu, Wenguang; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chen, Hua; Zhu, Wenguang; Zhang, Zhenyu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kaxiras, Efthimios] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Kaxiras, Efthimios] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Chen, H (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Zhu, Wenguang/F-4224-2011; Chen, Hua/H-3092-2013 OI Zhu, Wenguang/0000-0003-0819-595X; Chen, Hua/0000-0003-0676-3079 FU NSF [DMR-0325218, DMR-0606485]; DOE [DE-FG02-05ER46209]; ORNL FX The authors thank Adriana Moreo, Rong Yu, and Shuai Dong for helpful discussions and Kirk H. Bevan for a critical reading of the paper. This work was supported in part by NSF under Grant Nos. DMR-0325218 and DMR-0606485, by DOE under Grant No. DE-FG02-05ER46209, and in part by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. The calculations were performed at NERSC of DOE and NCCS of ORNL. NR 74 TC 28 Z9 28 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235202 DI 10.1103/PhysRevB.79.235202 PG 13 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500062 ER PT J AU Cho, K Smith, BE Coniglio, WA Winter, LE Agosta, CC Schlueter, JA AF Cho, K. Smith, B. E. Coniglio, W. A. Winter, L. E. Agosta, C. C. Schlueter, J. A. TI Upper critical field in the organic superconductor beta(')-(ET)(2)SF5CH2CF2SO3: Possibility of Fulde-Ferrell-Larkin-Ovchinnikov state SO PHYSICAL REVIEW B LA English DT Article DE mixed state; organic superconductors; superconducting critical field; superconducting transitions ID BEDT-TTF; MAGNETIC-PROPERTIES; ELECTRON-SPIN; BETA''-(BEDT-TTF)(2)SF5CH2CF2SO3; TEMPERATURE; UPD2AL3; HEAT AB We report upper critical-field measurements in the metal-free-all-organic superconductor beta(')-(ET)(2)SF5CH2CF2SO3 obtained from measuring the in-plane penetration depth using the tunnel diode oscillator technique. For magnetic field applied parallel to the conducting planes the low-temperature upper critical fields are found to exceed the Pauli limiting field calculated by using a semiempirical method. Furthermore, we found a signature that could be the phase transition between the superconducting vortex state and the Fulde-Ferrell-Larkin-Ovchinnikov state in the form of a kink just below the upper critical field and only at temperatures below 1.23 K. C1 [Cho, K.; Smith, B. E.; Coniglio, W. A.; Winter, L. E.; Agosta, C. C.] Clark Univ, Dept Phys, Worcester, MA 01610 USA. [Schlueter, J. A.] Argonne Natl Lab, Div Chem & Mat Sci, Argonne, IL 60439 USA. RP Cho, K (reprint author), Clark Univ, Dept Phys, Worcester, MA 01610 USA. FU U.S. Department of Energy, BES [DE-FG02-05ER46214] FX The work is supported by the U.S. Department of Energy, BES, under Grant No. DE-FG02-05ER46214. NR 37 TC 28 Z9 28 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220507 DI 10.1103/PhysRevB.79.220507 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300015 ER PT J AU Colombier, E Bud'ko, SL Ni, N Canfield, PC AF Colombier, E. Bud'ko, S. L. Ni, N. Canfield, P. C. TI Complete pressure-dependent phase diagrams for SrFe2As2 and BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetism; barium compounds; crystal growth from melt; electrical resistivity; fluctuations in superconductors; high-pressure effects; iron compounds; magnetic transitions; phase diagrams; strontium compounds; superconducting materials; superconducting transition temperature; superconducting transitions ID SUPERCONDUCTIVITY; RESISTANCE; COMPOUND; GPA; PB AB The temperature-dependent electrical resistivity of single-crystalline SrFe2As2 and BaFe2As2 has been measured in a liquid-medium modified Bridgman anvil cell for pressures in excess of 75 kbar. These data allow for the determination of the pressure dependence of the higher-temperature structural/antiferromagnetic phase transitions as well as the lower-temperature superconducting phase transition. For both compounds the ambient-pressure higher-temperature structural/antiferromagnetic phase transition can be fully suppressed with a domelike region of zero resistivity found to be centered about its critical pressure. Indeed, qualitatively, the temperature dependence of the resistivity curves closest to the critical pressures is the closest to linear, suggesting the possibility of quantum criticality. For pressures significantly higher than the critical pressure the zero-resistivity state is suppressed and the low-temperature resistivity curves asymptotically approach a universal low-temperature manifold. These results are consistent with the hypothesis that correlations/fluctuations associated with the ambient-pressure, high-temperature, tetragonal phase have to be brought to low enough temperature to allow superconductivity, but if too fully suppressed it can lead to the loss of the superconducting state. C1 [Colombier, E.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Colombier, E (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 NR 32 TC 117 Z9 117 U1 5 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224518 DI 10.1103/PhysRevB.79.224518 PG 9 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300106 ER PT J AU Cywinski, L Witzel, WM Das Sarma, S AF Cywinski, Lukasz Witzel, Wayne M. Das Sarma, S. TI Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions SO PHYSICAL REVIEW B LA English DT Article DE gallium arsenide; hyperfine interactions; III-V semiconductors; indium compounds; quantum computing; semiconductor quantum dots; Zeeman effect ID COHERENT DYNAMICS; DOTS; DECOHERENCE; FIELD AB We investigate decoherence due to pure dephasing of a localized spin qubit interacting with a nuclear spin bath. Although in the limit of a very large magnetic field the only decoherence mechanism is spectral diffusion due to dipolar flip-flops of nuclear spins, with decreasing field the hyperfine-mediated interactions between the nuclear spins become important. We take advantage of their long-range nature and resum the leading terms in an 1/N expansion of the decoherence time-evolution function (N, being the number of nuclear spins interacting appreciably with the electron spin, is large). For the case of the thermal uncorrelated bath we show that our theory is applicable down to low magnetic fields (similar to 10 mT for a large dot with N=10(6)) allowing for comparison with recent experiments in GaAs quantum dot spin qubits. Within this approach we calculate the free induction decay and spin echo decoherence in GaAs and InGaAs as a function of the number of the nuclei in the bath (i.e., the quantum dot size) and the magnetic field. Our theory for free induction decay in a narrowed nuclear bath is shown to agree with the exact solution for decoherence due to hyperfine-mediated interaction which can be obtained when all the nuclei-electron coupling constants are identical. For the spin echo evolution we show that the dominant decoherence process at low fields is due to interactions between nuclei having significantly different Zeeman energies (i.e., nuclei of As and two isotopes of Ga in GaAs), and we compare our results with recent measurements of spin echo signal of a single spin confined in a GaAs quantum dot. For the same set of parameters we perform calculations of decoherence under various dynamical decoupling pulse sequences and predict the effect of these sequences in low-B regime in GaAs. C1 [Cywinski, Lukasz; Witzel, Wayne M.; Das Sarma, S.] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Cywinski, Lukasz] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Witzel, Wayne M.] USN, Res Lab, Washington, DC 20375 USA. [Witzel, Wayne M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Cywinski, L (reprint author), Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. RI Cywinski, Lukasz/E-5348-2010; Das Sarma, Sankar/B-2400-2009 OI Cywinski, Lukasz/0000-0002-0162-7943; Das Sarma, Sankar/0000-0002-0439-986X NR 87 TC 87 Z9 87 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245314 DI 10.1103/PhysRevB.79.245314 PG 23 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700090 ER PT J AU da Luz, MS Neumeier, JJ Bollinger, RK Sefat, AS McGuire, MA Jin, R Sales, BC Mandrus, D AF da Luz, M. S. Neumeier, J. J. Bollinger, R. K. Sefat, A. S. McGuire, M. A. Jin, R. Sales, B. C. Mandrus, D. TI High-resolution measurements of the thermal expansion of superconducting Co-doped BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; cobalt; iron compounds; specific heat; superconducting transition temperature; superconducting transitions; thermal expansion measurement ID CRYSTALS; TEMPERATURE; TRANSITION; GRAPHITE AB High-resolution thermal expansion measurements of single crystalline BaFe1.84Co0.16As2 and BaFe1.77Co0.23As2 in the temperature range 5 < T < 300 K are reported. The thermal expansion is highly anisotropic, with the largest expansion along the c axis. Distinct anomalies are present at the normal-to-superconducting phase-transition temperature T-c; the phase transition appears to be continuous. No structural transitions are observed over the temperature range of our measurements. The thermal expansion data and heat-capacity data acquired on the same specimens are used to estimate the volumetric pressure derivative of T-c using the Ehrenfest relation. C1 [da Luz, M. S.; Neumeier, J. J.; Bollinger, R. K.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP da Luz, MS (reprint author), Montana State Univ, Dept Phys, POB 173840, Bozeman, MT 59717 USA. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 NR 43 TC 18 Z9 18 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214505 DI 10.1103/PhysRevB.79.214505 PG 6 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200106 ER PT J AU Dalpian, GM Da Silva, JLF Wei, SH AF Dalpian, Gustavo M. Da Silva, Juarez L. F. Wei, Su-Huai TI Ferrimagnetic Fe-doped GaN: An unusual magnetic phase in dilute magnetic semiconductors SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetism; density functional theory; doping profiles; electronic density of states; energy gap; ferrimagnetic materials; gallium compounds; III-V semiconductors; iron; magnetic moments; semiconductor doping; semimagnetic semiconductors; superexchange interactions; wide band gap semiconductors ID SPINTRONICS AB Most dilute magnetic semiconductors exist either in ferromagnetic (e.g., GaAs:Mn) or antiferromagnetic (ZnSe:Mn) phases at low temperature. This alignment persists even after carriers are introduced, although the preference may change as a function of doping. Using first-principles calculations, we found that the stable magnetic phase of GaN:Fe is ferrimagnetic under hole doping, in which the nearest Fe atoms have antiparallel spins with different magnetic moments. This unusual behavior is explained by the Stoner model combined with a band coupling model. Furthermore, the consequences of the formation of the ferrimagnetic phase in diluted magnetic systems are discussed. C1 [Dalpian, Gustavo M.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil. [Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dalpian, GM (reprint author), Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil. RI Dalpian, Gustavo/B-9746-2008; Da Silva, Juarez L. F./D-1779-2011 OI Dalpian, Gustavo/0000-0001-5561-354X; Da Silva, Juarez L. F./0000-0003-0645-8760 FU FAPESP; CNPq; U. S. Department of Energy [DE-AC36-08GO28308] FX G. M. D. acknowledges financial support from the Brazilian agencies FAPESP and CNPq. The work at NREL is supported by the U. S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 27 TC 15 Z9 15 U1 2 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 241201 DI 10.1103/PhysRevB.79.241201 PG 4 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700011 ER PT J AU Deniozou, T Ledieu, J Fournee, V Wu, DM Lograsso, TA Li, HI Diehl, RD AF Deniozou, Th. Ledieu, J. Fournee, V. Wu, D. M. Lograsso, T. A. Li, H. I. Diehl, R. D. TI Aperiodic and modulated Pb thin films on fivefold icosahedral Al-Cu-Fe and Al(111): Tailoring the structure of Pb SO PHYSICAL REVIEW B LA English DT Article DE adsorption; lead; metallic thin films; monolayers; nucleation; quasicrystals; surface diffusion ID QUASI-CRYSTAL SURFACES; STICKING PROBABILITY; EPITAXIAL-GROWTH; METAL-SURFACES; DEPOSITION; SIMULATION; STM AB We report on the growth of Pb thin films deposited either on the Al-rich fivefold surface of the icosahedral Al-Cu-Fe quasicrystal or on the (111) surface of fcc Al. On the quasicrystalline substrate, the diffusion length of Pb adatoms is short due to heterogeneous nucleation that enforces a quasiperiodic structure in the monolayer. On the Al(111) substrate, the mobility of Pb adatoms is high and the interaction with the substrate is flatter, leading to the formation of a (root 31x root 31)R8.95 degrees higher-order commensurate structure. This moireacute structure propagates up to the highest coverages investigated.

. C1 [Deniozou, Th.; Ledieu, J.; Fournee, V.] Nancy Univ, Inst Jean Lamour, UMR 7198, CNRS,UPV Metz,Ecole Mines Nancy, F-54042 Nancy, France. [Wu, D. M.; Lograsso, T. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, H. I.; Diehl, R. D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Deniozou, T (reprint author), Nancy Univ, Inst Jean Lamour, UMR 7198, CNRS,UPV Metz,Ecole Mines Nancy, Parc Saurupt,CS 14234, F-54042 Nancy, France. RI Ledieu, Julian/F-1430-2010 FU European Network of Excellence on Complex Metallic Alloys (CMA) [NMP3-CT-2005-500145, ANR-05-NT03-41834]; National Science Foundation [DMR-0505160] FX We acknowledge the European Network of Excellence on Complex Metallic Alloys (CMA) under Contracts No. NMP3-CT-2005-500145 and No. ANR-05-NT03-41834, and the National Science Foundation under Grant No. DMR-0505160 for financial support. NR 45 TC 9 Z9 9 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245405 DI 10.1103/PhysRevB.79.245405 PG 9 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700112 ER PT J AU Fang, A Koschny, T Wegener, M Soukoulis, CM AF Fang, A. Koschny, Th. Wegener, M. Soukoulis, C. M. TI Self-consistent calculation of metamaterials with gain SO PHYSICAL REVIEW B LA English DT Article DE metamaterials; nanostructured materials; photonic crystals; refractive index ID INDEX; WAVELENGTHS AB We present a computational scheme allowing for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure. The gain is described by a generic four-level system. A critical pumping rate exists for compensating the loss of the metamaterial. Nonlinearities arise due to gain depletion beyond a certain critical strength of a test field. Transmission, reflection, and absorption data as well as the retrieved effective parameters are presented for a lattice of resonant square cylinders embedded in layers of gain material and split ring resonators with gain material embedded into the gaps. C1 [Fang, A.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fang, A.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koschny, Th.; Soukoulis, C. M.] Univ Crete, FORTH, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Th.; Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Wegener, M.] Univ Karlsruhe TH, Inst Angew Phys, D-76128 Karlsruhe, Germany. [Wegener, M.] Univ Karlsruhe TH, DFG Ctr Funct Nanostruct CFN, D-76128 Karlsruhe, Germany. RP Fang, A (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; European Community FETproject PHOME [213390]; Office of Naval Research [N00014-07-1-0359] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the European Community FETproject PHOME (Contract No. 213390) and the Office of Naval Research (Award No. N00014-07-1-0359). NR 20 TC 96 Z9 96 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 241104 DI 10.1103/PhysRevB.79.241104 PG 4 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700004 ER PT J AU Fang, A Koschny, T Soukoulis, CM AF Fang, Anan Koschny, Thomas Soukoulis, Costas M. TI Optical anisotropic metamaterials: Negative refraction and focusing SO PHYSICAL REVIEW B LA English DT Article DE anisotropic media; metamaterials; nanowires; optical materials; refractive index; slabs ID PHOTONIC CRYSTALS; NANOWIRES; MEDIA; INDEX AB We design three-dimensional (3D) metallic nanowire media with different structures and numerically demonstrate that they can be homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. For a finite slab, a nice fitting procedure is exploited to obtain the dispersion relations from which we retrieve the effective permittivities. The pseudo focusing for the real 3D wire medium agrees very well with the homogeneous medium having the effective permittivity tensor of the wire medium. Studies also show that in the long-wavelength limit, the hyperbolic dispersion relation of the 3D wire medium can be valid even for evanescent modes. C1 [Fang, Anan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Fang, Anan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Fang, A (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Science) [DE-ACD2-07CH11358]; AFOSR [FA 9550-06-10337]; European Community project ENSEMBLE FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Science) under Contract No. DE-ACD2-07CH11358. This work was partially supported by AFOSR under MURI grant (Grant No. FA 9550-06-10337) and the European Community project ENSEMBLE. NR 28 TC 92 Z9 94 U1 5 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245127 DI 10.1103/PhysRevB.79.245127 PG 7 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700061 ER PT J AU Franceschetti, A Luo, JW An, JM Zunger, A AF Franceschetti, A. Luo, J. W. An, J. M. Zunger, A. TI Origin of one-photon and two-photon optical transitions in PbSe nanocrystals SO PHYSICAL REVIEW B LA English DT Article DE energy gap; IV-VI semiconductors; lead compounds; nanostructured materials; photoluminescence; pseudopotential methods; two-photon spectra ID MULTIPLE EXCITON GENERATION; CDSE QUANTUM DOTS; ELECTRONIC-STRUCTURE; COLLOIDAL PBSE; ANISOTROPY; ENERGY; GAP AB PbSe nanocrystals represent the paradigm nanoscale system exhibiting carrier multiplication upon light absorption, yet their absorption spectrum is poorly understood. Two very different interpretations of the absorption peaks have been proposed: is the second absorption peak a dipole-forbidden S(h)-P(e) or P(h)-S(e) transition or a dipole-allowed P(h)-P(e) transition? A recent two-photon photoluminescence-excitation experiment favored the first interpretation, raising the question of why a dipole-forbidden transition would be strongly absorptive. Here we report atomistic pseudopotential calculations of the one-photon and two-photon absorption spectra of PbSe nanocrystals, showing unequivocally that, contrary to previous interpretations by other authors, the second one-photon absorption peak originates from dipole-allowed P(h)-P(e) transitions. C1 [Franceschetti, A.; Luo, J. W.; An, J. M.; Zunger, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 FU U. S. DOE, SC, BES [DE-AC36-08GO28308] FX This work was funded by the U. S. DOE, SC, BES, under Contract No. DE-AC36-08GO28308 to NREL. NR 32 TC 12 Z9 12 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 241311 DI 10.1103/PhysRevB.79.241311 PG 4 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700024 ER PT J AU Gehring, PM Hiraka, H Stock, C Lee, SH Chen, W Ye, ZG Vakhrushev, SB Chowdhuri, Z AF Gehring, P. M. Hiraka, H. Stock, C. Lee, S. -H. Chen, W. Ye, Z. -G. Vakhrushev, S. B. Chowdhuri, Z. TI Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb(Mg1/3Nb2/3)O-3 SO PHYSICAL REVIEW B LA English DT Article DE lattice constants; lead compounds; magnesium compounds; neutron diffraction; phonons; relaxor ferroelectrics; thermal expansion ID GLASSY POLARIZATION BEHAVIOR; X-RAY-SCATTERING; NEUTRON-SCATTERING; FERROELECTRIC PBMG1/3NB2/3O3; PHASE-TRANSITIONS; LEAD MAGNONIOBATE; SINGLE-CRYSTALS; ELECTRIC-FIELD; SOFT MODE; PMN AB We have used neutron scattering techniques that probe time scales from 10(-12) to 10(-9) s to characterize the diffuse scattering and low-energy lattice dynamics in single crystals of the relaxor PbMg1/3Nb2/3O3 (PMN) from 10 to 900 K. Our study extends far below T-c=213 K, where long-range ferroelectric correlations have been reported under field-cooled conditions, and well above the nominal Burns temperature T-d approximate to 620 K, where optical measurements suggest the development of short-range polar correlations known as "polar nanoregions" (PNR). We observed two distinct types of diffuse scattering. The first is weak, relatively temperature independent, persists to at least 900 K, and forms bow-tie-shaped patterns in reciprocal space centered on (h00) Bragg peaks. We associate this primarily with chemical short-range order. The second is strong, temperature dependent, and forms butterfly-shaped patterns centered on (h00) Bragg peaks. This diffuse scattering has been attributed to the PNR because it responds to an electric field and vanishes near T-d approximate to 620 K when measured with thermal neutrons. Surprisingly, it vanishes at 420 K when measured with cold neutrons, which provide approximately four times superior energy resolution. That this onset temperature depends so strongly on the instrumental energy resolution indicates that the diffuse scattering has a quasielastic character and demands a reassessment of the Burns temperature T-d. Neutron backscattering measurements made with 300 times better energy resolution confirm the onset temperature of 420 +/- 20 K. The energy width of the diffuse scattering is resolution limited, indicating that the PNR are static on time scales of at least 2 ns between 420 and 10 K. Transverse acoustic (TA) phonon lifetimes, which are known to decrease dramatically for wave vectors q approximate to 0.2 A degrees(-1) and T-c < T < T-d, are temperature independent up to 900 K for q close to the zone center. This motivates a physical picture in which sufficiently long-wavelength TA phonons average over the PNR; only those TA phonons having wavelengths comparable to the size of the PNR are affected. Finally, the PMN lattice constant changes by less than 0.001 A degrees below 300 K but expands rapidly at a rate of 2.5x10(-5) K-1 at high temperature. These disparate regimes of low and high thermal expansions bracket the revised value of T-d, which suggests the anomalous thermal expansion results from the condensation of static PNR. C1 [Gehring, P. M.; Lee, S. -H.; Chowdhuri, Z.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Hiraka, H.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Hiraka, H.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Stock, C.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Chen, W.; Ye, Z. -G.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Vakhrushev, S. B.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Gehring, PM (reprint author), Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RI Vakhrushev, Sergey/A-9855-2011; OI Vakhrushev, Sergey/0000-0003-4867-1404; Gehring, Peter/0000-0002-9236-2046 NR 87 TC 68 Z9 69 U1 3 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224109 DI 10.1103/PhysRevB.79.224109 PG 14 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300034 ER PT J AU Giannetti, C Coslovich, G Cilento, F Ferrini, G Eisaki, H Kaneko, N Greven, M Parmigiani, F AF Giannetti, Claudio Coslovich, Giacomo Cilento, Federico Ferrini, Gabriele Eisaki, Hiroshi Kaneko, Nobuhisa Greven, Martin Parmigiani, Fulvio TI Discontinuity of the ultrafast electronic response of underdoped superconducting Bi2Sr2CaCu2O8+delta strongly excited by ultrashort light pulses SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; Cooper pairs; energy gap; high-speed optical techniques; high-temperature superconductors; phonons; type II superconductors ID QUASI-PARTICLE DYNAMICS; NONEQUILIBRIUM SUPERCONDUCTORS; YBA2CU3O7-DELTA; STATES; SCALE AB We report the experimental evidence of an abrupt transition of the ultrafast electronic response of underdoped superconducting Bi2Sr2CaCu2O8+delta, under the impulsive photoinjection of a high density of excitations, using ultrashort laser pulses and avoiding significant laser heating. The direct proof of this process is the discontinuity of the transient optical electronic response, observed at a critical fluence of Phi(th)similar or equal to 70 mu J/cm(2). Below this threshold, the recovery dynamics is described by the Rothwarf-Taylor equations, whereas, above the critical intensity, a fast electronic response is superimposed to a slower dynamics related to the superconductivity recovery. We discuss our experimental findings within the frame of the available models for nonequilibrium superconductivity, i.e., the T-eff and mu(eff) models. The measured critical fluence is compatible with a first-order photoinduced phase transition triggered by the impulsive shift of the chemical potential. The measured value, significantly in excess of the condensation energy, indicates that, close to the threshold, the largest amount of energy is delivered to phonons or to other gap-energy excitations strongly coupled to Cooper pairs. C1 [Giannetti, Claudio; Cilento, Federico; Ferrini, Gabriele] Univ Cattolica Sacro Cuore, Dept Phys, I-25121 Brescia, Italy. [Coslovich, Giacomo; Parmigiani, Fulvio] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Coslovich, Giacomo] Lab Nazl TASC, I-34012 Basovizza Trieste, Italy. [Eisaki, Hiroshi; Greven, Martin] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Eisaki, Hiroshi; Kaneko, Nobuhisa; Greven, Martin] Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Parmigiani, Fulvio] Sincrotrone Trieste SCpA, I-34012 Basovizza, Italy. RP Giannetti, C (reprint author), Univ Cattolica Sacro Cuore, Dept Phys, I-25121 Brescia, Italy. EM c.giannetti@dmf.unicatt.it; fulvio.parmigiani@elettra.trieste.it RI Ferrini, Gabriele/G-2395-2010; Giannetti, Claudio/E-6694-2012; OI Ferrini, Gabriele/0000-0002-5062-9099; Giannetti, Claudio/0000-0003-2664-9492; Parmigiani, Fulvio/0000-0001-9529-7406 FU MIUR [RBNE0155X7]; DOE [DE-FG03-99ER45773, DE-AC03-76SF00515]; NSF [DMR9985067] FX This work was supported by the MIUR under the Contract No. FIRB-RBNE0155X7. The crystal growth work at Stanford University was supported by DOE under Contracts No. DE-FG03-99ER45773 and No. DE- AC03-76SF00515 and by NSF under Grant No. DMR9985067. NR 33 TC 34 Z9 34 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224502 DI 10.1103/PhysRevB.79.224502 PG 8 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300090 ER PT J AU Glatz, A Beloborodov, IS AF Glatz, Andreas Beloborodov, I. S. TI Thermoelectric and Seebeck coefficients of granular metals SO PHYSICAL REVIEW B LA English DT Article ID MERIT; SYSTEMS; DEVICES; FIGURE; POWER AB In this work we present a detailed study and derivation of the thermopower and thermoelectric coefficient of nanogranular metals at large tunneling conductance between the grains, g(T) >> 1. An important criterion for the performance of a thermoelectric device is the thermodynamic figure of merit which is derived using the kinetic coefficients of granular metals. All results are valid at intermediate temperatures, E(c) >> T/g(T) > delta, where delta is the mean energy-level spacing for a single grain and Ec is its charging energy. We show that the electron-electron interaction leads to an increase in the thermopower with decreasing grain size and discuss our results in light of future generation thermoelectric materials for low-temperature applications. The behavior of the figure of merit depending on system parameters such as grain size, tunneling conductance, and temperature is presented. C1 [Glatz, Andreas] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 28 TC 6 Z9 6 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235403 DI 10.1103/PhysRevB.79.235403 PG 25 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500110 ER PT J AU Guo, YJ Dong, S Wang, KF Liu, JM AF Guo, Y. J. Dong, Shuai Wang, K. F. Liu, J. -M. TI Mean-field theory for ferroelectricity in Ca3CoMnO6 SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; cobalt compounds; dielectric polarisation; ferroelectricity; Ising model; magnetic susceptibility; multiferroics; optical susceptibility ID ONE-DIMENSIONAL OXIDES; MAGNETIC-PROPERTIES; MULTIFERROICS; CA3CO1+XMN1-XO6 AB An elastic Ising model for CoMnO6 chain is proposed to explain the ferroelectricity induced by collinear magnetic order in Ca3CoMnO6, and then a mean-field theory with interchain spin interactions based on this model is developed. With inclusion of the dynamics of polarization domains at finite temperature, we address the rationality of our theory by the good agreement of the calculated electric polarization and dielectric susceptibility with the reported data on Ca3Co2-xMnxO6 (x approximate to 0.96) [Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S.-W. Cheong, Phys. Rev. Lett. 100, 047601 (2008)], a typical diatomic Ising spin chain system, while the predicted magnetic susceptibility shows some difference from experiment, the reason of which is discussed. C1 [Guo, Y. J.; Dong, Shuai; Wang, K. F.; Liu, J. -M.] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. [Dong, Shuai] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dong, Shuai] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liu, J. -M.] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China. RP Liu, JM (reprint author), Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. EM liujm@nju.edu.cn RI Dong (董), Shuai (帅)/A-5513-2008; Wang, Kefeng/E-7683-2011 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; Wang, Kefeng/0000-0002-8449-9720 FU Natural Science Foundation of China [50832002, 10874075, 50601013]; National Key Projects for Basic Research of China [2009CB623303, 2009CB929501] FX This work was supported by the Natural Science Foundation of China (Grant Nos. 50832002, 10874075, and 50601013) and the National Key Projects for Basic Research of China (Grant Nos. 2009CB623303 and 2009CB929501) NR 31 TC 18 Z9 19 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245107 DI 10.1103/PhysRevB.79.245107 PG 9 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700041 ER PT J AU Hahn, SE Lee, Y Ni, N Canfield, PC Goldman, AI McQueeney, RJ Harmon, BN Alatas, A Leu, BM Alp, EE Chung, DY Todorov, IS Kanatzidis, MG AF Hahn, S. E. Lee, Y. Ni, N. Canfield, P. C. Goldman, A. I. McQueeney, R. J. Harmon, B. N. Alatas, A. Leu, B. M. Alp, E. E. Chung, D. Y. Todorov, I. S. Kanatzidis, M. G. TI Influence of magnetism on phonons in CaFe2As2 as seen via inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; arsenic alloys; calcium alloys; electron spin polarisation; iron alloys; magnetic moments; phonon dispersion relations; X-ray scattering ID IRON-PNICTIDES AB In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high-temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. C1 [Hahn, S. E.; Lee, Y.; Ni, N.; Canfield, P. C.; Goldman, A. I.; McQueeney, R. J.; Harmon, B. N.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Hahn, S. E.; Lee, Y.; Ni, N.; Canfield, P. C.; Goldman, A. I.; McQueeney, R. J.; Harmon, B. N.] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Alatas, A.; Leu, B. M.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chung, D. Y.; Todorov, I. S.; Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Hahn, SE (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. EM shahn@ameslab.gov; mcqueeney@ameslab.gov RI Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; OI McQueeney, Robert/0000-0003-0718-5602; Hahn, Steven/0000-0002-2018-7904 NR 18 TC 27 Z9 27 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220511 DI 10.1103/PhysRevB.79.220511 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300019 ER PT J AU Heidrich-Meisner, F Feiguin, AE Dagotto, E AF Heidrich-Meisner, F. Feiguin, A. E. Dagotto, E. TI Real-time simulations of nonequilibrium transport in the single-impurity Anderson model SO PHYSICAL REVIEW B LA English DT Article ID RENORMALIZATION-GROUP; QUANTUM-DOT; EQUILIBRIUM AB One of the main open problems in the field of transport in strongly interacting nanostructures is the understanding of currents beyond the linear response regime. In this work, we consider the single-impurity Anderson model and use the adaptive time-dependent density matrix renormalization group method to compute real-time currents out of equilibrium. We first focus on the particle-hole symmetric point where Kondo correlations are the strongest and then extend the study of the nonequilibrium transport to the mixed-valence regime. As a main result, we present accurate data for the current-voltage characteristics of this model. C1 [Heidrich-Meisner, F.] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. [Heidrich-Meisner, F.] Forschungszentrum Julich, JARA Julich Aachen Res Alliance, D-52425 Julich, Germany. [Feiguin, A. E.] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA. [Feiguin, A. E.] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Heidrich-Meisner, F (reprint author), Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. RI Heidrich-Meisner, Fabian/B-6228-2009 FU NSF [DMR-0706020]; Division of Materials Science and Engineering, U. S. DOE; DFG [HE 5242/2-1]; Microsoft Station Q FX We acknowledge valuable discussions with N. Andrei, L. Dias da Silva, S. Jakobs, V. Meden, H. Onishi, M. Pletyukhov, G. Roux, H. Schoeller, and P. Werner. We further thank the authors of Ref. 22 for sending us their results for comparison. E. D. was supported in part by the NSF under Grant No. DMR-0706020 and the Division of Materials Science and Engineering, U. S. DOE, under contract with UT-Battelle, LLC. F. H.-M. acknowledges support by the DFG through FOR 912 under Grant No. HE 5242/2-1. A. E. F. was supported by Microsoft Station Q. NR 54 TC 102 Z9 103 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235336 DI 10.1103/PhysRevB.79.235336 PG 6 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500106 ER PT J AU Hoch, MJR Nellutla, S van Tol, J Choi, ES Lu, J Zheng, H Mitchell, JF AF Hoch, M. J. R. Nellutla, S. van Tol, J. Choi, Eun Sang Lu, Jun Zheng, H. Mitchell, J. F. TI Diamagnetic to paramagnetic transition in LaCoO3 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; diamagnetic materials; energy gap; lanthanum compounds; magnetic transitions; magnetisation; paramagnetic materials; paramagnetic resonance; specific heat; spin Hamiltonians ID SPIN-STATE TRANSITION; ELECTRONIC-STRUCTURE; CO-59 AB The diamagnetic to paramagnetic spin state transition in LaCoO3 (LCO) that occurs in the temperature range 30-120 K is generally attributed to the small energy gap between the Co3+ t(2g) and e(g) states. Evidence for this thermally activated transition has been interpreted as leading to either the intermediate spin state, t(2g)(5)e(g)(1)(S=1), or, alternatively, to the high-spin state, t(2g)(4)e(g)(2)(S=2) of the Co3+ ion, with the issue proving highly controversial. In an effort to obtain a consistent description of the temperature dependence of the magnetic and thermal properties of this system, we have made measurements of both the magnetization in applied fields of up to 33 T and the specific heat at 0 and 9 T on a single crystal of LCO. In addition, EPR measurements were made on the same sample using high-field EPR spectrometers. The spin-Hamiltonian parameters are consistent with the previous pulsed-field EPR work and support the atomic-like energy level description of the Co ion. The low-lying first-excited state is part of the T-5(2g) (D-5) set and is a triplet state with effective spin S-eff=1. The magnetization results are analyzed using a mean-field model allowing for antiferromagnetic correlations between the spins. The model is used to estimate the spin contribution to the specific heat. C1 [Hoch, M. J. R.; Nellutla, S.; van Tol, J.; Choi, Eun Sang; Lu, Jun] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hoch, MJR (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RI van Tol, Johan/G-4190-2011 OI van Tol, Johan/0000-0001-6972-2149 NR 26 TC 30 Z9 30 U1 0 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214421 DI 10.1103/PhysRevB.79.214421 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200082 ER PT J AU Holman, KL McQueen, TM Williams, AJ Klimczuk, T Stephens, PW Zandbergen, HW Xu, Q Ronning, F Cava, RJ AF Holman, K. L. McQueen, T. M. Williams, A. J. Klimczuk, T. Stephens, P. W. Zandbergen, H. W. Xu, Q. Ronning, F. Cava, R. J. TI Insulator to correlated metal transition in V1-xMoxO2 SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; doping profiles; electrical resistivity; magnetic susceptibility; magnetic transitions; metal-insulator transition; short-range order; specific heat; vanadium compounds ID ELECTRONIC-STRUCTURE; MAGNETIC PROPERTIES; PHASE-TRANSITION; VO2; SYSTEM; DIFFRACTION; INSTABILITY; V1-XCRXO2; PEIERLS; MOO2 AB Although many materials display the transition from insulating to metallic behavior on doping, only a few, such as VO2, have the right combination of crystal structure and physical properties to serve as model systems. Here we report the electronic and structural characteristics of the insulator to metal transition in V1-xMoxO2, which we have studied over the range 0.0 < x < 0.50 through characterization of the electrical resistivity, magnetic susceptibility, specific heat, and average- and short-range crystal structures. We find that metal-metal pairing exists in small domains in the doped metallic phases and an unexpected phenomenology for the crossover between a Curie-Weiss insulating regime and an intermediate mass metallic regime. An electronic phase diagram is presented. C1 [Holman, K. L.; McQueen, T. M.; Williams, A. J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Klimczuk, T.; Ronning, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Stephens, P. W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Zandbergen, H. W.; Xu, Q.] Delft Inst Technol, Natl Ctr HREM, Dept Nanosci, NL-2628 CJ Delft, Netherlands. RP Holman, KL (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Klimczuk, Tomasz/M-1716-2013; OI Klimczuk, Tomasz/0000-0003-2602-5049; Ronning, Filip/0000-0002-2679-7957 FU National Science Foundation [DMR02-13706, DMR-0703095]; National Synchrotron Light Source, Brookhaven National Laboratory; U. S. DOE, BES [DE-AC02-98CH10886]; National Science Foundation Graduate Research Foundation FX The work at Princeton was supported by the National Science Foundation under Grants No. NSF DMR02-13706 and No. DMR-0703095. The work at Los Alamos and the use of the National Synchrotron Light Source, Brookhaven National Laboratory, were supported by the U. S. DOE, BES (Brookhaven Grant No. DE-AC02-98CH10886). T. M. M. gratefully acknowledges support of the National Science Foundation Graduate Research Foundation. R. J. C. gratefully acknowledges discussions with A. Lichtenstein. NR 40 TC 47 Z9 47 U1 4 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245114 DI 10.1103/PhysRevB.79.245114 PG 8 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700048 ER PT J AU Kurita, N Ronning, F Miclea, CF Bauer, ED Thompson, JD Sefat, AS McGuire, MA Sales, BC Mandrus, D Movshovich, R AF Kurita, N. Ronning, F. Miclea, C. F. Bauer, E. D. Thompson, J. D. Sefat, A. S. McGuire, M. A. Sales, B. C. Mandrus, D. Movshovich, R. TI Low-temperature thermal conductivity of BaFe2As2: A parent compound of iron arsenide superconductors SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; barium compounds; electronic structure; iron compounds; magnetoresistance; magnons; neutron diffraction; phonons; specific heat; thermal conductivity; Wiedemann-Franz law ID HEAVY-FERMION; LIQUID STATE; RESISTIVITY; SCATTERING; TRANSPORT AB We report low-temperature thermal conductivity down to 40 mK of the antiferromagnet BaFe2As2, which is the parent compound of recently discovered iron-based superconductors. In the investigated temperature range below 4 K, the thermal conductivity kappa is well described by the expression kappa=aT+bT(2.22). We attribute the "aT"-term to an electronic contribution which is found to satisfy the Wiedemann-Franz law in the T -> 0 K limit and the remaining thermal conductivity, similar to T-2.22, is attributed to phonon conductivity. A small influence on thermal conductivity by magnetic fields up to 8 T is well accounted by the observed magnetoresistance. The result is consistent with a fully gapped magnon spectrum, inferred previously from inelastic neutron scattering measurements. C1 [Kurita, N.; Ronning, F.; Miclea, C. F.; Bauer, E. D.; Thompson, J. D.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kurita, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI McGuire, Michael/B-5453-2009; Miclea, Corneliu Florin/C-5047-2011; Bauer, Eric/D-7212-2011; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016; OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 NR 36 TC 8 Z9 8 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214439 DI 10.1103/PhysRevB.79.214439 PG 4 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200100 ER PT J AU Lang, M Lian, J Zhang, JM Zhang, FX Weber, WJ Trautmann, C Ewing, RC AF Lang, Maik Lian, Jie Zhang, Jiaming Zhang, Fuxiang Weber, William J. Trautmann, Christina Ewing, Rodney C. TI Single-ion tracks in Gd2Zr2-xTixO7 pyrochlores irradiated with swift heavy ions SO PHYSICAL REVIEW B LA English DT Article DE electron energy loss spectra; gadolinium compounds; ion beam effects; Raman spectra; transmission electron microscopy; xenon; X-ray diffraction; zirconium compounds ID NUCLEAR-WASTE DISPOSAL; BEAM IRRADIATION; STRUCTURAL MODIFICATIONS; PHASE-TRANSFORMATION; OXIDE PYROCHLORES; PLASTIC-FLOW; PLUTONIUM; IMMOBILIZATION; TRANSITION; CRYSTALS AB Swift xenon ions (1.43 GeV) were used to systematically investigate the radiation response of pyrochlores in the Gd2Zr2-xTixO7 binary in the electronic energy loss regime. Ion-induced structural modifications were characterized by synchrotron x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The structure of ion tracks depends on the pyrochlore composition, and the damage cross section increases with the Ti content. In general, single ion tracks consist of an amorphous track core, surrounded by a crystalline, but disordered, defect-fluorite-structured shell. That is in turn surrounded by a defect-rich pyrochlore region. The decrease in the size of these different track zones, with increasing Zr content, is a result of the enhanced radiation stability of Zr-rich pyrochlore within individual swift heavy ion tracks. C1 [Lang, Maik; Zhang, Jiaming; Zhang, Fuxiang; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Lang, Maik; Zhang, Jiaming; Zhang, Fuxiang; Ewing, Rodney C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Trautmann, Christina] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. RP Ewing, RC (reprint author), Univ Michigan, Dept Geol Sci, 1006 CC Little Bldg, Ann Arbor, MI 48109 USA. EM rodewing@umich.edu RI Lian, Jie/A-7839-2010; Weber, William/A-4177-2008; Lang, Maik/F-9939-2012; Zhang, Jiaming/H-5591-2012; Trautmann, Christina/C-6623-2016; Zhang, Fuxiang/P-7365-2015 OI Weber, William/0000-0002-9017-7365; Zhang, Fuxiang/0000-0003-1298-9795 FU Materials Research Group of GSI; Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-97ER45656, DE-AC05-76RL01830]; NSF; NIH/NIGMS [DMR-0225180]; German Science Foundation DFG FX The authors gratefully acknowledge technical support during the irradiation by the Materials Research Group of GSI and for the sample preparation by James Hinchcliff at the University of Michigan. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy through Grant No. DE-FG02-97ER45656 at UM and under Contract No. DE-AC05-76RL01830 at PNNL. The use of CHESS beam is supported by the NSF and NIH/NIGMS via NSF Grant No. DMR-0225180. M. L. acknowledges support from the German Science Foundation DFG. NR 59 TC 67 Z9 67 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224105 DI 10.1103/PhysRevB.79.224105 PG 9 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300030 ER PT J AU Leighton, C Stauffer, DD Huang, Q Ren, Y El-Khatib, S Torija, MA Wu, J Lynn, JW Wang, L Frey, NA Srikanth, H Davies, JE Liu, K Mitchell, JF AF Leighton, C. Stauffer, D. D. Huang, Q. Ren, Y. El-Khatib, S. Torija, M. A. Wu, J. Lynn, J. W. Wang, L. Frey, N. A. Srikanth, H. Davies, J. E. Liu, Kai Mitchell, J. F. TI Coupled structural/magnetocrystalline anisotropy transitions in the doped perovskite cobaltite Pr1-xSrxCoO3 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; doping profiles; magnetic anisotropy; magnetic transitions; magnetisation; praseodymium compounds; solid-state phase transformations; spin systems; strontium compounds ID MAGNETIC-PROPERTIES; SPIN DYNAMICS; MANGANITES; TRANSPORT; MULTIFERROICS; FERROELECTRICITY; CRYSTAL; PR; ND; LN AB Years of intensive work on perovskite manganites has led to a detailed understanding of the phenomena that emerge from competition between the electronic and lattice degrees of freedom in these correlated electron systems. It is well understood that the related cobaltites provide an additional spin-state degree of freedom. Here, we use the magnetic properties of a particular cobaltite, Pr1-xSrxCoO3, to demonstrate the vital role played by a further ingredient often negligible in manganites; magnetocrystalline anisotropy. Pr1-xSrxCoO3 exhibits an anomalous "double magnetic transition" that cannot be ascribed to a spin-state transition or the usual charge/orbital/antiferromagnetic ordering and has thus far evaded explanation. We show that this is actually due to a coupled structural/magnetocrystalline anisotropy transition driven, in this case, by Pr-O hybridization. The results point to the existence of a distinct class of phenomena in the cobaltites due to the unique interplay between structure and magnetic anisotropy. C1 [Leighton, C.; Stauffer, D. D.; El-Khatib, S.; Torija, M. A.; Wu, J.; Wang, L.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Huang, Q.; El-Khatib, S.; Lynn, J. W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Frey, N. A.; Srikanth, H.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Davies, J. E.; Liu, Kai] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu RI Davies, Joseph/C-4384-2008; Liu, Kai/B-1163-2008; Wang, Lan/B-6990-2011; OI Davies, Joseph/0000-0001-5727-2371; Liu, Kai/0000-0001-9413-6782; Wang, Lan/0000-0001-7124-2718; Wu, Jianzhong/0000-0002-4582-5941 NR 44 TC 32 Z9 32 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214420 DI 10.1103/PhysRevB.79.214420 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200081 ER PT J AU Lu, X Venugopalan, S Kim, HJ Grimsditch, M Rodriguez, S Ramdas, AK AF Lu, X. Venugopalan, S. Kim, Hyunjung Grimsditch, M. Rodriguez, S. Ramdas, A. K. TI Doubly resonant Raman electron paramagnetic transitions of Cr3+ in ruby (Al2O3:Cr3+) SO PHYSICAL REVIEW B LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; ABSORPTION SPECTRA; LINE SPECTRA; CRYSTALS; CR-3; SCATTERING; IONS AB We report the Raman electron paramagnetic resonance (EPR) of Cr3+ in ruby (Al2O3:Cr3+) in the (4)A(2) (ground) and (E) over bar (excited) states of its well-known R-1 emission line. Using tunable dye laser excitation within the range of the Zeeman components of R-1, we observe highly selective doubly resonant enhancements of the Raman EPR lines. The double resonances confirm the assignments of the Raman EPR lines, and they underscore the simultaneous occurrence of both "in resonance" and "out resonance" as visualized in the Kramers-Heisenberg quantum-mechanical picture of inelastic light scattering. The g factors of the (4)A(2) and (E) over bar states are consistent with the observed magnetic field dependence of the Raman EPR shifts. Through the interplay of Raman effect and the sharp Zeeman components of R-1, the results provide clear insights into the underlying microscopic mechanism of these resonant Raman EPR spectra of ruby. C1 [Lu, X.; Rodriguez, S.; Ramdas, A. K.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Venugopalan, S.] SUNY Binghamton, Dept Phys, Binghamton, NY 13902 USA. [Kim, Hyunjung] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Grimsditch, M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lu, X (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. FU U.S. National Science Foundation [DMR-0405082, DMR-0705793]; BES Material Sciences; U.S. Department of Energy [W-31-109ENG-38]; Sogang University Special Research Grant FX X. L., S. R., and A. K. R acknowledge support from the U.S. National Science Foundation (Grants No. DMR-0405082 and No. DMR-0705793), M. G. from the BES Material Sciences, U.S. Department of Energy (Grant No. W-31-109ENG-38), and H. K. from Sogang University Special Research Grant (2008). NR 22 TC 5 Z9 5 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235204 DI 10.1103/PhysRevB.79.235204 PG 7 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500064 ER PT J AU Maier, TA Graser, S Scalapino, DJ Hirschfeld, PJ AF Maier, T. A. Graser, S. Scalapino, D. J. Hirschfeld, P. J. TI Origin of gap anisotropy in spin fluctuation models of the iron pnictides SO PHYSICAL REVIEW B LA English DT Article DE Fermi surface; iron compounds; renormalisation; RPA calculations; spin fluctuations AB We discuss the large gap anisotropy found for the A(1g) (s wave) state in random-phase approximation spin fluctuation and functional renormalization-group calculations and show how the simple arguments leading to isotropic sign-switched s-wave states in these systems need to be supplemented by a consideration of pair scattering within Fermi-surface sheets and between the individual electron sheets as well. In addition, accounting for the orbital makeup of the states on the Fermi surface is found to be crucial. C1 [Maier, T. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Graser, S.] Univ Augsburg, Ctr Elect Correlat & Magnetism, Inst Phys, D-86135 Augsburg, Germany. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Maier, TA (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM maierta@ornl.gov; graser@phys.ufl.edu; djs@physics.ucsb.edu; pjh@phys.ufl.edu RI Hirschfeld, Peter /A-6402-2010; Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU Oak Ridge National Laboratory's Center for Nanophase Materials Sciences and the Scientific User Facilities Division; Office of Basic Energy Sciences; U. S. Department of Energy; DOE [DE-FG02-05ER46236] FX We would like to acknowledge useful discussions with A. Chubukov. T. A. M. and D. J. S. would like to acknowledge support from Oak Ridge National Laboratory's Center for Nanophase Materials Sciences and the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. P. J. H. would like to acknowledge support from the DOE under Grant No. DOE DE-FG02-05ER46236. D. J. S. also thanks the Stanford Institute of Theoretical Physics for its hospitality. NR 23 TC 87 Z9 87 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224510 DI 10.1103/PhysRevB.79.224510 PG 6 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300098 ER PT J AU Martin, I Blanter, YM AF Martin, Ivar Blanter, Ya. M. TI Transport in disordered graphene nanoribbons SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM DOTS; STATE; EDGE AB We study electronic transport in graphene nanoribbons with rough edges. We first consider a model of weak disorder that corresponds to an armchair ribbon whose width randomly changes by a single unit cell size. We find that in this case, the low-temperature conductivity is governed by an effective one-dimensional hopping between segments of distinct band structure. We then provide numerical evidence and qualitative arguments that similar behavior also occurs in the limit of strong uncorrelated boundary disorder. C1 [Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Blanter, Ya. M.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Blanter, Ya. M.] Ctr Adv Study, N-0271 Oslo, Norway. RP Martin, I (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. FU EC [FP6-2004-IST-003673]; U.S. DOE FX We acknowledge useful discussions with M. Fogler and A. F. Morpurgo. I. M. acknowledges the hospitality of Delft University of Technology, where part of this work was performed. This work was supported by EC FP6 funding (Contract No. FP6-2004-IST-003673). Partial support was provided by U.S. DOE. NR 28 TC 51 Z9 52 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235132 DI 10.1103/PhysRevB.79.235132 PG 5 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500059 ER PT J AU Mosendz, O Woltersdorf, G Kardasz, B Heinrich, B Back, CH AF Mosendz, O. Woltersdorf, G. Kardasz, B. Heinrich, B. Back, C. H. TI Magnetization dynamics in the presence of pure spin currents in magnetic single and double layers in spin ballistic and diffusive regimes SO PHYSICAL REVIEW B LA English DT Article DE ballistic transport; ferromagnetic materials; gold; iron; Kerr magneto-optical effect; magnetic epitaxial layers; magnetisation; spin dynamics; spin polarised transport ID FILMS; MULTILAYERS; INJECTION; VALVES AB In this paper we study the spin transport by using the spin-pumping effect in epitaxial magnetic single and double layer film structures. For the magnetic single layer sample we show the spin-pumping-induced interface damping increases and saturates with the Au capping layer thickness. In addition magnetic double layer structures allowed us to investigate both the spin-pump and spin-sink effects. Coupling of pure spin currents to the magnetization via spin-sink effect is studied using time-resolved magneto-optical Kerr effect. These measurements were used to study the propagation of pure spin currents across a Au spacer layer between the two ferromagnets. The propagation of spin momentum density through the Au spacer layer was well described by spin-diffusion equation, which takes into account electron momentum and spin-flip scattering. The spin-diffusion theory was integrated into modified Landau-Lifshitz equations accounting in self-consistent manner for spin-pump/sink mechanism and spin momentum density propagation. Good agreement between theory and experimental data was found. C1 [Mosendz, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Woltersdorf, G.; Back, C. H.] Univ Regensburg, D-93040 Regensburg, Germany. [Kardasz, B.; Heinrich, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. RP Mosendz, O (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Back, Christian/A-8969-2012; Woltersdorf, Georg/C-7431-2014 OI Back, Christian/0000-0003-3840-0993; Woltersdorf, Georg/0000-0001-9299-8880 FU National Science and Engineering Research Council of Canada (NSERC); Canadian Institute for Advanced Research (CIFAR); DFG [SPP1133]; Sonderforschungsbereich [SFB689] FX The authors would like to thank the National Science and Engineering Research Council of Canada (NSERC) and Canadian Institute for Advanced Research (CIFAR) for generous grants which supported this work. Financial support by the DFG priority program through Grant No. SPP1133 and Sonderforschungsbereich through Grant No. SFB689 is gratefully acknowledged. NR 30 TC 32 Z9 32 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224412 DI 10.1103/PhysRevB.79.224412 PG 10 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300065 ER PT J AU Moya, X Gonzalez-Alonso, D Manosa, L Planes, A Garlea, VO Lograsso, TA Schlagel, DL Zarestky, JL Aksoy, S Acet, M AF Moya, Xavier Gonzalez-Alonso, David Manosa, Lluis Planes, Antoni Garlea, V. O. Lograsso, T. A. Schlagel, D. L. Zarestky, J. L. Aksoy, Seda Acet, Mehmet TI Lattice dynamics in magnetic superelastic Ni-Mn-In alloys: Neutron scattering and ultrasonic experiments SO PHYSICAL REVIEW B LA English DT Article ID SHAPE-MEMORY ALLOYS; PREMARTENSITIC PHENOMENA; ELASTIC-CONSTANTS; NI2MNGA; BEHAVIOR; TRANSITION AB Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni(50)Mn(34)In(16) magnetic superelastic composition. The paper reports on the experimental determination of the low-lying phonon-dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA(2) branch are relatively low and it exhibits a small dip anomaly at a wave number xi(0) approximate to 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C' = (C(11)-C(12))/2. Both temperature softenings are typical for bcc-based solids which undergo martensitic transformations and reflect the dynamical instability of the cubic lattice against shearing of {110} planes along < 1 (1) over bar0 > directions. Additionally, we measured low-lying phonon-dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling. C1 [Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis; Planes, Antoni] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Garlea, V. O.; Lograsso, T. A.; Schlagel, D. L.; Zarestky, J. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Aksoy, Seda; Acet, Mehmet] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany. RP Moya, X (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM lluis@ecm.ub.es RI Acet, Mehmet/F-4442-2012; Manosa, Lluis/D-8579-2014; Aksoy, Seda/L-4480-2014; Planes, Antoni/O-1904-2015; Garlea, Vasile/A-4994-2016; OI Manosa, Lluis/0000-0002-1182-2670; Aksoy, Seda/0000-0002-7823-7070; Planes, Antoni/0000-0001-5213-5714; Garlea, Vasile/0000-0002-5322-7271; Moya, Xavier/0000-0003-0276-1981 FU CICyT [MAT2007-62100]; Deutsche Forschungsgemeinschaft [SPP 1239]; Comissionat per a Universitats i Recerca (CUR) del Departament d'Innovacio, Universitats i Empresa de la Generalitat de Catalunya; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Basic Energy Sciences U.S. DOE [DE-AC0207CH11358] FX This work received financial support from the CICyT ~ Spain ~ Project No. MAT2007-62100 and from the Deutsche Forschungsgemeinschaft ~ Grant No. SPP 1239 ~. X. M. acknowledges support from Comissionat per a Universitats i Recerca (CUR) del Departament d'Innovacio, Universitats i Empresa de la Generalitat de Catalunya. Experiments at Oak Ridge National Laboratory's High Flux Isotope Reactor were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Work at the Ames Laboratory was supported by the Office of Basic Energy Sciences U.S. DOE under Contract No. DE-AC0207CH11358. NR 32 TC 18 Z9 18 U1 5 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214118 DI 10.1103/PhysRevB.79.214118 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200048 ER PT J AU Muller, J Brandenburg, J Schlueter, JA AF Mueller, Jens Brandenburg, Jens Schlueter, John A. TI 1/f noise in the quasi-two-dimensional organic conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl SO PHYSICAL REVIEW B LA English DT Article DE 1; f noise; electrical resistivity; high-temperature effects; organic superconductors; percolation; random processes ID TRANSITION; SUPERCONDUCTOR; BEHAVIOR; NONMETAL; SYSTEM; STATES; FILMS AB Resistance noise spectroscopy is applied to bulk single crystals of the quasi-two-dimensional organic conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl both under moderate-pressure and at ambient-pressure conditions. When pressurized, the system can be shifted to the inhomogeneous coexistence region of antiferromagnetic insulating and superconducting phases, where percolation effects dominate the electronic fluctuations [J. Muumlller , Phys. Rev. Lett. 102, 047004 (2009)]. Independent of the pressure conditions, at higher temperatures we observe generic 1/f(alpha)-type spectra, typical for this class of quasi-two-dimensional organic charge-transfer salts. The magnitude of the electronic noise is extremely enhanced compared to typical values of homogeneous semiconductors or metals. This indicates that a highly inhomogeneous current distribution may be an intrinsic property of organic charge-transfer salts. The temperature dependence of the nearly 1/f spectra can be very well described by a generalized random fluctuation model [P. Dutta, P. Dimon, and P. M. Horn, Rev. Lett. 43, 646 (1979)]. We find that the number of fluctuators and/or their coupling to the electrical resistance depend on the temperature. The phenomenological model explains a pronounced peak structure in the low-frequency noise at around 100 K, which is not observed in the resistivity itself, in terms of the thermally activated conformational degrees of freedom of the BEDT-TTF molecules' ethylene endgroups. C1 [Mueller, Jens] Goethe Univ Frankfurt, Inst Phys, D-60438 Frankfurt, Germany. [Brandenburg, Jens] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Muller, J (reprint author), Goethe Univ Frankfurt, Inst Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM j.mueller@physik.uni-frankfurt.de NR 40 TC 15 Z9 15 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214521 DI 10.1103/PhysRevB.79.214521 PG 8 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200122 ER PT J AU Pao, CW Foiles, SM Webb, EB Srolovitz, DJ Floro, JA AF Pao, Chun-Wei Foiles, Stephen M. Webb, Edmund B., III Srolovitz, David J. Floro, Jerrold A. TI Atomistic simulations of stress and microstructure evolution during polycrystalline Ni film growth SO PHYSICAL REVIEW B LA English DT Article DE adsorbed layers; compressive strength; crystal microstructure; grain boundary diffusion; metallic thin films; molecular dynamics method; monolayers; nickel ID WEBER THIN-FILMS; INTERNAL-STRESS; GRAIN-BOUNDARIES; NUMERICAL SIMULATIONS; SUBSTRATE-TEMPERATURE; COMPRESSIVE STRESS; DEPOSITION; DIFFUSION; SURFACE; COPPER AB Film stress and microstructure evolution during the growth of a Ni bicrystal film are investigated by molecular dynamics simulations. The nominal surface orientation of the growing film was (111) and the grain boundaries are Sigma 79 symmetrical tilt grain boundaries. The growth mode is layer by layer; two-dimensional (2D) islands nucleate on the surface, grow, and coalesce into complete layers. Grain-boundary migration near the free surface is observed as boundaries are dragged by step edges of growing 2D islands. Simulations show that the film stress-thickness product is compressive and oscillatory with a period that is approximately equal to one monolayer. Adatoms are observed to incorporate into grain boundaries and exert compressive strain on neighboring grains. Theoretical modeling demonstrates incorporated atoms are a primary source of the observed compressive stress during growth and gives predictions in very good agreement with simulation results. The oscillatory stress-thickness product is shown to be related to atoms diffusing into the grain boundary from the surface and out of the grain boundary onto the surface. C1 [Pao, Chun-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Foiles, Stephen M.; Webb, Edmund B., III] Sandia Natl Labs, Albuquerque, NM 87159 USA. [Srolovitz, David J.] Yeshiva Univ, Dept Phys, New York, NY 10033 USA. [Floro, Jerrold A.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. RP Pao, CW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM foiles@sandia.gov RI Pao, Chun-Wei/D-3307-2009; OI Pao, Chun-Wei/0000-0003-0821-7856; Foiles, Stephen/0000-0002-1907-454X NR 35 TC 18 Z9 18 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224113 DI 10.1103/PhysRevB.79.224113 PG 9 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300038 ER PT J AU Porta, M Castan, T Lloveras, P Lookman, T Saxena, A Shenoy, SR AF Porta, Marcel Castan, Teresa Lloveras, Pol Lookman, Turab Saxena, Avadh Shenoy, Subodh R. TI Interfaces in ferroelastics: Fringing fields, microstructure, and size and shape effects SO PHYSICAL REVIEW B LA English DT Article ID MEMORY ALLOYS; MARTENSITIC-TRANSFORMATION; COMPUTER-SIMULATION; PHASE-TRANSITION; DOMAIN-WALL; SOLID-STATE; MANGANITES; MORPHOLOGY; TWINS AB We develop a strain-based approach to study the transformation of a finite martensite domain within an austenite host matrix. Analytical and numerical solutions are obtained for the fringing fields in the austenite and in the martensite and we test how well the stress and strain matching conditions are obeyed at the habit planes. We investigate the scaling of the energy of the fringing fields and show how simulations on relaxed microstructures corroborate the 1/vertical bar k(y)vertical bar behavior for the energy in Fourier space. Our results show that the functional form F = F-0 + aL(1)xi + bLL(1)/xi for the total elastic energy provides an excellent fit to the numerical simulations, thus demonstrating that xi similar to root L, where xi is the twin width for a martensite region L x L-1 with length of the habit plane L-1 and where aL(1)xi, bLL(1)/xi, and F-0 are the energies of the decaying strain field at the habit plane, twin-boundary energy, and energy of a single martensite variant, respectively. However, the result is only true for sufficiently large L and we provide insight into the breakdown of the xi similar to root L scaling at the nanoscale. Our approach allows us to investigate the effect of varying the finite distance between habit planes, L, and our key finding is that there is a minimum length, L-min, for the nucleation of the twinned martensite structure which depends on temperature. As the temperature is lowered, L-min decreases, and at temperatures close to the stability limit of the austenite phase a lattice martensite structure in which the parent and product phases spatially alternate in a checker-board pattern is stable in a narrow region of the temperature versus L phase diagram. Such patterns have been seen at the nanoscale in lithium-based perovskites and inorganic spinels, as well as in coherent decomposition of precipitates in Co-Pt alloys. Finally, we show how the nature of the fringing fields due to an inclusion within an austenite matrix sensitively depends on its shape, size, and orientation and determines whether twinning or lattice martensite are the stable structures. C1 [Porta, Marcel; Castan, Teresa; Lloveras, Pol] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Porta, Marcel; Castan, Teresa; Lloveras, Pol] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Catalonia, Spain. [Porta, Marcel; Lookman, Turab] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada. [Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Shenoy, Subodh R.] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. RP Porta, M (reprint author), Univ Barcelona, Dept Estructura & Constituents Mat, Diagonal 647, E-08028 Barcelona, Catalonia, Spain. RI Lloveras, Pol/M-3775-2014; OI Lloveras, Pol/0000-0003-4133-2223; Porta Tena, Marcel/0000-0001-7582-9671; Lookman, Turab/0000-0001-8122-5671 NR 43 TC 20 Z9 20 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214117 DI 10.1103/PhysRevB.79.214117 PG 22 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200047 ER PT J AU Purcell, KM Graf, D Kano, M Bourg, J Palm, EC Murphy, T McDonald, R Mielke, CH Altarawneh, MM Petrovic, C Hu, RW Ebihara, T Cooley, J Schlottmann, P Tozer, SW AF Purcell, K. M. Graf, D. Kano, M. Bourg, J. Palm, E. C. Murphy, T. McDonald, R. Mielke, C. H. Altarawneh, M. M. Petrovic, C. Hu, Rongwei Ebihara, T. Cooley, J. Schlottmann, P. Tozer, S. W. TI Pressure evolution of a field-induced Fermi surface reconstruction and of the Neacuteel critical field in CeIn3 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; cerium alloys; Fermi surface; heavy fermion systems; high-pressure effects; indium alloys; skin effect; surface reconstruction ID TUNNEL-DIODE OSCILLATOR; SUPERCONDUCTIVITY AB We report high-pressure skin-depth measurements on the heavy fermion material CeIn3 in magnetic fields up to 64 T using a self-resonant tank circuit based on a tunnel diode oscillator. At ambient pressure, an anomaly in the skin depth is seen at 45 T. The field where this anomaly occurs decreases with applied pressure until approximately 1.0 GPa, where it begins to increase before merging with the antiferromagnetic phase boundary. Possible origins for this transport anomaly are explored in terms of a Fermi surface reconstruction. The critical magnetic field at which the Neacuteel-ordered phase is suppressed, is also mapped as a function of pressure and extrapolates to the previous ambient-pressure measurements at high magnetic fields and high-pressure measurements at zero magnetic field. C1 [Purcell, K. M.; Altarawneh, M. M.; Schlottmann, P.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Purcell, K. M.; Graf, D.; Kano, M.; Bourg, J.; Palm, E. C.; Murphy, T.; Altarawneh, M. M.; Schlottmann, P.; Tozer, S. W.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [McDonald, R.; Mielke, C. H.; Altarawneh, M. M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Petrovic, C.; Hu, Rongwei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hu, Rongwei] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Ebihara, T.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. RP Purcell, KM (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RI Hu, Rongwei/E-7128-2012; Cooley, Jason/E-4163-2013; Schlottmann, Pedro/G-1579-2013; Petrovic, Cedomir/A-8789-2009; OI Petrovic, Cedomir/0000-0001-6063-1881; Mcdonald, Ross/0000-0002-5819-4739 NR 25 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214428 DI 10.1103/PhysRevB.79.214428 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200089 ER PT J AU Ramirez, MO Kumar, A Denev, SA Podraza, NJ Xu, XS Rai, RC Chu, YH Seidel, J Martin, LW Yang, SY Saiz, E Ihlefeld, JF Lee, S Klug, J Cheong, SW Bedzyk, MJ Auciello, O Schlom, DG Ramesh, R Orenstein, J Musfeldt, JL Gopalan, V AF Ramirez, M. O. Kumar, A. Denev, S. A. Podraza, N. J. Xu, X. S. Rai, R. C. Chu, Y. H. Seidel, J. Martin, L. W. Yang, S. -Y. Saiz, E. Ihlefeld, J. F. Lee, S. Klug, J. Cheong, S. W. Bedzyk, M. J. Auciello, O. Schlom, D. G. Ramesh, R. Orenstein, J. Musfeldt, J. L. Gopalan, V. TI Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; band structure; bismuth compounds; magnons; optical harmonic generation; paramagnetic materials ID 2ND-HARMONIC GENERATION; MAGNETIC-STRUCTURES; ABSORPTION; SCATTERING; SPECTRUM; BIFEO3; TEMPERATURE; ALPHA-FE2O3; CRYSTAL; OXIDES AB The interplay between spin waves (magnons) and electronic structure in materials leads to the creation of additional bands associated with electronic energy levels which are called magnon sidebands. The large difference in the energy scales between magnons (meV) and electronic levels (eV) makes this direct interaction weak and hence makes magnon sidebands difficult to probe. Linear light absorption and scattering techniques at low temperatures are traditionally used to probe these sidebands. Here we show that optical second-harmonic generation, as the lowest-order nonlinear process, can successfully probe the magnon sidebands at room temperature and up to 723 K in bismuth ferrite, associated with large wave vector multimagnon excitations which linear absorption studies are able to resolve only under high magnetic fields and low temperatures. Polarized light studies and temperature dependence of these sidebands reveal a spin-charge coupling interaction of the type P(s)L(2) between the spontaneous polarization (P(s)) and antiferromagnetic order parameter, L in bismuth ferrite, that persists with short-range correlation well into the paramagnetic phase up to high temperatures. These observations suggest a broader opportunity to probe the collective spin-charge-lattice interactions in a wide range of material systems at high temperatures and electronic energy scales using nonlinear optics. C1 [Ramirez, M. O.; Kumar, A.; Denev, S. A.; Podraza, N. J.; Schlom, D. G.; Gopalan, V.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Ramirez, M. O.; Kumar, A.; Denev, S. A.; Podraza, N. J.; Ihlefeld, J. F.; Schlom, D. G.; Gopalan, V.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Podraza, N. J.; Ihlefeld, J. F.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Xu, X. S.; Rai, R. C.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Chu, Y. H.; Seidel, J.; Martin, L. W.; Yang, S. -Y.; Saiz, E.; Ihlefeld, J. F.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chu, Y. H.; Seidel, J.; Ramesh, R.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, S.; Cheong, S. W.] State Univ New Jersey, Dept Phys & Astron, Rutgers & Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Klug, J.; Bedzyk, M. J.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Klug, J.; Bedzyk, M. J.; Auciello, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Ramirez, MO (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RI Xu, Xiaoshan/B-1255-2009; Ihlefeld, Jon/B-3117-2009; Ying-Hao, Chu/A-4204-2008; Bedzyk, Michael/B-7503-2009; Martin, Lane/H-2409-2011; Klug, Jeffrey/A-3653-2013; Kumar, Amit/C-9662-2012; Schlom, Darrell/J-2412-2013; Bedzyk, Michael/K-6903-2013; Orenstein, Joseph/I-3451-2015; Ramirez, Maria de la O/I-3439-2016 OI Rai, Ram/0000-0003-2475-2488; Xu, Xiaoshan/0000-0002-4363-392X; Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Kumar, Amit/0000-0002-1194-5531; Schlom, Darrell/0000-0003-2493-6113; Ramirez, Maria de la O/0000-0002-1233-1769 FU MSD, BES [DMR-0512165, DMR0507146, DMR-0820404, DMR-0602986, DMR-0520513, DMR-0520471]; U.S. Department of Energy [DE-AC02-05CH11231, DEFG0201ER45885]; DOE/BES [DE-AC02-06CH11357] FX Foundation under Grant Nos. DMR-0512165, DMR0507146, DMR-0820404, DMR-0602986, DMR-0520513, and DMR-0520471, the MSD, BES, U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DEFG0201ER45885, and the DOE/BES under Contract No. DE-AC02-06CH11357. NR 43 TC 42 Z9 43 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224106 DI 10.1103/PhysRevB.79.224106 PG 9 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300031 ER PT J AU Riggs, SC Kemper, JB Jo, Y Stegen, Z Balicas, L Boebinger, GS Balakirev, FF Migliori, A Chen, H Liu, RH Chen, XH AF Riggs, Scott C. Kemper, J. B. Jo, Y. Stegen, Z. Balicas, L. Boebinger, G. S. Balakirev, F. F. Migliori, Albert Chen, H. Liu, R. H. Chen, X. H. TI Magnetic-field-induced log-T insulating behavior in the resistivity of fluorine-doped SmFeAsO1-xFx SO PHYSICAL REVIEW B LA English DT Article DE doping profiles; iron compounds; magnetoresistance; phase diagrams; samarium compounds; superconducting materials; superconducting transitions ID NORMAL-STATE; PHASE-DIAGRAM; METAL CROSSOVER; FERMI-SURFACE; SUPERCONDUCTIVITY; LA2-XSRXCUO4 AB We report the resistivity of a series of nominally fluorine-doped SmFeAsO1-xFx polycrystalline superconductors in magnetic fields up to 60 T. For samples where x < 0.15, the low-temperature resistive state is characterized by pronounced magnetoresistance including an upturn at low temperatures. The "insulating behavior" is characterized by a log-T divergence observed over a decade in temperature, a behavior strikingly similar to the underdoped cuprates. The normal state for samples with doping x>0.15 behaves very differently: metallic behavior with little magnetoresistance, where intense magnetic fields broaden the superconducting transition rather than significantly suppressing T-c. The doping at which the insulating behavior disappears coincides with the reported collapse of the structural phase transition in the phase diagram for SmFeAsO1-xFx series. C1 [Riggs, Scott C.; Kemper, J. B.; Jo, Y.; Stegen, Z.; Balicas, L.; Boebinger, G. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Balakirev, F. F.; Migliori, Albert] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Chen, H.; Liu, R. H.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Chen, H.; Liu, R. H.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. RP Riggs, SC (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RI Liu, Ronghua/A-9790-2013 OI Liu, Ronghua/0000-0002-4053-3923 NR 24 TC 11 Z9 12 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 212510 DI 10.1103/PhysRevB.79.212510 PG 4 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200029 ER PT J AU Roy, S Blackburn, E Valvidares, SM Fitzsimmons, MR Vogel, SC Khan, M Dubenko, I Stadler, S Ali, N Sinha, SK Kortright, JB AF Roy, S. Blackburn, E. Valvidares, S. M. Fitzsimmons, M. R. Vogel, S. C. Khan, M. Dubenko, I. Stadler, S. Ali, N. Sinha, S. K. Kortright, J. B. TI Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa SO PHYSICAL REVIEW B LA English DT Article ID HEUSLER ALLOYS; INTERMETALLIC COMPOUNDS; PHASE-TRANSITIONS; ENTROPY CHANGE AB The structural and magnetic transitions in the shape-memory alloy Ni2MnGa can be tuned as a function of temperature by adding dopants. By altering the free energy such that the structural and magnetic transitions coincide, a giant magnetocaloric effect is created near room temperature. We show, using x-ray absorption spectroscopy and x-ray magnetic circular dichroism, how Cu, substituted for Mn, pulls the magnetic transition downward in temperature and also, counterintuitively, increases the delocalization of the Mn magnetism. At the same time, this reinforces the Ni-Ga chemical bond, raising the temperature of the martensite-austenite transition. At 25% doping, the two transitions coincide at 317 K. C1 [Roy, S.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Blackburn, E.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Valvidares, S. M.; Kortright, J. B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fitzsimmons, M. R.; Vogel, S. C.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Khan, M.; Dubenko, I.; Stadler, S.; Ali, N.] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Roy, S (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Dubenko, Igor/A-4219-2012; Blackburn, Elizabeth/C-2312-2014; Valvidares, Secundino /M-4979-2016; MSD, Nanomag/F-6438-2012; Lujan Center, LANL/G-4896-2012; OI Valvidares, Secundino /0000-0003-4895-8114; Vogel, Sven C./0000-0003-2049-0361 FU Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231, DE-AC02-06NA25396, DE-FG01-04ER04-01, DE-FG02-06ER46291]; Research Corporation [RA0357] FX Work at ALS/LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE (Contract No. DE-AC02-05CH11231). This work has benefited from use of the Lujan Neutron Scattering Center, funded by the U. S. DOE/BES. LANL is operated by Los Alamos National Security LLC under DOE under Contract No. DE-AC02-06NA25396. Work at UCSD was supported by the U. S. DOE/BES under Contract No. DE-FG01-04ER04-01. Work at SIUC was supported by Research Corporation (Grant No. RA0357) and by the U. S. DOE/BES under Contract No. DE-FG02-06ER46291. NR 31 TC 29 Z9 31 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235127 DI 10.1103/PhysRevB.79.235127 PG 5 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500054 ER PT J AU Rozenberg, GK Pasternak, MP Gorodetsky, P Xu, WM Dubrovinsky, LS Bihan, T Taylor, RD AF Rozenberg, G. Kh. Pasternak, M. P. Gorodetsky, P. Xu, W. M. Dubrovinsky, L. S. Le Bihan, T. Taylor, R. D. TI Pressure-induced structural, electronic, and magnetic phase transitions in FeCl2 studied by x-ray diffraction and resistivity measurements SO PHYSICAL REVIEW B LA English DT Article DE bond lengths; electrical resistivity; equations of state; high-pressure solid-state phase transformations; iron compounds; isomer shift; magnetic moments; magnetic transitions; metal-insulator transition; phonons; X-ray diffraction ID COLLAPSE; STATE; MOSSBAUER; RFEO3 AB High-pressure (HP) synchrotron x-ray diffraction (XRD) studies were carried out in FeCl2 (T-N approximate to 24 K) together with resistivity (R) studies at various temperatures and pressures to 65 GPa using diamond-anvil cells. This work follows a previous HP Fe-57 Moumlssbauer study in which two pressure-induced (PI) electronic transitions were found interpreted as: (i) quenching of the orbital-term contribution to the hyperfine field concurring with a tilting of the magnetic moment by 55 degrees, and (ii) collapse of the magnetism concurring with a sharp decrease in the isomer shift. The R(P,T) studies affirm that the cause of the collapse of the magnetism is a PI p-d correlation breakdown, leading to an insulator-metal transition at similar to 45 GPa and is not due to a spin crossover (S=2 -> S=0). The structure response to the pressure evolution of the two electronic phase transitions starting at low pressures (LP), through an intermediate phase (IP) 30-57 GPa, and culminating in a high-pressure phase, P>32 GPa, can clearly be quantified. The IP-HP phases coexist through the 32-57 GPa range in which the HP abundance increases monotonically at the expense of the IP phase. At the LP-IP interface no volume change is detected, yet the c axis increases and the a axis shrinks by 0.21 and 0.13 A degrees, respectively. The fit of the equation of state of the combined LP-IP phases yields a bulk modulus K-0=35.3(1.8) GPa. The intralayer Cl-Cl distances increase but no change is observed in Fe-Cl bond length nor are there substantial changes in the interlayer spacing. The pressure-induced electronic IP-HP transition leads to a first-order structural phase transition characterized by a decrease in Fe-Cl bond length and an abrupt drop in V(P) by similar to 3.5% accompanying the correlation breakdown. In this transition no symmetry change is detected and the XRD data could be satisfactorily fitted with the CdI2 structure. The bulk modulus of the HP phase is practically the same as that of the LP-IP phases suggesting negligible changes in the phonon density of state. C1 [Rozenberg, G. Kh.; Pasternak, M. P.; Gorodetsky, P.; Xu, W. M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Dubrovinsky, L. S.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Le Bihan, T.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Taylor, R. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rozenberg, GK (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RI LE BIHAN, Tristan/I-5063-2013 NR 21 TC 8 Z9 8 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214105 DI 10.1103/PhysRevB.79.214105 PG 7 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200035 ER PT J AU Sefat, AS Singh, DJ VanBebber, LH Mozharivskyj, Y McGuire, MA Jin, RY Sales, BC Keppens, V Mandrus, D AF Sefat, Athena S. Singh, David J. VanBebber, Lindsay H. Mozharivskyj, Yurij McGuire, Michael A. Jin, Rongying Sales, Brian C. Keppens, Veerle Mandrus, David TI Absence of superconductivity in hole-doped BaFe2-xCrxAs2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; chromium compounds; density functional theory; doping; electrical resistivity; electronic structure; ferromagnetic materials; ground states; Hall effect; iron compounds; magnetic susceptibility; magnetic transitions; phase diagrams; solid-state phase transformations; specific heat; spin fluctuations; X-ray diffraction AB We investigate the physical properties and electronic structure upon Cr doping in the iron arsenide layers of BaFe2As2. This form of hole doping leads to suppression of the magnetic/structural phase transition in BaFe2-xCrxAs2 for x>0, but does not lead to superconductivity. For x < 0.75 values, temperature dependence of the resistivity, specific heat, magnetic susceptibility, Hall coefficient, and single-crystal x-ray diffraction data are presented. The resulting phase diagram is suggestive that superconductivity does not derive simply from the suppression of the structural/magnetic transitions. The materials show signatures of approaching a ferromagnetic state for x as little as 0.36 by an enhanced Wilson ratio. Such results reflect renormalization due to spin fluctuations and they are supported by density-functional supercell calculations for slightly higher doping level of x=1. Calculations show a strong interplay between magnetic ordering and chemical ordering of Fe and Cr, with a ferromagnetic ground state. C1 [Sefat, Athena S.; Singh, David J.; McGuire, Michael A.; Jin, Rongying; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [VanBebber, Lindsay H.; Keppens, Veerle] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mozharivskyj, Yurij] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 NR 17 TC 62 Z9 63 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224524 DI 10.1103/PhysRevB.79.224524 PG 7 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300112 ER PT J AU Singh, Y Lee, Y Harmon, BN Johnston, DC AF Singh, Yogesh Lee, Y. Harmon, B. N. Johnston, D. C. TI Unusual magnetic, thermal, and transport behavior of single-crystalline EuRh2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; arsenic alloys; band structure; europium alloys; Fermi level; Hall effect; high-temperature effects; magnetic transitions; rhodium alloys; specific heat; thermal magnetoresistance ID VALENCE; EU; ORDER AB An antiferromagnetic transition is observed in single-crystal EuRh2As2 at a high temperature T-N=47 K compared to the ferromagnetic Weiss temperature theta=12 K. We show that the large ratio T-N/vertical bar theta vertical bar approximate to 4 is, perhaps surprisingly, consistent with mean-field theory. A first-order field-induced magnetic transition is observed at T < T-N with an unusual temperature dependence of the transition field. A dramatic magnetic field-induced reduction in the electronic specific heat coefficient at 1.8-5.0 K by 38% at 9 T is observed. In addition, a strong positive magnetoresistance and a large change in the Hall coefficient occur below 25 K. Band structure calculations indicate that the Fermi energy lies on a steep edge of a narrow peak in the density of states. C1 [Singh, Yogesh] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Singh, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI singh, yogesh/F-7160-2016 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358.] FX We thank S. Nandi, A. Kreyssig, A. I. Goldman, and J. Schmalian for helpful discussions and A. Ellern for structure analysis. Work at Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 21 TC 5 Z9 5 U1 9 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220401 DI 10.1103/PhysRevB.79.220401 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300003 ER PT J AU Swainson, IP Stock, C Gehring, PM Xu, GY Hirota, K Qiu, Y Luo, H Zhao, X Li, JF Viehland, D AF Swainson, I. P. Stock, C. Gehring, P. M. Xu, Guangyong Hirota, K. Qiu, Y. Luo, H. Zhao, X. Li, J. -F. Viehland, D. TI Soft phonon columns on the edge of the Brillouin zone in the relaxor PbMg1/3Nb2/3O3 SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; LEAD MAGNESIUM NIOBATE; X-RAY-SCATTERING; LATTICE-DYNAMICS; SINGLE-CRYSTALS; PHASE-TRANSITIONS; FERROELECTRIC PBMG1/3NB2/3O3; PEROVSKITE STRUCTURE; PMN; PB(MG1/3NB2/3)O-3 AB We report lattice-dynamical measurements, made using neutron inelastic-scattering methods, of the relaxor perovskite PbMg1/3Nb2/3O3 (PMN) at momentum transfers near the edge of the Brillouin zone. Unusual "columns" of phonon scattering that are localized in momentum, but extended in energy, are seen at both high-symmetry points along the zone edge: (Q) over right arrowR= {1/2,1/2,1/2} and (Q) over right arrowM={1/2,1/2,0}. These columns soften at similar to 400 K which is similar to the onset temperature of the zone-center diffuse scattering, indicating a competition between ferroelectric and antiferroelectric distortions. We propose a model for the atomic displacements associated with these phonon modes that is based on a combination of structure factors and group theoretical analysis. This analysis suggests that the scattering is not from tilt modes (rotational modes of oxygen octahedra), but from zone-boundary optic modes that are associated with the displacement of Pb2+ and O2- ions. Whereas similar columns of scattering have been reported in metallic and (less commonly) molecular systems, they are unusual in insulating materials, particularly in ferroelectrics; therefore, the physical origin of this inelastic feature in PMN is unknown. We speculate that the underlying disorder contributes to this unique anomaly. C1 [Swainson, I. P.] CNR, Chalk River, ON KOJ 1JO, Canada. [Stock, C.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Gehring, P. M.; Qiu, Y.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Xu, Guangyong] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Hirota, K.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Luo, H.; Zhao, X.] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 201800, Peoples R China. [Li, J. -F.; Viehland, D.] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. RP Swainson, IP (reprint author), CNR, Chalk River, ON KOJ 1JO, Canada. RI Xu, Guangyong/A-8707-2010; Zhao, Xiangyong/A-1743-2013; OI Xu, Guangyong/0000-0003-1441-8275; Gehring, Peter/0000-0002-9236-2046 FU Natural Science and Engineering Research Council of Canada (NSERC); U.S. National Science Foundation [DMR-0306940, DMR-9986442]; U.S. DOE [DE-AC0298CH10886]; Office of Naval Research [N00014-99-1-0738]; National Science Foundation [DMR-045467]; National Research Council (NRC) of Canada FX We thank R. Cowley, M. Gutmann, and J. Lynn for helpful discussions and B. Clow, T. Dodd, L. McEwan, R. Sammon, M. Watson, and T. Whan for technical support during experiments. We acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC), the U.S. National Science Foundation through Contract No. DMR-0306940 and No. DMR-9986442, the U.S. DOE under Contract No. DE-AC0298CH10886, and the Office of Naval Research under Grant No. N00014-99-1-0738. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-045467. Part of this work was also funded under the Graduate Supplement Scholarship program from the National Research Council (NRC) of Canada. NR 95 TC 30 Z9 30 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224301 DI 10.1103/PhysRevB.79.224301 PG 14 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300049 ER PT J AU Tomic, S Vukmirovic, N AF Tomic, Stanko Vukmirovic, Nenad TI Excitonic and biexcitonic properties of single GaN quantum dots modeled by 8-band k center dot p theory and configuration-interaction method SO PHYSICAL REVIEW B LA English DT Article DE aluminium compounds; biexcitons; configuration interactions; crystal field interactions; dielectric function; dielectric polarisation; gallium compounds; III-V semiconductors; semiconductor quantum dots; spin-orbit interactions; wide band gap semiconductors ID ELECTRONIC-STRUCTURE; WURTZITE SEMICONDUCTORS; OPTICAL-TRANSITIONS; STRAINED WURTZITE; LUMINESCENCE; SYMMETRY; ENERGY; STATES AB Excitons and biexcitons in GaN/AlN quantum dots (QD) were investigated with special emphasis on the use of these QDs for single-photon source applications. The theoretical methodology for the calculation of single-particle states was based on 8-band strain-dependent envelope function Hamiltonian, with the effects of spin-orbit interaction, crystal-field splitting, and piezoelectric and spontaneous polarizations taken into account. Exciton and biexciton states were found using the configuration-interaction method. Optimal QD heights for their use in single-photon emitters were determined for various diameter to height ratios. The competition between strong confinement in GaN QDs and internal electric field, generally reported in wurtzite GaN, was also discussed, as well as its effect on appearance of bound biexcitons.

. C1 [Tomic, Stanko] STFC, Daresbury Lab, Computat Sci & Engn Dept, Warrington WA4 4AD, Cheshire, England. [Vukmirovic, Nenad] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Tomic, S (reprint author), STFC, Daresbury Lab, Computat Sci & Engn Dept, Warrington WA4 4AD, Cheshire, England. EM stanko.tomic@stfc.ac.uk RI Vukmirovic, Nenad/D-9489-2011; Tomic, Stanko/G-6149-2012 OI Vukmirovic, Nenad/0000-0002-4101-1713; NR 54 TC 35 Z9 37 U1 4 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245330 DI 10.1103/PhysRevB.79.245330 PG 10 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700106 ER PT J AU Tracy, LA Hwang, EH Eng, K Ten Eyck, GA Nordberg, EP Childs, K Carroll, MS Lilly, MP Das Sarma, S AF Tracy, L. A. Hwang, E. H. Eng, K. Ten Eyck, G. A. Nordberg, E. P. Childs, K. Carroll, M. S. Lilly, M. P. Das Sarma, S. TI Observation of percolation-induced two-dimensional metal-insulator transition in a Si MOSFET SO PHYSICAL REVIEW B LA English DT Article ID 2 DIMENSIONS; ELECTRON-SYSTEMS; DENSITY; B=0; GAS; BEHAVIOR; SILICON; STATES; LAYERS AB By analyzing the temperature (T) and density (n) dependence of the measured conductivity (sigma) of two-dimensional (2D) electrons in the low-density (similar to 10(11) cm(-2)) and temperature (0.02-10 K) regimes of high-mobility (1.0 and 1.5 x 10(4) cm(2)/Vs) Si metal-oxide-semiconductor field-effect transistors, we establish that the putative 2D metal-insulator transition is a density-inhomogeneity-driven percolation transition where the density-dependent conductivity vanishes as sigma(n)(proportional to) (n-n(p))(p), with the exponent p similar to 1.2 being consistent with a percolation transition. The "metallic" behavior of sigma(T) for n > n(p) is shown to be well described by a semi-classical Boltzmann theory, and we observe the standard weak localization-induced negative magnetoresistance behavior, as expected in a normal Fermi liquid, in the metallic phase. C1 [Tracy, L. A.; Eng, K.; Ten Eyck, G. A.; Childs, K.; Carroll, M. S.; Lilly, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hwang, E. H.; Das Sarma, S.] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Nordberg, E. P.] Univ Wisconsin, Madison, WI 53706 USA. RP Tracy, LA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Hwang, Euyheon/A-6239-2013; Das Sarma, Sankar/B-2400-2009 OI Das Sarma, Sankar/0000-0002-0439-986X NR 33 TC 35 Z9 35 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 23 AR 235307 DI 10.1103/PhysRevB.79.235307 PG 6 WC Physics, Condensed Matter SC Physics GA 466XU UT WOS:000267699500077 ER PT J AU Varga, T Wilkinson, AP AF Varga, Tamas Wilkinson, Angus P. TI Zirconium coordination change upon the pressure-induced amorphization of cubic ZrW2O8 and ZrMo2O8 SO PHYSICAL REVIEW B LA English DT Article DE amorphisation; EXAFS; high-pressure effects; XANES; zirconium compounds ID X-RAY-DIFFRACTION; IN-SITU; THERMAL-EXPANSION; HIGH-TEMPERATURES; CRYSTAL-STRUCTURE; TUNGSTATE; SPECTROSCOPY; ABSORPTION AB Extended x-ray-absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) were used to examine cubic ZrW2O8 and cubic ZrMo2O8 that had been pressure amorphized at 7.5 and 5 GPa, respectively, in a multianvil press and recovered to ambient conditions. Data were taken at the W L-III and L-I or Mo K edges, as well as at the Zr K edge. They indicate an increase in the average coordination number of tungsten in ZrW2O8 and a less pronounced increase in that of molybdenum in ZrMo2O8, in agreement with previous work. Notably, the Zr K-edge XANES and EXAFS analyses provide strong evidence for a previously unreported change in the average Zr coordination from 6 to similar to 7 during the amorphization of both compounds. C1 [Varga, Tamas; Wilkinson, Angus P.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. RP Varga, T (reprint author), Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. EM tamas.varga@pnl.gov RI Wilkinson, Angus/C-3408-2008 OI Wilkinson, Angus/0000-0003-2904-400X NR 25 TC 10 Z9 10 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224119 DI 10.1103/PhysRevB.79.224119 PG 5 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300044 ER PT J AU Vilmercati, P Fedorov, A Vobornik, I Manju, U Panaccione, G Goldoni, A Sefat, AS McGuire, MA Sales, BC Jin, R Mandrus, D Singh, DJ Mannella, N AF Vilmercati, P. Fedorov, A. Vobornik, I. Manju, U. Panaccione, G. Goldoni, A. Sefat, A. S. McGuire, M. A. Sales, B. C. Jin, R. Mandrus, D. Singh, D. J. Mannella, N. TI Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; cobalt compounds; doping profiles; electronic structure; Fermi surface; high-temperature superconductors; iron compounds; photoemission; superconducting transition temperature ID ANGLE-RESOLVED PHOTOEMISSION; LAO1-XFXFEAS; ORDER AB The electronic structure of electron-doped iron-arsenide superconductors Ba(Fe1-xCox)(2)As-2 has been measured with angle-resolved photoemission spectroscopy. The data reveal a marked photon energy dependence of points in momentum space where the bands cross the Fermi energy, a distinctive and direct signature of three dimensionality in the Fermi-surface topology. By providing a unique example of high-temperature superconductivity hosted in layered compounds with three-dimensional electronic structure, these findings suggest that the iron arsenides are unique materials, quite different from the cuprates high-temperature superconductors. C1 [Vilmercati, P.; Jin, R.; Mannella, N.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Vilmercati, P.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Fedorov, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Vobornik, I.; Manju, U.; Panaccione, G.] CNR, INFM, TASC Natl Lab, I-34012 Trieste, Italy. [Goldoni, A.] Sincrotrone Trieste SCpA, I-34012 Trieste, Italy. [Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Jin, R.; Mandrus, D.; Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mannella, N (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM nmannell@utk.edu RI Vobornik, Ivana/B-9463-2015; Sefat, Athena/R-5457-2016; Vobornik, Ivana/A-7461-2011; McGuire, Michael/B-5453-2009; Vilmercati, Paolo/E-5655-2017; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; OI Sefat, Athena/0000-0002-5596-3504; Vobornik, Ivana/0000-0001-9957-3535; McGuire, Michael/0000-0003-1762-9406; Vilmercati, Paolo/0000-0002-3872-8828; GOLDONI, Andrea/0000-0001-9989-3889 FU NSF [DMR-0804902]; U.S. Department of Energy [DE-AC0500OR22725] FX The work at the ALS and Elettra is supported by the NSF under Grant No. DMR-0804902. The work at Oak Ridge is sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC0500OR22725. NR 21 TC 87 Z9 87 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220503 DI 10.1103/PhysRevB.79.220503 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300011 ER PT J AU Wu, J Choi, J Scholl, A Doran, A Arenholz, E Hwang, C Qiu, ZQ AF Wu, J. Choi, J. Scholl, A. Doran, A. Arenholz, E. Hwang, Chanyong Qiu, Z. Q. TI Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001) SO PHYSICAL REVIEW B LA English DT Article DE copper; ferromagnetic materials; frustration; iron alloys; Kerr magneto-optical effect; magnetic anisotropy; magnetic epitaxial layers; magnetic multilayers; magnetic switching; manganese alloys; nickel; paramagnetic-antiferromagnetic transitions; photoelectron microscopy ID ELECTRICAL CONTROL; FE FILMS; ANISOTROPY; MULTILAYERS; INPLANE; DOMAINS AB FeMn/Ni/Cu(001) bilayer films are grown epitaxially and investigated by photoemission electron microscopy and magneto-optic Kerr effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it switches the ferromagnetic Ni spin direction from the out-of-plane to an in-plane direction of the film. This phenomenon reveals the mechanism of creating magnetic anisotropy by the out-of-plane spin frustration at the FeMn-Ni interface. C1 [Wu, J.; Choi, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Scholl, A.; Doran, A.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hwang, Chanyong] Korea Res Inst Stand & Sci, Adv Technol Div, Taejon 305340, South Korea. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Scholl, Andreas/K-4876-2012; Qiu, Zi Qiang/O-4421-2016 OI Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation [DMR-0803305]; U.S. Department of Energy [DE-AC02-05CH11231]; JCQS of Chinese Academy of Science; KICOS through Global Research Laboratory FX This work was supported by National Science Foundation under Grant No. DMR-0803305, U.S. Department of Energy under Grant No. DE-AC02-05CH11231, JCQS of Chinese Academy of Science, and KICOS through Global Research Laboratory project. NR 26 TC 15 Z9 15 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 212411 DI 10.1103/PhysRevB.79.212411 PG 4 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200015 ER PT J AU Yang, JH Chen, SY Yin, WJ Gong, XG Walsh, A Wei, SH AF Yang, Ji-Hui Chen, Shiyou Yin, Wan-Jian Gong, X. G. Walsh, Aron Wei, Su-Huai TI Electronic structure and phase stability of MgTe, ZnTe, CdTe, and their alloys in the B3, B4, and B8 structures SO PHYSICAL REVIEW B LA English DT Article DE cadmium compounds; crystal structure; density functional theory; electronic structure; energy gap; II-VI semiconductors; magnesium compounds; photovoltaic effects; valence bands; zinc compounds ID TOTAL-ENERGY CALCULATIONS; QUASI-RANDOM STRUCTURES; WAVE BASIS-SET; BAND OFFSETS; V SEMICONDUCTORS; CHEMICAL TRENDS; SOLAR-CELLS; II-VI; CRYSTALS; FILMS AB The electronic structure and phase stability of MgTe, ZnTe, and CdTe were examined in the zinc-blende (B3), wurtzite (B4), and NiAs-type (B8) crystal structures using a first-principles method. Both the band-gap and valence-band maximum (VBM) deformation potentials of MgTe, ZnTe, and CdTe in the B3 structure were analyzed, revealing a less negative band-gap deformation potential from ZnTe to MgTe to CdTe, with a VBM deformation potential increase from CdTe to ZnTe to MgTe. The natural band offsets were calculated taking into account the core-level deformation. Ternary alloy formation was explored through application of the special quasirandom structure method. The B3 structure is found to be stable over all (Zn,Cd)Te compositions, as expected from the preferences of ZnTe and CdTe. However, the (Mg,Zn)Te alloy undergoes a B3 to B4 transition above 88% Mg concentration and a B4 to B8 transition above 95% Mg concentration. For (Mg,Cd)Te, a B3 to B4 transition is predicted above 80% Mg content and a B4 to B8 transition above 90% Mg concentration. Using the calculated band-gap bowing parameters, the B3 (Mg,Zn)Te [(Mg,Cd)Te] alloys are predicted to have accessible direct band gaps in the range 2.39(1.48)-3.25(3.02) eV, suitable for photovoltaic absorbers. C1 [Yang, Ji-Hui; Chen, Shiyou; Yin, Wan-Jian; Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Walsh, Aron; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yang, Ji-Hui; Chen, Shiyou; Yin, Wan-Jian; Gong, X. G.] Fudan Univ, MOE Lab Computat Phys Sci, Shanghai 200433, Peoples R China. RP Yang, JH (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RI Walsh, Aron/A-7843-2008; gong, xingao /B-1337-2010; Yin, Wanjian/F-6738-2013; gong, xingao/D-6532-2011 OI Walsh, Aron/0000-0001-5460-7033; FU U.S Department of Energy (DOE) [DE-AC36-08GO28308]; DOE [DE-AC02-05CH11231] FX The work at Fudan University is partially supported by the National Science Foundation of China, the Special Funds for Major State Basic Research, and the project of MOE and Shanghai Municipality. The computation is performed in the Supercomputer Center of Shanghai, the Supercomputer Center of Fudan University, and CCS. The work at NREL is funded by the U.S Department of Energy (DOE), under Contract No. DE-AC36-08GO28308, which employed computing resources of the National Energy Research Scientific Computing Center supported by DOE under Contract No. DE-AC02-05CH11231. NR 42 TC 31 Z9 31 U1 8 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245202 DI 10.1103/PhysRevB.79.245202 PG 7 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700071 ER PT J AU Yang, YF AF Yang, Yi-feng TI Fano effect in the point contact spectroscopy of heavy-electron materials SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; cerium alloys; cobalt alloys; electron spin polarisation; heavy fermion systems; indium alloys; Kondo effect; photoemission; point contact spectroscopy; rhodium alloys; ytterbium alloys ID LATTICE AB We show that Fano interference explains how point contact spectroscopy in heavy-electron materials probes the emergence of the Kondo heavy-electron liquid below the same characteristic temperature T(*) as that seen in many other experiments and why the resulting measured conductance asymmetry reflects the universal Kondo liquid behavior seen in these. Its physical origin is the opening of a new channel for electron tunneling beyond that available from the background conduction electrons. We derive the Fano formula with a mean-field slave boson approach for the Kondo lattice model and generalize it to finite temperature and realistic situation by introducing empirical parameters. The resulting simple expression for the Fano interference provides a good fit to the experimental results for CeCoIn(5), CeRhIn(5), and YbAl(3), over the entire range of bias voltages, and deduce a lifetime of the heavy quasiparticle excitations that agrees well with recent state-of-the-art numerical calculations. C1 [Yang, Yi-feng] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yang, Yi-feng] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Yang, YF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU ICAM; UC Davis; Department of Energy FX We acknowledge discussions with David Pines, Vladimir Sidorov, and Joe D. Thompson, as well as support from ICAM, UC Davis, and the Department of Energy. NR 23 TC 21 Z9 21 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 241107 DI 10.1103/PhysRevB.79.241107 PG 4 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700007 ER PT J AU Yin, WG Ku, W AF Yin, Wei-Guo Ku, Wei TI Tuning the in-plane electron behavior in high-T-c cuprate superconductors via apical atoms: A first-principles Wannier-states analysis SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; density functional theory; electron-phonon interactions; HF calculations; high-temperature superconductors; lanthanum compounds; many-body problems; multilayers; neodymium compounds; strontium compounds; Wannier functions ID X-RAY-ABSORPTION; OXIDE SUPERCONDUCTORS; SPECTRAL-FUNCTION; CUO2 PLANES; DOPED HOLES; J MODEL; TEMPERATURE; OXYGEN; CA2CUO2CL2; SR2CUO2CL2 AB Using a recently developed first-principles Wannier-states approach that takes into account large on-site Coulomb repulsion, we derive the low-energy effective one-band Hamiltonians for several prototypical cuprate superconductors. The material dependence is found to originate primarily from the different energy of the apical atom p(z) state. Specifically, the general properties of the low-energy hole state, namely, the Zhang-Rice singlet, are significantly modified, via additional intrasublattice hoppings, nearest-neighbor "super repulsion," and other microscopic many-body processes. Implications on modulations of local pairing gaps, charge distribution, hole-hopping range, electron-phonon interaction, and multilayer effects in cuprate superconductors are discussed. C1 [Yin, Wei-Guo; Ku, Wei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Ku, Wei] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11790 USA. RP Yin, WG (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM wyin@bnl.gov; weiku@bnl.gov RI Yin, Weiguo/A-9671-2014 OI Yin, Weiguo/0000-0002-4965-5329 NR 58 TC 12 Z9 12 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 21 AR 214512 DI 10.1103/PhysRevB.79.214512 PG 9 WC Physics, Condensed Matter SC Physics GA 466XR UT WOS:000267699200113 ER PT J AU Zhang, JH Sknepnek, R Fernandes, RM Schmalian, J AF Zhang, Junhua Sknepnek, Rastko Fernandes, Rafael M. Schmalian, Joerg TI Orbital coupling and superconductivity in the iron pnictides SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetism; Fermi surface; fluctuations; iron compounds; SCF calculations; superconducting materials; surface states ID 2-DIMENSIONAL HUBBARD-MODEL; SYSTEMS AB We demonstrate that strong interorbital interaction is very efficient to achieve superconductivity due to magnetic fluctuations in the iron pnictides. Fermi-surface states that are coupled by the antiferromagnetic wave vector are often of different orbital nature, causing pair-hopping interactions between distinct Fe-3d orbitals to become important. Performing a self-consistent fluctuation exchange calculation below T(c) we determine the superconducting order parameter as function of intra- and interorbital couplings. We find an s(+/-)-pairing state with T(c)similar or equal to 80 K for realistic parameters. C1 [Zhang, Junhua] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Zhang, JH (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010; OI Sknepnek, Rastko/0000-0002-0144-9921 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX We are grateful to A. V. Chubukov and I. I. Mazin for helpful discussions. This research was supported by the Ames Laboratory, operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 25 TC 48 Z9 48 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 220502 DI 10.1103/PhysRevB.79.220502 PG 4 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300010 ER PT J AU Zhang, Y Ran, Y Vishwanath, A AF Zhang, Yi Ran, Ying Vishwanath, Ashvin TI Topological insulators in three dimensions from spontaneous symmetry breaking SO PHYSICAL REVIEW B LA English DT Article DE localised states; spin-orbit interactions; spontaneous symmetry breaking ID HGTE QUANTUM-WELLS; PHASE AB We study three-dimensional systems where strong repulsion leads to an insulating state via spontaneously generated spin-orbit interactions. We discuss a microscopic model where the resulting state is topological. Such topological "Mott" insulators differ from their band-insulator counterparts in that they possess an additional order parameter, a rotation matrix, which describes the spontaneous breaking of spin-rotation symmetry. We show that line defects of this order are associated with protected one-dimensional modes in the strong topological Mott insulator that provides a bulk characterization of this phase. Possible physical realizations in cold-atom systems are discussed. C1 [Zhang, Yi; Ran, Ying; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ran, Ying; Vishwanath, Ashvin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhang, Yi/I-3138-2013 NR 27 TC 97 Z9 97 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 24 AR 245331 DI 10.1103/PhysRevB.79.245331 PG 9 WC Physics, Condensed Matter SC Physics GA 466XV UT WOS:000267699700107 ER PT J AU Zuev, YL Specht, ED Cantoni, C Christen, DK Thompson, JR Jin, RY Sefat, AS Mandrus, DG McGuire, MA Sales, BC AF Zuev, Yuri L. Specht, Eliot D. Cantoni, Claudia Christen, David K. Thompson, James R. Jin, Rongying Sefat, Athena S. Mandrus, David G. McGuire, Michael A. Sales, Brian C. TI Aligned crystallite powder of NdFeAsO0.86F0.14: Magnetic hysteresis and penetration depth SO PHYSICAL REVIEW B LA English DT Article DE arsenic compounds; critical current density (superconductivity); crystallites; flux pinning; high-temperature superconductors; iron compounds; magnetic hysteresis; neodymium compounds; particle size; penetration depth (superconductivity) ID SUPERCONDUCTIVITY; DENSITY AB We report the basal-plane critical current and superfluid density of magnetically aligned NdFeAsO0.86F0.14 powder. This sample has individual crystallite grains permanently oriented with their c axis along the external measuring field. Magnetic irreversibilities at high field suggest strong flux pinning of basal-plane critical currents, with monotonic field dependence and no evidence of the "fishtail" effect. The small particles provide a sensitive indicator of dc flux penetration and allow analysis of the temperature dependence of ab-plane London penetration depth lambda(ab,L), which is quadratic at low T. This feature may not necessarily be due to the nodes in the gap but may be rather a sign of a strong pair breaking. A quantitative determination of the absolute magnitude of lambda(ab,L) is hindered by the need for accurate knowledge of the particle size distribution. C1 [Zuev, Yuri L.; Specht, Eliot D.; Cantoni, Claudia; Christen, David K.; Thompson, James R.; Jin, Rongying; Sefat, Athena S.; Mandrus, David G.; McGuire, Michael A.; Sales, Brian C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Thompson, James R.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Zuev, YL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Specht, Eliot/A-5654-2009; Sefat, Athena/R-5457-2016; Cantoni, Claudia/G-3031-2013 OI McGuire, Michael/0000-0003-1762-9406; Specht, Eliot/0000-0002-3191-2163; Sefat, Athena/0000-0002-5596-3504; Cantoni, Claudia/0000-0002-9731-2021 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy; Scientific User Facilities Division; Oak Ridge Institute for Science and Education; DOE Office of Electricity Delivery and Energy Reliability, Superconductivity Program for Electric Power Systems FX We are indebted to Zheng Gai for use and help with the ac magnetometer and Parans M. Paranthaman for providing access to the particle sizing instrument. Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, and U.S. Department of Energy. The research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Y.L.Z. acknowledges support from the Oak Ridge Institute for Science and Education and the DOE Office of Electricity Delivery and Energy Reliability, Superconductivity Program for Electric Power Systems. NR 34 TC 2 Z9 2 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2009 VL 79 IS 22 AR 224523 DI 10.1103/PhysRevB.79.224523 PG 6 WC Physics, Condensed Matter SC Physics GA 466XS UT WOS:000267699300111 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M Silva, CD Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mall, MI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M Vander Molen, AM Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xu, N Xu, QH Xu, Y Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Blyth, S. -L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, M. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. Vander Molen, A. M. Vanfossen, J. A. Varma, R., Jr. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Measurements of phi meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) SO PHYSICAL REVIEW C LA English DT Review ID QUARK-GLUON-PLASMA; LARGE TRANSVERSE-MOMENTUM; NUCLEUS-NUCLEUS COLLISIONS; TIME PROJECTION CHAMBER; PLUS AU COLLISIONS; ELLIPTIC FLOW; STRANGENESS PRODUCTION; PHASE-TRANSITION; D+AU COLLISIONS; HADRONIC MATTER AB We present results for the measurement of phi meson production via its charged kaon decay channel phi -> K+ K- Au + Au collisions at root S-NN = 62.4, 130, and 200 GeV, and in p + p and d + Au collisions at v root S-NN = 200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (vertical bar y vertical bar < 0.5) phi meson transverse momentum (p(T)) spectra in central Au + Au collisions are found to be well described by a single exponential distribution. On the other hand, the p(T) spectra from p + p, d + Au, and peripheral Au + Au collisions show power-law tails at intermediate and high p(T) and are described better by Levy distributions. The constant phi/K- yield ratio vs beam species, collision centrality, and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for phi production at RHIC. The Omega/phi yield ratio as a function of p(T) is consistent with a model based on the recombination of thermal s quarks up to p(T) similar to 4 GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, R-dAu, for the phi meson increases above unity at intermediate p(T), similar to that for pions and protons, while R-AA is suppressed due to the energy loss effect in central Au + Au collisions. Number of constituent quark scaling of both R-cp and nu(2) for the phi meson with respect to other hadrons in Au + Au collisions at root S-NN = 200 GeV at intermediate pT is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate p(T) region at RHIC. C1 [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, M. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Ma, J. G.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty] AS CR, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R., Jr.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Djawotho, P.; He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Pandit, Y.; Rykov, V.; Subba, N. L.; Vanfossen, J. A.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Blyth, S. -L.; Dong, X.; Edwards, W. R.; Grebenyuk, O.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Vander Molen, A. M.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Lin, X.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. RP Abelev, BI (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. RI Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Derradi de Souza, Rafael/M-4791-2013; Barnby, Lee/G-2135-2010; Cosentino, Mauro/L-2418-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Ma, Guo-Liang/B-4166-2012; Sumbera, Michal/O-7497-2014; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013 OI Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Derradi de Souza, Rafael/0000-0002-2084-7001; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Takahashi, Jun/0000-0002-4091-1779; Sumbera, Michal/0000-0002-0639-7323; Peitzmann, Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943; FU Offices of NP; HEP; US DOE Office of Science; US NSF; Sloan Foundation; DFG Excellence Cluster EXC153 of Germany [CNRS/IN2P3]; RA; RPL; EMN of France; STFC; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Sci. and Tech; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the Netherlands; DAE; DST; CSIR of the Government of India; Swiss NSF; Polish State Committee for Scientific Research; Korea Sci. & Eng. Foundation FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG Excellence Cluster EXC153 of Germany, CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Sci. and Tech., the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, Swiss NSF, the Polish State Committee for Scientific Research, and the Korea Sci. & Eng. Foundation. NR 117 TC 67 Z9 68 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064903 DI 10.1103/PhysRevC.79.064903 PG 20 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200060 ER PT J AU Carman, DS Raue, BA Adhikari, KP Amaryan, MJ Anghinolfi, M Baghdasaryan, H Battaglieri, M Bellis, M Biselli, AS Bookwalter, C Branford, D Briscoe, WJ Brooks, WK Burkert, VD Cole, PL Collins, P Crede, V Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dhamija, S Djalali, C Dodge, GE Eugenio, P Fedotov, G Fegan, S Fradi, A Gabrielyan, MY Giovanetti, KL Girod, FX Gohn, W Gonenc, A Gothe, RW Hakobyan, H Hanretty, C Hassall, N Hicks, K Holtrop, M Ilieva, Y Ireland, DG Jo, HS Johnstone, JR Khetarpal, P Kim, W Kubarovsky, V Kuznetsov, V Livingston, K Mayer, M McCracken, ME Meyer, CA Mikhailov, K Mineeva, T Mirazita, M Mokeev, V Moreno, B Moriya, K Moteabbed, M Nadel-Turonski, P Niccolai, S Niroula, MR Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Pogorelko, O Price, JW Protopopescu, D Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salgado, C Sayre, D Schott, D Schumacher, RA Seraydaryan, H Sharabian, YG Sober, DI Sokhan, D Stepanyan, S Stepanyan, SS Strauch, S Taiuti, M Tedeschi, DJ Tkachenko, S Ungaro, M Vineyard, MF Wolin, E Wood, MH Zhang, J Zhao, B AF Carman, D. S. Raue, B. A. Adhikari, K. P. Amaryan, M. J. Anghinolfi, M. Baghdasaryan, H. Battaglieri, M. Bellis, M. Biselli, A. S. Bookwalter, C. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Cole, P. L. Collins, P. Crede, V. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dhamija, S. Djalali, C. Dodge, G. E. Eugenio, P. Fedotov, G. Fegan, S. Fradi, A. Gabrielyan, M. Y. Giovanetti, K. L. Girod, F. X. Gohn, W. Gonenc, A. Gothe, R. W. Hakobyan, H. Hanretty, C. Hassall, N. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Jo, H. S. Johnstone, J. R. Khetarpal, P. Kim, W. Kubarovsky, V. Kuznetsov, V. Livingston, K. Mayer, M. McCracken, M. E. Meyer, C. A. Mikhailov, K. Mineeva, T. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Moteabbed, M. Nadel-Turonski, P. Niccolai, S. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Pogorelko, O. Price, J. W. Protopopescu, D. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salgado, C. Sayre, D. Schott, D. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Sober, D. I. Sokhan, D. Stepanyan, S. Stepanyan, S. S. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vineyard, M. F. Wolin, E. Wood, M. H. Zhang, J. Zhao, B. CA CLAS Collaboration TI Beam-recoil polarization transfer in the nucleon resonance region in the exclusive (e)over-right-arrow p -> e ' K+(Lambda)over-right-arrow and (e)over-right-arrow p -> e ' K+(Sigma)over-right-arrow(0) reactions at the CLAS spectrometer SO PHYSICAL REVIEW C LA English DT Article ID PHOTOPRODUCTION AMPLITUDES; BARYON RESONANCES; PION; ENERGIES; LAMBDA; DECAYS; MODEL; ELECTROPRODUCTION; SYSTEM; ETA AB Beam-recoil transferred polarizations for the exclusive (e) over right arrow p -> e' K+(Lambda) over right arrow, (Sigma) over right arrow (0) reactions have been measured using the Continuous Electron Beam Accelerator Facility's large acceptance spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. New measurements have been completed at beam energies of 4.261 and 5.754 GeV that span a range of momentum transfer Q(2) from 0.7 to 5.4 GeV2, invariant energy W from 1.6 to 2.6 GeV, and the full center-of-mass angular range of the K+ meson. These new data add to the existing CLAS K+Lambda measurements at 2.567 GeV, and provide the first-ever data for the K+ Sigma(0) channel in electroproduction. Comparisons of the data with several theoretical models are used to study the sensitivity to s-channel resonance contributions and the underlying reaction mechanism. Interpretations within two semiclassical partonic models are made to probe the underlying reaction mechanism and the s (s) over bar quark-pair creation dynamics. C1 [Carman, D. S.; Brooks, W. K.; Burkert, V. D.; Cole, P. L.; Deur, A.; Girod, F. X.; Kubarovsky, V.; Mokeev, V.; Park, K.; Sharabian, Y. G.; Stepanyan, S.; Wolin, E.] Thomas Jefferson Natl Accelerator Lab, Newport News, VA 23606 USA. [Raue, B. A.; Dhamija, S.; Gabrielyan, M. Y.; Gonenc, A.; Moteabbed, M.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. Argonne Natl Lab, Argonne, IL 60439 USA. [Collins, P.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Sabatie, F.] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [De Sanctis, E.; Mirazita, M.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Briscoe, W. J.] George Washington Univ, Washington, DC 20052 USA. [Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; Protopopescu, D.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.] Idaho State Univ, Pocatello, ID 83209 USA. [Mikhailov, K.; Pogorelko, O.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Fedotov, G.; Mokeev, V.; Osipenko, M.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. Moscow MV Lomonosov State Univ, RU-119899 Moscow, Russia. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Adhikari, K. P.; Amaryan, M. J.; Dodge, G. E.; Mayer, M.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Daniel, A.; Hicks, K.; Sayre, D.] Ohio Univ, Athens, OH 45701 USA. [Fradi, A.; Jo, H. S.; Moreno, B.; Niccolai, S.] Inst Phys Nucl ORSAY, IN2P3, F-91406 Orsay, France. [Khetarpal, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Brooks, W. K.; Hakobyan, H.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Baghdasaryan, H.] Univ Virginia, Charlottesville, VA 22901 USA. [Dashyan, N.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Univ Genoa, Dept Phys, I-16146 Genoa, Italy. RP Carman, DS (reprint author), Thomas Jefferson Natl Accelerator Lab, Newport News, VA 23606 USA. RI Ireland, David/E-8618-2010; Protopopescu, Dan/D-5645-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016 OI Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; FU US Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; Korean Science and Engineering Foundation; Southeastern Universities Research Association ( SURA); Thomas Jefferson National Accelerator Facility for the US Department of Energy [DE-AC05-84ER40150] FX We acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at Jefferson Lab that made this experiment possible. This work was supported in part by the US Department of Energy, the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, and the Korean Science and Engineering Foundation. The Southeastern Universities Research Association ( SURA) operated the Thomas Jefferson National Accelerator Facility for the US Department of Energy under Contract No. DE-AC05-84ER40150. NR 64 TC 26 Z9 26 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 065205 DI 10.1103/PhysRevC.79.065205 PG 23 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200071 ER PT J AU Dracoulis, GD Lane, GJ Kondev, FG Watanabe, H Seweryniak, D Zhu, S Carpenter, MP Chiara, CJ Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Stefanescu, I AF Dracoulis, G. D. Lane, G. J. Kondev, F. G. Watanabe, H. Seweryniak, D. Zhu, S. Carpenter, M. P. Chiara, C. J. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Stefanescu, I. TI Lifetime of the K-pi=8(-) isomer in the neutron-rich nucleus Er-174, and N=106 E1 systematics SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL BAND; HF-178; STATES; DEFORMATIONS; TRANSITIONS; ISOTOPES; ENERGY; YRAST AB Chopped-beam techniques and gamma-ray spectroscopy with Gammasphere have been used to measure the lifetime of the 1112-keV 8(-) isomeric state in Er-174. The value obtained of tau=5.8(4) s corresponds to a reduced hindrance of f(nu)=98 for the 163-keV E1 transition to the 8(+) state of the ground-state band, in good agreement with the systematics of the corresponding E1 strengths in the N=106 isotones. The K-mixing in the 8(-) states is calculated in the context of the particle-rotor model and used to extract the underlying reduced hindrances.

. C1 [Dracoulis, G. D.; Lane, G. J.] Australian Natl Univ, Dept Nucl Phys, RS Phys SE, Canberra, ACT 0200, Australia. [Kondev, F. G.; Chiara, C. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Watanabe, H.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Dracoulis, GD (reprint author), Australian Natl Univ, Dept Nucl Phys, RS Phys SE, Canberra, ACT 0200, Australia. EM george.dracoulis@anu.edu.au RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848] FX The authors thank R. B. Turkentine for producing the target and the staff of the ATLAS accelerator facility for their assistance in various phases of the experiment. This work is supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848. NR 27 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 061303 DI 10.1103/PhysRevC.79.061303 PG 4 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200004 ER PT J AU Dugger, M Ritchie, BG Ball, JP Collins, P Pasyuk, E Arndt, RA Briscoe, WJ Strakovsky, II Workman, RL Amaryan, MJ Anghinolfi, M Bagdasaryan, H Battaglieri, M Bellis, M Berman, BL Biselli, AS Bookwalter, C Branford, D Brooks, WK Burkert, VD Careccia, SL Carman, DS Cole, PL Corvisiero, P Crede, V Daniel, A Dashyan, N Vita, R Sanctis, E Deur, A Dhamija, S Dickson, R Djalali, C Dodge, GE Doughty, D Eugenio, P Fedotov, G Ficenec, J Fradi, A Gilfoyle, GP Giovanetti, KL Girod, FX Gohn, W Gothe, RW Griffioen, KA Guidal, M Hafidi, K Hakobyan, H Hanretty, C Hassall, N Heddle, D Hicks, K Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Johnstone, JR Joo, K Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kramer, LH Kubarovsky, V Kuleshov, SV Kuznetsov, V Livingston, K Lu, HY McCracken, ME McKinnon, B Meyer, CA Mirazita, M Mokeev, V Moreno, B Moriya, K Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Park, S Pereira, SA Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Raue, BA Ricco, G Ripani, M Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Schumacher, RA Sharabian, YG Sober, DI Sokhan, D Stepanyan, S Stepanyan, SS Strauch, S Taiuti, M Tedeschi, DJ Tkachenko, S Vineyard, MF Watts, DP Weinstein, LB Weygand, DP Wood, MH Yegneswaran, A AF Dugger, M. Ritchie, B. G. Ball, J. P. Collins, P. Pasyuk, E. Arndt, R. A. Briscoe, W. J. Strakovsky, I. I. Workman, R. L. Amaryan, M. J. Anghinolfi, M. Bagdasaryan, H. Battaglieri, M. Bellis, M. Berman, B. L. Biselli, A. S. Bookwalter, C. Branford, D. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Cole, P. L. Corvisiero, P. Crede, V. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dhamija, S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Eugenio, P. Fedotov, G. Ficenec, J. Fradi, A. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Gohn, W. Gothe, R. W. Griffioen, K. A. Guidal, M. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Heddle, D. Hicks, K. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Johnstone, J. R. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kramer, L. H. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Lu, H. Y. McCracken, M. E. McKinnon, B. Meyer, C. A. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Park, S. Pereira, S. Anefalos Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Schumacher, R. A. Sharabian, Y. G. Sober, D. I. Sokhan, D. Stepanyan, S. Stepanyan, S. S. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Vineyard, M. F. Watts, D. P. Weinstein, L. B. Weygand, D. P. Wood, M. H. Yegneswaran, A. CA CLAS Collaboration TI pi(+) photoproduction on the proton for photon energies from 0.725 to 2.875 GeV SO PHYSICAL REVIEW C LA English DT Article ID POSITIVE-PION-PHOTOPRODUCTION; ETA-PHOTOPRODUCTION; POLARIZED PHOTONS; HYDROGEN; RANGE; MESONS; CLAS; DIRECTION; REGION; SYSTEM AB Differential cross sections for the reaction gamma p -> n pi(+) have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.

. C1 [Dugger, M.; Ritchie, B. G.; Ball, J. P.; Collins, P.; Pasyuk, E.] Arizona State Univ, Tempe, AZ 85287 USA. [Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Girod, F. X.; Procureur, S.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Kramer, L. H.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Arndt, R. A.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.; Berman, B. L.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA. [Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Fradi, A.; Guidal, M.; Moreno, B.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Careccia, S. L.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Niroula, M. R.; Sabatie, F.; Tkachenko, S.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Biselli, A. S.; Khetarpal, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Heddle, D.; Klein, F. J.; Kramer, L. H.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Sharabian, Y. G.; Stepanyan, S.; Weygand, D. P.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Ficenec, J.; Fradi, A.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Joo, K.] Univ Virginia, Charlottesville, VA 22901 USA. [Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Hakobyan, H.; Sharabian, Y. G.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Dugger, M (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. RI Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; OI Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; Hyde, Charles/0000-0001-7282-8120; Bellis, Matthew/0000-0002-6353-6043 FU National Science Foundation; U. S. Department of Energy (DOE) [DE-AC05-84ER40150]; French Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Italian Istituto Nazionale di Fisica Nucleare; Korean Science and Engineering Foundation FX The authors gratefully acknowledge the work of the Jefferson Lab Accelerator Division staff. This work was supported by the National Science Foundation, the U. S. Department of Energy (DOE), the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the Italian Istituto Nazionale di Fisica Nucleare, and the Korean Science and Engineering Foundation. The Southeastern Universities Research Association (SURA) operated Jefferson Lab for DOE under Contract No. DE-AC05-84ER40150 during this work. NR 66 TC 65 Z9 65 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 065206 DI 10.1103/PhysRevC.79.065206 PG 14 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200072 ER PT J AU Engel, J Hagen, G AF Engel, Jonathan Hagen, Gaute TI Corrections to the neutrinoless double-beta-decay operator in the shell model SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI AB We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double-beta decay of Se-82. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian for recent shell-model calculations of double-beta decay. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.

. C1 [Engel, Jonathan] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA. [Hagen, Gaute] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Engel, J (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA. RI Hagen, Gaute/I-6146-2012 OI Hagen, Gaute/0000-0001-6019-1687 FU U.S. Department of Energy [DE-FG02-97ER41019, DE-AC05-00OR22725] FX We acknowledge useful discussions with Morten HjorthJensen and thank Alfredo Poves for supplying shell-model densities. This work was supported in part by the U.S. Department of Energy under Contract No. DE-FG02-97ER41019 with UNC and Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 19 TC 32 Z9 32 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064317 DI 10.1103/PhysRevC.79.064317 PG 6 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200028 ER PT J AU Esbensen, H Jiang, CL AF Esbensen, H. Jiang, C. L. TI Indications of a shallow potential in Ca-48+Zr-96 fusion reactions SO PHYSICAL REVIEW C LA English DT Article AB Fusion data for Ca-48+Zr-96 are analyzed by coupled-channels calculations. Puzzling features of a previous analysis are eliminated by applying a potential that has a shallow pocket in the entrance channel. Thus the observed S factor for fusion, which develops a maximum at low energy, can be reproduced fairly well. The high-energy data can also be accounted for but that requires the use of a weak, short-ranged imaginary potential that absorbs the incoming flux near the location of the minimum of the potential pocket. Predictions of the fusion hindrance in other Ca+Zr systems are made and are compared with the systematics that has been developed previously.

. C1 [Esbensen, H.; Jiang, C. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We are grateful to A. Stefanini for many communications and for providing us with the data and to B. B. Back, R. V. F. Janssens, and K. E. Rehm for a long- term collaboration on the subject of fusion hindrance. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357. NR 19 TC 25 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064619 DI 10.1103/PhysRevC.79.064619 PG 7 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200054 ER PT J AU Folden, CM Nettleton, AS Amthor, AM Ginter, TN Hausmann, M Kubo, T Loveland, W Manikonda, SL Morrissey, DJ Nakao, T Portillo, M Sherrill, BM Souliotis, GA Strong, BF Takeda, H Tarasov, OB AF Folden, C. M., III Nettleton, A. S. Amthor, A. M. Ginter, T. N. Hausmann, M. Kubo, T. Loveland, W. Manikonda, S. L. Morrissey, D. J. Nakao, T. Portillo, M. Sherrill, B. M. Souliotis, G. A. Strong, B. F. Takeda, H. Tarasov, O. B. TI New neutron-rich microsecond isomers observed among fission products of U-238 at 80 MeV/nucleon SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY ENERGIES; MU-S-ISOMERS; NUCLEAR-STRUCTURE; HALF-LIFE; ISOTOPES; STATES; IDENTIFICATION; FRAGMENTATION; DEFORMATION; REGION AB Eight new isomeric states in neutron-rich nuclides have been discovered in fission fragments produced by the reaction of an 80 MeV/nucleon U-238 beam with a Be-9 target and separated in-flight using the A1900 fragment separator. The experiment was conducted at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. Gamma rays were detected in a high-purity germanium detector located at the focal plane within a time window of 20 mu s following ion implantation. In some cases the isomers were observed to decay into previously reported states, allowing us to assign the initial decay from the isomeric state. Among the outcomes, the results suggest that many studies on the nuclear structure of medium-mass neutron-rich nuclei are feasible at projectile fragmentation facilities using induced fission.

. C1 [Folden, C. M., III; Nettleton, A. S.; Amthor, A. M.; Ginter, T. N.; Hausmann, M.; Morrissey, D. J.; Portillo, M.; Sherrill, B. M.; Tarasov, O. B.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Nettleton, A. S.; Amthor, A. M.; Sherrill, B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Kubo, T.; Nakao, T.; Takeda, H.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Loveland, W.] Oregon State Univ, Dept Chem, Corvallis, OR 97330 USA. [Manikonda, S. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Morrissey, D. J.; Strong, B. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Nakao, T.] Univ Tokyo, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan. [Tarasov, O. B.] Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Moscow Region, Russia. RP Folden, CM (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. RI Sherrill, Bradley/B-3378-2011; Manikonda, Shashikant/D-6936-2011; Folden, Charles/F-1033-2015 OI Folden, Charles/0000-0002-2814-3762 FU US National Science Foundation [PHY-06-06007]; US Department of Energy (DOE) [DE-FG02-00ER41144, DE-FG03-97ER41026.] FX We wish to thank the NSCL operations staff for providing the beam of 238U, and A. Gade, A. O. Macchiavelli, and A. E. Stuchbery for informative discussions. This work was supported by the US National Science Foundation under award PHY-06-06007 and the US Department of Energy (DOE) under Contract No. DE-FG02-00ER41144. One author (W. L.) also wishes to recognize US DOE under contract No. DE-FG03-97ER41026. NR 59 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064318 DI 10.1103/PhysRevC.79.064318 PG 8 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200029 ER PT J AU Liu, SH Hamilton, JH Ramayya, AV Hwang, JK Daniel, AV Ter-Akopian, GM Luo, YX Rasmussen, JO Zhu, SJ Ma, WC AF Liu, S. H. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Daniel, A. V. Ter-Akopian, G. M. Luo, Y. X. Rasmussen, J. O. Zhu, S. J. Ma, W. C. TI Identification of high spin states in I-134 from Cf-252 fission SO PHYSICAL REVIEW C LA English DT Article ID HYPERFINE-STRUCTURE; NUCLEI; ISOMER; DECAY AB High spin states in I-134 were identified for the first time based on measurements of prompt gamma rays from the spontaneous fission of Cf-252 at Gammasphere. Five excited levels with five deexciting transitions were observed. The mass number was assigned based on the intensity of transitions in the complementary Rh fragments. Angular correlations for the first two transitions in I-134 and for high spin states in I-133,I-135,I-136 were performed, but were not sufficient to firmly assign the spins and parities in I-134.

. C1 [Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Daniel, A. V.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Daniel, A. V.; Ter-Akopian, G. M.] JINR, Flerov Lab Nucl React, Dubna, Russia. [Luo, Y. X.; Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. RP Liu, SH (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. FU US Department of Energy [DE-FG05-88ER40407, DE-FG02-95ER40939, DE-AC03-76SF00098]; National Natural Science Foundation of China [10575057, 10775078]; Major State Basic Research Development Program [2007CB815005] FX The work at Vanderbilt University, Mississippi State University, and Lawrence Berkeley National Laboratory is supported by the US Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, DE-FG02-95ER40939, and DE-AC03-76SF00098. The work at Tsinghua University is supported by the National Natural Science Foundation of China under Grants 10575057 and 10775078 and by the Major State Basic Research Development Program under Grant 2007CB815005. NR 19 TC 11 Z9 11 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 067303 DI 10.1103/PhysRevC.79.067303 PG 4 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200082 ER PT J AU Moller, P Sierk, AJ Ichikawa, T Iwamoto, A Bengtsson, R Uhrenholt, H Aberg, S AF Moller, Peter Sierk, Arnold J. Ichikawa, Takatoshi Iwamoto, Akira Bengtsson, Ragnar Uhrenholt, Henrik Aberg, Sven TI Heavy-element fission barriers SO PHYSICAL REVIEW C LA English DT Review ID POTENTIAL-ENERGY SURFACES; NUCLEAR GROUND-STATE; 2 DEFORMATION PATHS; MASS YIELD CURVES; HALF-LIVES; DELAYED-FISSION; SUPERHEAVY NUCLEI; ACTINIDE NUCLEI; ASYMMETRIC FISSION; HEAVIEST ELEMENTS AB We present calculations of fission properties for heavy elements. The calculations are based on the macroscopic-microscopic finite-range liquid-drop model with a 2002 parameter set. For each nucleus we have calculated the potential energy in three different shape parametrizations: (1) for 5 009 325 different shapes in a five-dimensional deformation space given by the three-quadratic-surface parametrization, (2) for 10 850 different shapes in a three-dimensional deformation space spanned by epsilon(2), epsilon(4), and gamma in the Nilsson perturbed-spheroid parametrization, supplemented by a densely spaced grid in epsilon(2), epsilon(3), epsilon(4), and epsilon(6) for axially symmetric deformations in the neighborhood of the ground state, and (3) an axially symmetric multipole expansion of the shape of the nuclear surface using beta(2), beta(3), beta(4), and beta(6) for intermediate deformations. For a fissioning system, it is always possible to define uniquely one saddle or fission threshold on the optimum trajectory between the ground state and separated fission fragments. We present such calculated barrier heights for 1585 nuclei from Z=78 to Z=125. Traditionally, actinide barriers have been characterized in terms of a "double-humped" structure. Following this custom we present calculated energies of the first peak, second minimum, and second peak in the barrier for 135 actinide nuclei from Th to Es. However, for some of these nuclei which exhibit a more complex barrier structure, there is no unique way to extract a double-humped structure from the calculations. We give examples of such more complex structures, in particular the structure of the outer barrier region near (232)Th and the occurrence of multiple fission modes. Because our complete results are too extensive to present in a paper of this type, our aim here is limited: (1) to fully present our model and the methods for determining the structure of the potential-energy surface, (2) to present fission thresholds for a large number of heavy elements, (3) to compare our results with the two-humped barrier structure deduced from experiment for actinide nuclei, and (4) to compare to additional fission-related data and other fission models.

. C1 [Moller, Peter; Sierk, Arnold J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ichikawa, Takatoshi] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Iwamoto, Akira] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Bengtsson, Ragnar; Uhrenholt, Henrik; Aberg, Sven] Lund Inst Technol, Dept Math Phys, SE-22100 Lund, Sweden. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU University of Tennessee [DE-FG02-06ER41407]; US Department of Energy [DE-AC52-06NA25396] FX This paper is dedicated to the memory of our friend and colleague Ray Nix, who through his years of devoted research on nuclear fission, for example, on the topics of the three-quadratic-surface parametrization, the folded-Yukawa single-particle model, the finite-range surface energy, and fission inertias, made possible many of the calculations discussed here. The authors are also grateful to A. N. Andreyev, L. Bonneau, A. Juodagalvis, F. Kondev, H. Nakahara, K. Nishio, T. Ohtsuki, J. M. Pearson, and W. J. Swiatecki for valuable discussions. P. M. thanks JAEA (formerly JAERI) for supporting the original work on 5D potential-energy surfaces during a 3-month visit in 1998-1999, and the Department of Mathematical Physics, Lund Institute of Technology, for hospitality during several visits in 2002-2008. T. I., A. I., R. B., and H. U. would like to thank LANL for hospitality during visits in 2002-2007. This work was supported by travel grants for P. M. to JUSTIPEN (Japan-US Theory Institute for Physics with Exotic Nuclei) under Grant No. DE-FG02-06ER41407 (University of Tennessee). This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 124 TC 210 Z9 213 U1 4 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064304 DI 10.1103/PhysRevC.79.064304 PG 38 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200015 ER PT J AU Ping, JL Huang, HX Deng, CR Wang, F Goldman, T AF Ping, Jialun Huang, Hongxia Deng, Chengrong Wang, Fan Goldman, T. TI Systematic study of multiquark states: qqq-q(q)over-bar configuration SO PHYSICAL REVIEW C LA English DT Article ID COLOR SCREENING MODEL; INTERMEDIATE RANGE ATTRACTION; CONSTITUENT QUARK-MODEL; FRACTIONAL-PARENTAGE; HYPERFINE INTERACTIONS; CLUSTER MODEL; DELOCALIZATION; BARYONS; SCATTERING; EXPANSION AB Group theoretic method for the systematic study of five-quark states with meson-baryon (q (q) over bar -q(3))configuration is developed. The calculation of matrix elements of many-body Hamiltonian is simplified by transforming the physical bases (meson-baryon quark cluster bases) to symmetry bases ( group chain classified bases), where the fractional parentage expansion method can be used. Three quark models, the Glashow-Isgur naive model, the Salamanca chiral quark model, and the quark delocalization color screening model, are used to show the general applicability of the method and general results of constituent quark models for five-quark states are given. The method is also useful in the study of the five-quark components effect in baryon structure, the calculation of meson-baryon scattering, and the meson-baryon open channel coupling effect on baryon resonances. The physical contents of different model configurations for the same five-quark system can also be compared through the transformation between different physical bases to the same set of symmetry bases. C1 [Ping, Jialun; Huang, Hongxia; Deng, Chengrong] Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China. [Wang, Fan] Nanjing Univ, Ctr Theoret Phys, Nanjing 210093, Peoples R China. [Goldman, T.] LANL, Div Theoret, Los Alamos, NM 87545 USA. RP Ping, JL (reprint author), Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China. FU NSFC [10375030, 90503011, 10435080, 10775072]; Research Fund for the Doctoral Program of Higher Education of China [20070319007]; Strategic Grant for Frontier Research Network and the Commission on Higher Education of Thailand FX This work is supported by the NSFC 10375030, 90503011, 10435080, 10775072, and the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070319007. F. Wang acknowledges the support of the Strategic Grant for Frontier Research Network and the Commission on Higher Education of Thailand. NR 53 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 065203 DI 10.1103/PhysRevC.79.065203 PG 11 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200069 ER PT J AU Qian, J Heinz, A Khoo, TL Janssens, RVF Peterson, D Seweryniak, D Ahmad, I Asai, M Back, BB Carpenter, MP Garnsworthy, AB Greene, JP Hecht, AA Jiang, CL Kondev, FG Lauritsen, T Lister, CJ Robinson, A Savard, G Scott, R Vondrasek, R Wang, X Winkler, R Zhu, S AF Qian, J. Heinz, A. Khoo, T. L. Janssens, R. V. F. Peterson, D. Seweryniak, D. Ahmad, I. Asai, M. Back, B. B. Carpenter, M. P. Garnsworthy, A. B. Greene, J. P. Hecht, A. A. Jiang, C. L. Kondev, F. G. Lauritsen, T. Lister, C. J. Robinson, A. Savard, G. Scott, R. Vondrasek, R. Wang, X. Winkler, R. Zhu, S. TI Spectroscopy of (257)Rf SO PHYSICAL REVIEW C LA English DT Article ID ALPHA-GAMMA-DECAY; NEUTRON-DEFICIENT NUCLEI; SINGLE-PARTICLE STATES; FISSION HALF-LIVES; SUPERHEAVY ELEMENTS; ENERGY-LEVELS; ISOTOPES; REGION; GREATER; ATLAS AB The isotope (257)Rf was produced in the fusion-evaporation reaction Pb-208(Ti-50,n)(257)Rf. Reaction products were separated and identified by mass. Delayed spectroscopy of (257)Rf and its decay products was performed. A partial decay scheme with configuration assignments is proposed based on alpha hindrance factors. The excitation energy of the 1/2(+)[620] configuration in No-253 is proposed. The energy of this 1/2(+) state in a series of N=151 isotones increases with nuclear charge, reflecting an increase in the N=152 gap. This gap is deduced to grow substantially from 850 to 1400 keV between Z=94 and 102. An isomeric state in (257)Rf, with a half-life of 160(-31)(+42) mu s, was discovered by detecting internal conversion electrons followed by alpha decay. It is interpreted as a three-quasiparticle high-K isomer. A second group of internal conversion electrons, with a half-life of 4.1(-1.3)(+2.4) s, followed by alpha decay, was also observed. These events might originate from the decay of excited states in Lr-257, populated by electron-capture decay of (257)Rf. Fission of (257)Rf was unambiguously detected, with a branching ratio of b(Rf)(SF)=0.02 +/- 0.01.

. C1 [Qian, J.; Heinz, A.; Garnsworthy, A. B.; Winkler, R.] Yale Univ, WNSL, New Haven, CT 06511 USA. [Khoo, T. L.; Janssens, R. V. F.; Peterson, D.; Seweryniak, D.; Ahmad, I.; Back, B. B.; Carpenter, M. P.; Greene, J. P.; Hecht, A. A.; Jiang, C. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Robinson, A.; Savard, G.; Scott, R.; Vondrasek, R.; Wang, X.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Asai, M.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Garnsworthy, A. B.] Univ Surrey, Guildford GU2 7XH, Surrey, England. [Hecht, A. A.] Univ Maryland, College Pk, MD 20742 USA. RP Qian, J (reprint author), Yale Univ, WNSL, New Haven, CT 06511 USA. RI Qian, Jing/F-9639-2010; Heinz, Andreas/E-3191-2014; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-91ER-40609]; Nexia Solutions Limited FX The authors thank the ATLAS operations staff for providing stable high-intensity beams and effective support during the experiment. The help of R. C. Pardo in preparing and performing the experiment is gratefully acknowledged. We acknowledge helpful communication from I. Ragnarsson on the recoil term. This work is supported by the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-91ER-40609. One author, A. B. Garnsworthy, acknowledges financial support from Nexia Solutions Limited. NR 63 TC 22 Z9 22 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064319 DI 10.1103/PhysRevC.79.064319 PG 13 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200030 ER PT J AU Stefanescu, I Walters, WB Janssens, RVF Zhu, S Broda, R Carpenter, MP Chiara, CJ Fornal, B Kay, BP Kondev, FG Krolas, W Lauritsen, T Lister, CJ McCutchan, EA Pawlat, T Seweryniak, D Stone, JR Stone, NJ Wrzesinski, J AF Stefanescu, I. Walters, W. B. Janssens, R. V. F. Zhu, S. Broda, R. Carpenter, M. P. Chiara, C. J. Fornal, B. Kay, B. P. Kondev, F. G. Krolas, W. Lauritsen, T. Lister, C. J. McCutchan, E. A. Pawlat, T. Seweryniak, D. Stone, J. R. Stone, N. J. Wrzesinski, J. TI Identification of the g(9/2)-proton bands in the neutron-rich Ga-71,Ga-73,Ga-75,Ga-77 nuclei SO PHYSICAL REVIEW C LA English DT Article ID EXCITED-STATES; GA ISOTOPES; BETA-DECAY; GA-73; GA-69; MODEL AB Excited states in the odd-A Ga-71,Ga-73,Ga-75,Ga-77 nuclei have been populated in deep-inelastic reactions of a Ge-76 beam at 530 MeV with a thick U-238 target. High-spin sequences built upon the 9/2(+), 5/2(-), and 3/2(-) states were identified in all four isotopes. A comparison of the observed structures with the yrast positive-parity states in the neighboring even-even Zn cores indicates that the newly identified levels may be regarded as arising from the relatively weak coupling of the odd proton to the core states. However, significant contributions from broken pairs are expected to be present in this region of excitation energy. The present data set also provides clarification of previously reported decay paths of the low-energy levels in Ga-71,Ga-73,Ga-75,Ga-77.

. C1 [Stefanescu, I.; Walters, W. B.; Stone, J. R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Stefanescu, I.; Janssens, R. V. F.; Zhu, S.; Carpenter, M. P.; Kay, B. P.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanescu, I.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stone, J. R.; Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Stefanescu, I (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RI Kay, Benjamin/F-3291-2011; Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Kay, Benjamin/0000-0002-7438-0208; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94ER40834, DE-AC02-O6CH11357]; Polish Scientific Grant [1P03B05929, NN202103333] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-FG02-94ER40834 and DE-AC02-O6CH11357 and by the Polish Scientific Grant No. 1P03B05929 and NN202103333. NR 42 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064302 DI 10.1103/PhysRevC.79.064302 PG 12 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200013 ER PT J AU Stetcu, I Quaglioni, S Friar, JL Hayes, AC Navratil, P AF Stetcu, I. Quaglioni, S. Friar, J. L. Hayes, A. C. Navratil, Petr TI Electric dipole polarizabilities of hydrogen and helium isotopes SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; RMS-RADIUS; NUCLEAR-POLARIZATION; HYPERFINE-STRUCTURE; PROTON STRUCTURE; MUONIC-HELIUM; DEUTERON; ATOMS; SHIFT; HE-3 AB The electric dipole polarizabilities of H-3, He-3, and He-4 are calculated directly using the Schroumldinger equation with the latest generation of two- and three-nucleon interactions. These polarizabilities are necessary to obtain accurate nuclear-polarization corrections for transitions involving S waves in one- and two-electron atoms. Our results are compared to previous results, and it is shown that direct calculations of the electric polarizability of He-4 using modern nuclear potentials are smaller than published values calculated using experimental photoabsorption data. The status of this topic is assessed in the context of precise measurements of transitions in one- and two-electron atoms.

. C1 [Stetcu, I.; Friar, J. L.; Hayes, A. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Quaglioni, S.; Navratil, Petr] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Stetcu, I (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU US DOE/SC/NP [SCW0498]; US Department of Energy [DE-AC52-07NA27344, DE-FC02-07ER41457] FX We thank D. Phillips for discussions regarding the polarizability of 2H, D. Gazit for providing us with the theoretical uncertainty estimate for the result in Ref. [56], and G. W. F. Drake for information about his He calculations. The work of I. S., J. L. F., and A. C. H. was performed under the auspices of the US DOE. That of S. Q. and P. N. was prepared by LLNL under Contract DE-AC52-07NA27344, and support from the US DOE/SC/NP (Work Proposal No. SCW0498) and from the US Department of Energy, Grant DE-FC02-07ER41457, is acknowledged. S. Q. and P. N. thank the Institute for Nuclear Theory for its hospitality and the Department of Energy for partial support during the completion of this work. NR 57 TC 16 Z9 16 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064001 DI 10.1103/PhysRevC.79.064001 PG 6 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200010 ER PT J AU Urban, W Pinston, JA Rzaca-Urban, T Wolska, E Genevey, J Simpson, GS Smith, AG Durell, JL Varley, B Ahmad, I AF Urban, W. Pinston, J. A. Rzaca-Urban, T. Wolska, E. Genevey, J. Simpson, G. S. Smith, A. G. Durell, J. L. Varley, B. Ahmad, I. TI Mapping neutron levels in the A similar to 100 region: The nu 3/2(+) [411] band in Zr-103 SO PHYSICAL REVIEW C LA English DT Article ID MO ISOTONES; RICH NUCLEI; HIGH-SPIN; DEFORMATION; ZR; SR; STATE AB A new rotational band has been identified in Zr-103 with a proposed 3/2(+) band head located at 26.8 keV. Quasiparticle rotor model calculations performed in the present work suggest a nu 3/2(+) [411] dominant configuration for this band. The calculations also indicate that Zr-103 has axial prolate deformation.

. C1 [Urban, W.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Urban, W.; Rzaca-Urban, T.; Wolska, E.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Pinston, J. A.; Genevey, J.; Simpson, G. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. [Smith, A. G.; Durell, J. L.; Varley, B.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Urban, W (reprint author), Inst Max Von Laue Paul Langevin, BP 156, F-38042 Grenoble 9, France. FU Polish MNiSW [N202 007334]; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the Polish MNiSW grant number N N202 007334 and by the Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357. The authors are indebted for the use of 248Cm to the Office of Basic Energy Sciences, US Department of Energy, through the transplutonium element production facilities at the Oak Ridge National Laboratory. NR 27 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 067301 DI 10.1103/PhysRevC.79.067301 PG 5 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200080 ER PT J AU Wang, P Leinweber, DB Thomas, AW Young, RD AF Wang, P. Leinweber, D. B. Thomas, A. W. Young, R. D. TI Strange magnetic form factor of the proton at Q(2)=0.23 GeV2 SO PHYSICAL REVIEW C LA English DT Article ID CHIRAL PERTURBATION-THEORY; CHARGE-SYMMETRY BREAKING; LATTICE QCD; NUCLEON; MOMENT; VECTOR; RADIUS; MODEL; SPIN; SCATTERING AB We determine the u and d quark contributions to the proton magnetic form factor at finite momentum transfer by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at next-to-leading order in the quenched and full QCD cases for the valence sector using finite range regularization. Under the assumption of charge symmetry these values can be combined with the experimental values of the proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form factor at Q(2)=0.23 GeV2, namely, G(M)(s)=-0.034 +/- 0.021 mu(N).

. C1 [Wang, P.; Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Leinweber, D. B.] Univ Adelaide, Special Res Ctr Subatom Struct Matter, Adelaide, SA 5005, Australia. [Thomas, A. W.] Dept Phys, Coll William & Mary, Williamsburg, VA 23187 USA. [Young, R. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Leinweber, D. B.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. RP Wang, P (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012; Leinweber, Derek/J-6705-2013 OI Thomas, Anthony/0000-0003-0026-499X; Leinweber, Derek/0000-0002-4745-6027 NR 57 TC 33 Z9 33 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 065202 DI 10.1103/PhysRevC.79.065202 PG 7 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200068 ER PT J AU Watanabe, H Lane, GJ Dracoulis, GD Byrne, AP Nieminen, P Kondev, FG Ogawa, K Carpenter, MP Janssens, RVF Lauritsen, T Seweryniak, D Zhu, S Chowdhury, P AF Watanabe, H. Lane, G. J. Dracoulis, G. D. Byrne, A. P. Nieminen, P. Kondev, F. G. Ogawa, K. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Seweryniak, D. Zhu, S. Chowdhury, P. TI Multi-quasiparticle isomers involving proton-particle and neutron-hole configurations in I-131 and I-133 SO PHYSICAL REVIEW C LA English DT Article ID MASS-I NUCLEI; COLLECTIVE PROPERTIES; GAMMA-RAY; K-ISOMERS; DECAY; TE-131(M); STATES; BANDS AB The nuclei I-131 and I-133 have been populated in multinucleon transfer reactions between Xe-136 ions and various targets, and their structure has been investigated by time-correlated gamma-ray coincidence spectroscopy and the measurement of gamma-ray angular correlations. A 19/2(-) isomer at 1918 keV, with a half-life of 24(1) mu s, has been identified in I-131, as well as nanosecond isomers with J(pi)=23/2(+) in both isotopes. A T-1/2=25(3) ns isomer at 4308 keV in I-131 is suggested to have J(pi)=(31/2(-),33/2(-)) and is primarily attributed to the coupling of an odd proton in the d(5/2) or g(7/2) orbit with the (pi(2))(0)(+)(nu h(11/2)(-3)d(3/2)(-1))(15)(-) configuration in Te-130 responsible for the 15(-) isomer in that nucleus. The observed level properties are compared with predictions of a shell-model calculation.

. C1 [Watanabe, H.; Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Nieminen, P.] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ogawa, K.] RIKEN, Nishina Ctr, Nucl Phys Res Div, Wako, Saitama 3510198, Japan. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. RP Watanabe, H (reprint author), Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. EM hiroshi@ribf.riken.jp RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU ANSTO program [02/03-H-05]; Australian Research Council [DP0343027, DP0345844]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11257]; Academy of Finland [121110] FX We are indebted to the staff members of the Argonne facility for providing the beams. This work was supported by the ANSTO program for Access to Major Research Facilities, Grant 02/03-H-05, the Australian Research Council Discovery Projects DP0343027 and DP0345844, and the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11257. P. N. acknowledges funding from the Academy of Finland (Grant 121110). NR 29 TC 8 Z9 8 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2009 VL 79 IS 6 AR 064311 DI 10.1103/PhysRevC.79.064311 PG 8 WC Physics, Nuclear SC Physics GA 466YK UT WOS:000267701200022 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for WW and WZ production in lepton plus jets final state at CDF SO PHYSICAL REVIEW D LA English DT Article AB We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in root s = 1.96 TeV p (p) over bar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb(-1) of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma(WW) x BR(W -> l nu(l), W -> jets) + sigma(WZ) x BR(W -> l nu(l), Z -> jets) < 2.88 pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09 +/- 0.12 pb. C1 [Aaltonen, T.; Maki, T.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lysak, R.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lysak, R.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Chokheli, D.; Glagolev, V.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, S.; Gerberich, H.; Grundler, U.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.] Michigan State Univ, E Lansing, MI 48824 USA. ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Lazzizzera, I.; Loreti, M.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Loreti, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.] Univ Paris 06, CNRS, UMR7585, LPNHE,IN2P3, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Amerio, S.; Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Lazzizzera, I.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, M.; Lath, A.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; LeCompte, T.; Lee, E.; Lee, S. W.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.] Wayne State Univ, Detroit, MI 48201 USA. [Bellettini, G.; Carlsmith, D.; Chung, W. H.; Herndon, M.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015 OI Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 15 TC 1 Z9 1 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112011 DI 10.1103/PhysRevD.79.112011 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300014 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of the t(t)over-bar cross section in p(p)over-bar collisions at root s=1.96 TeV using dilepton events with a lepton plus track selection SO PHYSICAL REVIEW D LA English DT Article ID TOP-QUARK PRODUCTION; COLLIDER DETECTOR; ELECTROMAGNETIC CALORIMETER; PARTON DISTRIBUTIONS; PARTICLE PHYSICS; CDF EXPERIMENT; FERMILAB; UPGRADE; SUPERSYMMETRY; TRIGGER AB This paper reports a measurement of the cross section for the pair production of top quarks in p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron. The data were collected from the CDF run II detector in a set of runs with a total integrated luminosity of 1.1 fb(-1). The cross section is measured in the dilepton channel, the subset of t (t) over bar events in which both top quarks decay through t -> Wb -> l nu b, where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the t (t) over bar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b jet. We present the results of measurements performed with and without the request of an identified b jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged subsamples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma(t (t) over bar) = 9.6 +/- 1.2(stat)(-0.5)(+0.6)(sys) +/- 0.6(lum) pb, assuming a branching ratio of BR(W -> l nu) = 10.8% and a top mass of m(t) = 175 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonomade Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Cho, K.; Chuang, S. H.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Chuang, S. H.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Chuang, S. H.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Chuang, S. H.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 62 TC 10 Z9 10 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112007 DI 10.1103/PhysRevD.79.112007 PG 41 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300010 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B.-Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C.-S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S.-Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of particle production and inclusive differential cross sections in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID TRANSVERSE-MOMENTUM SPECTRA; MINIMUM-BIAS EVENTS; CENTRALLY PRODUCED HADRONS; ANTI-PROTON COLLIDER; MULTIPLICITY DEPENDENCE; UNDERLYING EVENT; DIFFRACTION DISSOCIATION; LUMINOSITY MONITOR; CHARGED-PARTICLES; CDF AB We report a set of measurements of particle production in inelastic p (p) over bar collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a PYTHIA prediction at the hadron level is performed. The inclusive charged-particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S.-C.; Lin, C.-S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Martinez, M.; Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Garosi, P.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Mussini, M.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] USAUniv Pierre & Marie Curie, LPNHE, CNRS IN2P3, UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Lucchesi, D.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B.-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Halkiadakis, E.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S.-Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; OI Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230 NR 48 TC 43 Z9 43 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112005 DI 10.1103/PhysRevD.79.112005 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300008 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Bellarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Bellarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for new particles decaying into dijets in proton-antiproton collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID HADRON COLLIDERS; P(P)OVER-BAR COLLISIONS; VIOLATION; MODELS; PHENOMENOLOGY; SIGNATURES; SYMMETRY; PHYSICS; PARITY; SCALE AB We present a search for new particles which produce narrow two-jet (dijet) resonances using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb(-1) collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude vertical bar y vertical bar < 1. These limits are used to determine the mass exclusions for the excited quark, axigluon, flavor-universal coloron, E-6 diquark, color-octet techni-rho, W', and Z'. C1 [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Bellarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Azzurri, P.; Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Lucchesi, D.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Halkiadakis, E.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Compostella, G.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292 NR 47 TC 165 Z9 165 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112002 DI 10.1103/PhysRevD.79.112002 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300005 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Salzmann, C Sanchez-Hernandez, A Sanders, MP Sanghi, B Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Salzmann, C. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Relative rates of B meson decays into psi(2S) and J/psi mesons SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We report on a study of the relative rates of B meson decays into psi(2S) and J/psi mesons using 1.3 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We observe the channels B-s(0) -> psi(2S)phi, B-s(0) -> J/psi phi, B-+/- -> psi(2S)K-+/-, and B-+/- -> J/psi K-+/- and we measure the relative branching fractions for these channels to be B(B-s(0) -> psi(2S)phi)/B(B-s(0) -> J/psi phi)=0.53 +/- 0.10(stat)+/- 0.07(syst)+/- 0.06(B), B(B+ -> psi(2S)K+)/B(B+ -> J/psi K+)=0.63 +/- 0.05(stat)+/- 0.03(syst)+/- 0.07(B), where the final error corresponds to the uncertainty in the J/psi and psi(2S) branching ratio into two muons. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Salzmann, C.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015 OI Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Bertram, Iain/0000-0003-4073-4941; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Hedin, David/0000-0001-9984-215X; Duperrin, Arnaud/0000-0002-5789-9825; Blazey, Gerald/0000-0002-7435-5758; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Hoeneisen, Bruce/0000-0002-6059-4256; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434 FU DOE USA); NSF (USA); CEA; CNRS/IN2P3 (France); FASI (Russia); Rosatom; RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); CFI (Canada); NSERC (Canada); WestGrid Project (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China); Alexander von Humboldt Foundation FX We thank the staff at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation. NR 15 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 111102 DI 10.1103/PhysRevD.79.111102 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300002 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, N Li, C Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M Molen, AMV Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Walker, M Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, N. Li, C. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X-H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. Molen, A. M. Vander Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Walker, M. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Measurement of D* mesons in jets from p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARK PRODUCTION; Z DECAYS; PHYSICS AB We report the measurement of charged D* mesons in inclusive jets produced in proton-proton collisions at a center-of-mass energy root s = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider. For D* mesons with fractional momenta 0.2< z< 0.5 in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be N(D*(+) + D*(-))/N(jet) = 0.015 +/- 0.008(stat) +/- 0.007(sys). This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Lab High Energy JINR, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Particle Phys Lab JINR, Dubna, Russia. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X-H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Dong, Xin/G-1799-2014; Barnby, Lee/G-2135-2010; Cosentino, Mauro/L-2418-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014 OI Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Dong, Xin/0000-0001-9083-5906; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706 NR 31 TC 14 Z9 14 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112006 DI 10.1103/PhysRevD.79.112006 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300009 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Budroni, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Cyr, D DaRonco, S Datta, M D'Auria, S Davies, T D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, AC Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Nagano, A Naganoma, J Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ranjan, N Rappoccio, S Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waschke, S Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Budroni, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cyr, D. DaRonco, S. Datta, M. D'Auria, S. Davies, T. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Delli Paoli, F. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. C. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nagano, A. Naganoma, J. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ranjan, N. Rappoccio, S. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the ratio of branching fractions B(B-+/- -> J/psi pi(+/-))/B(B-+/- -> J/psi K-+/-) SO PHYSICAL REVIEW D LA English DT Article ID CDF; MESONS; DECAYS AB We report a measurement of the ratio of branching fractions of the decays B-+/- -> J/psi pi(+/-) and B-+/- -> J/psi K-+/- using the CDF II detector at the Fermilab Tevatron Collider. The signal from the Cabbibo-suppressed B-+/- -> J/psi pi(+/-) decay is separated from B-+/- -> J/psi K-+/- using the B-+/- -> J/psi K-+/- invariant mass distribution and the kinematical differences of the hadron track in the two decay modes. From a sample of 220 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV, we observe 91 +/- 15 B-+/- -> J/psi pi(+/-) events together with 1883 +/- 34 B-+/- -> J/psi K-+/- events. The ratio of branching fractions is found to be B(B-+/- -> J/psi pi(+/-))/B(B-+/- -> J/psi K-+/-) = (4.86 +/- 0.82(stat) +/- 0.15(syst))%. C1 [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Tanaka, M.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cavalli-Sforza, M.; D'Onofrio, M.; Lefevre, R.; Martinez, M.; Norniella, O.; Portell, X.; Salto, O.; Sanchez, C.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Margaroli, F.; Mazzanti, P.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Dagenhart, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrester, S.; Ivanov, A.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Attal, A.; Dong, P.; Hauser, J.; Mohr, B.; Plager, C.; Saltzberg, D.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Neubauer, M. S.; Wuerthwein, F.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Affolder, T.; Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Mills, C.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Cuevas, J.; Gomez, G.; Gomez-Ceballos, G.; Menzemer, S.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Giurgiu, G.; Jun, S. Y.; Kim, M. J.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Furic, I.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Rusu, V.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chlachidze, G.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Coca, M.; Deng, J.; Goshaw, A. T.; Hidas, D.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Ambrose, D.; Anikeev, K.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Chlebana, F.; Culbertson, R.; Datta, M.; Derwent, P. F.; Eusebi, R.; Foster, G. W.; Ginsburg, C.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jensen, H.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lin, C. S.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Marginean, R.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yagil, A.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carillo, S.; Field, R.; Goldschmidt, N.; Group, R. C.; Jindariani, S.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Necula, V.; Oksuzian, I.; Pinera, L.; Rossin, R.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Campanelli, M.; Clark, A.; Donega, M.; Moed, S.; Sfyrla, A.; Shapiro, M. D.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; D'Auria, S.; Davies, T.; Martin, M.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.; Unverhau, T.; Waschke, S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Foland, A.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Holloway, A.; Rappoccio, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Pitts, K.; Rogers, E.; Taffard, A.; Veramendi, G.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Mumford, R.; Pursley, J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Doerr, C.; Feindt, M.; Heuser, J.; Hirschbuehl, D.; Kemp, Y.; Kerzel, U.; Kreps, M.; Kuhr, T.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Miyamoto, A.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Gibson, A.; Haber, C.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. [Berry, T.; Farrington, S.; Griffiths, M.; Heinemann, B.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Fernandez, J. P.; Gonzalez, O.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Belloni, A.; Bolshov, A.; Choudalakis, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Kravchenko, I.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Arguin, J. -F.; Carron, S.; Hamilton, A.; Lai, S.; MacQueen, D.; Mazini, R.; Pashapour, S.; Sabik, S.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Vollrath, I.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Jayatilaka, B.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Cooper, B.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Tsuno, S.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; DaRonco, S.; Delli Paoli, F.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3, CNRS, LPNHE,UMR7585, F-75252 Paris, France. [Heijboer, A.; Heinrich, J.; Kovalev, A.; Kraan, A. C.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Usynin, D.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Budroni, S.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciljak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Siena, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Nigmanov, T.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bolla, G.; Bortoletto, D.; Canepa, A.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Convery, M. E.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Loverre, P.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; DiTuro, P.; Dube, S.; Halkiadakis, E.; Jang, D.; Lath, A.; Somalwar, S.; Yamaoka, J.; Zhou, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Belforte, S.; Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, Trieste, Italy. [Akimoto, T.; Aoki, M.; Hara, K.; Ishizawa, Y.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Matsunaga, H.; Nagano, A.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Takikawa, K.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.; Tsuchiya, R.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chuang, S. H.; Chung, W. H.; Cyr, D.; Handler, R.; Herndon, M.; Pondrom, L.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Gay, C.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Antos, J.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bartsch, V.; Lancaster, M.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Arguin, J. -F.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Jayatilaka, B.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Azfar, F.; Cerrito, L.; Goldstein, J.; Harper, S.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Sjolin, J.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Budroni, S.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciljak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. RP Sanchez, C (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133 FU U. S. Department of Energy and the National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Particle Physics and Astronomy Research Council and the Royal Society, UK; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's Human Potential Programme [HPRN-CT-2002-00292]; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; in part by the European Community's Human Potential Programme under Contract No. HPRN-CT-2002-00292; and the Academy of Finland. NR 20 TC 0 Z9 0 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112003 DI 10.1103/PhysRevD.79.112003 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300006 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Schultz, J Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Schultz, J. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. Hamel de Monchenault, G. Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Franco Sevilla, M. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBaR Collaboration TI Measurement of the branching fraction and (Lambda)over-bar polarization in B-0 ->(Lambda)over bar p pi(-) SO PHYSICAL REVIEW D LA English DT Article ID DECAYS AB We present a measurement of the B-0 -> (Lambda) over barp pi(-) branching fraction performed using the BABAR detector at the PEP-II asymmetric e(+)e(-) collider. Based on a sample of 467 x 10(6) B (B) over bar pairs we measure B(B-0 -> (Lambda) over barp pi(-)) = [3.07 +/- 0.31(stat) +/- 0.23(syst)] x 10(-6). The measured differential spectrum as a function of the dibaryon invariant mass m((Lambda) over barp) shows a near-threshold enhancement similar to that observed in other baryonic B decays. We study the (Lambda) over bar polarization as a function of (Lambda) over bar energy in the B-0 rest frame (E-(Lambda) over bar*) and compare it with theoretical expectations of fully longitudinally right-polarized (Lambda) over bar at large E-(Lambda) over bar*. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Schultz, J.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, IN2P3,CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Cervelli, A.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 15 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112009 DI 10.1103/PhysRevD.79.112009 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300012 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroeder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBaR Collaboration TI Dalitz plot analysis of B- -> D+pi(-)pi(-) SO PHYSICAL REVIEW D LA English DT Article ID EXCITED CHARM MESONS; HEAVY MESONS; DECAYS; ANNIHILATION; PHYSICS; WIDTHS; MASSES AB We report on a Dalitz plot analysis of B- -> D+pi(-)pi(-) decays, based on a sample of about 383 x 10(6) Y(4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the total branching fraction of the three-body decay: B(B- -> D+ pi(-)pi(-)) = (1.08 +/- 0.03 +/- 0.05) x 10(-3). We observe the established D-2*(0) and confirm the existence of D-0*(0) in their decays to D+pi(-), where the D-2*(0) and D-0*(0) are the 2(+) and 0(+) c (u) over bar P-wave states, respectively. We measure the masses and widths of D-2*(0) and D-0*(0) to be: m(D2)*(0) = (2460.4 +/- 1.2 +/- 1.2 +/- 1.9) MeV/c(2), Gamma(D2*0) = (41.8 +/- 2.5 +/- 2.1 +/- 2.0) MeV, m(D0*0) = (2297 +/- 8 +/- 5 +/- 19) MeV/c(2), and Gamma(D0*0) = (273 +/- 12 +/- 17 +/- 45) MeV. The stated errors reflect the statistical and systematic uncertainties, and the uncertainty related to the assumed composition of signal events and the theoretical model. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Regensburger, J. J.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Pan, B.; Band, H. R.; Chen, X.; Flood, K. T.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 NR 39 TC 29 Z9 29 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112004 DI 10.1103/PhysRevD.79.112004 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300007 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for the Z(4430)(-) at BABAR SO PHYSICAL REVIEW D LA English DT Article ID DECAY AMPLITUDES; BRANCHING FRACTIONS; QUARK-MODEL; K-ASTERISK; MESONS; SCATTERING AB We report the results of a search for Z(4430)(-) decay to J/psi pi(-) or psi(2S)pi(-) in B--,B-0 -> J/psi pi K--(0,+) and B--,B-0 -> psi(2S)pi K--(0,+) decays. The data were collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) collider operating at center-of-mass energy 10.58 GeV, and the sample corresponds to an integrated luminosity of 413 fb(-1). Each K pi(-) mass distribution exhibits clear K*(892) and K-2*(1430) signals, and the efficiency-corrected spectrum is well described by a superposition of the associated Breit-Wigner intensity distributions, together with an S-wave contribution obtained from the LASS I = 1/2 K pi(-) scattering amplitude measurements. Each K pi(-) angular distribution varies significantly in structure with K pi(-) mass, and is represented in terms of low-order Legendre polynomial moments. We find that each J/psi pi(-) or psi(2S)pi(-) mass distribution is well described by the reflection of the measured K pi(-) mass and angular distribution structures. We see no significant evidence for a Z(4430)(-) signal for any of the processes investigated, neither in the total J/psi pi(-) or psi(2S)pi(-) mass distribution, nor in the corresponding distributions for the regions of K pi(-) mass for which observation of the Z(4430)(-) signal was reported. We obtain branching-fraction upper limits B(B--> Z(-)(K) over bar (0), Z(-)-> J/psi pi(-))<1.5x10(-5), B(B-0 -> Z(-)K(+), Z(-)-> J/psi pi(-))<0.4x10(-5), B(B--> Z(-)(K) over bar (0), Z(-)->psi(2S)pi(-))<4.7x10(-5), and B(B-0 -> Z(-)K(+), Z(-)->psi(2S)pi(-))<3.1x10(-5) at 95% confidence level, where the Z(4430)(-) mass and width have been fixed to the reported central values. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Dept Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] INFN, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Denis Diderot Paris 7, Univ Paris 06, IN2P3, Lab Phys Nucl & Hautes Energies,CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Morganti, M.; Anulli, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] INFN, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Davis, C. L.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Barlow, Roger/0000-0002-8295-8612; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Salvatore, Fabrizio/0000-0002-3709-1554; Cavoto, Gianluca/0000-0003-2161-918X; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 NR 47 TC 50 Z9 50 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112001 DI 10.1103/PhysRevD.79.112001 PG 38 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300004 ER PT J AU Barger, V Logan, HE Shaughnessy, G AF Barger, Vernon Logan, Heather E. Shaughnessy, Gabe TI Identifying extended Higgs models at the LHC SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; STANDARD MODEL; NEUTRAL CURRENTS; BOSON COUPLINGS; DOUBLET MODEL; TOP-QUARK; PHENOMENOLOGY; UNIFICATION; SCALAR; SUPERSYMMETRY AB We make a complete catalog of extended Higgs sectors involving SU(2)(L) doublets and singlets, subject to natural flavor conservation. In each case we present the couplings of a light neutral CP-even Higgs state h in terms of the model parameters, and identify which models are distinguishable in principle based on this information. We also give explicit expressions for the model parameters in terms of h couplings and exhibit the behaviors of the couplings in the limit where the deviations from the standard model (SM) Higgs couplings are small. Finally, we discuss prospects for differentiation of extended Higgs models based on measurements at the LHC and International Linear Collider and identify the regions in which these experiments could detect deviations from the SM Higgs predictions. C1 [Barger, Vernon; Shaughnessy, Gabe] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Logan, Heather E.] Carleton Univ, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shaughnessy, Gabe] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Barger, V (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM barger@pheno.physics.wisc.edu; logan@physics.carleton.ca; g-shaughnessy@northwestern.edu FU U. S. Department of Energy [DE-FG02-95ER40896]; Natural Sciences and Engineering Research Council of Canada FX H. E. L. and G. S. thank the organizers of the Brookhaven Forum 2007 for providing a stimulating environment where this project was started. V. B. was supported in part by the U. S. Department of Energy under Grant No. DE-FG02-95ER40896 and by the Wisconsin Alumni Research Foundation. G. S. was supported in part by the U. S. Department of Energy under Grants No. DEFG02-95ER40896 and No. DE-AC02-06CH11357. H. E. L. was supported by the Natural Sciences and Engineering Research Council of Canada. NR 95 TC 41 Z9 41 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 115018 DI 10.1103/PhysRevD.79.115018 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300087 ER PT J AU Bauer, CW Hornig, A Tackmann, FJ AF Bauer, Christian W. Hornig, Andrew Tackmann, Frank J. TI Factorization for generic jet production SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; HADRON-HADRON COLLISIONS; QUANTUM CHROMODYNAMICS; CLUSTERING-ALGORITHM; E&E-ANNIHILATION; E+E ANNIHILATION; CROSS-SECTIONS; FIELD THEORY; ENERGY-FLOW; QCD AB Factorization is the central ingredient in any theoretical prediction for collider experiments. We introduce a factorization formalism that can be applied to any desired observable, like event shapes or jet observables, for any number of jets and a wide range of jet algorithms in leptonic or hadronic collisions. This is achieved by using soft-collinear effective theory to prove the formal factorization of a generic fully differential cross section in terms of a hard coefficient, and generic jet and soft functions. In this formalism, whether a given observable factorizes in the usual sense, depends on whether it is inclusive enough, so the jet functions can be calculated perturbatively. The factorization formula for any such observable immediately follows from our general result, including the precise definition of the jet and soft functions appropriate for the observable in question. As examples of our formalism, we work out several results in two-jet production for both e(+)e(-) and pp collisions. For the latter, we also comment on how our formalism allows one to treat underlying events and beam remnants. C1 [Bauer, Christian W.; Hornig, Andrew; Tackmann, Frank J.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bauer, CW (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU Director, Office of Science; Office of High Energy Physics of the U. S. Department of Energy [DE-AC02-05CH11231]; DOE OJI; LBNL FX We would like to thank C. Lee for useful conversations. This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. C. W. B. acknowledges support from the DOE OJI and an LDRD grant from LBNL. NR 67 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 114013 DI 10.1103/PhysRevD.79.114013 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300043 ER PT J AU Beane, SR Detmold, W Luu, TC Orginos, K Parreno, A Savage, MJ Torok, A Walker-Loud, A AF Beane, Silas R. Detmold, William Luu, Thomas C. Orginos, Kostas Parreno, Assumpta Savage, Martin J. Torok, Aaron Walker-Loud, Andre CA NPLQCD Collaboration TI High statistics analysis using anisotropic clover lattices: Single hadron correlation functions SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM-FIELD THEORIES; SCATTERING MATRIX; QCD; STATES AB We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using 1194 gauge configurations of size 20(3)x128 with an anisotropy parameter xi=b(s)/b(t)=3.5, a spatial lattice spacing of b(s)=0.1227 +/- 0.0008 fm, and pion mass of M(pi)similar to 390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the similar to 0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N pi threshold and, therefore, the isospin-12 pi N s-wave scattering phase-shift can be extracted using Luumlscher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time slices. This is due to backward propagating states arising from the antiperiodic boundary conditions imposed on the quark propagators in the time direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables. C1 [Beane, Silas R.; Walker-Loud, Andre] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Detmold, William; Orginos, Kostas; Walker-Loud, Andre] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Detmold, William; Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Luu, Thomas C.] Lawrence Livermore Natl Lab, Div N, Livermore, CA 94551 USA. [Parreno, Assumpta] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Parreno, Assumpta] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Savage, Martin J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. OI Detmold, William/0000-0002-0400-8363 FU NSF [CCF-0728915, PHY-0645570]; NERSC [DE-AC02-05CH11231]; Institute for Nuclear Theory, Centro Nacional de Supercomputacion; U. S. Department of Energy [DE-FG03-97ER4014, DE-AC05-06OR23177]; DOE [DE-FG02-04ER41302]; Jeffress Memorial Trust [DE-FG02-07ER41527]; University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; Spanish Consolider-Ingenio 2010 Programme CPAN [CSD2007-00042]; MEC (Spain) and FEDER [FIS2008-01661]; Generalitat de Catalunya [2005SGR-00343]; EU [MRTNCT-2006-035482] FX We thank R. Edwards and B. Joo for help with the QDP+ +/Chroma programming environment [14] with which the calculations discussed here were performed. K. O. would like to thank A. Stathopoulos useful discussion on numerical linear algebra issues and for his contribution in the development of the EigCG algorithm. EigCG development was supported in part by NSF grant CCF-0728915. We also thank the Hadron Spectrum Collaboration for permitting us to use the anisotropic gauge-field configurations, and extending the particular ensemble used herein. We gratefully acknowledge the computational time provided by NERSC ( Office of Science of the U. S. Department of Energy, No.DE-AC02-05CH11231), the Institute for Nuclear Theory, Centro Nacional de Supercomputacion ( Barcelona, Spain), Lawrence Livermore National Laboratory, and the National Science Foundation through Teragrid resources provided by the National Center for Supercomputing Applications, and the Texas Advanced Computing Center. Computational support at Thomas Jefferson National Accelerator Facility and Fermi National Accelerator Laboratory was provided by the USQCD collaboration under The Secret Life of a Quark, a U. S. Department of Energy SciDAC project (http://www.scidac.gov/physics/quarks.html). The work of M. J. S. and W. D. was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-97ER4014. The work of K. O. and W. D. was supported in part by the U. S. Department of Energy contract No. DE-AC05-06OR23177 ( J. S. A.) and DOE grant DE-FG02-04ER41302. K. O. and A. W. L. were supported in part by the Jeffress Memorial Trust, grant J-813, DOE OJI grant DE-FG02-07ER41527. The work of S. R. B. and A. T. was supported in part by the National Science Foundation CAREER grant No. PHY-0645570. Part of this work was performed under the auspices of the US DOE by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. The work of A. P. is partly supported by the Spanish Consolider-Ingenio 2010 Programme CPAN CSD2007-00042, by grants Nos. FIS2008-01661 from MEC ( Spain) and FEDER and 2005SGR-00343 from Generalitat de Catalunya, and by the EU contract FLAVIAnet MRTNCT-2006-035482. NR 31 TC 35 Z9 35 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 114502 DI 10.1103/PhysRevD.79.114502 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300066 ER PT J AU Becher, T Neubert, M AF Becher, Thomas Neubert, Matthias TI Infrared singularities of QCD amplitudes with massive partons SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARK PRODUCTION; JET CROSS-SECTIONS; TO-LEADING ORDER; FORM-FACTORS; DIPOLE FORMALISM; GAUGE-THEORIES; BEHAVIOR; RENORMALIZATION; EXPONENTIATION; SCATTERING AB A formula for the two-loop infrared singularities of dimensionally regularized QCD scattering amplitudes with an arbitrary number of massive and massless legs is derived. The singularities are obtained from the solution of a renormalization-group equation, and factorization constraints on the relevant anomalous-dimension matrix are analyzed. The simplicity of the structure of the matrix relevant for massless partons does not carry over to the case with massive legs, where starting at two-loop order new color and momentum structures arise, which are not of the color-dipole form. The resulting two-loop three-parton correlations can be expressed in terms of two functions, for which some general properties are derived. This explains observations recently made by Mitov et al. in terms of symmetry arguments. C1 [Becher, Thomas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Neubert, Matthias] Johannes Gutenberg Univ Mainz, THEP, Inst Phys, D-55099 Mainz, Germany. RP Becher, T (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU U. S. Department of Energy [DE-AC02-76CH03000] FX M. N. is grateful to Uli Haisch and Andrea Ferroglia for useful discussions. The research of T. B. was supported by the U. S. Department of Energy under Grant No. DE-AC02-76CH03000. Fermilab is operated by the Fermi Research Alliance under contract with the Department of Energy. NR 45 TC 87 Z9 87 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 12 AR 125004 DI 10.1103/PhysRevD.79.125004 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YN UT WOS:000267701500099 ER PT J AU Bousso, R AF Bousso, Raphael TI Complementarity in the multiverse SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGY AB In the multiverse, as in AdS space, light cones relate bulk points to boundary scales. This holographic UV-IR connection defines a preferred global time cutoff that regulates the divergences of eternal inflation. An entirely different cutoff, the causal patch, arises in the holographic description of black holes. Remarkably, I find evidence that these two regulators define the same probability measure in the multiverse. Initial conditions for the causal patch are controlled by the late-time attractor regime of the global description. C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. NR 26 TC 41 Z9 41 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 12 AR 123524 DI 10.1103/PhysRevD.79.123524 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YN UT WOS:000267701500043 ER PT J AU Cerchiai, BL Ferrara, S Marrani, A Zumino, B AF Cerchiai, Bianca L. Ferrara, Sergio Marrani, Alessio Zumino, Bruno TI Duality, entropy, and ADM mass in supergravity SO PHYSICAL REVIEW D LA English DT Article ID EXTREMAL BLACK-HOLES; NON-BPS ATTRACTORS; EXTENDED SUPERGRAVITY; GENERAL-RELATIVITY; SPECIAL GEOMETRIES; KAHLER-MANIFOLDS; N=2 SUPERGRAVITY; CENTRAL CHARGES; FIXED SCALARS; MODULI SPACE AB We consider the Bekenstein-Hawking entropy-area formula in four dimensional extended ungauged supergravity and its electric-magnetic duality property. Symmetries of both "large'' and "small'' extremal black holes are considered, as well as the ADM mass formula for N = 4 and N = 8 supergravity, preserving different fraction of supersymmetry. The interplay between BPS conditions and duality properties is an important aspect of this investigation. C1 [Cerchiai, Bianca L.; Zumino, Bruno] Univ Calif Berkeley, Lawrence Berkeley Lab, Theory Grp, Berkeley, CA 94720 USA. [Cerchiai, Bianca L.; Zumino, Bruno] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ferrara, Sergio] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Ferrara, Sergio; Marrani, Alessio] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Marrani, Alessio] Stanford Univ, Stanford Inst Theoret Phys, Dept Phys, Varian Lab, Stanford, CA 94305 USA. RP Cerchiai, BL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Theory Grp, Bldg 50A5104,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM BLCerchiai@lbl.gov; sergio.ferrara@cern.ch; marrani@lnf.infn.it; zumino@thsrv.lbl.gov OI Cerchiai, Bianca Letizia/0000-0002-0109-0330; Ferrara, Sergio/0000-0001-7662-3480 FU ERC [226455]; Office of Science; Office of High Energy and Nuclear Physics; Division of High Energy Physics of the U. S. Department of Energy [DE-AC02-05CH11231]; NSF [10996-13607-44] FX This work is supported in part by the ERC Advanced Grant no. 226455, "Supersymmetry, Quantum Gravity and Gauge Fields'' (SUPERFIELDS). We would like to thank M. Trigiante for enlightening discussions. A. M. would like to thank the CTP of the University of California, Berkeley, CA USA, the Department of Physics, University of Cincinnati, OH USA, and the Department of Physics, Theory Unit Group at CERN, Geneva CH, where part of this work was done, for kind hospitality and stimulating environment. The work of B. L. C. and B. Z. has been supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, and in part by NSF grant 10996-13607-44 PHHXM. A substantial part of S.F.'s investigation was performed at the Center for Theoretical Physics (CTP), University of California, Berkeley, CA USA, with S. F. sponsored by a "Miller Visiting Professorship'' from the Miller Institute for Basic Research on Science. The work of S. F. has been supported also in part by INFN-Frascati National Laboratories, and by D. O. E. grant DE-FG03-91ER40662, Task C. The work of A. M. has been supported by INFN at SITP, Stanford University, Stanford, CA, USA. NR 71 TC 40 Z9 40 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 12 AR 125010 DI 10.1103/PhysRevD.79.125010 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YN UT WOS:000267701500105 ER PT J AU Chanowitz, MS AF Chanowitz, Michael S. TI Bounding CKM mixing with a fourth family SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; ULTRA HEAVY FERMIONS; WEAK-INTERACTIONS; STANDARD MODEL; MASS; HIGGS; TOP; QUARKS; BOSON AB CKM mixing between third-family quarks and a possible fourth family is constrained by global fits to the precision electroweak data. The dominant constraint is from nondecoupling oblique corrections rather than the vertex correction to Z -> bb used in previous analyses. The possibility of large mixing suggested by some recent analyses of flavor-changing neutral-current processes is excluded, but 3-4 mixing of the same order as the Cabbibo mixing of the first two families is allowed. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Chanowitz, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX I would like to thank Zoltan Ligeti for several helpful discussions. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 77 Z9 77 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 113008 DI 10.1103/PhysRevD.79.113008 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300023 ER PT J AU Decca, RS Fischbach, E Klimchitskaya, GL Krause, DE Lopez, D Mostepanenko, VM AF Decca, R. S. Fischbach, E. Klimchitskaya, G. L. Krause, D. E. Lopez, D. Mostepanenko, V. M. TI Application of the proximity force approximation to gravitational and Yukawa-type forces SO PHYSICAL REVIEW D LA English DT Article ID LONG-RANGE INTERACTIONS; EXTRA DIMENSIONS; LAW; CONSTRAINTS; MILLIMETER; PARTICLES AB We apply the proximity force approximation, which is widely used for the calculation of the Casimir force between bodies with nonplanar boundary surfaces, to gravitational and Yukawa-type interactions. It is shown that for the gravitational force in a sphere-plate configuration the general formulation of the proximity force approximation is well applicable. For a Yukawa-type interaction we demonstrate the validity of both the general formulation of the proximity force approximation and a simple mapping between the sphere-plate and plate-plate configurations. The claims to the contrary in some recent literature are thus incorrect. Our results justify the constraints on the parameters of non-Newtonian gravity previously obtained from the indirect dynamic measurements of the Casimir pressure. C1 [Decca, R. S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Fischbach, E.; Krause, D. E.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Klimchitskaya, G. L.] N W Tech Univ, St Petersburg 191065, Russia. [Krause, D. E.] Wabash Coll, Dept Phys, Crawfordsville, IN 47933 USA. [Lopez, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mostepanenko, V. M.] Noncommercial Partnership Sci Instruments, Moscow 103905, Russia. RP Decca, RS (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. FU NSF [CCF-0508239, PHY-0701636]; Nanoscale Imaging Center at IUPUI; DOE [DE-76ER071428]; Deutsche Forschungsgemeinschaft [GE 696/91]; Purdue University FX R. S. D. acknowledges NSF support through Grants No. CCF-0508239 and No. PHY-0701636, and from the Nanoscale Imaging Center at IUPUI. E. F. was supported in part by the DOE under Grant No. DE-76ER071428. G. L. K. and V. M. M. were partially supported by Deutsche Forschungsgemeinschaft, Grant No. GE 696/91 and by Purdue University. NR 41 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 12 AR 124021 DI 10.1103/PhysRevD.79.124021 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YN UT WOS:000267701500068 ER PT J AU Dumitru, A Guo, Y Strickland, M AF Dumitru, Adrian Guo, Yun Strickland, Michael TI Imaginary part of the static gluon propagator in an anisotropic (viscous) QCD plasma SO PHYSICAL REVIEW D LA English DT Article ID TEMPERATURE; REAL AB We determine viscosity corrections to the retarded, advanced and symmetric gluon self-energies and to the static propagator in the weak-coupling "hard loop" approximation to high-temperature QCD. We apply these results to calculate the imaginary part of the heavy-quark potential which is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. C1 [Dumitru, Adrian] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA. [Guo, Yun] Univ Frankfurt, Helmholtz Res Sch, D-60438 Frankfurt, Germany. [Guo, Yun] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Strickland, Michael] Gettysburg Coll, Dept Phys, Gettysburg, PA 17325 USA. [Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA. RP Dumitru, A (reprint author), CUNY, Baruch Coll, Dept Nat Sci, 17 Lexington Ave, New York, NY 10010 USA. RI Strickland, Michael/A-4149-2013 OI Strickland, Michael/0000-0003-0489-4278 FU Helmholtz foundation; Otto Stern School at Frankfurt University FX We thank M. Laine for useful comments on the manuscript. Y. G. thanks the Helmholtz foundation and the Otto Stern School at Frankfurt University for their support. NR 22 TC 36 Z9 37 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 114003 DI 10.1103/PhysRevD.79.114003 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300033 ER PT J AU Fechner, M Abe, K Hayato, Y Iida, T Ikeda, M Kameda, J Kobayashi, K Koshio, Y Miura, M Moriyama, S Nakahata, M Nakayama, S Obayashi, Y Ogawa, H Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takenaga, Y Takeuchi, Y Ueno, K Ueshima, K Watanabe, H Yamada, S Hazama, S Higuchi, I Ishihara, C Kajita, T Kaneyuki, K Mitsuka, G Nishino, H Okumura, K Tanimoto, N Vagins, MR Dufour, F Kearns, E Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Dazeley, S Svoboda, R Bayes, K Casper, D Cravens, JP Kropp, WR Mine, S Regis, C Smy, MB Sobel, HW Ganezer, KS Hill, J Keig, WE Jang, JS Kim, JY Lim, IT Scholberg, K Walter, CW Wendell, R Tasaka, S Learned, JG Matsuno, S Watanabe, Y Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Minamino, A Nakaya, T Yokoyama, M Fukuda, Y Itow, Y Tanaka, T Jung, CK Lopez, G McGrew, C Terri, R Yanagisawa, C Tamura, N Idehara, Y Sakuda, M Kuno, Y Yoshida, M Kim, SB Yang, BS Ishizuka, T Okazawa, H Choi, Y Seo, HK Furuse, Y Nishijima, K Yokosawa, Y Koshiba, M Totsuka, Y Chen, S Heng, Y Yang, Z Zhang, H Kielczewska, D Thrane, E Wilkes, RJ AF Fechner, M. Abe, K. Hayato, Y. Iida, T. Ikeda, M. Kameda, J. Kobayashi, K. Koshio, Y. Miura, M. Moriyama, S. Nakahata, M. Nakayama, S. Obayashi, Y. Ogawa, H. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takenaga, Y. Takeuchi, Y. Ueno, K. Ueshima, K. Watanabe, H. Yamada, S. Hazama, S. Higuchi, I. Ishihara, C. Kajita, T. Kaneyuki, K. Mitsuka, G. Nishino, H. Okumura, K. Tanimoto, N. Vagins, M. R. Dufour, F. Kearns, E. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Dazeley, S. Svoboda, R. Bayes, K. Casper, D. Cravens, J. P. Kropp, W. R. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Scholberg, K. Walter, C. W. Wendell, R. Tasaka, S. Learned, J. G. Matsuno, S. Watanabe, Y. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Minamino, A. Nakaya, T. Yokoyama, M. Fukuda, Y. Itow, Y. Tanaka, T. Jung, C. K. Lopez, G. McGrew, C. Terri, R. Yanagisawa, C. Tamura, N. Idehara, Y. Sakuda, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Furuse, Y. Nishijima, K. Yokosawa, Y. Koshiba, M. Totsuka, Y. Chen, S. Heng, Y. Yang, Z. Zhang, H. Kielczewska, D. Thrane, E. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Kinematic reconstruction of atmospheric neutrino events in a large water Cherenkov detector with proton identification SO PHYSICAL REVIEW D LA English DT Article ID OSCILLATIONS; SIMULATION; PHYSICS AB We report the development of a proton identification method for the Super-Kamiokande (SK) detector. This new tool is applied to the search for events with a single proton track, a high purity neutral current sample of interest for sterile neutrino searches. After selection using a neural network, we observe 38 events in the combined SK-I and SK-II data corresponding to 2285.1 days of exposure, with an estimated signal-to-background ratio of 1.6 to 1. Proton identification was also applied to a direct search for charged-current quasielastic (CCQE) events, obtaining a high precision sample of fully kinematically reconstructed atmospheric neutrinos, which has not been previously reported in water Cherenkov detectors. The CCQE fraction of this sample is 55%, and its neutrino (as opposed to antineutrino) fraction is 91.7 +/- 3%. We selected 78 mu- like and 47 e-like events in the SK-I and SK-II data set. With this data, a clear zenith angle distortion of the neutrino direction itself is reported in a sub-GeV sample of mu neutrinos where the lepton angular correlation to the incoming neutrino is weak. Our fit to nu(mu) -> nu(tau) oscillations using the neutrino L/E distribution of the CCQE sample alone yields a wide acceptance region compatible with our previous results and excludes the no-oscillation hypothesis at 3-sigma. C1 [Hazama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nishino, H.; Okumura, K.; Tanimoto, N.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Dufour, F.; Kearns, E.; Litos, M.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Wang, W.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Dazeley, S.; Svoboda, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vagins, M. R.; Bayes, K.; Casper, D.; Cravens, J. P.; Kropp, W. R.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Fechner, M.; Scholberg, K.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Learned, J. G.; Matsuno, S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Watanabe, Y.] Kanagawa Univ, Dept Engn, Div Phys, Yokohama, Kanagawa 2218686, Japan. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Minamino, A.; Nakaya, T.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; Lopez, G.; McGrew, C.; Terri, R.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kuno, Y.; Yoshida, M.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Furuse, Y.; Nishijima, K.; Yokosawa, Y.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Chen, S.; Heng, Y.; Yang, Z.; Zhang, H.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Kielczewska, D.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Thrane, E.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Ueno, K.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Hayato, Y.; Moriyama, S.; Nakahata, M.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Kajita, T.; Kaneyuki, K.; Vagins, M. R.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778582, Japan. RP Fechner, M (reprint author), CEA, Ctr Saclay, SPP, F-91191 Gif Sur Yvette, France. RI Yokoyama, Masashi/A-4458-2011; Nakamura, Kenzo/F-7174-2010; Koshio, Yusuke/C-2847-2015; Sobel, Henry/A-4369-2011; Obayashi, Yoshihisa/A-4472-2011; Suzuki, Yoichiro/F-7542-2010; Takeuchi, Yasuo/A-4310-2011; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014 OI Yokoyama, Masashi/0000-0003-2742-0251; Koshio, Yusuke/0000-0003-0437-8505; Raaf, Jennifer/0000-0002-4533-929X; FU Japanese Ministry of Education, Science, Sports and Culture; United States Department of Energy; National Science Foundation; Polish Committee for Scientific Research; Korean Research Foundation [BK21]; Korea Science and Engineering Foundation; Japan Society for the Promotion of Science; Research Corporation FX We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment was built and has been operated with funding from the Japanese Ministry of Education, Science, Sports and Culture, and the United States Department of Energy. We gratefully acknowledge individual support by the National Science Foundation, and the Polish Committee for Scientific Research. Some of us have been supported by funds from the Korean Research Foundation (BK21), the Korea Science and Engineering Foundation, and the Japan Society for the Promotion of Science, and Research Corporation. NR 21 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 112010 DI 10.1103/PhysRevD.79.112010 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300013 ER PT J AU Gubler, P Jido, D Kojo, T Nishikawa, T Oka, M AF Gubler, Philipp Jido, Daisuke Kojo, Toru Nishikawa, Tetsuo Oka, Makoto TI Spin-3/2 pentaquark in QCD sum rules SO PHYSICAL REVIEW D LA English DT Article ID POSITIVE STRANGENESS; RESONANCE PHYSICS; BARYON RESONANCE; K+ COLLISIONS; XE NUCLEI; THETA(+); EXPLANATION; PREDICTION; SEARCH; STATES AB The QCD sum rule method is formulated for the strangeness +1 pentaquark baryon with isospin I=0 and spin-parity J(pi)=32(+/-). The spin-32 states are considered to be narrower than the spin-12 ones, and thus may provide a natural explanation for the experimentally observed narrow width of Theta(+). In order to obtain reliable results in QCD sum rule calculations, we stress the importance of establishing a wide Borel window, where convergence of the operator product expansion and sufficient low-mass strength of the spectral function are guaranteed. To this end, we employ the difference of two independent correlators so that the high-energy continuum contribution is suppressed. The stability of the physical quantities against the Borel mass is confirmed within the Borel window. It is found that the sum rule gives positive evidence for the (I,J(pi))=(0,32(+)) state with a mass of about 1.4 +/- 0.2 GeV, while we cannot extract any evidence for the (0,32(-)) state. C1 [Gubler, Philipp; Oka, Makoto] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Jido, Daisuke] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Kojo, Toru] Brookhaven Natl Lab, RBRC, Upton, NY 11973 USA. [Nishikawa, Tetsuo] Ryotokuji Univ, Fac Hlth Sci, Chiba 2798567, Japan. RP Gubler, P (reprint author), Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. RI Gubler, Philipp/E-3094-2015 OI Gubler, Philipp/0000-0002-0991-8462 FU KAKENHI [17070002, 19540275, 20028004] FX This work was partially supported by KAKENHI, 17070002 (Priority area), 19540275, and 20028004. A part of this work was done in the Yukawa International Project for Quark-Hadron Sciences (YIPQS). P. G. gratefully acknowledges the support from the Ito Foundation of International Education Exchange and is thankful for the hospitality of the Yukawa Institute for Theoretical Physics at Kyoto University, where part of this work has been completed. T. K. is supported by RIKEN, Brookhaven National Laboratory, and the U. S. Department of Energy [ Contract No. DE-AC02-98CH10886]. NR 45 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 114011 DI 10.1103/PhysRevD.79.114011 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300041 ER PT J AU Hogan, CJ Jackson, MG AF Hogan, Craig J. Jackson, Mark G. TI Holographic geometry and noise in matrix theory SO PHYSICAL REVIEW D LA English DT Article ID BLACK-HOLES; STRING THEORY; SECOND LAW; THERMODYNAMICS; BRANES AB Using matrix theory as a concrete example of a fundamental holographic theory, we show that the emergent macroscopic spacetime displays a new macroscopic quantum structure, holographic geometry, and a new observable phenomenon, holographic noise, with phenomenology similar to that previously derived on the basis of a quasimonochromatic wave theory. Traces of matrix operators on a light sheet with a compact dimension of size R are interpreted as transverse position operators for macroscopic bodies. An effective quantum wave equation for spacetime is derived from the matrix Hamiltonian. Its solutions display eigenmodes that connect longitudinal separation and transverse position operators on macroscopic scales. Measurements of transverse relative positions of macroscopically separated bodies, such as signals in Michelson interferometers, are shown to display holographic nonlocality, indeterminacy, and noise, whose properties can be predicted with no parameters except R. Similar results are derived using a detailed scattering calculation of the matrix wave function. Current experimental technology will allow a definitive and precise test or validation of this interpretation of holographic fundamental theories. In the latter case, they will yield a direct measurement of R independent of the gravitational definition of the Planck length, and a direct measurement of the total number of degrees of freedom. C1 [Hogan, Craig J.; Jackson, Mark G.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hogan, Craig J.] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hogan, Craig J.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Jackson, Mark G.] Leiden Univ, Lorentz Inst Theoret Phys, NL-2333 CA Leiden, Netherlands. RP Hogan, CJ (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU Department of Energy [GEO600] FX We would like to thank D. Kabat for extensive assistance regarding the matrix theory aspects of this work, and members of the GEO600 team (H. Grote, S. Hild, and H. Luck) for consultation about their detector. Our work was supported by the Department of Energy. NR 21 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 12 AR 124009 DI 10.1103/PhysRevD.79.124009 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YN UT WOS:000267701500056 ER PT J AU Jenkins, J AF Jenkins, James TI Minimally allowed neutrinoless double beta decay rates from approximate flavor symmetries SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; MAJORANA NEUTRINOS; MASS; PROSPECTS; ANARCHY; MATRIX AB Neutrinoless double beta decay (beta beta 0 nu) is among the only realistic probes of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m(ee), the e-e element of the Majorana mass matrix. Naively, current data allow for vanishing m(ee), but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. I perform a spurion analysis to break all possible Abelian symmetries that guarantee vanishing beta beta 0 nu rates and search for minimally allowed values. I survey 230 broken structures to yield m(ee) values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m(ee)> 4x10(-6) eV at 99% confidence. Bounds below this value might indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. C1 [Jenkins, James] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jenkins, James] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Jenkins, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jjenkins6@lanl.gov FU US Department of Energy [DE-FG02-91ER40684] FX Special thanks to Andre de Gouvea and Alex Friedland for useful discussions on this topic and comments on the original manuscript. This work was edited by Tina Jenkins. This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. This work was also funded in part by the US Department of Energy Contract No. DE-FG02-91ER40684. NR 59 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 113004 DI 10.1103/PhysRevD.79.113004 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300019 ER PT J AU Kaplan, DE Luty, MA Zurek, KM AF Kaplan, David E. Luty, Markus A. Zurek, Kathryn M. TI Asymmetric dark matter SO PHYSICAL REVIEW D LA English DT Article ID FERMION-NUMBER VIOLATION; BARYON ASYMMETRY; CP-INVARIANCE; BARYOGENESIS; UNIVERSE; SPHALERONS; PUZZLE; HIGGS AB We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h(0)-> aa decays, while the second predicts a light charged Higgs-like scalar decaying to tau nu. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices. C1 [Kaplan, David E.] Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA. [Luty, Markus A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zurek, Kathryn M.] Ctr Particle Astrophys, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA. [Zurek, Kathryn M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Kaplan, DE (reprint author), Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA. FU National Science Foundation [NSF-PHY-0401513]; U. S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-18042] FX We thank G. Kribs, A. Kusenko, and J. Terning for discussions. We thank the Kavli Institute for Theoretical Physics and the Aspen Center for Physics, where part of this work was performed. This work was supported by the National Science Foundation under Grant No. NSF-PHY-0401513 (D. E. K.) and by the U. S. Department of Energy, including Grant No. DE-FG02-95ER40896 and by NASA Grant No. NAG5-18042 (K. M. Z.). NR 50 TC 286 Z9 287 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 115016 DI 10.1103/PhysRevD.79.115016 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300085 ER PT J AU Lisanti, M Wacker, JG AF Lisanti, Mariangela Wacker, Jay G. TI Discovering the Higgs boson with low mass muon pairs SO PHYSICAL REVIEW D LA English DT Article ID ROOT S=1.8 TEV; P(P)OVER-BAR COLLISIONS; OPAL DETECTOR; SEARCH; SUPERSYMMETRY; LEP; DECAYS; J/PSI AB Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the Higgs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC. C1 [Lisanti, Mariangela] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Lisanti, M (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. FU DOE [DE-AC03-76SF00515]; NSF [PHY-0244728]; NSF GRFP and the Soros Foundation FX We are especially grateful to Andy Haas for collaboration throughout the course of this work. The results of the D0 search for h0 -> a0a0 -> 2 mu 2 tau with 3:7 fb-1 have been published [34]. We would also like to thank Johan Alwall for his assistance with MadGraph/MadEvent, as well as Spencer Chang, Chris Hays, David E. Kaplan, Aaron Pierce, Philip Schuster, Natalia Toro, and Neil Weiner for helpful discussions. M. L. and J. G. W. are supported by the DOE under contract DE-AC03-76SF00515 and partially by the NSF under grant PHY-0244728. M. L. is supported by the NSF GRFP and the Soros Foundation. NR 56 TC 36 Z9 36 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 115006 DI 10.1103/PhysRevD.79.115006 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300075 ER PT J AU Wands, D Slosar, A AF Wands, David Slosar, Anze TI Scale-dependent bias from primordial non-Gaussianity in general relativity SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER HALOES; COSMOLOGICAL PERTURBATIONS; INFLATIONARY MODELS AB In this paper we examine the derivation of scale-dependent bias due to primordial non-Gaussianity of the local type in the context of general relativity. We justify the use of the Poisson equation in general relativistic perturbation theory and thus the derivation of scale-dependent bias as a test of primordial non-Gaussianity, using the spherical collapse model. The corollary is that the form of scale-dependent bias does not receive general relativistic corrections on scales larger than the Hubble radius. This leads to a formally divergent correlation function for biased tracers of the mass distribution which we discuss. C1 [Wands, David] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Slosar, Anze] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia. RP Wands, D (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. OI Wands, David/0000-0001-9509-8386 FU Berkeley Center for Cosmological Physics; STFC FX The authors thank the Galileo Galilei Institute for Theoretical Physics for their hospitality and the INFN for partial support during the completion of this work. D. W. is grateful to Rob Crittenden, Kazuya Koyama, David Lyth, and Will Percival for helpful discussions. A. S. acknowledges useful discussions with Martin White. D. W. is supported by the STFC, while A. S. is supported by Berkeley Center for Cosmological Physics. NR 28 TC 41 Z9 41 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 12 AR 123507 DI 10.1103/PhysRevD.79.123507 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YN UT WOS:000267701500026 ER PT J AU Yamazaki, T Aoki, Y Blum, T Lin, HW Ohta, S Sasaki, S Tweedie, R Zanotti, J AF Yamazaki, Takeshi Aoki, Yasumichi Blum, Tom Lin, Huey-Wen Ohta, Shigemi Sasaki, Shoichi Tweedie, Robert Zanotti, James CA RBC UKQCD Collaborations TI Nucleon form factors with 2+1 flavor dynamical domain-wall fermions SO PHYSICAL REVIEW D LA English DT Article ID LATTICE QCD; ELECTRON SCATTERING; CHIRAL FERMIONS; FINITE-VOLUME; PROTON; LIMIT; SUPERCONDUCTIVITY; ANALOGY; MODEL AB We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with N-f=2+1 dynamical domain-wall fermions and Iwasaki gauge actions at beta=2.13, corresponding to a cutoff a(-1)=1.73 GeV, and a spatial volume of (2.7 fm)(3). The up and down-quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2 < q(2)< 0.75 GeV2. The vector and induced tensor form factors are well described by the conventional dipole forms and result in significant underestimation of the Dirac and Pauli mean-squared radii and the anomalous magnetic moment compared to the respective experimental values. We show that the axial-vector form factor is significantly affected by the finite spatial volume of the lattice. In particular in the axial charge, g(A)/g(V), the finite-volume effect scales with a single dimensionless quantity, m(pi)L, the product of the calculated pion mass and the spatial lattice extent. Our results indicate that for this quantity, m(pi)L > 6 is required to ensure that finite-volume effects are below 1%. C1 [Yamazaki, Takeshi; Blum, Tom] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Yamazaki, Takeshi] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Aoki, Yasumichi; Blum, Tom; Ohta, Shigemi] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Lin, Huey-Wen] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ohta, Shigemi] High Energy Accelerator Res Org, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, Shigemi] Sokendai Grad Univ Adv Studies, Dept Phys, Kanagawa 2400193, Japan. [Sasaki, Shoichi] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Tweedie, Robert; Zanotti, James] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Yamazaki, T (reprint author), Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RI Zanotti, James/H-8128-2012 OI Zanotti, James/0000-0002-3936-1597 FU U. S. DOE [DE-FG02-92ER40716, DE-AC05-06OR23177]; JSPS [19540265]; STFC [PP/F009658/1] FX We thank the members of the RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations. We also thank RIKEN, Brookhaven National Laboratory, the U. S. Department of Energy, Edinburgh University, and the U. K. PPARC for providing the facilities essential for the completion of this work. T. B. and T. Y. were supported by the U. S. DOE under Contract No. DE-FG02-92ER40716. T. Y. was supported by the Yukawa Memorial Foundation. H. L. is supported by DOE Contract No. DE-AC05-06OR23177 under which JSA, LLC operates THNAF. S. S. is supported by JSPS Grant-In-Aid for Scientific Research (C) (No. 19540265). J. Z. is supported by STFC Grant No. PP/F009658/1. NR 68 TC 76 Z9 76 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 114505 DI 10.1103/PhysRevD.79.114505 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300069 ER PT J AU Zhou, J Yuan, F Liang, ZT AF Zhou, Jian Yuan, Feng Liang, Zuo-Tang TI QCD evolution of the transverse momentum dependent correlations SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; SINGLE-SPIN ASYMMETRIES; DRELL-YAN PROCESSES; ODD PARTON DISTRIBUTIONS; Q(2) EVOLUTION; OPERATORS; LEPTOPRODUCTION; H(L)(X,Q(2)); EQUATIONS AB We study the nonsinglet evolution for the twist-three quark-gluon correlation functions associated with the transverse momentum odd quark distributions. Different from that for the leading-twist quark distributions, these evolution equations involve more general twist-three functions beyond the correlation functions themselves. They provide important information on nucleon structure and can be studied in the semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in the pp scattering process. C1 [Zhou, Jian; Liang, Zuo-Tang] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Zhou, Jian; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Zhou, J (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. RI Yuan, Feng/N-4175-2013 FU U. S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; National Natural Science Foundation of China [10525523]; RIKEN, Brookhaven National Laboratory; China Scholarship Council FX This work was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and the National Natural Science Foundation of China under the approval No. 10525523. We are grateful to RIKEN, Brookhaven National Laboratory and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. J. Z. is partially supported by the China Scholarship Council. NR 58 TC 47 Z9 47 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 114022 DI 10.1103/PhysRevD.79.114022 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300052 ER PT J AU Zurek, KM AF Zurek, Kathryn M. TI Multicomponent dark matter SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; EMISSION AB We explore multicomponent dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multicomponent nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z(2), is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA and synchrotron signals, without an excess in antiprotons, which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter. C1 [Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Zurek, Kathryn M.] USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Zurek, KM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U. S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX This work has been supported by the U. S. Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842. We thank P. Fox, D. Hooper, P. Ouyang, F. Petriello, and E. Poppitz for discussions, and A. Strumia for a comment on the first version. NR 47 TC 98 Z9 98 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2009 VL 79 IS 11 AR 115002 DI 10.1103/PhysRevD.79.115002 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 466YL UT WOS:000267701300071 ER PT J AU Brown, LS Singleton, RL AF Brown, Lowell S. Singleton, Robert L., Jr. TI Temperature equilibration in a fully ionized plasma: Electron-ion mass ratio effects SO PHYSICAL REVIEW E LA English DT Article DE ionisation; molecular dynamics method; plasma temperature AB Brown, Preston, and Singleton (BPS) produced an analytic calculation for energy exchange processes for a weakly to moderately coupled plasma: the electron-ion temperature equilibration rate and the charged particle stopping power. These precise calculations are accurate to leading and next-to-leading order in the plasma coupling parameter and to all orders for two-body quantum scattering within the plasma. Classical molecular dynamics can provide another approach that can be rigorously implemented. It is therefore useful to compare the predictions from these two methods, particularly since the former is theoretically based and the latter numerically. An agreement would provide both confidence in our theoretical machinery and in the reliability of the computer simulations. The comparisons can be made cleanly in the purely classical regime, thereby avoiding the arbitrariness associated with constructing effective potentials to mock up quantum effects. We present here the classical limit of the general result for the temperature equilibration rate presented in BPS. In particular, we examine the validity of the m(electron)/m(ion)-> 0 limit used in BPS to obtain a very simple analytic evaluation of the long-distance collective effects in the background plasma. C1 [Brown, Lowell S.; Singleton, Robert L., Jr.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brown, LS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 12 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2009 VL 79 IS 6 AR 066407 DI 10.1103/PhysRevE.79.066407 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 466XP UT WOS:000267698900067 PM 19658612 ER PT J AU Kemp, AJ Sentoku, Y Tabak, M AF Kemp, A. J. Sentoku, Y. Tabak, M. TI Hot-electron energy coupling in ultraintense laser-matter interaction SO PHYSICAL REVIEW E LA English DT Article DE hot carriers; hydrodynamics; ignition; plasma density; plasma light propagation; plasma nonlinear processes; plasma simulation; plasma temperature; plasma transport processes ID OVERDENSE PLASMAS; ABSORPTION; LIGHT; IGNITION; PULSES AB We investigate the hydrodynamic response of plasma gradients during the interaction with ultraintense energetic laser pulses using kinetic particle simulations. Energetic laser pulses are capable of compressing preformed plasma gradients over short times, while accelerating low-density plasma backward. As light is absorbed on a steepened interface, hot-electron temperature and coupling efficiency drop below the ponderomotive scaling and we are left with an absorption mechanism that strongly relies on the electrostatic potential caused by low-density preformed plasma. We describe this process, discuss properties of the resulting electron spectra and identify the parameter regime where strong compression occurs. Finally, we discuss implications for fast ignition and other applications. C1 [Kemp, A. J.; Tabak, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Sentoku, Y.] Univ Nevada, Reno, NV 89577 USA. RP Kemp, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Sentoku, Yasuhiko/P-5419-2014 NR 28 TC 37 Z9 37 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2009 VL 79 IS 6 AR 066406 DI 10.1103/PhysRevE.79.066406 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 466XP UT WOS:000267698900066 PM 19658611 ER PT J AU Mikaelian, KO AF Mikaelian, Karnig O. TI Nonlinear hydrodynamic interface instabilities driven by time-dependent accelerations SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; FLUIDS AB We present a model for nonlinear hydrodynamic instabilities of interfaces and the formation of bubbles driven by time-dependent accelerations g(t). To obtain analytic solutions, we map the equation for the bubble amplitude eta(t) onto the Schrodinger equation and solve it as an initial value (eta(0), (eta) over dot(0)) problem in time instead of an eigenvalue problem in space. Very good agreement is obtained with full hydrodynamic simulations. We then apply the WKB approximation to derive scaling with s = integral root g(t)dt. Bubbles scale while spikes do not. Zitterbewegung, meaning rapid oscillations of g(t) around an average value, has little effect on eta(t). C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mikaelian, KO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 16 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2009 VL 79 IS 6 AR 065303 DI 10.1103/PhysRevE.79.065303 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 466XP UT WOS:000267698900007 PM 19658552 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Nonequilibrium phases for driven particle systems with effective orientational degrees of freedom SO PHYSICAL REVIEW E LA English DT Article ID SUPERCONDUCTING FILMS; FLUX; CRYSTALS; DYNAMICS; LATTICES; DEFECTS; LIQUID; ARRAY AB We show that a rich variety of nonequilibrium phases can be realized for interacting particles moving over a periodic substrate when the particles have effective internal orientational degrees of freedom. We specifically study driven colloidal molecular crystals where it has been established that n-merization produces effective orientational degrees of freedom. This system exhibits a polarization effect within the pinned phase, a remarkable variety of sliding phases, and has no single particle pinning regime. Similar dynamics should occur for other driven systems with effective orientational degrees of freedom such as sliding diatomic or higher-order states. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 42 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2009 VL 79 IS 6 AR 061403 DI 10.1103/PhysRevE.79.061403 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 466XN UT WOS:000267698700053 PM 19658505 ER PT J AU Delayen, JR Wang, H AF Delayen, J. R. Wang, H. TI New compact TEM-type deflecting and crabbing rf structure SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A new type of rf structure for the deflection and crabbing of particle beams is presented. The structure is comprised of a number of parallel TEM resonant lines operating in opposing phase from each other. One of its advantages is its compactness compared to conventional crabbing cavities operating in the TM(110) mode, thus allowing low frequency designs. This geometry would also be effective for the deflection of beams propagating at velocities substantially less than that of light. C1 [Delayen, J. R.] Old Dominion Univ, Ctr Accelerator Sci, Norfolk, VA 23259 USA. [Delayen, J. R.; Wang, H.] Thomas Jefferson Natl Accelerator Facil, Accelerator Div, Newport News, VA 23606 USA. RP Delayen, JR (reprint author), Old Dominion Univ, Ctr Accelerator Sci, Norfolk, VA 23259 USA. EM delayen@jlab.org NR 18 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2009 VL 12 IS 6 AR 062002 DI 10.1103/PhysRevSTAB.12.062002 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 467SP UT WOS:000267763000011 ER PT J AU Qin, H Davidson, RC AF Qin, Hong Davidson, Ronald C. TI Generalized Courant-Snyder theory for coupled transverse dynamics of charged particles in electromagnetic focusing lattices SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HARMONIC-OSCILLATOR; TWISS PARAMETERS; INVARIANT; SYSTEMS AB The Courant-Snyder theory gives a complete description of the uncoupled transverse dynamics of charged particles in electromagnetic focusing lattices. In this paper, the Courant-Snyder theory is generalized to the case of coupled transverse dynamics with two degrees of freedom. The generalized theory has the same structure as the original Courant-Snyder theory for one degree of freedom. The four basic components of the original Courant-Snyder theory, i.e., the envelope equation, phase advance, transfer matrix, and the Courant-Snyder invariant, all have their counterparts, with remarkably similar expressions, in the generalized theory presented here. In the generalized theory, the envelope function is generalized into an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. The generalized theory gives a new parametrization of the 4D symplectic transfer matrix that has the same structure as the parametrization of the 2D symplectic transfer matrix in the original Courant-Snyder theory. All of the parameters used in the generalized Courant-Snyder theory correspond to physical quantities of importance, and this parametrization can provide a valuable framework for accelerator design and particle simulation studies. A time-dependent canonical transformation is used to develop the generalized Courant-Snyder theory. Applications of the new theory to strongly and weakly coupled dynamics are given. It is shown that the stability of coupled dynamics can be determined by the generalized phase advance developed. Two stability criteria are given, which recover the known results about sum and difference resonances in the weakly coupled limit. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U. S. Department of Energy [AC02-76CH03073] FX This research was supported by the U. S. Department of Energy under Contract No. AC02-76CH03073. We thank Dr. Alex Dragt, Dr. Irving Haber, Dr. Moses Chung, Dr. John Barnard, Dr. Alex Chao, and Dr. Mei Bai for fruitful discussions. NR 42 TC 16 Z9 16 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2009 VL 12 IS 6 AR 064001 DI 10.1103/PhysRevSTAB.12.064001 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 467SP UT WOS:000267763000015 ER PT J AU Wang, CX AF Wang, Chun-xi TI Minimum emittance in storage rings with uniform or nonuniform dipoles SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID LATTICE AB A simple treatment of minimum emittance theory in storage rings is presented, favoring vector and matrix forms for a more concise picture. Both conventional uniform dipoles and nonuniform dipoles with bending radius variation are treated. Simple formulas are given for computing the minimum emittance, optimal lattice parameters, as well as effects of nonoptimal parameters. For nonuniform dipoles, analytical results are obtained for a three-piece sandwich dipole model. Minimization of the effective emittance for light sources is given in detail. Usefulness of gradient and/or nonuniform dipoles for reducing the effective emittance is addressed. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, CX (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wangcx@aps.anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX I thank my colleagues T. C. Lee and L. Emery for helpful discussions and comments. This work was supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 15 TC 10 Z9 11 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2009 VL 12 IS 6 AR 061001 DI 10.1103/PhysRevSTAB.12.061001 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 467SP UT WOS:000267763000006 ER PT J AU Woodworth, JR Alexander, JA Gruner, FR Stygar, WA Harden, MJ Blickem, JR Dension, GJ White, FE Lucero, LM Anderson, HD Bennett, LF Glover, SF Van DeValde, D Mazarakis, MG AF Woodworth, J. R. Alexander, J. A. Gruner, F. R. Stygar, W. A. Harden, M. J. Blickem, J. R. Dension, G. J. White, F. E. Lucero, L. M. Anderson, H. D. Bennett, L. F. Glover, S. F. Van DeValde, D. Mazarakis, M. G. TI Low-inductance gas switches for linear transformer drivers SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID DESIGN AB We are investigating several alternate gas-switch designs for use in linear transformer drivers. To meet linear-transformer-driver (LTD) requirements, these air-insulated switches must be DC charged to 200 kV, be triggerable with a jitter of 5 ns or less, have very low prefire and no-fire rates (similar to 1 in 10(4) shots), and have a lifetime of at least several thousand shots. Since the switch inductance plays a significant role in limiting the rise time and peak current of the LTD circuit, the inductance needs to be as low as possible. The switches are required to conduct current pulses with similar to 100-ns rise times and 20-80 kA peak currents, depending on the application. Our baseline switch, designed by the High Current Electronics Institute in Tomsk, Russia, is a six-stage switch with an inductance on the order of 115 nH that is insulated with 47-67 psia of air. We are also testing three smaller two-stage switches that have inductances on the order of 66-100 nH. The smaller switches are insulated with 92-252 psia of air. C1 [Woodworth, J. R.; Alexander, J. A.; Stygar, W. A.; Dension, G. J.; Bennett, L. F.; Glover, S. F.; Mazarakis, M. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Harden, M. J.; Anderson, H. D.] NSTech Corp, Los Alamos, NM 87544 USA. [Blickem, J. R.; White, F. E.; Lucero, L. M.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Gruner, F. R.] Kinetech LLC, The Dalles, OR 97058 USA. [Van DeValde, D.] EG&G Tech Serv, Albuquerque, NM 87119 USA. RP Woodworth, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We are grateful for a number of helpful technical discussions with Dr. J. E. Maenchen, Dr. D. H. McDaniel, Dr. J. J. Leckbee, Dr. M. E. Savage, Dr. M. G. Mazarakis, Dr. P. A. Miller, and Mr. W. E. Fowler at Sandia National Laboratories; Mr. I. A. Smith, Mr. R. White, D. L. Johnson, and E. Neau at L3 Communications, Pulse Sciences; Dr. A. A. Kim at the High Current Electronics Institute in Tomsk; and Mr. J. Ennis and others at General Atomics Corporation. This work was supported by a Laboratory-Directed Research and Development grant from Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 27 TC 36 Z9 62 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2009 VL 12 IS 6 AR 060401 DI 10.1103/PhysRevSTAB.12.060401 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 467SP UT WOS:000267763000001 ER PT J AU Gatta, GD Lee, Y Kao, CC AF Gatta, G. Diego Lee, Yongjae Kao, Chi-Chang TI Elastic behavior of vanadinite, Pb-10(VO4)(6)Cl-2, a microporous non-zeolitic mineral SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Vanadinite; Pb-10(VO4)(6)Cl-2; High pressure; Synchrotron X-ray powder diffraction; Compressibility ID SYNCHROTRON POWDER DIFFRACTION; HIGH-PRESSURE; STRUCTURAL EVOLUTION; VIBRATIONAL BEHAVIOR; CRYSTAL-STRUCTURE; APATITES; FLUORAPATITE; COMPRESSIBILITY; LUMINESCENCE; CALIBRATION AB The high-pressure behavior of a vanadinite (Pb-10(VO4)(6)Cl-2, a = b = 10.3254(5), c = 7.3450(4) A..., space group P6(3)/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the P-V data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V (0) = 681(1) A...(3), K (0) = 41(5) GPa, and K' = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order "linearized" BM-EoS. The EoS parameters are: a (0) = 10.3302(2) A..., K (0)(a) = 35(2) GPa and K'(a) = 10(1) for the a-axis; c (0) = 7.3520(3) A..., K (0)(c) = 98(4) GPa, and K'(c) = 9(2) for the c-axis (K (0)(a):K (0)(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe (a) (0) = 35(2) GPa for the a-axis, Fe (c) (0) = 98(4) GPa for the c-axis and Fe (V) (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K' values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed. C1 [Gatta, G. Diego] Univ Milan, Dipartimento Sci Terra, I-20133 Milan, Italy. [Gatta, G. Diego] Ist Dinam Proc Ambientali, CNR, Milan, Italy. [Lee, Yongjae] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Kao, Chi-Chang] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gatta, GD (reprint author), Univ Milan, Dipartimento Sci Terra, Via Botticelli 23, I-20133 Milan, Italy. EM diego.gatta@unimi.it RI Lee, Yongjae/K-6566-2016; OI Gatta, G. Diego/0000-0001-8348-7181 FU US DoE [DE-AC02-98CH10886]; Italian Ministry of University and Research; MIUR-Project [2006040119_004]; Korea Science & Engineering Foundation through the Nuclear RD Program [M2AM06-2008-03931] FX Research carried out in part at the NSLS at BNL is supported by the US DoE (DE-AC02-98CH10886 for beamline X7A). We gratefully acknowledge the Geophysical Laboratory of the Carnegie Institute for access to their ruby laser system at beamline X17C. G. Diego Gatta thanks the Italian Ministry of University and Research, MIUR-Project: 2006040119_004. Y. Lee thanks the support by the Korea Science & Engineering Foundation through the Nuclear R&D Program (Grant No. M2AM06-2008-03931). The editor M. Rieder and the reviewers W. Crichton and G. Bromiley are thanked. NR 51 TC 8 Z9 8 U1 4 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD JUN PY 2009 VL 36 IS 6 BP 311 EP 317 DI 10.1007/s00269-008-0279-6 PG 7 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 453BW UT WOS:000266586000002 ER PT J AU Fehske, H Schleede, J Schubert, G Wellein, G Filinov, VS Bishop, AR AF Fehske, Holger Schleede, Jens Schubert, Gerald Wellein, Gerhard Filinov, Vladimir S. Bishop, Alan R. TI Numerical approaches to time evolution of complex quantum systems SO PHYSICS LETTERS A LA English DT Article ID MOLECULAR-DYNAMICS METHOD; STATISTICAL MECHANICS; SYMPLECTIC TOMOGRAPHY; WIGNER APPROACH AB We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave. (C) 2009 Elsevier B.V. All rights reserved. C1 [Filinov, Vladimir S.] Russian Acad Sci, Joint Inst High Temp, Moscow 127412, Russia. [Fehske, Holger; Schleede, Jens; Schubert, Gerald] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany. [Schubert, Gerald; Wellein, Gerhard] Univ Erlangen Nurnberg, Reg Rechenzentrum Erlangen, D-91058 Erlangen, Germany. [Bishop, Alan R.] Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. RP Filinov, VS (reprint author), Russian Acad Sci, Joint Inst High Temp, Moscow 127412, Russia. EM vladimir_filinov@mail.ru NR 26 TC 20 Z9 20 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUN 1 PY 2009 VL 373 IS 25 BP 2182 EP 2188 DI 10.1016/j.physleta.2009.04.022 PG 7 WC Physics, Multidisciplinary SC Physics GA 455NE UT WOS:000266766700015 ER PT J AU Deur, A AF Deur, A. TI Implications of graviton-graviton interaction to dark matter SO PHYSICS LETTERS B LA English DT Article ID CONSTANT; GALAXIES; DYNAMICS AB Our present understanding of the universe requires the existence of dark matter and dark energy. We describe here a natural mechanism that Could make exotic dark matter and possibly dark energy unnecessary. Graviton-graviton interactions increase the gravitational binding of matter. This increase, for large massive systems Such as galaxies, may be large enough to make exotic dark matter superfluous. Within a weak field approximation we compute the effect on the rotation curves of galaxies and find the correct magnitude and distribution without need for arbitrary parameters or additional exotic particles. The Tully-Fisher relation also emerges naturally from this framework. The Computations are further applied to galaxy clusters. (C) 2009 Elsevier B.V. All rights reserved. C1 [Deur, A.] Univ Virginia, Charlottesville, VA 22904 USA. RP Deur, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM deurpam@jlab.org NR 14 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 1 PY 2009 VL 676 IS 1-3 BP 21 EP 24 DI 10.1016/j.physletb.2009.04.060 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 453PZ UT WOS:000266624700005 ER PT J AU Shyam, R Tsushima, K Thomas, AW AF Shyam, R. Tsushima, K. Thomas, A. W. TI Photoproduction of hypernuclei within the quark-meson coupling model SO PHYSICS LETTERS B LA English DT Article DE Photoproduction of hypernuclei; Covariant production model; Quark-meson coupling model hyperon spinors ID RELATIVISTIC 2-NUCLEON MODEL; KAON-PHOTOPRODUCTION; NUCLEAR-MATTER; FINITE NUCLEI; LAMBDA; STATES; C-12; SPECTROSCOPY; DYNAMICS; OPERATOR AB We study the photoproduction of the B-12(Lambda) hypernucleus within a fully covariant effective Lagrangian based model, employing Lambda bound state spinors derived from the latest quark-meson coupling model. The kaon production vertex is described via creation. propagation and decay of N*(1650). N*(1710), and N*(1720) intermediate baryonic resonant states in the initial collision of the photon with a target proton in the incident channel. The parameters of the resonance vertices are fixed by describing the total and differential cross section data oil the elementary gamma p -> Lambda K+ reaction in the energy regime relevant to the hypernuclear production. It is found that the hypernuclear production cross sections calculated with the quark model based hyperon bound state spinors differ significantly from those obtained with the phenomenological Dirac single particle wave functions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shyam, R.] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India. [Shyam, R.; Tsushima, K.; Thomas, A. W.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 23606 USA. RP Shyam, R (reprint author), Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India. EM radhey.shyam@saha.ac.in RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU United States Department of Energy [DE-AC05-06OR23177] FX This work has been supported by the United States Department of Energy contract No. DE-AC05-06OR23177 under which the Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility. NR 55 TC 13 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 1 PY 2009 VL 676 IS 1-3 BP 51 EP 56 DI 10.1016/j.physletb.2009.04.074 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 453PZ UT WOS:000266624700010 ER PT J AU Orlicz, GC Balakumar, BJ Tomkins, CD Prestridge, KP AF Orlicz, G. C. Balakumar, B. J. Tomkins, C. D. Prestridge, K. P. TI A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain SO PHYSICS OF FLUIDS LA English DT Article DE flow instability; flow visualisation; Mach number; mixing; shock waves ID THIN FLUID LAYER; SHOCK; GROWTH; FLOW; CYLINDERS; VISUALIZATION; TRANSITION; EVOLUTION; PATTERNS; IGNITION AB A varicose-perturbed, thin, heavy-gas curtain is impulsively accelerated by a planar shock wave of varying strength and investigated experimentally using concentration field visualization. Experiments were performed with Mach 1.2 and 1.5 incident shock waves, acquiring images of the initial conditions, and 18 different times after shock interaction in each case. Repeatability of the initial conditions allows for visualization of flow feature development over time for both Mach numbers despite capturing only one dynamic, postshock image per run of the experiment. Good agreement between integral width experimental data and a mixing width model is demonstrated for early to intermediate times in the flow. Integral width growth rates for Mach 1.2 and 1.5 are shown to collapse using a scaling based upon the convection velocity of the curtain. The diffusion driven instantaneous mixing rate, chi, is also estimated and compared between experiments. Results from this gradient based metric show differences in mixing trends between Mach numbers that do not scale in the same way as integral width, suggesting that integral width alone is insufficient for completely describing the flow. An experiment with a Mach 2.0 incident shock was carried out for the first time in the experimental facility. The resulting image provides further evidence for the mixing trends observed in this paper as Mach number is increased. C1 [Orlicz, G. C.; Balakumar, B. J.; Tomkins, C. D.; Prestridge, K. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Orlicz, GC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM orlicz@lanl.gov RI Prestridge, Kathy/C-1137-2012 OI Prestridge, Kathy/0000-0003-2425-5086 FU Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Department of Energy under Contract No. DE-AC52-06NA25396. NR 34 TC 30 Z9 36 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JUN PY 2009 VL 21 IS 6 AR 064102 DI 10.1063/1.3147929 PG 11 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 465PU UT WOS:000267600100017 ER PT J AU Candy, J Holland, C Waltz, RE Fahey, MR Belli, E AF Candy, J. Holland, C. Waltz, R. E. Fahey, M. R. Belli, E. TI Tokamak profile prediction using direct gyrokinetic and neoclassical simulation SO PHYSICS OF PLASMAS LA English DT Article ID TRANSPORT; DYNAMICS AB Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0 <= r/a <= 0.8. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3167820] C1 [Candy, J.; Waltz, R. E.; Belli, E.] Gen Atom Co, San Diego, CA 92186 USA. [Holland, C.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Fahey, M. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Candy, J (reprint author), Gen Atom Co, San Diego, CA 92186 USA. FU U. S. DOE [DE-FG03-95ER54309, DE-FG02-07ER54917]; FACETS SciDAC project and used the resources of the NCCS at ORNL [DEAC05-00OR22725] FX This work was supported by the U. S. DOE under Contract Nos. DE-FG03-95ER54309 and DE-FG02-07ER54917 as part of the FACETS SciDAC project and used the resources of the NCCS at ORNL under Contract No. DEAC05-00OR22725. NR 11 TC 49 Z9 49 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 060704 DI 10.1063/1.3167820 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400005 ER PT J AU Chen, SN Patel, PK Chung, HK Kemp, AJ Le Pape, S Maddox, BR Wilks, SC Stephens, RB Beg, FN AF Chen, S. N. Patel, P. K. Chung, H-K. Kemp, A. J. Le Pape, S. Maddox, B. R. Wilks, S. C. Stephens, R. B. Beg, F. N. TI X-ray spectroscopy of buried layer foils irradiated at laser intensities in excess of 10(20) W/cm(2) SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON AB Observations of a rapid decrease in thermal temperature as a function of depth of solid targets irradiated with a short pulse, ultrahigh-intensity laser are reported. This phenomenon is investigated using the Titan short pulse laser with intensities greater than 10(20) W/cm(2) interacting with buried layer targets. The longitudinal temperature profile is determined by measuring K-shell spectra from a 0.4 mu m copper tracer layer placed at various depths (i.e., 0-1.5 mu m) within the 2.4 mu m thick target. It is observed that the line ratios (He-like K-shell lines) as a function of temperature require a consideration of at least three parameters to analyze the K-shell spectra: hot electron population, time-dependent plasma conditions, and opacity. Here, the study of the effect of these three parameters on measured spectra in the short pulse high intensity laser-matter interactions using the atomic model FLYCHK [H.-K. Chung et al., High Energy Density Phys. 1, 3 (2005)] is presented. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3143715] C1 [Chen, S. N.; Chung, H-K.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Patel, P. K.; Kemp, A. J.; Le Pape, S.; Maddox, B. R.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stephens, R. B.] Gen Atom Court, Gen Atom, San Diego, CA 92121 USA. RP Beg, FN (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RI Patel, Pravesh/E-1400-2011; OI chen, sophia n./0000-0002-3372-7666; Stephens, Richard/0000-0002-7034-6141 FU U. S. Department of Energy [DE-FG020-ER54834] FX This work was performed under the auspices of the U. S. Department of Energy under Contract No. DE-FG020-ER54834. The work and vital assistance of the technical and administrative staff connected with the Jupiter Laser Facility are gratefully acknowledged. We are indebted to Dr. Hiroshi Sawada for useful discussions. NR 24 TC 6 Z9 6 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 062701 DI 10.1063/1.3143715 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400033 ER PT J AU Moody, JD Divol, L Froula, DH Glenzer, SH Gregori, G Kirkwood, RK Mackinnon, A Meezan, N Niemann, C Suter, LJ Bahr, R Seka, W AF Moody, J. D. Divol, L. Froula, D. H. Glenzer, S. H. Gregori, G. Kirkwood, R. K. Mackinnon, A. Meezan, N. Niemann, C. Suter, L. J. Bahr, R. Seka, W. TI Control of 2 omega (527 nm) stimulated Raman scattering in a steep density gradient plasma SO PHYSICS OF PLASMAS LA English DT Article DE plasma density; plasma light propagation; plasma simulation; polarisation; Raman spectra ID NATIONAL-IGNITION-FACILITY; INERTIAL CONFINEMENT FUSION; SCALE-LENGTH PLASMAS; INHOMOGENEOUS COLLISIONAL PLASMAS; EXPLODING FOIL PLASMAS; RANDOMIZED LASER-BEAM; BRILLOUIN-SCATTERING; PHASE PLATES; TARGETS; LIGHT AB Experiments show that application of laser smoothing schemes including smoothing by spectral dispersion and polarization smoothing effectively suppresses stimulated Raman scattering from a 2 omega (527 nm) laser beam in a low average-gain plasma with a steep density gradient. Full-wave simulations reproduce the observed trends in the data and show that the scattering reduction is an indirect result of suppressing active filamentation. C1 [Moody, J. D.; Divol, L.; Froula, D. H.; Glenzer, S. H.; Gregori, G.; Kirkwood, R. K.; Mackinnon, A.; Meezan, N.; Niemann, C.; Suter, L. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bahr, R.; Seka, W.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Moody, JD (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RI MacKinnon, Andrew/P-7239-2014 OI MacKinnon, Andrew/0000-0002-4380-2906 FU U. S. Department of Energy by the Lawrence Livermore National Laboratory [W-7405-Eng-48]; LDRD [01-LDRD-107] FX This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. This work was also partially supported by LDRD Grant No. 01-LDRD-107. NR 26 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 062704 DI 10.1063/1.3143028 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400036 ER PT J AU Ozaki, N Sano, T Ikoma, M Shigemori, K Kimura, T Miyanishi, K Vinci, T Ree, FH Azechi, H Endo, T Hironaka, Y Hori, Y Iwamoto, A Kadono, T Nagatomo, H Nakai, M Norimatsu, T Okuchi, T Otani, K Sakaiya, T Shimizu, K Shiroshita, A Sunahara, A Takahashi, H Kodama, R AF Ozaki, N. Sano, T. Ikoma, M. Shigemori, K. Kimura, T. Miyanishi, K. Vinci, T. Ree, F. H. Azechi, H. Endo, T. Hironaka, Y. Hori, Y. Iwamoto, A. Kadono, T. Nagatomo, H. Nakai, M. Norimatsu, T. Okuchi, T. Otani, K. Sakaiya, T. Shimizu, K. Shiroshita, A. Sunahara, A. Takahashi, H. Kodama, R. TI Shock Hugoniot and temperature data for polystyrene obtained with quartz standard SO PHYSICS OF PLASMAS LA English DT Article DE equations of state; high-pressure effects; laser fusion; polymers; shock wave effects ID DENSE MATTER; EQUATION; STATE; IGNITION; FACILITY; WAVES; MBAR; HOT AB Equation-of-state data, not only pressure and density but also temperature, for polystyrene (CH) are obtained up to 510 GPa. The region investigated in this work corresponds to an intermediate region, bridging a large gap between available gas-gun data below 60 GPa and laser shock data above 500 GPa. The Hugoniot parameters and shock temperature were simultaneously determined by using optical velocimeters and pyrometers as the diagnostic tools and the alpha-quartz as a new standard material. The CH Hugoniot obtained tends to become stiffer than a semiempirical chemical theoretical model predictions at ultrahigh pressures but is consistent with other models and available experimental data. C1 [Ozaki, N.; Kimura, T.; Miyanishi, K.; Endo, T.; Kodama, R.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Sano, T.; Shigemori, K.; Azechi, H.; Hironaka, Y.; Kadono, T.; Nagatomo, H.; Nakai, M.; Norimatsu, T.; Otani, K.; Shiroshita, A.; Sunahara, A.; Kodama, R.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Ikoma, M.; Hori, Y.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Vinci, T.] Commissariat Energie Atom, F-91680 Bruyeres Le Chatel, France. [Ree, F. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Iwamoto, A.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Okuchi, T.] Okayama Univ, Inst Study Earths Interior, Tottori 6820193, Japan. [Sakaiya, T.; Takahashi, H.] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Shimizu, K.] Osaka Univ, KYOKUGEN, Ctr Quantum Sci & Technol Extreme Condit, Osaka 5608531, Japan. RP Ozaki, N (reprint author), Osaka Univ, Grad Sch Engn, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan. EM norimasa.ozaki@eie.eng.osaka-u.ac.jp RI Sano, Takayoshi/E-7860-2010; OKUCHI, Takuo/B-1884-2011; Ikoma, Masahiro/B-9915-2012; Azechi, Hiroshi/H-5876-2015; Nakai, Mitsuo/I-6758-2015; Norimatsu, Takayoshi/I-5710-2015; Shigemori, Keisuke/B-3262-2013; Kodama, Ryosuke/G-2627-2016; OI OKUCHI, Takuo/0000-0001-6907-0945; Ikoma, Masahiro/0000-0002-5658-5971; Nakai, Mitsuo/0000-0001-6076-756X; Shigemori, Keisuke/0000-0002-3978-8427; SUNAHARA, ATSUSHI/0000-0001-7543-5226 FU Japan Society for the Promotion of Science (JSPS); Ministry of Education, Culture, Sports, Science and Technology of Japan; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the joint research project of the ILE, Osaka University. The authors gratefully acknowledge the valuable support for the experiments by ILE technical crews. The authors are also grateful to M. Koenig for the VISAR construction and D. Young for valuable discussions concerning the modified QEOS. This research was partially supported by grants for the Core-to-Core Program from the Japan Society for the Promotion of Science (JSPS) and for the Global COE Program, " Center for Electronic Devices Innovation," from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The contribution by F. H. Ree was performed under the auspices of the U. S. DOE by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 33 TC 21 Z9 22 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 062702 DI 10.1063/1.3152287 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400034 ER PT J AU Parks, PB Lu, T Samulyak, R AF Parks, P. B. Lu, T. Samulyak, R. TI Charging and EXB rotation of ablation clouds surrounding refueling pellets in hot fusion plasmas SO PHYSICS OF PLASMAS LA English DT Article ID SIMULATION; TOKAMAKS AB The finite resistivity magnetohydrodynamic code FRONTIER-MHD [R. Samulyak et al., Nucl. Fusion 47, 103 (2007)] is used to simulate the ablation rate of refueling pellets, including the novel effect of electrostatically induced EXB rotation of the ablation cloud about its symmetry axis parallel to the magnetic field. The key finding is that the centrifugal force of cloud rotation pushes the cloud density radially outwards, creating a more "transparent" ablation channel. With reduced shielding, the steady state ablation rate of a deuterium pellet significantly increases from similar to 35% to 100%, depending on the B-field strength. This new effect brings the ablation rate into better accord with a known theoretical scaling law, which agrees with most current experiments. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3158562] C1 [Parks, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Lu, T.; Samulyak, R.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Parks, PB (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU U. S. Department of Energy [DE-AC02-98CH10886]; Brookhaven Science Associates; LLC; General Atomics [DE-FG0395ER54309]; National Energy Research Scientific Computing Center; Office of Science of the U. S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the U. S. Department of Energy under Grant Nos. DE-AC02-98CH10886, with Brookhaven Science Associates, LLC, and DE-FG0395ER54309 with General Atomics. This research partially used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 14 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 060705 DI 10.1063/1.3158562 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400006 ER PT J AU Tanimoto, T Habara, H Kodama, R Nakatsutsumi, M Tanaka, KA Lancaster, KL Green, JS Scott, RHH Sherlock, M Norreys, PA Evans, RG Haines, MG Kar, S Zepf, M King, J Ma, T Wei, MS Yabuuchi, T Beg, FN Key, MH Nilson, P Stephens, RB Azechi, H Nagai, K Norimatsu, T Takeda, K Valente, J Davies, JR AF Tanimoto, Tsuyoshi Habara, H. Kodama, R. Nakatsutsumi, M. Tanaka, Kazuo A. Lancaster, K. L. Green, J. S. Scott, R. H. H. Sherlock, M. Norreys, Peter A. Evans, R. G. Haines, M. G. Kar, S. Zepf, M. King, J. Ma, T. Wei, M. S. Yabuuchi, T. Beg, F. N. Key, M. H. Nilson, P. Stephens, R. B. Azechi, H. Nagai, K. Norimatsu, T. Takeda, K. Valente, J. Davies, J. R. TI Measurements of fast electron scaling generated by petawatt laser systems SO PHYSICS OF PLASMAS LA English DT Article DE electron spectra; ignition; plasma light propagation ID SOLID INTERACTIONS; FAST IGNITER; PLASMA; TARGET; PULSE AB Fast electron energy spectra have been measured for a range of intensities between 10(18) and 10(21) W cm(-2) and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40 degrees in p-polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions. C1 [Tanimoto, Tsuyoshi; Habara, H.; Kodama, R.; Nakatsutsumi, M.; Tanaka, Kazuo A.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Tanimoto, Tsuyoshi; Habara, H.; Kodama, R.; Nakatsutsumi, M.; Tanaka, Kazuo A.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Lancaster, K. L.; Green, J. S.; Scott, R. H. H.; Sherlock, M.; Norreys, Peter A.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Scott, R. H. H.; Sherlock, M.; Norreys, Peter A.; Evans, R. G.; Haines, M. G.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2BZ, England. [Kar, S.; Zepf, M.] Queens Univ Belfast, Ctr Plasma Phys, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [King, J.; Ma, T.; Wei, M. S.; Yabuuchi, T.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nilson, P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA. [Azechi, H.; Nagai, K.; Norimatsu, T.; Takeda, K.] Osaka Univ, Inst Laser Engn, Suita, Osaka 565, Japan. [Valente, J.; Davies, J. R.] Inst Super Tecn, Grp Lasers & Plasmas, Ctr Fis Plasma, P-1049001 Lisbon, Portugal. RP Tanimoto, T (reprint author), Osaka Univ, Grad Sch Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan. RI Azechi, Hiroshi/H-5876-2015; Norimatsu, Takayoshi/I-5710-2015; Kodama, Ryosuke/G-2627-2016; Nilson, Philip/A-2493-2011; Kar, Satyabrata/E-5220-2010; Davies, Jonathan/J-2611-2012; Ma, Tammy/F-3133-2013; Nagai, Keiji/E-5155-2014; Zepf, Matt/M-1232-2014; OI Valente, Joao/0000-0002-5917-8917; Ma, Tammy/0000-0002-6657-9604; Stephens, Richard/0000-0002-7034-6141 FU UK EPSRC; STFC FX The authors gratefully acknowledge the support of the staff of the Central Laser Facility and of Institute of Laser Engineering in the execution of this work. This work was supported by the UK EPSRC and STFC. NR 30 TC 24 Z9 26 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 062703 DI 10.1063/1.3155086 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400035 ER PT J AU Wang, L Hahm, TS AF Wang, Lu Hahm, T. S. TI Generalized expression for polarization density SO PHYSICS OF PLASMAS LA English DT Article DE plasma collision processes; plasma kinetic theory; plasma turbulence ID NONLINEAR GYROKINETIC EQUATIONS; GUIDING CENTER MOTION; E X B; NEOCLASSICAL POLARIZATION; TOKAMAK PLASMA; MAGNETIC-FIELD; ZONAL FLOW; TURBULENCE; DRIVEN; INSTABILITY AB A general polarization density which consists of classical and neoclassical parts is systematically derived via modern gyrokinetics and bounce kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width and finite-Larmor-radius effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. The generalized analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength. C1 [Wang, Lu] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Wang, Lu; Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wang, L (reprint author), Peking Univ, Sch Phys, Beijing 100871, Peoples R China. RI Wang, Lu/F-1875-2010 FU China Scholarship Council; U.S. Department of Energy [DE-AC02-76-CHO-3073] FX We thank A. Brizard, F. L. Hinton, Y. Xiao, G. W. Hammett, L. Chen, G. Rewoldt, and G. Dif-Pradalier for useful comments on our work. This work was supported by the China Scholarship Council (L.W.), the U.S. Department of Energy under Contract No. DE-AC02-76-CHO-3073 (T.S.H. and L.W.), the U.S. DOE SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas and the U. S. DOE SciDAC-FSP Center for Plasma Edge Simulation (T.S.H.). NR 48 TC 19 Z9 19 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2009 VL 16 IS 6 AR 062309 DI 10.1063/1.3152601 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 465PN UT WOS:000267599400022 ER PT J AU Ritchie, RO Buehler, MJ Hansma, P AF Ritchie, Robert O. Buehler, Markus J. Hansma, Paul TI Plasticity and toughness in bone SO PHYSICS TODAY LA English DT Article ID HUMAN CORTICAL BONE; FRACTURE CRITERIA; NANOMECHANICS; MECHANISMS; CRACKS; DAMAGE; AGE C1 [Ritchie, Robert O.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ritchie, Robert O.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Buehler, Markus J.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Hansma, Paul] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. RI Buehler, Markus/C-4580-2008; Ritchie, Robert/A-8066-2008 OI Buehler, Markus/0000-0002-4173-9659; Ritchie, Robert/0000-0002-0501-6998 NR 24 TC 121 Z9 122 U1 6 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUN PY 2009 VL 62 IS 6 BP 41 EP 47 PG 7 WC Physics, Multidisciplinary SC Physics GA 457WK UT WOS:000266965300020 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point The power of robotics SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUN PY 2009 VL 22 IS 6 BP 20 EP 20 PG 1 WC Physics, Multidisciplinary SC Physics GA 456QS UT WOS:000266862800034 ER PT J AU Georgianna, D Federova, ND Yu, J Machida, M Rokas, A Baker, S Dean, R Brown, D Dolezal, A Bhatnagar, D Cleveland, T Wortman, J Maiti, R Joardar, V Amedeo, P Denning, D Woloshuk, C Nierman, W Payne, G AF Georgianna, D. Federova, N. D. Yu, J. Machida, M. Rokas, A. Baker, S. Dean, R. Brown, D. Dolezal, A. Bhatnagar, D. Cleveland, T. Wortman, J. Maiti, R. Joardar, V. Amedeo, P. Denning, D. Woloshuk, C. Nierman, W. Payne, G. TI Comparative genomics of Aspergillus flavus and A-oryzae revealed nearly identical genomes but differences in gene expression SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathology-Society CY AUG 01-05, 2009 CL Portland, OR SP Amer Phytopathol Soc C1 [Georgianna, D.; Dean, R.; Brown, D.; Dolezal, A.; Payne, G.] NCSU, Raleigh, NC USA. [Federova, N. D.; Maiti, R.; Joardar, V.; Amedeo, P.; Nierman, W.] J Craig Venter Inst, Rockville, MD USA. [Yu, J.; Bhatnagar, D.; Cleveland, T.] USDA ARS, SRRC, New Orleans, LA USA. [Machida, M.] Natl Inst Adv Ind Sci & Technol, Higashi Ku, Tsukuba, Ibaraki, Japan. [Rokas, A.] Vanderbilt Univ, Dept Biol Sci, Nashville, TN USA. [Baker, S.] Pacific NW Natl Lab, Fungal Biotechnol Team, Richland, WA 99352 USA. [Wortman, J.] Univ Maryland, Sch Med, Baltimore, MD 21201 USA. [Denning, D.] Univ Manchester, Sch Med, Manchester, Lancs, England. [Woloshuk, C.] Purdue Univ, W Lafayette, IN 47907 USA. RI Rokas, Antonis/A-9775-2008 OI Rokas, Antonis/0000-0002-7248-6551 NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2009 VL 99 IS 6 BP S42 EP S42 PG 1 WC Plant Sciences SC Plant Sciences GA 447SY UT WOS:000266213300250 ER PT J AU Yin, C Jones, K Peterson, D Garrett, K Hulbert, S Schroeder, K Paulitz, T AF Yin, C. Jones, K. Peterson, D. Garrett, K. Hulbert, S. Schroeder, K. Paulitz, T. TI Members of soil bacterial communities sensitive to tillage and crop rotation SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathology-Society CY AUG 01-05, 2009 CL Portland, OR SP Amer Phytopathol Soc C1 [Schroeder, K.; Paulitz, T.] Washington State Univ, USDA ARS, Pullman, WA 99164 USA. [Schroeder, K.; Paulitz, T.] Washington State Univ, Dept Plant Pathol, Pullman, WA 99164 USA. [Jones, K.] Savannah River Ecol Lab, Aiken, SC USA. [Peterson, D.; Garrett, K.] Kansas State Univ, Manhattan, KS 66506 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2009 VL 99 IS 6 BP S147 EP S147 PG 1 WC Plant Sciences SC Plant Sciences GA 447SY UT WOS:000266213300877 ER PT J AU Grande, M Maddison, BJ Howe, CJ Kellett, BJ Sreekumar, P Huovelin, J Crawford, IA Duston, CL Smith, D Anand, M Bhandari, N Cook, A Fernandes, V Foing, B Gasnaut, O Goswami, JN Holland, A Joy, KH Kochney, D Lawrence, D Maurice, S Okada, T Narendranath, S Pieters, C Rothery, D Russell, SS Shrivastava, A Swinyard, B Wilding, M Wieczorek, M AF Grande, M. Maddison, B. J. Howe, C. J. Kellett, B. J. Sreekumar, P. Huovelin, J. Crawford, I. A. Duston, C. L. Smith, D. Anand, M. Bhandari, N. Cook, A. Fernandes, V. Foing, B. Gasnaut, O. Goswami, J. N. Holland, A. Joy, K. H. Kochney, D. Lawrence, D. Maurice, S. Okada, T. Narendranath, S. Pieters, C. Rothery, D. Russell, S. S. Shrivastava, A. Swinyard, B. Wilding, M. Wieczorek, M. TI The C1XS X-ray Spectrometer on Chandrayaan-1 SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Moon; Lunar composition; X-ray spectroscopy; Chandrayaan-1; Space instrumentation ID D-CIXS; SMART-1 MISSION; MOON AB The Chandrayaan-1 X-ray Spectrometer (C1XS) is a compact X-ray spectrometer for the Indian Space Research Organisation (ISRO) Chandrayaan-1 lunar mission. It exploits heritage from the D-C1XS instrument on ESA's SMART-1 mission. As a result of detailed developments to all aspects of the design, its Performance as measured in the laboratory greatly surpasses that of D-C1XS. In comparison with SMART-1, Chandrayaan-1 is a science-oriented rather than a technology mission, leading to far more favourable conditions for science measurements. C1XS is designed to measure absolute and relative abundances of major rock-forming elements (principally Mg, Al, Si, Ca and Fe) in the lunar crust with spatial resolution <= 25 FWHM km, and to achieve relative elemental abundances of better than 10%. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Grande, M.; Cook, A.; Wilding, M.] Univ Wales, Inst Math & Phys Sci, Aberystwyth SY23 3BZ, Dyfed, Wales. [Maddison, B. J.; Howe, C. J.; Kellett, B. J.; Joy, K. H.; Swinyard, B.] Rutherford Appleton Lab, Chilton, England. [Sreekumar, P.; Narendranath, S.; Shrivastava, A.] ISRO, Satellite Ctr, Space Astron & Instrumentat Div, Bangalore, Karnataka, India. [Huovelin, J.] Univ Helsinki, FIN-00014 Helsinki, Finland. [Crawford, I. A.; Joy, K. H.] Joint UCL, Birkbeck Res Sch Earth Sci, London WC1E 6BT, England. [Duston, C. L.; Gasnaut, O.; Maurice, S.] Univ Toulouse, CNRS, Ctr Etud Spatiale Rayonnements, Toulouse, France. [Smith, D.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Anand, M.; Holland, A.; Rothery, D.] Open Univ, Milton Keynes, Bucks, England. [Joy, K. H.; Russell, S. S.] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Lawrence, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fernandes, V.] Berkeley Geochronol Ctr, Berkeley, CA USA. [Wieczorek, M.] IPG Paris, Paris, France. [Okada, T.] JAXA, ISAS, Tokyo, Japan. [Foing, B.; Kochney, D.] ESA, Estec, Holland, MI USA. [Pieters, C.] Brown Univ, Providence, RI 02912 USA. RP Grande, M (reprint author), Univ Wales, Inst Math & Phys Sci, Aberystwyth SY23 3BZ, Dyfed, Wales. EM M.Grande@aber.ac.uk RI Wieczorek, Mark/G-6427-2010; Crawford, Ian/H-7510-2012; Fernandes, Vera/B-4653-2013; Anand, Mahesh/E-9259-2013; Grande, Manuel/C-2242-2013; OI Wieczorek, Mark/0000-0001-7007-4222; Crawford, Ian/0000-0001-5661-7403; Fernandes, Vera/0000-0003-0848-9229; Grande, Manuel/0000-0002-2233-2618; Anand, Mahesh/0000-0003-4026-4476; Joy, Katherine/0000-0003-4992-8750; Huovelin, Juhani/0000-0002-6276-5776 FU ESA FX The C1XS instrument development was supported with funding from ESA Science and Technology Research Programmes. Major thanks for support are due to RAL/STFC, and also ISRO ISAC. Additional hardware was provided by CESR, Toulouse and University of Helsinki Observatory. J. Cartel of Aberystwyth University is thanked for recalculating Fig. 8. NR 14 TC 36 Z9 38 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2009 VL 57 IS 7 BP 717 EP 724 DI 10.1016/j.pss.2009.01.016 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 459HF UT WOS:000267091500001 ER PT J AU Garten, CT Classen, AT Norby, RJ AF Garten, Charles T., Jr. Classen, Aimee T. Norby, Richard J. TI Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment SO PLANT AND SOIL LA English DT Article DE Climate change; Soil moisture; Elevated temperature; Elevated CO2; Soil carbon; Soil nitrogen; Old-fields; Particulate organic matter; Mineral-associated organic matter; Soil respiration ID ATMOSPHERIC CO2; ORGANIC-MATTER; FOREST SOILS; NITROGEN; GRASSLAND; ENRICHMENT; DIOXIDE; SEQUESTRATION; STORAGE; OLD AB Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr(-1)). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics. C1 [Garten, Charles T., Jr.; Classen, Aimee T.; Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6036, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov RI Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012 OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828 FU U. S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory (ORNL) FX The research was sponsored by the U. S. Department of Energy, Office of Science, Biological and Environmental Research Program for Ecosystem Research under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC. We wish to thank P. Allen, D. J. Brice, H. Castro, E. C. Engel, E. FelkerQuinn, B. Lu, C. Reilly Sheehan, and S. Wan for their valuable assistance in the laboratory and/or field. We would also like to thank the ORNL/UT Ecosystem Ecology lab group (E. Austin, C. Campany, H. Castro, M. Cregger, C. Iversen, P. Kardol, and M-A. De Graaff) for insightful comments on the draft manuscript. NR 31 TC 42 Z9 42 U1 11 U2 85 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD JUN PY 2009 VL 319 IS 1-2 BP 85 EP 94 DI 10.1007/s11104-008-9851-6 PG 10 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 446TF UT WOS:000266143400008 ER PT J AU Li, ZR Ahn, TK Avenson, TJ Ballottari, M Cruz, JA Kramer, DM Bassi, R Fleming, GR Keasling, JD Niyogi, KK AF Li, Zhirong Ahn, Tae Kyu Avenson, Thomas J. Ballottari, Matteo Cruz, Jeffrey A. Kramer, David M. Bassi, Roberto Fleming, Graham R. Keasling, Jay D. Niyogi, Krishna K. TI Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the Arabidopsis thaliana npq1 Mutant SO PLANT CELL LA English DT Article ID LIGHT-HARVESTING COMPLEX; LYCOPENE EPSILON-CYCLASE; PHOTOSYSTEM-II ANTENNA; CAROTENOID RADICAL CATIONS; ARABIDOPSIS-THALIANA; CHLOROPHYLL FLUORESCENCE; ENERGY-DISSIPATION; ABSORBENCY CHANGES; HIGHER-PLANTS; IN-VIVO AB Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid Delta pH in excess light and depends on the xanthophyll cycle, in which violaxanthin and antheraxanthin are deepoxidized to form zeaxanthin. To investigate the xanthophyll dependence of qE, we identified suppressor of zeaxanthin-less1 (szl1) as a suppressor of the Arabidopsis thaliana npq1 mutant, which lacks zeaxanthin. szl1 npq1 plants have a partially restored qE but lack zeaxanthin and have low levels of violaxanthin, antheraxanthin, and neoxanthin. However, they accumulate more lutein and alpha-carotene than the wild type. szl1 contains a point mutation in the lycopene beta-cyclase (LCYB) gene. Based on the pigment analysis, LCYB appears to be the major lycopene beta-cyclase and is not involved in neoxanthin synthesis. The Lhcb4 (CP29) and Lhcb5 (CP26) protein levels are reduced by 50% in szl1 npq1 relative to the wild type, whereas other Lhcb proteins are present at wild-type levels. Analysis of carotenoid radical cation formation and leaf absorbance changes strongly suggest that the higher amount of lutein substitutes for zeaxanthin in qE, implying a direct role in qE, as well as a mechanism that is weakly sensitive to carotenoid structural properties. C1 [Li, Zhirong; Avenson, Thomas J.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Li, Zhirong; Ahn, Tae Kyu; Fleming, Graham R.; Keasling, Jay D.; Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ahn, Tae Kyu; Avenson, Thomas J.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dipartimento Sci & Tecnol, I-37134 Verona, Italy. [Cruz, Jeffrey A.; Kramer, David M.] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM niyogi@nature.berkeley.edu RI Keasling, Jay/J-9162-2012; Ahn, Tae/A-5838-2013; OI Keasling, Jay/0000-0003-4170-6088; Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 FU Office of Basic Energy Sciences, Chemical Sciences Division, U. S. Department of Energy [DE-AC03-76SF000098]; National Institutes of Health [GM058799]; U. S. Department of Energy [DE-FG02-04ER15559]; Fondo Integrativo Ricerca Basa [RBLA0345SF002]; Fondo Integrativo Speciale Ricerca IDROBIO; Bill and Melinda Gates Foundation FX We thank Xiao-Ping Li for generous assistance during the backcrossing of szl1 npq1, Francis Cunningham for providing plasmids, Anastasios Melis, Stefan Jansson, and Anna Haldrup for providing antibodies, and Luca Dall'Osto for chy1 chy2 lut5 plants. We also thank Graham Peers for critical reading of the manuscript. This work was supported by a grant from the Office of Basic Energy Sciences, Chemical Sciences Division, U. S. Department of Energy (Contract DE-AC03-76SF000098) to G. R. F. and K.K.N. a grant from the National Institutes of Health (GM058799) to K.K.N., a grant from the U. S. Department of Energy (Contract DE-FG02-04ER15559) to D. M. K., a grant from Fondo Integrativo Ricerca Basa RBLA0345SF002 (Solanaceae) and Fondo Integrativo Speciale Ricerca IDROBIO to R. B., and a grant from the Bill and Melinda Gates Foundation to J.D.K. NR 70 TC 91 Z9 92 U1 3 U2 33 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD JUN PY 2009 VL 21 IS 6 BP 1798 EP 1812 DI 10.1105/tpc.109.066571 PG 15 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 480HO UT WOS:000268724700018 PM 19549928 ER PT J AU Saravanan, RS Slabaugh, E Singh, VR Lapidus, LJ Haas, T Brandizzi, F AF Saravanan, Ramu S. Slabaugh, Erin Singh, Vijay R. Lapidus, Lisa J. Haas, Thomas Brandizzi, Federica TI The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12 SO PLANT JOURNAL LA English DT Article DE oxysterol-binding proteins; membrane targeting; plant secretory pathway ID GOLGI-APPARATUS; PLASMA-MEMBRANE; CHOLESTEROL-METABOLISM; FLUORESCENT PROTEIN; SECONDARY STRUCTURE; CELLULOSE SYNTHESIS; CELL-WALL; ARABIDOPSIS; TRANSPORT; STEROLS AB In plants, sterols play fundamental roles as membrane constituents in the biosynthesis of steroid hormones, and act as precursors for cell wall deposition. Sterols are synthesized in the endoplasmic reticulum (ER), but mainly accumulate in the plasma membrane. How sterols are trafficked in plant cells is largely unknown. In non-plant systems, oxysterol-binding proteins have been involved in sterol trafficking and homeostasis. There are at least twelve homologs of oxysterol-binding proteins in the Arabidopsis genome, but the biology of these proteins remains for the most part obscure. Here, we report our analysis of the targeting requirements and the sterol-binding properties of a small Arabidopsis oxysterol-binding protein, ORP3a. We have determined that ORP3a is a bona fide sterol-binding protein with sitosterol-binding properties. Live-cell imaging analyses revealed that ORP3a is localized at the ER, and that binding to this organelle depends on a direct interaction with PVA12, a member of the largely uncharacterized VAP33 family of plant proteins. Molecular modeling analyses and site-directed mutagenesis led to the identification of a novel protein domain that is responsible for the PVA12-ORP3a interaction. Disruption of the integrity of this domain caused redistribution of ORP3a to the Golgi apparatus, suggesting that ORP3a may cycle between the ER and the Golgi. These results represent new insights into the biology of sterol-binding proteins in plant cells, and elucidate a hitherto unknown relationship between members of oxysterol-binding protein and VAP33 families of plant proteins in the early plant secretory pathway. C1 [Saravanan, Ramu S.; Slabaugh, Erin; Brandizzi, Federica] Michigan State Univ, Plant Res Lab, DOE, E Lansing, MI 48824 USA. [Singh, Vijay R.; Lapidus, Lisa J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Haas, Thomas] Univ Saskatchewan, Dept Anat & Cell Biol, Saskatoon, SK S7N 5E5, Canada. RP Brandizzi, F (reprint author), Michigan State Univ, Plant Res Lab, DOE, E Lansing, MI 48824 USA. EM brandizz@msu.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences; U.S. Department of Energy [DEFG02-91ER20021]; Burroughs Wellcome Fund FX We acknowledge financial support from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Award # DEFG02-91ER20021) (to FBI, Canada Research Chair program (to TAH) and Career Award at the Scientific Interface from the Burroughs Wellcome Fund (to LL) for the development of this work. We thank Dr Michael A. Held for help with the assembly of Figure S2. We thank Kwancul Oh for technical help and Dr John Scott Craig for invaluable help with radiolabeled materials. We thank Ms Karen Bird for editing the manuscript. NR 71 TC 23 Z9 25 U1 1 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD JUN PY 2009 VL 58 IS 5 BP 817 EP 830 DI 10.1111/j.1365-313X.2009.03815.x PG 14 WC Plant Sciences SC Plant Sciences GA 473PX UT WOS:000268221100009 PM 19207211 ER PT J AU Drost, DR Novaes, E Boaventura-Novaes, C Benedict, CI Brown, RS Yin, TM Tuskan, GA Kirst, M AF Drost, Derek R. Novaes, Evandro Boaventura-Novaes, Carolina Benedict, Catherine I. Brown, Ryan S. Yin, Tongming Tuskan, Gerald A. Kirst, Matias TI A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence SO PLANT JOURNAL LA English DT Article DE Populus; microarray; single-feature polymorphism; gene expression marker; genome assembly ID SINGLE-FEATURE POLYMORPHISMS; MICROSATELLITE MARKERS; LINKAGE MAPS; OLIGONUCLEOTIDE ARRAYS; EUCALYPTUS-GRANDIS; NIGRA L.; EXPRESSION; POPLAR; DISEQUILIBRIUM; SEGREGATION AB P>Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity. C1 [Drost, Derek R.; Kirst, Matias] Univ Florida, Grad Program Plant Mol & Cellular Biol, Gainesville, FL 32611 USA. [Drost, Derek R.; Novaes, Evandro; Boaventura-Novaes, Carolina; Benedict, Catherine I.; Brown, Ryan S.; Kirst, Matias] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. [Yin, Tongming; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Yin, Tongming] Nanjing Forestry Univ, Key Lab Forest Genet & Gene Engn, Nanjing 210037, Peoples R China. [Tuskan, Gerald A.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Kirst, Matias] Univ Florida, Genet Inst, Gainesville, FL 32611 USA. RP Kirst, M (reprint author), Univ Florida, Grad Program Plant Mol & Cellular Biol, Gainesville, FL 32611 USA. EM mkirst@ufl.edu RI Tuskan, Gerald/A-6225-2011; Novaes, Evandro/H-8710-2014; Boaventura-Novaes, Carolina/B-1409-2016 OI Tuskan, Gerald/0000-0003-0106-1289; Novaes, Evandro/0000-0003-3803-0339; FU Department of Energy, Office of Science [DE-FG02-05ER64114]; National Science Foundation, Genes and Genomes System Cluster in the Division of Molecular and Cellular Biosciences FX The authors wish to thank Alexander Kozik (Department of Plant Science, University of California at Davis Genome Center) for excellent technical assistance in the implementation of MadMapper software. The authors are also grateful to Donald J. Lee (Department of Agronomy, University of Nebraska at Lincoln), A. Mark Settles (Department of Horticultural Sciences, University of Florida), Ronald R. Sederoff (Department of Forestry and Environmental Resources, North Carolina State University), and anonymous reviewers for constructive comments to improve the manuscript. This work was supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research grant award number DE-FG02-05ER64114 (to M.K.), and the National Science Foundation, Genes and Genomes System Cluster in the Division of Molecular and Cellular Biosciences (to M.K.). NR 42 TC 17 Z9 18 U1 1 U2 14 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD JUN PY 2009 VL 58 IS 6 BP 1054 EP 1067 DI 10.1111/j.1365-313X.2009.03828.x PG 14 WC Plant Sciences SC Plant Sciences GA 457KB UT WOS:000266925800014 PM 19220791 ER PT J AU Stewart, JJ Akiyama, T Chapple, C Ralph, J Mansfield, SD AF Stewart, Jaclyn J. Akiyama, Takuya Chapple, Clint Ralph, John Mansfield, Shawn D. TI The Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar SO PLANT PHYSIOLOGY LA English DT Article ID CYTOCHROME P450-DEPENDENT MONOOXYGENASE; O-METHYLTRANSFERASE; NMR CHARACTERIZATION; PULPING EFFICIENCY; ACID INCORPORATION; DOWN-REGULATION; ETHER CLEAVAGE; MAIZE LIGNIN; BIOSYNTHESIS; ARABIDOPSIS AB Poplar (Populus tremula X alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4H::F5H transgenic's lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial beta-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (beta-beta) and spirodienone (beta-1) contents, but with virtually no phenylcoumarans (beta-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the gamma-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes. C1 [Stewart, Jaclyn J.; Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Akiyama, Takuya; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Akiyama, Takuya; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Chapple, Clint] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. RP Mansfield, SD (reprint author), Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. EM shawnman@interchange.ubc.ca FU NCRR NIH HHS [P41 RR002301, S10 RR008438, S10 RR002781, RR02301] NR 50 TC 129 Z9 133 U1 6 U2 54 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JUN PY 2009 VL 150 IS 2 BP 621 EP 635 DI 10.1104/pp.109.137059 PG 15 WC Plant Sciences SC Plant Sciences GA 454EB UT WOS:000266663700009 PM 19386808 ER PT J AU Gobbin, M Marrelli, L White, RB AF Gobbin, M. Marrelli, L. White, R. B. TI Numerical studies of transport mechanisms in RFX-mod low magnetic chaos regimes SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID REVERSED-FIELD PINCH AB The magnetic topology of quasi-single helicity (QSH) regimes, in the reversed field pinch experiment RFX-mod, is characterized by a helical magnetic structure surrounded by partially chaotic field lines. In this paper we investigate the transport mechanisms within these helical structures, in particular, the particle diffusion due to the residual magnetic chaos. The diffusion coefficients have been estimated for different plasma temperatures, collisionality and magnetic perturbation amplitudes. In the typical high temperature QSH regimes of RFX-mod, ambipolar transport between ions and electrons is found to be ensured by the non-zero but very low level of secondary modes and by the reduced collisionality. Trapped ions give the largest contribution to particles diffusion, while those passing are almost well confined within the helical structure. In the best QSH experimental performances, ion diffusion coefficients computed by numerical simulations are not affected significantly by the residual magnetic chaos and are very close to those expected in a regime with only helical conserved surfaces. C1 [Gobbin, M.; Marrelli, L.] ENEA Assoc, EURATOM, Consorzio RFX, I-35127 Padua, Italy. [White, R. B.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gobbin, M (reprint author), ENEA Assoc, EURATOM, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. RI Marrelli, Lionello/G-4451-2013; White, Roscoe/D-1773-2013 OI Marrelli, Lionello/0000-0001-5370-080X; White, Roscoe/0000-0002-4239-2685 FU European Communities FX This work was supported by the European Communities under the contract of Association between EURATOM/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 17 TC 17 Z9 17 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUN PY 2009 VL 51 IS 6 AR 065010 DI 10.1088/0741-3335/51/6/065010 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 447UV UT WOS:000266218300011 ER PT J AU Lin, L Porkolab, M Edlund, EM Rost, JC Greenwald, M Tsujii, N Candy, J Waltz, RE Mikkelsen, DR AF Lin, L. Porkolab, M. Edlund, E. M. Rost, J. C. Greenwald, M. Tsujii, N. Candy, J. Waltz, R. E. Mikkelsen, D. R. TI Studies of turbulence and transport in Alcator C-Mod ohmic plasmas with phase contrast imaging and comparisons with gyrokinetic simulations SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TEMPERATURE-GRADIENT TURBULENCE; RADIATIVELY IMPROVED MODE; ITG-INSTABILITY; CONFINEMENT; TEXTOR-94; TOKAMAKS AB Recent advances in gyrokinetic simulation have allowed for quantitative predictions of core turbulence and associated transport. However, numerical codes must be tested against experimental results in both turbulence and transport. In this paper, we present recent results from ohmic plasmas in the Alcator C-Mod tokamak using phase contrast imaging (PCI) diagnostic, which is capable of measuring density fluctuations with wave numbers up to 55 cm(-1). The experiments were carried out over the range of densities covering the 'neo-Alcator' (linear confinement time scaling with density, electron transport dominates) to the 'saturated ohmic' regime. We have also simulated these plasmas with the gyrokinetic code GYRO and compared numerical predictions with experimentally measured turbulence through a synthetic PCI diagnostic method. The key role played by the ion temperature gradient (ITG) turbulence has been verified, including measurements of turbulent wave propagation in the ion diamagnetic direction. It is found that the intensity of density fluctuations increases with density, in agreement between simulation and experiments. The absolute fluctuation intensity agrees with the simulation within experimental error (+/- 60%). In the saturated ohmic regime, the simulated ion and electron thermal diffusivities also agree with experiments after varying the ion temperature gradient within experimental uncertainty. However, in the linear ohmic regime, GYRO does not agree well with experiments, showing significantly larger ion thermal transport and smaller electron thermal transport. Our study shows that although the short wavelength turbulence in the electron temperature gradient (ETG) range is unstable in the linear ohmic regime, the nonlinear simulation with k(theta)rho(s) up to 4 does not raise the electron thermal diffusivity to the experimental level, where k(theta) is the poloidal wavenumber and rho(s) is the ion-sound Larmor radius. At the present time, it is not known whether even shorter wavelength turbulence would account for the measured electron transport. C1 [Lin, L.; Porkolab, M.; Edlund, E. M.; Rost, J. C.; Greenwald, M.; Tsujii, N.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Candy, J.; Waltz, R. E.] Gen Atom Co, San Diego, CA 92186 USA. [Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lin, L (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Lin, Liang/H-2255-2011; OI Greenwald, Martin/0000-0002-4438-729X FU US SCIDAC; U.S. DOE [DE-FG02-94-ER54235, DE-FC02-99-ER54512] FX The authors wish to thank the Alcator C-Mod physics staff and operations group for their contributions and support. They also wish to thank Mr T Baker and Drs D Ernst and J Wright for implementing and maintaining the Loki cluster which is supported by the US SCIDAC theory program. The authors also thank Dr D Ernst for valuable discussions regarding gyrokinetic theory and code developments. This research utilized parallel computational clusters at the MIT Plasma Science and Fusion Center (Loki) and the Princeton Plasma Physics Laboratory (Kestrel). This work is supported by U.S. DOE under DE-FG02-94-ER54235 and DE-FC02-99-ER54512. NR 39 TC 28 Z9 28 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUN PY 2009 VL 51 IS 6 AR 065006 DI 10.1088/0741-3335/51/6/065006 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 447UV UT WOS:000266218300007 ER PT J AU Greenfield, D McEvoy, AL Shroff, H Crooks, GE Wingreen, NS Betzig, E Liphardt, J AF Greenfield, Derek McEvoy, Ann L. Shroff, Hari Crooks, Gavin E. Wingreen, Ned S. Betzig, Eric Liphardt, Jan TI Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy SO PLOS BIOLOGY LA English DT Article ID PHOTOACTIVATED LOCALIZATION MICROSCOPY; BACTERIAL CHEMOTAXIS; CHEMORECEPTOR COMPLEX; FLUORESCENT PROTEIN; CELL-DIVISION; SERINE CHEMOTAXIS; RECEPTOR; LOCATION; PROBES; SENSITIVITY AB The Escherichia coli chemotaxis network is a model system for biological signal processing. In E. coli, transmembrane receptors responsible for signal transduction assemble into large clusters containing several thousand proteins. These sensory clusters have been observed at cell poles and future division sites. Despite extensive study, it remains unclear how chemotaxis clusters form, what controls cluster size and density, and how the cellular location of clusters is robustly maintained in growing and dividing cells. Here, we use photoactivated localization microscopy (PALM) to map the cellular locations of three proteins central to bacterial chemotaxis (the Tar receptor, CheY, and CheW) with a precision of 15 nm. We find that cluster sizes are approximately exponentially distributed, with no characteristic cluster size. One-third of Tar receptors are part of smaller lateral clusters and not of the large polar clusters. Analysis of the relative cellular locations of 1.1 million individual proteins (from 326 cells) suggests that clusters form via stochastic self-assembly. The super-resolution PALM maps of E. coli receptors support the notion that stochastic self-assembly can create and maintain approximately periodic structures in biological membranes, without direct cytoskeletal involvement or active transport. C1 [Greenfield, Derek; McEvoy, Ann L.; Liphardt, Jan] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Greenfield, Derek; Crooks, Gavin E.; Liphardt, Jan] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Shroff, Hari; Betzig, Eric] Howard Hughes Med Inst, Ashburn, VA USA. [Wingreen, Ned S.] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA. [Liphardt, Jan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Greenfield, D (reprint author), Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. EM Liphardt@berkeley.edu RI Liphardt, Jan/A-5906-2012; Crooks, Gavin/H-7111-2012; Shroff, Hari/E-7247-2016; OI Shroff, Hari/0000-0003-3613-8215; Liphardt, Jan/0000-0003-2835-5025 FU NSF; Sloan and Searle Foundations (JL); DOE Office of Science; Energy Biosciences Program (JL),; National Institutes of Health [R01 GM77856, R01 GM084716, R01 GMO73186] FX ALM thanks the NSF for graduate research support. This work was supported by the Sloan and Searle Foundations (JL), the DOE Office of Science, Energy Biosciences Program (JL), and National Institutes of Health grants R01 GM77856 (JL), R01 GM084716 (JL), and R01 GMO73186 (NSW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 55 TC 185 Z9 189 U1 3 U2 59 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD JUN PY 2009 VL 7 IS 6 AR e1000137 DI 10.1371/journal.pbio.1000137 PG 11 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 475XC UT WOS:000268398600014 PM 19547746 ER PT J AU Chakicherla, A Zhou, CLE Dang, ML Rodriguez, V Hansen, JN Zemla, A AF Chakicherla, Anu Zhou, Carol L. Ecale Dang, Martha Ligon Rodriguez, Virginia Hansen, J. Norman Zemla, Adam TI SpaK/SpaR Two-component System Characterized by a Structure-driven Domain-fusion Method and in Vitro Phosphorylation Studies SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID PROTEIN-PROTEIN INTERACTIONS; BACTERIAL RESPONSE REGULATORS; SIGNAL-TRANSDUCTION SYSTEMS; BACILLUS-SUBTILIS; HISTIDINE-KINASE; COMPUTATIONAL METHODS; CRYSTAL-STRUCTURE; 3D STRUCTURES; PREDICTION; COMPLEXES AB Here we introduce a quantitative structure-driven computational domain-fusion method, which we used to predict the structures of proteins believed to be involved in regulation of the subtilin pathway in Bacillus subtilis, and used to predict a protein-protein complex formed by interaction between the proteins. Homology modeling of SpaK and SpaR yielded preliminary structural models based on a best template for SpaK comprising a dimer of a histidine kinase, and for SpaR a response regulator protein. Our LGA code was used to identify multi-domain proteins with structure homology to both modeled structures, yielding a set of domain-fusion templates then used to model a hypothetical SpaK/SpaR complex. The models were used to identify putative functional residues and residues at the protein-protein interface, and bioinformatics was used to compare functionally and structurally relevant residues in corresponding positions among proteins with structural homology to the templates. Models of the complex were evaluated in light of known properties of the functional residues within two-component systems involving His-Asp phosphorelays. Based on this analysis, a phosphotransferase complexed with a beryllofluoride was selected as the optimal template for modeling a SpaK/SpaR complex conformation. In vitro phosphorylation studies performed using wild type and site-directed SpaK mutant proteins validated the predictions derived from application of the structure-driven domain-fusion method: SpaK was phosphorylated in the presence of (32)P-ATP and the phosphate moiety was subsequently transferred to SpaR, supporting the hypothesis that SpaK and SpaR function as sensor and response regulator, respectively, in a two-component signal transduction system, and furthermore suggesting that the structure-driven domain-fusion approach correctly predicted a physical interaction between SpaK and SpaR. Our domain-fusion algorithm leverages quantitative structure information and provides a tool for generation of hypotheses regarding protein function, which can then be tested using empirical methods. C1 [Chakicherla, Anu; Zhou, Carol L. Ecale; Zemla, Adam] Lawrence Livermore Natl Lab, Comp Applicat & Res Dept, Livermore, CA USA. [Dang, Martha Ligon] Sacred Hearts Acad, Honolulu, HI USA. [Rodriguez, Virginia] Natl Inst Hlth, Natl Human Genome Res Inst, Genome Technol Branch, Bethesda, MD USA. [Hansen, J. Norman] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Chakicherla, A (reprint author), Lawrence Livermore Natl Lab, Comp Applicat & Res Dept, Livermore, CA USA. EM zhou4@llnl.gov FU LLNL-LLNS; National Institute of Allergy and Infectious Diseases [R01-AI24454-12]; NIH; [DE-AC52-07NA27344] FX Prepared by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The bioinformatics work was supported by an LLNL-LLNS internally funded grant to CZ and AZ through the Laboratory Directed Research and Development program, and the experimental work was supported by grant R01-AI24454-12 to NH from the National Institute of Allergy and Infectious Diseases, NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 54 TC 2 Z9 2 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUN PY 2009 VL 5 IS 6 AR e1000401 DI 10.1371/journal.pcbi.1000401 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 476JK UT WOS:000268436100009 PM 19503843 ER PT J AU Larsson, P Elfsmark, D Svensson, K Wikstrom, P Forsman, M Brettin, T Keim, P Johansson, A AF Larsson, Par Elfsmark, Daniel Svensson, Kerstin Wikstrom, Per Forsman, Mats Brettin, Thomas Keim, Paul Johansson, Anders TI Molecular Evolutionary Consequences of Niche Restriction in Francisella tularensis, a Facultative Intracellular Pathogen SO PLOS PATHOGENS LA English DT Article ID GENOME SEQUENCE; NUCLEOTIDE SUBSTITUTION; YERSINIA-PHILOMIRAGIA; MAXIMUM-LIKELIHOOD; BACTERIAL GENOMES; SUBSP TULARENSIS; DNA-SEQUENCES; RECOMBINATION; TULAREMIA; MICROEVOLUTION AB Francisella tularensis is a potent mammalian pathogen well adapted to intracellular habitats, whereas F. novicida and F. philomiragia are less virulent in mammals and appear to have less specialized lifecycles. We explored adaptations within the genus that may be linked to increased host association, as follows. First, we determined the genome sequence of F. tularensis subsp. mediasiatica, the only subspecies that had not been previously sequenced. This genome, and those of 12 other F. tularensis isolates, were then compared to the genomes of F. novicida ( three isolates) and F. philomiragia ( one isolate). Signs of homologous recombination were found in similar to 19.2% of F. novicida and F. philomiragia genes, but none among F. tularensis genomes. In addition, random insertions of insertion sequence elements appear to have provided raw materials for secondary adaptive mutations in F. tularensis, e. g. for duplication of the Francisella Pathogenicity Island and multiplication of a putative glycosyl transferase gene. Further, the five major genetic branches of F. tularensis seem to have converged along independent routes towards a common gene set via independent losses of gene functions. Our observations suggest that despite an average nucleotide identity of >97%, F. tularensis and F. novicida have evolved as two distinct population lineages, the former characterized by clonal structure with weak purifying selection, the latter by more frequent recombination and strong purifying selection. F. tularensis and F. novicida could be considered the same bacterial species, given their high similarity, but based on the evolutionary analyses described in this work we propose retaining separate species names. C1 [Larsson, Par; Elfsmark, Daniel; Svensson, Kerstin; Wikstrom, Per; Forsman, Mats; Johansson, Anders] Swedish Def Res Agcy, Div CBRN Def & Secur, Umea, Sweden. [Svensson, Kerstin; Johansson, Anders] Umea Univ, Dept Clin Microbiol Infect Dis & Bacteriol, Umea, Sweden. [Brettin, Thomas] Los Alamos Natl Labs, Joint Genome Inst, Los Alamos, NM USA. [Keim, Paul] No Arizona Univ, Flagstaff, AZ 86011 USA. [Keim, Paul] Translat Genom Res Inst, Phoenix, AZ USA. RP Larsson, P (reprint author), Swedish Def Res Agcy, Div CBRN Def & Secur, Umea, Sweden. EM anders.johansson@climi.umu.se RI Keim, Paul/A-2269-2010; Johansson, Anders/D-2928-2012; Forsman, Mats/A-1426-2016 OI Johansson, Anders/0000-0003-0548-5943; Forsman, Mats/0000-0002-4466-5325 FU Intelligence Technology Innovation Center; Swedish MoD [A4854]; Swedish Society for Medical Research; County Council of Vasterbotten; Swedish Emergency Management Agency [B40028]; Swedish Ministry for Foreign Affairs [A4952] FX The sequencing of F. tularensis subsp. mediasiatica was supported by the Intelligence Technology Innovation Center. The genome analyses were supported by funding from the Swedish MoD, project no. A4854, the Swedish Society for Medical Research, the County Council of Vasterbotten, the Swedish Emergency Management Agency ( project no. B40028) and Swedish Ministry for Foreign Affairs ( project no. A4952). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 66 Z9 306 U1 2 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD JUN PY 2009 VL 5 IS 6 AR e1000472 DI 10.1371/journal.ppat.1000472 PG 15 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 476LZ UT WOS:000268444500019 PM 19521508 ER PT J AU Blanton, T Havrilla, G AF Blanton, Tom Havrilla, George TI 57th Denver X-ray Conference and selected papers for the special June issue SO POWDER DIFFRACTION LA English DT Editorial Material C1 [Blanton, Tom; Havrilla, George] Los Alamos Natl Lab, Eastman Kodak Co, Los Alamos, NM 87545 USA. RP Blanton, T (reprint author), Los Alamos Natl Lab, Eastman Kodak Co, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2009 VL 24 IS 2 BP 75 EP 75 PG 1 WC Materials Science, Characterization & Testing SC Materials Science GA 464RB UT WOS:000267522300002 ER PT J AU Rodriguez, MA Adams, DP Tissot, RG AF Rodriguez, Mark A. Adams, David P. Tissot, Ralph G. TI Determination of activation energy of intermixing in textured metal-metal multilayer films via two-dimensional X-ray diffraction SO POWDER DIFFRACTION LA English DT Article DE activation energy; NiTi; AlPt; CoAl; multilayer thin film ID FOILS AB Activation energies for the intermixing reaction of textured metal-metal multilayer thin films have been determined using X-ray diffraction analysis. Kinetic data were collected utilizing an area detector so as to reduce intensity bias from changes in out-of-plane texture during the intermixing reaction. Activation energies for Al/Pt, Ni/Ti, and Co/Al metal-metal multilayer thin films have been determined as 95.4(2) kJ/mol, 201(13) kJ/mol, and 247(19) kJ/mol, respectively. (C) 2009 International Centre for Diffraction Data. [DOI: 10.1154/1.3125549] C1 [Rodriguez, Mark A.; Adams, David P.; Tissot, Ralph G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 11 TC 0 Z9 0 U1 0 U2 5 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2009 VL 24 IS 2 BP 82 EP 84 DI 10.1154/1.3125549 PG 3 WC Materials Science, Characterization & Testing SC Materials Science GA 464RB UT WOS:000267522300005 ER PT J AU Waychunas, GA AF Waychunas, G. A. TI Natural nanoparticle structure, properties and reactivity from X-ray studies SO POWDER DIFFRACTION LA English DT Article DE nanoparticle; ZnS; FeOOH; oriented aggregation; PDF AB Synthetic analogs of naturally occurring nanoparticles have been studied by a range of X-ray techniques to determine their structure and chemistry, and relate these to their novel chemical properties and physical behavior ZnS nanoparticles, formed in large concentrations naturally bymicrobial action, have an interesting core-shell structure with a highly distorted and strained outer layer. The strain propagates through the particles and produces unusual stiffness but can be relieved by changing the nature of the surf-ace ligand binding. Weaker bound ligands allow high surface distortion, but strongly bound ligands relax this structure and reduce the overall strain. Only small amounts of ligand exchange causes transformations from the strained to the relaxed state. Most remarkably, minor point contacts between strained nanoparticles also relax the strain. Fe oxyhydroxide nanoparticles appear to go through structural transformations dependent on their size and formation conditions, and display a crystallographically oriented form of aggregation at the nanoscale that alters growth kinetics. At least one Fe oxyhydroxide mineral may only be stable on the nanoscale, and nonstoichiometry observed oil the hematite surface suggests that for this phase and possibly other natural metal oxides, chemistry may be size dependent. Numerous questions exist oil nanominerals formed in acid mine drainage sites and by reactions at interfaces. (C) 2009 International Centre for Diffraction Data. [DOI: 10.1154/1.3132590] C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Waychunas, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Director, Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 9 TC 7 Z9 8 U1 1 U2 11 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2009 VL 24 IS 2 BP 89 EP 93 DI 10.1154/1.3132590 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 464RB UT WOS:000267522300007 ER PT J AU Harder, BJ Almer, J Lee, KN Faber, KT AF Harder, B. J. Almer, J. Lee, K. N. Faber, K. T. TI In situ stress analysis of multilayer environmental barrier coatings SO POWDER DIFFRACTION LA English DT Article DE Ceramic; coatings; in situ; stresses; transmission; multilayer ID SIO2 SCALE VOLATILITY; MICROSTRUCTURAL EVOLUTION; RESIDUAL-STRESS; TANTALUM OXIDE; CERAMICS; MULLITE; DELAMINATION; RECESSION AB The biaxial stress and thermal expansion of multilayer doped-aluminosilicate environmental barrier coatings were measured in situ during cooling using microfocused high-energy X-rays in transmission. Coating stresses during cooling from 1000 degrees C were measured for as-sprayed and thermally cycled samples. In the as-sprayed state, tensile stresses as high as 75 MPa were measured in the doped-aluminosilicate topcoat at 375 degrees C, after which a drop in the stress occurred accompanied by through-thickness cracking of the two outermost layers. After thermally cycling the samples, the stress in the topcoat was reduced to approximately 50 MPa, and there was no drop in stress upon cooling. This stress reduction was attributed to a crystallographic phase transformation of the topcoat and the accompanying change in thermal expansion coefficient. The addition of a doped aluminosilicate to the mullite layer did not lower the stress in the topcoat, but may offer increased durability due to an increased compressive stress. (C) 2009 International Centre for Diffraction Data. [DOI: 10.1154/1.3120602] C1 [Harder, B. J.; Faber, K. T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lee, K. N.] Rolls Royce Corp, Mat Proc & Repair Technol, Indianapolis, IN USA. RP Harder, BJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RI Faber, Katherine/B-6741-2009 FU Department of Energy, Office of Basic Energy Science [DE-AC02-06CH11357] FX Funding for this work was provided by the Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 20 TC 7 Z9 7 U1 2 U2 19 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2009 VL 24 IS 2 BP 94 EP 98 DI 10.1154/1.3120602 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 464RB UT WOS:000267522300008 ER PT J AU Noyan, IC Prime, MB AF Noyan, I. Cevdet Prime, Michael B. TI The Eighth International Conference on Residual Stresses SO POWDER DIFFRACTION LA English DT Editorial Material C1 [Noyan, I. Cevdet] Columbia Univ, New York, NY 10027 USA. [Prime, Michael B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Noyan, IC (reprint author), Columbia Univ, New York, NY 10027 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2009 VL 24 IS 2 BP S1 EP S2 PG 2 WC Materials Science, Characterization & Testing SC Materials Science GA 464RC UT WOS:000267522500002 ER PT J AU Gao, HY He, YH Shen, PZ Zou, J Xu, NP Jiang, Y Huang, BY Liu, CT AF Gao, H. Y. He, Y. H. Shen, P. Z. Zou, J. Xu, N. P. Jiang, Y. Huang, B. Y. Liu, C. T. TI Effects of Al content on porous Fe-Al alloys SO POWDER METALLURGY LA English DT Article DE Fe-Al intermetallics; Composition; Reactive synthesis; Pore structure ID FE-40AL SHEET; ALUMINUM; BEHAVIOR; IRON; INTERDIFFUSION; DIFFUSION AB Porous Fe-Al alloys with the nominal composition ranging from Fe-20 wt-%Al to Fe-60 wt-%Al have been fabricated by Fe and Al elemental powder reactive synthesis. The effects of the Al content on the pore properties of resultant porous Fe-Al alloys were systematically studied. It has been found that the volume expansion, the open porosity and the permeability can be manipulated by varying the Al content and that their maximum values are reached at Fe-45 wt-%Al. Their mechanical properties suggest that they are strong enough for the filtration applications. C1 [Gao, H. Y.; He, Y. H.; Shen, P. Z.; Jiang, Y.; Huang, B. Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. [Zou, J.] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Zou, J.] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Xu, N. P.] Nanjing Univ Technol, Membrane Sci & Technol Res Ctr, Nanjing 210009, Peoples R China. [Liu, C. T.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP He, YH (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. EM yuehui@mail.csu.edu.cn RI Zou, Jin/B-3183-2009 OI Zou, Jin/0000-0001-9435-8043 FU Chinese Ministry of Education, NSF of China [20476106, 20636020]; Hunan provincial Natural Science Foundation of China [05JJ30097]; US Department of Energy [DE-AC05-000R-22725] FX The authors are grateful for the financial support from the 111 project of Chinese Ministry of Education, NSF of China ( grant nos. 20476106 and 20636020) and Hunan provincial Natural Science Foundation of China ( grant no. 05JJ30097), and the US Department of Energy with subcontract to Oak Ridge National Laboratory no. DE-AC05-000R-22725. NR 22 TC 4 Z9 5 U1 0 U2 6 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0032-5899 EI 1743-2901 J9 POWDER METALL JI Powder Metall. PD JUN PY 2009 VL 52 IS 2 BP 158 EP 163 DI 10.1179/174329008X286668 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 484DZ UT WOS:000269025100010 ER PT J AU Beyerlein, IJ Toth, LS AF Beyerlein, Irene J. Toth, Laszlo S. TI Texture evolution in equal-channel angular extrusion SO PROGRESS IN MATERIALS SCIENCE LA English DT Review ID SEVERE-PLASTIC-DEFORMATION; FINITE-ELEMENT-ANALYSIS; COPPER SINGLE-CRYSTALS; SEVERELY DEFORMED ALUMINUM; WROUGHT MAGNESIUM ALLOYS; CONFINED STRIP SHEARING; INTERSTITIAL-FREE STEEL; MONTE-CARLO-SIMULATION; STACKING-FAULT ENERGY; HIGH-PRESSURE TORSION AB The focus of this article is texture development in metals of fcc, bcc, and hcp crystal structure processed by a severe plastic deformation (SPD) technique called equal-channel angular extrusion (ECAE) or equal-channel angular pressing (ECAP). The ECAE process involves very large plastic strains and is well known for its ability to refine the grain size of a polycrystalline metal to submicron or even nanosize lengthscales depending on the material. During this process, the texture also changes substantially. While the strength, microstructure and formability of ECAE-deformed metals have received much attention, texture evolution and its connection with these properties have not. In this article, we cover a multitude of factors that can influence texture evolution, such as applied strain path, die geometry, processing conditions, deformation inhomogeneities, accumulated strain, crystal structure, material plastic behavior, initial texture, dynamic recrystallization, substructure, and deformation twinning. We evaluate current constitutive models for texture evolution based on the physics they include and their agreement with measurements. Last, we discuss the influence of texture on post-processed mechanical response, plastic anisotropy, and grain refinement, properties which have made ECAE, as well as other SPD processes, attractive. It is our intent to make SPD researchers aware of the importance of texture development in SPD and provide the background, guidance, and methodologies necessary for incorporating texture analyses in their studies. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Toth, Laszlo S.] Univ Metz, Lab Phys & Mecan Mat, F-57045 Metz, France. RP Beyerlein, IJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lrene@lanl.gov; toth@univ-metz.fr RI toth, laszlo/A-4064-2013; Beyerlein, Irene/A-4676-2011 OI toth, laszlo/0000-0001-7598-9026; NR 265 TC 192 Z9 197 U1 17 U2 157 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6425 J9 PROG MATER SCI JI Prog. Mater. Sci. PD JUN PY 2009 VL 54 IS 4 BP 427 EP 510 DI 10.1016/j.pmatsci.2009.01.001 PG 84 WC Materials Science, Multidisciplinary SC Materials Science GA 444PN UT WOS:000265993000001 ER PT J AU Anderson-Cook, CM Graves, TL Hamada, MS AF Anderson-Cook, Christine M. Graves, Todd L. Hamada, Michael S. TI Resource Allocation for Reliability of a Complex System with Aging Components SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE Bayesian analysis; design of experiments; sequential experimentation; mixture experiments; meta-analysis; reduction of uncertainty AB To assess the reliability of a complex system, many different types of data may be available. Fall-system tests are the most direct measure of reliability, but may be prohibitively expensive or difficult to obtain. Other less direct measures, such as component or section level tests, may be cheaper to obtain and more readily available. Using a single Bayesian analysis, multiple sources of data can be combined to give component and system reliability estimates. Resource allocation looks to develop methods to predict which new data would most improve the precision of the estimate of system reliability, in order to maximally improve understanding. In this paper, we consider a relatively simple system with different types of data from the components and system. We present a methodology for assessing the relative improvement in system reliability estimation for additional data from the various types. Various metrics for comparing improvement and a response surface approach to modeling the relationship between improvement and the additional data are presented. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Anderson-Cook, Christine M.; Graves, Todd L.; Hamada, Michael S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM c-and-cook@lanl.gov NR 13 TC 6 Z9 6 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD JUN PY 2009 VL 25 IS 4 BP 481 EP 494 DI 10.1002/qre.987 PG 14 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 453LN UT WOS:000266612100009 ER PT J AU Morgan, LE Renne, PR Taylor, RE WoldeGabriel, G AF Morgan, Leah E. Renne, Paul R. Taylor, R. E. WoldeGabriel, Giday TI Archaeological age constraints from extrusion ages of obsidian: Examples from the Middle Awash, Ethiopia SO QUATERNARY GEOCHRONOLOGY LA English DT Article DE Obsidian; (40)Ar/(39)Ar geochronology; Provenance; Ethiopia; Mass fractionation; Atmospheric argon ID NEUTRON-ACTIVATION ANALYSIS; PLEISTOCENE HOMO-SAPIENS; CHEMICAL CHARACTERIZATION; PROVENANCE DETERMINATION; ISOTOPIC COMPOSITION; MASS FRACTIONATION; VOLCANIC-ROCKS; ARTIFACTS; ARGON; SITE AB Extrusion ages of archaeological obsidian, especially as determined by the (40)Ar/(39)Ar method, can provide reliable maximum ages for tool manufacture. In at least one case in the Middle Awash of Ethiopia, freshly extruded obsidian was used for tool making, resulting in useful maximum ages for site occupation. Hydration resulting in mobility of K and/or At in glass, and recoil artifacts produced by neutron irradiation, fatally affect most glass shards from volcanic ashes. The much lower surface area to volume ratio of most archaeological obsidian, however, indicates that the affected areas can be manually removed prior to analysis and the recoil and hydration problems can be easily overcome. A more important issue in dating obsidian is that of possible mass-dependent kinetic isotope fractionation during or subsequent to quenching of volcanic glasses. This is evidenced in some cases by sub-atmospheric initial (40)Ar/(36)Ar ratios, and more generally in sub-atmospheric (38)Ar/(36)Ar. Resulting bias can be avoided through the use of isochron ages, which do not entail the assumption of an initial value of (40)Ar/(36)Ar as is required for plateau ages. Since step heating of glasses often yields limited variability in (40)Ar:(39)Ar:(36)Ar (and therefore little spread on isochrons), another approach is to use an average value for initial (40)Ar/(36)Ar, with concomitantly larger uncertainty than is associated with atmospheric (40)Ar/(36)Ar, when calculating a plateau age. The (38)Ar/(36)Ar of an un-irradiated subset of our samples validates the inference of kinetic fractionation, and potentially provides a basis for determining initial (40)Ar/(36) AT in samples that fail to yield isochrons, but only in samples lacking magmatic excess (40)Ar. These approaches allow us to reliably apply the (40)Ar/(39)Ar method to volcanic glasses, which has resulted in maximum ages for archaeological sites that are not amenable to traditional geochronological methods. (40)Ar/(39)Ar geochronology can also provide information on the geological provenance of the raw material used for tool making, especially when combined with geochemical data. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Morgan, Leah E.; Renne, Paul R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Renne, Paul R.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. [Taylor, R. E.] Univ Calif Riverside, Dept Anthropol, Riverside, CA 92521 USA. [Taylor, R. E.] Univ Calif Los Angeles, Cotsen Inst Archaeol, Los Angeles, CA 90095 USA. [Taylor, R. E.] Univ Calif Irvine, Keck Carbon Cycle Accelerator Mass Spectrometry L, Dept Earth Syst Sci, Irvine, CA 92697 USA. [WoldeGabriel, Giday] Los Alamos Natl Lab, Hydrol Geochem & Geol Grp, Los Alamos, NM 87545 USA. RP Morgan, LE (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 307 McCone Hall 4767, Berkeley, CA 94720 USA. EM lmorgan@berkeley.edu OI Morgan, Leah/0000-0001-9930-524X FU National Science Foundation [BCS-9910344]; Ann & Gordon Getty Foundation; Institute of Geophysics and Planetary Physics (the University of California at Lawrence Livermore National Laboratory); Advanced Light Source at Lawrence Berkeley National Laboratory FX We thank the National Science Foundation (BCS-9910344), the Ann & Gordon Getty Foundation, the Institute of Geophysics and Planetary Physics (the University of California at Lawrence Livermore National Laboratory), and the Advanced Light Source at Lawrence Berkeley National Laboratory for financial support. We thank the Ethiopian Ministry of Culture and Tourism, the Authority for Research and Conservation of Cultural Heritage, and the National Museum of Ethiopia for permissions and facilitation. We also thank the Afar Regional Government and the Afar people of the Middle Awash. For helpful discussions and help with sample collection, preparation and analyses we thank Berhane Asfaw, Tim Becker, Yonas Beyene, Frank Brown, Ian Hutcheon, Abed Jaouni, Annie Kersting, Michael Manga, Michael Martin, Rick Ryerson, Steve Shackley, Jim Watkins, Tim White, and Giday WoldeGabriel. We appreciate the collaboration of John Southon of the UCI AMS Laboratory in obtaining the 14C measurements. We thank Nadia Vogel for providing the reduced data necessary to produce isochrons for previously published data. We thank Sebastien Nomade for providing a helpful review. NR 52 TC 24 Z9 24 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1871-1014 J9 QUAT GEOCHRONOL JI Quat. Geochronol. PD JUN PY 2009 VL 4 IS 3 BP 193 EP 203 DI 10.1016/j.quageo.2009.01.001 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 456YP UT WOS:000266890900003 ER PT J AU Lynch, TP Tolmachev, SY James, AC AF Lynch, T. P. Tolmachev, S. Y. James, A. C. TI Estimating Am-241 activity in the body: comparison of direct measurements and radiochemical analyses SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID WHOLE-BODY; PLUTONIUM; BURDENS; TISSUES; PU AB The assessment of dose and ultimately the health risk from intakes of radioactive materials begins with estimating the amount actually taken into the body. An accurate estimate provides the basis to best assess the distribution in the body, the resulting dose and ultimately the health risk. This study continues the time-honoured practice of evaluating the accuracy of results obtained using in vivo measurement methods and techniques. Results from the radiochemical analyses of the Am-241 activity content of tissues and organs from four donors to the United States Transuranium and Uranium Registries (USTUR) were compared with the results from direct measurements of radioactive material in the body performed in vivo and post-mortem. Two were whole-body donations and two were partial-body donations. The Am-241 lung activity estimates ranged from 1 to 30 Bq in the four cases. The Am-241 activity in the lungs determined from the direct measurements were within 40% of the radiochemistry results in three cases and within a factor of 2 for the other case. However, in one case the post-mortem direct measurement estimate was a factor of 10 higher than the radiochemistry result for lung activity, most probably due to underestimating the skeletal contribution to the measured count rate over the lungs. The direct measurement estimates of liver activity ranged from 2 to 60 Bq and were consistently lower than the radiochemistry results. The skeleton was the organ with the highest deposition of Am-241 activity in all four cases. The skeletal activity estimates ranged from 30 to 300 Bq. The skeletal activity obtained from measurements over the forehead were within 20% of the radiochemistry results in three cases and differed by 78% in the other case. The results from this study suggest that the measurement methods, data analysis methods and calibration techniques used at the In Vivo Radiobioassay and Research Facility can be used to quantify the activity in the lungs, skeleton and liver when Am-241 activity is present in all three organs. The adjustment method used to account for the contribution from activity in other organs improved the agreement between the direct measurement results and the radiochemistry results for activity in the lungs and skeleton. The method appeared to overestimate the contribution from the other organs to the liver activity measurements, although the low activity levels complicated the analysis. The unadjusted liver activity estimates from the direct measurements were generally in better agreement with the radiochemistry results than the adjusted liver activity. The data from this study indicates that the results from the in vivo measurement techniques provide reasonable estimates of radioactive material in the lungs and skeleton under the most challenging conditions where there is Am-241 activity in multiple organs. The data analysis from additional USTUR cases with both direct measurement results and radiochemistry results is in progress to further evaluate how best to account for the contributions from Am-241 activity in multiple organs and to better understand the uncertainty associated with the adjusted activity. C1 [Lynch, T. P.] Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA. [Tolmachev, S. Y.; James, A. C.] Washington State Univ, Coll Pharm, US Transuranium & Uranium Registries, Richland, WA 99354 USA. RP Lynch, TP (reprint author), Battelle Mem Inst, Pacific NW Div, POB 999,Mailstop B1-60, Richland, WA 99354 USA. EM tim.lynch@pnl.gov RI Tolmachev, Sergei/C-1397-2011; WSU, USTUR/I-1056-2013 OI Tolmachev, Sergei/0000-0003-0077-106X; FU US Department of Energy, Office of Epidemiology and Health Surveillance [DE-FG06-92EH889181] FX This work was supported by the US Department of Energy, Office of Epidemiology and Health Surveillance, under award Number DE-FG06-92EH889181. NR 23 TC 3 Z9 3 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD JUN PY 2009 VL 134 IS 2 BP 94 EP 101 DI 10.1093/rpd/ncp089 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 449VD UT WOS:000266357500004 PM 19470448 ER PT J AU George, KA Hada, M Jackson, LJ Elliott, T Kawata, T Pluth, JM Cucinotta, FA AF George, Kerry A. Hada, Megumi Jackson, Lori J. Elliott, Todd Kawata, Tetsuya Pluth, Janice M. Cucinotta, Francis A. TI Dose Response of gamma Rays and Iron Nuclei for Induction of Chromosomal Aberrations in Normal and Repair-Deficient Cell Lines SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAK; IN-SITU HYBRIDIZATION; INDUCED EXCHANGE ABERRATIONS; ATAXIA-TELANGIECTASIA CELLS; DEPENDENT PROTEIN-KINASE; DNA-DAMAGE; HUMAN-LYMPHOCYTES; SPACE EXPLORATION; MAMMALIAN-CELLS; HEAVY-IONS AB We studied the effects of DNA double-strand break (DSB) repair deficiencies on chromosomal aberration frequency using low doses (<1 Gy) of gamma rays and high-energy iron ions (LET = 151 keV/mu m). Chromosomal aberrations were measured using the fluorescence whole-chromosome painting technique. The cell lines included fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) and gliomablastoma cells proficient in or lacking DNA-dependent protein kinase (DNA-PK) activity. The yields of both simple and complex chromosomal aberrations were increased in DSB repair-defective cells compared to normal cells; the increase was more than twofold higher for gamma rays compared to iron nuclei. For gamma-ray-induced aberrations, the ATM- and NBS-defective lines were found to have significantly larger quadratic components compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher only for the NBS cells. For simple and complex aberrations induced by iron nuclei, regression models preferred purely linear and quadratic dose responses, respectively, for each cell line studied. RBEs were reduced relative to normal cells for all of the DSB repair-defective lines, with the DNA-PK-deficient cells found to have RBEs near unity. The large increase in the quadratic dose-response terms in the DSB repair-deficient cell lines points to the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and to minimize aberration formation. The differences found between AT and NBS cells at lower doses suggest important questions about the applicability of observations of radiation sensitivity at high doses to low-dose exposures. (C) 2009 by Radiation Research Society C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [George, Kerry A.; Elliott, Todd] Wyle, Houston, TX 77058 USA. [Hada, Megumi; Jackson, Lori J.] USRA Div Life Sci, Houston, TX 77058 USA. [Kawata, Tetsuya] Chiba Univ, Dept Radiol, Grad Sch Med, Chiba, Japan. [Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Francis.A.Cucinotta@nasa.gov FU U.S. DOE [DE-A103-05ER64088]; NASA [03-OBPR-07-0032-0027] FX We gratefully acknowledge partial financial support provided by the U.S. DOE (DE-A103-05ER64088) and the NASA Space Radiation Program (03-OBPR-07-0032-0027). NR 46 TC 21 Z9 22 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUN PY 2009 VL 171 IS 6 BP 752 EP 763 DI 10.1667/RR1680.1 PG 12 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 456HN UT WOS:000266835200013 PM 19580482 ER PT J AU Woo, HK Go, EP Hoang, L Trauger, SA Bowen, B Siuzdak, G Northen, TR AF Woo, Hin-Koon Go, Eden P. Hoang, Linh Trauger, Sunia A. Bowen, Benjamin Siuzdak, Gary Northen, Trent R. TI Phosphonium labeling for increasing metabolomic coverage of neutral lipids using electrospray ionization mass spectrometry SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID FIXED-CHARGE DERIVATIZATION; LIQUID-CHROMATOGRAPHY; PEPTIDES; IDENTIFICATION; LIPIDOMICS; ALDEHYDES; EXTRACTS; SITES AB Mass spectrometry has become an indispensable too] for the global study of metabolites (metabolomics), primarily using electrospray ionization mass spectrometry (ESI-MS). However, many important classes of molecules such as neutral lipids do not ionize well by ESI and go undetected. Chemical derivatization of metabolites can enhance ionization for increased sensitivity and metabolomic coverage. Here we describe the use of tris(2,4,6,-trimethoxyphenyl)phosphonium acetic acid (TMPP-AA) to improve liquid chromatography (LC)/ESI-MS detection of hydroxylated metabolites (i.e. lipids) from serum extracts. Cholesterol which is not normally detected from serum using ESI is observed with attomole sensitivity. This approach was applied to identify four endogenous lipids (hexadecanoyl-sn-glycerol, dihydrotachysterol, octadecanol, and alpha-tocopherol) from human serum. Overall, this approach extends the types of metabolites which can be detected using standard ESI-MS instrumentation and demonstrates the potential for targeted metabolomics analysis. Published in 2009 by John Wiley & Sons, Ltd. C1 [Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept GTL Bioenergy & Struct Biol, Berkeley, CA 94720 USA. [Woo, Hin-Koon; Go, Eden P.; Hoang, Linh; Trauger, Sunia A.; Siuzdak, Gary; Northen, Trent R.] Scripps Res Inst, Scripps Ctr Mass Spectrometry, Dept Mol Biol, La Jolla, CA 92037 USA. [Bowen, Benjamin] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. RP Northen, TR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept GTL Bioenergy & Struct Biol, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM trnorthen@lbl.gov RI Northen, Trent/K-3139-2012; OI Northen, Trent/0000-0001-8404-3259 FU NIH SNAPS [MH062261]; DOE [DE-AC02-05CH11231] FX Contract/grant sponsor: DOE; contract/grant number: DE-AC02-05CH11231. NR 25 TC 14 Z9 14 U1 1 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD JUN PY 2009 VL 23 IS 12 BP 1849 EP 1855 DI 10.1002/rcm.4076 PG 7 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 456YN UT WOS:000266890700013 PM 19449318 ER PT J AU Altarawneh, MM Mielke, CH Brooks, JS AF Altarawneh, M. M. Mielke, C. H. Brooks, J. S. TI Proximity detector circuits: An alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE barium compounds; magnetic field measurement; potassium compounds; radiofrequency integrated circuits; radiofrequency oscillators; superconducting critical field ID HIGH-SENSITIVITY AB A radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The proximity detector circuit design, although less sensitive than tunnel diode oscillator circuits, has a number of essential advantages for measurements in the extreme environments of pulsed magnetic fields. These include the insensitivity of operation to voltages induced in the inductor coil, the elimination of a diode bias circuit and tuning, and a broad dynamic range of resonant frequency variation. The circuit has been successfully applied to measure the superconducting upper critical field in Ba(0.55)K(0.45)Fe(2)As(2) single crystals up to 60 T. C1 [Altarawneh, M. M.; Mielke, C. H.] Los Alamos Natl Lab, MPA, NHMFL, Los Alamos, NM 87545 USA. [Altarawneh, M. M.; Brooks, J. S.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Altarawneh, M. M.; Brooks, J. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Altarawneh, MM (reprint author), Los Alamos Natl Lab, MPA, NHMFL, POB 1663, Los Alamos, NM 87545 USA. FU NSF [NSF-DMR-0654118, NSF-DMR 0602859]; DOE; State of Florida; LANL [LDRD-DR20070013] FX Work at Los Alamos National Laboratory (LANL) was supported by NSF-DMR-0654118, DOE, and the State of Florida. M. M. Altarawneh is supported in part by NSF-DMR 0602859 (FSU) and LANL LDRD-DR20070013. LANL is operated by LANS LLC. We thank N. Ni, S. L. Bud'ko, and P. C. Canfield for providing the Ba0.55K0.45Fe2As2 sample. NR 14 TC 25 Z9 25 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2009 VL 80 IS 6 AR 066104 DI 10.1063/1.3152219 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 465PZ UT WOS:000267600600046 PM 19566232 ER PT J AU Fuchs, O Weinhardt, L Blum, M Weigand, M Umbach, E Bar, M Heske, C Denlinger, J Chuang, YD McKinney, W Hussain, Z Gullikson, E Jones, M Batson, P Nelles, B Follath, R AF Fuchs, O. Weinhardt, L. Blum, M. Weigand, M. Umbach, E. Baer, M. Heske, C. Denlinger, J. Chuang, Y. -D. McKinney, W. Hussain, Z. Gullikson, E. Jones, M. Batson, P. Nelles, B. Follath, R. TI High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE synchrotron radiation; X-ray scattering; X-ray spectrometers ID RESONANT INELASTIC-SCATTERING; ADVANCED LIGHT-SOURCE; EMISSION-SPECTROSCOPY; ABSORPTION SPECTROSCOPY; SYNCHROTRON-RADIATION; BAND-STRUCTURE; GRAPHITE; FLUORESCENCE; UNDULATOR; DIAMOND AB We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30x3000) mu m(2), which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min. C1 [Fuchs, O.; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Baer, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Denlinger, J.; Chuang, Y. -D.; McKinney, W.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gullikson, E.; Jones, M.; Batson, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Ctr Xray Opt, Berkeley, CA 94720 USA. [Nelles, B.] Carl Zeiss Laser Opt GmbH, D-73447 Oberkochen, Germany. [Follath, R.] Berliner Elektronenspeicherring Gesell Synchrotro, D-12489 Berlin, Germany. RP Fuchs, O (reprint author), Univ Wurzburg, D-97074 Wurzburg, Germany. RI Weinhardt, Lothar/G-1689-2013; McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 FU German BMBF [05 KS4WWA/6]; DFG Emmy Noether program; US Department of Energy; Golden Field Office [DE-FG36-05GO85028]; US Department of Energy [DE-AC0205CH11231] FX We are grateful to the ALS and CXRO staff for technical support and in particular to Jim Underwood for helpful discussions. This work was supported by the German BMBF (Grant No. 05 KS4WWA/6), the DFG Emmy Noether program (M.B.), and by the US Department of Energy, Golden Field Office, through Grant No. DE-FG36-05GO85028. The ALS is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC0205CH11231. NR 38 TC 36 Z9 36 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2009 VL 80 IS 6 AR 063103 DI 10.1063/1.3133704 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 465PZ UT WOS:000267600600003 PM 19566192 ER PT J AU Girard, F Suter, L Landen, O Munro, D Regan, S Kline, J AF Girard, Frederic Suter, Larry Landen, Otto Munro, Dave Regan, Sean Kline, John TI NIF unconverted light and its influence on DANTE measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE diodes; X-ray detection; X-ray emission spectra; X-ray optics; X-ray spectrometers ID NATIONAL-IGNITION-FACILITY; TARGETS AB NIF laser facility produces 1053 nm light and a fundamental requirement for NIF is to give up to 1.8 MJ of 351 nm light for target physics experiments. The 351 nm light is provided by frequency tripling the 1053 nm light in nonlinear crystals in the final optics assembly, just before the laser light enters the target chamber. Since this tripling process is not 100% efficient, unconverted light from the conversion process also enters the chamber. This unconverted light does not directly hit the target but it can strike target support structures at average intensities of few TW/cm(2) where it can generate unwanted, background soft x-rays that are measured by the soft x-ray diagnostic DANTE installed on the NIF target chamber. This diagnostic quantifies the x-radiation intensity inside the hohlraum by measuring the x-ray flux coming from the target's laser entrance hole. Due to its centimeter wide field of view, it integrates x-ray emission from both the flux exiting a hohlraum laser entrance hole and from the target support structure irradiated by residual 1 omega and 2 omega unconverted light. This work gives quantitative evaluations of the unconverted light for the first time and the effects on DANTE measurements for the future NIF tuning experiment called "Shock timing." Emission spectra are significantly modified leading to an overestimation of radiative temperature during the foot of the laser pulse since background x-rays are predominant in first two DANTE channel measurements. Mitigations of these effects by coating silicon paddle with plastic, using a smaller collimator to reduce DANTE field of view or eliminating DANTE channels in the analysis have been investigated. C1 [Girard, Frederic] DIF, DAM, CEA, F-91297 Arpajon, France. [Suter, Larry; Landen, Otto; Munro, Dave] LLNL, Livermore, CA 94550 USA. [Regan, Sean] Univ Rochester, LLE, Rochester, NY 14623 USA. [Kline, John] LANL, Los Alamos, NM 87545 USA. RP Girard, F (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France. OI Kline, John/0000-0002-2271-9919 NR 7 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2009 VL 80 IS 6 AR 063104 DI 10.1063/1.3155006 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 465PZ UT WOS:000267600600004 PM 19566193 ER PT J AU Lee, SY Jing, YC Luo, T Pang, X Wang, X Ng, KY AF Lee, S. Y. Jing, Y. C. Luo, T. Pang, X. Wang, X. Ng, K. Y. TI Diffractive grating structure for coherent light source production SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE diffraction gratings; light coherence; light sources AB A diffractive structure of cavities is designed to produce resonances at very high frequencies. This type of cavity structure may be useful for producing controllable coherent synchrotron radiation by microbunching the particle beam. C1 [Lee, S. Y.; Jing, Y. C.; Luo, T.; Pang, X.; Wang, X.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Ng, K. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lee, SY (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. FU U. S. Department of Energy [DE-FG0292ER40747, DEAC02-76CH03000]; National Science Foundation [PHY-0552389] FX This work is supported in part by grants from the U. S. Department of Energy under Contract Nos. DE-FG0292ER40747 and DEAC02-76CH03000, and the National Science Foundation Contract No. PHY-0552389. We thank illuminating discussions with A. Chao, L. H. Yu, and Y. C. Huang. NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2009 VL 80 IS 6 AR 066102 DI 10.1063/1.3142483 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 465PZ UT WOS:000267600600044 PM 19566230 ER PT J AU Kottas, A Krnjajic, M AF Kottas, Athanasios Krnjajic, Milovan TI Bayesian Semiparametric Modelling in Quantile Regression SO SCANDINAVIAN JOURNAL OF STATISTICS LA English DT Article DE censoring; dependent Dirichlet processes; Dirichlet process mixture models; median regression; scale uniform mixtures; skewness ID DIRICHLET PROCESS MIXTURE; NONPARAMETRIC PROBLEMS; SURVIVAL ANALYSIS; UNIMODAL DENSITY; INFERENCE AB We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non-parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non-parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets. C1 [Kottas, Athanasios] Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. [Krnjajic, Milovan] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Kottas, A (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, MS SOE2,1156 High St, Santa Cruz, CA 95064 USA. EM thanos@ams.ucsc.edu FU NSF [DMS-0505085] FX The authors wish to thank two referees for helpful comments. They also thank Keming Yu for providing the data set analysed in section 3.2. The work of the first author was supported in part by NSF grant DMS-0505085. NR 41 TC 50 Z9 50 U1 0 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0303-6898 J9 SCAND J STAT JI Scand. J. Stat. PD JUN PY 2009 VL 36 IS 2 BP 297 EP 319 DI 10.1111/j.1467-9469.2008.00626.x PG 23 WC Statistics & Probability SC Mathematics GA 436RK UT WOS:000265432400006 ER PT J AU Bull, ID Berstan, R Vass, A Evershed, RP AF Bull, Ian D. Berstan, Robert Vass, Arpad Evershed, Richard P. TI Identification of a disinterred grave by molecular and stable isotope analysis SO SCIENCE & JUSTICE LA English DT Article DE Adipocere; Compound; Grave; Isotope; Lipid; Soil ID OXO FATTY-ACIDS; CHROMATOGRAPHY MASS-SPECTROMETRY; ROTHAMSTED CLASSICAL EXPERIMENTS; EXPERIMENTAL ADIPOCERE FORMATION; GAS-CHROMATOGRAPHY; ARCHAEOLOGICAL POTTERY; MICROBIAL-PRODUCTION; MECHANISM; DECOMPOSITION; HYDROXY AB Confirmation of a potential disinterred grave was sought by GC and GC/MS analyses of lipid extracts of whole soils and white particulate matter. Fatty acid profiles and concentrations determined for three of the soils correlated with the deposition of a large amount of exogenous organic matter, most likely adipocere and/or decomposed body fat. Determination of C(16:0) and C(18:0) fatty acid delta(13)C values by GC/C/IRMS revealed the input to be isotopically distinct from common British domesticated animals, plotting closely to values determined for adipose fat obtained from of a murder victim. By considering the difference between delta(13)C values (Delta(13)C(18:0-16:0)) a potential isotopic proxy for identifying the source of adipocere (human) and adipose tissue was proposed. Crown Copyright (C) 2009 Published by Elsevier Ireland Ltd. on behalf of Forensic Science Society. All rights reserved. C1 [Bull, Ian D.; Berstan, Robert; Evershed, Richard P.] Univ Bristol, Sch Chem, Organ Geochem Unit, Bristol Biogeochem Res Ctr, Bristol BS8 1TS, Avon, England. [Vass, Arpad] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bull, ID (reprint author), Univ Bristol, Sch Chem, Organ Geochem Unit, Bristol Biogeochem Res Ctr, Bristol BS8 1TS, Avon, England. EM ian.d.bull@bris.ac.uk RI Bull, Ian/G-7816-2012 FU NERC [R8/H12/15] FX This work was undertaken within the Organic Geochemistry Unit (OGU; http://www.organicgeochemistry.co.uk), a subdivision of the Bristol Biogeochemistry Research Centre at The University of Bristol. The authors wish to thank the NERC for funding of the mass spectrometry facilities at Bristol (contract no. R8/H12/15; http://www.lsmsf.co.uk) and an anonymous referee for their useful comments. NR 47 TC 7 Z9 7 U1 1 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1355-0306 J9 SCI JUSTICE JI Sci. Justice PD JUN PY 2009 VL 49 IS 2 BP 142 EP 149 DI 10.1016/j.scijus.2009.01.016 PG 8 WC Medicine, Legal; Pathology SC Legal Medicine; Pathology GA 465HS UT WOS:000267574000013 PM 19606594 ER PT J AU Wang, J Hoagland, RG Misra, A AF Wang, J. Hoagland, R. G. Misra, A. TI Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale SO SCRIPTA MATERIALIA LA English DT Article DE Multilayers; Dislocation; Interfaces; Plastic deformation; Atomistic simulation ID PHYSICAL VAPOR-DEPOSITION; LAYERED COMPOSITES; WEAK INTERFACES; DISLOCATIONS; SIMULATIONS; STRENGTH; BARRIERS; SLIP AB Layered composites of Cu/Nb with incoherent interfaces achieve very high strength levels. Interfaces play a crucial role in determining this strength by acting as barriers to slip. Atomistic models of Cu/Nb bilayers are used to explore the origins of this resistance. The models clearly show that dislocations near an interface experience an attraction toward the interface. This attraction is caused by shear of the interface induced by the stress field of the dislocation. More importantly, atomistic simulations also reveal that interfacial dislocations easily move in interfaces by both glide and climb. Integrating these findings into a micro-scale model, we develop a three-dimensional crystal elastic-plastic model to describe the mechanical behavior of nanoscale metallic multilayers. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Wang, J.; Hoagland, R. G.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU US Department of Energy FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Sciences. We acknowledge discussion with J.P. Hirth and NI.J. Demkowicz. NR 21 TC 46 Z9 48 U1 2 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2009 VL 60 IS 12 BP 1067 EP 1072 DI 10.1016/j.scriptamat.2008.11.035 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 442AV UT WOS:000265813000008 ER PT J AU Shute, CJ Myers, BD Xie, S Barbee, TW Hodge, AM Weertman, JR AF Shute, C. J. Myers, B. D. Xie, S. Barbee, T. W., Jr. Hodge, A. M. Weertman, J. R. TI Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning SO SCRIPTA MATERIALIA LA English DT Article DE Nanostructured materials; Twinning; Copper; Fatigue test; FIB ID STRAIN-RATE SENSITIVITY; ULTRAHIGH-STRENGTH; COPPER; METALS; DUCTILITY; BEHAVIOR; ALLOYS; TWINS AB The response to cyclic deformation has been studied for Cu/Cu multilayer material consisting of columns of closely spaced, parallel nanotwins. The fatigue life under stress-con trolled cycling is greatly improved over that of coarse-grained Cu. Nanotwinning provides significant strengthening, which is unchanged by fatigue or severe compression. Observations by focused ion beam microscopy showed that the microstructure is quite stable under deformation. Localized deformation from indentation produced shear bands and apparently some loss of nanotwinned area but no decrease in hardness. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shute, C. J.; Myers, B. D.; Xie, S.; Weertman, J. R.] Northwestern Univ, Evanston, IL 60208 USA. [Barbee, T. W., Jr.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hodge, A. M.] Univ So Calif, Los Angeles, CA 90089 USA. RP Weertman, JR (reprint author), Northwestern Univ, Evanston, IL 60208 USA. EM jrweertman@northwestern.edu RI Weertman, Julia/B-7540-2009 FU US DOE [DE-FG02-02ER46002, DE-AC52-07NA27344] FX sMuch of this work was performed in the EPIC facility of the NUANCE Center at Northwestern University. The research was partially supported by US DOE Grant DE-FG02-02ER46002 at Northwestern University and contract DE-AC52-07NA27344 at Lawrence Livermore National Laboratory. NR 17 TC 52 Z9 52 U1 7 U2 70 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2009 VL 60 IS 12 BP 1073 EP 1077 DI 10.1016/j.scriptamat.2008.11.049 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 442AV UT WOS:000265813000009 ER PT J AU Karaseov, PA Azarov, AY Titov, AI Kucheyev, SO AF Karaseov, P. A. Azarov, A. Yu. Titov, A. I. Kucheyev, S. O. TI Density of displacement cascades for cluster ions: An algorithm of calculation and the influence on damage formation in ZnO and GaN SO SEMICONDUCTORS LA English DT Article ID COLLISION CASCADES; BOMBARDMENT; IMPLANTATION; BUILDUP; SI; SEMICONDUCTORS; DEVICES; PFN AB A method of statistical calculation of parameters of averaged individual collision cascades formed by cluster ions composed of a small number of atoms is suggested. The results of calculations are compared with experimental data on the accumulation of structural damage in ZnO and GaN irradiated with PF (n) ions (n = 0, 2, 4) with the specific energy of 1.3 keV/amu at room temperature. It is shown that, for ZnO, the density of the displacement cascade does not affect the concentration of stable postimplantation defects in the region of the bulk peak, but significantly affects this concentration in the near-surface region. For GaN, as the displacement-cascade density increases, both an increase in the concentration of stable defects in the region of the bulk maximum of the defect concentration and an increase in the thickness of the surface's amorphous layer are observed. C1 [Karaseov, P. A.; Azarov, A. Yu.; Titov, A. I.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Karaseov, PA (reprint author), St Petersburg State Polytech Univ, St Petersburg 195251, Russia. EM platon.karaseov@rphf.spbstu.ru RI Karaseov, Platon/P-6861-2015; Titov, Andrey/A-4608-2017 OI Karaseov, Platon/0000-0003-2511-0188; Titov, Andrey/0000-0003-4933-9534 FU Russian Foundation for Basic Research [08-08-00585, 09-08-92657]; US DOE [DE-AC52-07NA27344] FX This study (as performed at the St. Petersburg State Polytechnical University) was supported in part by the Russian Foundation for Basic Research (project nos. 08-08-00585 and 09-08-92657). The study at the Lawrence Livermore National Laboratory (LLNL) was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. NR 34 TC 8 Z9 8 U1 0 U2 5 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7826 J9 SEMICONDUCTORS+ JI Semiconductors PD JUN PY 2009 VL 43 IS 6 BP 691 EP 700 DI 10.1134/S1063782609060013 PG 10 WC Physics, Condensed Matter SC Physics GA 456EV UT WOS:000266824800001 ER PT J AU Borman, CJ Sullivan, BP Eggleston, CM Colberg, PJS AF Borman, Christopher J. Sullivan, B. Patrick Eggleston, Carrick M. Colberg, Patricia J. S. TI The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds SO SENSORS LA English DT Article DE flow-injection analysis; chemiluminescence; ferrous iron determination; iron oxide dissolution; luminol; Felume ID LUMINOL CHEMILUMINESCENCE; REDUCTIVE DISSOLUTION; OXIDATION-KINETICS; NATURAL-WATERS; OXALIC-ACID; PHOTOCHEMICAL DECOMPOSITION; SUBNANOMOLAR LEVELS; REDOX SPECIATION; DISSOLVED IRON; FREE-RADICALS AB An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL) to quantify Fe(2+) ((aq)) in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM), and samples from two natural water systems were used to amend standard solutions of Fe(2+) ((aq)). Slopes of the response curves from ferrous iron standards (1-100 nM) were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter. C1 [Borman, Christopher J.; Sullivan, B. Patrick] Univ Wyoming, Dept Chem, Dept 3838, Laramie, WY 82071 USA. [Eggleston, Carrick M.] Univ Wyoming, Dept Geol & Geophys, Dept 3006, Laramie, WY 82071 USA. [Colberg, Patricia J. S.] Univ Wyoming, Dept Civil & Architectural Engn, Dept 3295, Laramie, WY 82071 USA. RP Borman, CJ (reprint author), Oak Ridge Natl Lab, C-254 4500-S,MS 6119, Oak Ridge, TN 37831 USA. EM bormancj@ornl.gov; carrick@uwyo.edu; pczoo@uwyo.edu FU National Science Foundation [EAR-0434019]; U.S. Department of Energy [DE-FG02-06ER15823] FX The authors would like to gratefully acknowledge support from the National Science Foundation (EAR-0434019) and the U.S. Department of Energy (DE-FG02-06ER15823) for this work. The content of this paper represents the views of the authors and not of the above named agencies. NR 65 TC 4 Z9 4 U1 1 U2 19 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUN PY 2009 VL 9 IS 6 BP 4390 EP 4406 DI 10.3390/s90604390 PG 17 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 462GS UT WOS:000267339700022 PM 22408532 ER PT J AU de Graaff, MA Van Kessel, C Six, J AF de Graaff, Marie-Anne Van Kessel, Chris Six, Johan TI Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2 SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Elevated CO2; Rhizodeposition; N mineralization; C-13; N-15; Genotypes ID PROGRESSIVE NITROGEN LIMITATION; ATMOSPHERIC CARBON-DIOXIDE; SOIL CARBON; ECOSYSTEM PROCESSES; ENRICHMENT; FOREST; RESPIRATION; GRASSLAND; RESPONSES; GROWTH AB Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for I month in microcosms, exposed to C-13 labeling at ambient (392 mu mol mol(-1)) and elevated (792 mu mol mol(-1)) CO2 concentrations, in soil containing N-15 predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-C-13 was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant N-15 uptake increased (+7%) under elevated CO2 while N-15 contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2. Published by Elsevier Ltd. C1 [de Graaff, Marie-Anne; Van Kessel, Chris; Six, Johan] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [de Graaff, Marie-Anne] Univ Wageningen & Res Ctr, Dept Environm Sci, NL-6700 AA Wageningen, Netherlands. RP de Graaff, MA (reprint author), Oak Ridge Natl Lab, Biosci Div, Mol Microbial Ecol Grp, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM degraaffm@ornl.gov FU National Science Foundation Division of Environmental Biology FX Thanks to the Swiss FACE field staff for assisting in the field and for providing a pleasant stay in Eschikon and to Theresa Yim, Jeroen Gillabel, Bob Rousseau, John McQuade and Tad Doane for assisting with the laboratory work. We also thank two anonymous reviewers whose insightful comments have improved the final version of the manuscript. This work has been supported by the National Science Foundation Division of Environmental Biology. NR 55 TC 23 Z9 23 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUN PY 2009 VL 41 IS 6 BP 1094 EP 1103 DI 10.1016/j.soilbio.2009.02.015 PG 10 WC Soil Science SC Agriculture GA 457OZ UT WOS:000266942900009 ER PT J AU Sasaki, T Arafune, K Metzger, W Romero, MJ Jones, K Al-Jassim, M Ohshita, Y Yamaguchi, M AF Sasaki, T. Arafune, K. Metzger, W. Romero, M. J. Jones, K. Al-Jassim, M. Ohshita, Y. Yamaguchi, M. TI Characterization of carrier recombination in lattice-mismatched InGaAs solar cells on GaAs substrates SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 17th International Photovoltaic Science and Engineering Conference CY DEC 03-07, 2007 CL Fukuoka, JAPAN SP Japan Soc Appl Phys, IEEE, Nagoya Ind Sci Res Inst DE Solar cells; Lattice mismatch; Thermal annealing; Carrier recombination ID DEFECT REDUCTION; SI; DENSITY AB Effects of thermal annealing on carrier recombination in lattice-mismatched InGaAs solar cells on GaAs substrates were investigated. Thermal annealing to the graded buffer layer was effective to increase the minority carrier lifetime in the solar cell layer. Electron beam-induced current (EBIC) measurements revealed that the density of dark line defects decreased after the thermal annealing, but dark spot defects were newly generated. We conclude that dark line defects were primary responsible for the high recombination in the lattice-mismatched InGaAs solar cells. The origin of dark spot defects was discussed and it was found that they were associated with the lattice mismatch between the InGaP back surface field (BSF) layer and the InGaAs cell layer. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sasaki, T.; Arafune, K.; Ohshita, Y.; Yamaguchi, M.] Toyota Technol Inst, Semicond Lab, Tempaku Ku, Nagoya, Aichi 4688511, Japan. [Metzger, W.; Romero, M. J.; Jones, K.; Al-Jassim, M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Sasaki, T (reprint author), Toyota Technol Inst, Semicond Lab, Tempaku Ku, 2-12-1 Hisakata, Nagoya, Aichi 4688511, Japan. EM sd02603@toyota-ti.ac.jp NR 13 TC 10 Z9 11 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUN PY 2009 VL 93 IS 6-7 BP 936 EP 940 DI 10.1016/j.solmat.2008.11.019 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 453VN UT WOS:000266641100058 ER PT J AU Svitlyk, V Fei, F Kracher, A Mozharivskyj, Y AF Svitlyk, Volodymyr Fei, Fan Kracher, Alfred Mozharivskyj, Yurij TI Quaternary Gd4Ni2Sb1 +/- xSi2 +/- x and Gd4Ni2Bi1 +/- xSi2 +/- x: Crystal structure, homogeneity regions and magnetic behavior SO SOLID STATE SCIENCES LA English DT Article DE Quaternary phase; Structure; Solid solution; Magnetic property ID SKUTTERUDITES; GD-5(SI2GE2); TRANSITION; SYSTEM AB A new quaternary Gd4Ni2Sb1.07(1)Si1.93(1) phase was synthesized by arc-melting and its structure was determined through single crystal X-ray diffraction techniques. It crystallizes in an orthorhombic unit cell (the Prima space group) with a = 11.1735(9), b = 4.2054(2) and c = 16.711 (1) angstrom and represents a new structure type. The isostructural Gd4Ni2BiSi2 phase was obtained and characterized using the powder Xray diffraction techniques: Prima space group, a = 11.2715(2), b = 4.2046(1) and c = 16.7421(3) angstrom. By the means of electron microprobe analysis, Sb/Si and Bi/Si solid solutions were proven to exist for corresponding phases, and their general formulas can be given as Gd4Ni2Sb1 +/- xSi2 +/- x and Gd4Ni2Bi1 +/- xSi2 +/- x and Gd4Ni2Sb1.07Si1.93 and Gd4Ni2BiSi2 order ferromagnetically at 93 K and 46 K, respectively. (C) 2009 Elsevier Masson SAS. All rights reserved. C1 [Svitlyk, Volodymyr; Fei, Fan; Mozharivskyj, Yurij] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Kracher, Alfred] US DOE, Ames Lab, Ames, IA 50011 USA. RP Mozharivskyj, Y (reprint author), McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. EM mozhar@mcmaster.ca NR 21 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD JUN PY 2009 VL 11 IS 6 BP 1083 EP 1087 DI 10.1016/j.solidstatesciences.2009.02.030 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 464IN UT WOS:000267498700005 ER PT J AU Rutqvist, J Moridis, GJ AF Rutqvist, Jonny Moridis, George J. TI Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments SO SPE JOURNAL LA English DT Article; Proceedings Paper CT 2007 Offshore Technology Conference CY APR 30-MAY 03, 2007 CL Houston, TX ID GAS-PRODUCTION; ACCUMULATION; BEHAVIOR AB The thermal and mechanical loading of oceanic hydrate-bearing sediments (FIBS) can result in hydrate dissociation and a significant pressure increase with potentially adverse consequences oil the integrity and stability of the wellbore assembly. the FIBS, and the bounding formations. The perception of FIBS instability, Coupled with insufficient knowledge of their geomechanical behavior and the absence of predictive capabilities, has resulted in it strategy of avoidance of FIBS when locating offshore production platforms and can impede the development of hydrate deposits as gas resources. In this study, we investigate coupled (interacting) hydraulic, thermodynamic, and geomechanical behavior of oceanic FIBS in three cases. The first involves hydrate heating as warm fluids from deeper conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting the FIBS. The second case describes system response during gas production from a hydrate deposit. and the third involves mechanical loading caused by the weight of structures placed oil the ocean floor overlying the FIBS. For the analysis of the geomechanical stability of FIBS, we developed and used a numerical simulator that integrates a commercial geomechanical simulator and a simulator describing the Coupled processes Of fluid flow, heat transport. and thermodynamic behavior in the FIBS. Our simulation results indicate that the stability of HBS in the vicinity of warm pipes may be affected significantly. Gas production from oceanic deposits may also affect the geomechanical stability of FIBS under the conditions that are deemed desirable for production. Conversely, the increased pressure caused by the weight of structures Oil the ocean floor increases the stability of underlying hydrates. C1 [Rutqvist, Jonny; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, SPE, Berkeley, CA 94720 USA. RP Rutqvist, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, SPE, Berkeley, CA 94720 USA. RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 NR 28 TC 34 Z9 34 U1 4 U2 27 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD JUN PY 2009 VL 14 IS 2 BP 267 EP 282 PG 16 WC Engineering, Petroleum SC Engineering GA 458RF UT WOS:000267040500007 ER PT J AU Baek, SH Curro, NJ Ekimov, EA Sidorov, VA Bauer, ED Thompson, JD AF Baek, S-H Curro, N. J. Ekimov, E. A. Sidorov, V. A. Bauer, E. D. Thompson, J. D. TI Impurity band in B-doped diamond: an B-11 NMR study SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SUPERCONDUCTIVITY; FILMS AB We report an B-11 NMR study of heavily boron-doped diamond. By comparing B-11 spectra with those from C-13, we find that substitutional boron dopants are limited to 0.26 at.% in an isolated form. This observation reveals that, above the metal-insulator transition, boron dopants are incorporated into carbon sites mostly in the form of boron aggregates and suggests that, in addition to the holes in the valence band, an impurity band formed by boron aggregates plays an important role in the superconductivity in the heavily B-doped regime. A strong disorder effect deduced from Knight shift and nuclear spin-lattice relaxation rate measurements is attributed to the overlap between the intrinsic valence band and a boron impurity band. C1 [Baek, S-H; Sidorov, V. A.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Curro, N. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Ekimov, E. A.; Sidorov, V. A.] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RP Baek, SH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Baek, Seung-Ho/F-4733-2011; Curro, Nicholas/D-3413-2009 OI Baek, Seung-Ho/0000-0002-0059-8255; Curro, Nicholas/0000-0001-7829-0237 FU Russian Foundation for Basic Research [09-02-01216] FX We acknowledge enlightening discussions with T Park, S E Brown and W E Pickett. This work was performed at Los Alamos National Laboratory under the auspices of the US Department of Energy Office of Science. EAE and VAS were supported by the Russian Foundation for Basic Research (grant 09-02-01216) and a Program of the Division of Physical Sciences of RAS 'Strongly Correlated Electrons'. NR 30 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2009 VL 22 IS 6 AR 065008 DI 10.1088/0953-2048/22/6/065008 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 447VF UT WOS:000266219400022 ER PT J AU Bouchiat, V AF Bouchiat, V. TI Detection of magnetic moments using a nano-SQUID: limits of resolution and sensitivity in near-field SQUID magnetometry SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID QUANTUM INTERFERENCE DEVICE; ATOMIC SPIN-FLIPS; PERSISTENT CURRENTS; JOSEPHSON-JUNCTIONS; SINGLE; NIOBIUM; SPINTRONICS; NANOBRIDGES; MICROSCOPE; PARTICLES AB We investigate the coupling efficiency of a localized magnetic moment placed at a distance z from a DC-SQUID magnetometer of loop radius a with nanobridges of cross section r(2). Using simple magnetostatic considerations, we show that there exist two detection regimes: the usual far-field regime (z greater than or similar to a) for which inductive coupling is achieved by the entire loop and a near-field regime (z << a) where nanobridges become the active detecting elements. Simulation shows that the greatest coupling efficiency is obtained in the near-field regime (z << a) when the magnetic moment sits directly on the nanobridge. The maximum coupling limit is given by: 1/2 mu M-0/r. Using nanoscale weak links and typical noise performance of nano-SQUID, we conclude that the limit of single molecular magnet detection can be obtained with r similar to 1 nm, a value reachable using carbon nanotube Josephson junctions. C1 [Bouchiat, V.] UJF, CNRS, Inst Neel, F-38042 Grenoble 9, France. [Bouchiat, V.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bouchiat, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Bouchiat, V (reprint author), UJF, CNRS, Inst Neel, BP 166, F-38042 Grenoble 9, France. NR 45 TC 29 Z9 29 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2009 VL 22 IS 6 AR 064002 DI 10.1088/0953-2048/22/6/064002 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 447VF UT WOS:000266219400003 ER PT J AU Somorjai, GA Park, JY AF Somorjai, Gabor A. Park, Jeong Y. TI Concepts, instruments, and model systems that enabled the rapid evolution of surface science SO SURFACE SCIENCE LA English DT Article DE Surface chemistry; Molecular beam surface scattering; Low energy electron diffraction; Sum frequency generation vibrational; spectroscopy; Scanning tunneling microscopy; Reaction intermediates; Nanoparticles; Catalytic nanodiode ID SUM-FREQUENCY GENERATION; SCANNING-TUNNELING-MICROSCOPY; CATALYTIC CO OXIDATION; PLATINUM NANOWIRE ARRAYS; MESOPOROUS SBA-15 SILICA; ETHYLENE HYDROGENATION; VIBRATIONAL SPECTROSCOPY; CRYSTAL-SURFACES; MOLECULAR-BEAM; SINGLE-CRYSTAL AB Over the past forty years, surface science has evolved to become both an atomic scale and a molecular scale science. Gerhard Ertl's group has made major contributions in the field of molecular scale surface science, focusing on vacuum studies of adsorption chemistry on single crystal surfaces. In this review, we outline three important aspects which have led to recent advances in surface chemistry: the development of new concepts, in situ instruments for molecular scale surface studies at buried interfaces (solid-gas and solid-liquid), and new model nanoparticle surface systems, in addition to single crystals. Combined molecular beam surface scattering and low energy electron diffraction (LEED)- surface structure studies on metal single crystal surfaces revealed concepts, including adsorbate-induced surface restructuring and the unique activity of defects, atomic steps, and kinks on metal surfaces. We have combined high pressure catalytic reaction studies with ultra high vacuum (UHV) surface characterization techniques using a UHV chamber equipped with a high pressure reaction cell. New instruments, such as high pressure sum frequency generation (SFG) vibrational spectroscopy and scanning tunneling microscopy (STM) which permit molecular-level surface studies have been developed. Tools that access broad ranges of pressures can be used for both the in situ characterization of solid-gas and solid-liquid buried interfaces and the study of catalytic reaction intermediates. The model systems for the study of molecular surface chemistry have evolved from single crystals to nanoparticles in the 1-10 nm size range, which are currently the preferred media in catalytic reaction studies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Somorjai, Gabor A.; Park, Jeong Y.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Park, Jeong Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Park, Jeong Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, D58 Hildebrand 1460, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 64 TC 32 Z9 33 U1 3 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2009 VL 603 IS 10-12 SI SI BP 1293 EP 1300 DI 10.1016/j.susc.2008.08.030 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 455ST UT WOS:000266786500002 ER PT J AU Shen, MM Liu, DJ Jenks, CJ Evans, JW Thiel, PA AF Shen, Mingmin Liu, Da-Jiang Jenks, C. J. Evans, J. W. Thiel, P. A. TI The effect of chalcogens (O, S) on coarsening of nanoislands on metal surfaces SO SURFACE SCIENCE LA English DT Article DE Chemisorption; Scanning tunneling microscopy; Sulphides; Silver; Surface diffusion ID SCANNING-TUNNELING-MICROSCOPY; MOLECULAR SULFUR; SILVER; AG(111); OXYGEN; AG; DIFFUSION; ETHYLENE; CHEMISORPTION; TEMPERATURE AB In this article, we review some of our recent work concerning sulfur adsorption on Ag(1 1 1), and the effect of sulfur on coarsening of nanoscale Ag islands. We find that sulfur accelerates coarsening, but that a finite threshold coverage exists, below which the sulfur only decorates step edges and does not affect coarsening kinetics. Furthermore, below room temperature, and at coverages above the threshold, an ordered metal-sulfur adlayer structure develops. This structure contains long rows of Ag(3)S(3) clusters as its dominant motif, and its development coincides with inhibition of coarsening. Taken in the context of published literature, these observations suggest that acceleration of coarsening of metal nanofeatures by adsorbed chalcogens is a general effect, and that metal-chalcogen clusters are the agents of metal mass transport. Possible models are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shen, Mingmin; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Liu, Da-Jiang; Jenks, C. J.; Evans, J. W.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Thiel, PA (reprint author), Iowa State Univ, Dept Chem, 320 Spedding Hall, Ames, IA 50011 USA. EM pthiel@iastate.edu RI Shen, Mingmin/A-9293-2012 FU NSF [CHE-0414378, CHE-0809472]; US Department of Energy (USDOE); Iowa State University [DE-AC02-07CH11358] FX This work was supported primarily by NSF Grants CHE-0414378 and CHE-0809472. DJL was supported by the Division of Chemical Sciences, Basic Energy Sciences, US Department of Energy (USDOE). The work was performed at the Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 51 TC 9 Z9 9 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2009 VL 603 IS 10-12 BP 1486 EP 1491 DI 10.1016/j.susc.2008.11.045 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 455ST UT WOS:000266786500024 ER PT J AU Liu, DJ Evans, JW AF Liu, Da-Jiang Evans, J. W. TI Atomistic and multiscale modeling of CO-oxidation on Pd(100) and Rh(100): From nanoscale fluctuations to mesoscale reaction fronts SO SURFACE SCIENCE LA English DT Article DE CO-oxidation; Lattice-gas and multiscale modeling; Kinetic Monte Carlo simulation; Fluctuations and reaction fronts ID MONTE-CARLO-SIMULATION; ENERGY-ELECTRON DIFFRACTION; SINGLE-CRYSTAL SURFACES; CO OXIDATION; CARBON-MONOXIDE; HETEROGENEOUS CATALYSIS; OSCILLATORY REACTIONS; FIELD ELECTRON; METAL-SURFACES; ADSORPTION AB We describe recent developments in realistic multisite lattice-gas modeling of CO-oxidation on the unreconstructed (100) surfaces of Pd and Rh. Such models must incorporate the following features: multiple adsorption sites for CO; numerous short-ranged repulsive adspecies interactions; very high CO mobility and significant O mobility on the surface; and the appropriate Langmuir-Hinshelwood adsorption-desorption and reaction dynamics and energetics. The preferred binding site for CO depends on the substrate: bridge sites for Pd(100), and on-top sites for Rh(100). These models can address fundamental aspects of behavior for extended single-crystal surfaces: ordering and temperature-programmed-desorption for single-adspecies systems; mixed adlayer ordering and reactive steady-states as well as temperature-programmed-reaction for the two-adspecies reaction system. Such modeling is also effective in analyzing fluctuation effects for CO-oxidation in nanoscale systems, e.g., Field-Emitter-Tips or supported nanoclusters. A separate challenge is to incorporate this type of realistic atomistic-level description into a multiscale treatment of mesoscale spatial pattern formation and reaction front propagation where characteristic lengths are on the order of microns. This can be achieved within a heterogeneous coupled lattice-gas (HCLG) simulation approach which also requires as input a precise treatment of chemical diffusion in the mixed interacting adlayer. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liu, Da-Jiang; Evans, J. W.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Evans, JW (reprint author), Iowa State Univ, Ames Lab, US DOE, 315 Wilhelm Hall, Ames, IA 50011 USA. EM evans@ameslab.gov FU Division of Chemical Sciences, Office of Basic Energy Sciences of the US Department of Energy (USDOE); USDOE Sci-DAC program; USDOE [DE-AC02-07CH11358] FX JWE thanks Professors G. Ertl and R. Imbihl for hosting his visits to the Fritz-Haber-Institut (MPG) in the 1990s. This work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences of the US Department of Energy (USDOE). The development of the multisite LG model was supported by the USDOE Sci-DAC program. It was performed at Ames Laboratory which Is operated for the USDOE by ISU under Contract No. DE-AC02-07CH11358. NR 64 TC 21 Z9 22 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2009 VL 603 IS 10-12 BP 1706 EP 1716 DI 10.1016/j.susc.2008.10.058 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 455ST UT WOS:000266786500050 ER PT J AU Bluhm, H Siegmann, HC AF Bluhm, H. Siegmann, H. C. TI Surface science with aerosols SO SURFACE SCIENCE LA English DT Article DE Atmospheric science; In situ spectroscopy; Heterogeneous chemistry ID LIQUID-VAPOR INTERFACE; POLARIZATION FORCE MICROSCOPY; SUM-FREQUENCY GENERATION; SULFURIC-ACID AEROSOLS; SOLID POTASSIUM-IODIDE; PHOTOELECTRON-SPECTROSCOPY; ELECTRON-SPECTROSCOPY; MOLECULAR-STRUCTURE; MASS ACCOMMODATION; AMBIENT CONDITIONS AB Experimental surface science with aerosol particles under atmospheric conditions is becoming a realistic possibility. The first part of this critical review focuses on nano-scopic aerosols generated in combustion of organic fuels at ambient pressures. The bizarre shape of soot agglomerates resists a simple definition of size and surface area. Yet a measure of the size known as the mobility diameter can be extracted from the mobility of the particles in their carrier gas. The total surface area must be divided into an active and a passive part. At the active surface, mass, energy, and momentum is exchanged with the molecules of the carrier gas. The active surface thus determines the dynamical properties of the particles. The passive surface is the surface enclosed in the interior as well as the surface in bays or cracks or, with larger particles, in the dead point of the laminar flow; it determines particle properties on a longer time scale. Simple automatic portable sensors measure the number density of airborne particles. their "size" and a characteristic fingerprint of the surface chemistry, making it possible to determine the source from which the particle was emitted. The response time of the sensors is similar to 1 s, hence one can monitor dynamical changes of the particles such as adsorption of water in the atmosphere. In the second part we examine a number of surface science techniques that have been used to characterize surfaces important to atmospheric chemistry in more detail, in particular the uptake of water and the influence of surfactants. We illustrate the application of these techniques to the investigation of alkali halide surfaces as a function of relative humidity. Finally we give first examples on how infrared spectroscopy and synchrotron-based ambient pressure X-ray photoelectron spectroscopy have been used to study more realistic aerosol particles, under conditions of ambient humidity. These examples show that in situ chemical analysis of the particles is possible with third generation synchrotron X-ray sources. In the near future, X-ray lasers might reveal the fast dynamics of chemical processes as well. Thus it is within reach to study aerosols under the conditions of the stratosphere. Stratospheric aerosols can reduce the insolation of the earth and may become one of the last resorts of humanity to counteract the effects of global warming. Published by Elsevier B.V. C1 [Siegmann, H. C.] Stanford Linear Accelerator Ctr, Ctr Photon Ultrafast Laser Sci & Engn, Menlo Pk, CA 94025 USA. [Bluhm, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Siegmann, HC (reprint author), Stanford Linear Accelerator Ctr, Ctr Photon Ultrafast Laser Sci & Engn, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM siegmann@slac.stanford.edu FU US Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We are indebted to David E. Starr, Erin R. Mysak, and Kevin R. Wilson for help and discussions. One of the authors (H.B.) acknowledges financial support by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Division of the US Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 68 TC 12 Z9 12 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2009 VL 603 IS 10-12 BP 1969 EP 1978 DI 10.1016/j.susc.2008.08.041 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 455ST UT WOS:000266786500080 ER PT J AU Glied, M Yasin, S Kaiser, S Drichko, N Dressel, M Wosnitza, J Schlueter, JA Gard, GL AF Glied, M. Yasin, S. Kaiser, S. Drichko, N. Dressel, M. Wosnitza, J. Schlueter, J. A. Gard, G. L. TI DC and high-frequency conductivity of the organic metals beta ''-(BEDT-TTF)(2)SF5RSO3 (R = CH2CF2 and CHF) SO SYNTHETIC METALS LA English DT Article DE Organic superconductors; Non-Fermi-liquid ground states; Electron phase diagrams and phase transitions in model systems; Metal-insulator transitions and other electronic ID CAVITY PERTURBATION TECHNIQUE; ELECTRONIC BAND-STRUCTURE; INFRARED OPTICAL-PROPERTIES; BEDT-TTF; STRUCTURAL GENEALOGY; SUPERCONDUCTOR BETA''-(BEDT-TTF)(2)SF5CH2CF2SO3; T-C; CONDUCTORS; BETA''-(ET)(2)SF5CH2CF2SO3; DEPENDENCE AB The temperature dependences of the electric-transport properties of the two-dimensional organic conductors beta"-(BEDT-TTF)(2)SF5CH2CF2SO3, beta"-(d(8)-BEDT-TTF)(2)SF5CH2CF2SO3, and beta"-(d(8)-BEDT-TTF)(2)SF5CH2CF2SO3 are measured by dc methods in and perpendicular to the highly conducting plane. Microwave measurements are performed at 24 and 33.5 GHz to probe the high-frequency behavior from room temperature down to 2 K. Superconductivity is observed in beta"-(BEDT-TTF)(2)SF5CH2CF2SO3 and its deuterated analogue. Although all the compounds remain metallic down to low-temperatures, they are close to a charge-order transition. This leads to deviations from a simple Drude behavior of the optical conductivity which become obvious already in the microwave range. In beta"-(BEDT-TTF)(2)SF5CH2CF2SO3, for instance, charge fluctuations cause an increase in microwave resistivity for T < 20 K which is not detected in dc measurements. beta"-(BEDT-TTF)(2)SF5CHFSO3 exhibits a simple metallic behavior at all frequencies. In the dc transport, however, we observe indications of localization in the perpendicular direction. (C) 2009 Elsevier B.V. All rights reserved. C1 [Glied, M.; Yasin, S.; Kaiser, S.; Drichko, N.; Dressel, M.] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Wosnitza, J.] Forschungszentrum Dresden Rossendorf, Dresden High Magnet Field Lab, D-01314 Dresden, Germany. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gard, G. L.] Portland State Univ, Dept Chem, Portland, OR 97207 USA. RP Dressel, M (reprint author), Univ Stuttgart, Inst Phys 1, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. EM dressel@pi1.physik.uni-stuttgart.de RI Dressel, Martin/D-3244-2012; Kaiser, Stefan/B-7788-2008 OI Kaiser, Stefan/0000-0001-9862-2788 NR 49 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD JUN PY 2009 VL 159 IS 11 BP 1043 EP 1049 DI 10.1016/j.synthmet.2009.01.027 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 466AL UT WOS:000267632500010 ER PT J AU Ramanathan, M Nettleton, E Darling, SB AF Ramanathan, Muruganathan Nettleton, Elizabeth Darling, Seth B. TI Simple orientational control over cylindrical organic-inorganic block copolymer domains for etch mask applications SO THIN SOLID FILMS LA English DT Article DE Polymers; Atomic force microscopy (AFM); Self-assembly; Lithography ID THIN-FILMS; DIBLOCK COPOLYMERS; LITHOGRAPHY; TEMPLATES; FABRICATION; ARRAYS; POLY(FERROCENYLSILANES); NANOFABRICATION; NANOPARTICLES; INTEGRATION AB Bottom-up patterning methodologies, predicated on chemical self-assembly, have the potential to transcend limitations associated with more traditional lithographies. By controlling the domain orientation of a cylinder-forming organic-inorganic block copolymer, poly(styrene-block-ferrocenyldimethylsilane), it is possible to straightforwardly fabricate massive arrays of either nanoscale dots or wires out of a film composed of a wide variety of materials. In the work reported here, orientational control is achieved by manipulating the polymer film thickness in concert with the annealing treatment. For films much thinner than the equilibrium periodicity of the microdomains, the cylinders spontaneously orient themselves perpendicular to the substrate. Films with thickness close to the equilibrium periodicity exhibit the more common in-plane orientation following thermal annealing. Solvent annealing leads to an in-plane orientation for the full range of film thicknesses studied. As a demonstration of the effectiveness of this method, semiconductor substrates were patterned with arrays of posts and wires, respectively, using the same starting polymeric material as the etch mask. Compatibility of this polymer with various substrate materials is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ramanathan, Muruganathan; Nettleton, Elizabeth; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov RI Ramanathan, Muruganathan/B-6890-2011; Ramanathan, Muruganathan/A-3641-2013 OI Ramanathan, Muruganathan/0000-0001-7008-1131 FU U. S. Department of Energy, Office of Science , Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 52 TC 40 Z9 40 U1 0 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 1 PY 2009 VL 517 IS 15 BP 4474 EP 4478 DI 10.1016/j.tsf.2009.02.078 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 456IZ UT WOS:000266840100036 ER PT J AU Saha, B Goebel, K Christophersen, J AF Saha, Bhaskar Goebel, Kai Christophersen, Jon TI Comparison of prognostic algorithms for estimating remaining useful life of batteries SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL LA English DT Article DE autoregressive integrated moving average; battery prognostics; extended Kalman filtering; particle filter; relevance vector machine; remaining useful life; uncertainty management ID HYBRID-ELECTRIC VEHICLES; LEAD-ACID-BATTERIES; STATE-OF-CHARGE; HEALTH AB The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left Until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is Used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions. C1 [Saha, Bhaskar; Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saha, Bhaskar] Mission Critical Technol Inc, NASA ARC, El Segundo, CA 90245 USA. [Christophersen, Jon] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Saha, B (reprint author), NASA, Ames Res Ctr, MS 269-3, Moffett Field, CA 94035 USA. EM bhaskar.saha_1@nasa.gov NR 17 TC 83 Z9 88 U1 6 U2 76 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0142-3312 J9 T I MEAS CONTROL JI Trans. Inst. Meas. Control PD JUN-AUG PY 2009 VL 31 IS 3-4 BP 293 EP 308 DI 10.1177/0142331208092030 PG 16 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 472TD UT WOS:000268154200005 ER PT J AU Zhang, F Parker, JC Brooks, SC Kim, YJ Tang, G Jardine, PM Watson, DB AF Zhang, F. Parker, J. C. Brooks, S. C. Kim, Y. -J. Tang, G. Jardine, P. M. Watson, D. B. TI Comparison of Approaches to Calibrate a Surface Complexation Model for U(VI) Sorption to Weathered Saprolite SO TRANSPORT IN POROUS MEDIA LA English DT Article DE U(VI); Sorption; Saprolite; Surface complexation; Generalized composite method ID URANIUM(VI) ADSORPTION; MINERAL ASSEMBLAGES; SUBSURFACE MEDIA; TRANSPORT; BEHAVIOR; PHYLLITE AB A surface complexation model describing the sorption of uranyl ions and uranyl carbonate on weak and strong sites was used to analyze experiments conducted on pH-dependent U(VI) sorption to weathered shale/limestone saprolite. Sorption data were collected at two different solid to solution ratios. Various methods of estimating equilibrium reaction coefficients and site densities were investigated. As a first approximation, extractable iron oxides were assumed to behave as ferrihydrite with reaction coefficients as reported by Waite (Geochim Cosmochim Acta 58:5465-5478, 1994). A generalized composite (GC) approach was then employed with coefficients estimated by an inverse modeling method applied both in a stepwise fashion and simultaneously to whole data set. Uncertainty in model parameters and predictions was lowest using the simultaneous inverse method, but results from the stepwise method were very similar. The generalized reaction network accurately described pH-dependent U(VI) sorption on weathered saprolite between pH 4 and 9. C1 [Zhang, F.; Brooks, S. C.; Tang, G.; Jardine, P. M.; Watson, D. B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Parker, J. C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Kim, Y. -J.] Seoul Natl Univ, Sch Civil Urban & Geosyst Engn, Seoul 151744, South Korea. RP Zhang, F (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM zhangf@ornl.gov RI Brooks, Scott/B-9439-2012; Watson, David/C-3256-2016 OI Brooks, Scott/0000-0002-8437-9788; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP); U.S. Department of Energy [DE-AC05-00OR22725] FX This research was funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 27 TC 4 Z9 4 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD JUN PY 2009 VL 78 IS 2 BP 185 EP 197 DI 10.1007/s11242-008-9294-9 PG 13 WC Engineering, Chemical SC Engineering GA 456FS UT WOS:000266828000003 ER PT J AU Alloyeau, D Ricolleau, C Oikawa, T Langlois, C Le Bouar, Y Loiseau, A AF Alloyeau, D. Ricolleau, C. Oikawa, T. Langlois, C. Le Bouar, Y. Loiseau, A. TI Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles SO ULTRAMICROSCOPY LA English DT Article DE TEM/HRTEM; HRTEM focal series; Electron tomography; CoPt nanoparticles; 3D morphology; Nanoparticles thickness ID 3-DIMENSIONAL RECONSTRUCTION; STRUCTURAL-PROPERTIES; DIFFUSE-SCATTERING; MATERIALS SCIENCE; CARBON NANOTUBES; TILT SERIES; HAADF-STEM; THIN-FILMS; Z-CONTRAST; GROWTH AB Nanoparticles' morphology is a key parameter in the understanding of their thermodynamical, optical, magnetic and catalytic properties. In general, nanoparticles, observed in transmission electron microscopy (TEM), are viewed in projection so that the determination of their thickness (along the projection direction) with respect to their projected lateral size is highly questionable. To date, the widely used methods to measure nanoparticles thickness in a transmission electron microscope are to use cross-section images or focal series in high-resolution transmission electron microscopy imaging (HRTEM "slicing"). In this paper, we compare the focal series method with the electron tomography method to show that both techniques yield similar particle thickness in a range of size from 1 to 5 nm, but the electron tomography method provides better statistics since more particles can be analyzed at one time. For this purpose, we have compared, on the same samples, the nanoparticles thickness measurements obtained from focal series with the ones determined from cross-section profiles of tomograms (tomogram slicing) perpendicular to the plane of the substrate supporting the nanoparticles. The methodology is finally applied to the comparison of CoPt nanoparticles annealed ex situ at two different temperatures to illustrate the accuracy of the techniques in detecting small particle thickness changes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Alloyeau, D.; Ricolleau, C.; Oikawa, T.; Langlois, C.] Univ Paris 07, CNRS, UMR 7162, Lab Mat & Phenomenes Quant, F-75251 Paris, France. [Alloyeau, D.; Le Bouar, Y.; Loiseau, A.] ONERA CNRS, UMR 104, Lab Etud Microstruct, F-92322 Chatillon, France. [Oikawa, T.] JEOL Europe SAS, Espace Claude Monet, F-78290 Croissy Sur Siene, France. RP Alloyeau, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, NCEM, 1 Cyclotron Rd,MS 72, Berkeley, CA 94720 USA. EM alloyeau.damien@gmail.com RI Langlois, Cyril/C-7722-2011 FU IMPIVIC Institute [UMR 7590] FX We would like to thank Dr. Slavicajonic of the IMPIVIC Institute (Macromolecular assemblies group, UMR 7590, CNRS) for the help with the calculations of the FSC and FNC correlation functions to determine the resolution of our tomograms. NR 66 TC 22 Z9 22 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN PY 2009 VL 109 IS 7 BP 788 EP 796 DI 10.1016/j.ultramic.2009.02.002 PG 9 WC Microscopy SC Microscopy GA 455TF UT WOS:000266787900003 PM 19327891 ER PT J AU Chen, L Park, MS AF Chen, Lei Park, Min Sung TI Identification and characterization of the promoter region of Kaposi's sarcoma-associated herpesvirus ORF11 SO VIRUS RESEARCH LA English DT Article DE Human herpesvirus 8; Kaposi's sarcoma-associated herpesvirus; ORF11 ID LYTIC GENE-EXPRESSION; DNA-SEQUENCES; SWITCH PROTEIN; HUMAN IL-6; KSHV; INTERLEUKIN-6; CELLS; GENOME; LATENT; VIRUS AB Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family that is conserved among members of the gamma-herpesvirus subfamily. Little is known about the function of ORF11 and how this viral gene is regulated in KSHV life cycle. In this study, we have characterized the major transcript of the ORF11 gene, which is located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis revealed that the ORF11 gene is lytic viral gene with delayed-early expression kinetics. We have determined the 5' and 31 untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Core promoter region, representing ORF11 promoter activity, was mapped to a 160 nt fragment 5' most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. We also found that the characterized ORF11 gene promoter region is not responsive to Rta, the KSHV lytic switch protein. Our data help to elucidate transcription regulation of the KSHV ORF11 gene and to understand the biology of ORF11 in KSHV life cycle. Published by Elsevier B.V. C1 [Chen, Lei; Park, Min Sung] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Chen, L (reprint author), Los Alamos Natl Lab, Biosci Div, B-7,MS M888, Los Alamos, NM 87545 USA. EM lchen@lanl.gov; park_min_s@lant.gov FU Los Alamos National Laboratory [LA-UR-08-05204] FX We thank Dr. Michael Lagunoff for critically reading the manuscript and valuable comments, Dr. Hong Cai for her time, support and reagents and Dr. Patrick A. Carroll for his help with dual reporter luciferase assay. This article was reviewed prior to release from Los Alamos National Laboratory and approved for unlimited distribution (LA-UR-08-05204). L.C. is a China Scholarship Council (CSC) scholar. NR 40 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1702 J9 VIRUS RES JI Virus Res. PD JUN PY 2009 VL 142 IS 1-2 BP 160 EP 168 DI 10.1016/j.virusres.2009.02.006 PG 9 WC Virology SC Virology GA 449YI UT WOS:000266366600021 PM 19428749 ER PT J AU King, SL Sharitz, RR Groninger, JW Battaglia, LL AF King, Sammy L. Sharitz, Rebecca R. Groninger, John W. Battaglia, Loretta L. TI THE ECOLOGY, RESTORATION, AND MANAGEMENT OF SOUTHEASTERN FLOODPLAIN ECOSYSTEMS: A SYNTHESIS SO WETLANDS LA English DT Review DE bottomland hardwoods; forest management; rivers; wetland function ID MISSISSIPPI ALLUVIAL VALLEY; GULF-OF-MEXICO; SOUTH-EASTERN USA; OLD-GROWTH FOREST; SEA-LEVEL RISE; UNITED-STATES; HYDROLOGIC CONNECTIVITY; HARDWOOD FOREST; COASTAL-PLAIN; HURRICANE DISTURBANCE AB Floodplain ecosystems of the southeastern United States provide numerous services to society, but hydrologic and geomorphic alterations, agricultural practices, water quality and availability, and urban development continue to challenge restorationists and managers at multiple spatial and temporal scales. These challenges are further exacerbated by tremendous uncertainty regarding climate and land use patterns and natural variability in these systems. The symposium from which the papers in 2009 ensued was organized to provide a critical evaluation of current natural resource restoration and management practices to support the sustainability of floodplain ecosystem functions in the southeastern United States. In this paper we synthesize these concepts and evaluate restoration and conservation techniques in light of our understanding of these ecosystems. We also discuss current and future challenges and attempt to identify new approaches that may facilitate the long-term sustainability of southeastern floodplain systems. We conclude that integration of disciplines and approaches is necessary to meet the floodplain conservation challenges of the coming century. Integration will not only include purposeful dialogue between interdisciplinary natural resource professionals, but it also is necessary to sincerely engage the public about goals, objectives, and desirable outcomes of floodplain ecosystem restoration. C1 [King, Sammy L.] US Geol Survey, Louisiana Cooperat Fish & Wildlife Res Unit, Baton Rouge, LA 70803 USA. [Sharitz, Rebecca R.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Sharitz, Rebecca R.] Univ Georgia, Dept Plant Biol, Aiken, SC 29802 USA. [Groninger, John W.] So Illinois Univ, Dept Forestry, Carbondale, IL 62901 USA. [Battaglia, Loretta L.] So Illinois Univ, Dept Plant Biol, Carbondale, IL 62901 USA. [Battaglia, Loretta L.] So Illinois Univ, Ctr Ecol, Carbondale, IL 62901 USA. RP King, SL (reprint author), US Geol Survey, Louisiana Cooperat Fish & Wildlife Res Unit, 124 Sch Renewable Nat Resources, Baton Rouge, LA 70803 USA. EM sking16@lsu.edu FU U.S. Department of Energy [DE-FC09-96SR18546]; University of Georgia FX The authors wish to express their thanks to the organizers and participants of this symposium on floodplain ecosystems. We also thank A. R. Pierce, P. Newell, one anonymous reviewer, and the editor for helpful suggestions for improving an earlier version of this manuscript. Manuscript preparation was aided by Financial Assistance Award No. DE-FC09-96SR18546 between the U.S. Department of Energy and the University of Georgia. NR 130 TC 21 Z9 23 U1 2 U2 66 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0277-5212 J9 WETLANDS JI Wetlands PD JUN PY 2009 VL 29 IS 2 BP 624 EP 634 PG 11 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 483SD UT WOS:000268987300021 ER PT J AU Maloy, SA Trautmann, C Was, GS AF Maloy, Stuart A. Trautmann, Christina Was, Gary S. TI Proceedings of the Symposium on Particle Beam Induced Radiation Effects in Materials Preface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 [Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Trautmann, Christina] GSI Helmholtzzentrum Schwerionenforsch, Darmstadt, Germany. [Was, Gary S.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Maloy, SA (reprint author), Los Alamos Natl Lab, MST 8,MS H816, Los Alamos, NM 87545 USA. EM gsw@umich.edu RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 NR 0 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP VII EP VII DI 10.1016/j.jnucmat.2009.02.020 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200001 ER PT J AU Jenkins, ML Yao, Z Hernandez-Mayoral, M Kirk, MA AF Jenkins, M. L. Yao, Z. Hernandez-Mayoral, M. Kirk, M. A. TI Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID THIN-FOILS; IRRADIATIONS; EVOLUTION AB We give an overview and summary of recent in-situ heavy-ion irradiation experiments on Fe and Fe-Cr alloys carried out on the Argonne IVEM Facility at irradiation temperatures up to 500 degrees C. Several new and unexpected observations were made. At low doses tire contrast of new irradiation-induced dislocation loops sometimes developed over time intervals as long as 0.2 s, many orders of magnitude longer than expected for a process of cascade collapse. In addition at temperatures <= 300 degrees C, "hopping" of 1/2 < 111 > loops was induced by the ion or electron beams, especially in UHP Fe. At high doses complex microstructures developed in all materials, involving the formation of large interstitial loops. At 300 degrees C and RT these loops had Burgers vectors of type b = 1/2 < 111 > and large shear components. At 500 degrees C only edge loops with b = < 100 > were produced. (C) 2009 Elsevier B.V. All rights reserved. C1 [Jenkins, M. L.; Yao, Z.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Hernandez-Mayoral, M.] CIEMAT, Div Mat, E-28040 Madrid, Spain. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Jenkins, ML (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM mikejenkins@materials.ox.ac.uk RI Hernandez Mayoral, Mercedes/F-8985-2016 OI Hernandez Mayoral, Mercedes/0000-0003-4504-7577 NR 14 TC 61 Z9 61 U1 1 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 197 EP 202 DI 10.1016/j.jnucmat.2009.02.003 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200002 ER PT J AU Foley, DC Hartwig, KT Maloy, SA Hosemann, P Zhang, X AF Foley, D. C. Hartwig, K. T. Maloy, S. A. Hosemann, P. Zhang, X. TI Grain refinement of T91 alloy by equal channel angular pressing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID SEVERE PLASTIC-DEFORMATION; STEEL; MICROSTRUCTURE AB We report on the grain refinement of modified 9Cr-1Mo ferritic-martensitic steel (T91) by equal channel angular pressing, a severe plastic deformation method. Microstructural refinement depends on processing temperature (300-700 degrees C) and extrusion strain (1.2-2.3). The average grain size has been refined by over an order of magnitude down to 300 nm, accompanied by a hardness increase of up to 70%. The refined microstructure undergoes little grain growth or softening up to 500 degrees C. At an annealing temperature of 700 degrees C or higher, significant softening occurs as a result of grain growth. (C) 2009 Elsevier B.V. All rights reserved. C1 [Foley, D. C.; Hartwig, K. T.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Maloy, S. A.; Hosemann, P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Foley, David/A-5414-2012; Zhang, Xinghang/H-6764-2013; Maloy, Stuart/A-8672-2009; OI Zhang, Xinghang/0000-0002-8380-8667; Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 13 TC 15 Z9 15 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 221 EP 224 DI 10.1016/j.jnucmat.2009.02.005 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200005 ER PT J AU Li, N Fu, EG Wang, H Carter, JJ Shao, L Maloy, SA Misra, A Zhang, X AF Li, Nan Fu, E. G. Wang, H. Carter, J. J. Shao, L. Maloy, S. A. Misra, A. Zhang, X. TI He ion irradiation damage in Fe/W nanolayer films SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID BUBBLE FORMATION; HELIUM BUBBLES; METALS; DISLOCATIONS; COMPOSITES; INTERFACES; ATOMS; LOOPS AB We report on the evolution of microstructure and mechanical properties of Fe/W multilayers subjected to helium ion irradiations. Sputtered Fe/W multilayers with individual layer thickness, varying from 1 to 200 nm, were subjected to He+ ion irradiation with a peak displacement per atom value of 6 at ambient temperatures. Helium bubbles, 1-2 nm in diameter, were observed in Fe and W, and more so along layer interfaces. The magnitude of hardness variation after radiation depends on the individual layer thickness. Radiation hardening is observed in specimens with individual layer thickness of >= 5 nm. At smaller layer thickness, the hardness barely changes. Analysis indicates that radiation hardening may originate mainly from dislocation loops and partially from He bubbles. (C) 2009 Elsevier B.V. All rights reserved. C1 [Li, Nan; Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Carter, J. J.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Maloy, S. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014; Maloy, Stuart/A-8672-2009 OI Li, Nan /0000-0002-8248-9027; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209; Maloy, Stuart/0000-0001-8037-1319 NR 31 TC 75 Z9 77 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 233 EP 238 DI 10.1016/j.jnucmat.2009.02.007 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200007 ER PT J AU Hosemann, P Vieh, C Greco, RR Kabra, S Valdez, JA Cappiello, MJ Maloy, SA AF Hosemann, P. Vieh, C. Greco, R. R. Kabra, S. Valdez, J. A. Cappiello, M. J. Maloy, S. A. TI Nanoindentation on ion irradiated steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID STIP-II; ALLOYS AB Radiation induced mechanical property changes can cause major difficulties in designing systems operating in a radiation environment. Investigating these mechanical property changes in an irradiation environment is a costly and time consuming activity. Ion beam accelerator experiments have the advantage of allowing relatively fast and inexpensive materials irradiations without activating the sample but do in general not allow large beam penetration depth into the sample. In this study, the ferritic/martensitic steel HT-9 was processed and heat treated to produce one specimen with a large grained ferritic microstructure and further heat treated to form a second specimen with a fine tempered martensitic lath structure and exposed to an ion beam and tested after irradiation using nanoindentation to investigate the irradiation induced changes in mechanical properties. It is shown that the HT-9 in the ferritic heat treatment is more Susceptible to irradiation hardening than HT-9 after the tempered martensitic heat treatment. Also at an irradiation temperature above 550 degrees C no detectable hardness increase due to irradiation was detected. The results are also compared to data from the literature gained from the fast flux test facility. Published by Elsevier B.V. C1 [Hosemann, P.; Vieh, C.; Greco, R. R.; Kabra, S.; Valdez, J. A.; Cappiello, M. J.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hosemann, P.; Vieh, C.] Univ Leoben, A-8700 Leoben, Austria. RP Hosemann, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM peterh@lanl.gov RI Kabra, Saurabh/M-3888-2014; Maloy, Stuart/A-8672-2009; OI Kabra, Saurabh/0000-0002-8080-6287; Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 16 TC 40 Z9 40 U1 6 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 239 EP 247 DI 10.1016/j.jnucmat.2009.02.026 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200008 ER PT J AU Hackett, MJ Busby, JT Miller, MK Was, GS AF Hackett, M. J. Busby, J. T. Miller, M. K. Was, G. S. TI Effects of oversized solutes on radiation-induced segregation in austenitic stainless steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID STRESS-CORROSION CRACKING; GRAIN-BOUNDARY SEGREGATION; CR-NI ALLOYS; ELECTRON-IRRADIATION; MICROSTRUCTURE; ELEMENTS; TEMPERATURE; EVOLUTION; DEPENDENCE; ADDITIONS AB Zirconium or hafnium additions to austenitic stainless steels caused a reduction in grain boundary Cr depletion after proton irradiations for Up to 3 dpa at 400 degrees C and 1 dpa at 500 degrees C. The predictions of a radiation-induced segregation (RIS) model were also consistent with experiments in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. However, the experiments showed that the effectiveness of the solute additions disappeared above 3 dpa at 400 degrees C and above 1 dpa at 500 degrees C. The loss Of Solute effectiveness with increasing dose is attributed to a reduction in the amount of oversized solute from the matrix due to growth of carbide precipitates. Atom probe tomography measurements indicated a reduction in amount of oversized Solute in solution as a function of irradiation dose. The observations were supported by diffusion analysis suggesting that significant solute diffusion by the vacancy flux to precipitate surfaces Occurs on the time scales of proton irradiations. With a decrease in available Solute in solution, improved agreement between the predictions of the RIS model and measurements were consistent with the solute-vacancy trapping process, as the mechanism for enhanced recombination and suppression of RIS. (C) 2009 Elsevier B.V. All rights reserved. C1 [Was, G. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Hackett, M. J.; Busby, J. T.; Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hackett, MJ (reprint author), Knolls Atom Power Lab, POB 4072, Schenectady, NY 12309 USA. EM mjhacket@umich.edu NR 41 TC 19 Z9 19 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 265 EP 278 DI 10.1016/j.jnucmat.2009.02.010 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200012 ER PT J AU Zhang, Y Lian, J Zhu, Z Bennett, WD Saraf, LV Rausch, JL Hendricks, CA Ewing, RC Weber, WJ AF Zhang, Y. Lian, J. Zhu, Z. Bennett, W. D. Saraf, L. V. Rausch, J. L. Hendricks, C. A. Ewing, R. C. Weber, W. J. TI Response of strontium titanate to ion and electron irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID HEAVY-IONS; STOPPING POWERS; DISPLACEMENT ENERGIES; DISORDER CREATION; NUCLEAR-WASTE; SRTIO3; OXIDES; WATER; IMMOBILIZATION; PHOTOCATALYST AB The response of strontium titanate (srTiO(3)) to ion and electron irradiation is studied at room temperature. For an accurate energy to depth conversion anti a better determination of ion-induced disorder profile from Rutherford backscattering spectrometry measurement, a detailed iterative procedure is described and applied to ion channeling spectra to determine the dechanneling yield and the disorder profiles for the Sr and Ti sublattices. The result shows a large underestimation in disorder depth, similar to 40% at the damage peak, which indicates a large overestimation of the electronic stopping power for 1.0 MeV Au ions in SrTiO(3) predicted by the SRIM (Stopping and Range of Ions in Matter) code. Overestimation of heavy ion stopping power may lead to an overestimation of the critical dose for amorphization. The Current Study also demonstrates possible ionization effects in SrTiO(3) under ion and electron irradiation. Pre-amorphized SrTiO(3) exhibits strong ionization-induced epitaxial recovery at the amorphous/crystalline interface Under electron irradiation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Y.; Zhu, Z.; Bennett, W. D.; Saraf, L. V.; Rausch, J. L.; Hendricks, C. A.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lian, J.] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Zhang, Y (reprint author), Pacific NW Natl Lab, POB 999,MS K8 87, Richland, WA 99352 USA. EM Yanwen.Zhang@pnl.gov RI Lian, Jie/A-7839-2010; Weber, William/A-4177-2008; Zhu, Zihua/K-7652-2012 OI Weber, William/0000-0002-9017-7365; NR 52 TC 31 Z9 31 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 303 EP 310 DI 10.1016/j.jnucmat.2009.02.014 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200016 ER PT J AU Gan, J Yang, Y Dickson, C Allen, T AF Gan, Jian Yang, Yong Dickson, Clayton Allen, Todd TI Proton irradiation study of GFR candidate ceramics SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy AB This work investigated the microstructural response of SiC, ZrC and ZrN irradiated with 2.6 MeV protons at 800 degrees C to a fluence of 2.75 x 10(19) protons/cm(2), corresponding to 0.71-1.8 displacement per atom (dpa). depending on the material. The change of lattice constant evaluated using HOLZ patterns is not observed. In comparison to Kr ion irradiation at 800 degrees C to 10 dpa from the previous studies, the proton irradiated ZrC and ZrN at 1.8 dpa show less irradiation damage to the lattice structure. The proton irradiated ZrC exhibits faulted loops which are not observed in the Kr ion irradiated sample. ZrN shows the least microstructural change from proton irradiation. The microstructure of 6H-SiC irradiated to 0.71 dpa consists of black dot defects at high density. Published by Elsevier B.V. C1 [Gan, Jian] Idaho Natl Lab, Idaho Falls, ID USA. [Yang, Yong; Dickson, Clayton; Allen, Todd] Univ Wisconsin, Madison, WI USA. RP Gan, J (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM Jian.Gan@inl.gov OI Allen, Todd/0000-0002-2372-7259 NR 12 TC 19 Z9 19 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 317 EP 325 DI 10.1016/j.jnucmat.2009.02.021 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200018 ER PT J AU Jiang, W Weber, WJ AF Jiang, W. Weber, W. J. TI Anisotropy of disorder accumulation and recovery in 6H-SiC irradiated with Au2+ ions at 140 K SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Particle Beam Induced Radiation Effects in Materials held at the Annual Meeting of the Mineral-Metals-and-Materials-Society CY MAR 10-12, 2008 CL New Orleans, LA SP Minerals, Met & Mat Soc, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, US DOE, Off Nucl Energy ID SILICON-CARBIDE; DAMAGE ACCUMULATION; ANNEALING BEHAVIOR; CERAMICS; CARBON AB Single crystal < 0001 >-oriented 6H-SiC was irradiated with Au2+ ions to fluences of 0.032, 0.058 and 0.105 ions/nm(2) at 140 K and was subsequently annealed at various temperatures up to 500 K. The relative disorder on both the Si and C sublattices has been determined simultaneously using in situ D+ ion channeling along the < 0001 > and < 2 (2) over bar 01 > axes. A higher level of disorder on both the Si and C sublattices is observed along the < 2 (2) over bar 01 >. There is a preferential C disordering and more C interstitials are aligned with < 0001 >. Room-temperature recovery along < 2 (2) over bar 01 > occurs, which is associated with the < 0001 >-aligned interstitials that annihilate due to close-pair recombination. Disorder recovery between 400 and 500 K is primarily attributed to annihilation of interstitials that are misaligned with < 0001 > and to epitaxial crystallization. Effects of stacking order in SiC on disorder accumulation are insignificant; however, noticeable differences of low-temperature recovery in Au2+-irradiated 6H-SiC and 4H-SiC are observed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Jiang, W.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jiang, W (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM weilin.jiang@pnl.gov RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; Jiang, Weilin/0000-0001-8302-8313 NR 31 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2009 VL 389 IS 2 BP 332 EP 335 DI 10.1016/j.jnucmat.2009.02.023 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 451ZU UT WOS:000266510200020 ER PT J AU Peretyazhko, T Zachara, JM Boily, JF Xia, Y Gassman, PL Arey, BW Burgos, WD AF Peretyazhko, T. Zachara, J. M. Boily, J. -F. Xia, Y. Gassman, P. L. Arey, B. W. Burgos, W. D. TI Mineralogical transformations controlling acid mine drainage chemistry SO CHEMICAL GEOLOGY LA English DT Article DE Acid mine drainage; Schwertmannite; Mineralogical transformations ID SCHWERTMANNITE TRANSFORMATION; DISSOLVED METALS; SULFATE WATERS; IRON; GOETHITE; FE(II); MINERALIZATION; OXIDATION; TAILINGS; JAROSITE AB The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (1711)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed schwertmannite and goethite as the principal Fe(III) phases in the sediments. Schwertmannite particles occurred as sub-micron sized spheroids. Their transformation into goethite occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The resulting goethite in GB sediments was also of spherical morphology and resulted from an in situ phase transformation involving the conversion of bulk-bound schwertmannite sulfate ions into goethite surface complexes. Chemical extractions moreover showed that the poorly-crystallized goethite particles were subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and aerobic AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FIR sediments during laboratory incubation. The incubation experiments demonstrated that schwertmannite transformation controlled AMD water chemistry under no-flow, batch conditions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Peretyazhko, T.; Zachara, J. M.; Boily, J. -F.; Xia, Y.; Gassman, P. L.; Arey, B. W.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Burgos, W. D.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. RP Peretyazhko, T (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99354 USA. EM tetyana.peretyazhko@pnl.gov FU National Science Foundation [CHE-0431328]; US. Department of Energy, Biological and Environmental Research FX We thank John Senko and Melanie Lucas (Pennsylvania State University) for providing us with sediment and water samples. We are grateful to Tom Resch (PNNQ for the thin sections preparation. We thank Ravi Kukkadapu (PNNL) for the valuable discussions on the interpretation of AMD mineralogy data. XRD, SEM and FTIR analysis were performed in the Environmental Molecular Sciences Laboratory (EMSL) that is managed and supported by OBER-ERSD. PNNL is operated for the DOE by Battelle. This work was partially supported by the National Science Foundation under Grant No. CHE-0431328 and the US. Department of Energy, Biological and Environmental Research (BER). NR 32 TC 37 Z9 37 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD MAY 30 PY 2009 VL 262 IS 3-4 BP 169 EP 178 DI 10.1016/j.chemgeo.2009.01.017 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 460JF UT WOS:000267183300006 ER PT J AU Uchida, T Wang, Y Nishiyama, N Funakoshi, K Kaneko, H Nozawa, A Von Dreele, RB Rivers, ML Sutton, SR Yamada, A Kunimoto, T Irifune, T Inoue, T Li, BS AF Uchida, Takeyuki Wang, Yanbin Nishiyama, Norimasa Funakoshi, Ken-ichi Kaneko, Hiroshi Nozawa, Akifumi Von Dreele, Robert B. Rivers, Mark L. Sutton, Steve R. Yamada, Akihiro Kunimoto, Takehiro Irifune, Tetsuo Inoue, Toru Li, Baosheng TI Non-cubic crystal symmetry of CaSiO3 perovskite up to 18 GPa and 1600 K SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE CaSiO3; perovskite; 2-dimensional diffraction; Rietveld refinement; space group; high pressure ID TEMPERATURE PHASE-TRANSITIONS; POWDER NEUTRON-DIFFRACTION; LOWER MANTLE; HIGH-PRESSURE; EQUATION; STATE; STABILITY; COMPRESSION; SRZRO3 AB In situ synchrotron X-ray diffraction experiments have been conducted on CaSiO3 perovskite (CaPv) in a double-stage multianvil apparatus up to 18 GPa and 1600 K using a newly developed step-scan diffraction technique, which utilizes an energy-dispersive setup with a solid-state detector and collimator assemblies to collect angle-dispersive diffraction data over a wide range of photon energies. Superlattice reflections were resolved throughout the pressure (P) and temperature (T) range of the experiments, confirming that the crystal symmetry of CaPv is neither cubic nor tetragonal. A combination of analyses of the complete two-dimensional intensity datasets (photon energy from 20 to 160 keV and 2 theta angle from 3.0 degrees to 9.0 degrees) and Rietveld refinements at selected wavelengths revealed that the most likely space group of CaPv in the experimental P-T range, and therefore in the Earth's transition zone, is either Pbnm or Cmcm. The difference between these two space groups was too small to resolve with our technique. (C) 2009 Elsevier B.V. All rights reserved. C1 [Uchida, Takeyuki; Wang, Yanbin; Nishiyama, Norimasa; Rivers, Mark L.; Sutton, Steve R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Funakoshi, Ken-ichi; Nozawa, Akifumi] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. [Kaneko, Hiroshi] Japan Atom Energy Res Inst, Sayo, Hyogo 6795198, Japan. [Von Dreele, Robert B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yamada, Akihiro; Kunimoto, Takehiro; Irifune, Tetsuo; Inoue, Toru] Ehime Univ, Geodynam Res Ctr, Matsuyama, Ehime 7908577, Japan. [Li, Baosheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RP Uchida, T (reprint author), Natl Inst Adv Ind Sci & Technol, Tokyo, Japan. EM t-uchida@aist.go.jp RI Li, Baosheng/C-1813-2013; Nishiyama, Norimasa/A-7627-2016; OI Wang, Yanbin/0000-0001-5716-3183 FU National Science Foundation - Earth Sciences [EAR0622171]; Department of Energy - Geosciences [DE-FG0294ER14466]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [0652574, 0711057] FX We thank SPring-8 personnel for their support during the experiments. SEM observation was conducted at Geodynamics Research Center, Ehime University. We thank Mr. Kawamura for his assistance of SEM operation and reviewers for constructive discussion. We also thank two reviewers for thoughtful comments and suggestions. The data collection and analytical techniques were developed at GeoSoilEnviroCARS (GSECARS), the University of Chicago. GSECARS is supported by the National Science Foundation - Earth Sciences (EAR0622171), Department of Energy - Geosciences (DE-FG0294ER14466). Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work partially supported by the NSF grants EAR 0652574 and 0711057 (YW). NR 40 TC 10 Z9 10 U1 4 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 30 PY 2009 VL 282 IS 1-4 BP 268 EP 274 DI 10.1016/j.epsl.2009.03.027 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 457BJ UT WOS:000266899800027 ER PT J AU Zhang, Y Fu, R Yu, HB Qian, Y Dickinson, R Dias, MAFS Dias, PLD Fernandes, K AF Zhang, Yan Fu, Rong Yu, Hongbin Qian, Yun Dickinson, Robert Silva Dias, Maria Assuncao F. da Silva Dias, Pedro L. Fernandes, Katia TI Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPICAL SOUTH-AMERICA; LA-PLATA BASIN; MODIS RETRIEVALS; GOCART MODEL; WET SEASON; SMOKE; SATELLITE; PRECIPITATION; SIMULATIONS; ONSET AB Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth >0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence in northwestern Amazonia (5 degrees S-5 degrees N, 60 degrees W-70 degrees W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina. Citation: Zhang, Y., R. Fu, H. Yu, Y. Qian, R. Dickinson, M. A. F. Silva Dias, P. L. da Silva Dias, and K. Fernandes (2009), Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, doi: 10.1029/2009GL037180. C1 [Zhang, Yan; Fernandes, Katia] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Fu, Rong; Dickinson, Robert] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78705 USA. [Yu, Hongbin] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Yu, Hongbin] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.] Univ Sao Paulo, Dept Atmospher Sci, BR-05508900 Sao Paulo, Brazil. [Qian, Yun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, Y (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. EM yan.zhang@gatech.edu RI qian, yun/A-5056-2010; Yu, Hongbin/C-6485-2008; Zhang, Yan/C-4792-2012; Silva Dias, Maria /C-5998-2012; qian, yun/E-1845-2011; Fu, Rong/B-4922-2011 OI Yu, Hongbin/0000-0003-4706-1575; FU NASA [NNG04GK90G, NNG04GB89G]; U. S. DOE [DE-AC06-76RLO1830] FX This work was supported by the NASA Aura and Atmospheric Composition Program and the Earth System Science Research using data and products from Terra, Aqua and ACRIMSAT NNG04GK90G and NNG04GB89G projects. The Pacific Northwest National Laboratory (PNNL) is operated for the U. S. DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830. NR 28 TC 28 Z9 28 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 30 PY 2009 VL 36 AR L10814 DI 10.1029/2009GL037180 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 452CW UT WOS:000266518400001 ER PT J AU Dillon, MB AF Dillon, Michael B. TI The role of deposition in limiting the hazard extent of dense-gas plumes SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Dense gas; Dry deposition; Chlorine; Urban ID THAN-AIR GASES; DRY DEPOSITION; DISPERSION; MODEL; CHLORINE; VEGETATION; OBSTACLES; SURFACES; HYDROGEN; CLOUDS AB Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur-particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies. (C) 2008 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dillon, MB (reprint author), Lawrence Livermore Natl Lab, POB 808,L-103, Livermore, CA 94551 USA. EM dillon7@llnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 42 TC 5 Z9 5 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD MAY 30 PY 2009 VL 164 IS 2-3 BP 1293 EP 1303 DI 10.1016/j.jhazmat.2008.09.044 PG 11 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 435QM UT WOS:000265358400126 PM 18976854 ER PT J AU Peters, JS Cook, BA Harringa, JL Russell, AM AF Peters, J. S. Cook, B. A. Harringa, J. L. Russell, A. M. TI Microstructure and wear resistance of low temperature hot pressed TiB2 SO WEAR LA English DT Article DE Borides; Titanium diboride; Hot pressing; Dry erosion ID SOLID-PARTICLE EROSION; TITANIUM DIBORIDE; MECHANICAL-PROPERTIES; COMPUTER-SIMULATION; SILICON-CARBIDE; SINTERING AID; CERAMICS; POWDERS; DENSIFICATION; COMPOSITES AB Fine-grained TiB2 compacts have been hot pressed to 98-99% theoretical density at 1400 degrees C. The compacts were consolidated from sub-micron powders prepared by a high-energy ball milling technique. Titanium diboride (TiB2) powders were obtained from the milling of commercially synthesized TiB2 and also from the mechanical alloying (MA) of Ti and B precursors. The formation of TiB2 from Ti and B powders by mechanical alloying was found to reach completion after 3 h, and wear debris from steel mill vials and media introduced 0.8 to 1.5 wt% Fe in the sintered compacts. The dry erosion resistance of the highest density compacts was examined using an ASTM standard test with an abrasive jet of Al2O3 impinging at a normal angle of incidence. Steady-state erosion rates of 0.5 mm(3)/kg of erodent compare favorably with the measured value of 9 mm(3)/kg for commercial, fine-grained WC-Co cermets under identical conditions. fracture surfaces, and erosion craters were also examined by electron microscopy. Microstructures, Published by Elsevier B.V. C1 [Peters, J. S.; Russell, A. M.] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Peters, J. S.; Cook, B. A.; Harringa, J. L.; Russell, A. M.] Iowa State Univ, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Peters, JS (reprint author), Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM jphomer@iastate.edu FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Industrial Technology Program; Office of Energy Efficiency and Renewable Energy FX Special thanks to Nathaniel Oster of Iowa Sx-ate University for sample testing. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract number DE-AC02-07CH11358. This work was funded in-part by the Industrial Technology Program, Office of Energy Efficiency and Renewable Energy. NR 33 TC 8 Z9 8 U1 2 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD MAY 30 PY 2009 VL 266 IS 11-12 BP 1171 EP 1177 DI 10.1016/j.wear.2009.03.027 PG 7 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 456NY UT WOS:000266854900016 ER PT J AU Xie, ZH Swain, MV Swadener, G Munroe, P Hoffman, M AF Xie, Z. -H. Swain, M. V. Swadener, G. Munroe, P. Hoffman, M. TI Effect of microstructure upon elastic behaviour of human tooth enamel SO JOURNAL OF BIOMECHANICS LA English DT Article DE Tooth enamel; Hypomineralisation; Microstructure; Elastic modulus; Crystal orientation ID MECHANICAL-PROPERTIES; PRISM ORIENTATION; MOLAR TEETH; INDENTATION; FRACTURE; NANOINDENTATION; JUNCTION; MODULUS; DENTIN; BONE AB Tooth enamel is the stiffest tissue in the human body with a well-organized microstructure. Developmental diseases, such as enamel hypomineralisation, have been reported to cause marked reduction in the elastic modulus of enamel and consequently impair dental function. We produce evidence, using site-specific transmission electron microscopy (TEM), of difference in microstructure between sound and hypomineralised enamel. Built upon that, we develop a mechanical model to explore the relationship of the elastic modulus of the mineral-protein composite structure of enamel with the thickness of protein layers and the direction of mechanical loading. We conclude that when Subject to complex mechanical loading conditions, sound enamel exhibits consistently high stiffness, which is essential for dental function. A marked decrease in stiffness of hypomineralised enamel is Caused primarily by an increase in the thickness of protein layers between apatite crystals and to a lesser extent by an increase in the effective crystal orientation angle. (C) 2009 Elsevier Ltd, All rights reserved. C1 [Xie, Z. -H.] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia. [Xie, Z. -H.; Swadener, G.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Swain, M. V.] Univ Sydney, Fac Dent, Biomat Res Unit, Sydney, NSW 2006, Australia. [Munroe, P.; Hoffman, M.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Swadener, G.] Aston Univ, Birmingham B4 7ET, W Midlands, England. RP Xie, ZH (reprint author), Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia. EM z.xie@ecu.edu.au RI Hoffman, Mark/E-5021-2012; Xie, Zonghan/D-7873-2013; Munroe, Paul/I-9313-2016; OI Hoffman, Mark/0000-0003-2927-1165; Xie, Zonghan/0000-0001-8647-7958; Munroe, Paul/0000-0002-5091-2513; Swadener, John G/0000-0001-5493-3461 NR 37 TC 31 Z9 32 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD MAY 29 PY 2009 VL 42 IS 8 BP 1075 EP 1080 DI 10.1016/j.jbiomech.2009.02.004 PG 6 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 455DO UT WOS:000266737700017 PM 19345363 ER PT J AU Glosli, J Graziani, F More, R Murillo, M Streitz, F Surh, M AF Glosli, J. Graziani, F. More, R. Murillo, M. Streitz, F. Surh, M. TI Molecular dynamic simulations with radiation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems CY JUL 29-AUG 02, 2008 CL Univ Camerino, Camerino, ITALY HO Univ Camerino ID MONTE-CARLO; SYSTEMS; PLASMA; MODEL AB Hot dense radiative (HDR) plasmas common to inertial confinement fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validations of the models used for describing HDR plasmas are difficult to perform. Direct numerical simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation, but previous work either relies on the collisionless approximation or ignores radiation. We present a first attempt at a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability. C1 [Glosli, J.; Graziani, F.; More, R.; Streitz, F.; Surh, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Murillo, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Glosli, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 21 TC 5 Z9 5 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD MAY 29 PY 2009 VL 42 IS 21 AR 214030 DI 10.1088/1751-8113/42/21/214030 PG 11 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 446NX UT WOS:000266129400031 ER PT J AU Murillo, MS AF Murillo, Michael S. TI Ultrafast phase-space dynamics of ultracold, neutral plasmas SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems CY JUL 29-AUG 02, 2008 CL Univ Camerino, Camerino, ITALY HO Univ Camerino ID MOLECULAR-DYNAMICS; NUCLEAR-FUSION; RELAXATION AB The nonequilibrium phase-space dynamics of neutral, ultracold plasmas are described. The dynamics are placed in the context of the ultrafast dynamics of related systems that can be thought of as photo-initiated ultrafast systems, which include, among others, surfaces that are melted nonthermally, some artificial molecular machines and laser-excited clusters. The picture of energy landscape hopping is described to unify the dynamics of these diverse systems. The specific features of the temperature evolution of an ultracold plasma are then discussed in detail as they compare with the short-time dynamics of the velocity autocorrelation function. Finally, the phase-space dynamics of a one-dimensional ultracold plasma model are visualized via molecular dynamics calculations of phase-space trajectories. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Murillo, MS (reprint author), Los Alamos Natl Lab, Div Phys, POB 1663, Los Alamos, NM 87545 USA. EM murillo@lanl.gov NR 21 TC 5 Z9 5 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD MAY 29 PY 2009 VL 42 IS 21 AR 214054 DI 10.1088/1751-8113/42/21/214054 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 446NX UT WOS:000266129400055 ER PT J AU Arrigoni, E Aichhorn, M Daghofer, M Hanke, W AF Arrigoni, E. Aichhorn, M. Daghofer, M. Hanke, W. TI Phase diagram and single-particle spectrum of CuO2 high-T-c layers: variational cluster approach to the three-band Hubbard model SO NEW JOURNAL OF PHYSICS LA English DT Article ID FUNCTIONAL APPROACH; SUPERCONDUCTORS; OXIDES; PARAMETERS; SYSTEMS AB A detailed numerical study of the three-band Hubbard (3BH) model in the underdoped region is carried out, both in the hole-as well as in the electron-doped case, by means of the variational cluster approach. The phase diagram and the low-energy single-particle spectrum are found to be very similar to recent results for the single-band Hubbard model with next-nearest-neighbor hoppings t'. In particular, we obtain a mixed antiferromagnetic+superconducting phase at low doping with a first-order transition to a pure superconducting phase accompanied by phase separation. Despite the fact that the physically relevant and generally accepted parameters (t(pp)/t(pd), t(pd)/Delta(pd)) of our 3BH-model are not in the small regime, required for a 'downward' projection onto a single-band model, in the single-particle spectrum a clear Zhang-Rice (ZR) singlet band (with a projection on d- and p-orbitals consistent with the phase factor of the ZR singlet wave function) can be seen. It displays an incoherent and a coherent part, in which holes enter upon doping around (pi/2, pi/2). The latter is very similar to the coherent quasi-particle band crossing the Fermi surface in the t-t'-U single-band model, with generally accepted values of the parameters. Doped electrons go instead into the upper Hubbard band, first filling the regions of the Brillouin zone around (pi, 0). This fact can be related to the enhanced robustness of the antiferromagnetic phase as a function of electron doping compared to hole doping. C1 [Arrigoni, E.] Graz Univ Technol, Inst Theoret & Computat Phys, A-8010 Graz, Austria. [Aichhorn, M.] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Daghofer, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daghofer, M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Hanke, W.] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany. RP Arrigoni, E (reprint author), Graz Univ Technol, Inst Theoret & Computat Phys, Petersgasse 16, A-8010 Graz, Austria. EM arrigoni@tugraz.at RI Daghofer, Maria/C-5762-2008; Aichhorn, Markus/L-5872-2013; Arrigoni, Enrico/E-4507-2012 OI Daghofer, Maria/0000-0001-9434-8937; Aichhorn, Markus/0000-0003-1034-5187; Arrigoni, Enrico/0000-0002-1347-3080 FU Austrian Science Fund [P18551-N16, J2760-N16]; DFG [538]; NSF [DMR-0706020] FX This work is supported by the Austrian Science Fund (FWF projects P18551-N16 and J2760-N16), by the DFG Research Unit no. 538, and the NSF grant DMR-0706020. NR 45 TC 23 Z9 23 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 29 PY 2009 VL 11 AR 055066 DI 10.1088/1367-2630/11/5/055066 PG 13 WC Physics, Multidisciplinary SC Physics GA 451GN UT WOS:000266458800014 ER PT J AU Park, T Thompson, JD AF Park, Tuson Thompson, J. D. TI Magnetism and superconductivity in strongly correlated CeRhIn5 SO NEW JOURNAL OF PHYSICS LA English DT Article ID QUANTUM PHASE-TRANSITIONS; HEAVY-FERMION METALS; UNCONVENTIONAL SUPERCONDUCTIVITY; PAULI PARAMAGNETISM; CRITICAL-POINT; CRITICAL FIELD; ELECTRON-SPIN; PRESSURE; CRITICALITY; SCATTERING AB Specific heat studies of CeRhIn5 as functions of pressure and magnetic field have been used to explore the relationship between magnetism and unconventional superconductivity, both of which involve the 4f electron of Ce. Results of these studies cannot be understood as a simple competition for Fermi-surface states and require a new conceptual framework. C1 [Park, Tuson; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. RP Thompson, JD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM tp8701@skku.edu; jdt@lanl.gov RI Park, Tuson/A-1520-2012 FU Korea government [R01-2008-000-10570-0]; Los Alamos Laboratory Directed Research and Development program FX We thank H O Lee, F Ronning and V A Sidorov for communicating unpublished results and acknowledge numerous helpful discussions with colleagues. TP acknowledges a grant from the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government R01-2008-000-10570-0. Work at Los Alamos was performed under the auspices of the US Department of Energy/Office of Science and funded in part by the Los Alamos Laboratory Directed Research and Development program. NR 62 TC 27 Z9 28 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 29 PY 2009 VL 11 AR 055062 DI 10.1088/1367-2630/11/5/055062 PG 16 WC Physics, Multidisciplinary SC Physics GA 451GN UT WOS:000266458800010 ER PT J AU Shakeripour, H Petrovic, C Taillefer, L AF Shakeripour, H. Petrovic, C. Taillefer, Louis TI Heat transport as a probe of superconducting gap structure SO NEW JOURNAL OF PHYSICS LA English DT Article ID QUASI-PARTICLE TRANSPORT; D-WAVE SUPERCONDUCTORS; DENSITY-OF-STATES; THERMAL-CONDUCTIVITY; VORTEX STATE; UPT3; YBA2CU3O6.9; PHASES; ORDER AB The structure of the superconducting gap provides important clues on the symmetry of the order parameter and the pairing mechanism. The presence of nodes in the gap function imposed by symmetry implies an unconventional order parameter, other than s-wave. Here, we show how measurements of the thermal conductivity at very low temperature can be used to determine whether such nodes are present in a particular superconductor, and shed light on their nature and location. We focus on the residual linear term at T -> 0. A finite value in zero magnetic field is strong evidence for symmetry-imposed nodes, and the dependence on impurity scattering can distinguish between a line of nodes or point nodes. Application of a magnetic field probes the low-energy quasiparticle excitations, whether associated with nodes or with a small value of the gap on some part of the Fermi surface, as in a multi-band superconductor. We frame our discussion around archetypal materials: Nb for s-wave, Tl-2201 for d-wave, Sr2RuO4 for p-wave and NbSe2 for multi-band superconductivity. In that framework, we discuss three heavy-fermion superconductors: CeIrIn5, CeCoIn5 and UPt3. C1 [Shakeripour, H.; Taillefer, Louis] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Shakeripour, H.; Taillefer, Louis] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Petrovic, C.; Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Taillefer, L (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. EM Louis.Taillefer@USherbrooke.ca RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU Canadian Institute for Advanced Research; NSERC; FQRNT; CFI; Canada Research Chair FX We thank our collaborators on studies of heat transport in superconductors over the years: Benoit Lussier, Robert Gagnon, Christian Lupien, May Chiao, Brett Ellman, Etienne Boaknin, Cyril Proust, Rob Hill, Makariy Tanatar, Mike Sutherland, Dave Hawthorn, Johnpierre Paglione, Fil Ronning, Shiyan Li, Nicolas Doiron-Leyraud and Kamran Behnia. LT acknowledges the support of the Canadian Institute for Advanced Research and funding from NSERC, FQRNT, CFI and a Canada Research Chair. NR 37 TC 49 Z9 49 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 29 PY 2009 VL 11 AR 055065 DI 10.1088/1367-2630/11/5/055065 PG 10 WC Physics, Multidisciplinary SC Physics GA 451GN UT WOS:000266458800013 ER PT J AU van Heumen, E Meevasana, W Kuzmenko, AB Eisaki, H van der Marel, D AF van Heumen, E. Meevasana, W. Kuzmenko, A. B. Eisaki, H. van der Marel, D. TI Doping-dependent optical properties of Bi2201 SO NEW JOURNAL OF PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CUPRATE SUPERCONDUCTORS; T-C; NORMAL-STATE; BI2SR2CACU2O8+DELTA; ELECTRODYNAMICS; DISPERSION AB An experimental study of the in-plane optical conductivity of (Pb(x), Bi(2-x))(La(y)Sr(2-y)) CuO(6+delta) (Bi2201) is presented for a broad doping and temperature range. The in-plane conductivity is analyzed within a strong coupling formalism. We address the interrelationship between the optical conductivity (sigma(omega)), the single particle self-energy and the electron-boson spectral function. We find that the frequency and temperature dependence can be well described within this formalism. We present a universal description of optical, angle resolved photoemission spectroscopy (ARPES) and tunneling spectra. The full frequency and temperature dependence of the optical spectra and single particle self-energy is shown to result from an electron-boson spectral function, which shows a strong doping dependence and weak temperature dependence. C1 [van Heumen, E.; Kuzmenko, A. B.; van der Marel, D.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Meevasana, W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Meevasana, W.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki, Japan. RP van Heumen, E (reprint author), Univ Geneva, Dept Phys Mat Condensee, Quai Ernest Ansermet 24, CH-1211 Geneva 4, Switzerland. EM e.vanheumen@uva.nl RI van der Marel, Dirk/G-4618-2012 OI van der Marel, Dirk/0000-0001-5266-9847 FU Swiss National Science Foundation [200020-113293]; National Center of Competence in Research (NCCR) Materials with Novel Electronic Properties-MaNEP FX We gratefully acknowledge stimulating discussions with J Zaanen, D J Scalapino, C M Varma, A V Chubukov, T P Devereaux and Z X Shen. This work was supported by the Swiss National Science Foundation through grant no. 200020-113293 and the National Center of Competence in Research (NCCR) Materials with Novel Electronic Properties-MaNEP. NR 72 TC 12 Z9 12 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 29 PY 2009 VL 11 AR 055067 DI 10.1088/1367-2630/11/5/055067 PG 19 WC Physics, Multidisciplinary SC Physics GA 451GN UT WOS:000266458800015 ER PT J AU Adamson, P Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Bishai, M Brice, SJ Brown, BC Bugel, L Cao, J Choudhary, BC Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fleming, BT Ford, R Gallagher, HR Garcia, FG Garvey, GT Green, C Green, JA Harris, D Hart, TL Hawker, E Hylen, J Imlay, R Johnson, RA Karagiorgi, G Kasper, P Katori, T Kobilarcik, T Kopp, S Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Liu, Y Loiacono, L Louis, WC Marchionni, A Mahn, KBM Marsh, W McGregor, G Messier, MD Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Nelson, JK Nelson, RH Nguyen, VT Nienaber, P Nowak, JA Ouedraogo, S Patterson, RB Pavlovic, Z Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smart, W Smith, D Sodeberg, M Sorel, M Spentzouris, P Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M Vahle, P Van de Water, R Viren, B Wascko, MO White, DH Wilking, MJ Yang, HJ Yumiceva, FX Zeller, GP Zimmerman, ED Zwaska, R AF Adamson, P. Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Bishai, M. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Choudhary, B. C. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Gallagher, H. R. Garcia, F. G. Garvey, G. T. Green, C. Green, J. A. Harris, D. Hart, T. L. Hawker, E. Hylen, J. Imlay, R. Johnson, R. A. Karagiorgi, G. Kasper, P. Katori, T. Kobilarcik, T. Kopp, S. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Liu, Y. Loiacono, L. Louis, W. C. Marchionni, A. Mahn, K. B. M. Marsh, W. McGregor, G. Messier, M. D. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Nelson, J. K. Nelson, R. H. Nguyen, V. T. Nienaber, P. Nowak, J. A. Ouedraogo, S. Patterson, R. B. Pavlovic, Z. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smart, W. Smith, D. Sodeberg, M. Sorel, M. Spentzouris, P. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. Vahle, P. Van de Water, R. Viren, B. Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Yumiceva, F. X. Zeller, G. P. Zimmerman, E. D. Zwaska, R. TI Measurement of nu(mu) and nu(e) Events in an Off-Axis Horn-Focused Neutrino Beam SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beam line at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle (6.3 degrees) with respect to the NuMI beam axis. Samples of charged-current quasielastic nu(mu) and nu(e) interactions are analyzed and found to be in agreement with expectation. This provides a direct verification of the expected pion and kaon contributions to the neutrino flux and validates the modeling of the NuMI off-axis beam. C1 [Adamson, P.; Brice, S. J.; Brown, B. C.; Choudhary, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Harris, D.; Hylen, J.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marchionni, A.; Marsh, W.; Mills, F.; Moore, C. D.; Prebys, E.; Russell, A. D.; Smart, W.; Spentzouris, P.; Stefanski, R. J.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Bishai, M.; Viren, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Djurcic, Z.; Mahn, K. B. M.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Messier, M. D.; Polly, C. C.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Green, C.; Green, J. A.; Louis, W. C.; McGregor, G.; Mills, G. B.; Ray, H.; Sandberg, V.; Schirato, R.; Van de Water, R.; White, D. H.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Conrad, J. M.; Karagiorgi, G.; Monroe, J.; Nguyen, V. T.] MIT, Cambridge, MA 02139 USA. [Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Kopp, S.; Loiacono, L.; Pavlovic, Z.] Univ Texas Austin, Austin, TX 78712 USA. [Gallagher, H. R.] Tufts Univ, Medford, MA 02155 USA. [Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Hawker, E.] Western Illinois Univ, Macomb, IL 61455 USA. [Nelson, J. K.; Vahle, P.; Yumiceva, F. X.] Coll William & Mary, Williamsburg, VA 23187 USA. [Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Sodeberg, M.] Yale Univ, New Haven, CT 06520 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Nowak, Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015; OI Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Nowak, Jaroslaw/0000-0001-8637-5433; Wascko, Morgan/0000-0002-8348-4447; Van de Water, Richard/0000-0002-1573-327X; Schirato, Richard/0000-0002-4216-0235 FU Fermilab; Department of Energy; National Science Foundation FX We acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation. NR 15 TC 17 Z9 17 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 29 PY 2009 VL 102 IS 21 AR 211801 DI 10.1103/PhysRevLett.102.211801 PG 5 WC Physics, Multidisciplinary SC Physics GA 451WM UT WOS:000266501600010 PM 19519094 ER PT J AU Brun, TA Harrington, J Wilde, MM AF Brun, Todd A. Harrington, Jim Wilde, Mark M. TI Localized Closed Timelike Curves Can Perfectly Distinguish Quantum States SO PHYSICAL REVIEW LETTERS LA English DT Article ID MECHANICS AB We show that qubits traveling along closed timelike curves are a resource that a party can exploit to distinguish perfectly any set of quantum states. As a result, an adversary with access to closed timelike curves can break any prepare-and-measure quantum key distribution protocol. Our result also implies that a party with access to closed timelike curves can violate the Holevo bound. C1 [Brun, Todd A.; Wilde, Mark M.] Univ So Calif, Dept Elect Engn, Inst Commun Sci, Los Angeles, CA 90089 USA. [Harrington, Jim] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wilde, Mark M.] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. RP Brun, TA (reprint author), Univ So Calif, Dept Elect Engn, Inst Commun Sci, Los Angeles, CA 90089 USA. RI Brun, Todd/C-3943-2008; OI Wilde, Mark/0000-0002-3916-4462 FU NSF [0545845, CCF-0448658]; National Research Foundation; Ministry of Education, Singapore FX We thank Dave Bacon, Steve Flammia, Charlie Bennett, Tim Ralph, John Preskill, and Jonathan Oppenheim for helpful discussions. M. M. W. acknowledges support from NSF Grant No. 0545845, from the National Research Foundation and Ministry of Education, Singapore, and thanks Martin Rotteler and NEC Laboratories America for hosting him as a visitor. T. A. B. received support from NSF Grant No. CCF-0448658. NR 14 TC 30 Z9 30 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 29 PY 2009 VL 102 IS 21 AR 210402 DI 10.1103/PhysRevLett.102.210402 PG 4 WC Physics, Multidisciplinary SC Physics GA 451WM UT WOS:000266501600002 PM 19519086 ER PT J AU Ketelhut, S Greenlees, PT Ackermann, D Antalic, S Clement, E Darby, IG Dorvaux, O Drouart, A Eeckhaudt, S Gall, BJP Gorgen, A Grahn, T Gray-Jones, C Hauschild, K Herzberg, RD Hessberger, FP Jakobsson, U Jones, GD Jones, P Julin, R Juutinen, S Khoo, TL Korten, W Leino, M Leppaanen, AP Ljungvall, J Moon, S Nyman, M Obertelli, A Pakarinen, J Parr, E Papadakis, P Peura, P Piot, J Pritchard, A Rahkila, P Rostron, D Ruotsalainen, P Sandzelius, M Saren, J Scholey, C Sorri, J Steer, A Sulignano, B Theisen, C Uusitalo, J Venhart, M Zielinska, M Bender, M Heenen, PH AF Ketelhut, S. Greenlees, P. T. Ackermann, D. Antalic, S. Clement, E. Darby, I. G. Dorvaux, O. Drouart, A. Eeckhaudt, S. Gall, B. J. P. Goergen, A. Grahn, T. Gray-Jones, C. Hauschild, K. Herzberg, R. -D. Hessberger, F. P. Jakobsson, U. Jones, G. D. Jones, P. Julin, R. Juutinen, S. Khoo, T. -L. Korten, W. Leino, M. Leppaenen, A. -P. Ljungvall, J. Moon, S. Nyman, M. Obertelli, A. Pakarinen, J. Parr, E. Papadakis, P. Peura, P. Piot, J. Pritchard, A. Rahkila, P. Rostron, D. Ruotsalainen, P. Sandzelius, M. Saren, J. Scholey, C. Sorri, J. Steer, A. Sulignano, B. Theisen, Ch. Uusitalo, J. Venhart, M. Zielinska, M. Bender, M. Heenen, P. -H. TI gamma-Ray Spectroscopy at the Limits: First Observation of Rotational Bands in Lr-255 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL DATA READOUT; SUPERHEAVY ELEMENTS; HEAVY-ELEMENTS; NUCLEI; ISOTOPES; NO-254; STABILITY; ISOMERS AB The rotational band structure of Lr-255 has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, Lr-255 is the heaviest nucleus to be studied in this manner. One rotational band has been unambiguously observed and strong evidence for a second rotational structure was found. The structures are tentatively assigned to be based on the 1/2(-)[521] and 7/2(-)[514] Nilsson states, consistent with assignments from recently obtained alpha decay data. The experimental rotational band dynamic moment of inertia is used to test self-consistent mean-field calculations using the Skyrme SLy4 interaction and a density-dependent pairing force. C1 [Ketelhut, S.; Greenlees, P. T.; Eeckhaudt, S.; Grahn, T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Leino, M.; Leppaenen, A. -P.; Nyman, M.; Pakarinen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Ackermann, D.; Hessberger, F. P.] Gesell Schwerionenforsch GSI, D-64291 Darmstadt, Germany. [Antalic, S.; Venhart, M.] Comenius Univ, Dept Nucl Phys & Biophys, Bratislava 84248, Slovakia. [Clement, E.; Drouart, A.; Goergen, A.; Korten, W.; Ljungvall, J.; Obertelli, A.; Sulignano, B.; Theisen, Ch.] CEA, Ctr Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Darby, I. G.; Gray-Jones, C.; Herzberg, R. -D.; Jones, G. D.; Moon, S.; Parr, E.; Papadakis, P.; Pritchard, A.; Rostron, D.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Dorvaux, O.; Gall, B. J. P.; Piot, J.] Inst Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France. [Hauschild, K.] CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Khoo, T. -L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Sandzelius, M.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Steer, A.] Univ York, Dept Phys, York YO1 5DD, N Yorkshire, England. [Zielinska, M.] Warsaw Univ, Heavy Ion Lab, PL-02093 Warsaw, Poland. [Bender, M.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France. [Bender, M.] CNRS, Ctr Etud Nucl Bordeaux Gradignan, UMR5797, IN2P3, F-33175 Gradignan, France. [Heenen, P. -H.] Univ Libre Bruxelles, Serv Phys Nucl Theor, B-1050 Brussels, Belgium. RP Ketelhut, S (reprint author), Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. EM steffen.ketelhut@phys.jyu.fi RI Bender, Michael/B-9004-2009; Hauschild, Karl/A-6726-2009; Pakarinen, Janne/F-6695-2010; Herzberg, Rolf-Dietmar/E-1558-2011; KORTEN, Wolfram/H-3043-2013; Scholey, Catherine/G-2720-2014; THEISEN, Christophe/A-9343-2015 OI Pakarinen, Janne/0000-0001-8944-8757; Scholey, Catherine/0000-0002-8743-6071; THEISEN, Christophe/0000-0002-8509-1022 FU EU-FP6-I3 [506065]; Academy of Finland [111965, 209430]; E.C Marie Curie Fellowship; UK EPSRC; U.S. Department of Energy [DE-AC02-06CH11357]; Slovak Research and Development Agency [APVV-20-006205]; VEGA [1/4018/07]; UK/France [EPSRC/IN2P3]; CNRS/IN2P3 FX This work has been supported by the EU-FP6-I3 project EURONS No. 506065, the Academy of Finland [CoE Nuclear and Accelerator Based Physics Programme at JYFL, grants to P. T. G (111965) and C. S (209430)], the E.C Marie Curie Fellowship, the UK EPSRC, and the U.S. Department of Energy (Contract No. DE-AC02-06CH11357). M. V and S. A were supported by the Slovak Research and Development Agency (Contract No. APVV-20-006205) and VEGA (Contract No. 1/4018/07). We thank the UK/France (EPSRC/IN2P3) Loan Pool and the GAMMAPOOL European Spectroscopy Resource for the loan of detectors for JUROGAM. This work has benefited from the use of TNT2-D cards, developed and financed by CNRS/IN2P3 for the GABRIELA project. NR 30 TC 25 Z9 28 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 29 PY 2009 VL 102 IS 21 AR 212501 DI 10.1103/PhysRevLett.102.212501 PG 4 WC Physics, Multidisciplinary SC Physics GA 451WM UT WOS:000266501600014 PM 19519098 ER PT J AU Li, WL Vicente, CL Xia, JS Pan, W Tsui, DC Pfeiffer, LN West, KW AF Li, Wanli Vicente, C. L. Xia, J. S. Pan, W. Tsui, D. C. Pfeiffer, L. N. West, K. W. TI Scaling in Plateau-to-Plateau Transition: A Direct Connection of Quantum Hall Systems with the Anderson Localization Model SO PHYSICAL REVIEW LETTERS LA English DT Article ID UNIVERSAL CONDUCTANCE FLUCTUATIONS; METAL-INSULATOR-TRANSITION; 2 DIMENSIONS; EDGE STATES; QUASI-PARTICLE; LENGTH SCALES; LANDAU-LEVEL; CONDUCTIVITY; TEMPERATURE; RESISTANCE AB The quantum Hall-plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with kappa=0.42 was observed from 1.2 K down to 12 mK. This perfect scaling terminates sharply at a saturation temperature of T(s)similar to 10 mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (L(phi)proportional to T(-p/2)) reaches the sample size (W) of millimeter scale. From a size dependent study, T(s)proportional to W(-1) was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured kappa and p, is nu=2.38, and the dynamic critical exponent z=1. C1 [Li, Wanli; Tsui, D. C.] Princeton Univ, Princeton, NJ 08544 USA. [Vicente, C. L.; Xia, J. S.] Univ Florida, Gainesville, FL 32611 USA. [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pfeiffer, L. N.; West, K. W.] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA. [Vicente, C. L.; Xia, J. S.] NHMFL, Gainesville, FL 32611 USA. RP Li, WL (reprint author), Princeton Univ, Princeton, NJ 08544 USA. EM sciwanli@gmail.com FU NSF; DOE [DE-FG-02-98ER45683] FX This work was supported by the NSF and DOE, and Wanli Li was supported on the DOE Grant No. DE-FG-02-98ER45683. We thank H. L. Stormer, X. Wan, and A. Pruisken for inspiring discussions. W. P. was supported by DOE/BES at Sandia, a multiprogram laboratory operated by Lockheed Martin for the DOE/NNSA under Contract No. DE-AC04-94AL85000. Part of the work was done at the NHMFL high B/T facilities. NR 39 TC 64 Z9 64 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 29 PY 2009 VL 102 IS 21 AR 216801 DI 10.1103/PhysRevLett.102.216801 PG 4 WC Physics, Multidisciplinary SC Physics GA 451WM UT WOS:000266501600039 PM 19519123 ER PT J AU O'Farrell, ECT Tompsett, DA Sebastian, SE Harrison, N Capan, C Balicas, L Kuga, K Matsuo, A Kindo, K Tokunaga, M Nakatsuji, S Csanyi, G Fisk, Z Sutherland, ML AF O'Farrell, E. C. T. Tompsett, D. A. Sebastian, S. E. Harrison, N. Capan, C. Balicas, L. Kuga, K. Matsuo, A. Kindo, K. Tokunaga, M. Nakatsuji, S. Csanyi, G. Fisk, Z. Sutherland, M. L. TI Role of f Electrons in the Fermi Surface of the Heavy Fermion Superconductor beta-YbAlB4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION AB We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4. We compare the data, obtained at fields from 10 to 45 T, to band structure calculations performed using the local density approximation. Analysis of the data suggests that f holes participate in the Fermi surface up to the highest magnetic fields studied. We comment on the significance of these findings for the unconventional superconducting properties of this material. C1 [O'Farrell, E. C. T.; Tompsett, D. A.; Sebastian, S. E.; Sutherland, M. L.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Capan, C.; Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Balicas, L.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Kuga, K.; Matsuo, A.; Kindo, K.; Tokunaga, M.; Nakatsuji, S.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Csanyi, G.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Harrison, N.] Los Alamos Natl Lab, NHMFL, MS E536, Los Alamos, NM 87545 USA. RP O'Farrell, ECT (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. RI O'Farrell, Eoin/H-6711-2012; Tokunaga, Masashi/C-6821-2014; OI O'Farrell, Eoin/0000-0003-2216-8958; Tokunaga, Masashi/0000-0002-1401-9381; Harrison, Neil/0000-0001-5456-7756 FU EPSRC; Royal Society; I2CAM NSF [DMR-0645461]; Trinity College Cambridge; Florida State University; JSPS [18684020]; MEXT of Japan [17071003, 19014006] FX We thank S. K. Goh, H. Harima, G. G. Lonzarich, and A. P. Mackenzie for discussions, and R. G. Goodrich for magnet time. This work was supported by the EPSRC, the Royal Society, I2CAM NSF Grant No. DMR-0645461, Trinity College Cambridge, Florida State University, JSPS (18684020) and MEXT(17071003, 19014006, priority area 451) of Japan. NR 19 TC 21 Z9 22 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 29 PY 2009 VL 102 IS 21 AR 216402 DI 10.1103/PhysRevLett.102.216402 PG 4 WC Physics, Multidisciplinary SC Physics GA 451WM UT WOS:000266501600034 PM 19519118 ER PT J AU Wise, M Calvin, K Thomson, A Clarke, L Bond-Lamberty, B Sands, R Smith, SJ Janetos, A Edmonds, J AF Wise, Marshall Calvin, Katherine Thomson, Allison Clarke, Leon Bond-Lamberty, Benjamin Sands, Ronald Smith, Steven J. Janetos, Anthony Edmonds, James TI Implications of Limiting CO2 Concentrations for Land Use and Energy SO SCIENCE LA English DT Article ID INTEGRATED ASSESSMENT; GREENHOUSE GASES; CLIMATE; AGRICULTURE; REDUCTION; FRAMEWORK AB Limiting atmospheric carbon dioxide (CO2) concentrations to low levels requires strategies to manage anthropogenic carbon emissions from terrestrial systems as well as fossil fuel and industrial sources. We explore the implications of fully integrating terrestrial systems and the energy system into a comprehensive mitigation regime that limits atmospheric CO2 concentrations. We find that this comprehensive approach lowers the cost of meeting environmental goals but also carries with it profound implications for agriculture: Unmanaged ecosystems and forests expand, and food crop and livestock prices rise. Finally, we find that future improvement in food crop productivity directly affects land-use change emissions, making the technology for growing crops potentially important for limiting atmospheric CO2 concentrations. C1 [Wise, Marshall; Calvin, Katherine; Thomson, Allison; Clarke, Leon; Bond-Lamberty, Benjamin; Sands, Ronald; Smith, Steven J.; Janetos, Anthony; Edmonds, James] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Edmonds, J (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM jae@pnl.gov RI Bond-Lamberty, Ben/C-6058-2008; Thomson, Allison/B-1254-2010; OI Bond-Lamberty, Ben/0000-0001-9525-4633; Calvin, Katherine/0000-0003-2191-4189 FU U.S. Department of Energys Office of Science; Electric Power Research Institute FX The authors are grateful to the U.S. Department of Energys Office of Science and to the Electric Power Research Institute for financial support for the research the results of which are reported here. The authors also thank E. Malone for helpful comments on an earlier draft. Of course, the opinions expressed here are the authors alone. NR 23 TC 349 Z9 356 U1 8 U2 130 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 29 PY 2009 VL 324 IS 5931 BP 1183 EP 1186 DI 10.1126/science.1168475 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 450OG UT WOS:000266410100041 PM 19478180 ER PT J AU Bower, DJ Gurnis, M Jackson, JM Sturhahn, W AF Bower, Dan J. Gurnis, Michael Jackson, Jennifer M. Sturhahn, Wolfgang TI Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EARTHS LOWER MANTLE; RADIATIVE THERMAL-CONDUCTIVITY; PEROVSKITE PHASE-CHANGE; SILICATE PEROVSKITE; DEPENDENT VISCOSITY; IRON AB Using a numerical model we explore the consequences of the intrinsic density change (Delta rho/rho approximate to 2-4%) caused by the Fe2+ spin transition in ferropericlase on the style and vigor of mantle convection. The effective Clapeyron slope of the transition from high to low spin is strongly positive in pressure-temperature space and broadens with high temperature. This introduces a net spin-state driving density difference for both upwellings and downwellings. In 2-D cylindrical geometry spin-buoyancy dominantly enhances the positive thermal buoyancy of plumes. Although the additional buoyancy does not fundamentally alter large-scale dynamics, the Nusselt number increases by 5-10%, and vertical velocities by 10-40% in the lower mantle. Advective heat transport is more effective and temperatures in the core-mantle boundary region are reduced by up to 12%. Our findings are relevant to the stability of lowermost mantle structures. Citation: Bower, D. J., M. Gurnis, J. M. Jackson, and W. Sturhahn (2009), Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase, Geophys. Res. Lett., 36, L10306, doi: 10.1029/2009GL037706. C1 [Bower, Dan J.; Gurnis, Michael; Jackson, Jennifer M.] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Bower, DJ (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA. EM danb@gps.caltech.edu; sturhahn@aps.anl.gov OI Bower, Dan/0000-0002-0673-4860 FU NSF [0711542]; COMPRES; Division of Geological and Planetary Sciences, California Institute of Technology [10017] FX We obtained CitcomS version 3.0 from the Computational Infrastructure for Geodynamics (CIG), and we thank Eh Tan for technical advice. All figures in this paper were produced using GMT. We thank John Hernlund and an anonymous reviewer for their comments which improved the manuscript. JMJ acknowledges NSF (0711542) and COMPRES. Contribution number 10017 of the Division of Geological and Planetary Sciences, California Institute of Technology. NR 26 TC 18 Z9 19 U1 4 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 28 PY 2009 VL 36 AR L10306 DI 10.1029/2009GL037706 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 452CT UT WOS:000266518100005 ER PT J AU Bytautas, L Ruedenberg, K AF Bytautas, Laimutis Ruedenberg, Klaus TI Ab initio potential energy curve of F-2. IV. Transition from the covalent to the van der Waals region: Competition between multipolar and correlation forces SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; dissociation energies; fluorine; ground states; molecular electronic states; potential energy surfaces; quadrupole interactions; spin-orbit interactions; wave functions ID MOLECULAR WAVE-FUNCTIONS; COUPLED-CLUSTER THEORY; ELECTRON-SPIN-RESONANCE; GAUSSIAN-BASIS SETS; OF-THE-ART; BENCHMARK CALCULATIONS; ATOMIC INTERACTIONS; INTERATOMIC FORCES; QUADRUPOLE-MOMENTS; QUANTUM-CHEMISTRY AB The potential energy curve of the fluorine molecule in the ground electronic state (1)Sigma(+)(g) is determined and analyzed in the long-range region. The analysis is based on expressing the potential as the sum of the potential energy curve of the uncorrelated, but properly dissociating wave function and the correlation energy contribution. It is shown that, in the long-range region, the former becomes identical with the interaction between the quadrupoles of the fluorine atoms and the latter becomes the London dispersion interaction. The former is repulsive because of the coaxial quadrupole alignments in the (1)Sigma(+)(g) ground state and proportional to 1/R-5. The latter is attractive and proportional to 1/R-6. There moreover exists an additional repulsive force due to the loss of spin-orbit coupling upon the bond formation. As a result of these antagonistic interactions, the potential energy curve has a barrier at about 4 A, with a value about +0.04 mhartree. The descent of the potential toward the minimum, when the atoms approach each other from infinity, begins therefore only at internuclear distances less than about twice the equilibrium distance and is then very steep. C1 [Bytautas, Laimutis] Iowa State Univ, Dept Chem, US DOE, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Bytautas, L (reprint author), Iowa State Univ, Dept Chem, US DOE, Ames, IA 50011 USA. EM bytautas@scl.ameslab.gov; ruedenberg@iastate.edu FU U. S. Department of Energy [DE-AC02-07CH11358] FX The authors thank Dr. Michael W. Schmidt for his ample advice regarding GAMESS and for stimulating interactions. They gratefully acknowledge instructive discussions on long-range forces with Professor R. Benny Gerber, Professor Ralph Jaquet, Professor Werner Kutzelnigg, Professor Mark S. Gordon, Professor Eugen Schwarz, and Professor Donald Truhlar. They thank Professor Alexander Dalgarno, Professor Robert J. Le Roy, and Professor Anthony Stone for helpful correspondence. The present work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University through the Ames Laboratory. NR 95 TC 30 Z9 30 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2009 VL 130 IS 20 AR 204101 DI 10.1063/1.3139114 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 451VY UT WOS:000266500200002 PM 19485431 ER PT J AU Leung, K Rempe, SB von Lilienfeld, OA AF Leung, Kevin Rempe, Susan B. von Lilienfeld, O. Anatole TI Ab initio molecular dynamics calculations of ion hydration free energies SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; association; atom-ion reactions; chlorine; free energy; lithium; molecular dynamics method; negative ions; nickel; positive ions; radiolysis; reaction kinetics theory; reduction (chemical); silver; solvation; water ID DENSITY-FUNCTIONAL THEORY; SOLVATION FREE-ENERGIES; LIQUID-VAPOR INTERFACE; DIMETHYL-PHOSPHATE ANION; FINITE-SIZE CORRECTIONS; QUASI-CHEMICAL THEORY; AQUEOUS-SOLUTION; WATER-MOLECULES; 1ST PRINCIPLES; BASIS-SET AB We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li+, Cl-, and Ag+ ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (Delta G(hyd)) within a few kcal/mol, or better than 4%, of Tissandier 's [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li+/Cl- and Ag+/Cl- AIMD Delta G(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag++Ni+-> Ag+Ni2+ in water. The predictions for this reaction suggest that existing estimates of Delta G(hyd) for unstable radiolysis intermediates such as Ni+ may need to be extensively revised. C1 [Leung, Kevin] Sandia Natl Labs, Dept Surface & Interface Sci, Albuquerque, NM 87185 USA. [Rempe, Susan B.] Sandia Natl Labs, Dept Nanobiol, Albuquerque, NM 87185 USA. [von Lilienfeld, O. Anatole] Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. RP Leung, K (reprint author), Sandia Natl Labs, Dept Surface & Interface Sci, MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov RI von Lilienfeld, O. Anatole/D-8529-2011; Rempe, Susan/H-1979-2011 FU National Institutes of Health through the NIH Road Map for Medical Research; SNL Truman Program LDRD [120209]; Department of Energy [DE-AC04-94AL85000]; Sandia Corporation FX K. L. thanks Tina Nenoff and Matt Petersen for useful discussions. S. B. R. acknowledges funding by the National Institutes of Health through the NIH Road Map for Medical Research. O.A.v.L. acknowledges support from the SNL Truman Program LDRD under Project No. 120209. This work was also supported by the Department of Energy under Contract No. DE-AC04-94AL85000, by Sandia's LDRD program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. Department of Energy. NR 96 TC 57 Z9 57 U1 5 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2009 VL 130 IS 20 AR 204507 DI 10.1063/1.3137054 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 451VY UT WOS:000266500200028 PM 19485457 ER PT J AU Mandadapu, KK Jones, RE Papadopoulos, P AF Mandadapu, Kranthi K. Jones, Reese E. Papadopoulos, Panayiotis TI A homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity with a three-body potential SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE elemental semiconductors; kinetic theory; molecular dynamics method; silicon; thermal conductivity ID CARBON NANOTUBES; SILICON; SIMULATION; ALGORITHM AB In this work, Evans' homogeneous nonequilibrium molecular dynamics method for estimating thermal conductivity is extended to systems employing three-body potentials. This extension is put on a firm theoretical basis and applied to a silicon lattice modeled by the Stillinger-Weber potential. Two new methods are suggested for estimating the thermal conductivity based on a range of values of the fictitious force. Also, kinetic theory is used to estimate the linear range of the fictitious force necessary to bias the heat flow, thereby potentially reducing the number of simulations needed to estimate thermal conductivity. C1 [Jones, Reese E.] Sandia Natl Labs, Livermore, CA 94551 USA. [Mandadapu, Kranthi K.; Papadopoulos, Panayiotis] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Jones, RE (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM rjones@sandia.gov NR 27 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2009 VL 130 IS 20 AR 204106 DI 10.1063/1.3141982 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 451VY UT WOS:000266500200007 PM 19485436 ER PT J AU Nukala, PKVV Kent, PRC AF Nukala, Phani K. V. V. Kent, P. R. C. TI A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE determinants; Monte Carlo methods; quantum computing; wave functions AB We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N(2)) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N(2)) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN(2)) work and O(MN(2)) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions. C1 [Nukala, Phani K. V. V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM kentpr@ornl.gov RI Kent, Paul/A-6756-2008 OI Kent, Paul/0000-0001-5539-4017 FU U. S. Department of Energy [DE-AC05-00OR22725, DOE-DE-FG05-08OR23336] FX R. C. K. wishes to thank F. A. Reboredo, J. Kim, and R. Q. Hood for helpful conversations. This research was sponsored by the Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research and the Center for Nanophase Materials Sciences, Office of Basic Energy Sciences, both of the U. S. Department of Energy and under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. The QMC Endstation project is supported by the U. S. Department of Energy (DOE) under Contract No. DOE-DE-FG05-08OR23336. NR 16 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2009 VL 130 IS 20 AR 204105 DI 10.1063/1.3142703 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 451VY UT WOS:000266500200006 PM 19485435 ER PT J AU Settersten, TB Patterson, BD Carter, CD AF Settersten, Thomas B. Patterson, Brian D. Carter, Campbell D. TI Collisional quenching of NO A (2)Sigma(+)(v(')=0) between 125 and 294 K SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE cryogenics; fluorescence; high-speed optical techniques; radiation quenching; thermo-optical effects ID LASER-INDUCED FLUORESCENCE; ROTATIONAL ENERGY-TRANSFER; NITRIC-OXIDE; TEMPERATURE; A2-SIGMA+; RATES; SPECTROSCOPY; LIFETIMES; PRESSURE; FLAMES AB We report measurements of the temperature-dependent cross sections for the quenching of fluorescence from the A (2)Sigma(+)(v(')=0) state of NO for temperatures between 125 and 294 K. Thermally averaged cross sections were measured for quenching by NO(X (2)Pi), N-2, O-2, and CO in a cryogenically cooled gas flow cell. Picosecond laser-induced fluorescence was time resolved, and the thermally averaged quenching cross sections were determined from the dependence of the fluorescence decay rate on the quencher-gas pressure. These measurements extend to lower temperature the range of previously published results for NO and O-2 and constitute the first reported measurements of the N-2 and CO cross sections for temperatures below 294 K. Between 125 and 294 K, a negative temperature dependence is observed for quenching by NO, O-2, and CO, implicating collision-complex formation in all three cases. Over the same temperature range, a constant, nonzero cross section is measured for quenching by N-2. Updated empirical models for the temperature dependence of the cross sections between 125 and 4500 K are recommended based on weighted least-squares fits to the current low-temperature results and previously published measurements at higher temperature. The results of over 250 measurements presented here indicate that the collisionless lifetime of NO A (2)Sigma(+)(v(')=0) is approximately 192 ns. C1 [Settersten, Thomas B.; Patterson, Brian D.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Carter, Campbell D.] USAF, Res Lab, RZA, Wright Patterson AFB, OH 45433 USA. RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM tbsette@sandia.gov RI Settersten, Thomas/B-3480-2009 OI Settersten, Thomas/0000-0002-8017-0258 FU U. S. Department of Energy [U. S. Department of Energy] FX The authors would like to thank Rachael J. Floyd at Janis Research Co., Inc. for her assistance with the design and customization of the cryostat and Jeffrey A. Gray at Ohio Northern University for many useful discussions. Funding for this research was provided by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. C. D. C. was supported by the Air Force Office of Scientific Research, Combustion and Diagnostics Program (Julian Tishkoff, manager). NR 33 TC 13 Z9 13 U1 4 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2009 VL 130 IS 20 AR 204302 DI 10.1063/1.3138178 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 451VY UT WOS:000266500200015 PM 19485444 ER PT J AU Govind, N Valiev, M Jensen, L Kowalski, K AF Govind, Niranjan Valiev, Marat Jensen, Lasse Kowalski, Karol TI Excitation Energies of Zinc Porphyrin in Aqueous Solution Using Long-Range Corrected Time-Dependent Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SYMMETRY-ADAPTED-CLUSTER; SAC CI THEORIES; EXCITED-STATES; CHARGE-TRANSFER; WAVE-FUNCTION; LARGE MOLECULES; BASIS SETS; EXCHANGE; EXPANSION; SPECTRA AB We Study the low-lying excited states of the zinc porphyrin molecule in aqueous Solution using long-range corrected TDDFT. We report results using the CAM-B3LYP and CAM-PBE0 functionals and compare them with previously reported excited states based on high-level Coupled Cluster (CC) methods. The aqueous environment is treated via a QM/MM approach. C1 [Govind, Niranjan; Valiev, Marat; Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Jensen, Lasse] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. RP Govind, N (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM niri.govind@pnl.gov RI Govind, Niranjan/D-1368-2011; Jensen, Lasse/B-5132-2008 NR 46 TC 49 Z9 49 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 28 PY 2009 VL 113 IS 21 BP 6041 EP 6043 DI 10.1021/jp902118k PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448XY UT WOS:000266296500001 PM 19405520 ER PT J AU Grant, DJ Matus, MH Anderson, KD Camaioni, DM Neufeldt, SR Lane, CF Dixon, DA AF Grant, Daniel J. Matus, Myrna H. Anderson, Kevin D. Camaioni, Donald M. Neufeldt, Sharon R. Lane, Clinton F. Dixon, David A. TI Thermochemistry for the Dehydrogenation of Methyl-Substituted Ammonia Borane Compounds SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; DIATOMIC DISSOCIATION-ENERGIES; ELECTRONIC-STRUCTURE THEORY; DONOR-ACCEPTOR COMPLEXES; COUPLED-CLUSTER THEORY; N-H COMPOUNDS; THERMAL-DECOMPOSITION; HYDROGEN STORAGE; THERMODYNAMIC PROPERTIES AB Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for (CH(3))H(2)N-BH(3), (CH(3))HN=BH(2), (BH(3))HN=CH(2), (CH(3))H(2)B-NH(3), (CH(3))HB=NH(2), and (NH(3))HB=CH(2), as well as various molecules involved in the different bond-breaking processes, from coupled cluster theory (CCSD(T)) calculations. In order to achieve near-cheinical accuracy (+/- 1 kcal/mol), three corrections were added to the complete basis set binding energies based on frozen core CCSD(T) energies, corrections for core-valence, scalar relativistic, and first-order atomic spin-orbit effects. Scaled vibrational zero-point energies were computed with the MP2 method. The heats of formation were predicted for the respective diniethyl- and trimethyl-substituted ammonia boranes, their dehydrogenated derivatives, and the various molecules involved in the different bond breaking processes, based oil isodesmic reaction schemes calculated at the G3(MP2) level. Thermodynamics for dehydrogenation pathways in the monomethyl-substituted molecules were predicted. Dehydrogenation across the B-N bond is more favorable as opposed to dehydrogenation across the B-C and N-C bonds. Methylation at N reduces the exothemocity of the dehydrogenation reaction and makes the reaction more thermoneutral, while methylation at B moves it away from thermoneutral. Various mixtures of CH(3)NH(2)BH(3) and NH(3)BH(3) were made, and their melting points were measured. The lowest melting mixture contained similar to 35% NH(3)BH(3) by weight and melted at 35-37 degrees C. C1 [Grant, Daniel J.; Matus, Myrna H.; Anderson, Kevin D.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Matus, Myrna H.] Univ Veracruzana, Unidad Serv Apoyo Resoluc Analit, Xalapa 91000, Veracruz, Mexico. [Camaioni, Donald M.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Neufeldt, Sharon R.; Lane, Clinton F.] No Arizona Univ, Dept Chem & Biochem, Flagstaff, AZ 86011 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu NR 101 TC 29 Z9 29 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 28 PY 2009 VL 113 IS 21 BP 6121 EP 6132 DI 10.1021/jp902196d PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448XY UT WOS:000266296500012 PM 19422181 ER PT J AU Daub, CD Leung, K Luzar, A AF Daub, Christopher D. Leung, Kevin Luzar, Alenka TI Structure of Aqueous Solutions of Monosodium Glutamate SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; MONTE-CARLO SIMULATIONS; AUGMENTED-WAVE METHOD; NEUTRON-DIFFRACTION; WATER-STRUCTURE; LIQUID WATER; FORCE-FIELD; COMPUTER-SIMULATION AB We studied monosodium glutamate (MSG) in aqueous solution using molecular dynamics Simulations and compared the results with recent neutron diffraction with isotope contrast variation/empirical potential structure refinement (EPSR) data obtained on the same system (McLain et al. J. Phys. Chem. B 2006, 110, 21251-21258). We used classical simulations with empirical force fields to study both dilute and more concentrated (1.40 M) Solutions. To gauge the importance of polarization and other quantum effects, we carried out first-principles molecular dynamics in the dilute case. The glutamate structure was well reproduced by the OPLS/AA and SPC/E force fields: we found a reasonable agreement between the simulations and the experimental data with respect to the hydration numbers for glutamate carboxylate and amine groups and the observation of significant sodium ion-carboxylate binding. However, none of our simulations could reproduce the dramatic reduction in water-water correlations observed experimentally. Simulations showed a large amount of carboxy late-amine binding, as well as segregation of water and glutamate, at moderately high concentrations of MSG. We attribute this result to the breakdown of currently available classical force fields when applied to concentrated ionic solutions, especially large polyatomic ions. We also did not observe the sharing of a water proton by two carboxylate oxygens simultaneously, and we argue against this interpretation of EPSR data on a variety of physical grounds. We offer several suggestions to resolve these discrepancies between simulation and the current interpretation of neutron diffraction data, which should advance the understanding of aqueous ionic solutions in general. C1 [Daub, Christopher D.; Luzar, Alenka] Virginia Commonwealth Univ, Dept Chem, Richmond, VA 23284 USA. [Leung, Kevin] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Luzar, A (reprint author), Virginia Commonwealth Univ, Dept Chem, Box 2006, Richmond, VA 23284 USA. EM aluzar@vcu.edu RI Daub, Christopher/B-1460-2015 OI Daub, Christopher/0000-0002-4290-9058 FU U.S. National Science Foundation [CHE-0718724]; U.S. Department of Energy FX We are grateful to Gren Patey, Peter Kusalik, Alan Soper, and Silvia Imberti for helpful discussions over the course of writing this article. We are especially thankful to Sylvia McLain for sending LIS original data files of raw detector data, experimental RDFs, and dihedral distributions. This work was Supported by a U.S. National Science Foundation grant (CHE-0718724) to A.L. K.L. acknowledges support from the U.S. Department of Energy. Sandia is :I multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500. NR 91 TC 14 Z9 14 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 28 PY 2009 VL 113 IS 21 BP 7687 EP 7700 DI 10.1021/jp810379m PG 14 WC Chemistry, Physical SC Chemistry GA 448YA UT WOS:000266296700038 PM 19397331 ER PT J AU Sorescu, DC AF Sorescu, Dan C. TI Plane-Wave Density Functional Theory Investigations of the Adsorption and Activation of CO on Fe5C2 Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FISCHER-TROPSCH SYNTHESIS; TOTAL-ENERGY CALCULATIONS; 1ST PRINCIPLES; IRON CATALYST; BASIS-SET; HYDROGENATION; HYDROCARBONS; ALGORITHM; CHI-FE5C2; CARBIDES AB A systematic analysis of the adsorption properties of CO on a set of seven low Miller index surfaces ((010) 0.25, (11 (1) over bar) 0.00, (110) 0.00, (111) 0.00, (11 (1) over bar) 0.50, (110) 0.50, and (100) 0.00)) of the Hagg iron carbide (Fe5C2) phase has been performed. Calculations were based on spin-polarized plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA). Three general groups of adsorption configurations have been identified corresponding to CO binding exclusively to surface Fe atoms (Fe-only states), to mixed Fe and C(s) atoms (mF-C states), and exclusively to surface C(s) atoms (OF-C states), respectively. Among these, the most stable adsorption configurations correspond to adsorption at Fe-only sites with maximum binding energies ranging from 44.4 to 48.5 kcal/mol, depending on the crystallographic orientation. A diverse bonding scheme for CO was found to exist with formation of one up to six different bonds to the Fe atoms. In the case of CO adsorption at mixed mF-C states or exclusively on top of C(s) atoms, lower adsorption energies are observed ranging from 18.5 to 35 kcal/mol. Despite the lower binding energies, adsorption at mF-C states is shown to lead to significant weakening of the CO bonds, as reflected by large bond elongations and red shifts of the vibrational frequencies. The analysis of the dissociation properties of CO indicates that the most stable adsorption configurations at Fe-only sites have also large activation energies for dissociation, in excess of 40 kcal/mol. Decrease of the activation energy of dissociation was found to take place only for a limited number of cases in which the molecule adsorb in a lying down configuration, where both the C and O ends are bonded to the surface by a total of at least five bonds. Molecular dissociation from mixed mF-C states requires significantly lower activation energies, consistent to the weakening of the CO bonds observed in adsorption studies. In such instances activation energies as low as 15.6 kcal/mol have been determined. Formation of small carbon chains is preferential upon molecular dissociation from such states. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sorescu, DC (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 45 TC 29 Z9 29 U1 0 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 28 PY 2009 VL 113 IS 21 BP 9256 EP 9274 DI 10.1021/jp811381d PG 19 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 450GX UT WOS:000266390100036 ER PT J AU Zhang, H Rolles, D Bozek, JD Berrah, N AF Zhang, H. Rolles, D. Bozek, J. D. Berrah, N. TI Photoionization of argon clusters in the Ar 3s -> np Rydberg resonance region SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CORE-LEVEL PHOTOELECTRON; RARE-GAS CLUSTERS; KRYPTON CLUSTERS; XENON CLUSTERS; OPTICAL-PROPERTIES; ENERGY-LEVELS; XE CLUSTERS; SIZE; SPECTROSCOPY; EXCITATION AB The photoionization of argon clusters with an average size of 270 atoms per cluster was investigated in the vicinity of the Ar 3s -> np autoionizing resonances using angle-resolved time-of-flight photoelectron spectroscopy. The Ar 3p outer-valence photoelectron spectra were measured as two-dimensional maps that show the resonance profiles for free atoms as well as for the cluster. For the first time, partial photoelectron yields and photoelectron angular distributions for the two spin-orbit components in argon clusters are reported as a function of the photon energy. The angular distributions of cluster photoelectrons differ substantially from the atomic ones and, moreover, allow identification of bulk and surface resonances. C1 [Zhang, H.; Rolles, D.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Rolles, D.; Bozek, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rolles, D.] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22761 Hamburg, Germany. [Bozek, J. D.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Zhang, H (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM nora.berrah@wmich.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010 OI Bozek, John/0000-0001-7486-7238 NR 51 TC 5 Z9 5 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 28 PY 2009 VL 42 IS 10 AR 105103 DI 10.1088/0953-4075/42/10/105103 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 446MM UT WOS:000266125700003 ER PT J AU Aklujkar, M Krushkal, J DiBartolo, G Lapidus, A Land, ML Lovley, DR AF Aklujkar, Muktak Krushkal, Julia DiBartolo, Genevieve Lapidus, Alla Land, Miriam L. Lovley, Derek R. TI The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens SO BMC MICROBIOLOGY LA English DT Review ID ESCHERICHIA-COLI K-12; 3-DEOXY-D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE; MOLECULAR-GENETIC ANALYSIS; C-TYPE CYTOCHROMES; NUCLEOTIDE-SEQUENCE; BACILLUS-SUBTILIS; PSEUDOMONAS-AERUGINOSA; ANAEROBIC RESPIRATION; TRYPTOPHAN SYNTHASE; THERMOTOGA-MARITIMA AB Background: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae. C1 [Aklujkar, Muktak; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Krushkal, Julia] Univ Tennessee, Ctr Hlth Sci, Dept Prevent Med, Memphis, TN 38163 USA. [Krushkal, Julia] Univ Tennessee, Ctr Hlth Sci, Ctr Genom & Bioinformat, Memphis, TN 38163 USA. [DiBartolo, Genevieve; Lapidus, Alla] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Land, Miriam L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Aklujkar, M (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. EM muktak@microbio.umass.edu; jkrushka@utmem.edu; gen.dibartolo@gmail.com; ALapidus@lbl.gov; landml@ornl.gov; dlovley@microbio.umass.edu RI Land, Miriam/A-6200-2011; Lapidus, Alla/I-4348-2013 OI Land, Miriam/0000-0001-7102-0031; Lapidus, Alla/0000-0003-0427-8731 FU Office of Science (Biological and Environmental Research), U. S. Department of Energy [DE-FC02-02ER63446] FX We thank Maddalena Coppi, Jessica Butler, Ned Young, Mounir Izallalen and Radhakrishnan Mahadevan for helpful discussions. We also thank Jose F. Barbe and Marko Puljic for technical assistance. This research was supported by the Office of Science (Biological and Environmental Research), U. S. Department of Energy (Grant No. DE-FC02-02ER63446). NR 129 TC 53 Z9 53 U1 6 U2 40 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD MAY 27 PY 2009 VL 9 AR 109 DI 10.1186/1471-2180-9-109 PG 22 WC Microbiology SC Microbiology GA 469TH UT WOS:000267923100002 PM 19473543 ER PT J AU Owens, J Hok, S Alcaraz, A Koester, C AF Owens, Janel Hok, Saphon Alcaraz, Armando Koester, Carolyn TI Quantitative Analysis of Tetramethylenedisulfotetramine (Tetramine) Spiked into Beverages by Liquid Chromatography-Tandem Mass Spectrometry with Validation by Gas Chromatography-Mass Spectrometry SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE Tetramethylenedisulfotetramine; tetramine; liquid chromatography; gas chromatography; mass spectrometry ID SOLID-PHASE MICROEXTRACTION; TETRAMETHYLENE DISULFOTETRAMINE; POISON; CHINA; BLOOD AB Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD(50) = 0.1 mg/kg) used in hundreds of deliberate and accidental food poisoning events in China. This paper describes a method for the quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water, with cleanup by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography-mass spectrometry (GC-MS) operated in selected ion monitoring mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 mu g/mL by LC-MS/MS versus 0.15 mu g/mL for GC-MS. Fortifications of the beverages at 2.5 and 0.25 mu g/mL were recovered ranging from 73 to 128% by liquid-liquid extraction for GC-MS analysis, from 13 to 96% by SPE, and from 10 to 101% by liquid-liquid extraction for LC-MS/MS analysis. C1 [Owens, Janel; Hok, Saphon; Alcaraz, Armando; Koester, Carolyn] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA. RP Owens, J (reprint author), Lawrence Livermore Natl Lab, Forens Sci Ctr, L-091,7000 E Ave, Livermore, CA 94550 USA. EM owens33@llnl.gov FU U.S. Food and Drug Administration; U.S. Department of Energy [DE-AC52-07NA27344 LLNL-JRNL-408913] FX Received for Review January 23, 2009. Revised manuscript received March 23, 2009. Accepted March 31, 2009. Funding from the U.S. Food and Drug Administration is gratefully acknowledged. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-JRNL-408913. This document was prepared as an account of work sponsored by an agency of the U.S. government. Neither the U.S. government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U. S. government or Lawrence Livermore National Security, LLC. The view and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 24 TC 6 Z9 7 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD MAY 27 PY 2009 VL 57 IS 10 BP 4058 EP 4067 DI 10.1021/jf900271z PG 10 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 448BU UT WOS:000266237800013 PM 19358574 ER PT J AU Haraldsen, JT Fishman, RS AF Haraldsen, J. T. Fishman, R. S. TI Spin rotation technique for non-collinear magnetic systems: application to the generalized Villain model SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID COMPUTER-MODEL; PHASE; GLASSES AB This work develops a generalized technique for determining the static and dynamic properties of any non-collinear magnetic system. By rotating the spin operators into the local spin reference frame, we evaluate the zeroth, first, and second order terms in a Holstein-Primakoff expansion, and through a Green's functions approach, we determine the structure factor intensities for the spin-wave frequencies. To demonstrate this technique, we examine the spin-wave dynamics of the generalized Villain model with a varying interchain interaction. The new interchain coupling expands the overall phase diagram with the realization of two non-equivalent canted spin configurations. The rotational Holstein-Primakoff expansion provides both analytical and numerical results for the spin dynamics and intensities of these phases. C1 [Haraldsen, J. T.; Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Haraldsen, JT (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Haraldsen, Jason/B-9809-2012; Fishman, Randy/C-8639-2013 OI Haraldsen, Jason/0000-0002-8641-5412; NR 29 TC 30 Z9 30 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 27 PY 2009 VL 21 IS 21 AR 216001 DI 10.1088/0953-8984/21/21/216001 PG 10 WC Physics, Condensed Matter SC Physics GA 439WN UT WOS:000265658400025 PM 21825566 ER PT J AU Meulenberg, RW Lee, JRI McCall, SK Hanif, KM Haskel, D Lang, JC Terminello, LJ van Buuren, T AF Meulenberg, Robert W. Lee, Jonathan R. I. McCall, Scott K. Hanif, Khalid M. Haskel, Daniel Lang, Jonathan C. Terminello, Louis J. van Buuren, Tony TI Evidence for Ligand-Induced Paramagnetism in CdSe Quantum Dots SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CAPPED CDSE; NANOCRYSTALS; SURFACE; SEMICONDUCTORS; FERROMAGNETISM; SPECTROSCOPY AB We report evidence that paramagnetism in CdSe QDs can be induced via manipulation of the surface chemistry. Using SQUID magnetometry and X-ray absorption spectroscopy, we demonstrate that the paramagnetic behavior of the CdSe QDs can be varied by changing the ligand end-group functionality of the passivating layer. Contrary to previous reports, no evidence for ferromagnetism was observed. The results suggest that the paramagnetism is induced via pi back-bonding between Cd 4d orbtials and ligands with empty pi* orbitals. C1 [Hanif, Khalid M.] USN, Res Lab, Washington, DC 20375 USA. [Haskel, Daniel; Lang, Jonathan C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Meulenberg, Robert W.; Lee, Jonathan R. I.; McCall, Scott K.; Terminello, Louis J.; van Buuren, Tony] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Meulenberg, RW (reprint author), Univ Maine, Dept Phys & Astron, Surface Sci & Technol Lab, Orono, ME 04469 USA. EM robert.meulenberg@maine.edu; lee204@llnl.gov RI McCall, Scott/G-1733-2014; OI McCall, Scott/0000-0002-7979-4944; Meulenberg, Robert/0000-0003-2696-8792 FU LDRD [07-LW-041]; U.S. DOE, Office of Science [DE-AC52-07NA27344, DE-AC02-05CH11231, DE-AC02-06CH11357] FX Project 07-LW-041 was funded by the LDRD Program at LLNL. This work was partially supported by the OBES, DMR, under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Use of the ALS and APS was supported by the U.S. DOE, Office of Science, OBES. under Contracts DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively. NR 18 TC 33 Z9 33 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 27 PY 2009 VL 131 IS 20 BP 6888 EP + DI 10.1021/ja8098454 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 451QM UT WOS:000266484700001 PM 19415891 ER PT J AU Phatak, P Frahmcke, JS Wanko, M Hoffmann, M Strodel, P Smith, JC Suhai, S Bondar, AN Elstner, M AF Phatak, Prasad Fraehmcke, Jan S. Wanko, Marius Hoffmann, Michael Strodel, Paul Smith, Jeremy C. Suhai, Sandor Bondar, Ana-Nicoleta Elstner, Marcus TI Long-Distance Proton Transfer with a Break in the Bacteriorhodopsin Active Site SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID SCC-DFTB METHOD; COMBINED QM/MM METHODS; SENSORY RHODOPSIN-II/; TIGHT-BINDING METHOD; CRYSTAL-STRUCTURE; THEORETICAL-ANALYSIS; STRUCTURAL-CHANGES; RETINAL PROTEINS; SCHIFF-BASE; MOLECULAR-DYNAMICS AB Bacteriorhodopsin is a proton-pumping membrane protein found in the plasma membrane of the archaeon Halobacterium salinarium. Light-induced isomerization of the retinal chromophore from alltrans to 13-cis leads to a sequence of five conformation-coupled proton transfer steps and the net transport of one proton from the cytoplasmic to the extracellular side of the membrane. The mechanism of the long-distance proton transfer from the primary acceptor Asp85 to the extracellular proton release group during the O -> bR is poorly understood. Experiments suggest that this long-distance transfer could involve a transient state [O] in which the proton resides on the intermediate carrier Asp212.(1) To assess whether the transient protonation of Asp212 participates in the deprotonation of Asp85, we performed hybrid Quantum Mechanics/Molecular Mechanics proton transfer calculations using different protein structures and with different retinal geometries and active site water molecules. The structural models were assessed by computing UV-vis excitation energies and C=O vibrational frequencies. The results indicate that a transient [O] conformer with protonated Asp212 could indeed be sampled during the long-distance proton transfer to the proton release group. Our calculations suggest that, in the starting proton transfer state O, the retinal is strongly twisted and at least three water molecules are present in the active site. C1 [Phatak, Prasad; Fraehmcke, Jan S.; Elstner, Marcus] Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys & Theoret Chem, D-38106 Braunschweig, Germany. [Wanko, Marius; Hoffmann, Michael] Univ Bremen, BCCMS, D-28334 Bremen, Germany. [Hoffmann, Michael] Fraunhofer Inst Fertingungtech & Angew Mat Forsch, D-28359 Bremen, Germany. [Strodel, Paul] Accelrys Ltd, Cambridge CB4 0WN, England. [Suhai, Sandor; Bondar, Ana-Nicoleta; Elstner, Marcus] German Canc Res Inst, Dept Mol Biophys, D-69120 Heidelberg, Germany. [Smith, Jeremy C.; Bondar, Ana-Nicoleta] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Mol Biol, Knoxville, TN 37996 USA. [Bondar, Ana-Nicoleta] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. [Bondar, Ana-Nicoleta] Univ Calif Irvine, Ctr Biomembrane Syst, Irvine, CA 92697 USA. RP Bondar, AN (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys & Theoret Chem, D-38106 Braunschweig, Germany. EM nicoleta.bondar@uci.edu; m.elstner@tu-bs.de RI Phatak, Prasad/G-7084-2011; smith, jeremy/B-7287-2012; Elstner, Marcus/H-3463-2013; Wanko, Marius/A-5526-2010 OI smith, jeremy/0000-0002-2978-3227; FU Deutsche Forschungsgemeinschaft; German Cancer Research Center; National Institutes of General Medical Sciences [GM74637, GM68002]; United States Department of Energy FX This work was supported in part by the Deutsche Forschungsgemeinschaft through Forschergruppe 490 (M.E.). P.P thanks computational resources from German Cancer Research Center and T. Kubar for stimulating discussions. A.-N.B. is supported by grants GM74637 and GM68002 from the National Institutes of General Medical Sciences. J.C.S was supported by a United States Department of Energy Laboratory-Directed Research and Development grant. NR 102 TC 21 Z9 22 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 27 PY 2009 VL 131 IS 20 BP 7064 EP 7078 DI 10.1021/ja809767v PG 15 WC Chemistry, Multidisciplinary SC Chemistry GA 451QM UT WOS:000266484700049 PM 19405533 ER PT J AU Wee, SH Goyal, A More, KL Specht, E AF Wee, Sung Hun Goyal, Amit More, Karren L. Specht, Eliot TI A three-dimensional, biaxially textured oxide nanofence composed of MgO single crystal nanobelt segments SO NANOTECHNOLOGY LA English DT Article ID SEMICONDUCTOR NANOWIRES; ELECTRONICS; GROWTH; METAL AB A unique, three-dimensional (3D), biaxially textured, MgO, nanofence comprised of single crystal MgO nanobelt segments or links was synthesized via epitaxial growth on (100) SrTiO(3) substrates. Individual single crystal MgO nanobelt segments comprising the nanofence have a square cross-section with dimensions in the range of 10-20 nm and with lengths in the range from 100 nm up to 1 mu m. X-ray diffraction shows that the 3D MgO nanofence has an epitaxial relation with (100) SrTiO(3) substrates with a cube-on-cube, {100}< 100 > orientation and with values of the full width at half-maximum of the (200) omega-scan and the (110) phi-scan at 4.5 degrees and 5.5 degrees, respectively. Such a biaxially textured oxide nanofence with single crystal segments can be used as a 3D nanotemplated substrate for epitaxial growth of wide-ranging, 3D, electronic, magnetic and electromagnetic nanodevices. C1 [Wee, Sung Hun; Goyal, Amit; More, Karren L.; Specht, Eliot] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wee, Sung Hun] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM goyala@ornl.gov RI More, Karren/A-8097-2016; Specht, Eliot/A-5654-2009 OI More, Karren/0000-0001-5223-9097; Specht, Eliot/0000-0002-3191-2163 FU Oak Ridge National Laboratory (ORNL); UT-Battelle; LLC; US Department of Energy; Oak Ridge National Laboratory SHaRE User Facility; Division of Scientific User Facilities, Office of Basic Energy Science, US Department of Energy FX Authors would like to thank T Thundat and J S Shin at Oak Ridge National Laboratory for review of the paper. Research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy. Research was supported in part by the Oak Ridge National Laboratory SHaRE User Facility, Division of Scientific User Facilities, Office of Basic Energy Science, US Department of Energy. NR 14 TC 3 Z9 3 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 27 PY 2009 VL 20 IS 21 AR 215608 DI 10.1088/0957-4484/20/21/215608 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 442BU UT WOS:000265815600018 PM 19423939 ER PT J AU Liang, CD Dai, S AF Liang, Chengdu Dai, Sheng TI Dual Phase Separation for Synthesis of Bimodal Meso-/Macroporous Carbon Monoliths SO CHEMISTRY OF MATERIALS LA English DT Article ID ORDERED MESOPOROUS POLYMERS; MACROPOROUS EPOXY NETWORKS; SPINODAL DECOMPOSITION; BLOCK-COPOLYMERS; FRAMEWORKS; SURFACE; GROWTH AB Polymerization-induced spinodal decomposition was conducted in glycolic solutions of phloroglucinol/formaldehyde copolymer and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) to synthesize bicontinuous macroporous morphologies with microdomains from 0.5 to 6 mu m. The polymeric materials were further carbonized at elevated temperature to yield bimodal meso-/macroporous carbon monoliths after the thermal decomposition of the PEO-PPO-PEO template. The bimodal porous nature of the resultant carbon monoliths was derived from the dual phase separation in which spinodal decomposition and microphase separation occurred simultaneously. We demonstrated the tunability of macropores without alteration of mesopore sizes. C1 [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory by the Scientific User Facilities Division FX This research was sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The electron microscopic images were taken at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 29 TC 54 Z9 54 U1 3 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 26 PY 2009 VL 21 IS 10 BP 2115 EP 2124 DI 10.1021/cm900344h PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 448YI UT WOS:000266297500017 ER PT J AU Tong, W Yoon, WS Hagh, NM Amatucci, GG AF Tong, W. Yoon, W. -S. Hagh, N. M. Amatucci, G. G. TI A Novel Silver Molybdenum Oxyfluoride Perovskite as a Cathode Material for Lithium Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID METAL FLUORIDE NANOCOMPOSITES; ION BATTERY; ELECTROCHEMICAL PROPERTIES; LI4TI5O12/AG COMPOSITE; ELECTRODE MATERIAL; DENSITY PHASE; ADDITIVES; AG4V2O6F2; LIFEPO4; MOO3 AB Novel electroactive nanostructured silver molybdenum oxyfluoride (SMOF) perovskites Ag(3)(1+)-Mo(6+)(O(3)F(3)) have been successfully synthesized by a mechanochemical reaction. The formation of this perovskite was investigated throughout the Ag-Mo composition range with the use of either Ag(1+) or Ag(2+) in the form of AgF and AgF(2) as the reactant, respectively. The compositional study combined with X-ray diffraction and extensive Raman investigation was utilized to determine structure and cation distribution and infer oxidation state. Finally, preliminary electrochemical characterization of the perovskites vs lithium was investigated. C1 [Tong, W.; Hagh, N. M.; Amatucci, G. G.] Rutgers State Univ, Energy Storage Res Grp, Dept Mat Sci & Engn, Dept Biomed & Med Engn, N Brunswick, NJ 08902 USA. [Yoon, W. -S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Tong, W (reprint author), Rutgers State Univ, Energy Storage Res Grp, Dept Mat Sci & Engn, Dept Biomed & Med Engn, N Brunswick, NJ 08902 USA. RI Yoon, Won-Sub/H-2343-2011; Tong, Wei/D-5919-2012 NR 38 TC 23 Z9 23 U1 8 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 26 PY 2009 VL 21 IS 10 BP 2139 EP 2148 DI 10.1021/cm803322d PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 448YI UT WOS:000266297500020 ER PT J AU Defaux, M Vidal, L Moller, M Gearba, RI DiMasi, E Ivanov, DA AF Defaux, Matthieu Vidal, Loic Moeller, Martin Gearba, Raluca I. DiMasi, Elaine Ivanov, Dimitri A. TI Thin Films of a Main-Chain Columnar Liquid Crystal: Studies of Structure, Phase Transitions, and Alignment SO MACROMOLECULES LA English DT Article ID ATOMIC-FORCE MICROSCOPY; EPITAXIAL CRYSTALLIZATION; LINEAR POLYSILOXANES; MESOPHASE BEHAVIOR; DIBLOCK COPOLYMER; BLOCK-COPOLYMERS; HIGH-PRESSURE; POLY(DI-N-ALKYLSILOXANE)S; POLYMERS; MORPHOLOGY AB The structure of thin films of poly(di-n-propylsiloxane), PDPS, was studied with a combination of optical and atomic force microscopy, electron diffraction, and grazing incidence X-ray diffraction. Two different morphological features are observed in the mesomorphic films. The lamellar ribbons are composed of the chains oriented parallel to the plane of the substrate in which the reciprocal space 10 vector is vertical. The other feature with a circular symmetry, the cylindrite, contains the chains parallel to the substrate normal. The cylindrites and needles are essentially the same mesomorphic lamellae that develop differently under the conditions of confinement. The crystallization of PDPS films does not change the gross morphological features developed during the mesophase formation and mainly proceeds via epitaxial growth of the a-crystal on the parent mesophase. Spontaneous alignment of the mesomorphic PDPS films on the PTFE-rubbed substrates allows fabricating highly crystalline inorganic polymer surfaces oriented on the scale of centimeters. C1 [Defaux, Matthieu; Vidal, Loic; Ivanov, Dimitri A.] CNRS, LRC 7228, IS2M, F-68057 Mulhouse, France. [Moeller, Martin] Deutsch Wollforschungsinst RWTH Aachen eV, D-52074 Aachen, Germany. [Gearba, Raluca I.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ivanov, DA (reprint author), CNRS, LRC 7228, IS2M, Jean Starcky 15, F-68057 Mulhouse, France. EM dimitri.ivanov@uha.fr RI Ivanov, Dimitri/D-6759-2013; Moller, Martin/F-7860-2015 OI Ivanov, Dimitri/0000-0002-5905-2652; Moller, Martin/0000-0002-5955-4185 FU U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; CNRS; Region of Alsace FX The authors are grateful to B. Lotz, G. Ungar, and A. N. Semenov for helpful discussions and to M. Rosenthal for the design of a computer code allowing for the X-ray data reduction and treatment. GIXD measurements were carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract DE-AC02-98CH10886. M.D. gratefully acknowledges financial support from the CNRS and Region of Alsace (BDI bursary). NR 45 TC 12 Z9 12 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 26 PY 2009 VL 42 IS 10 BP 3500 EP 3509 DI 10.1021/ma802666a PG 10 WC Polymer Science SC Polymer Science GA 447OM UT WOS:000266200800011 ER PT J AU Schacher, F Walther, A Ruppel, M Drechsler, M Muller, AHE AF Schacher, Felix Walther, Andreas Ruppel, Markus Drechsler, Markus Mueller, Axel H. E. TI Multicompartment Core Micelles of Triblock Terpolymers in Organic Media SO MACROMOLECULES LA English DT Article ID FLUOROCARBON POLYMERIZABLE SURFACTANTS; COPOLYMERS/EPOXY-DIAMINE BLENDS; MIKTOARM STAR TERPOLYMERS; BLOCK-COPOLYMERS; MORPHOLOGIES; HYDROCARBON; NANOSPHERES; MICELLIZATION; SIMULATION; CHAINS AB The formation of multicompartment micelles featuring a "spheres on sphere" core morphology in acetone as a selective solvent is presented. The polymers investigated are ABC triblock terpolymers, polybutadiene-b-poly(2-vinyl pyridine)-b-poly(tert-butyl methacrylate) (BVT), which were synthesized via living sequential anionic polymerization in THF. Two polymers with different block lengths of the methacrylate moiety were studied with respect to the formation of multicompartmental aggregates. The micelles were analyzed by static and dynamic light scattering as well as by transmission electron microscopy. Cross-linking of the polybutadiene compartment could be accomplished via two different methods, "cold vulcanization" and with photopolymerization after the addition of a multifunctional acrylate. In both cases, the multicompartmental character of the micellar core is fully preserved, and the micelles could be transformed into core-stabilized nanoparticles. The Successful cross-linking of the polybutadiene core is indicated by (1)H NMR and by the transfer of the aggregates into nonselective solvents Such as THF or dioxane. C1 [Schacher, Felix; Drechsler, Markus; Mueller, Axel H. E.] Univ Bayreuth, Makromol Chem & Zentrum Kolloide & Grenzflachen 2, D-95440 Bayreuth, Germany. [Walther, Andreas] Helsinki Univ Technol, Dept Appl Phys, FIN-02015 Helsinki, Finland. [Ruppel, Markus] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Schacher, F (reprint author), Univ Bayreuth, Makromol Chem & Zentrum Kolloide & Grenzflachen 2, POB 101251, D-95440 Bayreuth, Germany. EM felix.schacher@uni-bayreuth.de; axel.mueller@uni-bayreuth.de RI Mueller, Axel/B-7591-2009; Walther, Andreas/D-4139-2009; Schacher, Felix/C-9248-2009; Drechsler, Markus/A-8731-2010 OI Mueller, Axel/0000-0001-9423-9829; Walther, Andreas/0000-0002-3662-5606; Schacher, Felix/0000-0003-4685-6608; FU VolkswagenStiftung FX We thank VolkswagenStiftung for financial Support. Special thanks also goes to all of the people who contributed to this work, in particular, Dr. Markus Burkhardt for discussions and Dr. Holger Schmalz and Denise Danz for help with the polymer synthesis. NR 47 TC 73 Z9 75 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 26 PY 2009 VL 42 IS 10 BP 3540 EP 3548 DI 10.1021/ma9002424 PG 9 WC Polymer Science SC Polymer Science GA 447OM UT WOS:000266200800016 ER PT J AU Pierce, DW Barnett, TP Santer, BD Gleckler, PJ AF Pierce, David W. Barnett, Tim P. Santer, Benjamin D. Gleckler, Peter J. TI Selecting global climate models for regional climate change studies SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE anthropogenic forcing; detection and attribution; regional modeling ID CONTINENTAL UNITED-STATES; PRECIPITATION; ATTRIBUTION AB Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U. S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U. S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. C1 [Pierce, David W.; Barnett, Tim P.] Univ Calif San Diego, Scripps Inst Oceanog, Div Climate Atmospher Sci & Phys Oceanog, La Jolla, CA 92093 USA. [Santer, Benjamin D.; Gleckler, Peter J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Pierce, DW (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Div Climate Atmospher Sci & Phys Oceanog, Mail Stop 0224, La Jolla, CA 92093 USA. EM dpierce@ucsd.edu RI Santer, Benjamin/F-9781-2011 FU Lawrence Livermore National Laboratory through a Laboratory Directed Research and Development FX We thank Karl Taylor of the Lawrence Livermore National Laboratory for valuable comments on a draft of the manuscript. This work was supported by the Lawrence Livermore National Laboratory through a Laboratory Directed Research and Development grant to the Scripps Institution of Oceanography via the San Diego Super Computer Center for the LUCSiD project. The California Energy Commission provided partial salary support at the Scripps Institution of Oceanography (to D. P.), and the U. S. Department of Energy International Detection and Attribution Group provided partial support (to T. P. B.). NR 22 TC 200 Z9 205 U1 5 U2 57 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 26 PY 2009 VL 106 IS 21 BP 8441 EP 8446 DI 10.1073/pnas.0900094106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 450WS UT WOS:000266432700009 PM 19439652 ER PT J AU Timlin, JA Martin, LE Lyons, CR Hjelle, B Alam, MK AF Timlin, Jerilyn A. Martin, Laura E. Lyons, C. Rick Hjelle, Brian Alam, M. Kathleen TI Dynamics of cellular activation as revealed by attenuated total reflectance infrared spectroscopy SO VIBRATIONAL SPECTROSCOPY LA English DT Article DE ATR; Macrophage; Principal component analysis; PCA; Multivariate curve resolution; MCR; Linear discriminant analysis; LDA; FTIR ID MULTIVARIATE CURVE RESOLUTION; MACROPHAGE STIMULATION; CELLS; SPECTRA; TISSUE; CYCLE AB We report the application of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to interrogate live cells, resting and stimulated with lipopolysaccharide (LPS) and gamma-interferon (INF-gamma) over the course of I h from a murine macrophage-like cell line. Sub-culturing of the cells directly on the ATR crystal results in improved surface coverage and adhesion compared to previous investigations. In as little as 17 min post-activation we classify spectra with 80% classification accuracy using a Linear discriminant model developed from 20 spectra at the same time point extracted from multiple kinetic experiments. The loading vector is indicative of changes in the phosphate stretching region arising from an increase in RNA synthesis and protein phosphorylation. We employ factor analysis methods, specifically principal component analysis (PCA) and multivariate curve resolution (MCR), on the entire spectral ensemble consisting of multiple kinetic data sets of resting and stimulated cells to identify molecular changes associated with the dynamic cellular activation process. MCR extracts three distinct spectral signatures arising primarily from phosphodiester and carbonyl vibrations from nucleic acids and cellular proteins that possess distinct temporal patterns during cellular activation. The combination of ATR sampling method and multivariate analysis of FTIR spectra reported has implications in the early diagnosis of disease and infection because it permits unprecedented investigation of kinetic behavior in living cells without the need for extravagant sample preparation or labeling. (C) 2008 Elsevier B.V. All rights reserved. C1 [Timlin, Jerilyn A.; Martin, Laura E.; Alam, M. Kathleen] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lyons, C. Rick; Hjelle, Brian] Univ New Mexico, Hlth Sci Ctr, Dept Pathol, Albuquerque, NM 87131 USA. RP Timlin, JA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jatimli@sandia.gov OI Timlin, Jerilyn/0000-0003-2953-1721 NR 25 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2031 J9 VIB SPECTROSC JI Vib. Spectrosc. PD MAY 26 PY 2009 VL 50 IS 1 BP 78 EP 85 DI 10.1016/j.vibspec.2008.07.017 PG 8 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 453PI UT WOS:000266623000012 ER PT J AU Leverette, CL Villa-Aleman, E Jokela, S Zhang, ZY Liu, YJ Zhao, YP Smith, SA AF Leverette, Chad L. Villa-Aleman, Eliel Jokela, Slade Zhang, Zhongyue Liu, Yongjun Zhao, Yiping Smith, Sean A. TI Trace detection and differentiation of uranyl(VI) ion cast films utilizing aligned Ag nanorod SERS substrates SO VIBRATIONAL SPECTROSCOPY LA English DT Article DE Ag nanorod array; Oblique angle deposition; SERS; Uranyl; Uranyl ion ID ENHANCED RAMAN-SCATTERING; URANIUM DETERMINATION; DIMETHYL-SULFOXIDE; AQUEOUS-SOLUTION; COMPLEXES; CHROMATOGRAPHY; SPECIATION; CHEMISTRY; CARBONATE; NITRATE AB Aligned Ag nanorod arrays prepared by oblique angle vapor deposition (OAD) were utilized to observe the SERS response for cast films of adsorbed uranyl ion complexes. These nanorod arrays consisted of preferentially aligned and tilted cylindrically shaped nanorods (average nanorod length = 858 nm). Routine SERS spectra of cast films of uranyl nitrate resulted in 0.87 pg of material analyzed with a detection limit estimated at 0.87 fg of adsorbed uranyl nitrate. The main spectral feature observed was a strong, broad peak centered at 700 cm(-1) assigned to the nu(1) symmetric stretch of the uranyl ion, nu(s)(UO(2)). The complex shape of this band is attributed to multiple uranyl complexes adsorbed onto the Ag surface. Uranyl nitrate cast films formed from ethanol Solutions were more uniform and had stronger adsorption to the Ag surface compared to films formed from aqueous solutions. Differentiation of uranyl ion cast films formed from four different uranyl systems (i.e., uranyl nitrate hexahydrate, uranyl acetate dihydrate, uranyl formate monohydrate, and uranyl chloride trihydrate) was accomplished using univariate spectral analysis as well as Partial Least Squares Discriminant Analysis (PLSDA). A simple PLSDA calibration was able to correctly classify 27 SERS spectra of unknown uranyl ion cast films based on the type of anionic ligand present. (C) 2008 Elsevier B.V. All rights reserved. C1 [Leverette, Chad L.] Univ S Carolina, Dept Chem & Phys, Aiken, SC 29801 USA. [Leverette, Chad L.] Univ S Carolina, Nanoctr, Aiken, SC 29801 USA. [Villa-Aleman, Eliel] Savannah River Natl Lab, Aiken, SC 29808 USA. [Jokela, Slade; Zhang, Zhongyue; Liu, Yongjun; Zhao, Yiping] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Jokela, Slade; Zhang, Zhongyue; Liu, Yongjun; Zhao, Yiping] Univ Georgia, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA. [Smith, Sean A.] Cargill Inc, Cargill Global Res Grp, Minneapolis, MN 55331 USA. RP Leverette, CL (reprint author), Univ S Carolina, Dept Chem & Phys, Aiken, SC 29801 USA. EM chadl@usca.edu RI Zhao, Yiping/A-4968-2008 FU U.S. Department of Energy through the South Carolina Universities Research and Education Foundation [SC0191, SC0207, SC0226, DE-AC09-96SR18500]; American Chemical Society Petroleum Research Fund [PRF 45862-GB5]; National Science Foundation [ECS0304340, ECS070178] FX CLL would like to thank Dr. Richard Dluhy for the use of the Raman microscope system. CLL is supported by the U.S. Department of Energy through the South Carolina Universities Research and Education Foundation (RFP# SC0191, SC0207, SC0226) and The American Chemical Society Petroleum Research Fund (PRF 45862-GB5). Acknowledgement is made to the donors of The American Chemical Society Petroleum Research Fund for partial support of this research. EVA is supported under contract No. DE-AC09-96SR18500 for the U.S. Department of Energy. YPZ is supported by the National Science Foundation (ECS0304340 and ECS070178). NR 31 TC 15 Z9 16 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2031 J9 VIB SPECTROSC JI Vib. Spectrosc. PD MAY 26 PY 2009 VL 50 IS 1 BP 143 EP 151 DI 10.1016/j.vibspec.2008.10.006 PG 9 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 453PI UT WOS:000266623000020 ER PT J AU Launey, ME Ritchie, RO AF Launey, Maximilien E. Ritchie, Robert O. TI On the Fracture Toughness of Advanced Materials SO ADVANCED MATERIALS LA English DT Article ID FATIGUE-CRACK-PROPAGATION; HUMAN CORTICAL BONE; MECHANICAL-PROPERTIES; RESISTANCE MECHANISM; SILICON-CARBIDE; GRAIN-STRUCTURE; R-CURVES; CERAMICS; NACRE; BEHAVIOR AB Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials strength , and toughness are almost mutually exclusive. From a fracture-mechanics perspective, the ability of a microstructure to develop toughening mechanisms ' acting either ahead or behind the crack tip can result in resistance-curve (R-curve) behavior where the fracture resistance actually increases with crack extension; the implication here is that toughness is often developed primarily during crack growth and not for crack initiation. Biological materials are perfect examples of this; moreover, they offer microstructural design strategies for the development of new materials for structural applications demanding combinations of both strength and toughness. C1 [Launey, Maximilien E.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM RORitchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 NR 43 TC 168 Z9 171 U1 16 U2 196 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD MAY 25 PY 2009 VL 21 IS 20 BP 2103 EP 2110 DI 10.1002/adma.200803322 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 452HW UT WOS:000266532000018 ER PT J AU Chan, WL Chen, HT Taylor, AJ Brener, I Cich, MJ Mittleman, DM AF Chan, Wai Lam Chen, Hou-Tong Taylor, Antoinette J. Brener, Igal Cich, Michael J. Mittleman, Daniel M. TI A spatial light modulator for terahertz beams SO APPLIED PHYSICS LETTERS LA English DT Article DE metamaterials; spatial light modulators ID PHASE MODULATOR; METAMATERIAL; TRANSMISSION; TECHNOLOGY AB We design and implement a multipixel spatial modulator for terahertz beams using active terahertz metamaterials. Our first-generation device consists of a 4x4 pixel array, where each pixel is an array of subwavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. Through terahertz transmission experiments, we show that the spatial modulator has a uniform modulation depth of around 40% across all pixels, and negligible crosstalk, at the resonant frequency. This device can operate under small voltage levels, at room temperature, with low power consumption and reasonably high switching speed. C1 [Chan, Wai Lam; Mittleman, Daniel M.] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77251 USA. [Chen, Hou-Tong; Taylor, Antoinette J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Mittleman, DM (reprint author), Rice Univ, Dept Elect & Comp Engn, MS 366, Houston, TX 77251 USA. EM daniel@rice.edu RI Chen, Hou-Tong/C-6860-2009; Brener, Igal/G-1070-2010 OI Chen, Hou-Tong/0000-0003-2014-7571; Brener, Igal/0000-0002-2139-5182 FU National Science Foundation; Air Force Office of Scientific Research; CONTACT program; Los Alamos National Laboratory LDRD Program; Los Alamos National Security, LLC [DE-AC52-06NA25396]; Sandia Corporation, a Lockheed Martin Co [DE-AC04-94AL85000]; National Nuclear Security Administration of the US Department of Energy FX W. L. C. and D. M. M. acknowledge partial support from the National Science Foundation and from the Air Force Office of Scientific Research through the CONTACT program. H. T. C. and A. J. T. acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396, and Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., under Contract No. DE-AC04-94AL85000, for the National Nuclear Security Administration of the US Department of Energy. NR 18 TC 140 Z9 143 U1 9 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 25 PY 2009 VL 94 IS 21 AR 213511 DI 10.1063/1.3147221 PG 3 WC Physics, Applied SC Physics GA 451WA UT WOS:000266500400070 ER PT J AU Lee, JH Ke, X Podraza, NJ Kourkoutis, LF Heeg, T Roeckerath, M Freeland, JW Fennie, CJ Schubert, J Muller, DA Schiffer, P Schlom, DG AF Lee, J. H. Ke, X. Podraza, N. J. Kourkoutis, L. Fitting Heeg, T. Roeckerath, M. Freeland, J. W. Fennie, C. J. Schubert, J. Muller, D. A. Schiffer, P. Schlom, D. G. TI Optical band gap and magnetic properties of unstrained EuTiO3 films SO APPLIED PHYSICS LETTERS LA English DT Article DE antiferromagnetic materials; ellipsometry; energy gap; europium compounds; magnetic thin films; magnetisation; molecular beam epitaxial growth; optical constants ID THIN-FILMS; SRTIO3; ELLIPSOMETRY; SPECTROSCOPY; SYSTEM; GROWTH AB Phase-pure, stoichiometric, unstrained, epitaxial (001)-oriented EuTiO3 thin films have been grown on (001) SrTiO3 substrates by reactive molecular-beam epitaxy. Magnetization measurements show antiferromagnetic behavior with T-N=5.5 K, similar to bulk EuTiO3. Spectroscopic ellipsometry measurements reveal that EuTiO3 films have a direct optical band gap of 0.93 +/- 0.07 eV. C1 [Lee, J. H.; Heeg, T.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Lee, J. H.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Ke, X.; Schiffer, P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Podraza, N. J.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Kourkoutis, L. Fitting; Fennie, C. J.; Muller, D. A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Roeckerath, M.; Schubert, J.] Forschungszentrum Julich, Inst Bio & Nanosyst, IBN 1, D-52425 Julich, Germany. [Roeckerath, M.; Schubert, J.] JARA FIT, D-52425 Julich, Germany. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lee, JH (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM schlom@cornell.edu RI Schiffer, Peter/F-3227-2011; Schlom, Darrell/J-2412-2013; Schubert, Jurgen/K-9543-2013; OI Schlom, Darrell/0000-0003-2493-6113; Schubert, Jurgen/0000-0003-0185-6794; Schiffer, Peter/0000-0002-6430-6549; Kourkoutis, Lena/0000-0002-1303-1362 FU National Science Foundation [DMR-0507146]; MRSEC Program [DMR-0520404, DMR-0820404]; U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We gratefully acknowledge the financial support from the National Science Foundation through Grant No. DMR-0507146 and the MRSEC Program (Grant Nos. DMR-0520404 and DMR-0820404). Work at the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 34 TC 33 Z9 33 U1 2 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 25 PY 2009 VL 94 IS 21 AR 212509 DI 10.1063/1.3133351 PG 3 WC Physics, Applied SC Physics GA 451WA UT WOS:000266500400036 ER PT J AU Li, YH Walsh, A Chen, SY Yin, WJ Yang, JH Li, JB Da Silva, JLF Gong, XG Wei, SH AF Li, Yong-Hua Walsh, Aron Chen, Shiyou Yin, Wan-Jian Yang, Ji-Hui Li, Jingbo Da Silva, Juarez L. F. Gong, X. G. Wei, Su-Huai TI Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; band structure; cadmium compounds; III-V semiconductors; II-VI semiconductors; IV-VI semiconductors; zinc compounds ID D-ORBITALS; CONDUCTION; ENERGY; RULE AB Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies. C1 [Li, Yong-Hua; Chen, Shiyou; Yin, Wan-Jian; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Li, Jingbo] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China. RP Li, YH (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. EM a.walsh@ucl.ac.uk; swei@nrel.gov RI Walsh, Aron/A-7843-2008; gong, xingao /B-1337-2010; Yin, Wanjian/F-6738-2013; Da Silva, Juarez L. F./D-1779-2011; gong, xingao/D-6532-2011 OI Walsh, Aron/0000-0001-5460-7033; Da Silva, Juarez L. F./0000-0003-0645-8760; FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308]; National Science Foundation of China; Special Funds for Major State Basic Research FX The work at NREL is funded by the U.S. Department of Energy (DOE), under Contract No. DE-AC36-08GO28308. The work at Fudan University is partially supported by the National Science Foundation of China and the Special Funds for Major State Basic Research. NR 24 TC 84 Z9 85 U1 5 U2 70 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 25 PY 2009 VL 94 IS 21 AR 212109 DI 10.1063/1.3143626 PG 3 WC Physics, Applied SC Physics GA 451WA UT WOS:000266500400027 ER PT J AU Restrepo, OD Varga, K Pantelides, ST AF Restrepo, O. D. Varga, K. Pantelides, S. T. TI First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; band structure; effective mass; electron mobility; elemental semiconductors; impurity scattering; phonons; silicon ID MONTE-CARLO; IMPACT IONIZATION; CHARGE-TRANSPORT; BAND-STRUCTURE; SEMICONDUCTORS; DEVICES; SI AB Electron mobilities limited by phonon and ionized impurity scattering have traditionally been modeled by suppressing atomic-scale detail, relying on empirical deformation potentials and either effective-mass theory or bulk energy bands to describe electron velocities. Parameter fitting to experimental data is needed. As modern technologies require modeling of transport at the nanoscale and unprecedented materials are introduced, predictive parameter-free mobility modeling becomes necessary. Here we report the development of first-principles quantum-mechanical methods to calculate scattering rates and electronic mobilities limited by phonon and ionized-impurity scattering. We report results for n-doped silicon that are in good agreement with experiment. C1 [Restrepo, O. D.; Varga, K.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Restrepo, OD (reprint author), Vanderbilt Univ, Dept Phys & Astron, 221 Kirkland Hall, Nashville, TN 37235 USA. EM restrepo@mailaps.org RI Varga, Kalman/A-7102-2013 FU National Science Foundation [ECS-0524655]; Air Force Office of Scientific Research [422-422-4232]; William A. and Nancy F. McMinn Endowment at Vanderbilt University FX This work was supported in part by the National Science Foundation (Grant No. ECS-0524655), by the Air Force Office of Scientific Research (Grant No. 422-422-4232), and by the William A. and Nancy F. McMinn Endowment at Vanderbilt University. NR 31 TC 56 Z9 58 U1 4 U2 34 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 25 PY 2009 VL 94 IS 21 AR 212103 DI 10.1063/1.3147189 PG 3 WC Physics, Applied SC Physics GA 451WA UT WOS:000266500400021 ER PT J AU Yoon, Y Kang, MG Ivanushkin, P Mourokh, L Morimoto, T Aoki, N Reno, JL Ochiai, Y Bird, JP AF Yoon, Y. Kang, M. -G. Ivanushkin, P. Mourokh, L. Morimoto, T. Aoki, N. Reno, J. L. Ochiai, Y. Bird, J. P. TI Nonlocal bias spectroscopy of the self-consistent bound state in quantum point contacts near pinch off SO APPLIED PHYSICS LETTERS LA English DT Article DE g-factor; quantum dots; quantum point contacts AB We perform nonlocal bias spectroscopy of the self-consistent bound state (BS) in quantum point contacts (QPCs), determining the lever arm (gamma) that governs the gate-voltage induced shift in its energy. The value of gamma allows us to infer an enhanced g factor, and large remnant spin splitting, for the BS. Our results show many similarities with bias spectroscopy of quantum dots and are reproduced by calculations that assume a discrete BS coupled to a reservoir. This study therefore provides independent evidence in support of the notion of BS formation in QPCs. C1 [Yoon, Y.; Kang, M. -G.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. [Ivanushkin, P.; Mourokh, L.] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. [Morimoto, T.] RIKEN, Adv Device Lab, Wako, Saitama 3510198, Japan. [Aoki, N.; Ochiai, Y.; Bird, J. P.] Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Chiba 2638522, Japan. [Reno, J. L.] Sandia Natl Labs, Dept Sci, CINT, Albuquerque, NM 87185 USA. RP Yoon, Y (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. EM jbird@buffalo.edu RI Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 FU DoE [DE-FG03-01ER45920]; U.S. DoE Office of Basic Energy Sciences nanoscale science research center [DE-AC04-94AL85000] FX This work was supported by the DoE (Grant No. DE-FG03-01ER45920) and was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DoE Office of Basic Energy Sciences nanoscale science research center. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. DoE (Contract No. DE-AC04-94AL85000). NR 25 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 25 PY 2009 VL 94 IS 21 AR 213103 DI 10.1063/1.3142418 PG 3 WC Physics, Applied SC Physics GA 451WA UT WOS:000266500400047 ER PT J AU Abate, Y Schwartzberg, A Strasser, D Leone, SR AF Abate, Yohannes Schwartzberg, Adam Strasser, Daniel Leone, Stephen R. TI Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SCATTERING; NANORODS AB Apertureless near-field scanning optical microscopy (ANSOM) is used to image optical near-field light scattering from uncapped gold nanoparticles and gold nanoparticles capped with the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The measurements investigate the gold-particle size-dependent signals and the modification of those signals by the spacer layer of commonly used CTAB in the visible at lambda = 633 nm. Imaging of capped nanoparticles by apertureless near-field microscopy opens the possibility to predict quantitative layer thicknesses of capping agents on the surface of nanoparticles, as well as the effect of capping layers on the optical scattering properties of nanoparticles. (C) 2009 Elsevier B. V. All rights reserved. C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Dept Phys, Berkeley, CA 94720 USA. EM srl@berkeley.edu FU Director, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U. S. Department of Energy [DE-AC02-05CH11231]; Weizmann Institute of Science FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Stephen R. Leone gratefully acknowledges the generous support of a Morris Belkin Visiting Professorship at the Weizmann Institute of Science. NR 15 TC 15 Z9 15 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 25 PY 2009 VL 474 IS 1-3 BP 146 EP 152 DI 10.1016/j.cplett.2009.04.026 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 446IR UT WOS:000266115800031 ER PT J AU Rowland, JC Stacey, MT Dietrich, WE AF Rowland, Joel C. Stacey, Mark T. Dietrich, William E. TI Turbulent characteristics of a shallow wall-bounded plane jet: experimental implications for river mouth hydrodynamics SO JOURNAL OF FLUID MECHANICS LA English DT Article ID SCALE FLOW STRUCTURES; CHANNEL FLOW; DEPOSITION; DISPERSION; SEDIMENT; DYNAMICS; DELTA; WATER; WAKES; LAYER AB Jets arising from rivers, streams and tidal flows entering still waters differ from most experimental studies of jets both in aspect ratio and in the presence of a solid bottom boundary and an upper free surface. Despite these differences, the applicability of experimental jet studies to these systems remains largely untested by either field or realistically scaled experimental studies. Here we present experimental results for a wall-bounded plane jet scaled to jets created by flow discharging into floodplain lakes. A characteristic feature of both our prototype and experimental jets is the presence of large-scale meandering turbulent structures that span the width of the jets. In Our experimental jets, we observe self-similarity in the distribution of mean streamwise velocities by a distance of six channel widths downstream of the jet outlet. After a distance of nine channel widths the velocity decay and the spreading rates largely agree with prior experimental results for plane jets. The magnitudes and distributions of the cross-stream velocity and lateral shear stresses approach self-preserving conditions in the tipper half of the flow, but decrease in magnitude, and deviate from self-preserving distributions with proximity to the bed. The presence of the meandering structure has little influence on the mean structure of the jet, but dominates the jet turbulence. A comparison of turbulence analysed at time scales both greater than and less than the period of the meandering structure indicates that these structures increase turbulence intensities by 3-5 times, and produce lateral shear stresses and momentum diffusivities that are one and two orders of magnitude greater, respectively, than turbulence generated by bed friction alone. C1 [Rowland, Joel C.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Stacey, Mark T.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Dietrich, William E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Rowland, JC (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM jrowland@lanl.gov NR 38 TC 31 Z9 31 U1 2 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAY 25 PY 2009 VL 627 BP 423 EP 449 DI 10.1017/S0022112009006107 PG 27 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 455VB UT WOS:000266794000017 ER PT J AU Allison, TK van Tilborg, J Wright, TW Hertlein, MP Falcone, RW Belkacem, A AF Allison, T. K. van Tilborg, J. Wright, T. W. Hertlein, M. P. Falcone, R. W. Belkacem, A. TI Separation of high order harmonics with fluoride windows SO OPTICS EXPRESS LA English DT Article ID MOLECULAR-DYNAMICS; REFRACTIVE-INDEX; ETHYLENE; RANGE; PHASE; NM AB The ensemble of lower orders produced in high order harmonic generation can be efficiently temporally separated by propagation in a fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We use this simple and inexpensive technique in a pump/probe experiment to resolve femtosecond dynamics in the ethylene molecule. (C) 2009 Optical Society of America C1 [Allison, T. K.; Wright, T. W.; Falcone, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Allison, T. K.; van Tilborg, J.; Wright, T. W.; Hertlein, M. P.; Falcone, R. W.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Allison, TK (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. EM TKAllison@lbl.gov FU US Dept. of Energy Office of Basic Energy Sciences, [DE-AC02-05CH1123, DE-FG52-06NA26212] FX This work was supported by the US Dept. of Energy Office of Basic Energy Sciences, under contracts # DE-AC02-05CH1123 and # DE-FG52-06NA26212. NR 20 TC 10 Z9 10 U1 0 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAY 25 PY 2009 VL 17 IS 11 BP 8941 EP 8946 DI 10.1364/OE.17.008941 PG 6 WC Optics SC Optics GA 450DW UT WOS:000266382200026 PM 19466143 ER PT J AU Wang, JG Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Liu, SH Li, K Luo, YX Rasmussen, JO Lee, IY Ding, HB Xu, Q Gu, L Yeoh, EY Xiao, ZG Ma, WC AF Wang, Jian-Guo Zhu, Sheng-Jiang Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Liu, S. H. Li, K. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Ding, Huai-Bo Xu, Qiang Gu, Long Yeoh, Eing-Yee Xiao, Zhi-Gang Ma, W. C. TI Identification of one-phonon and two-phonon gamma-vibrational bands in odd-Z Nb-103 nucleus SO PHYSICS LETTERS B LA English DT Article DE High-spin states; Two-phonon gamma-vibrational band; Spontaneous fission ID COLLECTIVE-COORDINATE METHOD; NEUTRON-RICH MO-106; DEFORMED-NUCLEI; MICROSCOPIC DESCRIPTION; ROTATIONAL BANDS; STATES; ANHARMONICITIES; FISSION; ER-168 AB Collective bands in the neutron-rich Nb-103 nucleus have been investigated by measuring prompt gamma-rays following spontaneous fission of Cf-252. Three new bands have been identified. The band based on the 716.8 keV level is proposed as a candidate for the K-pi = 9/2(+) one-phonon gamma-vibrational band, and the band built on the 1282.1 keV level is proposed as a candidate for the K-pi = 13/2(+) two-phonon gamma-vibrational band. The two-phonon gamma-vibrational band is the first such band identified in odd-Z nuclei. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wang, Jian-Guo; Zhu, Sheng-Jiang; Ding, Huai-Bo; Xu, Qiang; Gu, Long; Yeoh, Eing-Yee; Xiao, Zhi-Gang] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu, Sheng-Jiang; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Li, K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Zhu, Sheng-Jiang] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. RP Zhu, SJ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn RI XIAO, Zhigang/C-3788-2015; OI Hwang, Jae-Kwang/0000-0002-4100-3473 FU National Natural Science Foundation of China [10775078, 10575057]; Major State Basic Research Development Program [2007CB815005]; Special Program of Higher Education Science Foundation [20070003149]; US Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098, DE-FG02-95ER40939] FX The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grants Nos. 10775078, 10575057, the Major State Basic Research Development Program 2007CB815005 and the Special Program of Higher Education Science Foundation under Grant No. 20070003149. The work at Vanderbilt University, Lawrence Berkeley National Laboratory, Mississippi State University, was supported, respectively, by US Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, DE-AC03-76SF00098,and DE-FG02-95ER40939. NR 33 TC 16 Z9 21 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 25 PY 2009 VL 675 IS 5 BP 420 EP 425 DI 10.1016/j.physletb.2009.04.057 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451GF UT WOS:000266458000003 ER PT J AU Kishcha, P Starobinets, B Kalashnikova, O Long, CN Alpert, P AF Kishcha, P. Starobinets, B. Kalashnikova, O. Long, C. N. Alpert, P. TI Variations of meridional aerosol distribution and solar dimming SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IMAGING SPECTRORADIOMETER MISR; MODIS; RADIATION; CLOUD; OCEAN; RETRIEVALS; SURFACE; TRENDS; CONSEQUENCES; CLIMATE AB Meridional distribution of aerosol optical thickness (AOT) over the ocean was analyzed by using the 8-year MISR and MODIS-Terra data sets from March 2000 to February 2008, as well as the 5-year MODIS-Aqua data set from July 2002 to June 2007. The three satellite sensors show that there was a pronounced meridional aerosol asymmetry. It was found that there were strong seasonal variations in the meridional aerosol asymmetry: it was most pronounced in the April-July months. There was no noticeable asymmetry during the season from September to December. The Northern Hemisphere, where the main sources of natural and anthropogenic aerosols are located, contributed to the formation of noticeable aerosol asymmetry. During the season of pronounced hemispheric aerosol asymmetry, an increase in AOT was observed over the Northern Hemisphere, while a decrease in AOT was observed over the Southern Hemisphere. At midlatitudes in the Northern Hemisphere (30-60 degrees N), the main contribution to seasonal variations of AOT over the ocean was made by Pacific Ocean aerosols. At low latitudes in the Northern Hemisphere (0-30 degrees N), aerosols over the Atlantic Ocean contributed to seasonal variations of AOT more significantly than aerosols over the Pacific Ocean. During the 8-year period under consideration, the brightening phenomenon, detected over the land, was not observed over the ocean at midlatitudes 30-60 degrees N in cloudless conditions. C1 [Kishcha, P.; Starobinets, B.; Alpert, P.] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. [Kalashnikova, O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Long, C. N.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kishcha, P (reprint author), Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. EM pavel@cyclone.tau.ac.il FU GLOWA-Jordan River BMBF (Germany)-MOST (Israel) [1946]; U. S. Department of Energy; NASA Earth Sciences Division FX We gratefully acknowledge L. Remer, R. Levy, and Y. Agnon for their helpful discussion, the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) for providing MODIS data, the NASA Langley Research Center Atmospheric Sciences Data Center for providing MISR data, and NOAA/OAR/ESRL Physical Science Division for providing NCEP reanalysis data from their Web site (http://www.cdc.noaa.gov/). This study was supported by the GLOWA-Jordan River BMBF (Germany)-MOST (Israel) project, the BMBF-MOST grant 1946 on global change, and the Israeli Science Foundation (ISF) grant 764/06. C. N. Long acknowledges the support of the Climate Change Research Division of the U. S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program. The work of O. Kalashnikova is supported by a grant from the NASA Earth Sciences Division, Climate and Radiation program, under H. Maring. The work of O. Kalashnikova was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 49 TC 12 Z9 12 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 22 PY 2009 VL 114 AR D00D14 DI 10.1029/2008JD010975 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 449XK UT WOS:000266363900001 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wenzel, H Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wenzel, H. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for the Decays B-(s)(0) -> e(+)mu(-) and B-(s)(0) -> e(+)e(-) in CDF Run II SO PHYSICAL REVIEW LETTERS LA English DT Article ID MESON DECAYS; LEPTON AB We report results from a search for the lepton flavor violating decays B-s(0) -> e(+)mu(-) and B-0 -> e(+)mu(-), and the flavor-changing neutral-current decays B-s(0) -> e(+)e(-) and B-0 -> e(+)e(-). The analysis uses data corresponding to 2 fb(-1) of integrated luminosity of p (p) over bar collisions at root s = 1.96 TeV collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron. The observed number of B-0 and B-s(0) candidates is consistent with background expectations. The resulting Bayesian upper limits on the branching ratios at 90% credibility level are B(B-s(0) -> e(+)mu(-) ) < 2.0 x 10(-7), B(B-0 -> e(+)mu(-)) < 6.4 x 10(-8), B(B-s(0) -> e(+)e(-) ) < 2.8 x 10(-7), and B(B-0 -> e(+)e(-)) < 8.3 x 10(-8). From the limits on B(B-(s)(0) -> e(+)mu(-)), the following lower bounds on the Pati-Salam leptoquark masses are also derived: M-LQ(B-s(0) -> e(+)mu(-)) > 47.8 TeV/c(2), and M-LQ(B-0 -> e(+)mu(-)) > 59.3 TeV/c(2), at 90% credibility level. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.; Spalding, J.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84228, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Chokheli, D.; Glagolev, V.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wenzel, H.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Moon, Chang-Seong/J-3619-2014; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Lancaster, Mark/0000-0002-8872-7292; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Moon, Chang-Seong/0000-0001-8229-7829; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U. K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 24 TC 13 Z9 13 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 201801 DI 10.1103/PhysRevLett.102.201801 PG 8 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000010 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, V Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Potter, C. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of the Z gamma -> nu(nu)over-bar gamma Production Cross Section and Limits on Anomalous ZZ gamma and Z gamma gamma Couplings in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAUGE-BOSON COUPLINGS; HADRON COLLIDERS; LEP AB We present the first observation of the Z gamma -> nu(nu) over bar gamma process at the Fermilab Tevatron at 5.1 standard deviations significance, based on 3.6 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron p (p) over bar Collider at root s = 1.96 TeV. The measured Z gamma production cross section multiplied by the branching fraction of Z -> nu(nu) over bar is 32 +/- 9(stat + syst) +/- 2(lumi) fb for the photon E(T) > 90 GeV. It is in agreement with the standard model prediction of 39 +/- 4 fb. We set limits on anomalous trilinear Z gamma gamma and ZZ gamma gauge boson couplings, most of which are the most restrictive to date. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Ctr Particle Phys, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Brown, D.; Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015 OI Li, Liang/0000-0001-6411-6107; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433 FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom; RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CFI (Canada); NSERC (Canada); WestGrid Project (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS (China); CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 26 TC 16 Z9 16 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 201802 DI 10.1103/PhysRevLett.102.201802 PG 7 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000011 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Bradley, L Braun, J Breder, D Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Heise, J Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Klepser, S Knops, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Leich, H Lennarz, D Lucke, A Lundberg, J Luenemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Middell, E Milke, N Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Satalecka, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Tluczykont, M Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bradley, L. Braun, J. Breder, D. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Heise, J. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Klepser, S. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Leich, H. Lennarz, D. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Middell, E. Milke, N. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Satalecka, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. sullivan, G. W. Swillens, Q. Taboada, I. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Tluczykont, M. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, A. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. TI Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRINO TELESCOPE AB A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun. C1 [Bohm, C.; Burgess, T.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Burgess, T.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bissok, M.; Euler, S.; Huelss, J. -P.; Knops, S.; Laihem, K.; Lennarz, D.; Schukraft, A.; Schunck, M.; Wiebusch, C. H.; Wissing, H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Becker, J. K.; Dreyer, J.; Milke, N.; Muenich, K.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. RP Wikstrom, G (reprint author), Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. EM wikstrom@physto.se RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; OI Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Auffenberg, Jan/0000-0002-1185-9094; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Ter-Antonyan, Samvel/0000-0002-5788-1369 FU U. S. National Science Foundation-Office of Polar Programs, U. S. National Science Foundation-Physics Division, U. of Wisconsin Alumni Research Foundation, U. S. Department of Energy, NERSC, the LONI grid; Swedish Research Council, K. & A. Wallenberg Foundation, Sweden; Ministry for Education and Research, Deutsche Forschungsgemeinschaft; Fund for Scientific Research, IWT-Flanders, BELSPO, Belgium; Netherlands Organisation for Scientific Research; SNF (Switzerland); EU Marie Curie OIF Program; DARKSUSY FX We acknowledge support from the following agencies: U. S. National Science Foundation-Office of Polar Programs, U. S. National Science Foundation-Physics Division, U. of Wisconsin Alumni Research Foundation, U. S. Department of Energy, NERSC, the LONI grid; Swedish Research Council, K. & A. Wallenberg Foundation, Sweden; German Ministry for Education and Research, Deutsche Forschungsgemeinschaft; Fund for Scientific Research, IWT-Flanders, BELSPO, Belgium; the Netherlands Organisation for Scientific Research; M. Ribordy is supported by SNF (Switzerland); A. Kappes and A. Gross are supported by the EU Marie Curie OIF Program. We thank J. Edsjo for DARKSUSY support. NR 26 TC 112 Z9 112 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 201302 DI 10.1103/PhysRevLett.102.201302 PG 5 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000007 PM 19519015 ER PT J AU Benedict, LX Glosli, JN Richards, DF Streitz, FH Hau-Riege, SP London, RA Graziani, FR Murillo, MS Benage, JF AF Benedict, Lorin X. Glosli, James N. Richards, David F. Streitz, Frederick H. Hau-Riege, Stefan P. London, Richard A. Graziani, Frank R. Murillo, Michael S. Benage, John F. TI Molecular Dynamics Simulations of Electron-Ion Temperature Equilibration in an SF6 Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID KINETIC EQUATION; SYSTEMS; FUSION AB We use classical molecular dynamics to investigate electron-ion temperature equilibration in a two-temperature SF6 plasma. We choose a density of 1.0x10(19)SF(6) molecules per cm(3) and initial temperatures of T-e=100 eV and T-S=T-F=15 eV, in accordance with experiments currently underway at Los Alamos National Laboratory. Our computed relaxation time lies between two oft-used variants of the Landau-Spitzer relaxation formula which invoke static screening. Discrepancies are also found when comparing to the predictions made by more recent theoretical approaches. These differences should be large enough to be measured in the upcoming experiments. C1 [Benedict, Lorin X.; Glosli, James N.; Richards, David F.; Streitz, Frederick H.; Hau-Riege, Stefan P.; London, Richard A.; Graziani, Frank R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Murillo, Michael S.; Benage, John F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Benedict, LX (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank R. Shepherd, R.M. More, M.P. Surh, and A. B. Langdon for helpful discussions. We also thank the anonymous referee for many helpful suggestions. This work was performed under the auspices of the U. S. Department of Energy at the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 24 TC 26 Z9 26 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 205004 DI 10.1103/PhysRevLett.102.205004 PG 4 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000029 PM 19519037 ER PT J AU Harrison, N AF Harrison, N. TI Spin-Density Wave Fermi Surface Reconstruction in Underdoped YBa2Cu3O6+x SO PHYSICAL REVIEW LETTERS LA English DT Article ID T-C SUPERCONDUCTOR; HIGH-TEMPERATURE SUPERCONDUCTORS; QUANTUM OSCILLATIONS AB We consider the reconstruction expected for the Fermi surface of underdoped YBa2Cu3O6+x in the case of a collinear spin-density wave with a characteristic vector Q=(pi[1 +/- 2 delta],pi), assuming an incommensurability delta approximate to 0.06 similar to that found in recent neutron scattering experiments. A Fermi surface possibly consistent with the multiple observed quantum oscillation frequencies is obtained. From the low band masses expected using this model as compared with experiment, a uniform enhancement of the quasiparticle effective mass over the Fermi surface by a factor of approximate to 7 is indicated. Further predictions of the Fermi surface topology are made, which may potentially be tested by experiment to indicate the relevance of this model to underdoped YBa2Cu3O6+x. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Harrison, N (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. OI Harrison, Neil/0000-0001-5456-7756 FU US Department of Energy, the National Science Foundation; State of Florida FX This work is supported by the US Department of Energy, the National Science Foundation and the State of Florida. The author acknowledges helpful comments from S. E. Sebastian. NR 23 TC 30 Z9 30 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 206405 DI 10.1103/PhysRevLett.102.206405 PG 4 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000040 PM 19519048 ER PT J AU Li, CK Seguin, FH Frenje, JA Petrasso, RD Amendt, PA Town, RPJ Landen, OL Rygg, JR Betti, R Knauer, JP Meyerhofer, DD Soures, JM Back, CA Kilkenny, JD Nikroo, A AF Li, C. K. Seguin, F. H. Frenje, J. A. Petrasso, R. D. Amendt, P. A. Town, R. P. J. Landen, O. L. Rygg, J. R. Betti, R. Knauer, J. P. Meyerhofer, D. D. Soures, J. M. Back, C. A. Kilkenny, J. D. Nikroo, A. TI Observations of Electromagnetic Fields and Plasma Flow in Hohlraums with Proton Radiography SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONFINEMENT-FUSION PLASMAS; IMPLOSIONS; SCATTERING; OMEGA AB We report on the first proton radiography of laser-irradiated hohlraums. This experiment, with vacuum gold (Au) hohlraums, resulted in observations of self-generated magnetic fields with peak values similar to 10(6) G. Time-gated radiographs of monoenergetic protons with discrete energies (15.0 and 3.3 MeV) reveal dynamic pictures of field structures and plasma flow. Near the end of the 1-ns laser drive, a stagnating Au plasma (similar to 10 mg cm(-3)) forms at the center of the hohlraum. This is a consequence of supersonic, radially directed Au jets (similar to 1000 mu m ns(-1), similar to Mach 4) that arise from the interaction of laser-driven plasma bubbles expanding into one another. C1 [Li, C. K.; Seguin, F. H.; Frenje, J. A.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Amendt, P. A.; Town, R. P. J.; Landen, O. L.; Rygg, J. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Soures, J. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Back, C. A.; Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn & Phys & Astron, Rochester, NY 14623 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU U. S. DOE [DE-FG52-07NA28059, DE-FG52-06N826203]; LLNL [B543881, LDRD-08ERD-062]; LLE [414090-G]; Fusion Science Center at University of Rochester [412761-G]; General Atomics [DE-AC52-06NA27279] FX The authors thank Dr. L.J. Suter and Dr. S.H. Glenzer of LLNL for useful discussions. The work was performed at the LLE National Laser User's Facility (NLUF), and was supported in part by U. S. DOE (DE-FG52-07NA28059 and DE-FG52-06N826203), LLNL (B543881 and LDRD-08ERD-062), LLE (414090-G), the Fusion Science Center at University of Rochester (412761-G), and General Atomics (DE-AC52-06NA27279). NR 24 TC 42 Z9 45 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 205001 DI 10.1103/PhysRevLett.102.205001 PG 4 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000026 PM 19519034 ER PT J AU Liao, JF Shuryak, E AF Liao, Jinfeng Shuryak, Edward TI Angular Dependence of Jet Quenching Indicates Its Strong Enhancement near the QCD Phase Transition SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; COLLISIONS; COLLABORATION; LEPTONS; PHOTONS; PSIONS; MATTER; STAR; FLOW; A+A AB We study dependence of jet quenching on matter density, using "tomography" of the fireball provided by RHIC data on azimuthal anisotropy v(2) of high p(t) hadron yield at different centralities. Slicing the fireball into shells with constant (entropy) density, we derive a "layer-wise geometrical limit" v(2)(max) which is indeed above the data v(2)< v(2)(max). Interestingly, the limit is reached only if quenching is dominated by shells with the entropy density exactly in the near-T-c region. We show two models that simultaneously describe the high p(t) v(2) and RA-A data and conclude that such a description can be achieved only if the jet quenching is few times stronger in the near-T-c region relative to QGP at T > T-c. One possible reason for such enhancement may be recent indications that the near-T-c region is a magnetic plasma of relatively light color-magnetic monopoles. C1 [Liao, Jinfeng; Shuryak, Edward] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Liao, Jinfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liao, JF (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM jliao@lbl.gov; shuryak@tonic.physics.sunysb.edu FU US-DOE [DE-FG-88ER40388]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in parts by the US-DOE Grant No. DE-FG-88ER40388. J. L. is also supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful to Barbara Jacak for valuable discussions and to Rui Wei for help on data. J. L. also thanks V. Koch, P. Jacobs, J. Jia, R. Lacey, and L. McLerran for helpful discussions. NR 46 TC 72 Z9 72 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 202302 DI 10.1103/PhysRevLett.102.202302 PG 4 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000014 PM 19519022 ER PT J AU Xu, XF Bangura, AF Analytis, JG Fletcher, JD French, MMJ Shannon, N He, J Zhang, S Mandrus, D Jin, R Hussey, NE AF Xu, Xiaofeng Bangura, A. F. Analytis, J. G. Fletcher, J. D. French, M. M. J. Shannon, N. He, J. Zhang, S. Mandrus, D. Jin, R. Hussey, N. E. TI Directional Field-Induced Metallization of Quasi-One-Dimensional Li0.9Mo6O17 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; CONDUCTORS; SUPERCONDUCTORS; LOCALIZATION; SYSTEMS AB We report a detailed magnetotransport study of the highly anisotropic quasi-one-dimensional oxide Li0.9Mo6O17 whose in-chain electrical resistivity diverges below a temperature T-min similar to 25 K. For T < T-min, a magnetic field applied parallel to the conducting chain induces a large negative magnetoresistance and, ultimately, the recovery of a metallic state. We show evidence that this insulator-metal crossover is a consequence of field-induced suppression of a density-wave gap in a highly one-dimensional conductor. At the highest fields studied, there is evidence for the possible emergence of a novel superconducting state with an onset temperature T-c > 10 K. C1 [Xu, Xiaofeng; Bangura, A. F.; Analytis, J. G.; Fletcher, J. D.; French, M. M. J.; Shannon, N.; Hussey, N. E.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [He, J.; Zhang, S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29631 USA. [Mandrus, D.; Jin, R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Jin, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Xu, XF (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. RI Fletcher, Jonathan/J-9023-2012; Mandrus, David/H-3090-2014; Shannon, Nic/N-3874-2014; Hussey, Nigel/F-9699-2015 OI Fletcher, Jonathan/0000-0002-2386-9361; Shannon, Nic/0000-0001-9258-1583; NR 24 TC 33 Z9 33 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 206602 DI 10.1103/PhysRevLett.102.206602 PG 4 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000049 PM 19519057 ER PT J AU Zhang, L T-Thienprasert, J Du, MH Singh, DJ Limpijumnong, S AF Zhang, L. T-Thienprasert, J. Du, M. -H. Singh, D. J. Limpijumnong, S. TI Comment on "Spectroscopic Signatures of Novel Oxygen-Defect Complexes in Stoichiometrically Controlled CdSe" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by G. Chen et al., Phys. Rev. Lett. 101, 195502 (2008). The authors of the Letter offer a Reply. C1 [Zhang, L.; Du, M. -H.; Singh, D. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [T-Thienprasert, J.; Limpijumnong, S.] Suranaree Univ Technol, Nakhon Ratchasima 30000, Thailand. [T-Thienprasert, J.; Limpijumnong, S.] Synchrontron Light Res Inst, Nakhon Ratchasima 30000, Thailand. RP Zhang, L (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RI T-Thienprasert, Jiraroj/A-2093-2011; Zhang, Lijun/F-7710-2011; Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 4 TC 14 Z9 14 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 22 PY 2009 VL 102 IS 20 AR 209601 DI 10.1103/PhysRevLett.102.209601 PG 1 WC Physics, Multidisciplinary SC Physics GA 449CS UT WOS:000266309000073 PM 19519081 ER PT J AU Kilic, S Wang, Y Johnson, JK Beckman, EJ Enick, RM AF Kilic, Sevgi Wang, Yang Johnson, J. Karl Beckman, Eric J. Enick, Robert M. TI Influence of tert-amine groups on the solubility of polymers in CO2 SO POLYMER LA English DT Article DE Tertiary amine; CO2-solubility; Ab initio modeling ID SUPERCRITICAL CARBON-DIOXIDE; VAN-DER-WAALS; PHASE-BEHAVIOR; AB-INITIO; MOLECULAR-INTERACTIONS; ACCEPTOR COMPLEXES; DENSITY; SPECTROSCOPY; CO2-PHILICITY; PRESSURES AB There is a need to develop new, non-fluorous polymers that are highly soluble in CO2. Experimental evidence indicates that tertiary amine and pyridine groups may exhibit favorable Lewis acid-Lewis base type interactions with CO2. It is therefore reasonable to assume that incorporation of tertiary amines into the side chain or backbone of non-fluorous polymers may impart a degree of CO2-Solubility to the polymer. We present experimental results for eight different tert-amine-containing polymers. Of these polymers. only propyl dimethylamine-functionalized poly(dimethylsiloxane) is soluble in CO2 at temperatures and pressures accessible in our experiments, but even this polymer is less soluble than non-functionalized poly(dimethylsiloxane) at the same chain length. We have performed ab initio calculations on tertiary amine-containing moieties representative of some of the polymers examined experimentally. Our calculations confirm that amine-CO2 interactions are indeed energetically favorable. However, we also find that the moiety self-interactions are typically more favorable than the CO2-moiety interactions. This indicates that the lack of solubility of amine-containing polymers in CO2 is a direct result of strong polymer-polymer interactions. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Kilic, Sevgi] Izmir Inst Technol, Dept Chem Engn, TR-35430 Izmir, Turkey. [Wang, Yang; Johnson, J. Karl; Beckman, Eric J.; Enick, Robert M.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Johnson, J. Karl; Enick, Robert M.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Kilic, S (reprint author), Izmir Inst Technol, Dept Chem Engn, TR-35430 Izmir, Turkey. EM sevgikilic@iyte.edu.tr; rme@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU National Science Foundation; U.S. Department of Energy through the National Energy Technology Laboratory [41817M203841817M2000] FX Funding for this work has been provided by the National Science Foundation and the U.S. Department of Energy through the National Energy Technology Laboratory under Grant No. 41817M203841817M2000. NR 50 TC 20 Z9 20 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD MAY 22 PY 2009 VL 50 IS 11 BP 2436 EP 2444 DI 10.1016/j.polymer.2009.03.012 PG 9 WC Polymer Science SC Polymer Science GA 449GP UT WOS:000266319100012 ER PT J AU Ohlrogge, J Allen, D Berguson, B DellaPenna, D Shachar-Hill, Y Stymne, S AF Ohlrogge, John Allen, Doug Berguson, Bill DellaPenna, Dean Shachar-Hill, Yair Stymne, Sten TI Driving on Biomass SO SCIENCE LA English DT Editorial Material ID BIOFUELS C1 [Ohlrogge, John; Allen, Doug; Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Ohlrogge, John; Allen, Doug; Shachar-Hill, Yair] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Berguson, Bill] Univ Minnesota, Nat Resources Res Inst, Forestry Program, Duluth, MN 55811 USA. [DellaPenna, Dean] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Stymne, Sten] Swedish Univ Agr Sci, Dept Plant Breeding & Biotechnol, Alnarp, Sweden. RP Ohlrogge, J (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM ohlrogge@msu.edu RI Shachar-Hill, Yair/B-6165-2013; Allen, Doug/M-2836-2013; OI Shachar-Hill, Yair/0000-0001-8793-5084; Allen, Doug/0000-0001-8599-8946; Penna, Maria Pietronilla/0000-0002-0982-3893 NR 11 TC 80 Z9 82 U1 2 U2 47 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 22 PY 2009 VL 324 IS 5930 BP 1019 EP 1020 DI 10.1126/science.1171740 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 448EU UT WOS:000266246700023 PM 19460990 ER PT J AU Czaplewski, DA Kraus, GM Nordquist, CD AF Czaplewski, D. A. Kraus, G. M. Nordquist, C. D. TI Nanomechanical switches for power saving in CMOS applications SO ELECTRONICS LETTERS LA English DT Article ID SILICON AB The performance of a nanomechanical switch for integration with complementary metal-oxide-semiconductor electronics to reduce idle power consumption is presented. The DC performance shows a leakage current less than 100 fA, a through current of 10 mu A, and <1 mV/decade subthreshold slope. The operating voltage of the switch was approximately 13.2 V. The switch closure was measured at approximately 100 mu s, while the switch open was measured at less than 100 ns. A path forward is presented to reduce the operating voltage of future switches to 3.7 V and decrease the switching time to 27 ns. C1 [Czaplewski, D. A.; Kraus, G. M.; Nordquist, C. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Czaplewski, DA (reprint author), Sandia Natl Labs, POB 5800,M-S 1069, Albuquerque, NM 87185 USA. EM dczaplewski@anl.gov FU DARPA NEMS programme FX The authors thank the sponsor of this project, Amit Lal, from the DARPA NEMS programme. Sandia National Laboratory is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 5 TC 2 Z9 2 U1 0 U2 2 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 EI 1350-911X J9 ELECTRON LETT JI Electron. Lett. PD MAY 21 PY 2009 VL 45 IS 11 BP 550 EP U34 DI 10.1049/el.2009.0523 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 448LU UT WOS:000266264900015 ER PT J AU Hammond, JR Kowalski, K AF Hammond, Jeff R. Kowalski, Karol TI Parallel computation of coupled-cluster hyperpolarizabilities SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE coupled cluster calculations; density functional theory; molecular configurations; nonlinear optics; organic compounds; parallel processing; physics computing; polarisability; solvent effects; vibrational states; water ID MOLECULAR ELECTRIC PROPERTIES; NONLINEAR-OPTICAL-PROPERTIES; POLARIZED BASIS-SETS; LEVEL-CORRELATED CALCULATIONS; DENSITY-FUNCTIONAL-THEORY; FREQUENCY-DEPENDENT HYPERPOLARIZABILITIES; REACTION-FIELD MODEL; GAUSSIAN-BASIS SETS; ANO BASIS-SETS; CONJUGATED ORGANIC-MOLECULES AB Static hyperpolarizabilities of molecules (water, acetonitrile, chloroform, and para-nitroaniline) are calculated with large basis sets using coupled-cluster response theory and compared to four common density functional theory methods. These results reveal which methods and basis sets are appropriate for nonlinear optical studies for different types of molecules and provide a means for estimating errors from the quantum chemical approximation when including vibrational contributions or solvent effects at the QM/MM level. The largest calculation reported, which was for 72 electrons in 812 functions at C-2v symmetry, took only a few hours on 256 nodes demonstrating that even larger calculations are quite feasible using modern supercomputers. C1 [Hammond, Jeff R.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Hammond, Jeff R.] Univ Chicago, Dept Comp Sci, James Franck Inst, Chicago, IL 60637 USA. [Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hammond, JR (reprint author), Univ Chicago, Dept Chem, Chicago, IL 60637 USA. EM jhammond@uchicago.edu; karol.kowalski@pnl.gov RI Hammond, Jeff/G-8607-2013 OI Hammond, Jeff/0000-0003-3181-8190 FU DOE-CSGF [DE-FG02-97ER25308, DE-AC02-06CH11357] FX J. R. H. was supported by the DOE-CSGF program provided under Grant No. DE-FG02-97ER25308 and thanks Dr. Peng-Dong Fan for generous hospitality for the 2 week period when the CCSD-QR code was written.; This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 91 TC 55 Z9 55 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 21 PY 2009 VL 130 IS 19 AR 194108 DI 10.1063/1.3134744 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457XA UT WOS:000266967700008 PM 19466822 ER PT J AU Huang, LP Rocca, D Baroni, S Gubbins, KE Nardelli, MB AF Huang, Liping Rocca, Dario Baroni, Stefano Gubbins, Keith E. Nardelli, Marco Buongiorno TI Molecular design of photoactive acenes for organic photovoltaics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE carrier mobility; density functional theory; infrared spectra; organic semiconductors; photovoltaic effects; ultraviolet spectra; visible spectra ID PENTACENE THIN-FILMS; FUNCTIONALIZED PENTACENES; CRYSTAL-STRUCTURE; CHARGE-TRANSPORT; AG(110) SURFACE; ELECTRON-GAS; SEMICONDUCTORS; TETRACENE; STATE; TRANSISTORS AB Absorption spectra of n-acenes (n from 2 to 6, for naphthalene, anthracene, tetracene, pentacene, and hexacene, respectively) have been calculated using a newly developed code based on time-dependent density-functional theory. Our calculations show that absorption spectra and charge carrier mobility of acenes not only depend on the molecular identity but also on the molecular packing. By designing the interaction between metal substrates and the first layer of acene molecules, they can be packed in a face-to-face fashion instead of the conventional herringbone (face-to-edge) arrangement. Acenes in the cofacial packing would increase the pi-orbital overlap and thus enhance the charge mobility by maximizing electronic coupling between adjacent molecules. Absorption spectra of cofacially packed acenes have a better overlap with the solar spectrum, which allows harvesting more of the solar energy from red photons. C1 [Huang, Liping] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Rocca, Dario] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Baroni, Stefano] Natl Simulat Ctr, INFM DEMOCRITOS, CNR, I-34014 Trieste, Italy. [Gubbins, Keith E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA. RP Huang, LP (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM huangl5@rpi.edu RI Buongiorno Nardelli, Marco/C-9089-2009; Baroni, Stefano/F-2982-2011; Rocca, Dario/C-3177-2012; Huang, Liping/B-4412-2008 OI Baroni, Stefano/0000-0002-3508-6663; Rocca, Dario/0000-0003-2122-6933; NR 48 TC 13 Z9 13 U1 1 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 21 PY 2009 VL 130 IS 19 AR 194701 DI 10.1063/1.3133361 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457XA UT WOS:000266967700035 PM 19466849 ER PT J AU Kowalski, K AF Kowalski, Karol TI Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE chlorine compounds; coupled cluster calculations; excited states; ground states; iterative methods; organic compounds; potential energy surfaces; water ID BODY PERTURBATION THEORIES; FREE-BASE PORPHIN; SAC-CI METHOD; CONFIGURATION-INTERACTION; ELECTRONIC STATES; BASIS-SETS; OPEN-SHELL; CONICAL INTERSECTION; RESPONSE FUNCTIONS; SINGLE-REFERENCE AB In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible. C1 Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov FU U. S. Department of Energy [DE-AC06-76RLO-1830] FX This work was supported by the Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. All calculations have been performed using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory. The William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is funded by the Office of Biological and Environmental Research in the U. S. Department of Energy. The Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. NR 90 TC 16 Z9 16 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 21 PY 2009 VL 130 IS 19 AR 194110 DI 10.1063/1.3132592 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457XA UT WOS:000266967700010 PM 19466824 ER PT J AU Johnson, PA Bodin, P Gomberg, J Pearce, F Lawrence, Z Menq, FY AF Johnson, Paul A. Bodin, Paul Gomberg, Joan Pearce, Fred Lawrence, Zack Menq, Farn-Yuh TI Inducing in situ, nonlinear soil response applying an active source SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID 1994 NORTHRIDGE EARTHQUAKE; COHESIONLESS SOILS; WATER SATURATION; GARNER VALLEY; SLOW DYNAMICS; CALIFORNIA; BEHAVIOR; ARRAY; WAVE; LIQUEFACTION AB It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes. C1 [Johnson, Paul A.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. [Bodin, Paul] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Gomberg, Joan] Univ Washington, Dept Earth & Space Sci, US Geol Survey, Seattle, WA 98195 USA. [Pearce, Fred] MIT, Earth Resources Lab, Cambridge, MA 02139 USA. [Lawrence, Zack] ExxonMobil Upstream Res Co, Houston, TX 77252 USA. [Menq, Farn-Yuh] Univ Texas Austin, Dept Civil Environm & Architectural Engn, Geotech Engn Ctr, Austin, TX 78712 USA. RP Johnson, PA (reprint author), Los Alamos Natl Lab, Geophys Grp, Mail Stop D443, Los Alamos, NM 87545 USA. EM paj@lanl.gov; gomberg@usgs.gov OI Johnson, Paul/0000-0002-0927-4003 FU DOE Office of Basic Energy Research, Geosciences; Institute of Geophysics and Planetary Physics at Los Alamos; NSF; Mid- America Earthquake Center; Universitiy of Washington; University of Memphis; U. S. Geological Survey FX The manuscript was greatly improved thanks to the review of Fabian Bonilla, two anonymous reviewers, and the associate editor. This work was supported by the DOE Office of Basic Energy Research, Geosciences; the Institute of Geophysics and Planetary Physics at Los Alamos; the NSF consortia NEES; the Mid- America Earthquake Center; the Universities of Washington and Memphis; and the U. S. Geological Survey. We thank Robert Guyer for helpful discussions. NR 33 TC 12 Z9 12 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAY 21 PY 2009 VL 114 AR B05304 DI 10.1029/2008JB005832 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 449XZ UT WOS:000266365500002 ER PT J AU Glascoe, EA Zaug, JM Armstrong, MR Crowhurst, JC Grant, CD Fried, LE AF Glascoe, Elizabeth A. Zaug, Joseph M. Armstrong, Michael R. Crowhurst, Jonathan C. Grant, Christian D. Fried, Laurence E. TI Nanosecond Time-Resolved and Steady-State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressure SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID THERMAL-DECOMPOSITION; ELECTRONIC-STRUCTURE; 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE; PHOTOCHEMISTRY; CHEMISTRY; REARRANGEMENT; NITROBENZENE; DIFFRACTION; EXPLOSIVES; BENZENE AB The time scale and/or products of photoinduced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at 8 GPa. Ultrafast time-resolved infrared and steady-state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation Of CO(2), an observed decomposition product, is complete within 30-40 mu s. Proof of principle time-resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure. C1 [Glascoe, Elizabeth A.; Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Grant, Christian D.; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Glascoe, EA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM glascoe2@llnl.gov RI Armstrong, Michael/I-9454-2012; Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program [06-SI-005] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The project 06-SI-005 was funded by the Laboratory Directed Research and Development Program. We thank J. L. Maienschein for kindly providing the Polaris laser used in this study, P. F. Pagoria for providing TATB samples, and Jack Reaugh for helpful discussion. NR 35 TC 18 Z9 18 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 21 PY 2009 VL 113 IS 20 BP 5881 EP 5887 DI 10.1021/jp809418a PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 446AV UT WOS:000266093500009 PM 19438271 ER PT J AU Grass, ME Joo, SH Zhang, YW Somorjai, GA AF Grass, Michael E. Joo, Sang Hoon Zhang, Yawen Somorjai, Gabor A. TI Colloidally Synthesized Monodisperse Rh Nanoparticles Supported on SBA-15 for Size- and Pretreatment-Dependent Studies of CO Oxidation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PLATINUM NANOPARTICLES; CARBON-MONOXIDE; RHODIUM NANOPARTICLES; CATALYTIC-PROPERTIES; AQUEOUS-SOLUTION; PALLADIUM NANOPARTICLES; INFRARED-SPECTRA; SUZUKI REACTIONS; MODEL CATALYSTS; CHEMISORBED CO AB A particle size dependence for CO oxidation over rhodium nanoparticles of 1.9-11.3 nm has been investigated and determined to be modified by the existence of the capping agent poly(vinylpyrrolidone) (PVP). The particles were prepared using a polyol reduction procedure with PVP as the capping agent. The Rh nanoparticles were subsequently supported on SBA-15 during hydrothermal synthesis to produce Rh/SBA-15 supported catalysts for size-dependent catalytic studies. CO oxidation by O(2) at 40 Torr CO and 100 Torr O(2) was investigated over two series of Rh/SBA-15 catalysts: as-synthesized Rh/SBA-15 covering the full range of Rh sizes and the same set of catalysts after high temperature calcination and reduction. The turnover frequency at 443 K increases from 0.4 to 1.7 s(-1) as the particle size decreases from 11.3 to 1.9 nm for the as-synthesized catalysts. After calcination and reduction, the turnover frequency is between 0.1 and 0.4 s(-1) with no particle size dependence. The apparent activation energy for all catalysts is similar to 30 kcal mol(-1) and is independent of particle size and thermal treatment. Infrared spectroscopy of CO on the Rh nanoparticles indicates that the heat treatments used influence the mode of CO adsorption. As a result, the particle size dependence for CO oxidation is altered after calcination and reduction of the catalysts. CO adsorbs at two distinct bridge sites on as-synthesized Rh/SBA-15, attributable to metallic Rh(0) and oxidized Rh(I) bridge sites. After calcination and reduction, however, CO adsorbs only at Rh(0) atop sites. The change in adsorption geometry and oxidation activity may be attributable to the interaction between PVP and the Rh surface. This capping agent affect may open new possibilities for the tailoring of metal catalysts using solution nanoparticle synthesis methods. C1 [Grass, Michael E.; Joo, Sang Hoon; Zhang, Yawen; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Grass, Michael E.; Joo, Sang Hoon; Zhang, Yawen; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. [Grass, Michael E.; Joo, Sang Hoon; Zhang, Yawen; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. [Zhang, Yawen] Peking Univ, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China. [Zhang, Yawen] Peking Univ, PKU HKU Joint Lab Rare Earth Mat & Bioinorgan Che, Beijing 100871, Peoples R China. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Joo, Sang Hoon/E-5898-2010 FU U.S. Department of Energy [DE-AC02-05CH11231]; Advanced Light Source Postdoctoral Fellow; Peking University Education Foundation of China FX This work was supported by the Director, Office of Science. Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Tim Davenport for TGA-DSC measurements. TEM measurements were performed at the Robert D. Ogg Electron Microscope Lab at UC Berkeley. MEG recognizes financial assistance as an Advanced Light Source Postdoctoral Fellow. YWZ appreciates the financial aid of Huaxin Distinguished Scholar Award from Peking University Education Foundation of China. NR 55 TC 51 Z9 52 U1 5 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 21 PY 2009 VL 113 IS 20 BP 8616 EP 8623 DI 10.1021/jp901288m PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 446AY UT WOS:000266093800014 ER PT J AU Huang, P Schwegler, E Galli, G AF Huang, Patrick Schwegler, Eric Galli, Giulia TI Water Confined in Carbon Nanotubes: Magnetic Response and Proton Chemical Shieldings SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID 1ST PRINCIPLES SIMULATIONS; DENSITY-FUNCTIONAL THEORY; LIQUID WATER; AB-INITIO; NMR; SHIFTS; ACCURACY AB We study the proton nuclear magnetic resonance of a model system consisting of liquid water confined in carbon nanotubes (CNTs). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions for water confined in (14,0) and (19,0) CNTs with diameters d = 11 and 14.9 angstrom, respectively. We find that confinement within the CNT leads to a large (ca. -23 ppm) upfield shift relative to bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field. C1 [Huang, Patrick; Schwegler, Eric] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Huang, P (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94551 USA. EM huang26@llnl.gov RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016; OI Schwegler, Eric/0000-0003-3635-7418; Huang, Patrick/0000-0003-4833-8134 FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science, U.S. Department of Energy, SciDAC [DE-FC02-06ER46262] FX We thank Julie Herberg and Jason Holt for helpful discussions regarding the 1H NMR experiments. This work was partly performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and was supported by the Office of Science, U.S. Department of Energy, SciDAC Grant No. DE-FC02-06ER46262. The use of computer resources from the Lawrence Livermore National Laboratory and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program is gratefully acknowledged. NR 29 TC 10 Z9 10 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 21 PY 2009 VL 113 IS 20 BP 8696 EP 8700 DI 10.1021/jp811060y PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 446AY UT WOS:000266093800025 ER PT J AU Kim, HS Zygmunt, SA Stair, PC Zapol, P Curtiss, LA AF Kim, Hack-Sung Zygmunt, Stan A. Stair, Peter C. Zapol, Peter Curtiss, Larry A. TI Monomeric Vanadium Oxide on a theta-Al2O3 Support: A Combined Experimental/Theoretical Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-ABSORPTION; DIFFUSE-REFLECTANCE SPECTROSCOPY; LASER RAMAN-SPECTROSCOPY; ALUMINUM-OXIDE; OXIDATIVE DEHYDROGENATION; INFRARED-SPECTROSCOPY; MOLECULAR-STRUCTURE; TITANIA CATALYSTS; SURFACE SITES; GAMMA-ALUMINA AB A combined experimental and theoretical study of vanadium oxide monomers on a theta-alumina surface under different environments has identified four different structures. Deep UV Raman results suggest that vanadia is attached predominantly to an aluminum site that was an isolated terminal Al-OH group on the theta-alumina surface. The preresonance Raman spectra for vanadium oxide supported on theta-alumina with a very low VOx surface density show three distinct V=O bands under dehydrated conditions. The observed frequencies match well with the calculated stretching frequencies from B3LYP density functional theory for tridendate, bidendate, and molecular structures of vanadium oxide monomers on a dehydrated surface. The free energies calculated for these three structures from density functional theory as a function of temperature suggest that all three could exist on the surface with the tridentate structure being the most stable of the three on the dehydrated surface. Different structures and different degrees of vibrational coupling of V-O to V=O modes may cause the appearance of three V=O bands in the preresonance Raman spectra. On the hydrated surface, the Raman spectra show a V-O band, in agreement with the calculated frequency for a monodentate structure on this surface. Finally, the calculated free energies of hydrated and dehydrated surfaces indicate a transition from a hydrated to a dehydrated theta-alumina surface occurs at around 600 K at 10(-6) atm pressure of H2O. C1 [Kim, Hack-Sung; Stair, Peter C.; Zapol, Peter; Curtiss, Larry A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Kim, Hack-Sung; Stair, Peter C.] Northwestern Univ, Dept Chem, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Kim, Hack-Sung; Stair, Peter C.] Northwestern Univ, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. [Zygmunt, Stan A.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Zapol, Peter; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zapol, Peter; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU U.S. Department of Energy, Basic Energy Sciences [DE-AC02-06CH11357]; Valparaiso University Office of the Provost FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences, under contract DE-AC02-06CH11357, and by the Valparaiso University Office of the Provost. NR 40 TC 39 Z9 39 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 21 PY 2009 VL 113 IS 20 BP 8836 EP 8843 DI 10.1021/jp900158e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 446AY UT WOS:000266093800045 ER PT J AU Pant, P Budai, JD Aggarwal, R Narayan, RJ Narayan, J AF Pant, P. Budai, J. D. Aggarwal, R. Narayan, R. J. Narayan, J. TI Structural characterization of two-step growth of epitaxial ZnO films on sapphire substrates at low temperatures SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; MOLECULAR-BEAM EPITAXY; LAYERS AB We have investigated two-step growth of high-quality epitaxial ZnO films, where the first layer-the buffer layer (nucleation layer template)-is grown at a low temperature (230-290 degrees C) to induce a smooth (two-dimensional) growth. This is followed by growth at a moderate temperature similar to 430 degrees C to form high-quality smooth ZnO layers for device structures. It was possible to reduce the growth temperature to 250-290 degrees C and obtain a smooth epitaxial template layer on sapphire (0001) substrates with surface roughness less than 1 nm. After the high-temperature growth, the film surface undulations (roughness) increased to about 2 nm, but it is still quite smooth. The calculation of c and a lattice parameters by high-resolution x-ray diffraction shows that the a lattice parameter is fully relaxed at the growth temperatures but the c lattice parameter is dependent on the defect concentration in the growing film. A decoupling between a and c lattice parameters of the films is observed, which leads to abnormal Poisson's ratios ranging from 0.08 to 0.54. The decoupling of the lattice parameters is analysed based on growth characteristics and the presence of strain and defects in the grown films. We present our detailed studies on the nature of epitaxy, defects and interfaces by using comprehensive x-ray diffraction and high-resolution TEM studies. C1 [Pant, P.; Aggarwal, R.; Narayan, R. J.; Narayan, J.] N Carolina State Univ, Dept Mat Sci & Engn, EBI, Raleigh, NC 27695 USA. [Budai, J. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Narayan, R. J.] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27599 USA. RP Pant, P (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, EBI, Centennial Campus, Raleigh, NC 27695 USA. EM ppant@ncsu.edu RI Narayan, Jagdish/D-1874-2009; Narayan, Roger/J-2789-2013; Budai, John/R-9276-2016 OI Narayan, Roger/0000-0002-4876-9869; Budai, John/0000-0002-7444-1306 FU National Science Foundation; DOE Office of Science; DMS; UT-Battelle, LLC FX This research was supported by the National Science Foundation. The work was also supported by the DOE Office of Science, DMS under contract with ORNL, managed by UT-Battelle, LLC. NR 19 TC 11 Z9 11 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAY 21 PY 2009 VL 42 IS 10 AR 105409 DI 10.1088/0022-3727/42/10/105409 PG 8 WC Physics, Applied SC Physics GA 440CW UT WOS:000265677400055 ER PT J AU Jaramillo, R Feng, YJ Lang, JC Islam, Z Srajer, G Littlewood, PB McWhan, DB Rosenbaum, TF AF Jaramillo, R. Feng, Yejun Lang, J. C. Islam, Z. Srajer, G. Littlewood, P. B. McWhan, D. B. Rosenbaum, T. F. TI Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition SO NATURE LA English DT Article ID SPIN-DENSITY WAVES; X-RAY-SCATTERING; ITINERANT ANTIFERROMAGNETISM; CHROMIUM; SUPERCONDUCTIVITY; CHARGE; TEMPERATURE; CRITICALITY; DEPENDENCE; GAS AB Advances in solid-state and atomic physics are exposing the hidden relationships between conventional and exotic states of quantum matter. Prominent examples include the discovery of exotic superconductivity proximate to conventional spin and charge order(1,2), and the crossover from long-range phase order to preformed pairs achieved in gases of cold fermions(3-5) and inferred for copper oxide superconductors(5). The unifying theme is that incompatible ground states can be connected by quantum phase transitions. Quantum fluctuations about the transition are manifestations of the competition between qualitatively distinct organizing principles(6,7), such as a long-wavelength density wave and a short-coherence-length condensate. They may even give rise to 'protected' phases, like fluctuation-mediated superconductivity that survives only in the vicinity of an antiferromagnetic quantum critical point(8,9). However, few model systems that demonstrate continuous quantum phase transitions have been identified, and the complex nature of many systems of interest hinders efforts to more fully understand correlations and fluctuations near a zero-temperature instability. Here we report the suppression of magnetism by hydrostatic pressure in elemental chromium, a simple cubic metal that demonstrates a subtle form of itinerant antiferromagnetism(10-16) formally equivalent to the Bardeen-Cooper-Schrieffer (BCS) state in conventional superconductors. By directly measuring the associated charge order in a diamond anvil cell at low temperatures, we find a phase transition at pressures of similar to 10 GPa driven by fluctuations that destroy the BCS-like state but preserve the strong magnetic interaction between itinerant electrons and holes. Chromium is unique among stoichiometric magnetic metals studied so far in that the quantum phase transition is continuous, allowing experimental access to the quantum singularity and a direct probe of the competition between conventional and exotic order in a theoretically tractable material. C1 [Jaramillo, R.; Feng, Yejun; Rosenbaum, T. F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Jaramillo, R.; Feng, Yejun; Rosenbaum, T. F.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Feng, Yejun; Lang, J. C.; Islam, Z.; Srajer, G.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [McWhan, D. B.] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Rosenbaum, TF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM tfr@uchicago.edu RI Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; Feng, Yejun/A-5417-2009; OI Feng, Yejun/0000-0003-3667-056X; , /0000-0003-3116-6719 FU US National Science Foundation (NSF) Division of Materials Research; US NSF Earth Sciences; Department of Energy (DOE) Geosciences; US DOE Office of Basic Energy Sciences FX We are grateful to J. Pluth for assistance with sample preparation, V. Prakapenka and GeoSoilEnviroCARS (Advanced Photon Source (APS), Argonne National Laboratory) for technical support and G. Aeppli for many discussions. The work at the University of Chicago was supported by the US National Science Foundation (NSF) Division of Materials Research. GeoSoilEnviroCARS is supported by the US NSF Earth Sciences and Department of Energy (DOE) Geosciences. Use of APS is supported by the US DOE Office of Basic Energy Sciences. NR 30 TC 25 Z9 25 U1 3 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 21 PY 2009 VL 459 IS 7245 BP 405 EP 409 DI 10.1038/nature08008 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 448DQ UT WOS:000266243700041 PM 19458718 ER PT J AU Nygren, D AF Nygren, David TI High-pressure xenon gas electroluminescent TPC for 0-nu beta beta-decay search SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE beta beta decay; High-pressure xenon; TPC; Electroluminescence ID SCINTILLATION PROPORTIONAL COUNTER; MONTE-CARLO-SIMULATION; DRIFT CHAMBER; DARK-MATTER; DETECTORS; ENERGY; LIGHT; RESOLUTION; EMISSION; PARALLEL AB A high-pressure xenon gas TPC can provide both event topology information and optimized energy resolution for the detection of beta beta decay in (136)Xe. The result of optimization indicates that, at the (136)Xe Q-value of 2480 keV, an energy resolution of delta E/E<5 x 10(-3) FWHM may be realizable, even at the 1000 kg scale. Signal detection by electroluminescence appears essential to realize this performance. A specific method for generation and detection of the electroluminescent signal and particle tracking in high-pressure xenon gas is advanced. Strengths and weaknesses of high-pressure xenon gas TPC detectors are evaluated and compared to detectors based on liquid xenon. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nygren, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Nygren, David] Stockholm Univ, S-10691 Stockholm, Sweden. RP Nygren, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. EM drnygren@lbl.gov NR 45 TC 45 Z9 45 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 21 PY 2009 VL 603 IS 3 BP 337 EP 348 DI 10.1016/j.nima.2009.01.222 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 456GD UT WOS:000266829400018 ER PT J AU Ryzhikov, VD Naydenov, SV Onyshchenko, GM Lecoq, P Smith, CF AF Ryzhikov, V. D. Naydenov, S. V. Onyshchenko, G. M. Lecoq, P. Smith, C. F. TI A spectrometric approach in radiography for detection of materials by their effective atomic number SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Multi-energy radiography; Effective atomic number; Spectrometry; Scintillation detectors; ZnSe-materials ID COMPUTERIZED-TOMOGRAPHY; DIGITAL RADIOGRAPHY; ENERGY AB In this paper we report a spectrometric approach to dual-energy digital radiography that has been developed and applied to identify specific organic substances and discern small differences in their effective atomic number. An experimental setup has been designed, and a theoretical description proposed based on the experimental results obtained. The proposed method is based on the application of special reference samples made of materials with different effective atomic number and thickness parameters known to affect X-ray attenuation in the low-energy range. The results obtained can be used in the development of a new generation of multi-energy customs or medical X-ray scanners. (C) 2009 Elsevier B.V. All rights reserved. C1 [Naydenov, S. V.] Kharkov Single Crystals Inst, UA-61001 Kharkov, Ukraine. [Ryzhikov, V. D.; Naydenov, S. V.; Onyshchenko, G. M.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Lecoq, P.] CERN, European Org Nucl Res, European Res Ctr, CH-1211 Geneva, Switzerland. [Smith, C. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Naydenov, SV (reprint author), Kharkov Single Crystals Inst, 60 Lenin Ave, UA-61001 Kharkov, Ukraine. EM sergei.naydenov@gmail.com OI Naydenov, Sergei/0000-0002-5585-763X NR 17 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 21 PY 2009 VL 603 IS 3 BP 349 EP 354 DI 10.1016/j.nima.2009.02.006 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 456GD UT WOS:000266829400019 ER PT J AU Brown, DN Gritsan, AV Guo, ZJ Roberts, D AF Brown, D. N. Gritsan, A. V. Guo, Z. J. Roberts, D. TI Local alignment of the BABAR Silicon Vertex Tracking detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Silicon; Detector; Tracking; Alignment; Minimization; Curvature; Distortion; Beam boost; Derivatives; Validation; Aplanar AB The BABAR Silicon Vertex Tracker (SVT) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e(+)e(-) collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance, and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 SVT wafers. This procedure uses a tuned mix of in situ experimental data and complementary lab-bench measurements to control systematic distortions. Wafer positions and orientations are determined by minimizing a chi(2) computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual misalignments on relevant physical variables is evaluated in special control samples. The BABAR data-sample collected between November 1999 and April 2008 is used in the study of the SVT stability. Published by Elsevier B.V. C1 [Brown, D. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Roberts, D.] Univ Maryland, College Pk, MD 20742 USA. RP Brown, DN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM Dave_Brown@LBL.gov; gritsan@pha.jhu.edu; guozj@pha.jhu.edu; roberts@umd.edu FU US Department of Energy [DE-AC02-05CHI1231]; National Science Foundation [NSF-PHY0555519, NSF-PHY0644849]; A.P. Sloan Foundation FX The work presented in this note could not have been accomplished without the help of many people. The first BABAR SVT alignment procedure had major contributions from Gerald Lynch and Jochen Schiek. We also wish to thank Stefan Kluth, Amir Farbin, Vincent Lillard, Gennadiy Kukartsev, Jurgen Krosberg, Chung Khim Lae, and Luke Winstrom for generating the alignment constants ultimately used in physics analysis. We also wish to thank Eric Charles, Fred Goozen, Natalia Kuznetsova, and Marzia Folegani for providing the optical survey measurements, Gennadiy Kukartsev for initial studies of the boost fit algorithm, Brandon Giles for his work on aplanar distortions, the SVT group for building and operating this beautiful detector, the tracking group for their support with validation Studies, and BABAR and PEP-II for providing the data. The authors acknowledge the support from US Department of Energy, National Science Foundation, and A.P. Sloan Foundation. Part of this work was supported by the U.S. Department of Energy under Contract no. DE-AC02-05CHI1231 and by the U.S. National Science Foundation Contracts NSF-PHY0555519 and NSF-PHY0644849. A.V.G. received support from the A. P. Sloan Foundation. NR 15 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 21 PY 2009 VL 603 IS 3 BP 467 EP 484 DI 10.1016/j.nima.2009.02.001 PG 18 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 456GD UT WOS:000266829400036 ER PT J AU Runkle, RC White, TA Miller, EA Caggiano, JA Collins, BA AF Runkle, Robert C. White, Timothy A. Miller, Erin A. Caggiano, Joseph A. Collins, Brian A. TI Photon and neutron interrogation techniques for chemical explosives detection in air cargo: A critical review SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Explosives detection; Active interrogation; X-ray radiography; Dual-energy radiography; Neutron scattering; Nuclear resonance ID ENERGY COMPUTED-TOMOGRAPHY; CONTRABAND DETECTION; INSPECTION SYSTEM; RADIOGRAPHY; TRANSMISSION; SPECTROSCOPY; CONTAINERS; EXCITATION; SCATTERING; SECURITY AB Scanning cargo transported via aircraft ("air cargo") for explosive threats is a problem that presently lacks a comprehensive technical solution. While chemical explosives detection in the baggage-scanning domain has a rich history that sheds light on potential solutions, air cargo differs in several important ways, and thus one cannot look to the present array of technologies. Some contemporary solutions, such as trace analysis, are not readily applied to cargo because of sampling challenges while the larger geometry of air cargo makes others less effective. This review article examines an array of interrogation techniques using photons and neutrons as incident particles. We first present a summary of the signatures and observables chemical explosives provide and review how they have been exploited in baggage scanning. Following this review is a description of the challenges posed by the air-cargo application space. After considering sources of photons and neutrons, we describe methods focused on transmission imaging, sub-surface examination, and elemental characterization. It is our goal to expand the understanding of each method's technical promise while largely deferring questions that revolve around footprint, safety, and conduct of operations. Our overarching intent is that a comprehensive understanding of potential techniques will foster the development of a comprehensive solution. (C) 2009 Elsevier B.V. All rights reserved. C1 [Runkle, Robert C.; Miller, Erin A.; Caggiano, Joseph A.; Collins, Brian A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [White, Timothy A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Runkle, RC (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM Robert.runkle@pnl.gov FU Stevenson-Wydler (15 USC 3710) Cooperative Research and Development Agreement (CRADA) [NFE-07-01081]; Battelle Memorial Institute; US Department of Energy by Battelle Memorial Institut [DE-AC05-76RL01830]; US Department of Energy by Battelle Energy Alliance, LLC [DE-AC07-05ID14517] FX We are greatly indebted to Glen Warren for his thorough critique of this manuscript. We are grateful to David Jordan and Vinita Ghosh. This research was conducted under a Stevenson-Wydler (15 USC 3710) Cooperative Research and Development Agreement (CRADA) number NFE-07-01081. (A funds-in CRADA sponsored by Battelle Memorial Institute.) This report is PNNL-SA-62435. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Idaho National Laboratory is operated for the US Department of Energy by Battelle Energy Alliance, LLC under Contract DE-AC07-05ID14517. NR 66 TC 42 Z9 42 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 21 PY 2009 VL 603 IS 3 BP 510 EP 528 DI 10.1016/j.nima.2009.02.015 PG 19 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 456GD UT WOS:000266829400041 ER PT J AU Kao, T Connor, D Dilmanian, FA Faulconer, L Liu, T Parham, C Pisano, ED Zhong, Z AF Kao, T. Connor, D. Dilmanian, F. A. Faulconer, L. Liu, T. Parham, C. Pisano, E. D. Zhong, Z. TI Characterization of diffraction-enhanced imaging contrast in breast cancer SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID SYNCHROTRON-RADIATION; MAMMOGRAPHY; CT; HISTOPATHOLOGY AB Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that has been shown to enhance contrast between normal and cancerous breast tissues. In this study, diffraction-enhanced imaging in computed tomography (DEI-CT) mode was used to quantitatively characterize the refraction contrasts of the organized structures associated with invasive human breast cancer. Using a high-sensitivity Si (3 3 3) reflection, the individual features of breast cancer, including masses, calcifications and spiculations, were observed. DEI-CT yields 14, 5 and 7 times higher CT numbers and 10, 9 and 6 times higher signal-to-noise ratios (SNR) for masses, calcifications and spiculations, respectively, as compared to conventional CT of the same specimen performed using the same detector, x-ray energy and dose. Furthermore, DEI-CT at ten times lower dose yields better SNR than conventional CT. In light of the recent development of a compact DEI prototype using an x-ray tube as its source, these results, acquired at a clinically relevant x-ray energy for which a pre-clinical DEI prototype currently exists, suggest the potential of clinical implementation of mammography with DEI-CT to provide high-contrast, high-resolution images of breast cancer (Parham 2006 PhD Dissertation University of North Carolina at Chapel Hill). C1 [Kao, T.; Connor, D.; Liu, T.; Parham, C.; Zhong, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Connor, D.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dilmanian, F. A.] SUNY Stony Brook, Dept Radiat Oncol, Stony Brook, NY 11794 USA. [Faulconer, L.; Parham, C.] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA. [Pisano, E. D.] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA. [Zhong, Z.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. RP Kao, T (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU US Department of Energy; Office of Basic Energy Sciences [DE-AC02-98CH10886]; Brookhaven National Laboratory LDRD [05-057]; NIH [R01 AR48292]; NIH/NCI [CA111976] FX We would like to thank the referees of this paper for their helpful comments, corrections and suggestions for improvement. Use of the X15 A beamline at the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences, under contract number DE-AC02-98CH10886, the Brookhaven National Laboratory LDRD 05-057, NIH grant R01 AR48292 and NIH/NCI grant CA111976. NR 21 TC 19 Z9 20 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD MAY 21 PY 2009 VL 54 IS 10 BP 3247 EP 3256 DI 10.1088/0031-9155/54/10/019 PG 10 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 442BY UT WOS:000265816000019 PM 19420420 ER PT J AU Gnedin, NY Tassis, K Kravtsov, AV AF Gnedin, Nickolay Y. Tassis, Konstantinos Kravtsov, Andrey V. TI MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: formation; methods: numerical; stars: formation ID SURFACE BRIGHTNESS GALAXIES; GLOBAL SCHMIDT LAW; INTERSTELLAR-MEDIUM; DWARF GALAXIES; PHYSICAL CONDITIONS; INFRARED-EMISSION; SPIRAL GALAXIES; GALACTIC DISKS; DARK CLOUDS; GAS AB We describe a phenomenological model for molecular hydrogen formation suited for applications in galaxy formation simulations, which includes nonequilibrium formation of H(2) on dust and approximate treatment of both its self-shielding and shielding by dust from the dissociating UV radiation. The model is applicable in simulations in which individual star-forming regions-the giant molecular complexes-can be identified (resolution of tens of parsecs) and their mean internal density estimated reliably, even if internal structure is not resolved. In agreement with previous studies, calculations based on our model show that the transition from atomic to fully molecular phase depends primarily on the metallicity, which we assume is directly related to the dust abundance, and clumpiness of the interstellar medium. The clumpiness simply boosts the formation rate of molecular hydrogen, while dust serves both as a catalyst of H(2) formation and as an additional shielding from dissociating UV radiation. The upshot is that it is difficult to form fully shielded giant molecular clouds while gas metallicity is low. However, once the gas is enriched to Z similar to 0.01-0.1 Z(circle dot), the subsequent star formation and enrichment can proceed at a much faster rate. This may keep star formation efficiency in the low-mass, low-metallicity progenitors of galaxies very low for a certain period of time with the effect similar to a strong "feedback" mechanism. The effect may help explain the steep increase of the mass-to-light ratio toward smaller masses observed in the local galaxy population. We apply the model and star formation recipes based on the local amount of molecular gas to an output from a cosmological simulation of galaxy formation and show that resulting global correlations between star formation and gas, and H(2) surface densities are in good agreement with observations. C1 [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.; Tassis, Konstantinos; Kravtsov, Andrey V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.; Tassis, Konstantinos; Kravtsov, Andrey V.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Gnedin, NY (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RI Tassis, Konstantinos/C-3155-2011; OI Tassis, Konstantinos/0000-0002-8831-2038 NR 67 TC 155 Z9 156 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2009 VL 697 IS 1 BP 55 EP 67 DI 10.1088/0004-637X/697/1/55 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441JB UT WOS:000265764000006 ER PT J AU Hilton, M Stanford, SA Stott, JP Collins, CA Hoyle, B Davidson, M Hosmer, M Kay, ST Liddle, AR Lloyd-Davies, E Mann, RG Mehrtens, N Miller, CJ Nichol, RC Romer, AK Sabirli, K Sahlen, M Viana, PTP West, MJ Barbary, K Dawson, KS Meyers, J Perlmutter, S Rubin, D Suzuki, N AF Hilton, Matt Stanford, S. Adam Stott, John P. Collins, Chris A. Hoyle, Ben Davidson, Michael Hosmer, Mark Kay, Scott T. Liddle, Andrew R. Lloyd-Davies, Ed Mann, Robert G. Mehrtens, Nicola Miller, Christopher J. Nichol, Robert C. Romer, A. Kathy Sabirli, Kivanc Sahlen, Martin Viana, Pedro T. P. West, Michael J. Barbary, Kyle Dawson, Kyle S. Meyers, Joshua Perlmutter, Saul Rubin, David Suzuki, Nao TI THE XMM CLUSTER SURVEY: GALAXY MORPHOLOGIES AND THE COLOR-MAGNITUDE RELATION IN XMMXCS J2215.9-1738 AT z=1.46 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (XMMXCS J2215.9-1738); galaxies: elliptical and lenticular, cD; galaxies: evolution; X-rays: galaxies: clusters ID HIGH-REDSHIFT CLUSTERS; SEQUENCE LUMINOSITY FUNCTION; DENSITY RELATION; RED-SEQUENCE; ELLIPTIC GALAXIES; STELLAR POPULATION; FUNDAMENTAL PLANE; KECK SPECTROSCOPY; DISTANT CLUSTERS; ADVANCED CAMERA AB We present a study of the morphological fractions and color-magnitude relation (CMR) in the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z = 1.46, using a combination of optical imaging data obtained with the Hubble Space Telescope Advanced Camera for Surveys, and infrared data from the Multi-Object Infrared Camera and Spectrograph, mounted on the 8.2 m Subaru telescope. We find that the morphological mix of the cluster galaxy population is similar to clusters at z similar to 1. Within the central 0.5 Mpc, approximately similar to 62% of the galaxies identified as likely cluster members are ellipticals or S0s; and similar to 38% are spirals or irregulars. Therefore, early-type galaxies were already entrenched as the dominant galaxy population in at least some clusters approximately similar to 4.5 Gyr after the big bang. We measure the CMRs for the early-type galaxies, finding that the slope in the z(850)-J relation is consistent with that measured in the Coma cluster, some similar to 9 Gyr earlier, although the uncertainty is large. In contrast, the measured intrinsic scatter about the CMR is more than three times the value measured in Coma, after conversion to rest-frame U-V. From comparison with stellar population synthesis models, the intrinsic scatter measurements imply mean luminosity-weighted ages for the early-type galaxies in J2215.9-1738 of approximate to 3 Gyr, corresponding to the major epoch of star formation coming to an end at z(f) approximate to 3-5. We find that the cluster exhibits evidence of the "downsizing" phenomenon: the fraction of faint cluster members on the red sequence expressed using the Dwarf-to-Giant Ratio (DGR) is 0.32 +/- 0.18 within a radius of 0.5R(200). This is consistent with extrapolation of the redshift evolution of the DGR seen in cluster samples at z < 1. In contrast to observations of some other z > 1 clusters, we find a lack of very bright galaxies within the cluster. C1 [Hilton, Matt] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Hilton, Matt] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Hilton, Matt; Stott, John P.; Collins, Chris A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Stanford, S. Adam] Univ Calif Davis, Davis, CA 95616 USA. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Hoyle, Ben; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Davidson, Michael; Mann, Robert G.] Univ Edinburgh, Inst Astron, Edinburgh EH9 9HJ, Midlothian, Scotland. [Hosmer, Mark; Liddle, Andrew R.; Lloyd-Davies, Ed; Mehrtens, Nicola; Romer, A. Kathy; Sabirli, Kivanc; Sahlen, Martin] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Kay, Scott T.] Univ Manchester, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. [Miller, Christopher J.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Tucson, AZ 85719 USA. [Viana, Pedro T. P.] Univ Porto, Fac Ciencias, Dept Matemat Aplicada, P-4169007 Oporto, Portugal. [Viana, Pedro T. P.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [West, Michael J.] European So Observ, Santiago 19, Chile. [Barbary, Kyle; Meyers, Joshua; Perlmutter, Saul; Rubin, David; Suzuki, Nao] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barbary, Kyle; Meyers, Joshua; Perlmutter, Saul; Rubin, David] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Dawson, Kyle S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. RP Hilton, M (reprint author), Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa. EM hiltonm@ukzn.ac.za RI Hilton, Matthew James/N-5860-2013; Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; hoyle, ben/0000-0002-2571-1357; Meyers, Joshua/0000-0002-2308-4230; Viana, Pedro/0000-0003-1572-8531; Sahlen, Martin/0000-0003-0973-4804 NR 75 TC 58 Z9 58 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2009 VL 697 IS 1 BP 436 EP 451 DI 10.1088/0004-637X/697/1/436 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441JB UT WOS:000265764000037 ER PT J AU Weaver, SLW Woon, DE Ruscic, B McCall, BJ AF Weaver, Susanna L. Widicus Woon, David E. Ruscic, Branko McCall, Benjamin J. TI IS HO2+ A DETECTABLE INTERSTELLAR MOLECULE? SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; ISM: molecules ID POTENTIAL-ENERGY SURFACE; CONFIGURATION-INTERACTION CALCULATIONS; ACTIVE THERMOCHEMICAL TABLES; PROTON-TRANSFER REACTIONS; GAUSSIAN-BASIS SETS; RHO-OPHIUCHI CLOUD; GROUND-STATE; SELECTION-RULES; MICROHARTREE ACCURACY; ELECTRON-AFFINITIES AB Although molecular oxygen, O-2, has long been thought to be present in interstellar environments, it has only been tentatively detected toward one molecular cloud. The fractional abundance of O-2 determined from these observations is well below that predicted by astrochemical models. Given the difficulty of O-2 observations from ground-based telescopes, identification of a molecule that could be used as a tracer of O-2 in interstellar environments would be quite useful. To this end, we have undertaken a collaborative examination of HO2+ in an attempt to evaluate the feasibility of its detection in interstellar clouds. We have conducted high-level ab initio calculations of its structure to obtain its molecular parameters. The reaction responsible for the formation of HO2+ is nearly thermoneutral, and so a careful analysis of its thermochemistry was also required. Using the Active Thermochemical Tables approach, we have determined the most accurate values available to date for the proton affinities of O-2 and H-2, and the enthalpy, Gibbs energy, and equilibrium constant for the reaction H-3(+) + O-2 -> HO2+ + H-2. We find that while this reaction is endothermic by 50 +/- 9 cm(-1) at 0 K, its equilibrium is shifted toward HO2+ at the higher temperatures of hot cores. We have examined the potential formation and destruction pathways for HO2+ in interstellar environments. Combining this information, we estimate the HO2+ column density in dense clouds to be similar to 10(9) cm(-2), which corresponds to line brightness temperatures of <= 0.2 mK. If our results prove correct, HO2+ is clearly not a detectable interstellar molecule. C1 [Weaver, Susanna L. Widicus; Woon, David E.; McCall, Benjamin J.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Weaver, Susanna L. Widicus; McCall, Benjamin J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Ruscic, Branko] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Weaver, SLW (reprint author), Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. EM susanna.widicus.weaver@emory.edu; davidewoon@gmail.com; ruscic@anl.gov; bjmccall@uiuc.edu RI Ruscic, Branko/A-8716-2008; OI Ruscic, Branko/0000-0002-4372-6990; Woon, David/0000-0003-3831-5078 NR 98 TC 22 Z9 22 U1 3 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2009 VL 697 IS 1 BP 601 EP 609 DI 10.1088/0004-637X/697/1/601 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441JB UT WOS:000265764000049 ER PT J AU Thrane, E Abe, K Hayato, Y Iida, T Ikeda, M Kameda, J Kobayashi, K Koshio, Y Miura, M Moriyama, S Nakahata, M Nakayama, S Obayashi, Y Ogawa, H Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takenaga, Y Takeuchi, Y Ueno, K Ueshima, K Watanabe, H Yamada, S Vagins, MR Hazama, S Higuchi, I Ishihara, C Kajita, T Kaneyuki, K Mitsuka, G Nishino, H Okumura, K Tanimoto, N Dufour, F Kearns, E Litos, M Raaf, JL Stone, JL Sulak, LR Goldhaber, M Bays, K Casper, D Cravens, JP Kropp, WR Mine, S Regis, C Smy, MB Sobel, HW Ganezer, KS Hill, J Keig, WE Jang, JS Jeong, IS Kim, JY Lim, IT Fechner, M Scholberg, K Walter, CW Wendell, R Tasaka, S Learned, JG Matsuno, S Watanabe, Y Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Ichikawa, AK Minamino, A Nakaya, T Yokoyama, M Dazeley, S Svoboda, R Habig, A Fukuda, Y Itow, Y Tanaka, T Jung, CK Lopez, G McGrew, C Yanagisawa, C Tamura, N Idehara, Y Ishino, H Kibayashi, A Sakuda, M Kuno, Y Yoshida, M Kim, SB Yang, BS Ishizuka, T Okazawa, H Choi, Y Seo, HK Furuse, Y Nishijima, K Yokosawa, Y Koshiba, M Totsuka, Y Chen, S Gong, G Heng, Y Xue, T Yang, Z Zhang, H Kielczewska, D Mijakowski, P Berns, HG Connolly, K Dziomba, M Wilkes, RJ AF Thrane, E. Abe, K. Hayato, Y. Iida, T. Ikeda, M. Kameda, J. Kobayashi, K. Koshio, Y. Miura, M. Moriyama, S. Nakahata, M. Nakayama, S. Obayashi, Y. Ogawa, H. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takenaga, Y. Takeuchi, Y. Ueno, K. Ueshima, K. Watanabe, H. Yamada, S. Vagins, M. R. Hazama, S. Higuchi, I. Ishihara, C. Kajita, T. Kaneyuki, K. Mitsuka, G. Nishino, H. Okumura, K. Tanimoto, N. Dufour, F. Kearns, E. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Goldhaber, M. Bays, K. Casper, D. Cravens, J. P. Kropp, W. R. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Jeong, I. S. Kim, J. Y. Lim, I. T. Fechner, M. Scholberg, K. Walter, C. W. Wendell, R. Tasaka, S. Learned, J. G. Matsuno, S. Watanabe, Y. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Ichikawa, A. K. Minamino, A. Nakaya, T. Yokoyama, M. Dazeley, S. Svoboda, R. Habig, A. Fukuda, Y. Itow, Y. Tanaka, T. Jung, C. K. Lopez, G. McGrew, C. Yanagisawa, C. Tamura, N. Idehara, Y. Ishino, H. Kibayashi, A. Sakuda, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Furuse, Y. Nishijima, K. Yokosawa, Y. Koshiba, M. Totsuka, Y. Chen, S. Gong, G. Heng, Y. Xue, T. Yang, Z. Zhang, H. Kielczewska, D. Mijakowski, P. Berns, H. G. Connolly, K. Dziomba, M. Wilkes, R. J. CA Super-Kamiokande Collaboration TI SEARCH FOR NEUTRINOS FROM GRB 080319B AT SUPER-KAMIOKANDE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: bursts; neutrinos ID GAMMA-RAY BURSTS; UPWARD-GOING MUONS; DETECTOR AB We perform a search for neutrinos coincident with GRB 080319B-the brightest GRB observed to date-in a +/- 1000 s window. No statistically significant coincidences were observed and we thereby obtain an upper limit on the fluence of neutrino-induced muons from this source. From this we apply reasonable assumptions to derive a limit on neutrino fluence from the GRB. C1 [Thrane, E.] Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA. [Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Ueno, K.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Hayato, Y.; Koshio, Y.; Moriyama, S.; Nakahata, M.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Vagins, M. R.; Kajita, T.; Kaneyuki, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Scholberg, K.; Nakamura, K.; Nakaya, T.] Univ Tokyo, IPMU, Chiba 2778568, Japan. [Hazama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nishino, H.; Okumura, K.; Tanimoto, N.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Dufour, F.; Kearns, E.; Litos, M.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Vagins, M. R.; Bays, K.; Casper, D.; Cravens, J. P.; Kropp, W. R.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Jeong, I. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Fechner, M.; Scholberg, K.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Learned, J. G.; Matsuno, S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Watanabe, Y.] Kanagawa Univ, Fac Engn, Kanagawa 2218686, Japan. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Ichikawa, A. K.; Minamino, A.; Nakaya, T.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Dazeley, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Svoboda, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; Lopez, G.; McGrew, C.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Ishino, H.; Kibayashi, A.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kuno, Y.; Yoshida, M.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Furuse, Y.; Nishijima, K.; Yokosawa, Y.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.] Univ Tokyo, Tokyo 1130033, Japan. [Chen, S.; Gong, G.; Heng, Y.; Xue, T.; Yang, Z.; Zhang, H.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Kielczewska, D.; Mijakowski, P.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Berns, H. G.; Connolly, K.; Dziomba, M.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Thrane, E (reprint author), Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA. RI Kibayashi, Atsuko/K-7327-2015; Yokoyama, Masashi/A-4458-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Obayashi, Yoshihisa/A-4472-2011; Suzuki, Yoichiro/F-7542-2010; Takeuchi, Yasuo/A-4310-2011; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015 OI Yokoyama, Masashi/0000-0003-2742-0251; Raaf, Jennifer/0000-0002-4533-929X; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505 FU Japanese Ministry of Education, Culture, Sports, Science and Technology; U. S. Department of Energy; U. S. National Science Foundation; Korean Research Foundation; Korea Science and Engineering Foundation FX Data on muon range and neutrino cross sections were graciously provided by M. Reno. We thank S. Desai and M. Swanson for useful comments. The authors gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. Super-Kamiokande has been built and operated from funds provided by the Japanese Ministry of Education, Culture, Sports, Science and Technology as well as the U. S. Department of Energy and the U. S. National Science Foundation. Some participants have been supported by funds from the Korean Research Foundation (BK21, BRP) and the Korea Science and Engineering Foundation. NR 29 TC 5 Z9 5 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2009 VL 697 IS 1 BP 730 EP 734 DI 10.1088/0004-637X/697/1/730 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441JB UT WOS:000265764000061 ER PT J AU Lai, DK Rockosi, CM Bolte, M Johnson, JA Beers, TC Lee, YS Prieto, CA Yanny, B AF Lai, David K. Rockosi, Constance M. Bolte, Michael Johnson, Jennifer A. Beers, Timothy C. Lee, Young Sun Prieto, Carlos Allende Yanny, Brian TI A UNIQUE STAR IN THE OUTER HALO OF THE MILKY WAY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Galaxy: halo; stars: abundances; stars: Population II; supernovae: general ID METAL-POOR STARS; DWARF SPHEROIDAL GALAXIES; STELLAR HALO; RESOLUTION SPECTRA; CHEMICAL EVOLUTION; ABUNDANCE PATTERNS; GALACTIC HALO; FIELD STARS; SEGUE; NUCLEOSYNTHESIS AB As part of a program to measure abundance ratios in stars beyond 15 kpc from the Galactic center, we have discovered a metal-poor star in the outer halo with a unique chemical signature. We originally identified it in the Sloan Extension for Galactic Understanding and Exploration survey as a distant metal-poor star. We obtained a follow-up spectrum using the Echelle Spectrometer and Imager at the Keck 2 telescope, and measure [Fe/H] = -3.17, [Mg/Fe]= -0.10, and [Ca/Fe] = +1.11. This is one of the largest over-abundances of Ca measured in any star to date; the extremely low value of [Mg/Ca] = -1.21 is entirely unique. To have found such an unusual star in our small sample of 27 targets suggests that there may be previously unobserved classes of stars yet to be found in situ in the Galactic halo. C1 [Lai, David K.; Rockosi, Constance M.; Bolte, Michael] Univ Calif Santa Cruz, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, CSCE, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA, E Lansing, MI 48824 USA. [Prieto, Carlos Allende] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lai, DK (reprint author), Univ Calif Santa Cruz, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM david@ucolick.org; crockosi@ucolick.org; bolte@ucolick.org; jaj@astronomy.ohio-state.edu; beers@pa.msu.edu; lee@pa.msu.edu; callende@astro.as.utexas.edu; yanny@fnal.gov FU National Science Foundation [AST-0802292, AST-0098617, AST-0607770, PHY 02-16783, HY 08-22648]; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) FX Y.S.L. and T. C. B. acknowledge partial support for this work from the NSF under grants PHY 02-16783 and PHY 08-22648; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA). NR 44 TC 23 Z9 23 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2009 VL 697 IS 1 BP L63 EP L67 DI 10.1088/0004-637X/697/1/L63 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 439WX UT WOS:000265659400014 ER PT J AU Miller, MS Dambacher, CM Knowles, AF Braddock, JM Farman, GP Irving, TC Swank, DM Bernstein, SI Maughan, DW AF Miller, Mark S. Dambacher, Corey M. Knowles, Aileen F. Braddock, Joan M. Farman, Gerrie P. Irving, Thomas C. Swank, Douglas M. Bernstein, Sanford I. Maughan, David W. TI Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics SO BIOPHYSICAL JOURNAL LA English DT Article ID INDIRECT FLIGHT-MUSCLE; ATOMIC-FORCE MICROSCOPY; REGULATORY LIGHT-CHAIN; AMINO-ACID-SEQUENCE; X-RAY-DIFFRACTION; HEAVY-CHAIN; DROSOPHILA-MELANOGASTER; SKELETAL-MUSCLE; ELECTRON-MICROSCOPY; PARAMYOSIN PHOSPHORYLATION AB The subfragment 2/light meromyosin "hinge" region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length. C1 [Miller, Mark S.; Braddock, Joan M.; Maughan, David W.] Univ Vermont, Dept Mol Physiol & Biophys, Burlington, VT 05405 USA. [Dambacher, Corey M.; Bernstein, Sanford I.] San Diego State Univ, Dept Biol, Inst Mol Biol, San Diego, CA 92182 USA. [Dambacher, Corey M.; Bernstein, Sanford I.] San Diego State Univ, SDSU Heart Inst, San Diego, CA 92182 USA. [Knowles, Aileen F.] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA. [Farman, Gerrie P.; Irving, Thomas C.] IIT, Biophys Collaborat Access Team, Chicago, IL 60616 USA. [Farman, Gerrie P.; Irving, Thomas C.] IIT, Ctr Synchrotron Radiat Res & Instrumentat, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Swank, Douglas M.] Rensselaer Polytech Inst, Dept Biol, Troy, NY 12180 USA. [Swank, Douglas M.] Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA. RP Miller, MS (reprint author), Univ Vermont, Dept Mol Physiol & Biophys, Burlington, VT 05405 USA. EM Mark.Miller@uvm.edu RI ID, BioCAT/D-2459-2012; OI Bernstein, Sanford/0000-0001-7094-5390 FU National Institutes of Health [R01 AR049425, R01 AR043396, R01 AR055611]; U.S. Department of Energy; Basic Energy Sciences; Office of Science [W-31-109-ENG-38]; NIH [RR-08630] FX This work was supported by grants from the National Institutes of Health (NIH; R01 AR049425 to D.W.M., R01 AR043396 to S.I.B., and R01 AR055611 to D.M.S.). Advanced Photon Source use was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science under contract No. W-31-109-ENG-38. BioCAT is in NIH-supported research center (RR-08630). The content is solely the responsibility of the authors and does not necessarily reflect the official views of tile National Center for Research Resources or the NIH. NR 72 TC 13 Z9 13 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD MAY 20 PY 2009 VL 96 IS 10 BP 4132 EP 4143 DI 10.1016/j.bpj.2009.02.034 PG 12 WC Biophysics SC Biophysics GA 449EF UT WOS:000266312900025 PM 19450484 ER PT J AU Horwat, D Endrino, JL Boreave, A Karoum, R Pierson, JF Weber, S Anders, A Vernoux, P AF Horwat, D. Endrino, J. L. Boreave, A. Karoum, R. Pierson, J. F. Weber, S. Anders, A. Vernoux, Ph. TI Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by Pulsed Filtered Cathodic Arc SO CATALYSIS COMMUNICATIONS LA English DT Article DE Total oxidation of methane; Palladium oxide; YSZ supported catalysts; Particles; Cathodic arc deposition ID PALLADIUM CATALYSTS; ELECTROCHEMICAL PROMOTION; GAS-TURBINE; LOW-TEMPERATURE; THIN-FILMS; COMBUSTION; REACTIVITY; DEPOSITION; EMISSIONS; OXYGEN AB Methane total oxidation was studied between 250 and 800 degrees C in a specific quartz reactor for Pd, PdOy, Pd0.6Pt0.4Oy and Pd0.4Pt0.6Oy thin films deposited on yttria stabilized zirconia (YSZ) substrates. Pt containing. films exhibited poor activity and a rapid thermal decomposition. Pd and PdOy films showed good activity and transformed to particles dispersed on the YSZ substrates. The higher reaction rate of PdOy films was explained by a better dispersion of the catalyst. A drop of the reaction rate was observed when the temperature exceeded 735 degrees C and 725 degrees C for initially Pd and PdOy, respectively, which can be associated with the decomposition of PdO into Pd and O-2. The good cycling stability and catalytic efficiency of the latter films render it promising for the pollution control in methane combustion. (C) 2009 Elsevier B.V. All rights reserved. C1 [Horwat, D.; Pierson, J. F.] Ecole Mines, Inst Jean Lamour, Dept CP2S, F-54042 Nancy, France. [Horwat, D.; Endrino, J. L.; Anders, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. [Endrino, J. L.] CSIC, Inst Ciencias Mat Madrid, E-28049 Madrid, Spain. [Boreave, A.; Karoum, R.; Vernoux, Ph.] Univ Lyon 1, CNRS, UMR 5256, IRCELYON, F-69626 Villeurbanne, France. [Weber, S.] Ecole Mines, CC MEM, Inst Jean Lamour, F-54042 Nancy, France. RP Horwat, D (reprint author), Ecole Mines, Inst Jean Lamour, Dept CP2S, CS14234 Parc Saurupt, F-54042 Nancy, France. EM david.horwat@mines.inpl-nancy.fr RI Endrino, Jose/G-1103-2011; Horwat, David/I-8740-2012; Pierson, Jean-Francois/C-9145-2013; Anders, Andre/B-8580-2009; OI Anders, Andre/0000-0002-5313-6505; Horwat, David/0000-0001-7938-7647; Pierson, Jean-Francois/0000-0001-8790-3162; Endrino, Jose/0000-0002-3084-7910 NR 31 TC 6 Z9 6 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-7367 EI 1873-3905 J9 CATAL COMMUN JI Catal. Commun. PD MAY 20 PY 2009 VL 10 IS 10 BP 1410 EP 1413 DI 10.1016/j.catcom.2009.03.008 PG 4 WC Chemistry, Physical SC Chemistry GA 442AG UT WOS:000265811500011 ER PT J AU Roberts, W Pervin, M AF Roberts, W. Pervin, Muslema TI HYPERFINE MIXING AND THE SEMILEPTONIC DECAYS OF DOUBLE-HEAVY BARYONS IN A QUARK MODEL SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Heavy baryon; semileptonic; hyperfine mixing; quark model AB The semileptonic decays of the lowest-lying double-heavy baryons are treated in a quark model. For the Xi(bb), hyperfine mixing in the spin wave function leaves the total rate for decay into the lowest lying daughter baryons essentially unchanged, but changes the relative rates into the Xi(bc) and Xi'(bc). The same pattern is obtained in the decays of the Omega(bb). For the Xi(bc), this mixing leads to factor of about 17 suppression in the decay rate to the Xi*(cc) when wave functions truncated to the largest components are used, but the total semileptonic decay rate of the parent baryon remains essentially unchanged. For the Omega(bc), the decay to the Omega*(cc) is suppressed by a factor of more than 25 from the unmixed case. When the full wave functions are used, the large suppression of the decays to the Xi*(cc) and Omega*(cc) persists. C1 [Roberts, W.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Pervin, Muslema] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Roberts, W (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. EM wroberts@fsu.edu NR 14 TC 13 Z9 13 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD MAY 20 PY 2009 VL 24 IS 13 BP 2401 EP 2413 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 449TN UT WOS:000266353100004 ER PT J AU Crooker, SA Samarth, N AF Crooker, Scott A. Samarth, Nitin TI TUNING MAGNETIC DISORDER IN DILUTED MAGNETIC SEMICONDUCTORS USING HIGH FIELDS TO 89 TESLA SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 18th International Conference on High Magnetic Fields in Semiconductor Physics and Nanotechnology CY AUG 03-08, 2008 CL Sao Pedro, BRAZIL DE Magnetic semiconductor; high magnetic field; alloy disorder ID EXCITONIC PHOTOLUMINESCENCE LINEWIDTH; QUANTUM-WELLS; ALLOYS; STEPS; SATURATION; ANISOTROPY AB We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new "100 Tesla Multi-Shot Magnet", which is presently delivering fields up to similar to 89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn(0.80)Cd(0.22)Mn(0.08)Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn(2+) Spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above similar to 70 T, in agreement with a simple model of magnetic alloy disorder. C1 [Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Samarth, Nitin] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Mail Stop E536, Los Alamos, NM 87545 USA. EM crooker@lanl.gov RI Samarth, Nitin/C-4475-2014 OI Samarth, Nitin/0000-0003-2599-346X NR 23 TC 2 Z9 2 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAY 20 PY 2009 VL 23 IS 12-13 BP 2575 EP 2584 PG 10 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 457FD UT WOS:000266913000006 ER PT J AU Granger, G Eisenstein, JP Reno, JL AF Granger, Ghislain Eisenstein, J. P. Reno, J. L. TI EDGE HEAT TRANSPORT IN THE QUANTUM HALL REGIME SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 18th International Conference on High Magnetic Fields in Semiconductor Physics and Nanotechnology CY AUG 03-08, 2008 CL Sao Pedro, BRAZIL DE Quantum Hall Effect; Edge States; Heat Transport C1 [Granger, Ghislain; Eisenstein, J. P.] CALTECH, Pasadena, CA 91125 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Granger, G (reprint author), CALTECH, Pasadena, CA 91125 USA. EM jpe@caltech.edu NR 1 TC 0 Z9 0 U1 1 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAY 20 PY 2009 VL 23 IS 12-13 BP 2616 EP 2617 PG 2 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 457FD UT WOS:000266913000012 ER PT J AU Shaver, J Srivastava, A Kono, J Crooker, SA Htoon, H Klimov, VI Fagan, JA Hobbie, EK Ubrig, N Portugall, O Perebeinos, V Avouris, PH AF Shaver, J. Srivastava, A. Kono, J. Crooker, S. A. Htoon, H. Klimov, V. I. Fagan, J. A. Hobbie, E. K. Ubrig, N. Portugall, O. Perebeinos, V. Avouris, P. H. TI HIGH FIELD MAGNETO-OPTICAL SPECTROSCOPY OF HIGHLY ALIGNED INDIVIDUAL AND ENSEMBLE SINGLE-WALLED CARBON NANOTUBES SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 18th International Conference on High Magnetic Fields in Semiconductor Physics and Nanotechnology CY AUG 03-08, 2008 CL Sao Pedro, BRAZIL DE Carbon Nanotubes; Aharonov-Bohm Phase; Excitons; One Dimensionality ID EXCITONS; ABSORPTION; MAGNETOPHOTOLUMINESCENCE; SEMICONDUCTORS; ANISOTROPY AB The tubular nature of single-walled carbon nanotube (SWCNT) crystals allows them to exhibit non-intuitive quantum phenomena when threaded by a magnetic flux, which breaks the time reversal symmetry and adds an Aharonov-Bohm phase to the circumferential boundary conditions on the electronic wave function. We demonstrate that such a symmetry-breaking magnetic field can dramatically "brighten" an optically-inactive, or dark, exciton state at low temperature. This phenomenon, magnetic brightening, can be understood as a consequence of interplay between the strong intervalley Coulomb mixing and field-induced lifting of valley degeneracy. Most recently, we made the direct observation of the dark excitonic state in individual SWCNTs using low-temperature micro-photoluminescence (PL) and and verified the importance of a parallel, tube-threading magentic field with ensemble spectroscopy. For micro-PL, a magnetic field up to 5 T, applied along the nanotube axis, brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing field at the expense of the originally-dominant bright exciton peak and finally became dominant at fields > 3 T. The directly measured dark-bright splitting values were 1-4 meV for tube diameters 1.0-1.3 run. For ensemble PL, we used fields up to 55 T in two collection geometries to demonstrate the importance of the tube-threading component. These experiments have provided one of the most critical tests for recently-proposed theories of 1-D excitons taking into account the strong 1-D Coulomb interactions and unique band structure on an equal footing. C1 [Shaver, J.; Srivastava, A.; Kono, J.] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Crooker, S. A.] Los Alamos Natl Lab, Natl High Magnet Field, Los Alamos, NM 87545 USA. [Htoon, H.; Klimov, V. I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Fagan, J. A.; Hobbie, E. K.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Ubrig, N.; Portugall, O.] Lab Natl Champs Magnet Pulses, F-31400 Toulouse, France. [Perebeinos, V.; Avouris, P. H.] IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Kono, J (reprint author), Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. EM kono@rice.edu RI Hobbie, Erik/C-8269-2013; Nicolas, Ubrig/N-9997-2014; OI Nicolas, Ubrig/0000-0002-1966-4435; Shaver, Jonah/0000-0002-9602-7798; Fagan, Jeffrey/0000-0003-1483-5554; Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 NR 35 TC 0 Z9 0 U1 0 U2 5 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAY 20 PY 2009 VL 23 IS 12-13 BP 2667 EP 2675 PG 9 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 457FD UT WOS:000266913000020 ER PT J AU Khodas, M Vavilov, MG AF Khodas, Maxim Vavilov, Maxim G. TI DIFFERENTIAL RESISTANCE OF TWO DIMENSIONAL ELECTRON SYSTEMS SUBJECT TO MICROWAVE RADIATION SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 18th International Conference on High Magnetic Fields in Semiconductor Physics and Nanotechnology CY AUG 03-08, 2008 CL Sao Pedro, BRAZIL DE Quantum Hall system; differential resistance; magnetotransport ID PHOTOCONDUCTIVITY; GAS AB We present the expression for differential resistance of a disordered two-dimensional electron gas placed in a perpendicular magnetic field and subject to microwave irradiation. We demonstrate that in strong dc electric fields the current oscillates as a function of the strength of the applied constant electric field. We demonstrate that the amplitude of oscillations of the differential resistivity is characterized by the back-scattering rate off disorder. We argue that the dominant contribution to the non-linearity in strong electric fields originates from the modification of electron scattering off disorder by electric fields, or so-called "displacement" mechanism. The non-equilibrium mechanism, which is related to modification of electron distribution function by electric fields turns out to be inefficient in strong electric fields, although it describes current in weak electric fields. We further analyze the positions of maxima and minima of the differential resistance as a function of the applied electric field and frequency of microwave radiation. C1 [Khodas, Maxim] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Vavilov, Maxim G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Khodas, M (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM mkhodas@bnl.gov RI Vavilov, Maxim/C-1147-2009 NR 39 TC 1 Z9 1 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAY 20 PY 2009 VL 23 IS 12-13 BP 2693 EP 2697 PG 5 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 457FD UT WOS:000266913000025 ER PT J AU Luhman, DR Pan, W Lu, TM Tsui, DC Pfeiffer, LN Baldwin, KW West, KW AF Luhman, D. R. Pan, W. Lu, T. M. Tsui, D. C. Pfeiffer, L. N. Baldwin, K. W. West, K. W. TI OBSERVATIONS OF PARALLEL FIELD INDUCED REENTRANT QUANTUM HALL EFFECTS IN WIDE GaAs QUANTUM WELLS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 18th International Conference on High Magnetic Fields in Semiconductor Physics and Nanotechnology CY AUG 03-08, 2008 CL Sao Pedro, BRAZIL DE Quantum Hall Effect; Bilayer System ID SYSTEMS AB We report the results of tilted magnetic field experiments on three high quality wide GaAs quantum wells, with particular emphasis on the N >= 1 Landau levels. With an increasing component of in-plane magnetic field, B-parallel to, we observe reentrant behavior for the odd filling factor quantum Hall states. This reentrance is not explained within a single-particle energy level crossing scheme and may be related to the collapse of interlayer tunneling. C1 [Luhman, D. R.; Lu, T. M.; Tsui, D. C.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87195 USA. [Pfeiffer, L. N.; Baldwin, K. W.; West, K. W.] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA. RP Luhman, DR (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM dluhman@princeton.edu NR 10 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAY 20 PY 2009 VL 23 IS 12-13 BP 2808 EP 2812 PG 5 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 457FD UT WOS:000266913000043 ER PT J AU Pan, C Li, T He, M White, RD Gandara, D Mack, P Lara, PN Turteltaub, K Henderson, P AF Pan, C. Li, T. He, M. de Vere White, R. Gandara, D. Mack, P. Lara, P. N., Jr. Turteltaub, K. Henderson, P. TI Design of a phase 0 microdosing trial for correlation of platinum-induced DNA damage to chemotherapy outcomes SO JOURNAL OF CLINICAL ONCOLOGY LA English DT Meeting Abstract CT 45th Annual Meeting of the American-Society-of-Clinical-Oncology CY MAY 29-JUN 02, 2009 CL Orlando, FL SP Amer Soc Clin Oncol C1 [Pan, C.; Li, T.; He, M.; de Vere White, R.; Gandara, D.; Mack, P.; Lara, P. N., Jr.; Turteltaub, K.; Henderson, P.] Univ Calif Davis, Sacramento, CA 95817 USA. [Pan, C.; Li, T.; He, M.; de Vere White, R.; Gandara, D.; Mack, P.; Lara, P. N., Jr.; Turteltaub, K.; Henderson, P.] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC CLINICAL ONCOLOGY PI ALEXANDRIA PA 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA SN 0732-183X J9 J CLIN ONCOL JI J. Clin. Oncol. PD MAY 20 PY 2009 VL 27 IS 15 SU S MA 2543 PG 1 WC Oncology SC Oncology GA 582OF UT WOS:000276606602309 PM 27961863 ER PT J AU McMahon, JM Gray, SK Schatz, GC AF McMahon, Jeffrey M. Gray, Stephen K. Schatz, George C. TI A discrete action principle for electrodynamics and the construction of explicit symplectic integrators for linear, non-dispersive media SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Dispersion; Electrodynamics; FDTD; Lagrangian; Runge-Kutta; Stability; Symplectic integrator ID DEPENDENT SCHRODINGER-EQUATION; DENSITY-FUNCTIONAL THEORY; SCALE MOLECULAR-DYNAMICS; PERFECTLY MATCHED LAYER; MAXWELL EQUATIONS; SCATTERING; SYSTEMS; SCHEME AB In this work, we derive a discrete action principle for electrodynamics that can be used to construct explicit symplectic integrators for Maxwell's equations. Different integrators are constructed depending on the choice of discrete Lagrangian used to approximate the action. By combining discrete Lagrangians in an explicit symplectic partitioned Runge-Kutta method, an integrator capable of achieving any order of accuracy is obtained. Using the von Neumann stability analysis, we show that the integrators greatly increase the numerical stability and reduce the numerical dispersion compared to other methods. For practical purposes, we demonstrate how to implement the integrators using many features of the finite-difference time-domain method. However, our approach is also applicable to other spatial discretizations, such as those used in finite element methods. Using this implementation, numerical examples are presented that demonstrate the ability of the integrators to efficiently reduce and maintain a minimal amount of numerical dispersion, particularly when the time-step is less than the stability limit. The integrators are therefore advantageous for modeling large, inhomogeneous computational domains. (C) 2009 Elsevier Inc. All rights reserved. C1 [McMahon, Jeffrey M.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [McMahon, Jeffrey M.; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP McMahon, JM (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM jeffrey-mcmahon@northwestern.edu FU US Department of Energy [DE-FG02-03-ER15487, DE-AC02-06CH11357]; National Science Foundation [DMR-0520513] FX G.C.S. and J.M.M. were supported by the US Department of Energy under Grant No. DE-FG02-03-ER15487 and the Northwestern Materials Research Center, sponsored by the National Science Foundation (DMR-0520513). The work at Argonne National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank David Masiello for many fruitful discussions. NR 40 TC 5 Z9 5 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2009 VL 228 IS 9 BP 3421 EP 3432 DI 10.1016/j.jcp.2009.01.019 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 431KB UT WOS:000265059100016 ER PT J AU Kuzmin, D Shashkov, MJ Svyatskiy, D AF Kuzmin, D. Shashkov, M. J. Svyatskiy, D. TI A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Anisotropic diffusion; Discrete maximum principle; Nonnegativity constraints; Finite element method; Gradient recovery; Slope limiting ID NONLINEAR ELLIPTIC PROBLEMS; SCHEMES; MESHES; CONVECTION; OPERATORS; LIMITERS; DESIGN; ORDER AB Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Calerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-diagonal coefficients which are associated with diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass L-2 projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kuzmin, D.] Dortmund Univ Technol, Inst Appl Math, D-44227 Dortmund, Germany. [Shashkov, M. J.; Svyatskiy, D.] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. RP Kuzmin, D (reprint author), Dortmund Univ Technol, Inst Appl Math, Vogelpothsweg 87, D-44227 Dortmund, Germany. EM kuzmin@math.uni-dortmund.de; shashkov@lanl.gov; dasvyat@lanl.gov NR 25 TC 35 Z9 36 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2009 VL 228 IS 9 BP 3448 EP 3463 DI 10.1016/j.jcp.2009.01.031 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 431KB UT WOS:000265059100018 ER PT J AU Ropp, DL Shadid, JN AF Ropp, David L. Shadid, John N. TI Stability of operator splitting methods for systems with indefinite operators: Advection-diffusion-reaction systems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Operator splitting methods; Time integration; Advection-diffusion-reaction PDEs; Linear stability; Numerical methods ID TIME-INTEGRATION METHODS; EQUATIONS; ACCURACY; SCHEMES; STIFF AB This brief paper presents an A-stability result for operator splitting type time integration methods applied to advection-diffusion-reaction equations with possibly indefinite source terms. These results extend our earlier work on diffusion-reaction systems [D.L. Ropp, J.N. Shadid, Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems, J. Comput. Phys. 203 (2) (2005) 449-466]. The A-stability result presents sufficient conditions that control both low and high wave number instabilities. A corollary shows that if L-stable methods are used for the diffusion term the high wave number instability will be controlled more easily. Numerical results are presented that verify second-order convergence for the operator splitting methods and demonstrate control of instabilities on a chemotaxis problem by use of an L-stable diffusion integrator. (C) 2009 Elsevier Inc. All rights reserved. C1 [Shadid, John N.] Sandia Natl Labs, Computat Sci R&D Grp, Albuquerque, NM 87185 USA. [Ropp, David L.] Northrop Grumman Corp, Elect Syst, Linthicum, MD 21240 USA. RP Shadid, JN (reprint author), Sandia Natl Labs, Computat Sci R&D Grp, MS 0316,POB 5800, Albuquerque, NM 87185 USA. EM David.Ropp@ngc.com; jnshadi@sandia.gov NR 17 TC 21 Z9 22 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2009 VL 228 IS 9 BP 3508 EP 3516 DI 10.1016/j.jcp.2009.02.001 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 431KB UT WOS:000265059100022 ER PT J AU Du, JC Benmore, CJ Corrales, R Hart, RT Weber, JKR AF Du, Jincheng Benmore, Chris J. Corrales, Rene Hart, Robert T. Weber, J. K. Richard TI A molecular dynamics simulation interpretation of neutron and x-ray diffraction measurements on single phase Y2O3-Al2O3 glasses SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SILICATE-GLASSES; YTTRIUM; SCATTERING; ALUMINATE AB Molecular dynamics simulations and complementary neutron and x-ray diffraction studies have been carried out within the single phase glass forming range of (Y2O3)(x)(Al2O3)((100-x)), for x = 27 and 30. For x = 27, the experimental Al-O and Y-O coordination numbers are found to be 4.9 +/- 0.2 and 6.9 +/- 0.4 respectively, compared to 4.4 and 6.8 obtained from the simulation. Similar results were found for x = 30. An R-factor analysis showed that the simulation models agreed to within similar to 6% of the diffraction data in both cases. The Al-O polyhedra are dominated by fourfold and fivefold species and the Y-O local coordinations are dominated by sixfold, sevenfold and eightfold polyhedra. Analysis of the oxygen environments reveals a large number of combinations, which explains the high entropy of single phase yttrium aluminate glasses and melts. Of these, the largest variation between x = 27 and 30 is found in the number of aluminum oxygen triclusters (oxygens bonded to three Al) and oxygens surrounded by three Y and a single Al. The most abundant connections are between the AlOx and YOy polyhedra of which 30% are edge shared. The majority of AlOx-AlOx connections were found to be corner shared. C1 [Du, Jincheng] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Benmore, Chris J.; Hart, Robert T.; Weber, J. K. Richard] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Corrales, Rene] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Hart, Robert T.] Shepherd Chem Co, Norwood, OH 45212 USA. [Weber, J. K. Richard] Mat Dev Inc, Heights, IL 60004 USA. RP Du, JC (reprint author), Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. EM Jincheng.du@unt.edu; benmore@aps.anl.gov RI Du, Jincheng/A-8052-2011; OI Benmore, Chris/0000-0001-7007-7749 FU The office of Basic Energy Science; US Department of Energy [DE-AC02-06CH11357] FX The office of Basic Energy Science, US Department of Energy supported this work under contract number DE-AC02-06CH11357. JD acknowledges support of UNT Research Initiate Grant and startup fund. RTH thanks The Shepherd Chemical Company for use of resources toward this work. NR 32 TC 42 Z9 42 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 20 PY 2009 VL 21 IS 20 AR 205102 DI 10.1088/0953-8984/21/20/205102 PG 9 WC Physics, Condensed Matter SC Physics GA 436MQ UT WOS:000265418600017 PM 21825521 ER PT J AU Tang, JK Wang, WD Zhao, GL Li, Q AF Tang, Jinke Wang, Wendong Zhao, Guang-Lin Li, Qiang TI Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID THERMOELECTRIC-POWER; TITANIUM-OXIDES; TEMPERATURE; RUTILE; FILMS AB Reduced (oxygen deficient) single crystal TiO2 exhibits a very large positive Seebeck coefficient S at low temperature. S as large as 60 000 mu V K-1 was observed near 10 K for the least reduced sample, which gives a thermoelectric power factor of 170 mu WK-2 cm(-1). This value is about four times higher than the power factor of Bi2Te3-based materials near room temperature. As the temperature increases the Seebeck coefficient becomes negative. The magnitude of the room temperature Seebeck coefficient, thermal conductivity and electrical resistivity decrease with the reduction of the samples. The thermal conductivity is as low as 0.83 W K-1 m(-1) for the heavily reduced sample at 390 K due to phonon scattering by defect planes. The colossal Seebeck coefficient found in the materials is discussed in terms of the phonon drag of the holes. C1 [Tang, Jinke; Wang, Wendong] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Zhao, Guang-Lin] So Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Zhao, Guang-Lin] A&M Coll, Baton Rouge, LA 70813 USA. [Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Tang, JK (reprint author), Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. EM jtang2@uwyo.edu FU National Science Foundation [CBET-0754821]; UW/SER; US Department of Energy [DE-AC-0298CH10886] FX This work is funded in part by the National Science Foundation (NSF award number CBET-0754821) and a UW/SER grant. QL was supported by the US Department of Energy, Office of Basic Energy Science, under contract No. DE-AC-0298CH10886. NR 22 TC 24 Z9 24 U1 2 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 20 PY 2009 VL 21 IS 20 AR 205703 DI 10.1088/0953-8984/21/20/205703 PG 4 WC Physics, Condensed Matter SC Physics GA 436MQ UT WOS:000265418600032 PM 21825536 ER PT J AU Manson, JL Schlueter, JA Funk, KA Southerland, HI Twamley, B Lancaster, T Blundell, SJ Baker, PJ Pratt, FL Singleton, J McDonald, RD Goddard, PA Sengupta, P Batista, CD Ding, LT Lee, C Whangbo, MH Franke, I Cox, S Baines, C Trial, D AF Manson, Jamie L. Schlueter, John A. Funk, Kylee A. Southerland, Heather I. Twamley, Brendan Lancaster, Tom Blundell, Stephen J. Baker, Peter J. Pratt, Francis L. Singleton, John McDonald, Ross D. Goddard, Paul A. Sengupta, Pinaki Batista, Cristian D. Ding, Letian Lee, Changhoon Whangbo, Myung-Hwan Franke, Isabel Cox, Susan Baines, Chris Trial, Derek TI Strong H center dot center dot center dot F Hydrogen Bonds as Synthons in Polymeric Quantum Magnets: Structural, Magnetic, and Theoretical Characterization of [Cu(HF2)(pyrazine)(2)]SbF6, [Cu2F(HF)(HF2)(pyrazine)(4)](SbF6)(2), and [CuAg(H3F4)(pyrazine)(5)](SbF6)(2) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPIN-EXCHANGE INTERACTIONS; 2-DIMENSIONAL HEISENBERG-ANTIFERROMAGNET; BRIDGED COPPER(II) COMPLEXES; X-RAY STRUCTURES; CRYSTAL-STRUCTURES; SUPEREXCHANGE MECHANISM; DIHYDROGEN TRIFLUORIDE; COORDINATION POLYMERS; ORDERING TEMPERATURE; FLUORO ACIDS AB Three Cu2+-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF2)(pyz)(2)]SbF6 (pyz = pyrazine) (1a), [Cu2F(HF)(HF2)(pyz)(4)](SbF6)(2) (1b), and [CuAg(H3F4)(pyz)(5)](SbF6)(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)2](n+) that are linked in the third dimension by either HF2- (1a and 1b) or H3F4- (2). The resulting 3D frameworks contain charge-balancing SbF6- anions in every void. Compound 1b is a defective polymorph of la, with the difference being that 50% of the HF2- links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x2-y2) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for I a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B-c of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M-sat, suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of la to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular to) = -0.20 K (Cu-F center dot center dot center dot H center dot center dot center dot F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H center dot center dot center dot F hydrogen-bonding motifs. C1 [Manson, Jamie L.; Southerland, Heather I.; Trial, Derek] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Schlueter, John A.; Funk, Kylee A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Twamley, Brendan] Univ Idaho, Univ Res Off, Moscow, ID 83844 USA. [Lancaster, Tom; Blundell, Stephen J.; Baker, Peter J.; Goddard, Paul A.; Franke, Isabel] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Pratt, Francis L.] Rutherford Appleton Lab, ISIS Pulsed Muon Facil, Didcot OX11 0QX, Oxon, England. [Singleton, John; McDonald, Ross D.; Sengupta, Pinaki; Cox, Susan] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Sengupta, Pinaki; Batista, Cristian D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ding, Letian] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Lee, Changhoon; Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Baines, Chris] Paul Scherrer Inst, Swiss Muon Source, CH-5253 Villigen, Switzerland. RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. EM jmanson@ewu.edu RI Baker, Peter/E-4216-2010; McDonald, Ross/H-3783-2013; Goddard, Paul/A-8638-2015; Sengupta, Pinaki/B-6999-2011; Batista, Cristian/J-8008-2016 OI Baker, Peter/0000-0002-2306-2648; McDonald, Ross/0000-0002-0188-1087; Goddard, Paul/0000-0002-0666-5236; NR 96 TC 53 Z9 53 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 20 PY 2009 VL 131 IS 19 BP 6733 EP 6747 DI 10.1021/ja808761d PG 15 WC Chemistry, Multidisciplinary SC Chemistry GA 446CD UT WOS:000266096900028 PM 19290599 ER PT J AU Bhat, VV Contescu, CI Gallego, NC AF Bhat, V. V. Contescu, C. I. Gallego, N. C. TI The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons SO NANOTECHNOLOGY LA English DT Article ID HETEROGENEOUS CATALYSIS; SUPPORTED PALLADIUM; SPILLOVER; STORAGE; ABSORPTION; PLATINUM; SORPTION; ADSORPTION; SURFACES; SYSTEM AB This paper reports on differences in stability of Pd hydride phases in palladium particles with various degrees of contact with microporous carbon supports. A sample containing Pd embedded in activated carbon fibre (2 wt% Pd) was compared with commercial Pd nanoparticles deposited on microporous activated carbon (3 wt% Pd) and with support-free nanocrystalline palladium. The morphology of the materials was characterized by electron microscopy, and the phase transformations were analysed over a large range of hydrogen partial pressures (0.003-10 bar) and at several temperatures using in situ x-ray diffraction. The results were verified with volumetric hydrogen uptake measurements. Results indicate that higher degrees of Pd-carbon contacts for Pd particles embedded in a microporous carbon matrix induce efficient 'pumping' of hydrogen out of beta-PdH(x). It was also found that thermal cleaning of carbon surface groups prior to exposure to hydrogen further enhances the hydrogen pumping power of the microporous carbon support. In brief, this study highlights that the stability of beta-PdH(x) phase supported on carbon depends on the degree of contact between Pd and carbon and on the nature of the carbon surface. C1 [Bhat, V. V.; Contescu, C. I.; Gallego, N. C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gallego, NC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,MS 6087, Oak Ridge, TN 37831 USA. EM bhatvv@ornl.gov; contescuci@ornl.gov; gallegonc@ornl.gov RI Contescu, Cristian/E-8880-2011; OI Contescu, Cristian/0000-0002-7450-3722; Gallego, Nidia/0000-0002-8252-0194 FU Division of Materials Science and Engineering, US Department of Energy [DE-AC05-00OR22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research is supported by the Division of Materials Science and Engineering, US Department of Energy, under contract DE-AC05-00OR22725 with UT Battelle, LLC. A portion of this research was conducted at ORNL's Center for Nanophase Materials Sciences, which is sponsored by Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. VVB acknowledges the appointment under ORNL Postdoctoral Research Associates Programme administered jointly by ORISE and ORNL. The authors acknowledge help from Drs Andrew Edward Payzant and Adam Rondinone of Center for Nanophase Materials Sciences with XRD studies, and contributions of Professor Dan D Edie and Mr Halil Tekinalp with synthesis of ACF and Pd-ACF materials. NR 41 TC 22 Z9 22 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 20 PY 2009 VL 20 IS 20 AR 204011 DI 10.1088/0957-4484/20/20/204011 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 438BR UT WOS:000265531400012 PM 19420659 ER PT J AU Graetz, J Chaudhuri, S Salguero, TT Vajo, JJ Meyer, MS Pinkerton, FE AF Graetz, J. Chaudhuri, S. Salguero, T. T. Vajo, J. J. Meyer, M. S. Pinkerton, F. E. TI Local bonding and atomic environments in Ni-catalyzed complex hydrides SO NANOTECHNOLOGY LA English DT Article ID X-RAY-ABSORPTION; IMPROVED HYDROGEN RELEASE; CRYSTAL-STRUCTURE; SODIUM ALANATE; STORAGE; TI; LIB0.33N0.67H2.67; BOROHYDRIDE; LI4BN3H10; KINETICS AB The local bonding and atomic environments in the Ni-catalyzed destabilized system LiBH(4)/MgH(2) and the quaternary borohydride-amide phase Li(3)BN(2)H(8), were studied by x-ray absorption spectroscopy. In both cases the Ni catalyst was introduced as NiCl(2) and a qualitative comparison of the Ni K-edge near-edge structure suggests the Ni(2+) is reduced to primarily Ni(0) after ball milling. The extended fine structure of the Ni K edge indicates that the Ni is coordinated by similar to 3 boron atoms with an interatomic distance of approximately 2.1 angstrom and similar to 11 Ni atoms in a split shell at around 2.5 and 2.8 angstrom. These results, and the lack of long-range order, suggest that the Ni is present as a disordered nanocluster with a local structure similar to that of Ni(3)B. In the fully hydrogenated phase of LiBH(4)/MgH(2) a small amount Mg(2)NiH(x) was also present. Surface calculations performed using density functional theory suggest that the lowest kinetic barrier for H(2) chemisorption occurs on the Ni(3)B(100) surface. C1 [Graetz, J.] Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. [Chaudhuri, S.] Washington State Univ, Appl Sci Lab, Spokane, WA 99210 USA. [Chaudhuri, S.] Washington State Univ, Inst Shock Phys, Spokane, WA 99210 USA. [Salguero, T. T.; Vajo, J. J.] HRL Labs LLC, Malibu, CA 90265 USA. [Meyer, M. S.; Pinkerton, F. E.] Gen Motors Res & Dev Ctr, Mat & Proc Lab, Warren, MI 48090 USA. RP Graetz, J (reprint author), Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. FU Metal Hydrides Center of Excellence, Office of Energy Efficiency and Renewable Energy; Hydrogen Fuel Initiative, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-98CH1-886]; ONR [N00014-03-1-0247] FX This work was supported through the Metal Hydrides Center of Excellence, Office of Energy Efficiency and Renewable Energy, and the Hydrogen Fuel Initiative, Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-98CH1-886. SC acknowledges ONR grant N00014-03-1-0247. The authors thank Alexander Ignatov, John Johnson, Yusuf Celebi and Weimin Zhou for their assistance in the laboratory. NR 33 TC 14 Z9 15 U1 2 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 20 PY 2009 VL 20 IS 20 AR 204007 DI 10.1088/0957-4484/20/20/204007 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 438BR UT WOS:000265531400008 PM 19420655 ER PT J AU Kim, KC Dai, B Johnson, JK Sholl, DS AF Kim, Ki Chul Dai, Bing Johnson, J. Karl Sholl, David S. TI Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction SO NANOTECHNOLOGY LA English DT Article ID REVERSIBLE HYDROGEN STORAGE; 1ST-PRINCIPLES CALCULATIONS; AB-INITIO; 1ST PRINCIPLES; MAGNESIUM; DECOMPOSITION; ENERGY; PSEUDOPOTENTIALS; MEMBRANES; CAPACITY AB The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H-2 pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced. C1 [Kim, Ki Chul; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Dai, Bing; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr, Atlanta, GA 30332 USA. EM david.sholl@chbe.gatech.edu RI Kim, Ki Chul/J-5290-2012; Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU DOE [DE-FC36-05G015066] FX This work was supported by the DOE grant number DE-FC36-05G015066 and performed in conjunction with the DOE Metal Hydride Center of Excellence. NR 42 TC 65 Z9 67 U1 5 U2 56 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 20 PY 2009 VL 20 IS 20 AR 204001 DI 10.1088/0957-4484/20/20/204001 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 438BR UT WOS:000265531400002 PM 19420649 ER PT J AU Vajo, J Pinkerton, F Stetson, N AF Vajo, John Pinkerton, Fred Stetson, Ned TI Nanoscale phenomena in hydrogen storage SO NANOTECHNOLOGY LA English DT Editorial Material C1 [Vajo, John] HRL Labs LLC, Malibu, CA USA. [Pinkerton, Fred] GM R&D Ctr, Mat & Proc Lab, Warren, MI USA. [Stetson, Ned] US DOE, Washington, DC USA. RP Vajo, J (reprint author), HRL Labs LLC, Malibu, CA USA. NR 0 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 20 PY 2009 VL 20 IS 20 AR 200201 DI 10.1088/0957-4484/20/20/200201 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 438BR UT WOS:000265531400001 PM 19420648 ER PT J AU Wellons, MS Berseth, PA Zidan, R AF Wellons, Matthew S. Berseth, Polly A. Zidan, Ragaiy TI Novel catalytic effects of fullerene for LiBH4 hydrogen uptake and release SO NANOTECHNOLOGY LA English DT Article ID WALLED CARBON NANOTUBES; TI-DOPED NAALH4; REVERSIBLE DEHYDROGENATION; LITHIUM BOROHYDRIDE; SODIUM ALANATES; STORAGE; TRANSFORMATIONS; BEHAVIOR; KINETICS AB The addition of catalysts to complex hydrides is aimed at enhancing the hydrogen absorption desorption properties. Here we show that the addition of carbon nanostructure C-60 to LiBH4 has a remarkable catalytic effect, enhancing the uptake and release of hydrogen. A fullerene-LiBH4 composite demonstrates catalytic properties with not only lowered hydrogen desorption temperatures but also regenerative rehydrogenation at a relatively low temperature of 350 degrees C. This catalytic effect probably originates from C-60 interfering with the charge transfer from Li to the BH4 moiety, resulting in a minimized ionic bond between Li+ and BH4-, and a weakened covalent bond between B and H. Interaction of LiBH4 with an electronegative substrate such as carbon fullerene affects the ability of Li to donate its charge to BH4, consequently weakening the B-H bond and causing hydrogen to desorb at lower temperatures as well as facilitating the absorption of H-2. Degradation of cycling capacity is observed and is probably due to the formation of diboranes or other irreversible intermediates. C1 [Wellons, Matthew S.; Berseth, Polly A.; Zidan, Ragaiy] Savannah River Natl Lab, Energy Secur Directorate, Aiken, SC 29808 USA. RP Wellons, MS (reprint author), Savannah River Natl Lab, Energy Secur Directorate, POB A, Aiken, SC 29808 USA. EM Ragaiy.Zidan@srnl.doe.gov FU US Department of Energy, Office of Basic Energy Science FX MSW, PAB, and RZ thank the US Department of Energy, Office of Basic Energy Science for funding. MSW, PAB, and RZ would like to thank Dr Joshua Gray for providing helpful assistance with Sievert's measurements. We would like to also thank Mr Joe wheeler for his assistance with the laboratories operations. NR 25 TC 40 Z9 40 U1 1 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 20 PY 2009 VL 20 IS 20 AR 204022 DI 10.1088/0957-4484/20/20/204022 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 438BR UT WOS:000265531400023 PM 19420670 ER PT J AU Jackson, JM Sturhahn, W Tschauner, O Lerche, M Fei, YW AF Jackson, Jennifer M. Sturhahn, Wolfgang Tschauner, Oliver Lerche, Michael Fei, Yingwei TI Behavior of iron in (Mg,Fe)SiO3 post-perovskite assemblages at Mbar pressures SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SYNCHROTRON MOSSBAUER-SPECTROSCOPY; CORE-MANTLE BOUNDARY; EARTHS LOWER MANTLE; SPIN FERROUS IRON; FERRIC IRON; D''-LAYER; (MG,FE)(SI,AL)O-3 PEROVSKITE; LOWERMOST MANTLE; PHASE-TRANSITION; MGSIO3 AB The electronic environment of the iron sites in post-perovskite (PPv) structured (Fe-57,Mg)SiO3 has been measured in-situ at 1.12 and 1.19 Mbar at room temperature using 57 Fe synchrotron Mossbauer spectroscopy. Evaluation of the time spectra reveals two distinct iron sites, which are well distinguished by their hyperfine fields. The dominant site is consistent with an Fe3+-like site in a high spin state. The second site is characterized by a small negative isomer shift with respect to alpha-iron and no quadrupole splitting, consistent with a metallic iron phase. Combined with SEM/EDS analyses of the quenched assemblage, our results are consistent with the presence of a metallic iron phase coexisting with a ferric-rich PPv. Such a reaction pathway may aid in our understanding of the chemical evolution of Earth's core-mantle-boundary region. Citation: Jackson, J. M., W. Sturhahn, O. Tschauner, M. Lerche, and Y. Fei (2009), Behavior of iron in (Mg,Fe)SiO3 post-perovskite assemblages at Mbar pressures, Geophys. Res. Lett., 36, L10301, doi: 10.1029/2009GL037815. C1 [Jackson, Jennifer M.] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA. [Fei, Yingwei] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Lerche, Michael] Argonne Natl Lab, HPSynC, Argonne, IL 60439 USA. [Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tschauner, Oliver] Univ Nevada, Dept Phys, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. RP Jackson, JM (reprint author), CALTECH, Div Geol & Planetary Sci, Seismol Lab, M-C 252-21,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM jackson@gps.caltech.edu RI Fei, Yingwei/F-3709-2011 OI Fei, Yingwei/0000-0001-9955-5353 FU National Science Foundation (NSF) [EAR 0711542]; Caltech; NSF-EAR [0552010]; NNSA Cooperative Agreement [DOE-FC52-06NA27684]; U. S. DOE, Office of Science, BES [DE-AC02-06CH11357]; COMPRES; NSF Cooperative Agreement [EAR 06-49658]; MRSEC Program of the NSF [DMR-0080065] FX We thank J. Zhao for technical assistance, D. Stevenson for discussions, D. Adams and two anonymous reviewers for their comments. Support for this work was provided in part by the National Science Foundation (NSF) EAR 0711542 and Caltech (J. M. J.), NSF-EAR 0552010 and NNSA Cooperative Agreement DOE-FC52-06NA27684 (O.T.), the U. S. DOE, Office of Science, BES under DE-AC02-06CH11357, and COMPRES under NSF Cooperative Agreement EAR 06-49658. X-ray diffraction experiments were performed at HPCAT (Sector 16, APS). SEM and EDS analyses were carried out at the Caltech GPS Division Analytical Facility (MRSEC Program of the NSF under DMR-0080065). NR 46 TC 16 Z9 17 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 19 PY 2009 VL 36 AR L10301 DI 10.1029/2009GL037815 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 449WX UT WOS:000266362500004 ER PT J AU Rotstayn, LD Liu, YG AF Rotstayn, Leon D. Liu, Yangang TI Cloud droplet spectral dispersion and the indirect aerosol effect: Comparison of two treatments in a GCM SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EFFECTIVE RADIUS; STRATOCUMULUS CLOUDS; PARAMETERIZATION; SENSITIVITY AB Two parameterizations of cloud droplet spectral dispersion and their impact on the indirect aerosol effect are compared in a global climate model. The earlier scheme specifies beta, the ratio of droplet effective radius to volume-mean radius, in terms of N, the cloud droplet number concentration. The new scheme specifies beta in terms of mean droplet mass (L/N), where L is liquid water content, to account for the effect of variations in L. For low to moderate N, the new scheme gives a stronger increase of beta with increasing N than the old scheme. In a present-climate simulation, the new scheme shows a stronger gradient between remote regions (small beta) and polluted/continental regions (large beta). The new scheme also offsets the first indirect aerosol forcing (Delta F) more strongly: Delta F = -0.65W m(-2) with constant beta, -0.43 W m(-2) with the old beta, and -0.38 W m(-2) with the new beta. Citation: Rotstayn, L. D., and Y. Liu (2009), Cloud droplet spectral dispersion and the indirect aerosol effect: Comparison of two treatments in a GCM, Geophys. Res. Lett., 36, L10801, doi: 10.1029/2009GL038216. C1 [Rotstayn, Leon D.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic 3195, Australia. [Liu, Yangang] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Rotstayn, LD (reprint author), CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Private Bag 1, Aspendale, Vic 3195, Australia. EM leon.rotstayn@csiro.au; lyg@bnl.gov RI Liu, Yangang/H-6154-2011; Rotstayn, Leon/A-1756-2012 OI Rotstayn, Leon/0000-0002-2385-4223 FU Australian Climate Change Science Program (ACCSP); ARM and ASP programs of the US Department of Energy (DOE) FX LR was supported in part by the Australian Climate Change Science Program (ACCSP). YL was supported by the ARM and ASP programs of the US Department of Energy (DOE). NR 22 TC 11 Z9 11 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 19 PY 2009 VL 36 AR L10801 DI 10.1029/2009GL038216 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 449WX UT WOS:000266362500007 ER PT J AU Ni, BB Shprits, Y Nagai, T Thorne, R Chen, Y Kondrashov, D Kim, HJ AF Ni, Binbin Shprits, Yuri Nagai, Tsugunobu Thorne, Richard Chen, Yue Kondrashov, Dmitri Kim, Hee-jeong TI Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WHISTLER-MODE CHORUS; RELATIVISTIC ELECTRONS; MAGNETIC STORM; INNER MAGNETOSPHERE; OCTOBER 9; EXOS-D; ACCELERATION; DIFFUSION; LOSSES; WAVES AB Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern ( 1996) magnetic field model is described in detail. C1 [Ni, Binbin; Shprits, Yuri; Thorne, Richard; Kondrashov, Dmitri; Kim, Hee-jeong] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Chen, Yue] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nagai, Tsugunobu] Tokyo Inst Technol, Dept Earth & Planetary Sci, Tokyo 1528550, Japan. [Kondrashov, Dmitri] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Ni, BB (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, 7127 Math Sci Bldg,405 Hilgard Ave, Los Angeles, CA 90095 USA. EM bbni@atmos.ucla.edu RI Ni, Binbin/I-5244-2013; Kondrashov, Dmitri/E-2067-2016 OI Kondrashov, Dmitri/0000-0002-3471-7275 FU NASA LWS [NNX06AB84G]; Lab Fees Research Program FX This work was supported by NASA LWS grant NNX06AB84G and by the Lab Fees Research Program. We are thankful for the use of the NSSDC OMNIWeb database of solar wind data and for the use of SSCWeb 3-D Orbit Viewer software for satellite orbit plotting. We thank Howard Singer for providing the CRRES magnetic field data. We are also grateful for the use of the ONERA-DESP codes provided by D. Boscher and S. Bourdarie and for useful discussions. B. N. thanks Y. Lu for help with FORTRAN problems. The authors would also like to thank Jerry Goldstein for useful comments and stimulating discussions.; [48] Zuyin Pu thanks Nigel Meredith and T. Paul O'Brien for their assistance in evaluating this paper. NR 60 TC 32 Z9 32 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 19 PY 2009 VL 114 AR A05208 DI 10.1029/2008JA013933 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 449YC UT WOS:000266366000003 ER PT J AU Ha, JY Trainor, TP Farges, F Brown, GE AF Ha, Juyoung Trainor, Thomas P. Farges, Francois Brown, Gordon E., Jr. TI Interaction of Zn(II) with Hematite Nanoparticles and Microparticles: Part 2. ATR-FTIR and EXAFS Study of the Aqueous Zn(II)/Oxalate/Hematite Ternary System SO LANGMUIR LA English DT Article ID WATER-GOETHITE INTERFACE; WEIGHT ORGANIC-ACIDS; SOIL SOLUTION; MINERAL/WATER INTERFACES; SPECTROSCOPIC EVIDENCE; SURFACE SPECIATION; CARBOXYLIC-ACIDS; ZINC ADSORPTION; IRON-OXIDE; OXALATE AB Sorption of Zn(II) to hematite nanoparticles (HN) (av diam = 10.5 nm) and microparticles (HM) (av diam = 550 nm) was studied in the presence of oxalate anions (Ox((aq))(2-)) in acqueous solutions as a function of total Zn(II)((aq)) to total Ox((aq))(2-) concentration ratio (R = [Zn(II)((aq))](tot)/[Ox((aq))(2-))](tot)) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)((aq))](tot) < 4 mM, whereas it is 50-100% higher for the Zn(II)/Ox/HN system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)((aq))](tot) > 4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)((aq))](tot) < 4 mM. In the Zn(II)/Ox/HM ternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx((aq)) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption Fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., > O(2)-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R = 0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx((aq)) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx((s))-like surface precipitate and possibly type B ternary surface complexes (i.e., > O(2)-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx((s))-like precipitates. We ascribe the observed increase of ZnII((aq)) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)((aq))](tot) >= 4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx((s))-like precipitate at the hematite nanoparticle/water interface. C1 [Ha, Juyoung; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Trainor, Thomas P.] Univ Alaska, Dept Chem & Biochem, Fairbanks, AK 99775 USA. [Farges, Francois] Univ Marne la Vallee, Lab Geomat, CNRS, UMR 7160, Paris, France. [Brown, Gordon E., Jr.] Natl Accelerator Lab, SLAC, Menlo Pk, CA 94025 USA. RP Ha, JY (reprint author), Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. EM jyha@stanford.edu FU NSF-NIRT [CBET-0404400]; NSF-EMSI [CHE-0431425]; NSF Center for Environmental Implications of Nanotechnology (CEINT) based at Duke University FX This research was Supported by NSF-NIRT Grant CBET-0404400 and NSF-EMSI Grant CHE-0431425. We wish to thank Guangchao Li for help in performing ICP measurements and Allyson Aranda at SSRL for her assistance in EXAFS data collection. We thank fouranonvillous reviewers for their helpful comments. We also acknowledge partial support for this work from the NSF Center for Environmental Implications of Nanotechnology (CEINT) based at Duke University. NR 43 TC 8 Z9 8 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 19 PY 2009 VL 25 IS 10 BP 5586 EP 5593 DI 10.1021/la802895a PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 445WA UT WOS:000266081000026 PM 19326938 ER PT J AU Armstrong, NR Wang, WN Alloway, DM Placencia, D Ratcliff, E Brumbach, M AF Armstrong, Neal R. Wang, Weining Alloway, Dana M. Placencia, Diogenes Ratcliff, Erin Brumbach, Michael TI Organic/Organic' Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices SO MACROMOLECULAR RAPID COMMUNICATIONS LA English DT Review DE diodes; films; frontier orbitals; interface dipoles; organic heterojunctions; organic light emitting diodes; organic photovoltaics; UV-photoelectron spectroscopy ID INDIUM-TIN OXIDE; ENERGY-LEVEL ALIGNMENT; SENSITIZED SOLAR-CELLS; ELECTRON-TRANSFER REACTIONS; CHARGE NEUTRALITY LEVEL; OPEN-CIRCUIT VOLTAGE; PEDOT-PSS FILMS; THIN-FILMS; ELECTROGENERATED CHEMILUMINESCENCE; SOLID-STATE AB Heterojunctions created from thin films of two dissimilar organic semiconductor materials [organic/organic' (O/O') heterojunctions] are an essential component of organic light emitting diode displays and lighting systems (OLEDs, PLEDs) and small molecule or polymer-based organic photovoltaic (solar cell) technologies (OPVs). O/O' heterojunctions are the site for exciton formation in OLEDs, and the site for exciton dissociation and photocurrent production in OPVs. Frontier orbital energy offsets in O/O' heterojunctions establish the excess free energy controlling rates of charge recombination and formation of emissive states in OLEDs and PLEDs. These energy offsets also establish the excess free energy which controls charge separation and the short-circuit photocurrent (J(SC)) in OPVs, and set the upper limit for the open-circuit photopotential (V(OC)). We review here how these frontier orbital energy offsets are determined using photo-emission spectroscopies, how these energies change as a function of molecular environment, and the influence of interface dipoles on these frontier orbital energies. Recent examples of heterojunctions based on small molecule materials are shown, emphasizing those heterojunctions which are of interest for photovoltaic applications. These include heterojunctions of perylenebisimide dyes with trivalent metal phthalocyanines, and heterojunctions of titanyl phthalocyanine with C(60), and with pentacene. Organic solar cells comprised of donor/acceptor pairs of each of these last three materials confirm that the V(OC) scales with the energy offsets between the HOMO of the donor and LUMO of the acceptor (E(HOMOD)-E(LUMOA)). C1 [Armstrong, Neal R.; Wang, Weining; Placencia, Diogenes; Ratcliff, Erin] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Alloway, Dana M.] Concord Univ, Athens, WV 24712 USA. [Brumbach, Michael] Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Armstrong, NR (reprint author), Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. EM nra@email.arizona.edu RI Wang, Weining/E-3435-2010; Wang, Weining/A-3589-2012 FU National Science Foundation [CHE-0517963]; Office of Naval Research; NSF Science and Technology Center-Materials and Devices for Information Technology [DMR-0120967] FX This work was supported in part by the National Science Foundation (CHE-0517963), the Office of Naval Research, and the NSF Science and Technology Center-Materials and Devices for Information Technology DMR-0120967. NRA would also like to acknowledge the many years of fruitful collaborations and discussions with members of the Max-Planck Institut fur Polymerforschung (MPIP-Mainz), and the stimulating discussions there from. The research at the MPIP has complemented and focused many of our own research efforts, and our interactions with this institute have had a significant impact on the type of training environment we have created at the University of Arizona for our own students. Special thanks and congratulations go to Professors Gerhard Wegner, Wolfqang Knoll, Klaus Mullen, Hans Spiess, and their close associates and students. NR 253 TC 143 Z9 143 U1 16 U2 183 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1022-1336 J9 MACROMOL RAPID COMM JI Macromol. Rapid Commun. PD MAY 19 PY 2009 VL 30 IS 9-10 SI SI BP 717 EP 731 DI 10.1002/marc.200900075 PG 15 WC Polymer Science SC Polymer Science GA 455WL UT WOS:000266798800004 PM 21706658 ER PT J AU Gouet-Kaplan, M Tartakovsky, A Berkowitz, B AF Gouet-Kaplan, Maxime Tartakovsky, Alexandre Berkowitz, Brian TI Simulation of the interplay between resident and infiltrating water in partially saturated porous media SO WATER RESOURCES RESEARCH LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS; HUMID HEADWATER CATCHMENTS; STORM RUNOFF GENERATION; CAPILLARY-FRINGE; FLOW; SOIL; MODEL; PERCOLATION; FRACTURES; MIGRATION AB The interplay between resident water already in the subsurface environment ("old water") and infiltrating water ("new water") is examined. A smoothed particle hydrodynamics technique is used to simulate the interplay between old water and new water in a porous medium over a cycle of drainage of old water and infiltration of new water. The effect of varying the average pore size is investigated via the Bond number. Four parameters (maximal mixing amount, minimal average size of old water pockets, mixing value for which the number of old water pockets decreases, and amount of old water remaining in the system for long times) are found to be independent of the average pore size. However, the rate of change is always higher for larger pores. In particular, some old water remains in the system within stable water pockets even after infiltrating new water reaches steady state. C1 [Gouet-Kaplan, Maxime; Berkowitz, Brian] Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. [Tartakovsky, Alexandre] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gouet-Kaplan, M (reprint author), Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. EM maxime.gouet-kaplan@weizmann.ac.il; alexandre.tartakovsky@pnl.gov; brian.berkowitz@weizmann.ac.il RI BERKOWITZ, BRIAN/K-1497-2012 OI BERKOWITZ, BRIAN/0000-0003-3078-1859 FU Israel Science Foundation [575/08]; Volontaire International and a Rieger Foundation fellow; Department of Energy's Office of Advanced Scientific Computing Research at Pacific Northwest National Laboratory (PNNL) FX This research was supported by the Israel Science Foundation (grant 575/08). Maxime Gouet-Kaplan is a Volontaire International and a Rieger Foundation fellow. Brian Berkowitz holds the Sam Zuckerberg Professorial Chair. The second author was partially supported by the Department of Energy's Office of Advanced Scientific Computing Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. NR 35 TC 17 Z9 17 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD MAY 19 PY 2009 VL 45 AR W05416 DI 10.1029/2008WR007350 PG 9 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 449YT UT WOS:000266367800001 ER PT J AU Kalisky, B Kirtley, JR Nowadnick, EA Dinner, RB Zeldov, E Ariando Wenderich, S Hilgenkamp, H Feldmann, DM Moler, KA AF Kalisky, B. Kirtley, J. R. Nowadnick, E. A. Dinner, R. B. Zeldov, E. Ariando Wenderich, S. Hilgenkamp, H. Feldmann, D. M. Moler, K. A. TI Dynamics of single vortices in grain boundaries: I-V characteristics on the femtovolt scale SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; flux pinning; grain boundaries; Hall effect; high-temperature superconductors; scanning probe microscopy; superconducting thin films; yttrium compounds ID PAIRING SYMMETRY; FLUX-CREEP; THIN-FILMS; SUPERCONDUCTORS; YBA2CU3O7-DELTA; CROSSOVER; BICRYSTALS; TRANSPORT AB We employed a scanning Hall probe microscope to detect the hopping of individual vortices between pinning sites along grain boundaries in YBa(2)Cu(3)O(6+delta) thin films in the presence of an applied current. Detecting the motion of individual vortices allowed us to probe the current-voltage (I-V) characteristics of the grain boundary with voltage sensitivity below a femtovolt. We find a very sharp onset of dissipation with V proportional to I(n) with an unprecedented high exponent of n approximate to 290 that shows essentially no dependence on temperature or grain boundary angle. Our data have no straightforward explanation within the existing grain boundary transport models. C1 [Kalisky, B.; Kirtley, J. R.; Nowadnick, E. A.; Dinner, R. B.; Zeldov, E.; Moler, K. A.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Zeldov, E.] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. [Ariando; Wenderich, S.; Hilgenkamp, H.] Univ Twente, Mesa Inst Nanotechnol, Low Temp Div, NL-7500 AE Enschede, Netherlands. [Feldmann, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kalisky, B (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. EM bccna@stanford.edu RI Moler, Kathryn/F-2541-2011; Ariando, Ariando/F-8953-2012; Zeldov, Eli/K-1546-2012 OI Ariando, Ariando/0000-0002-0598-426X; Zeldov, Eli/0000-0002-8200-4974 FU Air Force MultiUniversity Research Initiative (MURI); Center for Probing the Nanoscale (CPN); NSF NSEC; NSF [PHY-0425897]; U. S.-Israel Binational Science Foundation (BSF); EU-Contract [EU FP7 ERC-AdG] FX The authors would like to thank Janice Guikema and Clifford Hicks for Hall sensors, H. Karapetyan for help in measurements, and M. Beasley and A. Gurevich for useful discussions. This work is funded by an Air Force MultiUniversity Research Initiative (MURI), by the Center for Probing the Nanoscale (CPN), an NSF NSEC, NSF Grant no. PHY-0425897, and by the U. S.-Israel Binational Science Foundation (BSF). E. Z. acknowledges the support of EU-Contract No. EU FP7 ERC-AdG. NR 23 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 18 PY 2009 VL 94 IS 20 AR 202504 DI 10.1063/1.3137164 PG 3 WC Physics, Applied SC Physics GA 449PP UT WOS:000266342800041 ER PT J AU Kuchibhatla, SVNT Nachimuthu, P Gao, F Jiang, W Shutthanandan, V Engelhard, MH Seal, S Thevuthasan, S AF Kuchibhatla, Satyanarayana V. N. T. Nachimuthu, P. Gao, F. Jiang, W. Shutthanandan, V. Engelhard, M. H. Seal, S. Thevuthasan, S. TI Growth-rate induced epitaxial orientation of CeO2 on Al2O3(0001) SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; cerium compounds; epitaxial layers; molecular beam epitaxial growth; molecular dynamics method; plasma deposition ID THIN-FILMS; CERIA AB High-quality CeO2 films were grown on Al2O3(0001) substrates using oxygen plasma-assisted molecular beam epitaxy. The epitaxial orientation of the films is found to be CeO2(100) and CeO2(111) at low (< 8 A/min) and higher growth rates (>12 A/min), respectively. CeO2(100) film grows as three-dimensional islands, while CeO2(111) film grows as two-dimensional layers. The CeO2(100) film exhibits better epitaxial quality compared to CeO2(111) film. However, the CeO2(100) film on Al2O3(0001) shows three in-plane domains at 30 degrees to each other. While the epitaxial quality is attributed to the close match between oxygen sublattices of CeO2(100) and Al2O3(0001), the three in-plane domains in CeO2(100) are attributed to the threefold symmetry of the substrate. The relative stability of different epitaxial orientations of CeO2 films on Al2O3(0001) obtained from molecular dynamics simulations strongly supports the experimental observations. C1 [Kuchibhatla, Satyanarayana V. N. T.; Nachimuthu, P.; Shutthanandan, V.; Engelhard, M. H.; Thevuthasan, S.] EMSL, Pacific NW Natl Lab, Richland, WA 99352 USA. [Kuchibhatla, Satyanarayana V. N. T.; Seal, S.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Gao, F.; Jiang, W.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Seal, S.] Univ Cent Florida, Nanoscale Sci & Technol Ctr, Orlando, FL 32816 USA. RP Thevuthasan, S (reprint author), EMSL, Pacific NW Natl Lab, Richland, WA 99352 USA. EM satya@pnl.gov; theva@pnl.gov RI Engelhard, Mark/F-1317-2010; Gao, Fei/H-3045-2012; OI Engelhard, Mark/0000-0002-5543-0812 FU Department of Energy's Office of Biological and Environmental Research; U. S. Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO 1830] FX The research was performed using EMSL, a national scientific user facility, sponsored by the Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U. S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 15 TC 11 Z9 11 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 18 PY 2009 VL 94 IS 20 AR 204101 DI 10.1063/1.3139073 PG 3 WC Physics, Applied SC Physics GA 449PP UT WOS:000266342800074 ER PT J AU Ribaudo, T Adams, DC Passmore, B Shaner, EA Wasserman, D AF Ribaudo, T. Adams, D. C. Passmore, B. Shaner, E. A. Wasserman, D. TI Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating SO APPLIED PHYSICS LETTERS LA English DT Article DE diffraction gratings; light transmission; metallic thin films; plasmonics; surface electromagnetic waves ID EXTRAORDINARY OPTICAL-TRANSMISSION; HOLE ARRAYS AB A patterned metal film with a periodic array of subwavelength apertures, fabricated upon a semiconductor substrate and designed to possess transmission resonances in the midinfrared is interrogated with a wavelength-tunable external cavity quantum cascade laser. The interaction of the coherent light with this plasmonic structure is studied using a spatially resolved transmission experiment, allowing for the far-field imaging of propagating waves on the surface of the metal film. Spatial and spectral transmission is investigated for a range of near-normal incidence angles. For nonzero angles of incidence, coupling of laser light, at distinct frequencies, to surface waves propagating in opposite directions is demonstrated. C1 [Ribaudo, T.; Adams, D. C.; Wasserman, D.] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA. [Passmore, B.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ribaudo, T (reprint author), Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA. EM daniel_wasserman@uml.edu RI Wasserman, Daniel/D-3913-2011 FU Sandia Corporation; Lockheed Martin Co.; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank C. Gmachl and the NSF-ERC Mid-Infrared Technology for Health and the Environment (MIRTHE), for use of the Daylight Solutions tunable laser. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 11 TC 6 Z9 6 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 18 PY 2009 VL 94 IS 20 AR 201109 DI 10.1063/1.3140569 PG 3 WC Physics, Applied SC Physics GA 449PP UT WOS:000266342800009 ER PT J AU Wei, HX Qin, QH Wen, ZC Han, XF Zhang, XG AF Wei, H. X. Qin, Q. H. Wen, Z. C. Han, X. F. Zhang, X. -G. TI Magnetic tunnel junction sensor with Co/Pt perpendicular anisotropy ferromagnetic layer (vol 94, 172902, 2009) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Wei, H. X.; Qin, Q. H.; Wen, Z. C.; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Han, XF (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. EM hxwei@aphy.iphy.ac.cn; xfhan@aphy.iphy.ac.cn; xgz@ornl.gov RI Qin, Qihang/E-7266-2012 NR 1 TC 0 Z9 0 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 18 PY 2009 VL 94 IS 20 AR 209901 DI 10.1063/1.3143644 PG 1 WC Physics, Applied SC Physics GA 449PP UT WOS:000266342800078 ER PT J AU Xiong, Y Liu, ZW Zhang, X AF Xiong, Yi Liu, Zhaowei Zhang, Xiang TI A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm SO APPLIED PHYSICS LETTERS LA English DT Article DE lenses; masks; optical fabrication; photolithography ID OPTICAL HYPERLENS; TRANSFORMATION OPTICS; DIFFRACTION LIMIT; PHOTOLITHOGRAPHY; NANOLITHOGRAPHY; SUPERLENS; LIGHT AB We propose that a hyperlens can be used for photolithography to generate deep subwavelength arbitrary patterns from diffraction-limited masks. Numerical simulation shows that half-pitch resolution down to 20 nm is possible from a mask with 280 nm period at working wavelength 375 nm. We also extend the hyperlens projection concept from cylindrical interfaces to arbitrary interfaces. An example of a flat interface hyperlens is numerically demonstrated for lithography purposes. C1 [Xiong, Yi; Liu, Zhaowei; Zhang, Xiang] Univ Calif Berkeley, NSF, Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF, Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Zhaowei/A-8521-2010; Zhang, Xiang/F-6905-2011 FU U. S. Department of Energy [AC02-05CH11231]; National Science Foundation (NSF) Nanoscale Science and Engineering Center [CMMI-0751621] FX The authors thank Dr. Guy Bartal for valuable discussions. This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and the National Science Foundation (NSF) Nanoscale Science and Engineering Center (Grant No. CMMI-0751621) NR 26 TC 48 Z9 48 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 18 PY 2009 VL 94 IS 20 AR 203108 DI 10.1063/1.3141457 PG 3 WC Physics, Applied SC Physics GA 449PP UT WOS:000266342800062 ER PT J AU Li, LL McCorkle, SR Monchy, S Taghavi, S van der Lelie, D AF Li, Luen-Luen McCorkle, Sean R. Monchy, Sebastien Taghavi, Safiyh van der Lelie, Daniel TI Bioprospecting metagenomes: glycosyl hydrolases for converting biomass SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Review ID SUPPRESSIVE SUBTRACTIVE HYBRIDIZATION; ESCHERICHIA-COLI; MICROBIAL COMMUNITY; ENVIRONMENTAL METAGENOME; PROKARYOTIC DIVERSITY; CELLULASE GENES; VIRAL COMMUNITY; GUT MICROBIOME; ENZYME; EXPRESSION AB Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies. C1 [Li, Luen-Luen; McCorkle, Sean R.; Monchy, Sebastien; Taghavi, Safiyh; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Li, Luen-Luen; Taghavi, Safiyh; van der Lelie, Daniel] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP van der Lelie, D (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM luenlee@bnl.gov; mccorkle@bnl.gov; smonchy@bnl.gov; taghavis@bnl.gov; vdlelied@bnl.gov FU Office of Biological and Environmental Research in the Department of Energy Office of Science FX The BioEnergy Science Center is a Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. We are grateful to Avril Woodhead for commenting and carefully reviewing this manuscript. NR 70 TC 72 Z9 77 U1 4 U2 45 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD MAY 18 PY 2009 VL 2 AR 10 DI 10.1186/1754-6834-2-10 PG 11 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 522OM UT WOS:000272007600001 PM 19450243 ER PT J AU Gupta, S Leon-Escamilla, EA Wang, F Miller, GJ Corbett, JD AF Gupta, Shalabh Leon-Escamilla, E. Alejandro Wang, Fei Miller, Gordon J. Corbett, John D. TI R(5)Pn(3)-type Phases of the Heavier Trivalent Rare-Earth-Metal Pnictides (Pn = Sb, Bi): New Phase Transitions for Er5Sb3 and Tm5Sb3 SO INORGANIC CHEMISTRY LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; CRYSTAL-STRUCTURES; BINARY PNICTIDES; MN5SI3-TYPE; SCANDIUM; HYDROGEN; SYSTEM; ANTIMONIDES; CHEMISTRY; D88 AB The syntheses and distributions of binary R(5)Pn(3) phases among the hexagonal Mn5Si3 (M), and the very similar orthorhombic beta-Yb5Sb3 (Y) and Y5Bi3 (YB) structure types have been studied for R = Y, Gd-Lu and Pn = Sb, Bi. Literature reports of M and YB-type structure distributions among R5Pn3 phases, R = Y, Gd-Ho, are generally confirmed. The reported M-type Er5Sb3 could not be reproduced. Alternate stabilization of Y-type structures by interstitials H or F has been disproved for these nominally trivalent metal pnictides. Single crystal structures are reported for (a) the low temperature YB form of Er5Sb3 (Pnma, a = 7.9646(9) angstrom, b = 9.176(1) angstrom, c = 11.662(1) angstrom), (b) the YB- and high temperature Y-types of Tm5Sb3 (both Pnma, a = 7.9262(5), 11.6034(5) angstrom, b = 9.1375(6), 9.1077(4) angstrom, c = 11.6013(7), 7.9841(4) angstrom, respectively), and (c) the YB structure of Lu5Sb3, a = 7.8847(4) angstrom, b = 9.0770(5) angstrom, c = 11.5055(6) angstrom. Reversible, temperature-driven phase transitions (beta-Yb5Sb3 reversible arrow Y5Bi3 types) for the former Er5Sb3 and Tm5Sb3 around 1100 degrees C and the means of quenching the high temperature Y form, have been esstablished. According to their magnetic susceptibilities, YB-types of Er5Sb3 and Tm5Sb3 contain trivalent cations. Tight-binding linear muff in-tin-orbital method within the atomic sphere approximation (TB-LMTO-ASA) calculations for the two structures of Tm5Sb3 reveal generally similar electronic structures but with subtle Tm-Tm differences supporting their relative stabilities. The ambient temperature YB-Tm5Sb3 shows a deep pseudogap at E-F, approaching that of a closed shell electronic state. Short R-R bonds (3.25-3.29 angstrom) contribute markedly to the structural stabilities of both types. The Y-type structure of Tm5Sb3 shows both close structural parallels to, and bonding contrasts with, the nominally isotypic, stuffed Ca5Bi3D and its analogues. Some contradictions in the literature are discussed. C1 [Corbett, John D.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. EM jdc@ameslab.gov RI Gupta, Shalabh/H-6214-2012; Wang, Fei/I-2071-2012 FU Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy; DOE by Iowa State University [W-7405-Eng-82] FX Professor W. Jeitschko provided significant information regarding the synthesis Of Sc5Bi3. We thank J. Ostenson for the magnetic susceptibility measurements. This research was supported by the office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy; the Ames Laboratory is operated for the DOE by Iowa State University under contract no. W-7405-Eng-82. NR 51 TC 6 Z9 6 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD MAY 18 PY 2009 VL 48 IS 10 BP 4362 EP 4371 DI 10.1021/ic802464u PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 445JE UT WOS:000266046300012 PM 19341301 ER PT J AU Tsai, MK Rochford, J Polyansky, DE Wada, T Tanaka, K Fujita, E Muckerman, JT AF Tsai, Ming-Kang Rochford, Jonathan Polyansky, Dmitry E. Wada, Tohru Tanaka, Koji Fujita, Etsuko Muckerman, James T. TI Characterization of Redox States of Ru(OH2)(Q)(tpy)(2+) (Q=3,5-di-tert-butyl-1,2-benzoquinone, tpy=2,2 ':6 ',2 ''-terpyridine) and Related Species through Experimental and Theoretical Studies SO INORGANIC CHEMISTRY LA English DT Review ID DENSITY-FUNCTIONAL THEORY; 2-ELECTRON REDUCTION POTENTIALS; POLARIZABLE CONTINUUM MODEL; EFFECTIVE CORE POTENTIALS; SOLVATION FREE-ENERGIES; AB-INITIO CALCULATIONS; COMPLETE BASIS-SET; DIMETHYL-SULFOXIDE SOLUTION; TRANSITION-METAL COMPLEXES; ABSOLUTE PK(A) VALUES AB The redox states of Ru(OH2)(Q) (tpy)(2+) (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2':6',2 ''-terpyridine) are investigated through experimental and theoretical UV-vis spectra and Pourbaix diagrams. The electrochemical properties are reported for the species resulting from deprotonation and redox processes in aqueous solution. The formal oxidation states of the redox couples in the various intermediate complexes are systematically assigned using electronic structure theory. The controversy over the electronic assignment of ferromagnetic vs. antiferromagnetic coupling is investigated through comparison of ab initio methods and the broken-symmetry density functional theory (DFT) approach. The various pK(a) values and reduction potentials, including the consideration of proton-coupled electron-transfer (PCET) processes, are calculated, and the theoretical version of the Pourbaix diagram is constructed in order to elucidate and assign several previously ambiguous regions in the experimental diagram, C1 [Tsai, Ming-Kang; Rochford, Jonathan; Polyansky, Dmitry E.; Fujita, Etsuko; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Muckerman, James T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wada, Tohru; Tanaka, Koji] Inst Mol Sci, Coordinat Chem Labs, Okazaki, Aichi 4448787, Japan. RP Fujita, E (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM fujita@bnl.gov; muckerma@bnl.gov RI Polyansky, Dmitry/C-1993-2009; Fujita, Etsuko/D-8814-2013; Muckerman, James/D-8752-2013; OI Polyansky, Dmitry/0000-0002-0824-2296; Tsai, Ming-Kang/0000-0001-9189-5572 NR 132 TC 50 Z9 50 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 18 PY 2009 VL 48 IS 10 BP 4372 EP 4383 DI 10.1021/ic900057y PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 445JE UT WOS:000266046300013 PM 19425612 ER PT J AU Cape, JL Lymar, SV Lightbody, T Hurst, JK AF Cape, Jonathan L. Lymar, Sergei V. Lightbody, Travis Hurst, James K. TI Characterization of Intermediary Redox States of the Water Oxidation Catalyst, [Ru(bpy)(2)(OH2)](2)O4+ SO INORGANIC CHEMISTRY LA English DT Article ID RUTHENIUM DIIMINE COMPLEXES; MU-OXO DIMER; AQUEOUS-SOLUTION; ELECTRON-TRANSFER; HYDRATED ELECTRONS; HYDROXYL RADICALS; RESONANCE RAMAN; HYDROGEN-ATOMS; EXCITED-STATES; BLUE DIMER AB Higher oxidation states of the mu-oxo bridged ruthenium "blue dimer" ([Ru(bpy)(2)(OH2)](2)O4+) have been characterized by redox titration measurements, resonance Raman (RR) spectroscopy, EPR spectrometry, and pulse radiolysis. The cumulative results indicate that the progression of accessible oxidation states in acidic media is {3,3} -> {3,4} -> {4,4} -> {5,5}, but changes to {3,3} -> {3,4} -> {4,5} -> {5,5} above pH 2. Although the reaction 2{4,5} + 2H(2)O -> 2{3,4} + O-2 is thermodynamically favorable, no O-2 was detected during the decay of {4,5} to {3,4}. One-electron oxidation of {3,4} by radiolytically generated sulfate and carbonate radicals allowed determination of the {4,4} optical spectrum in neutral and alkaline media, where it exists only as a short-lived transient species. This spectrum was identical to that previously reported for {4,4} in acidic media; this observation and comparative RR spectra suggest that its molecular formula is [Ru(bpy)(2)(OH)](2)O4+, that is, both Ru atoms contain a coordinated hydroxo ligand. Upon application of an acidic pH jump, electrochemically prepared {4,5} underwent disproportionation to {4,4} and {5,5}, as determined from changes in the EPR spectra of the solutions. These studies clarify the nature of redox transients formed during water oxidation catalysis by the "blue dimer", thereby providing information that is critical to performing accurate mechanistic analyses. C1 [Cape, Jonathan L.; Lightbody, Travis; Hurst, James K.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Lymar, Sergei V.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Hurst, JK (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM hurst@wsu.edu FU Office of Science, U.S. Department of Energy [DE-FG02-06ER15820]; Division of Chemical Sciences, Office of Basic Energy Sciences [DE-AC0298CH 10886] FX The authors thank Professor Jeanne McHale of the Washington State University Chemistry Department for making available her Raman facility for these studies, Jon Downing for technical assistance in acquiring the RR spectra. Professor David Kramer for use of the WSU EPR Center, and Dr. Harold Schwarz of the Brookhaven National Laboratory Chemistry Department for adapting the pulse radiolysis data analysis programs to our needs. The research done at WSU was supported financially by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Grant DE-FG02-06ER15820; research at BNL was carried out under the auspices of the U.S. Department of Energy under contract DE-AC0298CH 10886 from the Division of Chemical Sciences, Office of Basic Energy Sciences. NR 47 TC 25 Z9 25 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 18 PY 2009 VL 48 IS 10 BP 4400 EP 4410 DI 10.1021/ic9001219 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 445JE UT WOS:000266046300016 PM 19371067 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CD DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for the lightest scalar top quark in events with two leptons in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID PARTICLE PHYSICS; SUPERSYMMETRY AB We report results of a search for the pair production of the lightest supersymmetric partner of the top quark, (t) over bar (1), using a data set corresponding to an integrated luminosity of 1 fb(-1) collected by the D circle divide detector at a p (p) over bar center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Both scalar top quarks are assumed to decay into a b quark, a charged lepton and a scalar neutrino. The search is performed in the electron Plus muon and dielectron final states. The signal topology consists of two isolated leptons, missing transverse energy, and jets. We find no evidence for this process and exclude regions of parameter space in the framework of the minimal supersymmetric standard model. (C) 2009 Elsevier B.V. All rights reserved. C1 [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Anzelc, M. S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begalli, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. RP Gris, P (reprint author), Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. EM gris@clermont.in2p3.fr RI Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012 OI Li, Liang/0000-0001-6411-6107; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192 FU DOE; NSF (USA);; CEA; CNRS/IN2P3 (France);; FASI; RFBR (Russia);; CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil);; DAE; DST (India);; Colciencias (Colombia);; CONACyT (Mexico);; KOSEF (Korea);; CONICET; UBACyT (Argentina);; FOM (The Netherlands);; STFC (United Kingdom);; MSMT; GACR (Czech Republic);; CRC Program; CFI,; NSERC; WestGrid Project (Canada);; BMBF; DFG (Germany);; SFI (Ireland);; Swedish Research Council (Sweden);; CAS; CNSF (China); Alexander von Humboldt Foundation (Germany). FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 25 TC 22 Z9 22 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAY 18 PY 2009 VL 675 IS 3-4 BP 289 EP 296 DI 10.1016/j.physletb.2009.04.039 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 449ZI UT WOS:000266369300004 ER PT J AU Curtright, T Fairlie, D Jin, X Mezincescu, L Zachos, C AF Curtright, Thomas Fairlie, David Jin, Xiang Mezincescu, Luca Zachos, Cosmas TI Classical and quantal ternary algebras SO PHYSICS LETTERS B LA English DT Article ID NAMBU MECHANICS; QUANTIZATION; LIE AB We consider several ternary algebras relevant to physics. We compare and contrast the quantal versions of the algebras, as realized through associative products of operators, with their classical Counterparts. as realized through classical Nambu brackets. In some cases involving infinite algebras, we show the classical limit may be obtained by a contraction of the quantal algebra, and then explicitly realized through classical brackets. We illustrate this classical-contraction method by the Virasoro-Witt example. (C) 2009 Elsevier B.V. All rights reserved. C1 [Curtright, Thomas; Jin, Xiang; Mezincescu, Luca] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Fairlie, David] Univ Durham, Dept Math Sci, Durham DH1 3LE, England. [Zachos, Cosmas] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Curtright, T (reprint author), Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. EM curtright@miami.edu RI zachos, cosmas/C-4366-2014; Curtright, Thomas/B-6840-2015 OI Curtright, Thomas/0000-0001-7031-5604; zachos, cosmas/0000-0003-4379-3875; FU NSF [0555603]; US Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357] FX We record our gratitude to J. Nuyts for communicating his 3-on-3-on-3 work to us prior to publication, and for alerting us to Bremner's identity. This work was supported by NSF Award 0555603, and by the US Department of Energy, Division of High Energy Physics, Contract DE-AC02-06CH11357. NR 41 TC 15 Z9 15 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 18 PY 2009 VL 675 IS 3-4 BP 387 EP 392 DI 10.1016/j.physletb.2009.04.019 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 449ZI UT WOS:000266369300022 ER PT J AU Svec, F Germain, J Frechet, JMJ AF Svec, F. Germain, J. Frechet, J. M. J. TI Nanoporous Polymers for Hydrogen Storage SO SMALL LA English DT Review DE hydrogen storage; metal-organic frameworks; microporous materials; nanoporous materials; polymers ID METAL-ORGANIC FRAMEWORKS; WALLED CARBON NANOTUBES; HIGH-SURFACE-AREA; PORE-SIZE DISTRIBUTION; INTRINSIC MICROPOROSITY PIMS; CARBIDE-DERIVED CARBONS; PRUSSIAN BLUE ANALOGS; HIGH H-2 ADSORPTION; GAS-ADSORPTION; HYPERCROSSLINKED POLYSTYRENE AB The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail. C1 [Svec, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Germain, J.; Frechet, J. M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Svec, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM fsvec@lbl.gov OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work carried out in the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 173 TC 208 Z9 212 U1 29 U2 218 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD MAY 18 PY 2009 VL 5 IS 10 BP 1098 EP 1111 DI 10.1002/smll.200801762 PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 448YK UT WOS:000266297700001 PM 19360719 ER PT J AU Chen, WB Schmidt, MC Samatova, NF AF Chen, Wenbin Schmidt, Matthew C. Samatova, Nagiza F. TI On parameterized complexity of the Multi-MCS problem SO THEORETICAL COMPUTER SCIENCE LA English DT Article DE Algorithms; Maximum common subgraph; Parameterized complexity; Linear FPT reduction ID SUBGRAPH ISOMORPHISM ALGORITHMS AB We introduce the maximum common subgraph problem for multiple graphs (Multi-MCS) inspired by various biological applications such as multiple alignments of gene sequences, protein structures, metabolic pathways, or protein-protein interaction networks. Multi-MCS is a generalization of the two-graph Maximum Common Subgraph problem (MCS). On the basis of the framework of parameterized complexity theory, we derive the parameterized complexity of Multi-MCS for various parameters for different classes of graphs. For example, for directed graphs with labeled vertices, we prove that the parameterized m-Multi-MCS problem is W[2]-hard, while the parameterized k-Multi-MCS problem is W[t]-hard (for all t >= 1), where m and k are the size of the maximum common subgraph and the number of multiple graphs, respectively. We show similar results for other parameterized versions of the Multi-MCS problem for directed graphs with vertex labels and undirected graphs with vertex and edge labels by giving linear FPT reductions of the problems from parameterized versions of the longest common subsequence problem. Likewise, for unlabeled undirected graphs, we show that a parameterized version of the Multi-MCS problem with a fixed number of input graphs is W[1]-complete by showing a linear FPT reduction to and from a parameterized version of the maximum clique problem. Published by Elsevier B.V. C1 [Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Samatova, NF (reprint author), N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. EM samatovan@ornl.gov FU US Department of Energy FX This research was supported by the "Exploratory Data Intensive Computing for Complex Biological Systems" project from US Department of Energy (Office of Advanced Scientific Computing Research, Office of Science). The work of NFS was also sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. NR 14 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3975 J9 THEOR COMPUT SCI JI Theor. Comput. Sci. PD MAY 17 PY 2009 VL 410 IS 21-23 BP 2024 EP 2032 DI 10.1016/j.tcs.2008.12.060 PG 9 WC Computer Science, Theory & Methods SC Computer Science GA 447FY UT WOS:000266178200008 ER PT J AU Thanos, PK Bermeo, C Wang, GJ Volkow, ND AF Thanos, Panayotis K. Bermeo, Carlos Wang, Gene-Jack Volkow, Nora D. TI D-Cycloserine accelerates the extinction of cocaine-induced conditioned place preference in C57bL/c mice SO BEHAVIOURAL BRAIN RESEARCH LA English DT Article DE Learning; Glutamate; Withdrawal; Abstinence; Drug abuse; NMDA; Addiction; Substance abuse ID FACILITATES EXTINCTION; NMDA; RECEPTORS; MEMORY; RATS; FEAR; REINSTATEMENT; ANTAGONISM; BEHAVIORS; CONTEXT AB Recently, it was shown that D-cycloserine (DCS, a NMDA partial agonist) facilitated extinction of fear as well as cocaine conditioned place preference (CPP) in rats. Methods: The present study examined the effects of DIES (115 mg/kg i.p. and 30 mg/kg i.p.) on extinction and renewal of cocaine-induced CPP in C57bL/c mice. In parallel, we examined the effects of DCS on locomotor activity. Results: Extinction to cocaine CPP was significantly faster with DCS than with vehicle treatment (three versus six sessions, respectively). After extinction was achieved, mice were retested for CPP 1 and 2 weeks later. All animals maintained extinction to CPP 1 week later, but at 2 weeks, the vehicle and the 15 mg/kg DCS-treated animals maintained the extinction, but the 30 mg/kg DCS-treated mice had renewed CPP. During induction of cocaine CPP mice displayed enhanced locomotor activity following treatment with cocaine, as expected, based on previous literature. During extinction, there were no differences in locomotor activity between the vehicle and the 15 mg/kg DCS-treated mice, whereas the 30 mg/kg DCS-treated animal showed significant locomotor activity inhibition. These results corroborate in mice the previously reported acceleration of extinction to cocaine-induced CPP by DCS in rats. However, we also show that the higher DCS doses facilitated CPP reestablishment after extinction. Thus, while DCS could be beneficial in accelerating the extinction to conditioned responses in addiction it could, at higher doses, increase the risk of relapse. Thus, studies evaluating the beneficial therapeutic effects of DCS should assess not only the short-term effects but also the potential of longer lasting undesirable effects. Published by Elsevier B.V. C1 [Thanos, Panayotis K.; Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & Neuroimaging Lab, Upton, NY 11973 USA. [Thanos, Panayotis K.; Bermeo, Carlos; Volkow, Nora D.] NIAAA, Neuroimaging Lab, Intramural Program, NIH, Bethesda, MD USA. [Thanos, Panayotis K.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. [Bermeo, Carlos] SUNY Stony Brook, Sch Social Welf, Stony Brook, NY 11794 USA. RP Thanos, PK (reprint author), Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & Neuroimaging Lab, Bldg 490, Upton, NY 11973 USA. EM thanos@bnl.gov FU National Institute of Health (NIH); U.S. Department of Energy [DE-AC02-98CH108886]; NIDA FX This work was supported by the Intramural Research Program of NIAAA at the National Institute of Health (NIH), the U.S. Department of Energy under contract DE-AC02-98CH108886 and the Behavioral Pharmacology and Neuroimaging Lab (http://www.bnl.gov/thanoslab). Carlos Bermeo was partially supported by the NIDA summer research program. NR 19 TC 44 Z9 47 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-4328 J9 BEHAV BRAIN RES JI Behav. Brain Res. PD MAY 16 PY 2009 VL 199 IS 2 BP 345 EP 349 DI 10.1016/j.bbr.2008.12.025 PG 5 WC Behavioral Sciences; Neurosciences SC Behavioral Sciences; Neurosciences & Neurology GA 429XP UT WOS:000264953700024 PM 19152811 ER PT J AU Wild, M Truessel, B Ohmura, A Long, CN Konig-Langlo, G Dutton, EG Tsvetkov, A AF Wild, Martin Truessel, Barbara Ohmura, Atsumu Long, Charles N. Koenig-Langlo, Gert Dutton, Ellsworth G. Tsvetkov, Anatoly TI Global dimming and brightening: An update beyond 2000 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SURFACE SOLAR-RADIATION; EARTHS SURFACE; UNITED-STATES; TRENDS; CHINA; CLIMATE; BUDGET; REDUCTIONS; AEROSOLS; NETWORK AB This study investigates recent variations in downwelling surface solar radiation inferred from a comprehensive set of ground-based observational records updated for the period 2000-2005. Surface radiation data beyond the year 2000 are particularly interesting as they provide independent and complementary information to the ambitious satellite programs which became operational with the beginning of the new millennium. The surface records suggest a continuation of the surface solar brightening beyond 2000 at numerous stations in Europe and the United States, as well as parts of east Asia ( Korea). Surface solar radiation variations in Europe after 2000 are dominated by a large positive anomaly in the year 2003 with its unprecedented summer heat wave, exceeding 10 Wm(-2) on an annual and 20 Wm(-2) on a summer mean basis in central Europe. The brightening seen at sites in Antarctica during the 1990s, influenced by a recovery from the low atmospheric transparency after the Mount Pinatubo volcanic eruption in 1991, fades after 2000. The brightening tendency also seems to level off at sites in Japan. In China there is some indication for a renewed dimming, after the stabilization in the 1990s. A continuation of the long-lasting dimming is also noted at the sites in India. Overall, the available data suggest continuation of the brightening beyond the year 2000 at numerous locations, yet less pronounced and coherent than during the 1990s, with more regions with no clear changes or declines. Therefore, globally, greenhouse warming after 2000 may be less modulated by surface solar variations than in prior decades. C1 [Wild, Martin; Truessel, Barbara; Ohmura, Atsumu] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dutton, Ellsworth G.] NOAA, Climate Monitoring Diagnost Lab, Boulder, CO 80305 USA. [Koenig-Langlo, Gert] Alfred Wegener Inst Polar & Marine Res, D-27515 Bremerhaven, Germany. [Tsvetkov, Anatoly] AI Voeikov Main Geophys Observ, World Radiat Data Ctr, St Petersburg 194018, Russia. RP Wild, M (reprint author), ETH, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland. EM martin.wild@env.ethz.ch RI Wild, Martin/J-8977-2012; Konig-Langlo, Gert/K-5048-2012 OI Konig-Langlo, Gert/0000-0002-6100-4107 FU Swiss National Science Foundation FX This study is supported by the National Center for Competence in Climate Research (NCCR Climate) sponsored by the Swiss National Science Foundation. The first author would particularly like to thank C. Schar for his ongoing support. Guido Muller is highly acknowledged for his efforts to transfer the data updates into the GEBA database. C. N. Long acknowledges the support of the Climate Change Research Division of the U. S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) program. K. Makowski., M. Chiacchio, D. Folini, and M. Hakuba are acknowledged for proofreading of the manuscript. NR 49 TC 87 Z9 89 U1 6 U2 45 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 16 PY 2009 VL 114 AR D00D13 DI 10.1029/2008JD011382 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 446DJ UT WOS:000266100300002 ER EF